
THEORETICAL STUDIES

OF NONUNIFORM ORIENTATIONAL ORDER

IN LIQUID CRYSTALS AND ACTIVE PARTICLES

A dissertation submitted to

Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Ayhan Duzgun

May 2018

c© Copyright

All rights reserved

Except for previously published materials



Dissertation written by

Ayhan Duzgun

B.S., Middle East Technical University, 2003

M.S., University of Pittsburgh, 2005

Ph.D., Kent State University, 2018

Approved by

, Chair, Doctoral Dissertation Committee
Dr. Jonathan Selinger

, Co-Chair, Doctoral Dissertation Committee
Dr. John Portman

, Members, Doctoral Dissertation Committee
Dr. Hamza Balci

Dr. Benjamin Fregoso

Dr. Robin Selinger

Dr. Antal Jakli

Accepted by

, Chair, Department of Physics

Dr. James T. Gleeson

, Dean, College of Arts and Sciences
Dr. James L. Blank



TABLE OF CONTENTS

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Orientational Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Vector order parameter . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Tensor order parameter . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Nonuniform order in Systems Studied . . . . . . . . . . . . . . . . . . . 11

1.3.1 Polydomain liquid crystal elastomers . . . . . . . . . . . . . . . 11

1.3.2 Active Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Skyrmions in chiral magnets and cholesteric liquid crystals . . . . 14

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 DYNAMIC THEORY OF POLYDOMAIN LIQUID-CRYSTAL ELASTOMERS . 17

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Dynamic equation . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.A Strain tensor calculation from coordinates . . . . . . . . . . . . . . . . . 48

2.B Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.C Maier-Saupe type calculation of free energy . . . . . . . . . . . . . . . . 53

3 ACTIVE BROWNIAN PARTICLES NEAR STRAIGHT OR CURVED WALLS:

PRESSURE AND BOUNDARY LAYERS . . . . . . . . . . . . . . . . . . . . 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Theoretical formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Solution in simple geometries . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Particles near an infinite straight wall . . . . . . . . . . . . . . . 62

3.3.2 Particles between two walls . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Particles inside circle . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.4 Particles outside circle . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Pressure on straight or curved walls . . . . . . . . . . . . . . . . . . . . 69

iv



3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Depletion force between two plates . . . . . . . . . . . . . . . . 74

3.5.2 Force on a curved tracer particle . . . . . . . . . . . . . . . . . 77

3.5.3 Corral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.A Exact calculation of wall density . . . . . . . . . . . . . . . . . . . . . . 83

4 SKYRMIONS IN LIQUID-CRYSTALS AND CHIRAL MAGNETS . . . . . . . . 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Theory of chiral liquid crystals . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Simple analytic calculations . . . . . . . . . . . . . . . . . . . . 92

4.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 Equilibrium phases . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Metastable skyrmions . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Theory of chiral magnets . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 MOVING SKYRMIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

v



5.2 Skyrmion Shape and Electric Field . . . . . . . . . . . . . . . . . . . . 125

5.3 Actuation by Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Extra Ez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Extra E⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.3 Smooth Gradient of Electric Field . . . . . . . . . . . . . . . . . 129

5.4 3D Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Electric field and negative anisotropy . . . . . . . . . . . . . . . 132

5.4.2 Effect of Nonuniform Surface Anchoring . . . . . . . . . . . . . 134

5.5 Actuation by Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5.1 Skyrmions are repelled by light . . . . . . . . . . . . . . . . . . 135

5.6 Skyrmions under Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6.1 Between Walls: Trash Compactor . . . . . . . . . . . . . . . . . 136

5.6.2 Popping a skyrmion . . . . . . . . . . . . . . . . . . . . . . . . 137

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vi



LIST OF FIGURES

1 A particle with orientation . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Isotropic, polar, and nematic phases . . . . . . . . . . . . . . . . . . . . 5

3 A particle with different symmetries . . . . . . . . . . . . . . . . . . . . 5

4 Monodomain and polydomain LCE’s . . . . . . . . . . . . . . . . . . . 11

5 Visualization of liquid-crystal elastomer structures calculated here. The

orientation and eccentricity of ellipses represents local nematic order (on a

coarse-grained length scale much larger than individual mesogens). (a) Sin-

gle wave in nematic order and displacement. (b) Superposition of two

perpendicular waves, forming a square lattice. (c) Superposition of three

waves with random directions, amplitudes, and phases. . . . . . . . . . . 19

6 Sample plot of the eigenvalues Λ±(k) in the linear drag model of dynamics,

with parameters a = 0.1 and L = µ = V = ΓQ = Γu = 1. The largest

negative eigenvalue corresponds to the fastest-growing mode, which occurs

at a dynamically selected wavevector. . . . . . . . . . . . . . . . . . . . 24

7 Sample plot of the mode structure in the generalized model of dynamics,

with inertia and viscosity. Parameters are a = 0.1, L = µ = V = η = 1,

γ1 = 0.25, and ρ = 20. The quantity −Im[ω(k)] is the exponential decay

rate, equivalent to Λ±(k) in Fig. 6. The largest positive value of Im[ω(k)]

corresponds to the fastest-growing mode. . . . . . . . . . . . . . . . . . 29

vii



8 Mesh used in finite element simulations. . . . . . . . . . . . . . . . . . 32

9 Simulation of a 71 × 71 lattice with parameters µ = 2, V = 4. Main

figure: crossed polarizer view of the LCE, obtanied by grey scale coloring

according to sin2(2θ). Top right: light scattering view obtained by Fourier

transform. Bottom right: correlation function of Q. . . . . . . . . . . . 40

10 Domain size vs time for 111 × 111 lattice. Temperature below transition

δa = 0.1 is fixed. L=3, legend: LC-elastic coupling coeficient V . . . . . 41

11 Domain size vs time with impurities for a 71 × 71 lattice. Temperature

below transition δa = 0.1 is fixed. L=0.3, legend: LC-elastic coupling

coefficient V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

12 Approximate free energy expressions derived from a Maier-Saupe style cal-

culation. The blue curve shows the parametric plot of the actual calcula-

tion in terms of U . (a) Expansions of the parametric equation in terms of

order parameter S near S = 0 and S = ±1. (b) Unified equation which

agrees perfectly with the parametric equation for both S = 0 and S = ±1

limits but slightly off for intermediate values of S. . . . . . . . . . . . . 54

13 Plots of the density ρ(x) and first moment Mx(x) as functions of position

x near a hard wall for ρbulk = 1. Lines are the analytic predictions of

Eqs. (42), and symbols are numerical results from simulations of Langevin

dynamics. Activity is v0 = 0 (green diamonds), v0 = 2 (orange circles),

and v0 = 5 (blue squares), and other parameters are Dr = 2, Dt = 1, and

β = 1. All quantities are in arbitrary units. . . . . . . . . . . . . . . . . 64

viii



14 Plots of the density ρ(x) and first moment Mx(x) as functions of position

x between two hard walls for ρ̄ = 1. Lines are the analytic predictions of

Eqs. (44–45), and symbols are numerical simulation results. Parameters

are the same as in Fig. 13, and all quantities are in arbitrary units. . . . . 65

15 Plots of the density ρ(x) inside and outside a hard circular wall as func-

tions of position. Lines are the analytic predictions of Eqs. (46-a,48-b),

and symbols are numerical results from simulations of Langevin dynamics.

Activity is v0 = 0 (green diamonds), v0 = 2 (orange circles), and v0 = 5

(blue squares), and other parameters are Dr = 1, Dt = 1, and β = 1. All

quantities are in arbitrary units. . . . . . . . . . . . . . . . . . . . . . . 68

16 Theory and simulation of two parallel plates in a bath of active Brownian

particles. The inset shows a snapshot of the simulation, and the red line

represents the density as a function of x along the central axis y = 0. The

main figure shows the theoretical prediction for the pressure difference as a

function of the plate separation 2L, in comparison with simulation results

for the difference in densities at the inner and outer walls. Parameters are

Dr = 1, Dt = 1, v0 = 1, kBT = 1, and plate thickness s = 0.6. . . . . . 75

ix



17 Theory and simulation of a curved tracer in a bath of active Brownian

particles. The inset shows the simulation, with the red line representing

the density as a function of x along the symmetry axis y = 0. The main

figure shows the prediction for net pressure as a function of activity v0, in

comparison with the simulation results for the density difference between

the two sides of the tracer. Parameters are Dr = 2, Dt = 1, kBT = 1,

tracer radius R = 7, and tracer thickness s = 0.6. . . . . . . . . . . . . 77

18 Theory and simulation of an active particle corral. A snapshot of the sim-

ulation is shown in the inset, with the red line representing the density

as a function of x in a slice across the corral. The main figure shows the

density ratio ρcenter/ρbulk as a function of activity v0, with the points repre-

senting simulation results and the line representing the theory of Eq. (67).

Parameters are Dr = 2, Dt = 1, kBT = 1, and corral radius R = 4. . . . 80

19 2D skyrmion and meron with 3D directors. . . . . . . . . . . . . . . . . 85

20 Structure of the modulated liquid-crystal phases studied: blue phase (meron

lattice), cholesteric phase (lattice of walls), and skyrmion lattice. The top

row shows schematic views of the director field, and the bottom row shows

Monte Carlo simulation results (with the color scale indicating |nz|. . . . 94

21 Phase diagram for chiral liquid crystals in the temperature-chirality plane,

with no anisotropy. The insets show structures calculated by the simula-

tions. In those structures, the colors represent |nz|, with the same color

scale as in Fig. 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



22 Two views of the phase diagram for chiral liquid crystals in the temperature-

chirality-anisotropy space. (Note that the scales on the axes are different

in these two visualizations.) The thick horizontal and vertical arrows show

the Monte Carlo simulation paths discussed in Sec. 4.3, and the insets

show structures calculated by the simulations. . . . . . . . . . . . . . . 99

23 Simulation of a metastable skyrmion, with the color scale indicating |nz|.

The yellow line on the bottom shows nz from −1 to 1, as a function of x,

for fixed y in the center. This structure can be regarded as a π-wall that

is curved into a ring, with vertical nematic in the interior and the exterior. 105

24 Static skyrmions as particles: (a) An initially distorted shape quickly

evolves into a circular ring. (b) Skyrmions repel each other. (c) A system

of many skyrmions forms a lattice. . . . . . . . . . . . . . . . . . . . . 106

25 Skyrmion wall thickness δr and average radius rav = 1
2
(rin + rout), as

functions of the anisotropy ∆εE2, in units of π/q0. The points represent

simulation results, and the solid lines are the calculation in Sec. 4.3.2.

Parameters are L = 0.001, q0 = π, and S = 0.405. . . . . . . . . . . . . 109

26 Skyrmion free energy relative to the vertical nematic state, in arbitrary

units. The elastic constant L is varied for fixed a = −0.1, b = −3, and

c = 3, with the anisotropy ∆εE2 adjusted to maintain the skyrmion size

(g and δr). The points represent simulation results, and the the solid line

is the calculation of Sec. 4.3.2 for the same L and ∆εE2. . . . . . . . . 110

27 Structure of the modulated magnetic phases studied in this work. . . . . 114

xi



28 Visualization of the phase diagram for chiral magnets in the chirality-field-

anisotropy space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

29 (a) Cross section of the phase diagram for chiral magnets in the field-

anisotropy plane for fixed chirality κ = 0.5. (b) Phase diagrams obtained

through simulations by Ref. [25](left), and Ref. [30](right) . . . . . . . . 117

30 Skyrmions’ shape depending on extra electric field. . . . . . . . . . . . . 126

31 Skyrmions moved by extra Ez . . . . . . . . . . . . . . . . . . . . . . . 127

32 Skyrmions (a) moved and (b) rotated by extra E⊥ . . . . . . . . . . . . 130

33 Skyrmions move towards (a) smaller Ez and (b,c) bigger E⊥ . . . . . . . 131

34 3D skyrmion with negative anisotropy. Color shows z component of the

director. (a) side view, (b) cross section of mid-plane. . . . . . . . . . . 132

35 Horizontal mid-plane of a 3D skyrmion with negative anisotropy. As op-

posed to 2D skyrmions with positive anisotropy, blue region is (a) pulled

by extra Ez, (b) pushed by extra E⊥. . . . . . . . . . . . . . . . . . . . 133

36 3D Skyrmions move towards region with weaker surface anchoring . . . . 134

37 Light repels skyrmions with (a) negative(3D) or (b) positive(2D) anisotropy.135

38 Skyrmions between compacting walls. . . . . . . . . . . . . . . . . . . . 138

39 Slow motion view of popping skyrmions squeezed between walls . . . . . 140

xii



ACKNOWLEDGMENTS

My experience at Kent State will be one to always remember and proudly mention. I

have enjoyed the privilege of being at Kent State with wonderful people who make Kent

State an excellent place.

First, I would like to thank my advisor Prof. Jonathan Selinger for his extraordinary

guidance throughout my PhD studies. He has struck me as an advisor who always cares for

his students’ best possible experience as a graduate student and best outcome regarding

life after graduation. I feel very lucky to have had him as my advisor as he always provided

support, helped me gradually grow, and treated me (and other students) with respect. He

has given me the option (sometimes requested) to participate in conferences and other

programs which significantly helped with my education and network building.

I would also like to thank Prof. John Portman for serving as my co-advisor and for his

guidance and discussions all these years.

Part of the research in this dissertation was done at Los Alamos National Lab while

I was invited to CNLS by Dr. Avadh Saxena. Dr. Saxena is an exemplary scientist and

has been a source of motivation for me. I am thankful for his support and important

contributions.

I also would like to thank Prof. Robin Selinger. I have gained valuable computational

skills by taking her class and by engaging in group discussions. She has been very sup-

portive and has had important influence on my perspective as a physicist. I would like

xiii



to thank other members of our group as the experience and culture that formed over

the years wouldn’t be possible without them. To mention a few names that I interacted

directly; Shamid, Son, Andrew, Vianney, Sajedeh, Mike, Xingzhou, Youssef, and Dong..

I would like to thank all of the faculty members of the Physics Department and Liquid

Crystal Institute for their valuable contributions, especially Prof. Hamza Balci who served

as my academic advisor and later continued to give me valuable advice when I needed.

Here, I should also mention that the very warm first encounter with Prof. Declane Keane,

the graduate director at the time, made me feel that Kent State was a great choice for

doing PhD in physics. I thank Prof. Keane and also Prof. Khandker Quader for their

continued encouragement and interest in my endeavors.

I am thankful to the administrative staff of Physics and LCI including Loretta Hauser,

Cynthia Miller, Reho Constance, Kelly Conley, Mary Ann Kopcak, and Mary Lin Bergstrom.

Special thanks to Jeffery McCann and Jim Francl for taking extra time to help me with fi-

nancial and technical matters. I also thank other people whose names I may have forgotten

to include here.

Last but perhaps most importantly, I would like to thank my wife Ayse, because not

only she came to Kent with me but also she heroically took care of our daughter during

her illness and helped me have peace of mind and focus on my studies. Partly due to her

tremendous support I am able get to this point where I am finishing my dissertation.

Work in this dissertation was supported by funds from NSF and DOE.

xiv



To my family and my teachers,

for their support and guidance..

xv



CHAPTER 1

Introduction

1.1 Introduction

This dissertation combines three projects with the unifying theme of orientational order

and how it is controlled by means of internal and external factors.

Positional order may not always be present in soft materials but there are many situ-

ations where orientational order is an important component in the picture.

Liquid crystal systems are such examples in which generally elongated molecules form

orientationally ordered phases when cooled below a critical temperature [1, 2]. This is

due to the molecular interactions which favor nematic alignment of the molecules. Liquid

crystals also respond to external electric and magnetic fields by aligning with the fields.

Depending on the dielectric properties of the material, molecules can be aligned parallel or

perpendicular to the field. Electro-optical properties of liquid crystals depend sensitively

on molecular orientations thus by controlling the alignment, physical properties can be

changed dramatically. Due to these adjustable properties liquid crystal have found place in

important technological applications especially in but not limited to the display industry.

Active matter systems have also been of great interest since the 1995 Vicsek article [3]

which presented a simplified model of animal flocks and shows a phase transition from

disordered to ordered phases. Since then, great theoretical and experimental progress has

been made and active matter research has emerged as an interdisciplinary area at the

1



intersection of many branches of science [4]. It also has found applications in engineering,

and has even influenced fields like economics (network models) [5].

Orientational order in the above systems can be uniform all over the volume of the

material due to molecular alignment but also other factors may avoid single domains or

favor polydomain or modulated phases. The focus of this dissertation is to describe and

quantify the nonuniform order and identify what roles the involved factors play.

In this chapter I will first introduce orientational order and how to describe it by using

vector and tensor order parameters. Next I will explain the topics of each of the three

projects which I briefly mention below.

In the first project (Chapter 2), I investigate polydomain formation during the manu-

facturing of liquid crystal elastomers. Liquid crystal elastomers (LCE) are materials where

the orientation of molecules is coupled to an elastic polymer network. While regular liq-

uid crystals can easily form nematic monodomains, liquid crystal elastomers usually have

polydomains, with a different average direction in each domain, unless prepared in special

ways. The coupling between strain and order and added impurities are shown to be the

factors determining the features of the domains.

The second project (Chapter 3 ), is concerned with active matter. An active ideal gas

of point particles is studied and orientational order and density distribution is calculated

near flat or curved walls. Even when the particles do not interact, the confining walls can

still induce (nonuniform) order. We show how behavior near walls can be used to achieve

actuation and rectification.

The third project (Chapters 4 and 5) investigates skyrmions which have very inter-

esting director configurations. A skyrmion is a type of topological soliton. Skyrmions in

2



(x, y)

n̂

x̂
θ

ŷ

Figure 1: A particle with orientation

liquid crystals are formed by the interplay of chiral molecular interactions favoring a twist,

external fields favoring easy-plane or easy-axis alignment, and surface anchoring providing

preferred directions at the surface of a liquid crystal cell.

1.2 Orientational Order

For a system of particles, the probability distribution can be defined as a function of

different variables. In the context of orientational order, the particles of interest have ori-

entations defined along their bodies such as spin of an electron or the head of a bacterium

along which it moves. In a 2D system, there are two spatial and one orientational degrees

of freedom (see Fig. 1). Then the probability distribution can be defined as

P = P (x, y, θ)

where P is the probability of finding the particle at ~r = (x, y) with the orientation angle

θ which is conventionally measured from the positive x axis. The sum of all probabilities

add up to 1, that is
∫
r

∫
θ
Pdr dθ = 1. We can also integrate over all possible angles to

get the number of particles at a location. This integral is nothing but the number density

of the particles ρ(x, y) =
∫
P (x, y, θ) dθ.

3



1.2.1 Vector order parameter

In order to quantify order in a system we can calculate average probability of aligning

along a given axis. For instance if we want to calculate the average component of the

unit vector along the x and y axes we calculate

Πx = 〈cos θ〉 =
1

ρ(x, y)

∫ 2π

0

P (x, y, θ) cos θ dθ

Πy = 〈sin θ〉 =
1

ρ(x, y)

∫ 2π

0

P (x, y, θ) sin θ dθ

Here
−→
Π = (Πx,Πy) can be defined as the polar order parameter because it is a

measure of the local polarization of the system of particles. The magnitude |
−→
Π | is a

measure of how ordered the system is, and it varies from 0 to 1.

Some types of particles have more than one special direction. For instance an elliptical

particle (in 2D) has a long axis and a short axis and if we rotate the particle by 180◦ we

get an identical state. Elongated granular particles such as rice and many types of liquid

crytal molecules are just two examples from the real world. Polarization cannot be defined

for these particles. In order words, the polar order parameter is not sufficient to describe

the order in these systems. We need to describe a different type of order paramter for

such systems. That is nematic order where particles have two-fold symmetry.

Figure 2 shows systems with different types of order. In part (b) a system with polar

order is shown. This system has both polar and nematic order. However, in part (c),

there is no polar order but only nematic order. Looking at only the polar order parameter,

one might mistakenly think that the system is isotropic, however nematic order is clearly

different from disorder(isotropic phase) as seen in the comparison of (a) and (c).
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(a) Isotropic (b) Polar Order (c) Nematic Order

Figure 2: Isotropic, polar, and nematic phases

〈 cos (θ) 〉 = 1
〈 cos (2θ) 〉 = 1
〈 cos (3θ) 〉 = 1

〈 cos (θ) 〉 = 0
〈 cos (2θ) 〉 = 1
〈 cos (3θ) 〉 = 0

〈 cos (θ) 〉 = 0
〈 cos (2θ) 〉 = 0
〈 cos (3θ) 〉 = 1

Figure 3: A particle with different symmetries
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How could nematic order be calculated for particles with up-down or left-right sym-

metry? Instead of 〈nx〉 = 〈cos θ〉 we can calculate 〈n2
x〉 = 〈cos2 θ〉 or alternatively

〈cos 2θ〉 = 〈2 cos2 θ− 1〉 where the two fold symmetry is clearer. To quantify the average

alignment along +x or −x axes we can calculate

〈cos 2θ〉 =
1

ρ(x, y)

∫ 2π

0

P (x, y, θ) cos(2θ) dθ

Figure 3 shows the appropriate measures of order for different types of symmetries

in a 2D system; higher moments of the probability distribution function can be used to

describe the order in the system with higher symmetry. In general eimθ can be used for

m-fold symmetry. As a special case when one of the axes is along the x axis, just like the

above example, 〈cosmθ〉 will give the average alignment along any of the 2π/m axes,

that is the axes oriented at 0, 2π
m
, 22π

m
, 32π

m
, .., (m− 1) 2π

m
radians from the x axis.

1.2.2 Tensor order parameter

Averaging cos(mθ) gives a measure of the order when the average alignment is about

the x axis (θ = 0). However when the special axis has some arbitrary direction, we need

to calculate other moments of the probability distribution function too. For example,

in the case of polar particles, we need to calculate two components of the vector order

parameter in order to describe the magnitude and direction of the polarization. Similarly,

for higher symmetries, we need to calculate other components of the corresponding order

parameters too. However for systems with symmetry higher than one-fold we cannot use

vectors. We need to use tensors, a generalized form of vectors. Mathematical properties

of tensors allow them to be very usefully employed to carry the information necessary in

order to describe the orientational order.
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Consider a 2D system of particles with nematic particles. Assume the average axis of

alignment is at some angle θ0 from the x axis. If we calculate 〈cos 2(θ−θ0)〉 we get a scalar

that shows how well ordered the particles are. Also we know that 〈sin 2(θ − θ0)〉 = 0.

However we do not know what this special angle would be for any given system. We

can perform the following calculations in order to find out this information. With the

substitution θ′ = θ − θ0

〈cos(2θ)〉 = 〈cos (2θ′ + 2θ0)〉

= 〈cos(2θ′)〉 cos(2θ0)− 〈sin(2θ′)〉 sin(2θ0)

= 〈cos(2θ′)〉 cos(2θ0)

Similarly

〈sin(2θ)〉 = 〈sin (2θ′ + 2θ0)〉

= 〈sin(2θ′)〉 cos(2θ0) + 〈cos(2θ′)〉 sin(2θ0)

= 〈cos(2θ′)〉 sin(2θ0)

which enables us to calculate the order and the special angle from

〈cos(2θ′)〉2 = 〈cos(2θ)〉2 + 〈sin(2θ)〉2

tan(2θ0) =
〈sin(2θ)〉
〈cos(2θ)〉

.
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We can represent the above information also in tensor form as below.

↔

Q =

 〈cos(2θ)〉 〈sin(2θ)〉

〈sin(2θ)〉 −〈cos(2θ)〉



= 〈cos(2θ′)〉

 〈cos(2θ0)〉 〈sin(2θ0)〉

〈sin(2θ0)〉 −〈cos(2θ0)〉



= S

 〈cos(2θ0)〉 〈sin(2θ0)〉

〈sin(2θ0)〉 −〈cos(2θ0)〉



Where S is the scalar nematic order parameter independent from the coordinate system,

while the rest of the tensor carries the information about the direction of the order. S can

take values from 0 to 1, corresponding to complete disorder and perfect order, respectively.

Consider the case when the system has perfect order along x axis. Then S = 1,

θ0 = 0, and
↔

Q =

 1 0

0 −1

. Q11 = 1 indicates that all the particles are aligned along

the x axis and Q22 = −1 indicates that they are perfectly aligned perpendicular to y axis.

We can understand it from the calculation of 〈cos(2θ)〉 around the y axis, in other words

〈cos(2[π/2− θ])〉 = 〈cos(π − 2θ])〉 = −〈cos(2θ)〉. Similarly, perfect alignment around y

would give
↔

Q =

 −1 0

0 1

.

The above tensor is an expression used to describe the nematic order by a 2×2 tensor

with basis vectors x̂ and ŷ. The tensor n̂⊗ n̂ includes all the combinations of the products
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of the basis vectors. We define

↔

T = 〈n̂⊗ n̂〉 =

 〈nxnx〉 〈nxny〉
〈nxny〉 〈nyny〉


and compare it to the Q tensor described above which reads

↔

Q =

 〈cos(2θ)〉 〈sin(2θ)〉

〈sin(2θ)〉 −〈cos(2θ)〉

 =

 〈2nxnx − 1〉 〈2nxny〉

〈2nxny〉 〈2nyny − 1〉

 .

Clearly
↔

Q = 2

(
↔

T −
↔
I
2

)
= 2

(↔
T −

↔

T iso

)
where

↔

T iso =

 1/2 0

0 1/2

 =
↔
I
2

is the value

of
↔

T for an isotropic system because in the isotropic case 〈n2
x〉 = 〈n2

y〉 = 1
2
, where

↔

I is

the identity matrix. Equivalently we can use the index notation Qij = 2〈ninj〉 − δij, δij

being the Kronecker delta.

So far we have shown the nematic Q-tensor representation of order in a system with

directors in 2D. The 3D representation can also be calculated in the same way with the

expression of the director in 3D vector components. The value of
↔

T in the isotropic

phase is
↔

I/3 differently from the 2D value of
↔

I/2. With the same procedure, we get

Qij = 3
2

(
〈ninj〉 − δij

3

)
. The factor of 3

2
is included to make the value of the tensor

component equal to 1 when there is perfect order along a certain axis. For example, for

a perfect order along the x axis, n = (1, 0, 0) and

↔

Q =


1 0 0

0 −1/2 0

0 0 −1/2


In order to benefit from the simplifications due to symmetry let’s denote the director
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in cartesian coordinates in terms of spherical variables

n̂ =


nx

ny

nz

 =


sin θ cosφ

sin θ sinφ

cos θ

 .

Consider a system which is on the average aligned along the z axis but the alignement is

not perfect. Let’s calculate the Q tensor for this system

↔

Q =
3

2


〈n2

x〉 − 1
3
〈nxny〉 〈nxnz〉

〈nxny〉 〈n2
y〉 − 1

3
〈nynz〉

〈nxnz〉 〈nynz〉 〈n2
z〉 − 1

3

 .

The non-diagonal components of Q are zero. The diagonal components, after substituting

〈n2
z〉 = 〈cos2 θ〉, 〈n2

x〉 = 〈sin2 θ cos2 φ〉 = 1
2
〈sin2 θ〉 = 1

2
− 1

2
〈cos2 θ〉, 〈n2

x〉 = 〈n2
y〉 follow

Qxx = 1
2
− 1

2
〈cos2 θ〉 − 1

3
= 1

2

(
1
3
− 〈cos2 θ〉

)
= Qyy, and Qzz = 〈cos2 θ〉 − 1

3
. Thus

↔

Q =
3

2


1
2

(
1
3
− 〈cos2 θ〉

)
0 0

0 1
2

(
1
3
− 〈cos2 θ〉

)
0

0 0 〈cos2 θ〉 − 1
3



= 〈3
2

cos2 θ − 1

2
〉


−1

2
0 0

0 −1
2

0

0 0 1



= S


−1

2
0 0

0 −1
2

0

0 0 1
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Figure 4: Monodomain and polydomain LCE’s

Similarly to the 2D case, S can vary from 0 to 1. In general where the system is not aligned

along any of the cartesian axes, we need to solve for the eigenvalues and eigenvectors of

the 3 × 3 tensor. The eigenvector corresponding to the biggest eigenvalue will give the

axis that the system is aligned with.

1.3 Nonuniform order in Systems Studied

1.3.1 Polydomain liquid crystal elastomers

The first system we studied is a 2D liquid crystal elastomer using continuum elasticity

theory and finite element simulations.

Liquid-crystal elastomers are remarkable materials that combine the elastic properties

of cross-linked polymer networks with the anisotropy of liquid crystals. Any distortion of

the polymer network affects the nematic order of the liquid crystal, and, likewise, any

change in the magnitude or direction of the nematic order influences the shape of the

elastomer. When elastomers are prepared without any alignment, they develop disordered

polydomain structures as they are cooled into the nematic phase. These polydomain

structures are often attributed to quenched disorder in the cross-linked polymer network.
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As an alternative explanation, we develop a theory for the dynamics of the isotropic-

nematic transition in liquid crystal elastomers, and show that the dynamics can induce a

polydomain structure with a characteristic length scale, through a mechanism analogous

to the Cahn-Hilliard equation for phase separation. This polydomain state may eventually

become uniform, or it may be locked in by quenched impurities.

In this theory, the local nematic order is coupled to the strain tensor, which satisfies

the constraint of elastic compatibility. When an initially disordered system is cooled down

to nematic phase a polydomain structure emerges and nematic order within each domain

starts growing. This system with nonuniform orientational order has a characteristic

domain size. The domain size and the growth rate of the nematic order depend on elastic

constants, effective temperature and the strength of the coupling between nematic order

and strain.

To determine the domain size we show that we can use the first minimum of the

correlation function of the Q tensor

C(|r − r′|) = 〈cos 2 [θ(r)− θ(r′)]〉. (1)

During the cross linking process the elastic energy in the system favors a uniform

order with a monodomain nematic order, however the interplay between elastic coupling

and dynamics prevent rapid coarsening of the domains and generates nonuniform struc-

tures. This mechanism allows time for cross-links to freeze-in the polydomain structure.

Alternatively polydomains can also be locked due to impurities in the system.
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1.3.2 Active Ideal Gas

The second system that we study which exibits nonuniform orientational order is an

ideal gas of active particles. The system consists of noninteractiong or very dilute self

propelled particles hence the name active ideal gas.

Unlike equilibrium systems, active matter is not governed by the conventional laws

of thermodynamics. Through a series of Langevin dynamics simulations and analytic

calculations, we explore how systems cross over from equilibrium to active behavior as the

activity is increased. In particular, we calculate the profiles of density and orientational

order near straight or circular walls, and show the characteristic width of the boundary

layers. We find a simple relationship between the enhancements of density and pressure

near a wall. Based on these results, we determine how the pressure depends on wall

curvature, and hence make approximate analytic predictions for the motion of curved

tracers, as well as the rectification of active particles around small openings in confined

geometries.

An interesting result that has been shown is that the system attains orientational and

spatial order even when the particles do not interact with other particles but interact

only with the walls. Our calculations provide analytical results to quantify order near or

between walls. When two parallel walls are placed in an active particle bath, a Casimir-like

force on the walls arises due to the activity of particles that form the bath. We derive

approximate equation to describe the force in terms of the wall separation, persistance

length of the particles, and other relevant parameters of the system.

Curvature has been shown to have important consequences in the order and symmetry
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breaking of the system. In this work we also derive approximate analytic equations that

describe the density and orientational order near curved walls. These results enable us to

predict the net force on a curved tracer particle. We also introduce a mechanism to rectify

the active particles by means of circular “corrals” with a small opening. Our analytical

results enable us to predict how to tune the density of particles inside confinement.

1.3.3 Skyrmions in chiral magnets and cholesteric liquid crystals

The final system we study is the chiral nematic liquid crystals and chiral magnets

under the influence of external fields and geometric frustration.

Most commonly known chiral phases in liquid crystals and magnetic systems are

cholesteric phase and spiral phase respectively. These phases have a twist along one

axis with a certain helical pitch. However they are not the only structures that can exist.

For instance when chiral liquid crystals or magnets are subjected to applied fields or other

anisotropic environments, the competition between favored twist and anisotropy leads

to the formation of complex defect structures. In some cases, the defects are skyrmions,

which have 180◦ double twist going outward from the center, and hence can pack together

without singularities in the orientational order. In other cases, the defects are merons,

which have 90◦ double twist going outward from the center; packing such merons requires

singularities in the orientational order. In the liquid crystal context, a lattice of merons

is regarded as a blue phase. Here, we perform theoretical and computational studies of

skyrmions and merons in chiral liquid crystals and magnets. Through these studies, we

calculate the phase diagrams for liquid crystals and magnets in terms of dimensionless ra-

tios of energetic parameters. We also predict the range of metastability for liquid crystal
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skyrmions, and show that these skyrmions can move and interact as effective particles.

The results show how the properties of skyrmions and merons depend on the vector or

tensor nature of the order parameter.

Furthermore we investigate possible ways of moving skyrmions. As generic solitons,

skyrmions are formed in a background electric field and actuated by means of light,

nonuniform electric field, and surface anchoring. Finally we also look into the behavior of

skyrmions under pressure.
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CHAPTER 2

Dynamic Theory Of Polydomain Liquid-crystal Elastomers1

Liquid-crystal elastomers are remarkable materials that combine the elastic properties

of cross-linked polymer networks with the anisotropy of liquid crystals [1]. Any distor-

tion of the polymer network affects the orientational order of the liquid crystal, and any

change in the magnitude or direction of liquid-crystal order influences the shape of the

polymer network. Hence, these elastomers are useful for applications as actuators or

shape-changing materials.

For many applications, it is necessary to prepare monodomain liquid-crystal elastomers.

In practice, this can be done by applying a mechanical load or other aligning field while

crosslinking [2]. Surprisingly, elastomers prepared without an aligning field do not form

monodomains. Rather, they form polydomain structures with nematic order in local

regions, which are macroscopically disordered. These polydomain structures have been

seen in many experiments, using a wide range of techniques [3–7]. Indeed, a recent

polarized light scattering study shows that liquid-crystal elastomers evolve toward a state

of increasing disorder as the isotropic-nematic transition proceeds, unless the disorder is

suppressed by a gradually increasing load [8].

1Part of the work in this chapter was published in Phys. Rev. Lett. 115, 187801
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2.1 Theory

One important issue in the theory of liquid-crystal elastomers is how to understand

the polydomain state. Several theoretical studies have attributed this state to quenched

disorder in the polymer network, which can be understood by analogy with spin glass

theory [9–17]. Effects of quenched disorder have further been modeled and visualized

through numerical simulations [18–21]. More macroscopic theories have shown that the

resulting polydomain structure has profound consequences for the material’s effective

elasticity [22, 23].

The purpose of this work is to suggest a different mechanism for the origin of the

polydomain state, not related to quenched disorder. We develop a theory for the dynamics

of the isotropic-nematic transition in liquid-crystal elastomers, in which growing nematic

order is coupled to elastic strain. This theory is related to previous work on the dynamics of

the nematic phase in these materials [1,24]. We explore the theory in two dimensions (2D),

using two models for dynamic evolution of nematic order and strain. The theory shows

that dynamics can itself select a characteristic length scale for a disordered polydomain

structure, through a mechanism similar to the Cahn-Hilliard equation for phase separation.

In particular, the theory predicts formation of structures with the form shown in Fig. 5.

We suggest that this mechanism may play a role in formation of polydomain liquid-crystal

elastomers, in addition to quenched disorder.

In the theory of 2D liquid-crystal elastomers, nematic order is described by the tensor

order parameter Qαβ(r), and elastic distortion of the material by the displacement vector

u(r). In terms of displacement, the strain tensor is εαβ = 1
2
[∂αuβ+∂βuα+(∂αuγ)(∂βuγ)];
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(a)

(b)

(c)

Figure 5: Visualization of liquid-crystal elastomer structures calculated here. The orientation
and eccentricity of ellipses represents local nematic order (on a coarse-grained length scale
much larger than individual mesogens). (a) Single wave in nematic order and displacement.
(b) Superposition of two perpendicular waves, forming a square lattice. (c) Superposition of
three waves with random directions, amplitudes, and phases.
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we will consider only the linear terms for small u. The free energy can be expressed in

terms of Qαβ and εαβ as

F =

∫
d2r

[
1

2
aQαβQαβ +

1

4
b(QαβQαβ)2

+
1

2
L(∂γQαβ)(∂γQαβ) +

1

2
λεααεββ

+ µεαβεαβ − V εαβQαβ

]
. (2)

Here, the first two terms are the Landau-de Gennes expansion for the free energy in

powers of the order tensor. The coefficient a = a′(T − T0) is assumed to vary linearly

with temperature, while b is a positive constant. The third term is the Frank free energy

for spatial variations in the order tensor, assuming a single Frank coefficient L. The

fourth and fifth terms are the elastic free energy in terms of the strain tensor, with Lamé

coefficients λ and µ. The final term is the coupling between nematic order and strain,

with coefficient V .

If there were no coupling between nematic order and strain, V = 0, the system would

have an isotropic-nematic transition at a = 0, corresponding to temperature T0. With

coupling V 6= 0, the transition is shifted upward to a = V 2/(2µ), corresponding to the

higher temperature TIN = T0+V 2/(2µa′). Above that temperature, the state of minimum

free energy is uniformly isotropic, with Qαβ = 0 and εαβ = 0. Below that temperature,

at a = V 2/(2µ) − δa, the state of minimum free energy becomes uniformly nematic,

with alignment along a randomly selected director n̂. In this state, the order tensor is

Qαβ = S(2nαnβ − δαβ), where the magnitude of nematic order is S =
√
δa/(2b). This

state extends uniformly along the director, with strain εαβ = [V/(2µ)]Qαβ.

Now suppose we begin in the isotropic phase, and rapidly cool to a temperature
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slightly below TIN. At this low temperature, nematic order and strain both begin to grow

dynamically. We ask: Does the dynamic process lead to the state of minimum free energy,

with uniform Qαβ and εαβ? Alternatively, does it lead to a different, nonuniform state?

To answer this question, we develop a model for the dynamics of the phase transition.

We actually consider two models, first simple linear drag and then more realistic viscous

flow. In both models, we describe four coupled degrees of freedom: Qxx(r, t), Qxy(r, t),

ux(r, t), and uy(r, t). The remaining components of Qαβ(r, t) are fixed because it is a

symmetric, traceless tensor, and εαβ(r, t) can be derived from u(r, t). We cannot take

the strain tensor components as our fundamental degrees of freedom because they are

constrained by elastic compatibility; they must all be derivable from the same u(r, t).

In the simplest model of overdamped dynamics with linear drag, the rate of change

for each degree of freedom is linearly proportional to the force acting on it. Hence, the

equations of motion are

∂Qxx

∂t
= −ΓQ

δF

δQxx

,
∂Qxy

∂t
= −ΓQ

δF

δQxy

,

∂ux
∂t

= −Γu
δF

δux
,

∂uy
∂t

= −Γu
δF

δuy
, (3)

where ΓQ and Γu are mobility coefficients. To calculate the forces on the right side of those

equations, we substitute the definition of the strain tensor into the free energy (2), and

take functional derivatives with respect to Qαβ and uα. We then linearize the equations,

assuming that Qαβ and uα are both small in early stages of nematic ordering. The
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equations then become

∂Qxx

∂t
= ΓQ

[
−2aQxx + 2L∇2Qxx + V (∂xux − ∂yuy)

]
,

∂Qxy

∂t
= ΓQ

[
−2aQxy + 2L∇2Qxy + V (∂xuy + ∂yux)

]
,

∂ux
∂t

= Γu
[
(λ+ µ)∂x∇ · u+ µ∇2ux − V (∇ ·Q)x

]
,

∂uy
∂t

= Γu
[
(λ+ µ)∂y∇ · u+ µ∇2uy − V (∇ ·Q)y

]
. (4)

To simplify this system of equations, we Fourier transform from position r to wavevec-

tor k, then write the equations in the matrix form

∂

∂t



Qxx(k, t)

Qxy(k, t)

ux(k, t)

uy(k, t)


= −M(k)



Qxx(k, t)

Qxy(k, t)

ux(k, t)

uy(k, t)


, (5)

where M(k) is a 4×4 matrix. This matrix equation resembles the Cahn-Hilliard equation

for phase separation of a binary fluid. At each k, the matrix M(k) has four eigenmodes

i, which either grow or decay exponentially as e−Λi(k)t, where Λi(k) is the corresponding

eigenvalue of M(k). Note that Λi(k) < 0 corresponds to exponential growth, while

Λi(k) > 0 corresponds to exponential decay. We must determine what grows most

rapidly: which eigenmode at which wavevector?

To identify the fastest-growing mode, we choose coordinates such that k is along the
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x-axis. The matrix then simplifies to

M(k) = (6)

2ΓQ(a+ Lk2) 0 −iΓQV k 0

0 2ΓQ(a+ Lk2) 0 −iΓQV k

iΓuV k 0 Γu(λ+ 2µ)k2 0

0 iΓuV k 0 Γuµk
2


.

We now take the limit of an incompressible material, with λ→∞. In this limit, ux has a

high energy cost, so that it decays rapidly, and hence we eliminate it from consideration.

In that case, Qxx is not coupled to any other degrees of freedom, so it is an eigenmode by

itself, with eigenvalue 2ΓQ(a+Lk2
x). If the system is at a temperature slightly below the

isotropic-nematic transition, we must have 0 < a < V 2/(2µ). In that temperature range,

this eigenvalue is positive, so that Qxx decays exponentially. Hence, we also eliminate it

from consideration in the search for the fastest-growing mode.

The remaining two modes are linear combinations of Qxy and uy, with eigenvalues

Λ±(k) =ΓQ(a+ Lk2) + 1
2
Γuµk

2 (7)

±
√[

ΓQ(a+ Lk2)− 1
2
Γuµk

2
]2

+ ΓQΓuV 2k2

Figure 6 shows a sample plot of these two eigenvalues as functions of k. The eigenvalue

Λ+(k) begins at 2ΓQa when k = 0, then increases with increasing k. For temperatures

just below the isotropic-nematic transition, with 0 < a < V 2/(2µ), it is always positive

and hence represents a decaying mode. By contrast, Λ−(k) begins at 0 when k = 0, then

decreases into negative values over the range 0 < k <
√
δa/L, where δa = V 2/(2µ)−a,

and eventually returns to positive values for larger k. Over the range in which it is negative,
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Figure 6: Sample plot of the eigenvalues Λ±(k) in the linear drag model of dynamics, with
parameters a = 0.1 and L = µ = V = ΓQ = Γu = 1. The largest negative eigenvalue
corresponds to the fastest-growing mode, which occurs at a dynamically selected wavevector.

it represents an exponentially growing mode. To find the fastest-growing wavevector, we

minimize Λ−(k) over k. For temperatures just below the isotropic-nematic transition, for

small δa, this wavevector is kfastest ≈
√
δa/(2L), and the corresponding growth rate is

|Λ−(kfastest)| ≈ Γuµ
2δa2/(2LV 2).

We emphasize that this wavevector is selected through a dynamic mechanism. It

is not the minimum of the free energy (which is a state of uniform nematic order and

strain). Moreover, it only occurs because of the coupling V between nematic order and

strain in a liquid-crystal elastomer. If these variables were uncoupled (V = 0), the matrix

M would be diagonal, the isotropic-nematic transition would occur at a = 0, and the

fastest-growing mode below that transition would be k = 0.

To characterize the fastest-growing mode, we calculate the eigenvector of M corre-

sponding to eigenvalue Λ− at wavevector kfastest. This eigenvector represents waves in

both Qxy and uy (with our assumption that the wavevector is in the x-direction), and
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these waves are 90◦ out of phase. Figure 5(a) shows a sample visualization of the structure

with a single Fourier mode. It has alternating stripes with the director oriented at ±45◦

from the wavevector, accompanied by displacement perpendicular to the wavevector.

In general, a liquid-crystal elastomer will not have only one Fourier mode. Rather, it

can include modes with wavevectors of magnitude kfastest in multiple directions. To find

a mode in an arbitrary direction, we rotate the wavevector, and make a corresponding

rotation of Qαβ and u. We then add up the Fourier modes to find the structure. Fig-

ure 5(b) shows an example with two perpendicular waves of equal amplitude, leading to

a square lattice in the nematic order and the displacement. Figure 5(c) shows a more

realistic example with a superposition of three waves with random directions, amplitudes,

and phases.

The structures in Fig. 5 are similar to structures commonly observed in experiments and

simulations on active nematic liquid crystals [25]. This similarity is reasonable, because

both systems are controlled by couplings between orientational order and extension of the

material.

The growth of nematic order in a liquid-crystal elastomer can be described by the

dynamic correlation function

C(|r − r′|, t) = 〈cos 2[θ(r)− θ(r′)]〉t

= 〈Qxx(r, t)Qxx(r
′, t) +Qxy(r, t)Qxy(r

′, t)〉

=
∑
k

eik·(r−r
′)
〈
|Qxx(k, t)|2 + |Qxy(k, t)|2

〉
. (8)

This sum is dominated by the fastest-growing mode at wavevectors with magnitude kfastest,
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and hence

C(|r − r′|, t) ∝
∫ 2π

0

dφ

2π
eikfastest|r−r

′| cosφe2|Λ−(kfastest)|t

∝ J0(kfastest|r − r′|)e2|Λ−(kfastest)|t. (9)

Thus, in the early stages of growth, the correlation function has the form of Bessel function

J0(kfastest|r− r′|), with an exponentially increasing magnitude. In later stages of growth,

the approximation of small nematic order ceases to apply, and other types of modeling

are needed. Even so, the length scale of 1/kfastest is established from the early stages.

The dynamic model presented above has a limitation: It assumes that both Qαβ(r, t)

and u(r, t) have overdamped dynamics, with drag forces linearly proportional to the rate of

change of these quantities. This assumption is appropriate for dynamics on a substrate,

where the dissipation is caused by drag against the substrate. However, if there is no

substrate, it is reasonable to generalize the dynamics in two ways: by considering inertia

for the displacement and by considering viscous dissipation rather than drag against a

substrate.

For this generalization, we use the equations of motion

ρ
∂2uα
∂t2

=− δD

δu̇α
− δF

δuα
,

0 =− δD

δQ̇αβ

− δF

δQαβ

. (10)

Here ρ is the mass density, which gives inertia for u; there is no inertia for Qαβ. Also, D

is the Rayleigh dissipation function, which can be written as

D =

∫
d2r

[
ηAαβAαβ +

1

2
γ1BαβBαβ + γ2AαβBαβ

]
(11)
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in terms of the two modes that dissipate energy: Aαβ = 1
2
(∂αu̇β + ∂βu̇α) is the rate of

shear flow, and Bαβ = Q̇αβ − ωz(εδαQδβ + εδβQδα) is the rotation rate of nematic order

relative to rotational flow of the material, given by ωz = 1
2
εµν∂µu̇ν . In these expressions,

η is the viscosity, γ1 is the rotational viscosity, and γ2 is a dissipative coupling coefficient.

We combine these expressions to derive the coupled equations of motion for Qxx,

Qxy, ux, and uy, and linearize the equations assuming these variables are small in the

early stages of nematic ordering. We then follow the same steps as in the previous

calculation: Fourier transform from r to k, choose coordinates such that k is along the

x-axis, eliminate ux by the constraint of incompressibility, and eliminate Qxx because it

is an independent, exponentially decaying mode. We are left with a matrix equation for

Qxy(k, t) and uy(k, t),0 0

0 ρ


Q̈xy

üy

 =−

 4γ1 iγ2k

−iγ2k ηk2


Q̇xy

u̇y

 (12)

−

2(a+ Lk2) −iV k

iV k µk2


Qxy

uy

 .

Next we Fourier transform from time t to frequency ω, and obtain2(a+ Lk2)− 4iγ1ω −iV k + γ2ωk

iV k − γ2ωk µk2 − iηωk2 − ρω2


Qxy

uy

 = 0. (13)

In this matrix equation, there are two couplings between Qxy and uy: the elastic

coupling V and the dissipative coupling γ2. For simplicity, we set γ2 = 0 and consider

only the elastic coupling.

The matrix equation only allows nontrivial Qxy and uy if the determinant of the matrix

is zero. Hence, we set the determinant to zero and solve for the allowed frequencies ω.
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Because the determinant is a cubic function of ω, there are three solutions. Expanding

to first order in 1/ρ, the solutions are

ω0(k) = −i(a+ Lk2)

2γ1

+
iγ1V

2k2

ρ(a+ Lk2)2
, (14)

ω±(k) = ±k

√
µ

ρ
− V 2

2ρ(a+ Lk2)
− ik2

2ρ

[
η +

γ1V
2

(a+ Lk2)2

]
.

Here, a real part of ω represents oscillation, a negative imaginary part represents expo-

nential decay, and a positive imaginary part represents exponential growth.

The solution ω0(k) is a purely damped mode. Whether the system is in the isotropic

phase, a > V 2/(2µ), or slightly in the nematic phase, 0 < a < V 2/(2µ), this mode

decays exponentially.

The modes ω±(k) depend on whether system is in the isotropic or nematic phase.

In the isotropic phase, a > V 2/(2µ), these modes are damped sound waves, with both

oscillation and exponential decay. By comparison, when the system is cooled slightly into

the nematic phase, 0 < a < V 2/(2µ), these modes change into pure exponential growth

or decay. One of the modes has a negative imaginary part for all k, corresponding to

decay, but the other mode has a positive imaginary part for a range of k, corresponding

to growth.

Figure 7 shows a sample plot of the mode structure in the nematic phase. We can see

that the ω0(k) and ω−(k) modes are decaying for all k, but the ω+(k) mode is growing

for a range of k. In this respect, it resembles the growing mode in the linear drag model

of dynamics, shown in Fig. 6. In the limit of high ρ, the range of exponential growth

is 0 < k <
√
δa/L, and the fastest-growing wavevector is kfastest ≈

√
δa/(2L), where

δa = V 2/(2µ) − a. These results are equivalent to corresponding results for the linear
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Figure 7: Sample plot of the mode structure in the generalized model of dynamics, with inertia
and viscosity. Parameters are a = 0.1, L = µ = V = η = 1, γ1 = 0.25, and ρ = 20. The
quantity −Im[ω(k)] is the exponential decay rate, equivalent to Λ±(k) in Fig. 6. The largest
positive value of Im[ω(k)] corresponds to the fastest-growing mode.

drag model.

Hence, the generalized model of dynamics (with inertia and viscosity) leads to the same

conclusion as the linear drag model: The dynamic mechanism of the isotropic-nematic

transition selects a fastest-growing wavevector. This fastest-growing wavevector is not the

minimum of the free energy, and it only occurs because of the coupling between nematic

order and strain. We expect modulations with this wavevector to grow in liquid-crystal

elastomers cooled below the isotropic-nematic transition, leading to structures with the

form shown in Fig. 5.

To be sure, both models of dynamics presented here apply only to early stages of

growth of nematic order. In later stages, as nematic order becomes more established, we

cannot assume that Qαβ(r, t) and u(r, t) are small. In that case, our linearization of

the equations of motion breaks down, and the dynamics must be studied through other
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techniques, such as numerical simulation (see the next section for simulations). Hence,

the linear model is not sufficient to tell whether the polydomain structure will persist

into longer time, or will eventually coarsen into a uniform structure. In the late stages

of dynamics, pre-existing quenched disorder may lock in the polydomain structure at the

length scale given by dynamics, and prevent it from coarsening away. Alternatively, the

dynamically induced polydomain structure may be fixed by the cross-linking process, so

that it provides a source of quenched disorder for future processes in the elastomer.

2.2 Simulations

2.2.1 Free Energy

We use the free energy in equation (2) with a modification to the first term which is

1

2
aTr

[
↔

Q
2
]

+
1

4
bTr

[
↔

Q
2
]2

= aS2 + bS4

where we used the substitution Tr

[
↔

Q
2
]

= (Qxx
2 +Qxy

2) = 2S2. This expression allowed

us to obtain analytical solutions, but for simulations we would like a version in which

the scalar order paramter S cannot exceed 1. With that aim, we carry out a Maier-

Saupe style calculation (appendix 2.C) and show that the first term can be replaced by

aS2 − 2b (S2 + log [1− S2]). We also would like to keep the triangles of the mesh at

constant area so that they do not collapse. The λ term preserves the volume if we do the

substitution

Tr(
↔
ε)→ Tr(

↔
ε) + 2 det

↔
ε ,
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as shown in appendix 2.B. With these, the free energy we use in the simulations takes the

form

F =S2 − 2b
(
S2 + log

[
1− S2

])
+

1

2
L

2∑
i=1

Tr

[
∂
↔

Q

∂ri
· ∂

↔

Q

∂ri

]
+

1

2
λ
(

Tr[
↔
ε ] + 2 det

↔
ε
)2

+ µTr[
↔
ε · ↔ε ]− V Tr[

↔
ε ·

↔

Q] (15)

2.2.2 Model

We carry out finite-element simulations with relaxational dynamics. In this method we

divide the area of (2D) the material into polygonal elements whose vertices are described

by a mesh. In each element we define all the variables necessary to calculate the free energy

given above (15). These variables are the two independent components for each of the

tensors
↔
ε and

↔

Q namely εxx, εxy, Qxx, and Qxy. The calculation of strain in each polygon

is done using the coordinates of the mesh points. In order to use linear interpolation in

each element, we need to define a mesh made of triangles as linear interpolation of the

strain is not possible over a polygon with more than three vertices.

To calculate the derivatives of
↔

Q, we use finite differences. Square lattice description

is an easy way of calculating finite differences but we need a triangular mesh for the

calculation of strain as explained above. Thus we choose for our mesh square unit cells

divided diagonally into two triangles. There are two different diagonals of the square one

can draw so there are two different possible ways of dividing the unit cell into triangles.

We chose to alternate the diagonals between neighboring squares (see Fig. 8). For each

unit square cell, using the vertex coordinates, we calculate two parts of the strain energy

coming from “upper” and “lower” triangles. There are different methods one can calculate
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Figure 8: Mesh used in finite element simulations.

the strain from the vertex points all of which include usage of a deformation described

by comparing the undeformed and deformed coordinates. Here we use a strain tensor

described in the lab reference frame. See appendix 2.A for the calculation of this tensor

from the vertex coordinates.

As for the LC part, we assign a nematic order parameter for each square rather than

for each triangle. This is for the sake of simplicity in the data structure and in defining

the nearest neighbors.

2.2.3 Dynamic equation

Adopting the model above and the viscous drag for the dissipation mechanism, we use

the following algorithm to calculate time evolution of the shape and LC order. At each

lattice point i, j we update the components of
↔

Q tensor and positions Rij = (Xij, Yij)

according to the dynamic equation 10
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ρ
∂2uα
∂t

=− δD

δu̇α
− δF

δuα
,

0 =− δD

δQ̇αβ

− δF

δQαβ

. (16)

In the first equation above, we can calculate the accelaration of the ~R coordinates. How-

ever, the second equation doesn’t give an explicit solution for any of the quantities so we

need to check what the derivatives yield.

δD

δQ̇αβ

= 4Γ1Q̇αβ =
1

ΓQ
Q̇αβ,

thus we rewrite the dynamic equations, v being ∂u
∂t

, as

∂vα
∂t

=− 1

ρ

(
δD

δu̇α
+
δF

δuα

)
,

∂Qαβ

∂t
=− ΓQ

δF

δQαβ

. (17)

The updates are done using

vα(t+ ∆t) = vα(t) + ∆t
∂vα
∂t

(18)

Rα(t+ ∆t) = Rα(t) + ∆t vα (19)

Qαβ(t+ ∆t) = Qαβ(t) + ∆t
∂Qαβ

∂t
. (20)

At each time step, the dissipation function and the free energy are calculated for each cell

and its neighbors. The derivatives are calculated from these variables by the method of

finite differences.

2.2.4 Results

For a regular liquid crystal with no coupling to a polymer network, Landau style free

energy we have used indicates an isotropic-nematic (IN) phase transition at a = 0 where
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a can be thought of a temperature-like variable given by a = a′(T − T0). In the presence

of the coupling represented by the coupling coeeficient V , we deduce from the free energy

expression that the same phase transition occurs at a = V 2

2µ
. When below the critical

temperature corresponding to a = V 2

2µ
− δa the analytical calculations above predict that

the fastest growing mode yields a domain size proportional to 1/kfastest =
√

2L/δa. Thus

we are interested in how the the dynamics of domain size depends on the temperature and

the coupling strength namely δa and V . We would like to compare analytical predictions

with simulations.

Our simulations agree with the predicted analytical calculations. First we check the

phase behavior; we start with a very disordered initial state corresponding to a high

temperature. Then the system is quickly cooled down to a temperature set by δa. As

indicated by the theory, if a < V 2

2µ
the final state is nematic, otherwise isotropic.

In the following pictures we show snapshots from a sample simulation which includes

crossed-polarizer view, light scattering view, and correlation function of
↔

Q.
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Snapshots from a sample simulation.
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Figure 9: Simulation of a 71× 71 lattice with parameters µ = 2, V = 4. Main figure: crossed

polarizer view of the LCE, obtanied by grey scale coloring according to sin2(2θ). Top right:

light scattering view obtained by Fourier transform. Bottom right: correlation function of Q.

Nematic order starts growing in the initially disordered system and domains start

nucleating. After the initial nucleation, we see a characteristic domain size that depends

on δa which is proportional to the temperature drop below the equilibrium isotropic-

nematic transition. This size remains approximately constant for some amount of time

(Fig. 9 a-e), and then starts to grow, eventually reaching the size of the simulated system

(Fig. 9 e-k). To quantify the domain size we numerically calculate the correlation function

C(|r − r′|) = 〈cos 2[θ(r)− θ(r′)]〉 and find the distance |r − r′| at which first minimum

occurs. The analytical counterpart for the comparison comes from the first minimum of
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Figure 10: Domain size vs time for 111× 111 lattice. Temperature below transition δa = 0.1
is fixed. L=3, legend: LC-elastic coupling coeficient V

the Bessel function J0 (kfastestr) which is at 3.83. We solve for r to get the domain size

to get

r = 5.4

√
L

δa
. (21)

Dependence of coarsening dynamics on temperature

We have tested the domain size given by equation 21 by simulations with different

parameters and seen that there is good agreement between theory and simulations. As an

example we show the comparison between the predicted analytical value and simulation

results in Fig. 10. For L = 3 and δa = 0.1 the analytical prediction for the domain size

is approximately 30 which is shown with the horizontal dashed line.
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Dependence of coarsening dynamics on coupling strength

We pick a fixed δa = 0.1 and vary the coupling strength V . In this case the growth

of domains exhibit different characteristics for different values of the coupling strength V .

For V = 0, which is pure LC, we see coarsening of domains with no specific domain size,

both for short times and long times, while for V > 0 the system first evolves towards

a characteristic size of periodic domains, the domain boundaries grow sharper and then

they grow bigger and combine with neighboring domains to relax to mono-domain. Thus

we conclude that pure LCs have continuously growing domains while domains in LCE

remains at a characteristic size until S starts saturating and the free energy gets out of

the harmonic range. Theory and simulations regarding domain size selection are again

in good agreement for all V values. Another point to note is that LC elastomers also

eventually reach mono-domain but the process of coarsening happens much faster for pure

LCs than for LC elastomers. The bigger the coupling constant the slower the coarsening

in the harmonic range. The coupling constants for typical LCEs can be quite large thus it

may allow enough time for the material to freeze in the domains while the order parameter

is still in the harmonic range.

Non uniformity in material as impurities

In the long time limit, behavior for all of the V values in the above cases is similar.

The correlation length grows and reaches the system size. In order to lock in a finite

domain size we would like to see the effect of introducing impurities to the LCE. These

impurities consist of 2 × 2 regions in which the elastic coupling is set to a small value,

V = 0.1, and the L value is kept the same. We repeat simulations with different numbers
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Figure 11: Domain size vs time with impurities for a 71 × 71 lattice. Temperature below
transition δa = 0.1 is fixed. L=0.3, legend: LC-elastic coupling coefficient V

of impurities. As we add more impurities, we end up with smaller stable domains. This

indicates that average distance between impurities act as a limiting size for the domains.

For smaller V values, impurities do not make any difference. This size limiting effect

becomes more apparent (see Fig. 11) for bigger V values which also demonstrates the

important effect of elastic coupling on the formation of polydomain structures; elastic

coupling slows down the growth of domains and they also help lock in the finite size

domains in the presence of nonuniformities in V .

As a test we also add impurities in L, the Frank constant, however we do not see any

similar effect of impurities.
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2.3 Discussion

We have performed analytical calculations using a linear model for energy with two

different types of dissipation (linear viscous drags). Both models show that the dynamic

mechanism of the isotropic-nematic transition selects a fastest-growing wavevector. This

fastest-growing wavevector is not the minimum of the free energy, and it only occurs

because of the coupling between nematic order and strain.

We have also run numerical simulations with higher order terms in the free energy.

The simulations indicate that the initial selection of a characteristic domain size ceases

as the nematic order matures and the free energy escapes the harmonic regime in the

order parameter. However inclusion of impurities as variations in the LC-elastic coupling

strength can easily lock in the polydomain structure. We should assume that impurities

exist in real materials especially while the cross-linking is still in process.

Furthermore the elastic coupling can contribute to the formation of polydomains. Our

simulations show that presence of elastic coupling slows down the growth of domains which

will allow longer times for the system to freeze-in a permanent preferred direction in each

domain. All of these factors make it very hard for the system to reach a monodomain

state.

Our theory can be tested experimentally by investigating how the polydomain structure

depends on cooling rate. The theory predicts that coarsening farther below the equilibrium

isotropic-nematic transition temperature gives a higher wavevector kfastest. Hence, a higher

cooling rate should lead to a smaller polydomain length scale. The theory might also be

tested by imaging the polydomain structure; we expect a structure characterized by bend
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stripes as in Fig. 5.

In conclusion, we have shown that dynamic evolution of nematic order can induce a

polydomain state with a characteristic length scale, in the early stages of the isotropic-

nematic transition. This mechanism should be considered, along with quenched disorder,

in studies of polydomain liquid-crystal elastomers.

We thank D. R. Nelson and M. Y. Pevnyi for helpful discussions. This work was

supported by NSF Grant DMR-1409658.
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APPENDICES

2.A Strain tensor calculation from coordinates

We calculate the strain tensor in the lab frame using undeformed and deformed coor-

dinates of a triangle. For a point on the triangle consider a linear deformation that maps

the undeformed coordinates (x0, y0) to deformed coordinates (x, y). The deformation

tensor is given by

Λ =

 ∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

 .

In order to calculate the above derivatives using the old and new coordinates, we need to

determine the a, b, c, coefficients in the equation

 x

y

 =

 a1 b1 c1

a2 b2 c2




1

x0

y0


as the deformation tensor will be

Λ =

 b1 c1

b2 c2

 .

To solve for these coefficients, we need to include the linear mapping for all three vertices

which can be rewritten as a matrix equation as follows.
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x1

x2

x3

 =


1 xold1 yold1

1 xold2 yold2

1 xold3 yold3




a1

b1

c1




y1

y2

y3

 =


1 xold1 yold1

1 xold2 yold2

1 xold3 yold3




a2

b2

c2


The old coordinates come from the vetices of 4 right triangles formed by drawing alter-

nating diagonals in a square lattice. These triangles are 4 rotated versions of the right

triangle whose vertices are (0,0), (1,0), and (0,1). A general description for all 4 triangles

are these coordinates can be obtained using a rotation angle κ. Now the mapping from

undeformed to deformed coordinates is 0 cos(κ) − sin(κ)

0 sin(κ) cos(κ)

⇒
 x1 x2 x3

y1 y2 y3

 .

After performing the steps mentioned we solve for the coefficients and get the deformation

tensor. The strain tensor can then be obtanined from the deformation tensor Λ using the

definition

ε =
1

2

(
Λ · ΛT − I

)
=

 εxx εxy

εxy εyy
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where

εxx = −1 + x2
1 + x2

2 + x2
3 − 2x1 (x2 + x3 − x1)

εxy = x2 (y2 − y1) + x3 (y3 − y1) + x1 (2y1 − y2 − y3)

εyy = −1 + y2
1 + y2

2 + y2
3 − 2y1 (y2 + y3 − y1)

The result is independent from the rotation angle κ thus we can use the above equation

to describe the strain tensor for any of the 4 types of triangles. This feature simplifies the

calculations in the simulation.
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2.B Incompressibility

Consider the deformation of a small rectangular element of width ∆x0 and height ∆y0

along x and y axes only. The deformation relation can be written as ∆x

∆y

 =

 Λ11 0

0 Λ22


 ∆x0

∆y0


The deformed volume (area) is ∆x∆y = Λ11∆x0Λ22∆y0 = (∆x0∆y0) det

↔

Λ. The de-

terminant of the deformation tensor relates the volumes of infinitesimal elements in un-

deformed and deformed states;

det
↔

Λ =
V

V0

, (22)

which is true in any coordinate system because the determinant is invariant. In order to

penalize change of volume, a term such as

∆F =
1

2
λ

(
∆V

V0

)2

=
1

2
λ
(

det
↔

Λ− 1
)2

(23)

can be added to the free energy. det
↔

Λ =

√
det

(
↔

Λ
↔

Λ
T
)

and
↔

Λ
↔

Λ
T

=
↔

I + 2
↔
ε , thus this

term can be written as

∆F =
1

2
λ

(√
det
(↔
I + 2

↔
ε
)
− 1

)2

=
1

2
λ

(√
(1 + 2ε11)(1 + 2ε22)− 4ε212 − 1

)2

=
1

2
λ
(√

1 + 2 Tr
↔
ε + 4 det

↔
ε − 1

)2

(24)

In the limit of small deformation the first order approximation yields

∆F ≈ 1

2
λ
(

Tr
↔
ε + 2 det

↔
ε
)2

(25)
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The first part of Eqn. 25 was used in the analytical calculations. In order to improve the

incompressibility of the material in the simulations, we substitute

Tr
↔
ε → Tr

↔
ε + 2 det

↔
ε .
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2.C Maier-Saupe type calculation of free energy

We would like to calculate the free energy of a liquid crystal system in 2D. The generic

expression

F = aS2 + bS4

is a good approximation for values of S that are not too big. However in simulations a

better expression is needed in order to keep the value of S below 1.

In the Maier-Saupe model the molecules have nematic interactions with each other

and a mean-field approximation is used. Thus we assign an alignment potential of the

form −u cos 2θ where u is a mean-field average energy and θ is measured from the average

director. Let’s also define U = u/kBT to simplify the expressions. With these definitons

the probability of having an orientation θ around the average director is given by

ρ =
exp(U cos 2θ)∫ 2π

0
exp(U cos 2θ)dθ

(26)

=
exp(U cos 2θ)

2πI0(U)
(27)

where I0 is the Bessel function of order zero. The nematic order parameter is

S =

∫ 2π

0

ρ exp(U cos 2θ) dθ

=
I1(U)

I0(U)
(28)

Since S is used for the order parameter we will use E to denote entropy which can be

calculated as

E

k
=

∫ 2π

0

ρ log(ρ) dθ

= U
I1(U)

I0(U)
− log (2πI0(U))
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(a)
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S≈0 S≈±1 Maier-Saupe (b)
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Approximate Maier-Saupe

Figure 12: Approximate free energy expressions derived from a Maier-Saupe style calculation.
The blue curve shows the parametric plot of the actual calculation in terms of U . (a) Expansions
of the parametric equation in terms of order parameter S near S = 0 and S = ±1. (b) Unified
equation which agrees perfectly with the parametric equation for both S = 0 and S = ±1 limits
but slightly off for intermediate values of S.

The free energy is then

F = −1

2
JS2 − TE

= −1

2
J

(
I1(U)

I0(U)

)2

− kT
[
U
I1(U)

I0(U)
− log (2πI0(U))

]

Next we would like to express the latter in terms of the order parameter S. We cannot

solve for U in equation 28 but we can substitute a Taylor series to get an approximate

solution in two separate limits where S ≈ 0 and S ≈ ±1.

U ≈


2S + S3 if S ≈ 0

1
1−S2 + 1−S2

8
if S ≈ ±1

We substitute U in the free energy equation and get

F

kT
≈


(1− J

2kT
)S2 + S4

4
− log[2π] if S ≈ 0

−3
4

+
(

1
4
− J

2kT

)
S2 − 1

2
log(2π)− 1

2
log(1− S2) if S ≈ ±1
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The two parts of the piecewise free energy function are very good approximations to

the free energy at low and high order limits but each one is good at only one of the limits

(see Fig. 12-a). However it’s possible to get a unified function which agrees with the

parametric equation at both limits, i.e. around S = 0 and S = ±1. This unified function

which reads

F

kT
= − log(2π) +

(
1

2
− J

2kT

)
S2 − 1

2
log
(
1− S2

)
and the parametric functions are plotted in Fig. 12-b. Our goal here is to improve the

approximate free energy expression F ≈ aS2 + bS4 so that, limS→±1 F = ∞ to keep S

from growing too much and exceeding 1. We can rewrite the free energy above as

F

kT
+ log(2π) =

(
1− J

2kT

)
S2 − 1

2

(
S2 + log

[
1− S2

])
.

The small S limit of this expression is to be aS2 + bS4 so the final form of the free energy

can be written as

F = aS2 − 2b
(
S2 + log

[
1− S2

])
. (29)
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CHAPTER 3

Active Brownian particles near straight or curved walls: Pressure and boundary

layers

3.1 Introduction

The statistical properties of active particles are quite different from the analogous

properties of passive particles [1, 2]. For example, by the conventional laws of thermo-

dynamics, equilibrium Brownian motion cannot perform any useful work. By contrast,

active Brownian motion has been shown to power microscopic gears, thus performing

mechanical work [3–5]. This behavior can be attributed to a distinctive feature seen in

experiments that self propelled particles accumulate at the walls [6]. Similarly, active

Brownian particles drive the motion of curved tracers [7], and induce flexible membranes

to fold [8]. Parallel plates immersed in a bath of active Brownian particles experience

an attractive depletion force, analogous to the Casimir effect, unlike plates in a bath of

equilibrium Brownian particles [9]. A bath of active particles exerts an active pressure on

the walls, which is not a state function of the fluid but rather depends on properties of

the walls [10], particularly on the wall curvature [11–13].

The purpose of this chapter is to explore how systems cross over from equilibrium to

active behavior, as a function of particle activity, through several example calculations.

First, in Secs. 3.2 and 3.3, we review the derivation of equations of motion for order

parameter fields in a system of active particles, and use these equations to calculate the
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steady-state solutions in several specific geometries: near a straight wall, between two

straight walls, inside and outside a circular wall. These calculations show the formation

of boundary layers near the walls, which are characterized by enhancements in the density

and polar order. (Most of these calculations are done by truncating a series of equations

for moments of the density distribution, but Appendix 3.A shows that some results apply

even without this truncation.) We note that Ref. [14, 15] also use moment equations

to derive density profiles near boundaries. Here we first derive similar results and run

simulations for comparison. Next, we make appropriate approximations and further apply

these results to calculate forces and densities in various systems(Sec. 3.5).

In Sec. 3.4, we find a simple relationship between the density enhancement in the

boundary layer and the active pressure on a wall. Through this relationship, we determine

the pressure on a straight wall, as well as inside and outside a circular wall. We com-

bine these calculations into a single curvature-dependent active pressure. This result is

consistent with previous results by other investigators, but obtained through a different

method.

In Sec. 3.5, we apply these findings to specific geometries that demonstrate important

differences between equilibrium and active systems. For a pair of parallel plates in a bath of

active Brownian particles, we use boundary-layer considerations to estimate the Casimir-

like depletion force between the plates. For a curved tracer in an active bath, we find the

net force resulting from the different pressures on the inner and outer surfaces. Finally,

for a circular particle corral with just a small opening, we show that particle activity leads

to a difference in densities between inside and outside.
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3.2 Theoretical formalism

We begin by reviewing the derivation of equations of motion for a system of active

Brownian particles, beginning with Langevin dynamics for individual particles and leading

up to equations for order parameter fields that can be solved in arbitrary geometries.

We consider a system of active, non-interacting Brownian particles in two dimensions

(2D). We suppose that each particle has a position r = (x, y) and an orientation n̂ =

(cos θ, sin θ) for its self-propulsive force. Apart from this self-propulsive force, the particles

are isotropic. To describe the time evolution of the position and orientation, we use

Langevin stochastic dynamics in the overdamped limit, which gives

dr

dt
= βDt [F n̂−∇U(r) + f(t)] , (30a)

dθ

dt
= βDr [g(t)] . (30b)

Here, Dt and Dr are the translational and rotational diffusion constants, respectively, and

β = 1/(kBT ) is the inverse temperature. The coefficient F is the self-propulsive force

of each particle, and the product v0 = βDtF is the self-propulsive velocity. The function

U(r) is the potential energy, so that −∇U(r) is the force derived from the potential.

The final terms f(t) and g(t) are the random force and torque acting on each particle.

These stochastic contributions satisfy Gaussian white noise statistics, such that

〈fi(t)〉 = 0, 〈g(t)〉 = 0,

〈fi(t)fj(t′)〉 =
2δijδ(t− t′)

β2Dt

, 〈g(t)g(t′)〉 =
2δ(t− t′)
β2Dr

,

〈fi(t)g(t′)〉 = 0. (31)

To characterize a large ensemble of active Brownian particles, we use the probability
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distribution function P (r, θ, t), which gives the probability of finding a particle at position

r with orientation θ at time t. This distribution function evolves in time following the

Smoluchowski equation

∂P

∂t
=− ∂

∂ri

[
〈∆ri〉

∆t
P

]
− ∂

∂θ

[
〈∆θ〉
∆t

P

]
+

1

2

∂2

∂ri∂rj

[
〈∆ri∆rj〉

∆t
P

]
+

1

2

∂2

∂θ2

[
〈∆θ2〉

∆t
P

]
+

∂2

∂ri∂θ

[
〈∆ri∆θ〉

∆t
P

]
. (32)

Here, the quantities in angle brackets are averages calculated over all particles at position

r with orientation θ during a small time interval from t to t + ∆t. In our system, direct

integration of the Langevin equations gives

〈∆ri〉 = (v0ni − βDt∂iU)∆t, 〈∆θ〉 = 0,

〈∆ri∆rj〉 = 2Dtδij∆t, 〈∆θ2〉 = 2Dr∆t,

〈∆ri∆θ〉 = 0. (33)

With those expectation values, the Smoluchowski equation becomes

∂P

∂t
=−∇ · [(v0n̂− βDt∇U)P +Dt∇P ] +Dr

∂2P

∂θ2

=−∇ · J +Dr
∂2P

∂θ2
, (34)

where J(r, θ, t) = (v0n̂ − βDt∇U)P + Dt∇P is the current density of particles at

position r with orientation θ at time t.

As a simplification, instead of considering the full distribution P (r, θ, t) as a function
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of θ, we calculate orientational moments of the distribution

ρ(r, t) =

∫ 2π

0

P (r, θ, t)dθ, (35a)

Mi(r, t) =

∫ 2π

0

P (r, θ, t)nidθ, (35b)

Qij(r, t) =

∫ 2π

0

P (r, θ, t) (2ninj − δij) dθ, (35c)

with n1 = cos θ and n2 = sin θ. The zero-th moment ρ(r, t) is the total density of

particles, integrated over all orientations, as a function of positition and time. The higher

moments (normalized by ρ) give the orientational order parameters as functions of po-

sition and time. In particular, the vector M (r, t)/ρ(r, t) is the polar order parameter,

and the tensor Q(r, t)/ρ(r, t) is the nematic order parameter. By integrating over the

Smoluchowski equation (34), we obtain equations of motion for the moments

∂ρ

∂t
=− ∂i [v0Mi − βDt(∂iU)ρ−Dt∂iρ]

=− ∂iJ (0)
i , (36a)

∂Mj

∂t
=− ∂i

[
1
2
v0(ρδij +Qij)− βDt(∂iU)Mj −Dt∂iMj

]
−DrMj

=− ∂iJ (1)
ij −DrMj. (36b)

Here, the moments of current density are defined as J
(0)
i (r, t) =

∫ 2π

0
Ji(r, θ, t)dθ and

J
(1)
ij (r, t) =

∫ 2π

0
Ji(r, θ, t)njdθ.

In principle, there is an infinite series of equations of motion for the moments, with

the equation for the dipole moment Mi depending on the quadrupole moment Qij, the

equation for the quadrupole moment depending on the octupole moment, and so forth.

As an approximation, we truncate the series by assuming that the quadrupole moment
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Qij = 0. With that approximation, Eqs. (36) provide a closed set of equations for ρ(r, t)

and Mi(r, t), which can be solved to find the distribution of active Brownian particles in

any geometry.

3.3 Solution in simple geometries

In this section, we find steady-state solutions of the Smoluchowski moment equa-

tions (36) in several specific geometries with straight or curved walls. We consider hard

walls, so that the potential energy can be written as

U(r) =


0, outside wall,

∞, inside wall.

(37)

In the free space outside the wall where U(r) = 0, in the steady state, the Smoluchowski

moment equations simplify to

0 = −v0∇ ·M +Dt∇2ρ, (38a)

0 = −1
2
v0∇ρ+∇2M −DrM . (38b)

These equations can be combined to give

∇4ρ =

(
Dr

Dt

+
v2

0

2D2
t

)
∇2ρ = ξ−2∇2ρ. (39)

Hence, we see that the equation has a natural length scale ξ, which can be written as

ξ =

√
Dt/Dr√

1 + v2
0/(2DrDt)

=
a√

1 + 1
2
Pe2

. (40)

In the numerator, the ratio of translational and rotational diffusion constants gives the

length scale a =
√
Dt/Dr, which is typically of the same order as the particle diameter.
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The denominator is expressed in terms of the Peclet number Pe = v0/
√
DtDr, which is

a dimensionless ratio that characterizes the particle activity.

The differential equations must be solved with boundary conditions expressing the

constraint that particles cannot enter the hard wall. These boundary conditions can be

written in terms of the moments of current density as

0 = N̂ · J (0) = N̂ · (v0M −Dt∇ρ), (41a)

0 = N̂ · J (1) = N̂ · (1
2
v0ρI −Dt∇M ), (41b)

where N̂ is the local normal to the wall. This system of equations can be solved exactly

in several cases.

3.3.1 Particles near an infinite straight wall

Consider an infinite, straight wall along the y-axis, so that the region x < 0 is free

space, and x > 0 is excluded. By the symmetry of this problem, we assume that ρ and Mx

are functions of x only, and My = 0. Using these assumptions, we solve the differential

equations (38) with the boundary conditions (41), and the additional boundary condition

that ρ(x)→ ρbulk as x→ −∞. The solution is

ρ(x) = ρbulk

(
1 +

v2
0

2DrDt

ex/ξ
)
, (42a)

M(x) =
ρbulkv0

2Drξ
ex/ξ. (42b)

This solution is plotted in Fig. 13 for three sample sets of parameters. The density ρ(x)

is enhanced in a boundary layer of thickness ξ near the wall, and decays exponentially to

ρbulk. The maximum density occurs right at the wall, where

ρwall = ρbulk

(
1 +

v2
0

2DrDt

)
. (43)
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In the Appendix (3.A), we will show that this result is exact, and does not depend on the

truncation of moments.

The first moment Mx(x) is nonzero in the same boundary layer, and decays exponen-

tially to zero. Because Mx(x) is positive, we can see that particles accumulate at the

wall with their orientations pointing into the wall, but are unable to enter the wall. The

orientational order parameter

Mx(x)/ρ(x) =
v0

2Drξ

1(
e−x/ξ +

v20
2DrDt

) ,
is greatest at the wall, and decays exponentially into the bulk, which is isotropic.

As a numerical check on the calculation, we perform simulations of the Langevin

equations (30) with a boundary at x = 0, and histograms of the density ρ(x) and first

moment Mx(x) are plotted in Fig. 13. The numerical results agree very well with the

analytic predictions.

3.3.2 Particles between two walls

Now consider a system with two infinite, parallel walls at x = ±L. We solve the

differential equations (38) with the boundary conditions (41) on both walls. The solution

is

ρ(x) = ρ1

[
1 +

v2
0

2DrDt

cosh(x/ξ)

cosh(L/ξ)

]
, (44a)

Mx(x) =
ρ1v0

2Drξ

sinh(x/ξ)

cosh(L/ξ)
, (44b)

with an overall coefficient ρ1. This solution is plotted in Fig. 14. Here, the density ρ(x)

has boundary layers of thickness ξ near both walls, and the first moment Mx(x) points

into each of the walls.
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Figure 13: Plots of the density ρ(x) and first moment Mx(x) as functions of position x near
a hard wall for ρbulk = 1. Lines are the analytic predictions of Eqs. (42), and symbols are
numerical results from simulations of Langevin dynamics. Activity is v0 = 0 (green diamonds),
v0 = 2 (orange circles), and v0 = 5 (blue squares), and other parameters are Dr = 2, Dt = 1,
and β = 1. All quantities are in arbitrary units.
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Figure 14: Plots of the density ρ(x) and first moment Mx(x) as functions of position x between
two hard walls for ρ̄ = 1. Lines are the analytic predictions of Eqs. (44–45), and symbols are
numerical simulation results. Parameters are the same as in Fig. 13, and all quantities are in
arbitrary units.
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Instead of a constraint on the density far from the wall, we now have a constraint on the

integrated number of particles in the system, which can be written as
∫ L
−L ρ(x)dx = 2Lρ̄,

where ρ̄ is the average density. Hence, the overall coefficient is

ρ1 = ρ̄

[
1 +

v2
0ξ

2DrDtL
tanh

(
L

ξ

)]−1

. (45)

For large wall separation, with L � ξ[1 + v2
0/(2DrDt)], the density in the center is

approximately independent of the walls, and we can just write the overall coefficient as

ρ1 = ρbulk. However, for smaller wall separation, the density in the center is depleted

because the density on the walls is enhanced, as shown in the figure.

We perform numerical simulations of the Langevin equations with boundaries on both

side of the domain. The numerical results, plotted in Fig. 14, agree very well with the

analytic predictions.

3.3.3 Particles inside circle

Suppose that active particles are confined inside a hard, circular wall of radius R

(Fig. 15-a). In this case, it is most convenient to work in terms of polar coordinates

(r, θ). By rotational symmetry, we expect that ρ and Mr are functions of r only, and

Mθ = 0. We then express the differential equations (38) in terms of polar coordinates. A

general solution for ρ(r) is a linear combination of the modified Bessel functions I0(r/ξ)

and K0(r/ξ), and the corresponding solution for Mr(r) is a linear combination of I1(r/ξ)

and K1(r/ξ). Because the density must be finite at r = 0, ρ(r) can have only the I0(r/ξ)

function, and hence Mr(r) can have only I1(r/ξ). By putting these functions into the
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boundary conditions (41), expressed in polar coordinates, we obtain

ρ(r) = ρ2

[
1 +

v2
0

DrDt

I0(r/ξ)

A2

]
, (46a)

Mr(r) =
ρ2v0

Drξ

I1(r/ξ)

A2

, (46b)

with the denominator

A2 =

(
1 +

v2
0

2DrDt

)
I2

(
R

ξ

)
+

(
1− v2

0

2DrDt

)
I0

(
R

ξ

)
, (46c)

and with an overall coefficient ρ2. This solution for density ρ(r) shows a boundary layer

of thickness ξ inside the circular wall. The first moment Mx(x) points outward from the

center, into the circular wall.

As in the previous case, the overall coefficient ρ2 is fixed by the constraint on the

integrated number of particles in the system,
∫ R

0
2πrρ(r)dr = πR2ρ̄, which gives

ρ2 = ρ̄

[
1 +

2v2
0ξI1(R/ξ)

DrDtRA2

]−1

. (47)

For a large circle, with R� ξ[1+v2
0/(2DrDt)], the density in the center is approximately

independent of the wall, and we can write the overall coefficient as ρ2 = ρbulk. However,

for smaller radius, the density in the center is depleted because the density at the wall is

enhanced.

3.3.4 Particles outside circle

As a modification of the previous case, consider active particles that are confined

outside a hard, circular wall of radius R (Fig. 15-b). Again, we work in polar coordinates

and express the solution in terms of modified Bessel functions. Now the density must be

finite, with ρ(r)→ ρbulk, as r →∞. Hence, ρ(r) can include only the K0(r/ξ) function,
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(a) Particles inside a circular wall at R = 7.7 for average density ρ̄ = 1
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(b) Particles outside a circular wall with R = 8.3 for ρbulk = 1

Figure 15: Plots of the density ρ(x) inside and outside a hard circular wall as functions of
position. Lines are the analytic predictions of Eqs. (46-a,48-b), and symbols are numerical
results from simulations of Langevin dynamics. Activity is v0 = 0 (green diamonds), v0 = 2
(orange circles), and v0 = 5 (blue squares), and other parameters are Dr = 1, Dt = 1, and
β = 1. All quantities are in arbitrary units.
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and Mr(r) can include only K1(r/ξ). From the boundary conditions on the circular wall,

the solution becomes

ρ(r) = ρbulk

[
1 +

v2
0

DrDt

K0(r/ξ)

A3

]
, (48a)

Mr(r) = −ρbulkv0

Drξ

K1(r/ξ)

A3

, (48b)

with the denominator

A3 =

(
1 +

v2
0

2DrDt

)
K2

(
R

ξ

)
+

(
1− v2

0

2DrDt

)
K0

(
R

ξ

)
. (48c)

In this solution, the density ρ(r) has a boundary layer of thickness ξ outside the circular

wall. The first moment Mx(x) points in toward the center, into the circular wall.

3.4 Pressure on straight or curved walls

In the previous section, we calculated the enhancement of density in boundary layers

along hard walls of different shapes: straight, inside a circle, and outside a circle. In

addition to the density enhancement, we would also like to calculate the pressure of active

particles against each of these walls. To calculate the pressure, we use a method based

on the theory of Solon et al. [10], and consider a hard wall to be the limiting case of a

soft wall.

As a first step, consider an infinite straight wall along the y-axis. Instead of the hard

wall potential energy of Eq. (37), we use the soft potential

U(x) =


0, for x < 0,

U ′x, for x > 0,

(49)

where U ′ is a finite positive constant. The limit of U ′ → ∞ will then represent a hard
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wall. This assumption is similar to Ref. [10], except that we use a linear potential while

they used a quadratic potential.

We now solve the steady-state differential equations (36) separately in the regions

x < 0 and x > 0. In each region, we look for solutions where the density ρ(x) and the

first moment Mx(x) vary as eαx. The differential equations then give a characteristic

equation for α. In the region x < 0, the characteristic equation is

α3 −
(
Dr

Dt

+
v2

0

2D2
t

)
α = 0, (50)

and the solutions are α = 0 or ±1/ξ. In the region x > 0, the characteristic equation is

α3 + 2βU ′α2 −
(
Dr

Dt

+
v2

0

2D2
t

− β2U ′2
)
α− DrβU

′

Dt

= 0. (51)

For large U ′, the solutions are

α =
Dr

βU ′Dt

+O
(
U ′−2

)
or − βU ′ ± v0√

2Dt

+O
(
U ′−1

)
. (52)

Because ρ cannot diverge as x → ±∞, we must eliminate the negative value of α for

x < 0, and the positive value of α for x > 0. We then have four exponential modes

with coefficients to be determined from the boundary conditions. At the boundary x = 0,

we require that the density ρ(x), the first moment Mx(x), and the current moments

J
(0)
x (x) and J

(1)
xx (x) must all be continuous (keeping in mind that the definition of current

moments in Eqs. (36) includes U ′ terms in the region x > 0). We also require that

ρ(x) → ρbulk as x → −∞, far from the wall. Applying these boundary conditions, and

assuming that βU ′Dt/v0 � 1, we obtain

ρ(x) =


ρbulk

(
1 +

v20
2DrDt

ex/ξ
)
, for x < 0,

ρbulk

(
1 +

v20
2DrDt

)
e−βU

′x, for x > 0.

(53)
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The result for x < 0 is exactly the same as previously calculated for a hard wall in Eq. (42a).

The result for x > 0 shows how the density decreases inside the wall, dominated by the

Boltzmann distribution for large U ′.

From these results, we can calculate the pressure of the particles on the wall. As noted

in Ref. [10], the force of the particles on the wall is equal and opposite to the force of the

wall on the particles. Hence, the pressure can be calculated as

p =

∫ ∞
0

ρ(x)
∂U(x)

∂x
dx = U ′

∫ ∞
0

ρ(x)dx (54)

=
ρbulk
β

(
1 +

v2
0

2DrDt

)
= ρbulkkBT

(
1 +

v2
0

2DrDt

)
.

This result is consistent with Ref. [10]. In Eq. (54), the first term is the pressure of an ideal

gas without activity, pideal = ρbulkkBT . The second term is an enhancement due to the

active velocity v0. Hence, the active pressure is enhanced over the ideal gas pressure by a

factor of (1+v2
0/(2DrDt)). By comparison, Eq. (53) shows that the density at the wall is

enhanced over the bulk density by the same factor ρwall = ρ(0) = ρbulk(1 + v2
0/(2DrDt)).

Hence, the active pressure is simply related to the enhanced density at the wall by p =

ρwallkBT .

This relationship between pressure and enhanced density at the wall is quite general:

If we only assume that the wall potential U(x) is large, diverging as x→∞, so that the

density inside the wall is dominated by the Boltzmann distribution ρ(x) = ρwalle
−βU(x),

then the pressure becomes

p =

∫ ∞
0

ρ(x)
∂U(x)

∂x
dx = ρwall

∫ ∞
0

e−βU(x)∂U(x)

∂x
dx

= ρwall

∫ U(∞)

0

e−βUdU =
ρwall
β

= ρwallkBT. (55)
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Now we apply the same considerations to active particles inside or outside a circular

wall. For particles inside a circle, the density profile ρ(r) is given by Eq. (46a), with the

denominator A2 defined in Eq. (46c). Suppose the radius R is large enough that the

coefficient ρ2 can be approximated by ρbulk. The density ρwall is just the value of ρ(r) at

r = R, and hence the pressure on the wall is

p = ρbulkkBT

1 +

v20
DrDt

1− v20
2DrDt

+
(

1 +
v20

2DrDt

)
I2(R/ξ)
I0(R/ξ)

 . (56)

For R� ξ, we can use the asymptotic expansion I2(x)/I0(x) ≈ 1−2x−1 +x−2 to obtain

p = ρbulkkBT

[
1 +

v2
0

2DrDt

+
v2

0

2D2
rξR

+
v4

0 +DrDtv
2
0

4D3
rDtR2

]
. (57)

Hence, the pressure of active particles inside a circular wall is increased, compared with

the active pressure on a straight wall, by an amount proportional to 1/R.

For particles outside a circular wall, the density profile ρ(r) is given by Eq. (48a), with

the denominator A3 defined in Eq. (48c). The density ρwall is just the value of ρ(r) at

r = R, and hence the pressure on the wall is

p = ρbulkkBT

1 +

v20
DrDt

1− v20
2DrDt

+
(

1 +
v20

2DrDt

)
K2(R/ξ)
K0(R/ξ)

 . (58)

For R � ξ, we can use the asymptotic expansion K2(x)/K0(x) ≈ 1 + 2x−1 + x−2 to

obtain

p = ρbulkkBT

[
1 +

v2
0

2DrDt

− v2
0

2D2
rξR

+
v4

0 +DrDtv
2
0

4D3
rDtR2

]
. (59)

Hence, the pressure of active particles outside a circular wall is reduced, compared with

the active pressure on a straight wall, by an amount proportional to 1/R.

The three cases of straight wall, inside circle, and outside circle can all be combined into

the single concept of a curvature-dependent active pressure. Let us define the curvature
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κ as κ = 0 for a straight wall, κ = +1/R inside a circle, and κ = −1/R outside a circle.

The three equations (54), (57), and (59) can then be combined into the equation

p(κ) = ρbulkkBT

[(
1 +

v2
0

2DrDt

)
+

(
v2

0

2D2
rξ

)
κ

+

(
v4

0 +DrDtv
2
0

4D3
rDt

)
κ2

]
. (60)

This expression can be written more compactly in terms of the Peclet number Pe =

v0/
√
DtDr and the particle length scale a =

√
Dt/Dr as

p(κ) = ρbulkkBT
[ (

1 + 1
2
Pe2
)

+ 1
2
Pe2
√

1 + 1
2
Pe2aκ

+ 1
4
Pe2(1 + Pe2)a2κ2

]
. (61)

From this result, we can see that the pressure of an active fluid on a wall depends on

the shape of the wall through the curvature κ. Of course, this is not the case for an

equilibrium fluid; the pressure of an equilibrium fluid depends only on fluid properties, not

on the shape of the wall.

This result for the curvature-dependent active pressure is similar to a previous theo-

retical result of Fily et al. [11, 12]. They investigated the active pressure inside a convex

box with variable positive curvature, and found that the local pressure is proportional to

the local curvature of the boundary. Here we see that the result also applies in a region

of negative curvature, such as the outside of a circular wall.

3.5 Applications

In this section we discuss three examples, where we can make predictions for the

behavior of active systems based on the concepts of pressure and boundary layers.
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3.5.1 Depletion force between two plates

Consider two parallel plates inside a bath of active particles, separated by a distance

of 2L, as shown in Fig. 16. This problem has been investigated through simulations

in Ref. [9]. Outside the plates, far from the ends, this problem is equivalent to the

infinite straight wall discussed in Sec. 3.3.1, and the density profile is given by Eq. (42a).

Between the plates, far from the ends, this problem is equivalent to the infinite parallel

walls discussed in Sec. 3.3.2, and the density profile is given by Eq. (44a). Hence, there

is a boundary layer with enhanced density on each side of each plate, and thus there is

active pressure on each side of each plate. The question is: Do all the boundary layers

have the same density enhancement? If the inner boundary layers have a different density

enhancement than the outer boundary layers, then the active pressure will either push the

plates together or push them apart.

To answer that question, we note that the density profiles (42a) and (44a) have two

different overall coefficients. For the density profile outside the plates, the coefficient is

ρbulk, which is the density far from the plates. For the density profile between the plates,

the coefficient is ρ1. To determine ρ1, we assume that the region midway between the

plates is in contact with the bulk region through the openings at the ends, so that the

density midway between the plates is equal to ρbulk. This assumption implies that the

density profile between the walls is

ρin(x) =
ρbulk

1 +
v20

2DrDt
sech(L/ξ)

[
1 +

v2
0

2DrDt

cosh(x/ξ)

cosh(L/ξ)

]
. (62)

Hence, the active pressure on the inside surface of each wall is

pin = ρwallin kBT =
ρbulkkBT

1 +
v20

2DrDt
sech(L/ξ)

(
1 +

v2
0

2DrDt

)
. (63)
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Figure 16: Theory and simulation of two parallel plates in a bath of active Brownian particles.
The inset shows a snapshot of the simulation, and the red line represents the density as a
function of x along the central axis y = 0. The main figure shows the theoretical prediction for
the pressure difference as a function of the plate separation 2L, in comparison with simulation
results for the difference in densities at the inner and outer walls. Parameters are Dr = 1,
Dt = 1, v0 = 1, kBT = 1, and plate thickness s = 0.6.
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By comparison, the active pressure on the outside surface of each wall is

pout = ρwallout kBT = ρbulkkBT

(
1 +

v2
0

2DrDt

)
. (64)

Thus, the inside pressure is less than the outside pressure by

∆p(L) = pout − pin =
ρbulkkBT

(
v20

2DrDt

)(
1 +

v20
2DrDt

)
cosh(L/ξ) +

v20
2DrDt

. (65)

This pressure difference pushes the plates together. It decays exponentially with L, with

the characteristic length scale ξ. Physically, this force on the plates can be regarded as a

depletion force, associated with the reduced boundary layer between the plates compared

with outside the plates. It appears analogous to the Casimir force between conducting

plates, but arises from a different mechanism.

We perform Langevin dynamics simulations of a bath of active Brownian particles

around two parallel plates, illustrated in Fig. 16. These simulations show that boundary

layers form on both sides of both plates, and the outer boundary layers have higher density

than the inner boundary layers, as indicated by the red line in the inset. The relative density

of these two boundary layers depends on the separation 2L between the plates. The main

figure presents the density difference, which is proportional to the pressure difference, in

comparison with the prediction of Eq. (65). We can see that the trends are consistent

for large separation. For smaller separation, the prediction overestimates the density

difference, perhaps because it is more difficult for the density midway between the plates

to become equal with ρbulk when the openings between the plates are so small (comparable

to the persistance length v0/Dr = 1 and effective particle size
√
Dt/Dr = 1).
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Figure 17: Theory and simulation of a curved tracer in a bath of active Brownian particles. The
inset shows the simulation, with the red line representing the density as a function of x along
the symmetry axis y = 0. The main figure shows the prediction for net pressure as a function
of activity v0, in comparison with the simulation results for the density difference between the
two sides of the tracer. Parameters are Dr = 2, Dt = 1, kBT = 1, tracer radius R = 7, and
tracer thickness s = 0.6.

3.5.2 Force on a curved tracer particle

Consider a curved tracer surrounded by a bath of active particles, as shown in Fig. 17.

This type of geometry has been studied through simulations in Refs. [7, 8]. A boundary

layer forms on both sides of the tracer, and it experiences active pressure on both sides.

Based on the argument in Sec. 3.4, the pressure in the inner side is greater than the

pressure on the outer side. As a result, the bath of active particles exerts a net force on

the tracer, causing it to move.

To estimate the net force, we use Eq. (60) for the pressure as a function of curvature.

On the inner side, we have the curvature κ = 1/(R− s/2), where R is the radius of the
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midline and s is the thickness of the tracer. On the outer side, we have κ = −1/(R−s/2).

We assume that ρbulk is the same on both sides, because the bulk regions can easily

exchange particles. Hence, for large R and small s, the net pressure becomes

∆p =
ρbulkkBTv

2
0

D2
rξR

(
1 +

s2

R2

)
. (66)

Through Langevin dynamics simulations, we visualize the distribution of active particles

around the tracer and calculate the density along the symmetry axis, as indicated by the

red line in the Fig. 17 inset. This simulation result shows the higher density on the inner

side than on the outer side, and hence a higher pressure. In the main figure, we show

the density difference in the simulation in comparison with the prediction from Eq. (66).

This results show a consistent trend, although the prediction is higher by about a factor

of 2. Hence, the approximate argument about a curvature-dependent pressure provides a

simple way to understand the net pressure on the tracer.

Experiments have demonstrated that the active motion of swimming bacteria causes

an asymmetric gear to rotate [3–5]. The structure of the asymmetric gear is equivalent

to several curved tracer particles linked together, and hence we expect that the argument

in this section would also apply to the gear.

3.5.3 Corral

As a variation on the curved tracer, consider the active particle corral shown in Fig. 18.

Here, the wall is almost a full circle, with only a small opening connecting inside and

outside. The density at the inner boundary is related the the density at the center of the

circle by Eq. (46a), and the density at the outer boundary is related to the bulk density

by Eq. (48a). The question is then: How are the inside and outside densities related to
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each other? For this geometry with only a small opening, it seems reasonable that the

density of the inside boundary layer should match the density of the outside boundary

layer, ρin(R) = ρout(R). This equation gives us a relationship between the density at the

center of the circle and the bulk density. For R� ξ, that relationship becomes

ρcenter
ρbulk

= 1− v2
0

DrDt

ξ

R
. (67)

This equation shows that the corral has a reduced density at the center, compared with

the bulk density. Intuitively, this behavior occurs because it is easier for active particles

to escape from the corral than to enter it, as the curvature inside guides particles to-

wards the opening. It would not occur for an equilibrium fluid, which would have equal

density inside and outside the corral. Thus tunable rectification of active particles can be

achieved through this mechanism similarly to methods reported earlier by various research

groups [16].

We carry out Langevin dynamics simulations of a bath of active particles around the

corral in Fig. 18. These simulations show that the average density around the center

is reduced compared with the bulk exterior, as shown by the red line. The main figure

presents the simulation results for the density ratio as a function of activity, in comparison

with the prediction from Eq. (67), and these results are generally consistent. Hence, the

approximate argument about boundary layers provides a way to understand the relative

densities in this geometry.

We would like to thank A. Baskaran for helpful discussions. This work was supported

by National Science Foundation Grant No. DMR-1409658.
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Figure 18: Theory and simulation of an active particle corral. A snapshot of the simulation is
shown in the inset, with the red line representing the density as a function of x in a slice across
the corral. The main figure shows the density ratio ρcenter/ρbulk as a function of activity v0,
with the points representing simulation results and the line representing the theory of Eq. (67).
Parameters are Dr = 2, Dt = 1, kBT = 1, and corral radius R = 4.
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[2] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe,
“Active Particles in Complex and Crowded Environments,” Rev. Mod. Phys., vol. 88,
p. 045006, Nov 2016.

[3] L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-Starting Micromotors in a Bac-
terial Bath,” Phys. Rev. Lett., vol. 102, p. 048104, Jan 2009.

[4] A. Sokolov, M. M. Apodaca, B. A. Grzybowski, and I. S. Aranson, “Swimming
bacteria power microscopic gears,” Proc. Natl. Acad. Sci. U.S.A., vol. 107, no. 3,
pp. 969–974, 2010.

[5] C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, and R. Di Leonardo, “Micromo-
tors with asymmetric shape that efficiently convert light into work by thermocapillary
effects,” Nat. Commun., vol. 6, p. 7855, Jul 2015.

[6] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, “Hydrodynamic attraction of
swimming microorganisms by surfaces,” Phys. Rev. Lett., vol. 101, p. 038102, Jul
2008.

[7] S. A. Mallory, C. Valeriani, and A. Cacciuto, “Curvature-induced activation of a
passive tracer in an active bath,” Phys. Rev. E, vol. 90, p. 032309, Sep 2014.

[8] S. A. Mallory, C. Valeriani, and A. Cacciuto, “Anomalous dynamics of an elastic
membrane in an active fluid,” Phys. Rev. E, vol. 92, no. 1, p. 012314, 2015.

[9] D. Ray, C. Reichhardt, and C. J. O. Reichhardt, “Casimir effect in active matter
systems,” Phys. Rev. E, vol. 90, no. 1, p. 013019, 2014.

[10] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur,
“Pressure is not a state function for generic active fluids,” Nat. Phys., vol. 11,
pp. 673–678, Jun 2015.

[11] Y. Fily, A. Baskaran, and M. F. Hagan, “Dynamics of self-propelled particles under
strong confinement,” Soft Matter, vol. 10, no. 30, pp. 5609–5617, 2014.

[12] Y. Fily, A. Baskaran, and M. F. Hagan, “Dynamics and density distribution of strongly
confined noninteracting nonaligning self-propelled particles in a nonconvex bound-
ary,” Phys. Rev. E, vol. 91, p. 012125, Jan 2015.

81
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APPENDICES

3.A Exact calculation of wall density

The purpose of this appendix is to show that the relationship between the wall density

ρwall and the bulk density ρbulk is exact in one dimension, and does not depend on the

truncation of moments.

We begin with the moment equations (36) in steady state,

0 =− ∂J
(0)
x

∂x
, (68a)

0 =− ∂J
(1)
xx

∂x
−DrMx. (68b)

Integrating Eq. (68a) gives J
(0)
x = constant. Because no particles are entering or leaving

the system at x→ ±∞, we must have J
(0)
x = 0. From the definition of J

(0)
x in Eq. (36a),

this equation implies

v0Mx −Dt
∂ρ

∂x
= 0. (69)

Integrating once again, we obtain

v0

∫ ∞
0

Mx(x)dx = Dt[ρ(∞)− ρ(0)]. (70)

By comparison, integrating Eq. (68b) implies

Dr

∫ ∞
0

Mx(x)dx = J (1)
xx (0)− J (1)

xx (∞). (71)

At the wall x = 0, there is no current, so that J
(1)
xx (0) = 0. Away from the wall, the fluid

becomes isotropic, and hence all the moments of the distribution function vanish, except
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for ρ(∞) = ρbulk. From the definition of J
(1)
xx in Eq. (36b), we obtain J

(1)
xx (∞) = 1

2
v0ρbulk.

Combining Eqs. (70) and (71) then yields

Dt

v0

[ρbulk − ρ(0)] = − v0

2Dr

ρbulk,

ρwall = ρ(0) = ρbulk

(
1 +

v2
0

2DrDt

)
. (72)

Hence, the active pressure directly follows as

p = ρwallkBT = ρbulkkBT

(
1 +

v2
0

2DrDt

)
. (73)
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CHAPTER 4

Skyrmions in Liquid-Crystals and Chiral Magnets1

4.1 Introduction

In chiral systems, isolated or periodic arrays of topological defects can exist as stable

minimum energy states. In some cases, the defects are skyrmions, which have 180◦ double

twist going outward from the center, and hence can pack together without singularities

in the orientational order. In other cases, the defects are merons, which have 90◦ double

twist going outward from the center. See Fig. 19.

When chiral liquid crystals are confined in an anisotropic environment, they experience

geometric frustration: The chirality favors a twist in the director field, but the anisotropy

favors a director orientation that is incompatible with twist [1,2]. Because of this frustra-

tion, these liquid crystals form complex topological defect structures, with regions of twist

1Part of the work in this chapter was published in arXiv:1711.07823

(a) Skyrmion (b) Meron (half skyrmion)

Figure 19: 2D skyrmion and meron with 3D directors.
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separating regions of the favored orientation. In some cases, these defects are walls with

a one-dimensional (1D) twist of the director field n(x) [3]. In other cases the defects are

skyrmions, which have a 2D variation of the director field n(x, y) with double twist going

outward from the center, covering all possible orientations on the unit sphere [4–11]. See

Fig. 19. In even more complex cases, the defects are hopfions, with a 3D variation of the

director field n(x, y, z) in a knotted texture [12, 13].

An important feature of all three cases—walls, skyrmions, and hopfions—is that the

orientation varies in a topological configuration that cannot anneal away, but the magni-

tude of the order parameter remains constant. Unlike typical topological vortices, there is

no singularity where the magnitude goes to zero (or otherwise changes away from its bulk

value [14]). These nonsingular defects were originally proposed in nuclear physics [15], and

they are now studied extensively in condensed matter, especially in chiral magnets [16–21],

where they have potential applications in magnetic memory and logic.

The nonsingular defect structure of skyrmions can be compared with blue phases in

chiral liquid crystals [22–24]. A blue phase consists of a periodic array of double-twist

tubes. Each tube has a 2D variation of the director field going outward from the center,

similar to a skyrmion except that it covers only half of the unit sphere. In that sense,

the double-twist tubes can be regarded as half-skyrmions, which are called merons [25].

There is one crucial difference between blue phases and skyrmions: In a blue phase, the

double-twist tubes are separated by disclinations, which are singularities in the director

field, where the magnitude of nematic order changes away from its bulk value. Hence,

an important issue in chiral liquid crystals is how to understand the crossover between

skyrmions and blue phases. Why would a chiral liquid crystal form singular or nonsingular
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defect structures?

A further theoretical issue is how to compare skyrmions and blue phases in liquid

crystals with analogous structures in chiral magnets. Both liquid crystals and magnets

have orientational order parameters with magnitudes and directions. They can both exhibit

nonsingular defects (with constant magnitude of the order parameter), as well as singular

defects (with the magnitude vanishing or otherwise changing away from its bulk value).

The main difference between these materials is the symmetry of the orientational order

parameter: liquid crystals have a tensor order parameter, while magnets have a vector

order parameter. How does this difference of symmetry affect the skyrmions or blue

phases that form in the material?

The purpose of this work is to address these issues through theoretical studies of

chiral liquid crystals and magnets. In Sec. 4.2, we consider a simple analytic model for

chiral liquid crystals, and show that there are four characteristic energy scales: the energy

associated with the magnitude of nematic order, the chiral interaction, the anisotropy,

and the temperature. We derive a phase diagram in terms of three dimensionless ratios

of these energies. This phase diagram includes classical results for blue phases with no

anisotropy, and extends the analysis to include anisotropy. It shows that blue phases are

stable when the energy associated with the magnitude of nematic order is relatively low.

Skyrmions are not stable structures in this phase diagram, but they can be metastable

when that energy scale is high.

In Sec. 4.3, we present Monte Carlo and relaxational dynamic simulations of the model

for chiral liquid crystals. These numerical simulations confirm the phase diagram derived

through simple analytic approximations. They also show the formation of skyrmions as
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metastable defects, with length scales that can be understood analytically.

In Sec. 4.4, we extend the simple analytic model to describe chiral magnets, which

have a Dzyaloshinskii-Moriya (DM) term in the free energy, arising from Dresselhaus spin-

orbit coupling. In this case, there are four characteristic energies: the energy associated

with the magnitude of magnetic order, the chiral DM interaction, the anisotropy, and the

applied magnetic field, while the temperature scales out of the problem. We derive a phase

diagram in terms of three dimensionless ratios of these energies, and show that this phase

diagram is quite similar to previous results from more detailed numerical calculations. The

results are generally similar to the liquid-crystal case, but with one important difference: In

magnets, skyrmions can be stabilized by the competition between anisotropy and applied

magnetic field. This competition is not available in liquid crystals because of the tensor

nature of the order parameter.

In this work, we only consider the formation of skyrmions or blue phases driven by bulk

chirality, known as Dresselhaus spin-orbit coupling in the magnetic case. We should note

briefly that modulated structures can also be driven by another mechanism for broken

inversion symmetry. In liquid crystals, that mechanism is called polarity. Polarity is

often induced by surfaces, and the phenomenon of surface-induced modulations has been

studied for many years [26, 27]. More recently, spontaneous bulk polarity has also been

found in certain liquid crystals, and theoretical research has predicted that bulk polarity

can induce blue phases [28,29]. In magnets, the analogous mechanism for broken inversion

symmetry at surfaces is called Rashba spin-orbit coupling, and it has also been shown to

favor the formation of skyrmions [30]. Although we have only investigated the comparison

between chiral (Dresselhaus) defects in liquid crystals and magnets, we expect that the
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same considerations will apply to polar (Rashba) defect structures.

4.2 Theory of chiral liquid crystals

4.2.1 Model

We begin with the theory of chiral liquid crystals, as usually studied in the context

of blue phases. A liquid crystal is described by a tensor order parameter Q(r), which is

related to the scalar order S(r) and the director field n(r) by Qαβ = S(3
2
nαnβ − 1

2
δαβ).

In Landau-de Gennes theory, the free energy density can be expressed in terms of Q as

F =
1

2
aTrQ2 +

1

3
bTrQ3 +

1

4
c
(
TrQ2

)2
(74)

+
1

2
L(∂γQαβ)(∂γQαβ)− 2Lq0εαβγQαδ∂γQβδ.

Here, the first three terms represent the free energy of a uniform system, expanded in

powers of the tensor order parameter. These terms favor certain eigenvalues of Q, which

correspond to a certain magnitude of uniaxial nematic order. The quadratic coefficient

a is assumed to vary linearly with temperature, while b and c are assumed constant with

respect to temperature. The fourth and fifth terms represents the elastic free energy

associated with variations of Q as a function of position. The fourth term penalizes splay,

twist, and bend deformations equally, with an elastic coefficient L. The fifth term favors

a chiral twist of the nematic order, with a characteristic inverse length q0 arising from

the molecular chirality. We neglect other possible elastic terms that give different energy

costs for splay, twist, and bend, such as 1
2
L2(∂αQαγ)(∂βQβγ).

In the context of blue phases, following the work of Grebel et al. [22], researchers

normally rescale parameters to simplify the theory. To motivate this rescaling, it is con-

venient to consider the specific temperature at which a = 0. This temperature is below
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the first-order isotropic-nematic transition, which occurs at a positive value of a. At this

temperature, the first four terms in the free energy favor a nematic phase with order

parameter S ∼ |b|/c, the free energy density of the nematic relative to isotropic phase

is F ∼ b4/c3, and the core radius of a disclination in nematic order is ξ ∼ (Lc/b2)1/2.

Hence, at general temperature, we rescale the Q tensor, the free energy density, and

all lengths by those characteristic values. In particular, we define the scaled free energy

density as F̃ = Fc3/b4. The theory then depends only on two dimensionless ratios, which

are normally written as

t =
27ac

b2
, κ =

√
108cLq2

0

b2
. (75)

The parameter t is a dimensionless temperature, which represents the temperature-

dependent quadratic coefficient a relative to b and c. The parameter κ is a dimensionless

chirality, which represents the natural twist q0 relative to the disclination core radius ξ. We

can express the same comparison in terms of energies. The free energy density associated

with the favored chiral twist is LS2q2
0, while the free energy density of a disclination

core is LS2ξ−2. Hence, κ2 can be interpreted as the energy scale of the favored chiral

twist relative the energy scale associated with changing the eigenvalues of Q inside a

disclination core. A liquid crystal material with low κ is usually called “low chirality,” but

it could equally well be called “stiff nematic order.” Likewise, a material with high κ is

usually called “high chirality,” but it could be called “soft nematic order.”

In many experiments, a liquid crystal is placed in an anisotropic environment, which

favors some alignment of nematic order with respect to a certain axis, which we can call

the z axis. If the anisotropy favors alignment along the axis, it is called “easy axis”; if
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it favors alignment perpendicular to the axis, it is called “easy plane.” There are two

common mechanisms for anisotropy. First, an electric field can be applied along the z

axis, leading to a dielectric anisotropy. This field alignment can be represented by an

additional term in the free energy of

∆F = −∆εE2Qzz, (76)

with Ftotal = F + ∆F . This term gives easy axis anisotropy if ∆ε > 0 and easy plane

anisotropy if ∆ε < 0. Following the same argument as above, we can rescale this term

as ∆F̃ = ∆Fc3/b4 to obtain the dimensionless anisotropy

α =
∆εE2c2

|b|3
. (77)

A second mechanism for anisotropy is to put a liquid crystal in a narrow cell, of

thickness d, between two surfaces with strong anchoring. Homeotropic anchoring gives

easy-axis anisotropy on the bulk liquid crystal, while planar anchoring gives easy-plane

anisotropy. To see the analogy between field-induced and surface-induced anisotropy,

suppose the nematic order at the midplane is tilted at a small angle θ with respect to

the z axis. For field-induced anisotropy, the extra free energy density (relative to an

untilted state) is ∆εE2Sθ2. For surface-induced anisotropy, the extra free energy density

is LS2θ2/d2. Hence, the effect of surface-induced anisotropy is similar to field-induced

anisotropy with an effective ∆εE2 ∼ LS/d2, and effective α ∼ (Lc)/(d2b2). Of course,

this analogy is an approximation for small tilt, and may break down when the tilt becomes

larger.

Our goal is now to determine what modulated structures of the Q tensor minimize

the free energy. In particular, does the system form nonsingular defects, such as walls,
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skyrmions, and hopfions, with approximately constant eigenvalues of Q? Or does it form

blue phases, with double-twist tubes (or merons) separated by disclinations in which the

eigenvalues change away from their bulk values? The results must be controlled by the

three dimensionless parameters t, κ, and α.

As a minimal model to address this question, we consider a 3D nematic order tensor

that depends only on two spatial coordinates, Q(x, y), with no dependence on the third

spatial coordinate z, under field-induced anisotropy. This model can describe walls and

skyrmions, although not hopfions. Furthermore, it can describe a simple version of blue

phases as vertical double-twist tubes (merons) separated by vertical disclinations, although

it cannot describe the cubic structure of real 3D blue phases.

4.2.2 Simple analytic calculations

As a first step in analyzing this model, we make assumptions about Q(x, y) in each

of the possible structures and calculate the free energies. By comparing the free energies,

we determine a phase diagram in terms of t, κ, and α. Of course, we recognize that these

assumptions are very simple. For that reason, in the following section we verify the results

through Monte Carlo simulations of the model.

Isotropic phase

In the isotropic phase, the system is disordered with Q = 0 everywhere. The scaled

free energy density is F̃iso = 0, and the anisotropy contributes ∆F̃iso = 0. In this analysis,

we neglect any slight paranematic order that might be induced by the anisotropy.
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Vertical nematic phase

In the vertically aligned nematic phase, the director is n̂ = ẑ, and the order tensor

is Qαβ = S(3
2
nαnβ − 1

2
δαβ). From Eq. (74), the free energy becomes F = 3

4
aS2 +

1
4
bS3 + 9

16
cS4. Minimizing with respect to the order parameter S gives Svnem = (−b +

√
b2 − 24ac)/(6c), and hence the scaled free energy density is

F̃vnem = −
(
3 +
√

9− 8t
)2 (

3 +
√

9− 8t− 4t
)

93312
. (78)

The anisotropy makes an additional contribution of ∆F̃ = −αQzz = −αS, which implies

∆F̃vnem = −
α
(
3 +
√

9− 8t
)

18
. (79)

Planar nematic phase

In the horizontally aligned nematic phase, the director is n̂ = x̂. Most of the analysis is

the same as for the vertically aligned nematic phase, with the same order parameter Spnem

and the same scaled free energy density F̃pnem. However, the anisotropy now contributes

∆F̃ = −αQzz = +1
2
αS, and hence

∆F̃pnem =
α
(
3 +
√

9− 8t
)

36
. (80)

Cholesteric phase (lattice of walls)

A cholesteric phase has the twisted structure shown in Fig. 20 (middle column). It can

be regarded as a periodic lattice of twist walls, separating regions in which the director

field is aligned with the anisotropy. To a first approximation, we assume that the director

field is unperturbed by the anisotropy, so that n̂(x) = −ŷ sin(πx/d) + ẑ cos(πx/d),

where d is the pitch. The free energy is then F = 3
4
aS2 + 1

4
bS3 + 9

16
cS4 + 9

4
π2LS2d−2−
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Cholesteric phase 
(lattice of walls)

 

10 0.5

|nZ|

Blue phase 
(meron lattice)

Skyrmion 
lattice

Figure 20: Structure of the modulated liquid-crystal phases studied: blue phase (meron lattice),
cholesteric phase (lattice of walls), and skyrmion lattice. The top row shows schematic views
of the director field, and the bottom row shows Monte Carlo simulation results (with the color
scale indicating |nz|.
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9
2
πLq0S

2d−1. By minimizing with respect to d and S, we obtain dchol = π/q0 and

Schol = (−b+
√
b2 − 24ac+ 72cLq2

0)/(6c), and the scaled free energy density becomes

F̃chol = − 1

93312

(
3 +
√

9− 8t+ 6κ2
)2

× (81)

×
(

3− 4t+ 3κ2 +
√

9− 8t+ 6κ2
)
.

The scaled free energy density associated with the anisotropy now depends on x, and it

averages to ∆F̃ = −α〈Qzz〉 = −1
4
αS, giving

∆F̃chol = −
α
(
3 +
√

9− 8t+ 6κ2
)

72
. (82)

Blue phase (meron lattice)

In 2D, a blue phase has the structure shown in Fig. 20 (left column). It con-

sists of a hexagonal lattice of double-twist tubes, which can be regarded as merons or

half-skyrmions. In each meron, the director twists through an angle of π/2, from a

vertical orientation at the center to a horizontal orientation at the edge of the tube.

A simple assumption for this variation can be expressed in cylindrical coordinates as

n̂(r) = −φ̂ sin(πr/d) + ẑ cos(πr/d), for 0 ≤ r ≤ d/2, where d is the diameter of

the tube. In each region between three tubes, the director field is in the (x, y) plane, and

it has a disclination with topological charge of −1/2. The argument of Ref. [14] shows

that the Q tensor becomes biaxial in the disclination core, but to a first approximation

we will simply consider the core as an isotropic region.

To estimate the average free energy density of the blue phase, we represent each unit

cell of the lattice (with area A =
√

3d2/2) as one meron (with A = πd2/4) and two
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disclinations (with the remaining area), and obtain

〈F 〉 =
FmeronAmeron + 2FdefectAdefect√

3d2/2
(83)

=
π
√

3aS2

8
+
πbS3

8
√

3
+

3π
√

3cS4

32

+
33.5LS2

d2
− 3
√

3Lq0S
2(4 + π2)

4d

We then minimize over d to find dmeron = 3.7/q0, and we use the same value of S as in

the cholesteric calculation. The average scaled free energy density then becomes

〈Fmeron〉 =− (9.7× 10−6)
(

3 +
√

9− 8t+ 6κ2
)2

×

×
(

3− 4t+ 4.1κ2 +
√

9− 8t+ 6κ2
)
. (84)

Similarly, the scaled free energy density associated with the anisotropy averages to

〈∆Fmeron〉 = 0.0027α
(

3 +
√

9− 8t+ 6κ2
)

(85)

Skyrmion lattice

A hexagonal lattice of skyrmions is shown in Fig. 20 (right column). In each skyrmion,

the director twists through an angle of π, from vertical at the center to horizontal and

back to vertical at the edge. A simple assumption for this variation can be expressed as

n̂(r) = −φ̂ sin(2πr/d) + ẑ cos(2πr/d), for 0 ≤ r ≤ d/2. In each region between three

tubes, the director field is vertical, and hence there are no disclinations.

As in the previous case, we represent each unit cell of the lattice (with A =
√

3d2/2)

as one skyrmion (with A = πd2/4) and two vertical nematic regions (with the remaining
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area), so that the average free energy density becomes

〈F 〉 =
FskyrmionAskyrmion + 2FvnemAvnem√

3d2/2
(86)

=
3aS2

4
+
bS3

4
+

9cS4

16
+

100.4LS2

d2
− 3
√

3π2Lq0S
2

2d

After the same minimization as in the previous case, we obtain dskyrmion = 7.8/q0 and

F̃skyrmion = − 1

93312

(
3 +
√

9− 8t+ 6κ2
)2

× (87)

×
(

3− 4t+ 1.37κ2 +
√

9− 8t+ 6κ2
)
.

The anisotropy further contributes

∆F̃skyrmion = −
α(8− π

√
3)
(
3 +
√

9− 8t+ 6κ2
)

144
. (88)

Phase diagram

We now have approximate algebraic expressions for the free energy Ftotal = F + ∆F

for each of the six structures considered above, as functions of the three dimensionless

variables: temperature t, chirality κ, and anisotropy α. For each set of (t, κ, α), we

determine which structure has the lowest free energy, and hence construct a phase diagram

for the system.

First, consider the case of no anisotropy, α = 0. The phase diagram in the (t, κ)

plane is shown in Fig. 21. At high temperature, the system is in the disordered isotropic

phase. At lower temperature, for high chirality, the system forms a blue phase (meron

lattice). In this structure, there are favorable contributions to the free energy from the

optimal magnitude of nematic order and from the optimal double twist of the director

field within the merons. There is an unfavorable contribution to the free energy from
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Figure 21: Phase diagram for chiral liquid crystals in the temperature-chirality plane, with no
anisotropy. The insets show structures calculated by the simulations. In those structures, the
colors represent |nz|, with the same color scale as in Fig. 20.
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Figure 22: Two views of the phase diagram for chiral liquid crystals in the temperature-chirality-
anisotropy space. (Note that the scales on the axes are different in these two visualizations.)
The thick horizontal and vertical arrows show the Monte Carlo simulation paths discussed in
Sec. 4.3, and the insets show structures calculated by the simulations.

the disclinations between the merons, but these disclinations do not cost too much free

energy because the nematic order is fairly soft in this case of high chirality. By contrast, at

low temperature and low chirality, the system forms a cholesteric phase. In this structure,

there are favorable contributions to the free energy from the optimal magnitude of nematic

order and from the single twist of the director field (which is not as favorable as double

twist). There are no disclinations, which is reasonable because disclinations cost too much

free energy when nematic order is stiff in this case of low chirality.

This phase diagram in the (t, κ) plane is equivalent to the classic phase diagram for

blue phases, which has been studied for many years. In previous work, such as Ref. [22],

it has been derived by methods that are much more rigorous than those in this section.

Here, we see that it is so robust that it occurs even with our very rough approximations.
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Now suppose that there is some anisotropy, which may be either easy-axis (α > 0) or

easy-plane (α < 0). We then obtain a 3D phase diagram in the (t, κ, α) space, which is

shown using two different 3D visualizations in Fig. 22. (Note that the scales on the axes

are different in these two views.) This phase diagram still shows the isotropic, cholesteric,

and blue phases. In addition, the vertical nematic phase is stable for large α > 0, and the

planar nematic phase is stable for large α < 0. The transitions between uniform nematic

phases and modulated phases (cholesteric or blue) depend mainly on the balance between

anisotropy (which favors nematic) and chirality (which favors modulation).

The 3D phase diagram does not show any region in which the skyrmion lattice is

stable. At least with this set of rough approximations, the skyrmion lattice never provides

the optimum balance among the different contributions to the free energy. Even so, we

can still ask: Where in the phase diagram is the skyrmion lattice close to the optimum

state? That consideration will at least tell us when skyrmions are likely to be observed

as metastable defects, and when they may even be stable if our approximations are not

exactly correct (as with surface-induced anisotropy). The answer is that the skyrmion

lattice is almost the optimum state for very low chirality κ, near the transition between

vertical nematic and cholesteric, which occurs for easy-axis anisotropy α > 0. Hence, we

can see that the skyrmion lattice and the meron lattice are actually very different types

of structures, in spite of the fact that they look somewhat similar. The meron lattice

requires high κ, so that the necessary disclinations will not cost too much free energy.

The skyrmion lattice requires low κ, so that the nematic order parameter will be stiff

against variations.

This analysis can be compared with a recent paper from our group [10], which modeled
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skyrmions using a very different theoretical formalism based on a director field (with

constant order parameter S) in a 3D cell with strong homeotropic anchoring. That paper

found a phase diagram with three structures: vertical nematic, cholesteric, and skyrmion

lattice. Although that phase diagram was expressed in terms of different variables, it

can be translated into our current variables. The nematic-cholesteric-skyrmion triple

point in that phase diagram occurs at (d/ξ)2 ∼ 103 and q0d ∼ 101/2, which implies

α ∼ (ξ/d)2 ∼ 10−3 and κ ∼ ξq0 ∼ 10−1. This result confirms that skyrmions form at

low κ, in contrast with merons which form at high κ.

4.3 Numerical Simulations

4.3.1 Equilibrium phases

As an alternative method to minimize the free energy Ftotal = F +∆F , we run Monte

Carlo (MC) simulations using the Metropolis algorithm. In these simulations, the liquid

crystal order is represented by a 3× 3 traceless, symmetric tensor Q at each site of a 2D

square lattice in the (x, y) plane. In the free energy, all derivatives are approximated by

finite differences. We relax the five independent components of Q by simulated annealing

from a disordered state for each set of temperature t, chirality κ, and anisotropy α. The

states found through this numerical method can then be compared with the states found

by the simple analytic assumptions of Sec. 4.2.2.

As a first study, we vary the parameters t and κ, for zero anisotropy α = 0, to explore

the phase diagram of Fig. 21. At high t, the system is in the isotropic phase, with a highly

disordered Q tensor field. At low t and low κ, the simulations show a cholesteric phase,

with a lattice of twist walls separating vertically aligned stripes. Because of fluctuations
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in the Monte Carlo simulation, the cholesteric order is not perfect, but rather exhibits

hairpin defects. At high κ, we find a blue phase, which consists of double-twist tubes or

merons, separated by twist walls. At each point where three walls intersect, there is a

disclination of topological charge −1/2 in the orientational order. These disclinations are

points where the eigenvalue associated with the ẑ axis becomes dominant and negative

in sign, surrounded by biaxial cores, as predicted by Ref. [14]).

For a second comparison, we vary κ from 0.09 to 1.9, with the other two parameters

fixed at t = −0.9 and α = 0.001. This series of simulations moves along the thick arrow

in Fig. 22 (left side). A series of simulated structures is shown by the insets around the

phase diagram.

At low chirality, the system is in the vertically aligned nematic phase. The director is

everywhere parallel to the anisotropy axis, n̂ = ẑ, as indicated by the uniform red color

in the figure. When the chirality increases, there is a transition into the cholesteric phase.

Because of fluctuations in the simulation, the cholesteric phase shows several dislocations

in the stripe pattern, which correspond to disclinations in the orientational order. As

the chirality increases further, the density of dislocations increases, and the long stripes

of vertical alignment evolve into shorter segments. Eventually the segments shorten into

hexagonal cells, which can be regarded as double-twist tubes or merons, separated by twist

walls. The transitions among these structures occur quite close to the phase boundaries

predicted by the simple analytic assumptions.

For a third comparison, we vary α from -0.2 (easy plane anisotropy) to +0.1 (easy

axis anisotropy), with the other parameters fixed at κ = 0.9 and t = −0.9. This series

moves along the thick arrow in Fig. 22 (right side), with simulated structures shown by
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insets around the phase diagram.

For high easy plane anisotropy, the system is in a horizontally aligned nematic phase,

with n̂ in the (x, y) plane. The orientation within the plane is random, and it is uniform

across the system. When the anisotropy is reduced toward zero, the system begins to show

isolated merons, with vertical alignment in the center and double twist of the director going

outward. These merons are separated by large regions of n̂ in the (x, y) plane, which

must include disclinations in the planar director field. As the anisotropy decreases further,

the density of merons increases, and they eventually form a hexagonal lattice, which can

be regarded as a blue phase. After the anisotropy changes sign, and becomes larger in

the easy axis direction, there is a transition into a cholesteric phase, with walls separating

vertically aligned stripes. For even larger easy axis anisotropy, the system forms a vertically

aligned nematic phase, with a uniform director field. Again, the transitions are generally

consistent with the phase boundaries derived from the approximations of Sec. 4.2.2.

4.3.2 Metastable skyrmions

We do not see stable skyrmions in the Monte Carlo simulations for any set of parame-

ters in this model. In that respect, the Monte Carlo simulations are once again consistent

with the simple analytic calculations of Sec. 4.2.2: One of the other phases is always lower

in free energy than the skyrmion lattice.

Although skyrmions are not stable minimum energy states, they can still exist as

metastable states. To investigate the possibility of metastable skyrmions, we run dy-

namic simulations of the same model with free energy Ftotal = F + ∆F , with code
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running on a graphical processing unit (GPU). In these dynamic simulations, we inte-

grate the Q tensor forward in time, following the relaxational equation ∂Qαβ(r, t)/∂t =

−ΓδFtotal/δQαβ(r, t). This equation is not required to conserve skyrmion charge, because

the eigenvalues of Q can change in time. However, it normally conserves skyrmion charge,

unless the system goes over a significant energy barrier to changing the eigenvalues.

We begin the dynamic simulations with an initial condition corresponding to a circular

skyrmion, in which the director is vertical at the center, and it twists by 180◦ going

outward to the perimeter. Depending on the energetic parameters, we see three types of

shape evolution: (a) If the anisotropy is too large, the skyrmion skrinks and disappears;

the final state is vertical nematic. (b) If the anisotropy is too small, the skyrmion expands

and evolves into one of the variations of cholesteric stripe patterns that was seen in Monte

Carlo simulations. (c) If the anisotropy is within the right range, the initial state relaxes

into a metastable skyrmion.

The metastable skyrmion structure has the structure shown in Fig. 23. The director

twists by 180◦ from the center to the perimeter, but this twist is not uniform. Rather, the

director is almost vertical over some distance from the center and the twist occurs over a

short range. Hence, the skyrmion can be regarded as a π-wall that is curved into a ring,

with a vertically aligned nematic phase in the interior and the exterior.

The size and shape of a skyrmion are very robust and long-lived. For example, in

Fig. 24, if the initial state is a distorted elliptical loop rather than a circle, the skyrmion

quickly evolves into a final static circular shape which never breaks down. If two skyrmions

are in close proximity, they repel each other until they reach a separation comparable to

the skyrmion diameter. Because of this robustness and interaction, a system of many
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Figure 23: Simulation of a metastable skyrmion, with the color scale indicating |nz|. The
yellow line on the bottom shows nz from −1 to 1, as a function of x, for fixed y in the center.
This structure can be regarded as a π-wall that is curved into a ring, with vertical nematic in
the interior and the exterior.
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Figure 24: Static skyrmions as particles: (a) An initially distorted shape quickly evolves into a
circular ring. (b) Skyrmions repel each other. (c) A system of many skyrmions forms a lattice.
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skyrmions forms a lattice, analogously to the crystallization of particles with repulsive

interactions.

To understand the metastable skyrmion structure, we represent the director field in

cylindrical coordinates as n̂(r) = −φ̂ sin(θ(r)) + ẑ cos(θ(r)), and make the linear ansatz

for the polar angle

θ(r) =



0, for r ≤ rin,

(r − rin)π/δr, for rin ≤ r ≤ rout,

π, for r ≥ rout,

(89)

where rin is the inner radius of the ring, rout is the outer radius, and δr = rout− rin is the

thickness of the wall. As in the calculations of Sec. 4.2.2, we calculate the free energy for

this configuration using Qij = S(3
2
ninj − 1

2
δij), and we subtract the background energy

of the vertical nematic phase. We then make the substitution g = rin/δr, to obtain a

skyrmion free energy as a function of g and δr. Minimization with respect to δr yields

δr =
3πLq0S

∆εE2
, (90)

showing that the wall thickness is determined by the competition between Frank elastic

constant (which favors a thicker wall) and anisotropy (which favors a thinner wall). The

skyrmion free energy, relative to vertical nematic, then becomes

F =
9πLS2

4

[
π2

(
1− 3Lq2

0S

∆εE2

)
(1 + 2g) + log

(
1 +

1

g

)
+ cos(2πg) [Ci(2πg)− Ci(2π(g + 1))]

+ sin(2πg) [Si(2πg)− Si(2π(g + 1))]

]
, (91)
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where Ci and Si are the cosine integral and sine integral functions, respectively.

To minimize the skyrmion free energy over g, we rewrite the equation ∂F/∂g = 0 as

3Lq2
0S

∆εE2
= 1− 1

π
sin(2πg) [Ci(2πg)− Ci(2π(g + 1))]

+
1

π
cos(2πg) [Si(2πg)− Si(2π(g + 1))] . (92)

This equation has a solution provided that the ratio on the left side is between the

minimum value

lim
g→0

3Lq2
0S

∆εE2
= 1− Si(2π)

π
≈ 0.55 (93)

and the maximum value

lim
g→∞

3Lq2
0S

∆εE2
= 1. (94)

Equivalently, the range of anisotropy must be

3Lq2
0S ≤ ∆εE2 ≤ 5.5Lq2

0S. (95)

Within that range, skyrmions are metastable with a characteristic radius given by rin =

gδr. For anisotropy below the lower limit of that range, the skyrmion radius will grow to

infinity. For anisotropy above the upper limit, a skyrmion will shrink and disappear.

This model for metastable skyrmions is qualitatively consistent with the simulations,

which also find that metastable skyrmions can exist over a certain range of anisotropy.

As a further quantitative comparison, we plot the model calculations compared with

simulation results for skyrmion wall thickness δr and average radius rav = 1
2
(rin + rout) as

functions of the anisotropy ∆εE2 in Fig. 25. The wall thickness calculations are in good

agreement with simulation results over the full range of anisotropy that was simulated.

The average radius calculations are close to the simulation results for high anisotropy
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Figure 25: Skyrmion wall thickness δr and average radius rav = 1
2(rin + rout), as functions of

the anisotropy ∆εE2, in units of π/q0. The points represent simulation results, and the solid
lines are the calculation in Sec. 4.3.2. Parameters are L = 0.001, q0 = π, and S = 0.405.
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Figure 26: Skyrmion free energy relative to the vertical nematic state, in arbitrary units. The
elastic constant L is varied for fixed a = −0.1, b = −3, and c = 3, with the anisotropy ∆εE2

adjusted to maintain the skyrmion size (g and δr). The points represent simulation results, and
the the solid line is the calculation of Sec. 4.3.2 for the same L and ∆εE2.

and small radius, where the simulated skyrmion is circular in shape. However, for low

anisotropy and large radius, there is a significant discrepancy; the model underestimates

the minimum value of ∆εE2 for skyrmion stability. This discrepancy seems to be caused by

the shape of the skyrmions; the simulated skyrmion develops a four-fold anisotropy in this

limit, perhaps because of the underlying lattice model. Despite the latter discrepancy, the

model generally provides a good estimate for the skyrmion size and the range of anisotropy

needed for skyrmion stability.

For another comparison, we consider the free energy of a skyrmion, relative to the

vertical nematic state. This free energy difference is positive, indicating that skyrmions are

metastable in this model. To determine the magnitude of this difference in the simulation,

we vary the elastic constant L along the border of the vertical nematic and cholesteric

phases. For each L, we adjust the anisotropy ∆εE2 so that the size of the skyrmion is

roughly the same. In other words, the g and δr values are the same across simulations of

110



different L values. The simulation results for free energy, relative to vertical nematic, are

shown by the points in Fig. 26. By comparison, the calculation of Eq. (91) for the same

L and ∆εE2 is shown by the solid line in the same figure. These results are consistent

up to a factor of 2, which is reasonable for such an approximate model.

As noted in the Introduction, many experiments have studied skyrmions in confined

cholesteric liquid crystals [4–11]. These experiments generally cannot determine whether

skyrmions are metastable, as predicted by the calculations in this section, or whether they

are actually stable structures. Indeed, that issue may depend on the exact form of the

anisotropy, which can arise from an applied electric field or from homeotropic anchoring

on surfaces. Regardless of whether skyrmions are metastable or stable, they are separated

from the uniform vertical state by a large energy barrier, and hence require significant

disturbances in order to form or decay. These skyrmions occur in liquid crystals with stiff

nematic order, in contrast with blue phases (meron lattices), which occur in liquid crystals

with soft nematic order or high chirality.

4.4 Theory of chiral magnets

In recent years, many investigators have done substantial theoretical research on mod-

ulated structures in chiral magnets, as in Refs. [16–21]. In this section, we briefly review

that work in a notation similar to the notation for chiral liquid crystals. We then use this

theory to compare magnetic skyrmions and merons with the analogous structures in liquid

crystals.

A fundamental difference between liquid crystals and magnets is that liquid crystals

are described by the tensor order parameter Qαβ(r), while magnets are described by the
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vector order parameter Mα(r). In Landau theory, the bulk free energy density of a chiral

magnet can be written as

F =
1

2
a|M |2 +

1

4
c|M |4 +

1

2
k(∂iMj)(∂iMj)

+kq0εlikMl∂iMk −HMz − AM2
z . (96)

Here, the first two terms represent the free energy of a uniform system, expanded in powers

of the vector order parameter. These terms favor a certain magnitude |M | of the magnetic

order. The quadratic coefficient a is assumed to vary linearly with temperature, while c is

assumed constant with respect to temperature. The third and fourth terms represent the

elastic free energy associated with variations of M as a function of position. The third

term penalizes all variations in M , while the fourth is a Dzyaloshinskii-Moriya term that

favors certain twist deformations because of the Dresselhaus spin-orbit coupling. The last

two terms involve two distinct types of symmetry-breaking fields acting on the magnetic

order. The H term is a standard magnetic field in the z direction, which couples linearly

to M , while the A term is a crystalline anisotropy, which couples quadratically to M .

The anisotropy may be easy-axis with A > 0, or easy-plane with A < 0.

Equation (96) for the magnetic free energy is quite analogous to Eq. (74) for the liquid

crystal free energy, but there are two important distinctions. First, the bulk free energy

for the liquid crystal has quadratic, cubic, and quartic terms, while the bulk free energy

of the magnet has only quadratic and quartic terms. Second, the liquid crystal has only

a quadratic anisotropy acting on the order parameter, while the magnet has both a linear

field and a quadratic anisotropy. Both of these distinctions arise from the tensor vs. vector

nature of the order parameter.

112



By analogy with the liquid crystal theory, we can simplify the magnetic theory by

rescaling parameters. Here, the characteristic value of the magnetic order parameter is

M ∼ (|a|/c)1/2, the free energy density of the ferromagnetic relative to disordered phase

is F ∼ a2/c, and the core radius of a vortex in magnetic order is ξ ∼ (k/|a|)1/2. Hence,

we rescale M , F , and all lengths by those characteristic values. The theory then depends

on three dimensionless ratios, which we write as

κ = q0

√
k

|a|
, h = H

√
c

a3
, α =

A

|a|
. (97)

As in the liquid crystal case, the parameter κ is a dimensionless chirality, which represents

the natural twist q0 relative to the disclination core radius ξ. Equivalently, κ2 can be

interpreted as the energy scale of the favored chiral twist relative to the energy scale

associated with changing the magnitude of M inside a defect core. Low κ can be called

“low chirality” or “stiff magnetic order,” while high κ can be called “high chirality” or

“soft magnetic order.” The parameters h and α are dimensionless versions of the field

and anisotropy. The anisotropy α is analogous to the anisotropy in the liquid crystal case,

while the field h does not exist in the liquid crystal.

The magnetic system does not have a temperature parameter t analogous to the liquid

crystal case. Because the magnetic free energy density includes quadratic and quartic but

not cubic terms in M , the temperature scales out of the magnetic case, leaving a problem

with no explicit dependence on the temperature-dependent coefficient a (assuming that

a < 0 so that the system is in an ordered phase).

Many investigators have already studied the phases of this model through detailed
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Figure 27: Structure of the modulated magnetic phases studied in this work.

numerical simulations. We suggest that key features of the phase diagram can be under-

stood through simple analytic calculations, analogous to the liquid crystal calculations in

Sec. 4.2.2. Hence, we repeat those calculations for the magnetic case, and compare the

results with simulations from the literature.

For these simple analytic calculations, we consider the following phases:

a. Vertical ferromagnetic phase The system has uniform magnetic order in the z di-

rection, with M = M ẑ. After minimizing over M , the scaled free energy density is

F̃vert = −1
4
− h− α.

b. Tilted ferromagnetic phase The magnetic order is given by M = M [x̂ sin θ+ ẑ cos θ],

and the scaled free energy density is F̃tilt = −1
4
−h cos θ−α cos2 θ. The tilt θ is determined

by the competition between h and α.
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c. Spiral phase The spiral phase of magnetic systems has the structure shown in

Fig. 27(a), analogous to the cholesteric phase of liquid crystals. If h and α are zero,

the modulated structure is M (x) = M [−x̂ sin(πx/d) + ẑ cos(πx/d)]. If h and α are

small but nonzero, the structure is only slightly distorted, so that expression can still be

used as a first approximation. After minimizing over M and d, the average scaled free

energy density is F̃spiral = −1
4
(1 + κ2)2 − 1

2
α(1 + κ2).

d. Skyrmion lattice Skyrmions are modeled by disks arranged in a hexagonal lattice, as

in Fig. 27(b). Within each disk, the magnetic order twists through an angle of π, from

downward at the center to upward at the edge. Our linear assumption for this variation

is M(r) = M [−φ̂ sin(2πr/d) + ẑ cos(2πr/d)], for 0 ≤ r ≤ d/2. Between the disks, the

magnetic order is uniform and upward. After minimizing over M and d, the average scaled

free energy density is F̃skyrm = −1
4
− 0.36κ2− 0.15κ4− 0.093h− 0.37h(1 + 0.80κ2)1/2−

0.55α− 0.36ακ2.

e. Meron lattice Merons are modeled by disks with a twist of π/2 from the center to

the edge. These disks cannot be arranged in a hexagonal lattice, as shown in Fig. 27(c),

because the magnetic order parameter would be incompatible at each point where two

disks meet. In that respect, the vector order parameter for a magnet is quite different from

the tensor order parameter for a liquid crystal. As an alternative, merons can be arranged

in a square lattice, shown in Fig. 27(d). In this structure, there is a regular alternation of

merons with the central M pointing upward or downward. Our linear assumption for the

variation within each disk is M(r) = M [−φ̂ sin(πr/d) + ẑ cos(πr/d)], for 0 ≤ r ≤ d/2.

In each region between four disks, the magnetic order has a vortex of topological charge
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Figure 28: Visualization of the phase diagram for chiral magnets in the chirality-field-anisotropy
space.

−1, which we model as a disordered, isotropic region. After minimizing over M and d, the

average scaled free energy density is F̃meron = −1
4
− 0.36κ2− 0.11κ4− 0.23α− 0.28ακ2.

By comparing the free energies of these structures, we construct a 3D phase diagram

in the chirality-field-anisotropy space, as shown in Fig. 28. In the limit of low chirality,

the system forms a ferromagnetic phase, which is vertical for large easy-axis anisotropy

and tilted for large easy-plane anisotropy. In the limit of high chirality, the system forms

a spiral phase. The more complex skyrmion and meron lattices occur for intermediate

chirality. In this intermediate regime, easy-plane anisotropy favors the meron lattice,

because this lattice has large planar regions. A field favors the skyrmion lattice, because

it has a predominant vector orientation which can align with the field.

Instead of performing our own simulations, we can compare the results of these rough
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Figure 29: (a) Cross section of the phase diagram for chiral magnets in the field-anisotropy plane
for fixed chirality κ = 0.5. (b) Phase diagrams obtained through simulations by Ref. [25](left),
and Ref. [30](right)
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analytic arguments with previously published simulations by other investigators. As ex-

amples, Refs. [25] and [30] both present phase diagrams for magnetic structures in the

field-anisotropy plane, which can be compared with a cross section of our phase diagram

for fixed chirality κ = 0.5, as shown in Fig. 29. We can see the same general arrangement

of the phases in Fig. 7 of Ref. [25], and in Fig. 1 (left) of Ref. [30], which are reproduced

in Fig. 29. (As a matter of terminology, the polarized ferromagnetic phase is equivalent

to what we have called vertical ferromagnetic, and canted ferromagnetic is equivalent to

what we have called tilted.) Hence, we can see that the rough analytic arguments of this

section capture key features of the free energy balance among the phases, even without

the need to do detailed numerical simulations.

4.5 Discussion

The work presented in this article enables us to compare skyrmions with merons, and

also to compare chiral liquid crystals with chiral magnets.

To compare skyrmions with merons, we see that these structures are similar from the

perspective of local geometry near the defect core: They both have the same double-twist

structure in the orientational order. However, they are quite different from the perspec-

tive of global topology: Around a skyrmion, the orientational order goes to the same

vertical orientation everywhere. Hence, it is possible to pack many skyrmions together

with uniform regions in between. The whole lattice of skyrmions is nonsingular, with

approximately uniform magnitude of orientational order (uniform eigenvalues of Q for a

liquid crystal, uniform |M | for a magnet). By contrast, around a meron, the orientational

order goes to a horizontal orientation, and it covers the full range of all possible horizontal
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orientations. Hence, it is not possible to pack many merons together with uniform regions

in between. Rather, there must be singularities in the orientational order between the

merons. Hence, a lattice of merons can only form if the energetic cost of forming these

singularities is not too great.

Because skyrmions are surrounded by uniform vertical orientational order, they can

be regarded as local excitations. Hence, skyrmions move and interact as effective par-

ticles, with only a short-range potential between them. Conversely, because merons are

surrounded by the full range of nonuniform horizontal orientational order, they are more

complex nonlocal excitations, which have long-range logarithmic interactions, and which

must be accompanied by other defects, This distinction in locality has been pointed out

in the magnetic context [20], and it applies also in the liquid crystal context.

To compare chiral liquid crystals with chiral magnets, we see that these materials are

similar from the perspective of topology: They both can form skyrmions and merons.

However, chiral liquid crystals and chiral magnets are quite different from the perspective

of energetics: In chiral magnets, it is straightforward to stabilize skyrmions by applying

a magnetic field, which couples linearly to M and stabilizes the orientation outside the

skyrmions, in contrast with the orientation inside the skyrmions. Hence, a lattice of

skyrmions becomes the ground state for an appropriate choice of field and anisotropy. By

contrast, in chiral liquid crystals have a tensor order parameter Q, so there is no field that

can distinguish between orientational order upward or downward; there is only a quadratic

easy-axis or easy-plane anisotropy. As a result, the specific model studied here does not

have skyrmions as a ground state; it only has skyrmions as metastable defects. To be

sure, variations on this liquid-crystal model (perhaps with anisotropy arising from surface
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anchoring) might have skyrmions as a ground state, as in Ref. [10]. Even so, they are

stabilized by a fairly delicate balance of free energies, not by the simple field as in the

magnetic case. Thus, we would say that the vector order parameter of magnets tends

to favor skyrmions, while the tensor order parameter of liquid crystals tends to disfavor

skyrmions.

In chiral liquid crystals, the formation of merons in a hexagonal lattice requires singu-

larities of topological charge −1/2 between the merons. In “high-chirality” liquid crystal

materials, the energetic cost of these singularities is not too large compared with the

energetic benefit of the double-twist regions. Hence, it is straightforward to stabilize

meron lattices in liquid crystals. Such lattices are called blue phases, and they have been

studied extensively for many years. In 3D liquid crystals, blue phases normally have a

more complex cubic structure rather than the 2D lattice considered here, but still the

same principles apply. By contrast, in chiral magnets, the formation of merons in a square

lattice requires singularities of the larger topological charge −1 between the merons. It

is theoretically possible for this structure to be the ground state, but it is difficult to find

parameters where the energetic cost of the singularities is less than the energetic benefit

of the double-twist regions. Thus, we would say that the tensor order parameter of liquid

crystals tends to favor merons, while the vector order parameter of magnets tends to

disfavor merons.
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[16] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground
states in magnetic metals,” Nature, vol. 442, pp. 797–801, 2006.
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CHAPTER 5

Moving Skyrmions

5.1 Introduction

In magnetic systems, extensive research has investigated skyrmion motion, which is

achieved by small electric currents [1,2]. Similarly, in liquid crystals, recent experiments [3–

5] demonstrate that skyrmions can be moved by fluid flow, light, and electric fields. In the

previous chapter, we developed analytic and numerical methods, including Monte Carlo

and relaxational dynamics simulations, to model the particle-like motion and interaction

of liquid crystal skyrmions. A natural question that follows is how can we numerically

study the actuation of skyrmions.

In this chapter we investigate various mechanisms of actuation for 2D and 3D skyrmions.

First, we determine the effect of electric field changes on skyrmion shape, and demon-

strate that field gradients can induce skyrmion motion. Next, we consider the exposure of

certain liquid crystals to light which changes the helical pitch. To model the effect of such

pitch changes, we apply gradients in the natural twist and find that these gradients also

induce skyrmion motion. These results regarding electric fields and light are in qualitative

agreement with experiments. Finally, we show that nonuniform surface anchoring can also

be used to manipulate skyrmion motion.
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5.2 Skyrmion Shape and Electric Field

The skyrmions in our model are stabilized by a background electric field in the direction

perpendicular to the plane of the material, i.e. the z axis. There is a range of electric field,

depending on chirality, over which the skyrmions are static and the size of the skyrmion

depends on the strength of the field and the dielectric anisotropy of the material. For

skyrmions we realize in 2D, easy-axis alignment is needed to stabilize the skyrmions, so

the anisotropy has a positive sign. The size and shape is very sensitive to the field, thus

there is no wide range that the field can change over without breaking the skyrmions.

However, we can first get the static skyrmions by tuning the parameters, and then small

additional fields can be used to fine tune the size and shape.

The most straightforward way of controlling the size is by varying the field in the z

direction. Figure 30 shows simulation results for skyrmions in different types of fields.

The first image labeled normal shows a static skyrmion in a background field. As we

showed in the previous chapter a stronger background field in the z direction yields a

smaller skyrmion radius. Thus, a small extra field in the direction of the background field,

assuming +z direction, increases the magnitude of E and makes the skyrmion shrink. On

the contrary, if we add a small field in −z direction the skyrmion will expand.

Adding a small in-plane field distorts the circular shape into an oval one. The distortion

is along the axis of the extra field. For instance if we add a small field in the x direction

the skyrmions is alongated along the x axis and the overall size grows slightly. Similar

behavior is also observed for a field in the y direction.

We note that in all of these cases, too big of a field (any extra field comparable
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Normal Extra Ez Extra Ex Extra Ey

Figure 30: Skyrmions’ shape depending on extra electric field.

to the background field) will destroy the skyrmion because the shape is sensitive to the

field (see Fig. 25 of the previous chapter). Such a change of the field in any of the

directions mentioned will move the parameters to a different phase in the phase diagram.

The evolution of the skyrmion shape in the process will depend on the type of alignment

favored by the extra field. If it favors easy-axis alignment then the skyrmion will shrink and

disappear. If it favors easy-plane alignment then the skyrmion will expand and form either

cholesteric stripes or merons depending on how big the field is (see the phase diagram in

Fig. 22 of the previous chapter). The expansion will be radially symmetrical for extra Ez

and in the direction of the field for extra E⊥.

5.3 Actuation by Electric Field

5.3.1 Extra Ez

Now consider the same 2D skyrmion in the background field where the dielecric

anisotropy has to be positive. We apply a strong field in the z direction within a spot

near the skyrmion (green spot in Fig. 31). Within the spot, the tendency of molecules

to align vertically will be much greater. When the spot in part (a) is moved towards the

skyrmion border, it will cause the center of the π-wall (blue belt) to shift away because
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(a) (b)

Figure 31: Skyrmions moved by extra Ez

127



the extra field, as it penetrates the skyrmion, will align the inner layers more vertically.

To maintain the gradients needed to minimize the free energy, the inner layers will follow

the outer layers’ rotation towards the vertical axis. This effect will be translated towards

the inner regions of the wall resulting in a shift of all the director orientations.

Figure 31 shows two different ways extra Ez can drive translation of the skyrmion. If

the green spot with extra Ez is placed inside the skyrmion and moved it will push away

the more horizontal part (blue ring) of the skyrmion away. The skyrmion, in this case also,

quickly adapts to the change and is dragged via the spot. Experimentally, it might be

easier to achieve a spot with field outside the skyrmion. In both cases the skyrmion can

be moved in a controlled fashion but the motion of the green spot must be slow enough

for the skyrmion shape to adapt as moving the spot too fast will break the skyrmion and

cause it to pop. We will speak more about the popping of the skyrmion in the upcoming

sections.

This feature of the extra vertical field can be employed in different ways. For example

fixed or movable walls made of strong Ez can be built to confine skyrmions or guide

their motion. We can put many skyrmions between confining walls and see the effect of

compression. If we would like to destroy a skyrmion for some functional reason we can

cut through it with quick motion of the spot which is not possible with real particles.

5.3.2 Extra E⊥

Now we consider a spot in which we apply a field in the x-y plane. This type of field also

can move the skyrmions (Fig. 32-a). The field in this spot aligns the local director parallel

to the extra field in contrast with vertical alignment by extra Ez. Favoring horizontal
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alignment in the spot results in two features. First we see that it attracts the blue circle

and pulls it rather than push. The skyrmion shape is again robust and it follows the

motion of the spot.

Another feature of extra E⊥ is that the rotation of the field in the spot is followed by

the rotation of the skyrmion (Fig. 32-b). This indeed is very useful because due to the

symmetry of the shape it is hard to rotate the skyrmions by external forces or by means of

other skyrmions but a horizontal field can easily catch and rotate them. A design possibly

easier to achieve experimantally is a line field rather than a spot which will serve the same

purpose.

5.3.3 Smooth Gradient of Electric Field

Variable electric field can also be used for actuation. To demonstrate this effect we

place a skyrmion in a background field and add a small field with spatial variation. For

example Fig. 33-a shows a skyrmion in a vertical field which varies in the x direction. In

addition to the background electric field a small extra Ez which linearly increases in x

direction is added. This extra field makes the skyrmion move towards the area with smaller

vertical field. Parts (b) and (c) show a skyrmion and a small field in x or y directions that

increases linearly in x. In this case the skyrmion moves towards the area with bigger Ex

or Ey.

The effects of nonuniform vertical and in-plane fields are different in terms of the way

the skyrmions move. We can understand the difference by the following argument. The

interaction energy between the horizontal region of the director, namely the blue part of

the π-wall, and the external field is minimized when the director and the external field

129



(a) (b)

Figure 32: Skyrmions (a) moved and (b) rotated by extra E⊥
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Figure 33: Skyrmions move towards (a) smaller Ez and (b,c) bigger E⊥

are aligned. Thus, just like in the previous sections, the blue region attracted towards

horizontal fields is repelled by vertical fields. In this case when there are field gradients,

skyrmions move towards the area with smaller vertical field and bigger in-plane field.

We also note that addition of extra fields have different effects on skyrmion shape

depending on the direction. Skyrmions moved into bigger in-plane field are slightly elon-

gated in the field direction. On the contrary, being dragged into smaller Ez will cause the

size of the skyrmion to grow almost isotropically in the x − y plane. However note that

this isotropy is not perfect due to the gradients of Ez in the horizontal plane.
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5.4 3D Skyrmions

5.4.1 Electric field and negative anisotropy

(a) side view (b) horizontal cross section

Figure 34: 3D skyrmion with negative anisotropy. Color shows z component of the director.

(a) side view, (b) cross section of mid-plane.

We can realize 3D skyrmions in a cell with homeotropic surface anchoring. Figure 34

shows the side view and mid-plane cross-section of such a static skyrmion between two

surfaces. The shape can be cylindrical with straight side walls (not shown here) or in

the shape of a barrel where the radius narrows down at the top and bottom. In 3D, the

dielectric anisotropy can also be negative when the vertical alignment is sustained by the

homeotropic surface anchoring. With negative anisotropy, we show by simulations that

the interaction and the driving effect of electric fields is of opposite nature. This effect is

due to the same mechanisms explained in the previous sections so we don’t repeat them

here. While extra vertical fields push the skyrmions with positive anisotropy, they pull the

ones with negative anisotropy. The same applies for in-plane fields. In-plane fields pull

the skyrmions with positive anisotropy and push the ones with negative anisotropy (see
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(a) (b)

Figure 35: Horizontal mid-plane of a 3D skyrmion with negative anisotropy. As opposed to 2D
skyrmions with positive anisotropy, blue region is (a) pulled by extra Ez, (b) pushed by extra
E⊥.
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Figure 36: 3D Skyrmions move towards region with weaker surface anchoring

Fig. 35).

5.4.2 Effect of Nonuniform Surface Anchoring

Figure 36 shows two skyrmions that are stabilized by surface anchoring. The dielectric

anisotropy is negative which favors easy-plane alignment. The strength of the nonuniform

surface anchoring varies sligthly as a parabolic function whose minimum is at the center.

The effect of this arrangement is similar to a nonuniform vertical field. We see here

also that the π-wall is pushed away from regons with stronger vertical alignment. The

skyrmions move towards the region with smaller surface anchoring and stop at a separation

due to repulsion between the skyrmions.

Surface anchoring can be designed in custom ways thus it can allow various possibilities

for applications together with nonuniform fields.
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(a) (b)

Figure 37: Light repels skyrmions with (a) negative(3D) or (b) positive(2D) anisotropy.

5.5 Actuation by Light

5.5.1 Skyrmions are repelled by light

It’s shown experimentally that when exposed to light, skyrmions move toward the

darker regions [3]. This might be attributed to the flow of heat generated by light and

the resulting bias in the Brownian motion of the molecules. However we also know that

light changes the cholesteric pitch in some liquid crystals. To model this efefct we reduce
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the chirality, q0 in the free energy by 20% where the light falls.

Figure 37 shows a skyrmion and a spot with light. Similarly to the electric field,

the orange spot pushes away the π-wall. One difference from electric fields is that light

pushes skyrmions regardles of the sign of the anisotropy. In part (a) of the figure we

see the cross-section of a 3D skyrmion with negative anisotropy while in part (b) a 2D

skyrmion and another skyrmion pushed by the skyrmion is shown.

To understand this behavior we consider the balance between intermolecular interac-

tions which favor a twist and the vertical field (plus surface anchoring in 3D) which favors

vertical alignment. As the orange spot enters the skymrmion, it will cause the molecu-

lar interaction favoring twist to be weaker and change the balance in favor of vertically

aligninment. A shift towards more vertical alignment will cause the skyrmion to translate

away from the light.

The effect of light turns out to be the same as extra Ez for positive anisotropy thus

it can be employed in the same way as electric fields to confine or guide skyrmions.

Depending on the exprimental setup one method can be advantageous over the other.

5.6 Skyrmions under Pressure

5.6.1 Between Walls: Trash Compactor

We have seen that skyrmions repel other nearby skyrmions in a fashion very similar

to particles. What if we push skyrmions together under pressure? Would they merge and

form one skyrmion, keep their shapes, or deform? To answer this question we put two

skyrmions in a box whose walls are blocks of light. Inside the walls the natural twist q0

is reduced by 20%. It was shown in the previous section that the region with reduced
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chirality acts like a wall that repels skyrmions.

In Fig. 38, we show snapshots from such a simulation where one of the walls moves

and squezes the skyrmions like a trash compactor. First the skyrmions get smaller and also

closer to each other. As we increase the pressure we first see that one skyrmion slips due

to the repulsion between skyrmions and the skyrmions fill the box diagonally. Then the

skyrmion near the moving wall gets smaller but stays in circular shape. As we press further

that skyrmion pops. Due to the extra space generated, the remaining skyrmions expands.

Later on it also shrinks under pressure and finally disappears. This simulation demonstrates

several aspects of the particle like behavior of a system of skyrmions. Skymrions:

- interact with other skyrmions

- go through elastic deformations change size when under pressure

- stay in robust circular shape for the simulated parameters

- pop and disappear under high pressure

- do not merge but pop when pushed together

5.6.2 Popping a skyrmion

In order to view what happens as a skyrmion under pressure pops, we save snapshots

with smaller time intervals. The slow motion movie reveals the nature of the crack

propagation when a hole is poked in the π-wall. Snapshots of such an event is shown in

Fig. 39. When two walls move towards each other the skyrmions first contract and get

smaller in size. Then a hole emerges on one of the skyrmions and grows around the blue
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Figure 38: Skyrmions between compacting walls.

138



circle. Soon, it is followed by the popping of the other skyrmion. Eventually they both

disappear and all we have left is the vertical nematic background.

This simulation illustrates interesting features of the motion of disclination lines. The

hole is equivalent to a pair of half-charge disclinations, one at each end of the π-wall. The

process of the hole growing is equivalent to the disclinations moving around the π-wall

and then annihilating each other. Further research, both analytical and computational,

can potentially lead to better understanding of related phenomena.
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Figure 39: Slow motion view of popping skyrmions squeezed between walls
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CHAPTER 6

Conclusions

6.1 Summary

We studied orientational order and how nonuniform configurations are formed by the

interplay of molecular interactions, geometry, external fields, and dynamics.

In the first project, we investigated polydomain formation during the manufacturing of

liquid crystal elastomers which are often attributed to quenched disorder. As an alternative

explanation, we developed a theory for the dynamics of the isotropic-nematic transition,

and showed that the dynamics can induce a polydomain structure with a characteristic

length scale. This polydomain state may eventually become uniform, or it may be locked

in by impurities.

In the second project, we performed approximate analytical calculations regarding

orientational order and density profiles near flat or curved walls. We then, ran Langevin

dynamics simulations to compare the results. Even when the particles do not interact, the

walls can still induce (nonuniform) order. We employed these properties for rectification

of active particles, and actuation of passive particles such as curved tracers or filaments

in an active bath.

In the third project, we investigated topological defects such as skyrmions in liquid

crystals in which the order is controlled by chiral molecular interactions, external fields,

and surface anchoring. We obtained phase diagrams for chiral nematic liquid crystals and
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contrasted them with magnetic counterparts. Our work indicates that while skyrmions

are favored by polar interactions and easy-axis alingment, merons are favored by nematic

interactions and easy-plane alignment. In addition, we realized dynamically stabilized

liquid crystal skyrmions in simulations and performed analytical calculations to predict

the suitable range of parameters. We also demonstrated that light, field gradients, and

surface anchoring can be used to move skyrmions.

6.2 Future work

The work presented in this dissertation can be moved forward in various directions.

Liquid crytal elastomer model can be modified by inclusion of time dependent coupling

strength and built-in reference states (again time dependent) for the nematic order tensor

as the cross-linking process continues. Effects of strain and fields can also be added to

the picture.

Our results from the active matter part can be used to study flexible membranes and

filaments in interaction with active particles. This could include static passive particles as

well as moving ones where one would need to solve the equations with moving boundaries.

Collective behavior of interacting particles could have interesting results different from

non-interactiong systems we studied here.

Study of chiral nematic liquid crystals in the context of skyrmions are relatively new and

have great potential to become a major field of research. We have demonstared numerical

tools to simulate large systems of liquid crystals which behave like particles. The detailed

study of dynamics and flexibility of skyrmions and merons can be an immediate extension

of our work. Also, the model can be improved by adding elasticity and flow.
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