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Joshi, Satya Krishna, Radio resource allocation techniques for MISO downlink
cellular networks. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering; Centre for Wireless Communications
Acta Univ. Oul. C 638, 2018
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

This thesis examines radio resource management techniques for multicell multi-input single-
output (MISO) downlink networks. Specifically, the thesis focuses on developing linear transmit
beamforming techniques by optimizing certain quality-of-service (QoS) features, including,
spectral efficiency, fairness, and throughput.

The problem of weighted sum-rate-maximization (WSRMax) has been identified as a central
problem to many network optimization methods, and it is known to be NP-hard. An algorithm
based on a branch and bound (BB) technique which globally solves the WSRMax problem with
an optimality certificate is proposed. Novel bounding techniques via conic optimization are
introduced and their efficiency is illustrated by numerical simulations. The proposed BB based
algorithm is not limited to WSRMax only; it can be easily extended to maximize any system
performance metric that can be expressed as a Lipschitz continuous and increasing function of the
signal-to-interference-plus-noise (SINR) ratio.

Beamforming techniques can provide higher spectral efficiency, only when the channel state
information (CSI) of users is accurately known. However, in practice the CSI is not perfect. By
using an ellipsoidal uncertainty model for CSI errors, both optimal and suboptimal robust
beamforming techniques for the worst-case WSRMax problem are proposed. The optimal method
is based on a BB technique. The suboptimal algorithm is derived using alternating optimization
and sequential convex programming. Through a numerical example it is also shown how the
proposed algorithms can be applied to a scenario with statistical channel errors.

Next two decentralized algorithms for multicell MISO networks are proposed. The
optimization problems considered are: P1) minimization of the total transmission power subject
to minimum SINR constraints of each user, and P2) SINR balancing subject to the total transmit
power constraint of the base stations. Problem P1 is of great interest for obtaining a transmission
strategy with minimal transmission power that can guarantee QoS for users. In a system where the
power constraint is a strict system restriction, problem P2 is useful in providing fairness among
the users. Decentralized algorithms for both problems are derived by using a consensus based
alternating direction method of multipliers.

Finally, the problem of spectrum sharing between two wireless operators in a dynamic MISO
network environment is investigated. The notion of a two-person bargaining problem is used to
model the spectrum sharing problem, and it is cast as a stochastic optimization. For this problem,
both centralized and distributed dynamic resource allocation algorithms are proposed. The
proposed distributed algorithm is more suitable for sharing the spectrum between the operators, as
it requires a lower signaling overhead, compared with centralized one. Numerical results show that
the proposed distributed algorithm achieves almost the same performance as the centralized one.

Keywords: distributed optimization, dynamic control, global (nonconvex) optimization,
radio resource management, robust resource allocation, spectrum sharing





Joshi, Satya Krishna, Radioresurssien hallintatekniikoita laskevan siirtotien
moniantennilähetyksiin solukkoverkoissa. 
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Wireless Communications
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Tiivistelmä

Tässä väitöskirjassa tarkastellaan monisoluisten laskevan siirtotien moniantennilähetystä käyttä-
vien verkkojen radioresurssien hallintatekniikoita. Väitöskirjassa keskitytään erityisesti kehittä-
mään lineaarisia siirron keilanmuodostustekniikoita optimoimalla tiettyjä palvelun laadun omi-
naisuuksia, kuten spektritehokkuutta, tasapuolisuutta ja välityskykyä.

Painotetun summadatanopeuden maksimoinnin (WSRMax) ongelma on tunnistettu keskei-
seksi monissa verkon optimointitavoissa ja sen tiedetään olevan NP-kova. Tässä työssä esite-
tään yleinen branch and bound (BB) -tekniikkaan perustuva algoritmi, joka ratkaisee WSRMax-
ongelman globaalisti ja tuottaa todistuksen ratkaisun optimaalisuudesta. Samalla esitellään uusia
conic-optimointia hyödyntäviä suorituskykyrajojen laskentatekniikoita, joiden tehokkuutta
havainnollistetaan numeerisilla simuloinneilla. Ehdotettu BB-perusteinen algoritmi ei rajoitu
pelkästään WSRMax-ongelmaan, vaan se voidaan helposti laajentaa maksimoimaan mikä tahan-
sa järjestelmän suorituskykyarvo, joka voidaan ilmaista Lipschitz-jatkuvana ja signaali-(häi-
riö+kohina) -suhteen (SINR) kasvavana funktiona.

Keilanmuodostustekniikat voivat tuottaa suuremman spektritehokkuuden vain, jos käyttäjien
kanavien tilatiedot tiedetään tarkasti. Käytännössä kanavan tilatieto ei kuitenkaan ole täydelli-
nen. Tässä väitöskirjassa ehdotetaan WSRMax-ongelman ääritapauksiin sekä optimaalinen että
alioptimaalinen keilanmuodostustekniikka soveltaen tilatietovirheisiin ellipsoidista epävarmuus-
mallia. Optimaalinen tapa perustuu BB-tekniikkaan. Alioptimaalinen algoritmi johdetaan peräk-
käistä konveksiohjelmointia käyttäen. Numeerisen esimerkin avulla näytetään, miten ehdotettu-
ja algoritmeja voidaan soveltaa skenaarioon, jossa on tilastollisia kanavavirheitä.

Seuraavaksi ehdotetaan kahta hajautettua algoritmia monisoluisiin moniantennilähetyksellä
toimiviin verkkoihin. Tarkastelun kohteena olevat optimointiongelmat ovat: P1) lähetyksen
kokonaistehon minimointi käyttäjäkohtaisten minimi-SINR-rajoitteiden mukaan ja P2) SINR:n
tasapainottaminen tukiasemien kokonaislähetystehorajoitusten mukaisesti. Ongelma P1 on erit-
täin kiinnostava, kun pyritään kehittämään mahdollisimman pienen lähetystehon vaativa lähetys-
strategia, joka pystyy takaamaan käyttäjien palvelun laadun. Ongelma P2 on hyödyllinen tiukasti
tehorajoitetussa järjestelmässä, koska se tarjoaa tasapuolisuutta käyttäjien välillä. Molempien
ongelmien hajautetut algoritmit johdetaan konsensusperusteisen vuorottelevan kertoimien suun-
taustavan avulla. Lopuksi tarkastellaan kahden langattoman operaattorin välisen spektrinjaon
ongelmaa dynaamisessa moniantennilähetystä käyttävässä verkkoympäristössä. Spektrinjako-
ongelmaa mallinnetaan käyttämällä kahden osapuolen välistä neuvottelua stokastisen optimoin-
nin näkökulmasta. Tähän ongelmaan ehdotetaan ratkaisuksi sekä keskitettyä että hajautettua
resurssien allokoinnin algoritmia. Hajautettu algoritmi sopii paremmin spektrin jakamiseen ope-
raattorien välillä, koska se vaatii vähemmän kontrollisignalointia. Numeeriset tulokset osoitta-
vat, että ehdotetulla hajautetulla algoritmilla saavutetaan lähes sama suorituskyky kuin keskite-
tyllä algoritmillakin.

Asiasanat: dynaaminen kontrolli, globaali (ei-konveksi) optimointi, hajautettu
optimointi, radioresurssien hallinta, spektrin jakaminen, vakaa resurssiallokaatio
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Abbreviations

Roman-letter notations

ai Vertex of a rectangle along the ith standard basis vector used in
deriving improved lower bound for the BB algorithm for WSRMax

anl(t) Amount of data of the lth user of the nth BS allowed to enter the
network layer from the transport layer at BS n during time slot t

ānl(t) Time average of admitted data rate anl(t) up to time slot t
bns Binary variable that is used to indicate the assignment of the sth

subchannel to the nth operator
bn Vector of bns used to indicate the assignment of subchannels to

the nth operator, i.e., bn = [bn1, . . . , bnS ]T

B Amount of spectrum band that each operator put in a common
spectrum pool in the dynamic RA

cjl Small scaling fading coefficient between the transmitter of the jth
data stream to the receiver of the lth data stream

d0 Far field reference distance that is used in the channel model
dl Information symbol associated with the lth data stream
djl Distance from the transmitter of the jth data stream to the receiver

of the lth data stream
d̂ Coefficient of a monomial function
DBS Distance between the adjacent BSs
êi ith standard basis vector
ejl Channel estimation error between the transmitter node of the jth

data stream and the receiver node of lth data stream
el Channel estimation error vector obtained by stacking ejl for all

j = 1, . . . , L, i.e., el = [eT
1l, . . . , e

T
Ll]

T

f0(·) Function used to represent the (negative) weighted sum-rate
f̃(·) Extended-value extension of function f0(·)
f̌(·) Objective function of the auxiliary optimization problem used to

update SINR and power vectors in the worst-case WSRMax



fWSR−WO(·) Function used to represent the achieved weighted sum-rate consid-
ering the outage in the worst-case WSRMax

fn(·) Function (extended-value extension) used to represent the total
transmit power of the nth BS in the sum-power minimization

g
ll

Minimal channel gain between tran(l) and rec(l), over a channel
uncertainty set, along the lth beamforming direction

ḡjl Maximal channel gain between tran(j) and rec(l), over a channel
uncertainty set, along the jth beamforming direction

g(·) Function used to represent the ratio between the maximal CSI
errors and estimated channel gain.

gnl(·) Function used to represent the utility of the lth user of the nth BS
hjl Channel vector between the transmitter node of the jth data

stream and the receiver node of the lth data stream
ĥjl Estimated value of the channel vector hjl

hnl,s(t) Channel vector between the nth BS and its lth user in subchannel
s during time slot t

I Identity matrix
Ijl Out-of-cell interference power from the jth data stream to the

receiver of lth data stream
In(·) Indicator function used to represent the feasibility of the subprob-

lem associated with the nth BS in SINR balancing
L Number of data streams (i.e., users) in the system
Ľn Number of users associated with the nth BS
Lk Lower bound on the optimal value at the kth step of the BB

algorithm for WSRMax
Lρ(·) Function used to represent the augmented Lagrangian
L̃(·) Lyapunov function
ml Transmit beamformer associated with the lth data stream
m Vector obtained by stacking the transmit beamformer ml for all

l = 1, . . . , L, i.e., m = [mT
1 , . . . ,m

T
L]T

M̃l Matrix constructed by taking the outer product of beamforming
vector ml, i.e., M̃l = mlm

H
l

Mn Beamformer matrix obtained by concatenating the transmit beam-
formers associated with the nth BS.

12



mnl,s(t) Transmit beamformer associated with the lth user of nth BS in
subchannel s during time slot t; the time slot index t is dropped
sometimes for simplicity

m̆n Vector obtained by stacking the transmit beamformers associated
with the nth operator in dynamic RA

Mnl,s Matrix constructed by taking the outer product of the beamforming
vector mnl,s, i.e., Mnl,s = mnl,sm

H
nl,s

Mnl Beamforming matrix associated with the lth user of nth BS
obtained by concatenating Mnl,s for all s ∈ S

n Opponent of the nth operator, i.e., for n ∈ {1, 2}, when n = 1,
n = 2, and when n = 2, n = 1

nl Circular symmetric complex Gaussian noise at the receiver of the
lth data stream

nnl,s(t) Circular symmetric complex Gaussian noise at the receiver of lth
user of nth BS in subchannel s during time slot t

N Number of BSs
N0 Power spectral density of complex Gaussian noise
pl Transmit power associated with the lth data stream
p Transmit power vector obtained by stacking pl for all l = 1, . . . , L,

i.e., p = [p1, . . . , pL]T

pnl,s(t) Transmit power associated with the lth user of BS n in subchannel
s during time slot t

pmax
n Transmit power constraint of the nth BS
p(·) Optimal value function of the auxiliary optimization problem used

in SINR balancing
p̃(·) Function associated with the optimal value function p(·) in SINR

balancing
qn(t) Per-unit price of the spectrum for the opponent of the nth operator

during time slot t in the dynamic RA
qmax Per-unit price constraint of the spectrum in the dynamic RA
Qjl Complex Hermitian positive definite matrix that specifies the

size and shape of a complex ellipsoid consisting of the channel
estimation errors between tran(j) and rec(l)

Qnl(t) Network layer queue backlog of the lth user of nth BS during time
slot t

13



Qnl Time average of queue backlog Qnl(t)
RBS Radius of the transmission region around a BS
Rint Radius of the region around the BS, in which it interferes with the

users that belong to other BSs
rl(·) Function used to represent the transmission rate of the lth data

stream
Rl(·) Function used to represent the supported data rate of the lth data

stream in the presence of CSI errors in the worst-case WSRMax
rnl(t) Transmission rate of the lth user of the nth BS during time slot t
S Number of subchannels
Sn(t) Number of subchannels allocated to the nth operator during time

slot t
sn Antenna signal vector transmitted by the nth BS
T Number of transmit antennas
uk,nl Lagrange dual variable associated with the (k, nl)th consensus

constraint (of the out-of-cell interference value) in sum-power
minimization and SINR balancing; variable uk,nl is associated
with the kth BS

un Vector obtained by collecting Lagrange dual variables {un,bl} that
are associated with the nth BS in sum-power minimization and
SINR balancing

unl,s Variable used to reformulate the auxiliary optimization problem
(that update subchannels and beamformers allocation) as a DC
program in the dynamic RA

unl Vector of unl,s, i.e., unl = [unl,1, . . . , unl,S ]T

Uk Upper bound on the optimal value at the kth step of the BB
algorithm for WSRMax

Un Time average profit of the nth operator
U0
n Utility gain of the nth operator received before sharing its spectrum

with other operator
vn Lagrange dual variable associated with the nth consensus constraint

(of the SINR value) in SINR balancing
vn General purpose variable. In sum-power minimization and SINR

balancing, this is a scaled version of un, i.e., vn = (1/ρ)un. In
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the worst-case WSRMax, variable vl is used for the transmit
beamforming direction associated with the lth data stream.

v Vector obtained by stacking the transmit beamforming direction
vector vl for all l = 1, . . . , L, i.e., v = [vT

l , . . . ,v
T
L ]T

Vl Variable used to write the LMI constraint of the auxiliary opti-
mization problem in the worst-case WSRMax

V Trade-off parameter in a drift-plus penalty expression that is used
in the dynamic RA

ws Bandwidth of the sth subchannel
Wn(t) Virtual queue associated with the nth operator during time slot t

in the dynamic RA
xk,nl Auxiliary variable associated with the kth BS, and it is used to

denote the out-of-cell interference power from nth BS to rec(l) in
sum-power minimization and SINR balancing

xn Vector obtained by collecting variables {xn,bl} that are associated
with the nth BS in sum-power minimization and SINR balancing

x̃l Subvector of xn associated with the lth data stream in sum-power
minimization and SINR balancing

xns Copy of variable bns, i.e., xns = bns used in the dynamic RA
xin
n (t) Input to the virtual queue Xn(t) during time slot t in the dynamic

RA
xout
n (t) Output to the virtual queueXn(t) during time slot t in the dynamic

RA
Xn(t) Backlog of virtual queue associated with the nth operator during

time slot t in the dynamic RA
yl Signal received at the receiver node of the lth data stream
yin
n (t) Input to the virtual queue Yn(t) during time slot t in the dynamic

RA
yout
n (t) Output to the virtual queue Yn(t) during time slot t in the dynamic

RA
Yn(t) Backlog of the virtual queue associated with the nth operator

during time slot t in the dynamic RA
z2
nl Out-of-cell interference power from the nth BS to rec(l) in sum-

power minimization and SINR balancing
zn Vector of znl, i.e., zn = [zn1, . . . , znL]T
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znl,s Variable used to reformulate the auxiliary optimization problem
(that updates subchannels and beamformer allocation) as a DC
program in the dynamic RA

znl Vector of znl,s, i.e., znl = [znl,1, . . . , znl,S ]T

Mathcal-style notations

A Subset of the nonnegative orthant IRL
+

Bk Set of rectangles obtained at the kth step of the BB algorithm for
WSRMax

Cn Set of feasible points of the subproblem associated with the nth
BS in SINR balancing

Č Set of small scale fading coefficients
CN (m,Σ) Circular symmetric Gaussian random vector with mean m and

covariance matrix Σ

Ejl Complex ellipsoid that contains channel estimation errors between
tran(j) and rec(l)

Ejl(κ) κ-confidence ellipsoid that is used to model the Gaussian dis-
tributed CSI errors between tran(j) and rec(l)

G Set of achievable SINR values in the WSRMax
Iint(n) Set of data streams that are subject to out-of-cell interference

from the nth BS
L Set of data streams
L(n) Set of data streams associated with the nth BS
Lint Set of data streams that are subject to out-of-cell interference
Lint(n) Set of data streams associated with BS n that are subject to the

out-of-cell interference
Mn Set of feasible points of the subproblem associated with the nth

BS in sum-power minimization
N Set of BSs
Nint(l) Set of BSs that interfere (out-of-cell interference) rec(l)

On Set of feasible points of the subproblem associated with the nth
operator in the dynamic RA

Qinit Rectangle used to initialize the BB algorithm for WSRMax
Q Subset of the rectangle Qinit, i.e., Q ⊆ Qinit
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Qk Rectangle chosen, for branching, at the kth step of the BB algo-
rithm

Q̄? Rectangle used to obtain the improved lower bound on the optimal
value in the BB algorithm for WSRMax

S Set of subchannels
S(n, t) Set of subchannels allocated to the nth operator during time slot t
Sκ Optimal solution set obtained by using the κ-confidence ellipsoid

in the worst-case WSRMax

Greek-letter notations

αn Auxiliary variable associated with the SINR of nth BS data streams
in SINR balancing

α Parameter used to limit the domain of an SINR value in a signomial
program for WSRMax

α̂l Exponent of the lth variable of the monomial function
χn(·) Auxiliary function of subchannels associated with the nth operator

in the dynamic RA
4(·) Drift of a Lyapunov function from one slot to the next
χ̂n(·) Convex approximation of the auxiliary function χn(·)
βl Nonnegative weight associated with the lth data stream
ε Accuracy required for the BB algorithm for WSRMax
εb Accuracy required for the bisection search method to find an

improved lower bound in the BB algorithm for WSRMax
εγ Required accuracy of SINR for the signomial program, that updates

SINR and power vectors in the worst-case WSRMax
εg Accuracy required for the bracketing method in SINR balancing
η Path loss exponent
γ Auxiliary variable associated with the SINRs of all data streams

in SINR balancing
γl Auxiliary variable associated with the SINR of lth data stream
γ Vector of γl, i.e., γ = [γ1, . . . , γL]T

γl,max Maximum element of rectangle Q along the lth axis
γmax Vector of γl,max, i.e., γmax = [γ1,max, . . . , γL,max]T

γl,min Minimum element of rectangle Q along the lth axis
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γmin Vector of γl,min, i.e., γmin = [γ1,min, . . . , γL,min]T

γ̂l Parameter associated with the lth data stream used to form a GP
in the worst-case WSRMax

γ̂ Vector of γ̂l, i.e., γ̂ = [γ̂1, . . . , γ̂L]T

Γl(·) Function used to represent the SINR of the lth data stream
Γ̃l(·) Function used to represent the lower bound on the SINR of the

lth data stream with channel uncertainties
λn Scaled version of variable vn, i.e., λn = (1/ρ)vn

λns Lagrange dual variable associated with the (ns)th consensus
constraint (of subchannels) of the auxiliary optimization problem
in the dynamic RA

µjl Variable used to write the LMI constraint of the auxiliary opti-
mization problem in the worst-case WSRMax

µn(t) Auxiliary variable associated with the profit of nth operator during
time slot t in the dynamic RA

µ̄n Time average of auxiliary variable µn(t)

φmin(·) Function that returns the optimal value of the (negative) weighted
sum-rate over a set Q

φlb(·) Lower bound function of the BB algorithm for WSRMax
φub(·) Upper bound function of the BB algorithm for WSRMax
φBasic

lb (·) Basic lower bound function of the BB algorithm for WSRMax
φBasic

ub (·) Basic upper bound function of the BB algorithm for WSRMax
φImp

lb (·) Improved lower bound function of the BB algorithm for WSRMax
φnl(·) Function used to reformulate the auxiliary optimization problem

(that update subchannels and beamformers allocation) as a DC
program in the dynamic RA

φ̂nl(·) Convex approximation of the auxiliary function φnl(·)
Φn(·) Auxiliary function used to represent the objective function of the

DC program in the dynamic RA
ψnl(·) Function used to reformulate the auxiliary optimization problem

(that update subchannels and beamformers allocation) as a DC
program in the dynamic RA

ρ Parameter used in the augmented Lagrangian function
σ2
e Variance of the least-square channel estimator error
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σ2
l Variance of the white Gaussian noise at the receiver of lth data

stream
Σ Covariance matrix of the Gaussian random vector
θ Subgradient step size used in the dual decomposition method for

sum-power minimization
θ(κ) Inverse CDF value of chi-square distribution with 2T degree of

freedom for a given value of κ.
Θ(t) Vector of the actual and virtual queues during time slot t in the

dynamic RA
ξjl Radius of a ball that contains channel estimation errors between

tran(j) and rec(l)

ζn(·) Function associated with the nth operator, introduced in order to
relax the binary constraint in the dynamic RA

ζ̂n(·) Convex approximation of the auxiliary function ζn(·)

Mathematical-operator notations and symbols

cond(Q) Condition number of the rectangle Q
Rank(X) Rank of the matrix X

rec(l) Receiver node of the lth data stream
size(Q) Maximum half length of the sides of the rectangle Q
Trace(X) Trace of the matrix X

tran(l) Transmitter node (i.e., BS) of the lth data stream
vec(M) Vector obtained by stacking below each other the columns of the

matrix M

vol(Q) Volume of the rectangle Q
|x| Absolute value of the complex number x
|X | Cardinality of the set X
‖x‖2 `2-norm of the vector x

XT Transpose of the matrix X

XH Hermitian (complex conjugate) transpose of the matrix X

Cn Complex n-vectors
IR Real numbers
IR+ Nonnegative real numbers
IRn

+ Nonnegative real n-vectors
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(x)+ Denotes the maximum of x and 0, i.e., max(x, 0)

(·)? Solution of an optimization problem
, Defined to be equal to

Acronyms
ADMM Alternating direction method of multipliers
BB Branch and bound
BS Base station
CDF Cumulative distribution function
CSI Channel state information
DC Difference of convex
DDA Dual decomposition based distributed algorithm
DIA Distributed interference alignment
GAD Generalized asynchronous distributed
GP Geometric program
LBBasic Basic lower bound
LBImp Improved lower bound
LMI Linear matrix inequality
LMMSE Linear minimum mean square error
LTE Long-term evolution
MISO Multiple-input single-output
MIMO Multiple-input multiple-output
MSE Mean square error
NP Non-deterministic polynomial-time
OFDMA Orthogonal frequency-division multiple access
QoS Quality-of-service
RA Resource allocation
SDP Semidefinite program
SDR Semidefinite relaxation
SINR Signal-to-interference-plus-noise ratio
SISO Single-input single-output
SNR Signal-to-noise ratio
SOCP Second-order cone programming
KKT Karush-Kuhn-Tucker
UBBasic Basic upper bound
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WiMAX Worldwide interoperability for microwave access
WLAN Wireless local area network
WMMSE Weighted sum mean square error minimization
WSR Weighted sum-rate
WSRMax Weighted sum-rate maximization
ZFBF Zero-forcing beamforming
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1 Introduction

Due to the proliferation of smart wireless devices, like, tablets and smart-phones,
and the popularization of many applications that require higher data rates, the
demand for wireless services is ever increasing [1, 2]. It is predicted that over
the next few years, mobile-connected devices, including machine-to-machine
modules [3], will surpass the world population [2]. However, the radio spectrum is
a finite natural resource; thus to accommodate the increasing data traffic, wireless
cellular networks have been evolving continuously leading to the deployment of
various radio access technologies [4]. In spite of these technologies, it has been
challenging to handle the ever-growing data traffic with the current wireless
networks [5–7].

The successful deployment of future-generation wireless networks will heavily
rely on their ability to provide highly efficient and flexible radio resource
allocation for the users [8]. Interestingly, the use of multiple antennas at the
transmitter and/or receiver and beamforming techniques have been identified as
one of the key technology enablers for meeting these challenges [9]. Multiple
antennas can significantly improve the capacity of a wireless link, compared
to a single-antenna case. Multiple-antenna techniques are considered as an
essential feature for many wireless communication standards such as WLAN [10],
WiMAX [11], and LTE [12]. However, the use of multiple antennas at the
transmitter and/or receiver is fairly well understood only for a point-to-point
communication link [9, 13–17]. In a multicell downlink network, coordination
between transmitters is required to jointly optimize the transmit beamformers to
efficiently utilize radio resources. Thus, developing resource allocation algorithms
for multicell multiple-antenna networks is challenging. In fact, in these networks
many coordinated beamforming problems of interest, such as the maximization
of weighted sum-rate, proportional fairness, and harmonic mean utilities subject
to maximum transmit power constraints are known to be NP-hard [18].

Multiple-antenna techniques can provide higher spectral efficiency and
enhance the reliability of wireless links, only when the channel state information
(CSI) of users is accurately known [9, 13]. However, acquiring CSI is a difficult
task in a time-varying environment [19, 20]. Pilot-symbol (training symbols)
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assisted channel estimation is one of the popular approaches for estimating
CSI [19]. In frequency division duplex systems, the receiver estimates the channel,
and it is usually quantized and fedback to the base stations (BS) [21, 22]. In
time division duplexing systems the CSI is estimated by the BSs, during uplink
transmission, assuming channel reciprocity [23]. Therefore, in practice the CSI is
not perfect due to several factors, such as inadequate number of training symbols,
quantization errors, outdated CSI feedback, etc. Consequently, the design of
resource allocation algorithms that can adapt to time-varying propagation,
and provide robustness against CSI errors is challenging and also essential for
emerging wireless technologies.

Due to the scarcity of the radio spectrum, along with the use of multi-
ple antennas and beamforming techniques, spectrum sharing between mobile
operators is becoming essential [24–26]. In current wireless communications
networks, the radio spectrum is divided into disjoint blocks which are assigned
(licensed) to different operators on an exclusive basis. The assignment of exclusive
spectrum bands to the operators gives each operator the right to control their
spectrum bands, and it has well-known advantages including good interference
management and guaranteed quality-of-service. However, it often leads to
low spectrum utilization [27, 28]. By sharing the spectrum instead of using it
individually, wireless operators can improve spectral efficiency, enhance coverage,
and also reduce their operating expenditure [26]. Although such spectrum
sharing capabilities between operators would yield significant performance gains,
detailed studies into it still remains limited.

In this thesis, we study several resource allocation problems addressing the
above challenges (e.g., imperfect CSI, distributed implementation, spectrum
sharing between operators, etc.) in multi-input single-output (MISO) downlink
cellular networks. The work is categorized into four parts, and are briefly
described in Section 1.2.

1.1 Literature review

In this section we provide a review of the relevant literature that is associated
with the scope of this thesis. In Section 1.1.1, we discuss optimization techniques
for the nonconvex weighted sum-rate maximization (WSRMax) problem. Robust
resource allocation techniques for imperfect CSI are discussed in Section 1.1.2. A
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review of distributed resource allocation methods is presented in Section 1.1.3.
Finally, in Section 1.1.4 we discuss the key existing works on spectrum sharing
methods between cellular operators.

1.1.1 Resource allocation methods for nonconvex problems

Recognizing or reformulating a problem as a convex optimization problem has
great advantages. It is because this sort of problem can be solved very reliably
and efficiently, using interior-point methods or other special methods for convex
optimization [29]. However, in wireless communications systems many resource
allocation problems of great importance are nonconvex. For example, in the
interference channel, the general problem of WSRMax, proportional fairness
utility maximization, harmonic-rate utility maximization, and min-rate utility
maximization are nonconvex, and known to be NP-hard [18, 30].

An exhaustive search method, such as a grid search, is a straightforward
approach to find a global optimal solution for a nonconvex problem [31]. However,
the exhaustive search method requires exponential complexity, and it becomes
computationally intractable with an increase in problem size. A better approach
is to apply branch and bound (BB) and polyblock methods [32, 33] to solve
nonconvex problems. Both BB and polyblock methods maintain provable upper
and lower bounds on the global optimal value for a nonconvex problem, and they
terminate when the difference between the upper and lower bounds is smaller
than a given threshold. Unfortunately, the BB and polyblock methods can be slow
with increase in the problem size (i.e., for large networks) [32, 33]. Therefore, a
variety of local optimization techniques, such as alternating optimization [34, 35],
sequential convex programming [35], dual relaxation [29, Ch. 5], and difference of
convex (DC) programming [36] are frequently used to find a suboptimal solution
for nonconvex problems.

Weighted sum-rate maximization

The WSRMax problem is central to many network optimization methods [37].
For example, it appears in network utility maximization [38–41], design of the
cross-layer control policies [42, 43], multi-user scheduling [44–46], power and
rate control [30, 31, 47–53], etc. In the context of an orthogonal multiple-access
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channel [9, 54] the WSRMax problem is convex and it can be solved efficiently.
However, with an interference channel, the WSRMax problem is nonconvex [37].
In fact, it is known to be an NP-hard problem [18, 30].

In the case of single-input single-output (SISO) systems, the problem of
WSRMax by using global optimization approaches has been addressed in [55–60].
Specifically, in [55] and [56] BB based algorithms are proposed by expressing the
WSRMax problem in a form of DC programm [61]. Since DC programming is a
central part of these algorithms, they are not adaptable for solving problems
whose objective function is not convertible to a DC form (e.g., multicast wireless
networks) [59]. A bit loading approach in conjunction with the BB method is
used in [57] in the context of digital subscriber lines. At each iteration of the
algorithm in [57], the search region is discretized to find the lower and upper
bounds on the optimal value of the problem; thus, this algorithm does not have
strict control over the accuracy of the solution. In [58, 59], the monotonicity of
the users’ rate in the signal-to-interference-plus-noise ratio (SINR) values is
exploited, and a BB based algorithm is derived. A different approach has been
considered in [60], where the WSRMax problem is transformed into a linear
fractional program [62], and an outer polyblock approximation method [33, 63]
is used to solve it.

In multiple-antenna systems, the decision variables space is large, i.e., the
joint optimization of transmit beamforming patterns, transmit powers, and
link activation are required. Therefore, designing global optimal methods for
the WSRMax problem in multiple-antenna systems is a challenging task [64].
In [65] a global optimization algorithm is proposed by using the outer polyblock
approximation method along with the result of [66], which proves that any point
in a rate region can be achieved by choosing beamforming vectors that are
linear combinations of the zero-forcing and the maximum-ratio transmission
beamformers. The algorithm proposed in [65] is for a two-user case and its
extension for more than two-users is nontrivial. In [67], a framework to obtain a
globally optimal solution is proposed by jointly utilizing the outer polyblock
approximation method and rate profile techniques [68–70]. Outer polyblock
approximation based algorithms have also been derived in [71–73]. Unfortunately,
polyblock based algorithms require a large number of iterations for solving the
problem to a high degree of accuracy compared to BB based algorithms [74, 75].
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As the WSRMax problem is NP-hard, the convergence speed of global
optimization algorithms can be slow for large networks [32, 33, 76]. Hence, these
algorithms may not be suitable for practical implementation in large networks.
Therefore, fast-converging algorithms, even though suboptimal, may be more
desirable in practice.

In the case of SISO systems, the problem of WSRMax by using local
optimization methods has been addressed in, e.g., [77–79]. Specifically, in [77]
and [78] the WSRMax problem is studied in the high SINR regime. In [78]
an approximated WSRMax problem in a high SINR regime is reformulated
(recognized) as a geometric program (GP) [80, 81]; hence the WSRMax problem
in a high SINR regime can be efficiently solved even with a large number of users.
Unfortunately, in medium to low SINR regimes such approximation is inefficient.
The WSRMax problem in the medium to low SINR regime is addressed in [79];
there the problem is formulated as a signomial program (SGP) [80, 81], and an
iterative algorithm that solves a series of GP is proposed. In the case of SISO
orthogonal frequency-division multiple access (OFDMA) networks, suboptimal
algorithms for the WSRMax problem have been proposed in [82].

In [83], a single-cell multiple-input and multiple-output (MIMO) system is
considered, and an iterative algorithm is proposed by exploiting uplink-downlink
SINR duality [84]. In [85], a MIMO-OFDMA system is considered and an
iterative algorithm utilizing alternating optimization techniques is proposed.
In both works [83] and [85], receivers are equipped with linear minimum mean
square error (LMMSE) filters [86], and each step of their algorithms solve an
SGP to update the transmit power. In addition, each step of the algorithm in [85]
involves solving a second-order-cone program (SOCP) [87]. An iterative SOCP
formulation of the WSRMax problem in a multiple-input and single-output
(MISO) system has been proposed in [88]. A different approach is considered
in [89], where an iterative algorithm is proposed by establishing a connection
between the WSRMax and weighted sum mean square error (MSE) minimization
problems.

1.1.2 Robust resource allocation methods for imperfect CSI

The uncertainty of the channel at BSs can be modeled either by assuming that
channel errors are random variables following a certain statistical distribution [90,
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91], or by assuming that CSI errors lie in a bounded uncertainty region (e.g.,
ellipsoid, polyhedron, etc.) [92–99]. In the case of statistical CSI errors, robust
beamformers are obtained by optimizing the average or outage performance of
the system, while in the case of the bounded uncertainty model, robust resource
allocation strategies are designed for the worst-case scenario. That is, robust
beamformers are designed so that the system performance is optimized (and the
constraints are satisfied) for all possible CSI errors within the uncertainty region.

A robust optimization method for the WSRMax problem with statistical
distributed CSI errors has been investigated in [100]. Specifically, it has considered
a MIMO interference broadcast channel, and an iterative algorithm was proposed
by exploiting a connection between the WSRMax and weighted sum-MSE
minimization problems [89]. The worst-case WSRMax problem with bounded
CSI errors has been investigated in [101–103]. Specifically, the work in [101]
considered a MIMO interference channel, and it also exploits the connection
between the WSRMax and weighted sum-MSE minimization problems in order
to arrive at a robust resource allocation algorithm. In [102], a robust algorithm
for the worst-case WSRMax problem is obtained by transforming the problem
into a minimization of the worst-case MSE problem. In [101] and [102], the
bounded region of CSI errors is modeled by using an ellipsoid. To generalize the
channel error model, authors in [103] assume that CSI errors lie in an uncertainty
set formed by the intersection of ellipsoids. Both works [102] and [103] considered
a MISO downlink system.

Various optimization criteria (e.g., transmit power minimization, MSE
minimization, SINR balancing, etc.) in the presence of CSI errors have also been
studied in the literature. The problem of transmit power minimization subject
to minimum SINR constraint of each user has been studied in [96, 98, 104, 105];
instead of SINR constraints as a QoS measure, maximum MSE errors as QoS
constraints are considered in [105, 106]. The problem of MSE minimization
subject to power constraint has been addressed in [90, 106, 107]. Reference [108]
considers an SINR balancing problem, and an SINR maximization problem is
considered in [109]. All the above works [90, 96, 98, 100–109] have focused on
deriving suboptimal solutions in the presence of CSI errors. An optimal robust
resource allocation technique in the presence of bounded CSI errors, by using
the branch and cut technique [74], has been investigated in [64].
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1.1.3 Distributed resource allocation methods

A study of distributed resource allocation techniques is of great interest for a
network that lacks central processing unit (such as ad hoc networks [110–112]),
and for a large multicell network in which a central processing is not feasible due
to backhaul constraints [113, Sec. 1]. A distributed algorithm finds solution
for a problem by solving smaller subproblems either in parallel or sequentially,
relying on the local information by each subproblem. In general, it is an iterative
procedure, unless a problem is block separable into subproblems [29, 114].
The convexity of a problem is one of the fundamental property that leads
the convergence of distributed algorithms toward global optimal solution. For
nonconvex problem, such as the WSRMax problem, distributed algorithms usually
converge to stationary points, and in general optimality is not guaranteed [113,
Sec. 9]. Distributed algorithms that converge fast to optimal (or, near-to-optimal)
solutions are of great interest in practice.

Several distributed algorithms for the WSRMax problem have been studied
in the literature, e.g., [110, 115–120]. Specifically, in [115] a SISO interference
channel is considered, and a distributed algorithm consisting of a two phase
iterative procedure has been proposed. In the first phase the algorithm in [115]
drops the links that achieve negligible rates, then it operates in the high SINR
regime for the remaining links. As in [115], the work in [116] considers the high
SINR regime, and the algorithm development is further simplified by assuming
that each transmitter uses more antennas than the total number of users in
the network. The work in [116] exploits zero-forcing beamforming [121, 122] at
each transmitter to derive a distributed algorithm. In [117], a pricing technique
is used to arrive at a distributed implementation. Both works [116] and [117]
consider a MISO interference channel. For a MISO interference broadcast
channel distributed algorithms are provided in [118, 119]. The work in [118] is an
extension of the work in [116], while a distributed algorithm in [119] is derived
by solving Karush-Kuhn-Tucker (KKT) optimality conditions [29, Sec. 5.5.3]
associated with the WSRMax problem. Distributed algorithms for the WSRMax
problem in the case of MIMO systems are provided in [110, 120].

Another optimization problem that is of interest from a system-level per-
spective is a minimization of the total transmission power subject to minimum
SINR constraint of each user [83, 123–127]. For this problem, a distributed
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algorithm using the primal decomposition method [114] is proposed in [128], and
a distributed algorithm using the dual decomposition method [114] is proposed
in [129]. In the primal and dual decomposition methods the original problem
is decomposed into multiple subproblems, and each one of the subproblems is
solved (by subsystem) separately [114]. Then the subsystems coordinate to solve
a master problem in order to achieve consensus among the subsystems. In both
works [128] and [129], the master problem is solved by using the subgradient
method [130], and hence these algorithms are sensitive to the choice of a subgra-
dient step length. Uplink-downlink duality is exploited in [131] to arrive at a
distributed algorithm, which is suitable for time-division duplex systems. The
algorithm proposed in [131] is a multicell generalization of that proposed in [132]
for a single-cell case. A game theoretic approach is considered in [133]. By
considering imperfect CSI at BSs, a distributed algorithm using the alternating
direction method of multipliers (ADMM) is proposed in [98].

In a system where a power constraint is a strict system restriction, an SINR
balancing problem can provide fairness among the users [134–137]. For this
problem, in [138] a distributed algorithm is proposed by using the bisection
search method in conjunction with uplink-downlink SINR duality. The algorithm
in [138] is a hierarchical iterative algorithm which consists of inner and outer
iterations, where a bisection search is carried out in the outer iteration and
uplink-downlink SINR duality is used in the inner iteration.

1.1.4 Spectrum sharing between multiple operators

Operators can share their spectrum band with each other in two basic ways [139]:
orthogonal sharing and non-orthogonal sharing. In orthogonal sharing, operators
are allowed to operate in each other’s spectrum bands; but at any time instance
one spectrum band can be used only by one operator. In contrast, in non-
orthogonal sharing, multiple operators are allowed to transmit on the same
spectrum band at the same time and location. Here, the operators are required
to coordinate their operation and choose transmission strategies to mitigate
inter-operator interference [140]. The performance of these two spectrum sharing
models depends on the users’ locations from BS [141].

Several orthogonal and non-orthogonal inter-operator spectrum sharing
algorithms have been proposed in literature, e.g. [142–147]. Specifically in [142,
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143] a time division multiple access technique is considered, and the operators
are allowed to lease their unused time slots to each other. The principle of last
resort sharing is adopted in [142, 143], i.e., an operator hires time slots only if its
private portion is not sufficient to satisfy the QoS of its users. Moreover, the work
in [143] considers sharing of infrastructure (BSs) between the operators. The use
of a common spectrum pool [148, 149] to share the spectrum between operators
is investigated in [144, 145, 147]. Two operators are considered in [144, 145] and
distributed algorithms using non-cooperative game theory [150] are proposed.
In general, the non-cooperative game theoretic approach leads to a stable
operating point, and it is known as Nash equilibrium. However, in the context
of spectrum sharing the Nash equilibrium point is often seen as an inefficient
operating point, because the operators’ performance can be further improved over
it [146, 151, 152]. In [147] the co-primary shared access model [25] is adopted,
and several heuristic centralized and distributed algorithms are proposed. All
works in [142–147] consider single antennal transmitters and receivers.

The problem of spectrum sharing between operators in MISO wireless systems
has been considered in [153–156]. Specifically, in [153] a distributed algorithm is
proposed using cooperative game theory [150]. In [154] the problem is studied
by using both cooperative and non-cooperative (competitive) game theoretic
approach, and a significant gain by operators cooperation has been demonstrated.
For cooperative spectrum sharing, various transmit beamforming techniques to
manage the inter-operator interference have been proposed in [155, 156].

1.2 Aims and the outline of the thesis

The aim of this thesis is to develop optimization techniques for managing the
radio resources in MISO downlink networks. In particular, we focus on developing
linear transmit beamforming techniques by optimizing certain QoS features,
including, spectral efficiency, fairness, and throughput. In the following we
briefly outline the problems that we study and the main contributions of this
thesis, which are presented in four different chapters.

Chapter 2 considers the problem of WSRMax for multicell MISO downlink
networks. The problem of WSRMax has been identified as a central problem
to many network optimization methods, and it is known to be NP-hard. We
propose a globally optimal solution method based on the BB technique for the
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NP-hard WSRMax problem. Specifically, the proposed algorithm computes a
sequence of asymptotically tight upper and lower bounds, and it terminates
when a difference between them falls below a pre-specified tolerance. Novel
bounding techniques via conic optimization are introduced, and their efficiency
is demonstrated by numerical simulations. The proposed BB based algorithm is
not limited to the WSRMax problem only; it can be easily extended to maximize
any system performance metric that can be expressed as a Lipschitz continuous
and increasing function of an SINR ratio. Numerically, we also use the proposed
algorithm to evaluate the performance loss of several suboptimal algorithms.
The results are presented in [157, 158].

Chapter 3 investigates robust resource allocation methods for multicell MISO
downlink networks, in the cases where there is uncertainty in the users’ CSI
at the BSs. Assuming a bounded ellipsoidal model for CSI errors, we propose
both optimal and suboptimal algorithms for the worst-case WSRMax problem.
The optimal algorithm is derived by adopting the BB algorithm proposed in
Chapter 2. The main difficulty in adopting the algorithm in Chapter 2 is to
define the bounding functions that are used in the BB algorithm. We provide an
efficient method based on a semidefinite relaxation technique (SDR) to compute
the bounding functions. As the convergence speed of the BB algorithm can
be slow for large networks, we also provide a fast but possibly suboptimal
algorithm using the alternating optimization technique and sequential convex
programming. Numerical results are provided to show the performance of both
proposed optimal and suboptimal algorithms. Through a numerical example we
have also shown how our design methodology can be applied to a scenario with
statistical channel errors. The results are presented in [159–161].

Chapter 4 investigates distributed resource allocation methods for multicell
MISO downlink networks. The optimization problems considered are: P1)
minimization of the total transmission power subject to minimum SINR con-
straints of each user, and P2) SINR balancing subject to the total transmit
power constraint of BSs. Decentralized algorithms for both problems are derived
by using consensus based ADMM. For problem P1, the proposed distributed
algorithm converges to an optimal centralized solution. A heuristic method is
provided, for problem P1, to find an ADMM penalty parameter that leads to
faster convergence of the algorithm. Problem P2 is not amendable to a convex
formulation, and in this case ADMM need not converge to an optimal point.
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Numerical results are provided to demonstrate the performance of the proposed
distributed algorithms in comparison to the optimal centralized solutions. The
results are presented in [162–164].

Chapter 5 considers the problem of spectrum sharing between two operators
in a dynamic network. We allow both operators to share (a fraction of) their
licensed spectrum band with each other by forming a common spectrum band.
The objective is to maximize the gain in profits for both operators by sharing their
licensed spectrum bands rather than using them exclusively, while considering
fairness between the operators. The notion of a two-person bargaining problem
is used, and the spectrum sharing problem is cast as a stochastic optimization
problem. To solve this problem, we propose both centralized and distributed
dynamic control algorithms. Numerically, we show that the proposed distributed
algorithm achieves almost the same performance as the centralized one. The
results are documented in [165, 166].

Chapter 6 concludes the thesis and discusses possible future work directions.

1.3 The author’s contribution to the publications

The thesis is based on four journal papers [157, 159, 162, 165], and five related
conference papers [158, 160, 163, 164, 166]. The author of this thesis had the
main responsibility for carrying out the analysis, writing the MATLAB simulation
codes, generating numerical results, and writing papers [157–160, 162–166]. This
was except for conference paper [158], where the second and third co-authors took
the responsibility of manuscript preparation. In all other papers, including [158],
the role of other authors was to provide comments, criticism, and support during
the process.

In addition to papers [157–160, 162–166], the author also published a con-
ference paper [167] which is not included in this thesis. The author has also
contributed to the journal paper [168] and conference papers [161, 169, 170].
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2 Global optimization method for nonconvex
problem in MISO cellular networks

The main contribution of this chapter is to propose a globally optimal solution
method for the WSRMax problem in multicell MISO downlink networks. The
problem is known to be NP-hard [30]. We propose a method, based on the
branch and bound technique [76], which solves globally the nonconvex WSRMax
problem within a pre-defined accuracy ε. Specifically, the proposed algorithm
computes a sequence of asymptotically tight upper and lower bounds for the
maximum weighted sum-rate, and it terminates when the difference between the
upper and lower bound is smaller than ε. Thus, our solution is certified to be at
most ε-away from the global optimal value.

Our proposed branch and bound method is somewhat similar to the one
used in [59] in the context of SISO systems. Unlike in [59], the WSRMax
problem considered in this chapter (in MISO systems), is a higher dimensional
problem, i.e., it requires finding the optimal transmit beamformers and power
allocation. Reformulating this higher dimensional problem appropriately to
allow applying a BB method in a reduced dimensional space, and finding
efficient bounding techniques which ensures the convergence of BB algorithm are
challenging tasks. The key contribution of this chapter is the reformulation of
the original problem into a smaller dimensional space (i.e., the SINR domain)
by noticing that transmit powers and precoders can be easily computed by
using standard convex optimization techniques [132, Sec. IV-B], if one knows
the SINR point. Specifically, instead of implementing a BB algorithm over a
higher dimensional space (i.e., in the power and precoder domain), we search
over a SINR domain to find the optimal SINR point, which maximizes the
weighted sum-rate. Then standard convex optimization techniques are applied
to recover the optimal powers and precoders. Furthermore, we have introduced
an improved bounding technique which increases significantly the convergence
speed of the BB algorithm.

The proposed method can be used to provide performance benchmarks for
many existing network design problems which relys on solving the WSRMax
problem. Moreover, the proposed framework is not restricted to the WSRMax
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Fig. 2.1. Multicell network, N = 3, L = 9, N = {1, 2, 3}, L = {1, . . . , 9}, L(1) = {1, 2, 3},
L(2) = {4, 5, 6}, and L(3) = {7, 8, 9}.

problem; it can be used to maximize any system performance that is Lipschitz
continuous and increasing function of SINR values.

2.1 System model and problem formulation

A multicell MISO downlink system, with N BSs each equipped with T transmit
antennas, is considered. The set of all BSs is denoted by N and we label them
with the integer values n = 1, . . . , N . The transmission region of each BS is
modeled as a disc with radius RBS centered at the location of the BS1. A single
data stream is transmitted for each user. We denote the set of all data streams
in the system by L, and we label them with the integer values l = 1, . . . , L. The
transmitter node (i.e., the BS) of lth data stream is denoted by tran(l) and the
receiver node of lth data stream is denoted by rec(l). We have L = ∪n∈NL(n),
where L(n) denotes the set of data streams transmitted by BS n (see Fig. 2.1).

1For simplicity, the transmission region of each BS is modeled as a disc. This assumption is
not restrictive for the work carried out in this thesis.
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The antenna signal vector transmitted by nth BS is given by

sn =
∑
l∈L(n) dlml, (2.1)

where dl ∈ C represents the information symbol and ml ∈ CT denotes the
transmit beamformer associated with lth data stream. We assume that the data
streams for different users are independent, i.e., E{dld∗j} = 0 for all l, j ∈ L,
where l 6= j; and we also assume that dl is normalized to E|dl|2 = 1.

The signal received at rec(l) can be expressed as

yl = dlh
H
llml +

∑
j ∈ L, j 6= l

djh
H
jlmj + nl, (2.2)

where hH
jl ∈ C1×T is the channel vector between tran(j) and rec(l), and nl is

circular symmetric complex Gaussian noise with variance σ2
l . The received SINR

of lth data stream is given by

Γl(m) =
|hH
llml|2

σ2
l +

∑
j ∈ L, j 6= l

|hH
jlmj |2

, (2.3)

where we use the notation m to denote a vector obtained by stacking ml for all
l ∈ L in top of each other, i.e., m = [mT

1 , . . . ,m
T
L]T.

Let βl be an arbitrary nonnegative weight associated with data stream
l, l ∈ L. We consider the case where all receivers are using single-user detection
(i.e., a receiver decodes its intended signal by treating all other interfering signals
as noise). Assuming that the power allocation is subject to a maximum power
constraint

∑
l∈L(n) ‖ml‖22 ≤ pmax

n for each BS n ∈ N , the problem of WSRMax
can be expressed as

maximize
∑
l∈L βl log2

(
1 +

|hH
llml|2

σ2
l +

∑
j ∈ L, j 6= l

|hH
jlmj |2

)
subject to

∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,
(2.4)

where the optimization variable is {ml}∈L.

2.2 Solution via branch and bound method

In this section we start by equivalently reformulating problem (2.4) as a
minimization of a nonconvex function over an L-dimensional rectangle. Then
we apply the BB method [76] to minimize the nonconvex function over the
L-dimensional rectangle.

41



2.2.1 Equivalent reformulation

By introducing a new variable γl, for all l ∈ L, and changing the sign of the
objective function of problem (2.4), it can be expressed equivalently as

minimize
∑
l∈L−βl log2(1 + γl)

subject to γl ≤
|hH
llml|2

σ2
l +

∑
j ∈ L, j 6= l

|hH
jlmj |2

, l ∈ L∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,

(2.5)

with variables {γl}l∈L and {ml}l∈L. Note that the equivalence between problems
(2.4) and (2.5) follows from the monotonically increasing property of the log2(·)
function, which ensures that the first set of inequality constraints of problem
(2.5) are tight (i.e., they hold with equality at the optimal solution).

Now let us rewrite problem (2.5) in a compact form as

minimize f0(γ)

subject to γ ∈ G,
(2.6)

with variable γ = [γ1, . . . , γL]T, where the objective function f0(γ) is

f0(γ) =
∑
l∈L−βl log2(1 + γl) (2.7)

and the feasible set (or the achievable SINR values) G for variable γ is

G =

γ

∣∣∣∣∣∣∣
γl ≤

|hH
llml|2

σ2
l +

∑
j ∈ L, j 6= l

|hH
jlmj |2

, l ∈ L∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N

 . (2.8)

Note that the function f0(γ) is nonpositive and zero is the maximum value over
γ ∈ G. Thus, we define a new function f̃ : IRL

+ → IR as

f̃(γ) =

{
f0(γ) if γ ∈ G
0 otherwise ,

(2.9)

Hence, for any A ⊆ IRL
+ such that G ⊆ A, we have

inf
γ∈A

f̃(γ) = inf
γ∈G

f0(γ) = p? , (2.10)

where p∗ is the optimal value of problem (2.5). It is worth noting that the
function f̃ is nonconvex over convex set A and f0 is a global lower bound on f̃ ,
i.e., f0(γ) ≤ f̃(γ) for all γ ∈ A.
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We now show that problem (2.5) can be equivalently expressed as a mini-
mization of the nonconvex function f̃(γ) over an L-dimensional rectangle. To do
this, let us define an L-dimensional rectangle Qinit as

Qinit =

{
γ

∣∣∣∣0 ≤ γl ≤ ‖hll‖22σ2
l

pmax
tran(l), l ∈ L

}
. (2.11)

It is easy to check that G ⊆ Qinit
2 . Therefore, from (2.10), it follows that

infγ∈Qinit
f̃(γ) = p?. Thus, we have reformulated problem (2.5) equivalently as a

minimization of the nonconvex function f̃(γ) over the rectangle Qinit.

2.2.2 Branch and bound algorithm

In this section we apply BB method [76] to minimize the nonconvex function f̃(γ)

over the L-dimensional rectangle Qinit. We first review briefly the BB method.
Then we summarize a BB algorithm to minimize f̃(γ) over the rectangle Qinit.

For any L-dimension rectangle Q = {γ|γl,min ≤ γl ≤ γl,max, l ∈ L} such that
Q ⊆ Qinit, let us define a function φmin(Q) as

φmin(Q) = inf
γ∈Q

f̃(γ) . (2.12)

By using (2.10) and (2.12), it can be easily verified that

φmin(Qinit) = inf
γ∈Qinit

f̃(γ) = p?. (2.13)

The key idea of the BB algorithm is to generate a sequence of asymptotically
tight upper and lower bounds for φmin(Qinit). At each iteration k, the lower
bound Lk and the upper bound Uk are updated by partitioning Qinit into smaller
rectangles. To ensure convergence, the bounds should become tight as the
number of rectangles in the partition of Qinit grows. To do this, the BB uses two
functions φub(Q) and φlb(Q), defined for any rectangle Q ⊆ Qinit such that the
following conditions are satisfied [76, 171]:

C1: The functions φlb(Q) and φub(Q) compute a lower bound and an upper
bound, respectively on φmin(Q), i.e.,

φlb(Q) ≤ φmin(Q) ≤ φub(Q) .

2It follows from Cauchy-Schwartz inequality (i.e., |hH
llml|2 ≤ ‖hll‖22pmax

tran(l)
for all ‖ml‖22 ≤

pmax
tran(l)

) after neglecting the interference terms in the denominator of SINR constraints in (2.8).
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C2: As the maximum half length of the sides ofQ (i.e., size(Q) = 1
2 maxl∈L{γl,max−

γl,min}) goes to zero, the difference between the upper and lower bounds
converges to zero, i.e.,

∀ε > 0 ∃δ > 0 s.t. ∀Q ⊆ Qinit,

size(Q) ≤ δ ⇒ φub(Q)− φlb(Q) ≤ ε . (2.14)

Finding accurate and easy to compute upper and lower bound functions
φub(Q) and φlb(Q) is one of the most difficult part in deriving a BB algorithm.
For clarity, we first summarize the generic BB algorithm and the bounding
functions are defined in Section 2.3.

The BB algorithm starts by computing U1 = φub(Qinit) and L1 = φlb(Qinit),
which are upper and lower bounds on p?, respectively. Let ε be the pre-defined
tolerance. Then if U1 − L1 ≤ ε, the algorithm terminates with a certificate that
the upper bound U1 is at most ε-away from the optimal value p?. Otherwise,
the initial rectangle Qinit is partitioned into smaller rectangles. At the kth
partitioning step, Qinit is split into k rectangles such that Qinit = ∪ki=1Qi. The
upper and lower bounds on p? at kth partitioning step are updated as

Uk = min
i=1,...,k

φub(Qi), Lk = min
i=1,...,k

φlb(Qi). (2.15)

The BB algorithm terminates if the difference between Uk and Lk is smaller
than ε. Otherwise, further partitioning of Qinit is required, until the difference
between Uk and Lk is smaller than ε. The basic BB algorithm to minimize f̃
over Qinit can be summarized as follows:

Algorithm 2.1. Branch and bound algorithm

1. Initialization: given tolerance ε>0. Set k=1, B1={Qinit}, U1=φub(Qinit) ,
and L1=φlb(Qinit).

2. Stopping criterion: if Uk − Lk > ε go to Step 3, otherwise STOP.
3. Branching:

a) pick Q ∈ Bk for which φlb(Q) = Lk and set Qk = Q.
b) split Qk along one of its longest edge into QI and QII .
c) Let Bk+1 = (Bk\{Qk}) ∪ {QI ,QII}.
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4. Bounding:

a) set Uk+1 = minQ∈Bk+1
{φub(Q)}.

b) set Lk+1 = minQ∈Bk+1
{φlb(Q)}.

5. Set k = k + 1 and go to step 2.

The first step initializes the algorithm, and computes the upper and lower
bounds on p? over the initial rectangle Qinit. The second step checks the stopping
criterion, and the algorithm terminates if the difference between the upper and
lower bounds is smaller than ε. Otherwise, the algorithm repeats step 2 to
5, until Uk − Lk ≤ ε. Step 3 is a branching step; here, a rectangle is further
partitioned into smaller rectangles. Note that in Algorithm 2.1, we have used
the notation Bk to denote a set of k smaller rectangles that are obtained by
partitioning Qinit. At step 3, we pick the rectangle Q with the smallest lower
bound from the set Bk, and split it into two smaller rectangles along its longest
edge. Splitting of the rectangle along its longest edge ensures the convergence of
the algorithm [76]. Step 4 updates the best upper and the best lower bounds
according to (2.15).

Note that in step 3 of Algorithm 2.1, from the set Bk any rectangle for which
the lower bound φlb(Q) is larger than Uk is never selected for further splitting.
This is because in such a rectangle all points are worse than the current best
upper bound Uk on the optimal value p?. Thus, from the set Bk any rectangle
that satisfies φlb(Q) > Uk can be eliminated (i.e., pruned), without affecting the
algorithm. Even though pruning does not affect the algorithm, it can be useful
in reducing the storage requirements of Algorithm 2.1.

2.2.3 Convergence of the branch and bound algorithm

In this section we show that the branch and bound algorithm (i.e., Algorithm 2.1)
converges within a finite number of iterations. The convergence of Algorithm 2.1
is established by the following theorem:

Theorem 2.1. If for any Q ⊆ Qinit with Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L},
the functions φub(Q) and φlb(Q) satisfy the conditions C1 and C2, then Algo-
rithm 2.1 converges in a finite number of iterations to a value arbitrarily close to
p?, i.e., ∀ε > 0, ∃K > 0 s.t UK − p? ≤ ε .
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Proof. The proof is similar to the one provided in [76, 171], and it is provided
here for the sake of completeness. First note that there are k rectangles in the
set Bk. Let vol(Qinit) denote the volume of rectangle Qinit. Thus, we have

min
Q∈Bk

vol(Q) ≤ vol(Qinit)

k
. (2.16)

Therefore, as k increases, at least one rectangle in the partition becomes small.
Then it is required to show that the smaller vol(Q) the smaller size(Q). To do
this, we first define the condition number of rectangle

Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}

as
cond(Q) =

maxl(γl,max − γl,min)

minl(γl,max − γl,min)
. (2.17)

Note that the branching rule we use (see Algorithm 2.1 , step 3), always ensures
that for any k and any rectangle Q ∈ Bk [76, Lem. 1]

cond(Q) ≤ max{cond(Qinit), 2} . (2.18)

Moreover, we have,

vol(Q) =
∏L
l=1(γl,max − γl,min) (2.19)

≥ max
l

(γl,max − γl,min)
(

min
l

(γl,max − γl,min)
)L−1

(2.20)

=
(2 size(Q))

L

(cond(Q))
L−1

(2.21)

≥
(

2 size(Q)

cond(Q)

)L
, (2.22)

where the last inequality follows by noting that cond(Q) ≥ 1. Thus, from (2.22)
we have

size(Q) ≤ 1

2
cond(Q)vol(Q)1/L . (2.23)

By using (2.16), (2.18), and (2.23) we get

min
Q∈Bk

size(Q) ≤ 1

2
max{cond(Qinit), 2}

vol(Qinit)

k
. (2.24)

We are now ready to show that there exists a positive integer K such that for
any ε > 0, UK − p? ≤ ε. To see this, we select K as the maximum number of
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iterations so that

1

2
max{cond(Qinit), 2}

vol(Qinit)

K
≤ δ . (2.25)

Thus from (2.24), for some Q̃ ∈ BK , size(Q̃) ≤ δ and from C2 (see (2.14)),
we have φub(Q̃)− φlb(Q̃) ≤ ε. However, note that UK ≤ φub(Q̃) (since UK =

minQ∈BK
{φub(Q)}) and p? ≥ φlb(Q̃). Thus, UK − p? ≤ ε and the result

follows.

2.3 Upper and lower bound functions

In this section we derive the bounding functions φub(Q) and φlb(Q) for Algo-
rithm 2.1 by exploiting the monotonic nonincreasing property of f0. First, basic
bounding functions are established, and then a method to improve the basic
lower bounding function is proposed.

2.3.1 Basic upper and lower bounds

The basic bounding functions are built upon the general expression of the basic
lower and upper bound functions used in [59], which can be formally expressed as

φBasic
lb (Q) =

{
f0(γmax) γmin ∈ G
0 otherwise ,

(2.26)

and

φBasic
ub (Q) = f̃(γmin) =

{
f0(γmin) γmin ∈ G
0 otherwise ,

(2.27)

where Q = {γ|γl,min ≤ γl ≤ γl,max, l ∈ L} such that Q ⊆ Qinit, γmax =[
γ1,max, . . . , γL,max

]T , γmin =
[
γ1,min, . . . , γL,min

]T , and G is defined in (2.8).
These general expressions hold true for the case of MISO system as well. However,
checking the condition γmin ∈ G, which is central to computing φBasic

lb and φBasic
ub ,

is much more difficult in the case of multiple transmit antennas. In the sequel,
we first show that the functions φBasic

lb (Q) and φBasic
ub (Q) satisfy conditions C1

and C2; which are essential for the convergence of Algorithm 2.1. Then we
provide a computationally efficient method to check the condition γmin ∈ G.

Lemma 2.1. The functions φBasic
lb (Q) and φBasic

ub (Q) satisfy the conditions C1
and C2.
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Proof. The proof is similar to the one provided in [59], and it is provided here
for the sake of completeness. First, we prove that the functions φBasic

lb (Q) and
φBasic

ub (Q) satisfy the condition C1; then we prove that the functions φBasic
lb (Q)

and φBasic
ub (Q) satisfy the condition C2.

1. The functions φBasic
lb (Q) and φBasic

ub (Q) satisfy the condition C1
In the case of γmin 6∈ G we can easily see that φBasic

lb (Q) = φmin(Q) =

φBasic
ub (Q) = 0, and therefore the inequalities in C1 hold with the equalities.

In the case of γmin ∈ G we notice that

φmin(Q) = inf
γ∈Q

f̃(γ) ≤ f̃(γmin) = f0(γmin) = φBasic
ub (Q) . (2.28)

The first equality follows from (2.12), the inequality follows since γmin ∈ Q,
and the second equality follows from (2.9). Moreover, we have

φmin(Q) = inf
γ∈Q

f̃(γ) ≥ inf
γ∈Q

f0(γ) = f0(γmax) = φBasic
lb (Q) , (2.29)

where the inequality follows from the fact that f̃(γ) ≥ f0(γ) and the second
equality is from the fact that Q is a rectangle and f0(γ) is monotonically
decreasing in each variable γl, l ∈ L. From (2.28) and (2.29) we conclude
that φBasic

lb (Q) ≤ φmin(Q) ≤ φBasic
ub (Q). This completes the proof of the first

part of Lemma 2.1
2. The functions φBasic

lb (Q) and φBasic
ub (Q) satisfy the condition C2

We first show that the function f0(γ) =
∑
l∈L−βl log2(1 + γl) is Lipschitz

continuous on IRL
+ with the constant H =

√∑
l∈L β

2
l / log(2), i.e.,

|f0(µ)− f0(ν)| ≤ H ||µ− ν||2 (2.30)

for all µ,ν ∈ IRL+. We start by noting that f0(γ) is convex. Therefore, for all
µ,ν ∈ IRL

+ we have [29, Sec. 3.1.3]

f0(µ)− f0(ν) ≤ ∇f0(µ)T(µ− ν) . (2.31)

Without loss of generality, we can assume that f0(µ)− f0(ν) ≥ 0. Otherwise,
we can obtain exactly the same results by interchanging µ and ν in (2.31),
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i.e., f0(ν)− f0(µ) ≤ ∇f0(ν)T(ν − µ). Thus, we see that

|f0(µ)− f0(ν)| ≤
∣∣∇f0(µ)T(µ− ν)

∣∣ (2.32)

≤ ||∇f0(µ)||2 ||(µ− ν)||2 (2.33)

≤ maxγ∈IRL
+
||∇f0(γ)||2 ||(µ− ν)||2 (2.34)

= max
γ∈IRL

+

1

log(2)

√√√√∑
l∈L

β2
l

(1 + γl)2
||(µ− ν)||2 (2.35)

= H ||(µ− ν)||2 , (2.36)

where (2.32) follows from (2.31), (2.33) follows from the Cauchy-Schwarz
inequality, (2.34) follows from the maximization operation, (2.35) follows
by noting that [∇f0(γ)]l = βl

(1+γl) log (2) , l ∈ L, and (2.36) follows by setting
γl = 0 for all l ∈ L.

Now we can write the following relations:

φBasic
ub (Q)− φBasic

lb (Q) ≤ f0(γmin)− f0(γmax) (2.37)

≤ H ||γmin − γmax||2 (2.38)

= H
∣∣∣∣ ∑
l∈L

(γl,max − γl,min)êl
∣∣∣∣

2
(2.39)

≤ H
∑
l∈L(γl,max − γl,min) (2.40)

≤ 2HL size(Q) . (2.41)

The first inequality (2.37) follows from (2.26) and (2.27) by noting that f0 is
nonincreasing, (2.38) follows from (2.30), (2.39) follows clearly by noting
that êl is lth standard unit vector, (2.40) follows from the triangle inequality,
and (2.41) follows from the definition of size(Q) (see C2). Thus, for any
given ε > 0, we can select δ such that δ ≤ ε/2HL, which in turn implies that
condition C2 is satisfied. This completes the proof of the second part of
Lemma 2.1

We now provide a computationally efficient method based on SOCP to check
the condition γmin ∈ G. Let γ =

[
γ1, . . . , γL

]T be a specified set of SINR values.
To test if these values are achievable (i.e., to test if γ ∈ G) is equivalent to
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solving the following feasibility problem [29, Sec. 4.1.1]:

find m1, . . . ,mL

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L, j 6= l

|hH
jlmj |2

≥ γl, l ∈ L∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,

(2.42)

with variable {ml}l∈L. The feasibility problem (2.42) determines whether the
SINR constraints are achievable, and if so, returns a set of feasible transmit
beamformers {m?

l }l∈L that satisfies them.
Problem (2.42) is not convex as such, but following the approach of [132,

Sec. IV-B], it can be reformulated as a standard SOCP and solved efficiently
via interior points methods [29, 172]. To do this, let us define the matrix
Mn = [ml]l∈L(n) obtained by concatenating the column vectors ml. Then
problem (2.42) can be cast as the following SOCP feasibility problem:

find m1, . . . ,mL

subject to


√(

1 + 1
γl

)
mH
l hll[

mH
1 h1l, . . . ,m

H
LhLl

]T
σl

 �SOC 0, l ∈ L

[ √
pmax
n

vec(Mn)

]
�SOC 0, n ∈ N ,

(2.43)

where the optimization variable is {ml}l∈L; and we use notation �SOC to denote
the generalized inequalities with respect to the second order cone [132], [29,
Sec. 2.2.3], i.e., for any x ∈ IR and y ∈ CT , [x,yT ]T �SOC 0 is equivalent to
x ≥ ‖y‖2.

2.3.2 Improved lower bound

Tighter bounds3 are very important because they can substantially increase
the convergence speed of the BB algorithm. By exploiting the monotonically
nonincreasing property of f0, an improved lower bound is proposed in this
subsection.

3We say a bound is tighter in the following sense: φlb(Q) is a tighter lower bound if for any
Q ⊆ Qinit, we have φmin(Q) ≥ φlb(Q) ≥ φBasic

lb (Q).
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(a) (b) (c)

Fig. 2.2. Illustration of G, Qinit, Q, and Q̄? in a 2−dimensional space, [157] c©2012, IEEE.

Note that in the case of γmin 6∈ G (i.e., Q∩ G = ∅, see Fig. 2.2(a), f̃(γ) = 0

for any γ ∈ Q. Thus, both the basic lower bound (2.26) and the basic upper
bound (2.27) are trivially zero and no further improvement is possible since they
are tight. Consequently, tighter bounds can be found only in the case γmin ∈ G
(i.e., Q∩ G 6= ∅, see Fig. 2.2(b)). Thus, we consider only this case in the sequel.

Roughly speaking, a tighter lower bound can be obtained as follows. We first
construct the smallest rectangle Q̄? ⊆ Q which encloses the intersection Q ∩ G
(see Fig. 2.2(b)). Let us denote this rectangle as

Q̄? = {γ |γl,min ≤ γl ≤ γ̄?l , l ∈ L} . (2.44)

Then the improved lower bound is given by f0(γ̄?1 , . . . , γ̄
?
L).

Recall that Q = {γ |γl,min ≤ γl ≤ γl,max, l ∈ L}. For any Q ⊆ Qinit, the
improved lower bound can be formally expressed as

φImp
lb (Q) =

{
f0(γ̄?) if γmin ∈ G
0 otherwise ,

(2.45)

where γ̄? = [γ̄?1 , . . . , γ̄
?
L]T is the maximum corner of the rectangle Q̄?, and γ̄?i can

be found by using bisection search on each edge of the rectangle Q as discussed
below.

Let us define a corner point along the êi edge of the rectangle Q as ai =

γmin + (γi,max− γi,min)êi. If a corner point ai lies inside G, i.e., ai ∈ G (see a1 in
Fig. 2.2(c)), then γ̄?i = γi,max. Otherwise (i.e., ai 6∈ G ), a bisection search over
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the line segment between the points γmin and ai can be used to find γ̄?i . The
bisection search used to find γ̄?i (when ai 6∈ G) is summarized in Algorithm 2.2 4.

Algorithm 2.2. Bisection search for finding γ̄?i

1. Initialization: l = γmin and u = ai, and tolerance εb > 0.
2. If ‖u− l‖2 < εb return γ̄?i = [u]i and STOP.
3. Set t = (l + u)/2.
4. If t ∈ G set l = t. Otherwise, set u = t. Go to step 2.

Note that the SOCP feasibility problem formulation (2.43) is used for checking
if t ∈ G at the step 4 of Algorithm 2.2. In Algorithm 2.2, the interval [l,u]

is divided into two at each iteration. Hence, for a tolerance εb > 0 exactly
dlog2(‖l− u‖2/εb)e iterations are required for the algorithm to terminate [29,
Ch. 4.2.5].

2.4 Numerical examples

In this section we first evaluate the impact of the proposed bounds (Section 2.3)
on the convergence of Algorithm 2.1. Then, we use the proposed Algorithm 2.1
to evaluate the performance loss of several suboptimal algorithms.

We consider a multicell wireless downlink system as shown in Fig. 2.3. There
are N = 2 BSs each with T = 2 transmit antennas. The distance between the
BSs is denoted by DBS. We assume circular cells, where the radius of each one is
denoted by RBS. For simplicity, we assume 2 users per cell. The locations of the
users associated with the BSs are arbitrarily chosen as shown in Fig. 2.3.

We assume an exponential path loss model, where the channel vector between
the BSs and users is modeled as

hjl =

(
djl
d0

)−η/2
cjl, (2.46)

where djl is the distance from tran(j) to rec(l), d0 is the far field reference
distance [173], η is the path loss exponent, and cjl ∈CT is arbitrarily chosen from

4For any 0 < εb < ‖l− u‖2, bound φImp
lb (Q) is less than φBasic

lb (Q). Hence, instead of solving
Algorithm 2.2 accurately, a value of εb can be selected in order to find improved lower bound,
and reduce the execution time of BB Algorithm 2.1 .
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Fig. 2.3. MISO downlink wireless network with N = 2 BSs and L = 4 users. N = {1, 2},
L(1) = {1, 2}, and L(2) = {3, 4}, [157] c©2012, IEEE.

the distribution CN (0, I) (i.e., frequency-flat fading channel with uncorrelated
antennas). Here, we refer an arbitrarily generated set of fading coefficients
Č = {cjl|j, l ∈ L} as a single fading realization. Note that in expression (2.46)
the term (djl/d0)

−η/2 denotes large scale fading, and the term cjl denotes small
scale fading.

We set pmax
n = pmax

0 for all n ∈ N , and σl = σ for all l ∈ L. We define the
signal-to-noise ratio (SNR) operating point at a distance r as

SNR(r) =

(
r

d0

)−η
pmax

0

σ2
. (2.47)

In the following simulations, we set d0 = 1, η = 4, and the cell radius RBS is fixed
throughout the simulations such that SNR(RBS) = 10 dB for pmax

0 /σ2 = 40 dB.
Furthermore, we let DBS/RBS = 1.6.

Fig. 2.4 shows the evolution of upper and lower bounds for the optimal
value of problem (2.5) for a single fading realization, and βl = 0.25 for all l ∈ L.
Specifically, in Fig. 2.4 we used the basic upper bound (UBBasic) in conjunction
with both the basic lower bound (LBBasic) and the improved lower bound
(LBImp). Results show that both lower/upper bound pairs (LBImp,UBBasic) and
(LBBasic,UBBasic) become tighter as the number of iterations grows. However,
the convergence speed of Algorithm 2.1 is substantially increased by the improved
lower bound as compared to the basic one. For example, when ε = 0.2, the basic
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Fig. 2.4. Upper and lower bound evolution, [157] c©2012, IEEE.

bound requires more than 104 iterations to converge, where as the improved
lower bound, with the bisection search tolerance εb = 0.1, achieves the same
level of accuracy in just 525 iterations.

In order to provide a statistical description of the speed of convergence,
we run Algorithm 2.1 for 100 fading realizations. For each one we store the
number of iterations required to find the optimal value of problem (2.5) within
an accuracy of ε = 0.1 with both lower/upper bound pairs (LBImp,UBBasic) and
(LBBasic,UBBasic), respectively.

Fig. 2.5 shows the empirical cumulative distribution function (CDF) plots of
the total number of iterations required to terminate Algorithm 2.1. Results show
that the improved lower bound significantly increases (by about 100 times) the
convergence speed of Algorithm 2.1. For example, when the improved lower
bound is used the algorithm finishes in less than 1500 iterations for more than
90% of the simulated cases, but with the basic lower bound the algorithm needs
about 1.5× 105 iterations to find the optimal solution with the same probability.

In the sequel, we use the proposed Algorithm 2.1 to numerically evaluate
the performance loss of the following suboptimal algorithms: 1) generalized
asynchronous distributed (GAD) algorithm [174, Sec. 2], 2) distributed interfer-
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Fig. 2.5. Empirical CDF plot of total number of iterations, [157] c©2012, IEEE.

ence alignment (DIA) algorithm [175], and 3) weighted sum-MSE minimiza-
tion (WMMSE) algorithm [120]. The GAD and DIA algorithms can handle only
interference channels, and therefore we limit our simulations to 2-user MISO
interference channels. Specifically, in the following simulation we consider one
user per BS in Fig. 2.3, i.e., only user 2 of BS 1 and user 3 of BS 2 are considered.

Fig. 2.6 shows the weighted sum-rate of the considered algorithms for different
SNR values5. Each curve is averaged over 500 fading realizations. Transmit
beamforming vectors with full transmit power are used for initializing the
beamformers of suboptimal algorithms. For Algorithm 2.1 the accuracy ε is
set to 0.01. Results show that the performance of the GAD algorithm is very
close to the optimal value irrespective of SNR values for the considered system
setup. The DIA algorithm has a noticeable performance loss at low SNR values,
however, it approaches to the optimal value at high SNR values. In contrast, the
performance of WMMSE algorithm is close to the optimal value at low SNR
values, and exhibits a noticeable performance loss at high SNR values.

5For fixed radius RBS in Fig. 2.3, different SNRs (i.e., different SNR(RBS)) are obtained by
changing pmax

0 /σ2 in (2.47).
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Fig. 2.6. Average weighted sum-rate for SNR, [157] c©2012, IEEE.

Next, we plot the empirical complexity of BB Algorithm 2.1 as compared to
the WMMSE [120] algorithm, in order to illustrate the complexity-performance
tradeoff. We consider N = 3 BSs, each with 2 users. We set βl = 1 for all l ∈ L,
and run Algorithm 2.1 for the both basic lower bound (LBBasic) and improved
lower bound (LBImp). Fig. 2.7(a) shows the execution time6 [seconds] versus the
number of iterations for SNR = 15 dB, and the evolution of the corresponding
WSR value is shown in Fig. 2.7(b). Results show that the WMMSE [120]
algorithm can converge fast (e.g., for the simulated case, it converges in about 10

iterations, taking around 7.8× 10−2 seconds). However, the BB Algorithm 2.1
can be slow as shown in Fig 2.7(a). But, the BB algorithm is a useful tool for
evaluating the performance loss of the suboptimal algorithm; see Fig. 2.7(b).

6The simulation was run in MATLAB 2015b using CVX package[172], on Linux system with
an Intel Xeon CPU E5-2640 v4 @ 2.40GHz.
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2.5 Summary and discussion

We have considered the problem of WSRMax in multicell downlink MISO
systems. The problem is known to be NP-hard. We have proposed a method,
based on a BB technique, which globally solves the nonconvex WSRMax problem
with an optimality certificate. Bounding methods based on conic optimization
were proposed. The bounding functions at each step of the algorithm can be
efficiently solved by using interior-point method [29, 172]. The convergence
speed of the proposed algorithm can be substantially increased by improving the
lower bound. It is worth to note that the BB technique, basically, implements
some sort of exhaustive search in a systematic manner. Hence, Algorithm 2.1 can
be (and often are) slow. In the worst case its complexity can grow exponentially
with the problem size.

The proposed method can be used to provide performance benchmarks by
back-substituting it into many existing network design problems which rely on
the WSRMax problem. Moreover, the method proposed here is not restricted to
the WSRMax problem. It can also handle any system performance metric that
can be expressed as a Lipschitz continuous and increasing function of SINR
values.
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3 Robust resource allocation with imperfect
CSI for MISO cellular networks

In this chapter the problem of WSRMax in the presence of imperfect CSI at
BSs for multicell MISO downlink networks is considered. Specifically, assuming
bounded ellipsoidal model for the CSI errors, the problem of worst-case WSRMax
for multicell MISO downlink networks is considered. The problem is known to
be NP-hard even in the case of perfect CSI.

We propose both global and local solution methods for the worst-case
WSRMax problem with CSI errors. The optimal global solution method is built
upon the work in Chapter 2 which address the WSRMax problem in the case
of perfect CSI via the BB method [76]. The extension of the BB algorithm of
Chapter 2 to the case of imperfect CSI is not straightforward. This is because the
upper and lower bound functions, which are the most challenging components of
the BB algorithm, must be redesigned from the scratch to take into account the
CSI errors.

As the problem is NP-hard, the convergence speed of the BB method can be
slow for large networks [76]. Hence, even though the BB method provides an
optimal solution, the algorithm may not be suitable for practical implementation
in large networks. Nonetheless, the optimal BB based algorithm is a very useful
tool for providing performance benchmarks for any suboptimal algorithm.

Next, we propose a possibly suboptimal but fast-converging algorithm for
the worst-case WSRMax problem. The proposed suboptimal algorithm is
based on the alternating optimization technique [34, 35] and sequential convex
programming [35]. The main idea is to solve the worst-case WSRMax problem
with respect to different subsets of variables by considering the others to be
fixed. Specifically, the proposed algorithm decomposes the original worst-case
WSRMax problem into two smaller subproblems and solves them sequentially.
Unfortunately, the subproblems are still not convex. Hence, to derive a fast
suboptimal algorithm we approximate these subproblems with convex problems,
such that the efficient interior-point methods [29] can be used to solve them. It
is worth noting that somewhat similar techniques were used in [83, 176] in the
context of multi user MIMO downlink systems with perfect CSI at BSs (and
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generalized in [177]). However, the WSRMax problem addressed in this chapter
is substantially more challenging due to CSI uncertainty.

In practice, the channel estimation errors may have a statistical distribu-
tion [90, 178]. Thus, numerically we also show how we can apply our proposed
algorithms for a scenario with such statistical channel errors.

3.1 System model and problem formulation

3.1.1 Network model

A multicell MISO downlink system, with N BSs each equipped with T transmit
antennas is considered. The set of all BSs is denoted by N , and we label them
with the integer values n = 1, . . . , N . The transmission region of each BS is
modeled as a disc with radius RBS centered at the location of the BS. A single
data stream is transmitted for each user. We denote the set of all data streams
in the system by L, and we label them with the integer values l = 1, . . . , L. The
transmitter node (i.e., the BS) of lth data stream is denoted by tran(l) and the
receiver node of lth data stream is denoted by rec(l). We have L = ∪n∈NL(n),
where L(n) denotes the set of data streams transmitted by nth BS.

The antenna signal vector transmitted by nth BS is given by

sn =
∑

l∈L(n)

dlml, (3.1)

where dl ∈ C represents the information symbol and ml ∈ CT denotes the
transmit beamformer associated with lth data stream. We assume that dl is
normalized such that E|dl|2 = 1. Moreover, we assume that the data streams are
independent, i.e., E{dld∗j} = 0 for all l, j ∈ L, where l 6= j.

The signal received at rec(l) can be expressed as

yl = dlh
H
llml +

∑
j ∈ L(tran(l)), j 6= l

djh
H
llmj

(intra-cell interference)
+

∑
n∈N\{tran(l)}

∑
j ∈ L(n)

djh
H
jlmj + nl,

(out-of-cell interference)

(3.2)

where hH
jl ∈ C1×T is the channel vector between tran(j) and rec(l), and nl is

circular symmetric complex Gaussian noise with variance σ2
l . Note that the
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second right hand term in (3.2) represents the intra-cell interference7 and the
third right hand term represents the out-of-cell interference. The received SINR
of lth data stream is given by

Γl(m) =
|hH
llml|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

|hH
llmj |2 +

∑
n∈N\{tran(l)}

∑
j∈L(n) |hH

jlmj |2
, (3.3)

where we use the notation m to denote a vector obtained by stacking ml for all
l ∈ L on top of each other, i.e., m = [mT

1 , . . . ,m
T
L]T.

3.1.2 Channel uncertainty model

We assume that all the channels are imperfectly known at the network controller,
but they belong to a known compact set of possible values. We model the
channel vector hjl as the sum of two components, i.e.,

hjl = ĥjl + ejl, j, l ∈ L, (3.4)

where ĥjl ∈ CT denotes the estimated value of the channel and ejl ∈ CT

represents the corresponding channel estimation error. It is assumed that ejl

can take any value inside a T -dimensional complex ellipsoid, which is defined as

Ejl =
{
ejl|eH

jlQjlejl ≤ 1
}
, (3.5)

where Qjl is a complex Hermitian positive definite matrix, assumed to be
known, which specifies the size and shape of the ellipsoid. For example, when
Qjl = (1/ξ2

jl)I, the ellipsoidal channel error model (3.5) reduces to a ball
uncertainty region with uncertainty radius ξjl [29]. Note that the ellipsoidal
model can serve as a conservative approximation of the stochastic model, where
we can take the ellipsoids to be the confidence ellipsoids for some high confidence,
e.g., 95% [96, 179]. We refer the interested reader to [180] for the relationship
between the stochastic and the ellipsoidal CSI error models. Now, with the
channel uncertainty model (3.4), the received SINR (3.3) of lth data steam can

7Note that in the expression of intra-cell interference we have used the notation hll instead of
hjl, since tran(j) = tran(l) for all j ∈ L(tran(l)).
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be expressed as

Γl(m, el) =

|(ĥll + ell)
Hml|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

|(ĥll + ell)Hmj |2 +
∑

n∈N\{tran(l)}

∑
j∈L(n) |(ĥjl + ejl)Hmj |2

, (3.6)

where we use the notation el to denote a vector obtained by stacking ejl for all
j ∈ L on top of each other, i.e., el = [eT

1l, . . . , e
T
Ll]

T.

3.1.3 Problem formulation

Let βl be an arbitrary nonnegative weight associated with data stream l, l ∈ L.
We consider the case where all receivers are using single-user detection (i.e., a
receiver decodes its intended signal by treating all other interfering signals as
noise). Assuming that the power allocation is subject to a maximum power
constraint

∑
l∈L(n) ‖ml‖22 ≤ pmax

n for each BS n ∈ N , the problem of worst-case
WSRMax can be expressed as8

maximize infejl∈Ejl,j,l∈L

(∑
l∈L βl log2

(
1 + Γl(m, el)

))
subject to

∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,
(3.7)

with variable {ml}l∈L, where function Γl(m, el) is defined in (3.6). Note that
if there are no CSI errors (i.e., ejl = 0 for all j, l ∈ L), then problem (3.7) is
reduced to problem (2.4) of Chapter 2, i.e., the WSRMax problem with no CSI
error.

3.2 Optimal solution via branch and bound method

We extend the BB Algorithm 2.1 presented in Section 2.2.2 to solve the worst-case
WSRMax problem (3.7). The main difficulty in using Algorithm 2.1 in the case
of imperfect CSI is to define the bounding functions that are used in the BB
algorithm. In this section we start by equivalently reformulating problem (3.7)
as a minimization of a nonconvex function over an L-dimensional rectangle so

8In this Chapter, by the worst-case optimization criteria we provide a framework to handle
CSI uncertainty in a robust manner. That is a certain level of performance is ensured for the
CSI error model (3.4).
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that BB Algorithm 2.1 can be used. Then we provide an efficient method based
on a semidefinite program (SDP) to compute the bounding functions that are
used in the BB algorithm.

3.2.1 Equivalent reformulation

Sets of error vectors associated with data streams are disjoint, i.e., set {e1l, . . . , eLl}
and set {e1i, . . . , eLi} for all l, i ∈ L, where l 6= i, are disjoint. Hence, in the
objective function of problem (3.7), we can move infejl∈Ejl,j∈L for all l ∈ L inside
the sum function. Then express the objective function of problem (3.7) as9∑
l∈L infejl∈Ejl,j∈L

(
βl log2

(
1 + Γl(m, el)

))
. Furthermore, by noting that log2(·)

is a monotonically increasing function, we can move the infimum over ejl ∈ Ejl
for all j ∈ L inside the log2(·) function. Then by introducing a new variable
γl = infejl∈Ejl,j∈L Γl(m, el), for all l ∈ L, and changing the sign of the objective
function of problem (3.7), it can be equivalently reformulated as

minimize
∑
l∈L−βl log2(1 + γl)

subject to γl ≤ infejl∈Ejl,j∈L Γl(m, el), l ∈ L∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,
(3.8)

with variables {γl}l∈L and {ml}l∈L. Note that the first inequality constraints of
problem (3.8) hold with equality at the optimal solution due to a monotonic
decreasing property of the objective function.

Now let us rewrite problem (3.8) in a compact form as

minimize f0(γ)

subject to γ ∈ G,
(3.9)

with variable γ = [γ1, . . . , γL]T, where the objective function f0(γ) is

f0(γ) =
∑
l∈L−βl log2(1 + γl) (3.10)

and the feasible set (or the achievable SINR values) G for variable γ is

G =

γ

∣∣∣∣∣∣
γl ≤ inf

ejl∈Ejl,j∈L
Γl(m, el), l ∈ L∑

l∈L(n) ‖ml‖22 ≤ pmax
n , n ∈ N

 . (3.11)

9Using the fact that the infimum of the sum of separable functions is equal to the sum of the
infimum of the functions, i.e., infx,y

(
f(x) + f(y)

)
= infx f(x) + infy f(y).
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Note that the function f0(γ) is nonpositive and zero is the maximum value over
γ ∈ G. Thus, we define a new function f̃ : IRL

+ → IR as

f̃(γ) =

{
f0(γ) if γ ∈ G
0 otherwise ,

(3.12)

Hence, for any A ⊆ IRL
+ such that G ⊆ A, we have

inf
γ∈A

f̃(γ) = inf
γ∈G

f0(γ) = p? , (3.13)

where p∗ is the optimal value of problem (3.8). It is worth noting that the
function f̃ is nonconvex over convex set A and f0 is a global lower bound on f̃ ,
i.e., f0(γ) ≤ f̃(γ) for all γ ∈ A.

We now show that problem (3.8) can be equivalently expressed as a mini-
mization of the nonconvex function f̃ over an L-dimensional rectangle. To do
this, let us define the following proposition:

Proposition 3.1. Define the L-dimensional rectangle Qinit as

Qinit =

{
γ

∣∣∣∣∣ 0 ≤ γl ≤
‖ĥll‖22
σ2
l

pmax
tran(l), l ∈ L

}
. (3.14)

Then the feasible set of problem (3.9) is enclosed in Qinit, i.e., G ⊆ Qinit.

Proof. By neglecting the interference terms in the denominator of SINR expres-
sion (3.6), let us define L-dimensional rectangle Q0 as

Q0 =

{
γ

∣∣∣∣∣ 0 ≤ γl ≤ sup
‖ml‖22≤pmax

tran(l)

inf
ell∈Ell

|(ĥll + ell)
Hml|2

σ2
l

, l ∈ L
}
. (3.15)

Clearly G ⊆ Q0. Now we note that

sup
‖ml‖22≤pmax

tran(l)

inf
ell∈Ell

|(ĥll + ell)
Hml|2

≤ inf
ell∈Ell

sup
‖ml‖22≤pmax

tran(l)

|(ĥll + ell)
Hml|2 (3.16)

= inf
ell∈Ell

‖ĥll + ell‖22pmax
tran(l) (3.17)

≤ ‖ĥll‖22pmax
tran(l), (3.18)

where the first inequality (3.16) follows by using max-min inequality [29], the
second equality (3.17) follows by maximizing |(ĥll + ell)

Hml|2 subject to the
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constraint ‖ml‖22 ≤ pmax
tran(l) (which can be obtained by using Cauchy-Schwartz

inequality), and the third inequality (3.18) follows by choosing ell = 0 10. Using
inequality (3.18) in expression (3.15), it follows that Q0 ⊆ Qinit, and hence,
G ⊆ Qinit.

Therefore, from Proposition 3.1 and expression (3.13), it follows that

inf
γ∈Qinit

f̃(γ) = p?. (3.19)

Thus, we have reformulated problem (3.8) equivalently as a minimization of the
nonconvex function f̃ over the L-dimensional rectangle Qinit. Hence, the BB
Algorithm 2.1, presented in Section 2.2.2, can be used to solve problem (3.8).
For clarity, we present the generic BB Algorithm 2.1 below.

Algorithm 3.1. (Algorithm 2.1) Branch and bound algorithm

1. Initialization: given tolerance ε > 0. Set k = 1, B1 = {Qinit}, U1 = φub(Qinit),
and L1 = φlb(Qinit).

2. Stopping criterion: if Uk − Lk > ε go to Step 3, otherwise STOP.
3. Branching:

a) pick Q ∈ Bk for which φlb(Q) = Lk and set Qk = Q.
b) split Qk along one of its longest edges into QI and QII .
c) Let Bk+1 = (Bk\{Qk}) ∪ {QI ,QII}.

4. Bounding:

a) set Uk+1 = minQ∈Bk+1
{φub(Q)}.

b) set Lk+1 = minQ∈Bk+1
{φlb(Q)}.

5. Set k = k + 1 and go to step 2.

Let Q = {γ|γl,min ≤ γl ≤ γl,max, l ∈ L} denote an L-dimension rectangle,
such that Q ⊆ Qinit. Then the lower bound function φlb(Q) and the upper
bound function φub(Q) for Algorithm 3.1 can be expressed as (see Section 2.3

10Note that we can choose any ell inside the uncertainty region Ell to obtain an upper bound
for (3.17).
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for detailed explanation)

φlb(Q) =

{
f0(γmax) γmin ∈ G
0 otherwise ,

(3.20)

and

φub(Q) = f̃(γmin) =

{
f0(γmin) γmin ∈ G
0 otherwise ,

(3.21)

where γmax =
[
γ1,max, . . . , γL,max

]T, γmin =
[
γ1,min, . . . , γL,min

]T, and G is
defined in (3.11). Note that the general expressions (3.20) and (3.21) satisfy the
required conditions C1 and C2 that are defined in Section 2.2.2 (see Lemma 2.1),
and they ensure the convergence of the BB algorithm (see Theorem 2.1) in
the case of imperfect CSI. However, checking the condition γmin ∈ G, which is
central to calculating φlb and φub, is much more difficult in the case of imperfect
CSI. A method to check condition γmin ∈ G is derived in the next section.

3.2.2 Computation of upper and lower bounds

In this section we provide an efficient method based on SDR to check the condition
γmin ∈ G, in order to compute the bounding functions (3.20) and (3.21).

Let γ =
[
γ1, . . . , γL

]T be a specified set of SINR values. Checking the
condition that these values are achievable (i.e., testing if γ ∈ G) is equivalent to
solving the following feasibility problem [29, Sec. 4.1.1]:

find m1, . . . ,mL

subject to γl ≤ infejl∈Ejl,j∈L Γl(m, el), l ∈ L∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,
(3.22)

with variable {ml}l∈L. Note that the SINR expression Γl(m, el) has common
variable ell in the numerator and denominator

(
see (3.6)

)
. Hence, it is hard to

solve infejl∈Ejl,j∈L Γl(m, el), and express it in a tractable representation.
By using the definition of set Ejl

(
see (3.5)

)
let us first equivalently rewrite

problem (3.22) as

find m1, . . . ,mL

subject to γl ≤ Γl(m, el), l ∈ L
eH
jlQjlejl ≤ 1, j, l ∈ L∑
l∈L(n) ‖ml‖22 ≤ pmax

n , n ∈ N ,

(3.23)
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with variables {ml}l∈L and {ejl}j,l∈L. Note that in problem (3.23) we have used
a standard trick to express the first inequality constraints of problem (3.22) as a
set of separate inequalities [29, Sec. 4.3.1].

Next, we use S-lemma [29, 181] to replace the first and second inequality
constraints of problem (3.23) with linear matrix inequalities (LMIs), and then
apply a semidefinite relaxation (SDR) technique [182] to determine the feasibility
of problem (3.23). Furthermore, we replace the dummy objective function of
problem (3.23) with a minimization of the total sum-power of the network. Note
that the new objective function will ensure that the SDR is tight, as will be clear
shortly.

Let us first introduce a new variable Ijl to denote the power of the out-of-cell
interference from jth data stream to rec(l) as

Ijl = |(ĥjl + ejl)
Hmj |2,

for all l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n). Then by using the expression of
Γl(m, el)

(
see (3.6)

)
and replacing the objective function of problem (3.23) with

the minimization of the total sum-power of the network, we modify problem (3.23)
as

minimize
∑
l∈L ‖ml‖22

subject to (ĥll + ell)
H

[
mlm

H
l

γl
−
∑

j∈L(tran(l))
j 6=l

mjm
H
j

]
(ĥll + ell)

≥
∑

n∈N\{tran(l)}

∑
j∈L(n) Ijl + σ2

l , l ∈ L (3.24a)

eH
llQllell ≤ 1, l ∈ L (3.24b)

(ĥjl + ejl)
Hmjm

H
j (ĥjl + ejl) ≤ Ijl, l ∈ L,

n ∈ N\{tran(l)}, j ∈ L(n) (3.24c)

eH
jlQjlejl ≤ 1, l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n) (3.24d)∑
l∈L(n) mH

l ml ≤ pmax
n , n ∈ N , (3.24e)

where the optimization variables are {ml}l∈L, {Ijl}j,l∈L, and {ejl}j,l∈L. Note
that in problem (3.24) we have written the second inequality constraint of
problem (3.23) as two separate inequalities (3.24b) and (3.24d). Since the
objective function of problem (3.24) is decreasing in variable ml, it can be easily
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shown (e.g., by contradiction) that constraints (3.24c) hold with equality at the
optimal point. Hence, the feasibility of problem (3.22) can be determined by
solving problem (3.24).

Let us now introduce a new variable M̃l = mlm
H
l such that Rank(M̃l) = 1,

for all l ∈ L. Then by using S-lemma [29, 181] and then applying SDR
technique [182], we determine a solution to problem (3.24) by solving the
following SDP (the detail derivation is provided in Appendix 1).

minimize
∑
l∈LTrace(M̃l)

subject to

 Vl Vlĥll

ĥH
llVl ĥH

llVlĥll −
∑

n∈N\{tran(l)}

∑
j∈L(n) Ijl − σ2

n


+µll

[
Qll 0

0 −1

]
� 0, l ∈ L[

−M̃j −M̃jĥjl

−ĥH
jlM̃j Ijl − ĥH

jlM̃jĥjl

]
+ µjl

[
Qjl 0

0 −1

]
� 0,

l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n)

µjl ≥ 0, j, l ∈ L
M̃l � 0, l ∈ L∑
l∈L(n) Trace(M̃l) ≤ pmax

n , n ∈ N ,

(3.25)

with variables {µjl}j,l∈L, {Ijl}j,l∈L, and {M̃l}l∈L, where Vl is

Vl =
M̃l

γl
−

∑
j∈L(tran(l)),j 6=l

M̃j . (3.26)

Note that in problem (3.25) constraint Rank(M̃l) = 1 for all l ∈ L is dropped.
Let us denote M̃?

l , for all l ∈ L, the optimal solution of problem (3.25).
From M̃?

l we can find m?
l that is feasible for the original problem (3.22), if

the rank of M̃?
l is one for all l ∈ L. Note that due to the minimization of the

total sum-power as the objective function, problem (3.25) yields a low rank
solution M̃?

l
11. In fact, the existence of a rank one solution (for the sum-power

minimization problem) has been recently proven in [98, 183] under some technical
assumptions in the system model. The technical assumptions that guarantee the
11Trace(M̃l) is the sum of the eigenvalues of M̃l. Thus, the objective of problem (3.25) is
equivalent to the minimization of the sum of eigenvalues of the positive semidefinite matrix M̃l.
Hence, problem (3.25) is similar to `1-norm minimization problem [29, Sec. 6.2]. Therefore,
problem (3.25) yields a low rank solution M̃?

l .
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rank one solution are: a) only a single user in each cell, b) error in inter-cell
CSI, but perfect intra-cell CSI is available, and c) small errors with the bound,
provided in [183], in the length of the principal semi-axis of the ellipsoids. Thus,
if any one of these conditions are satisfied, problem (3.25) yields a rank one
solution. We refer the interested reader to [98, Proposition 1] and [183] for
detailed explanations.

3.3 Suboptimal fast-converging algorithm

In this section we derive a fast but possibly suboptimal algorithm for the
worst-case WSRMax problem (3.7). The proposed algorithm is based on the
alternating optimization technique, and is derived in conjunction with sequential
convex programming [35].

We start by expressing the transmit beamformer ml associated with lth data
stream as

ml =
√
plvl, (3.27)

where pl ∈ IR+ and vl ∈CT denote the power and transmit direction associated
with lth data stream, i.e., pl = ‖ml‖22 and vl = ml/‖ml‖2. Then the SINR
expression (3.6) can be expressed as

Γl(p,v, el) =

pl|(ĥll + ell)
Hvl|2

σ2
l +

∑
j∈L(tran(l)),j 6=l

pj |(ĥll + ell)Hvj |2 +
∑

n∈N\{tran(l)}

∑
j∈L(n) pj |(ĥjl + ejl)Hvj |2

, (3.28)

where p = [p1, . . . , pL]T and the notation v denotes a vector obtained by stacking
vl for all l ∈ L on top of each other, i.e., v = [vT

1 , . . . ,v
T
L ]T.

Thus, problem (3.8) can be equivalently expressed as

minimize
∑
l∈L−βl log2(1 + γl)

subject to γl ≤ infejl∈Ejl,j∈L Γl(p,v, el), l ∈ L∑
l∈L(n) pl‖vl‖22 ≤ pmax

n , n ∈ N
‖vl‖22 = 1, pl ≥ 0, l ∈ L,

(3.29)

with variables {γl}l∈L, {pl}l∈L, and {vl}l∈L. Note that problem (3.29) is NP-
hard [30]. Hence, to find a fast-converging algorithm we have to rely on local
optimization methods [184].
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The basic idea of the proposed algorithm is to solve problem (3.29) with
respect to different subsets of variables by considering the others to be fixed. Here,
we first fix variable {vl}l∈L and solve problem (3.29) for variable {γl, pl}l∈L;
we refer to this problem as Subproblem 1. Then by keeping {γl}l∈L fixed we
update variable {pl,vl}l∈L, so that the objective of problem (3.29) can be
further decreased; we refer to this problem as Subproblem 2. Unfortunately, both
subproblems are not convex problems. To derive a fast-converging algorithm
we approximate Subproblem 1 and Subproblem 2 by convex problems. The
proposed suboptimal algorithm alternatively iterates between the approximated
Subproblem 1 and Subproblem 2. Note that a somewhat similar technique has
been used in [83], [176, Sec. 4.3] in the context of multi user MIMO downlink
systems with perfect CSI at BSs. However, the WSRMax problem addressed in
this section is substantially more challenging due to CSI uncertainty.

3.3.1 Subproblem 1: update SINR and power

For fixed beamformers vl for all l ∈ L, problem (3.29) can be expressed as

minimize
∏
l∈L(1 + γl)

−βl

subject to γl ≤ infejl∈Ejl,j∈L Γl(p,v, el), l ∈ L∑
l∈L(n) pl ≤ pmax

n , n ∈ N
pl ≥ 0, l ∈ L.

(3.30)

with variables {γl}l∈L and {pl}l∈L. Recall that the SINR expression Γl(p,v, el)

consists of common variable ell in the numerator and denominator
(
see (3.28)

)
.

Hence, it is hard to solve infejl∈Ejl,j∈L Γl(p,v, el), and express the first inequality
constraints of problem (3.30) in a tractable representation. Thus, we replace
infejl∈Ejl,j∈L Γl(p,v, el) with its lower bound.

To find a lower bound for infejl∈Ejl,j∈L Γl(p,v, el), we ignore the dependence
of numerator and denominator terms of Γl(p,v, el) due to the common variable
ell. Then by independently finding the worst-case numerator and the worst-case
denominator terms of Γl(p,v, el), the lower bound for infejl∈Ejl,j∈L Γl(p,v, el)

can be expressed (a similar approach is also used in [102]) as
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Γ̃l(p,v) =

inf
ell∈Ell

(
pl|(ĥll + ell)

Hvl|2
)

σ2
l + sup

ejl∈Ejl,j∈L

( ∑
j ∈ L(tran(l))

j 6= l

pj |(ĥll + ell)Hvj |2 +
∑

n∈N\{tran(l)}

∑
j∈L(n) pj |(ĥjl + ejl)Hvj |2

) .
(3.31)

To simplify (3.31), let us introduce new variables g
ll
and ḡjl for all j ∈ L

defined as

g
ll

, inf
ell∈Ell

|(ĥll + ell)
Hvl|2, (3.32)

ḡjl , sup
ejl∈Ejl

|(ĥjl + ejl)
Hvj |2, j ∈ L. (3.33)

Now we note that

inf
ell∈Ell

|(ĥll + ell)
Hvl| ≥ inf

ell∈Ell

(
|ĥH
llvl| − |eH

llvl|
)

= |ĥH
llvl| −

√
vH
l Q−1

ll vl, (3.34)

and

sup
ejl∈Ejl

|(ĥjl + ejl)
Hvj | ≤ sup

ejl∈Ejl

(
|ĥH
jlvj |+ |eH

jlvj |
)

= |ĥH
jlvj |+

√
vH
j Q−1

jl vj , j ∈ L, (3.35)

where the first inequality of (3.34) and (3.35) follows by using triangle inequality,
and the second inequality of (3.34) and (3.35) follows by using Cauchy-Schwarz
inequality along with eH

llQllell ≤ 1 and eH
jlQjlejl ≤ 1, respectively (see expres-

sion (3.5) for the definition of Ejl). Then by applying the results of (3.34)
and (3.35) in expressions (3.32) and (3.33), respectively, we get

g
ll

=
∣∣∣(|ĥH

llvl| −
√

vH
l Q−1

ll vl

)+∣∣∣2, (3.36)

ḡjl =
∣∣∣|ĥH

jlvj |+
√

vH
j Q−1

jl vj

∣∣∣2, j ∈ L, (3.37)

where we have used (x)+ for max(x, 0). Therefore, by using a lower bound
function Γ̃l(p,v) for infejl∈Ejl,j∈L Γl(p,v, el), the solution to problem (3.30) can
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be approximated by solving the following optimization problem:

minimize
∏
l∈L(1 + γl)

−βl

subject to γl ≤
plgll

σ2
l +

∑
j ∈ L(tran(l)),

j 6= l

pj ḡjl +
∑

n∈N\{tran(l)}

∑
j∈L(n) pj ḡjl

, l ∈ L

∑
l∈L(n) pl ≤ pmax

n , n ∈ N
pl ≥ 0, l ∈ L,

(3.38)

with variables {γl}l∈L and {pl}l∈L.
Note that problem (3.38) is still a nonconvex problem. However, it can be

easily expressed as a signomial optimization problem [79, 80]. Hence, a close
local solution for problem (3.38) can be efficiently obtained by solving a sequence
of GP which locally approximates the original problem.

To do this, we approximate the objective function of problem (3.38) near an
arbitrary positive point γ̂ = [γ̂1, . . . , γ̂L]T by a monomial function. Let f̌(γ)

denote the objective function of problem (3.38), i.e, f̌(γ) =
∏
l∈L(1 + γl)

−βl .
Then a monomial function m(γ) = d̂

∏
l∈L γ

α̂l

l is the best local approximation of
f̌(γ) near γ̂ if [80, Sec. 8], [83, Lem. 3]

m(γ̂) = f̌(γ̂), and ∇m(γ̂) = ∇f̌(γ̂). (3.39)

By solving expressions in (3.39), we can obtain parameters d̂ and α̂l, and they
are given by

d̂ =
∏
l∈L

(
γ̂
−γ̂l/(1+γ̂l)
l (1 + γ̂l)

)−βl , α̂l = −βlγ̂l/(1 + γ̂l). (3.40)

Therefore, the solution of problem (3.38), by using monomial function m(γ),
near an arbitrary positive point γ̂ can be approximated by solving following GP:

minimize
∏
l∈L

(
γ̂
−γ̂l/(1+γ̂l)
l (1 + γ̂l)

)−βl
∏
l∈L

γ
−βlγ̂l/(1+γ̂l)
l

subject to g−1
ll
p−1
l γl

(
σ2
l +

∑
j ∈ L(tran(l)), j 6= l

pj ḡjl

+
∑

n∈N\{tran(l)}

∑
j∈L(n) pj ḡjl

)
≤ 1, l ∈ L∑

l∈L(n) pl ≤ pmax
n , n ∈ N

pl ≥ 0, l ∈ L
α−1γ̂l ≤ γl ≤ αγ̂l, l ∈ L,

(3.41)
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with variables {γl}l∈L and {pl}l∈L, where α > 0. In problem (3.41), the fourth
set of constraints is called the trust region [80], and it limits the domain of
γl such that the monomial approximation of the objective function near γ̂ is
accurate enough.

Note that problem (3.41) approximates the solution for problem (3.38) near
an arbitrary point γ̂. Hence, to obtain the best local solution to problem (3.38),
we need to solve problem (3.41) repeatedly for different values of γ̂. Thus, we
take the solution γ?l of problem (3.41) as the next iterate γ̂l (i.e., we set γ̂l = γ?l
for all l ∈ L), then solve problem (3.41). This step is repeated until convergence.

3.3.2 Subproblem 2: update beamformers

Here, we fix variable {γl}l∈L and update {pl,vl}l∈L. To do this, we formulate an
optimization problem that finds a power margin such that the SINR value γl, for
all l ∈ L, are preserved. This can be cast as the following optimization problem:

minimize t

subject to γl ≤ infejl∈Ejl,j∈L Γl(p,v, el), l ∈ L∑
l∈L(n) pl‖vl‖22 ≤ tpmax

n , n ∈ N
‖vl‖22 = 1, pl ≥ 0 l ∈ L.

(3.42)

where the optimization variables are t, {vl}l∈L, and {pl}l∈L. Note that the
solutions t?, {v?l }l∈L, and {p?l }l∈L of problem (3.42) do not directly decrease
the objective of the original problem (3.29). However, they provide the power
margin, i.e., pmax

n −
∑
l∈L(n) p

?
l ≥ 0 for all n ∈ N . This positive power margin

implies that the objective of problem (3.29) can be decreased, further, by solving
Subproblem 1 for vl fixed to v?l for all l ∈ L. It is worth noting that t? ≤ 1 for
any {γl}l∈L that are feasible for problem (3.29).

Note that by changing variables pl and vl back to ml

(
see (3.27)

)
, we can

express the constraint set of problem (3.42) similar to that of problem (3.22).
Then the method proposed in Section 3.2.2 to solve problem (3.22) can be
applied to solve problem (3.42). Hence, by using expression (3.27), let us rewrite
problem (3.42) equivalently as
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minimize t

subject to γl ≤ infejl∈Ejl,j∈L Γl(m, el), l ∈ L∑
l∈L(n) ‖ml‖22 ≤ tpmax

n , n ∈ N ,
(3.43)

with variables t and {ml}l∈L, where Γl(m, el) is defined in (3.6). Then by
following the approach of steps (3.23)-(3.25) to handle the constraints of
problem (3.43), the solution for problem (3.43) can be determined by solving the
following SDP:

minimize t

subject to

 Vl Vlĥll

ĥH
llVl ĥH

llVlĥll −
∑

n∈N\{tran(l)}

∑
j∈L(n) Ijl − σ2

n


+µll

[
Qll 0

0 −1

]
� 0, l ∈ L[

−M̃j −M̃jĥjl

−ĥH
jlM̃j Ijl − ĥH

jlM̃jĥjl

]
+ µjl

[
Qjl 0

0 −1

]
� 0,

l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n)

µjl ≥ 0, j, l ∈ L
M̃l � 0, l ∈ L∑
l∈L(n) Trace(M̃l) ≤ tpmax

n , n ∈ N ,

(3.44)

with variables t, {M̃l}l∈L, {µjl}j,l∈L, and {Ijl}j,l∈L, where M̃l = mlm
H
l and

Vl = M̃l/γl −
∑
j∈L(tran(l)),j 6=l M̃j . Note that we have used SDR technique to

arrive at problem (3.44), hence Rank(M̃l) = 1 constraint for all l ∈ L has been
dropped in problem (3.44).

If the solution of problem (3.44) is rank one (i.e, Rank(M̃?
l ) = 1 for all l ∈ L),

we can recover optimal m?
l from M̃?

l for problem (3.43) for all l ∈ L. However,
if Rank(M̃?

l ) ≥ 1, we approximate the solution m?
l by using the dominant

eigenvector and eigenvalue of M̃?
l (interestingly, in all our numerical simulations

we have noted that the solution is always rank one). Then by using relation (3.27)
we recover p?l and v?l from m?

l for problem (3.42).
Finally, we summarize the proposed suboptimal fast-converging algorithm for

the worst-case WSRMax problem (3.29) in Algorithm 3.2.
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Algorithm 3.2. Suboptimal algorithm for the worst-case WSRMax prob-
lem (3.29)

1. Initialization: given positive definite matrix {Qjl}j,l∈L, feasible initial beam-
former {v(0)

l }l∈L, power allocation {p
(0)
l }l∈L for problem (3.29), and tolerance

εγ > 0. Set iteration index k = 0.
2. Solve Subproblem 1: By fixing vl = v

(k)
l for all l ∈ L,

a) compute γ̂l for all l ∈ L as follows

γ̂l =
p

(k)
l g

ll

σ2
l +

∑
j ∈ L(tran(l)), j 6= l

p
(k)
j ḡjl +

∑
n∈N\{tran(l)}

∑
j∈L(n) p

(k)
j ḡjl

,

where g
ll

=
∣∣∣(|ĥH

llvl|−
√

vH
l Q−1

ll vl

)+∣∣∣2 and ḡjl =
∣∣∣|ĥH

jlvj |+
√

vH
j Q−1

jl vj

∣∣∣2.
b) solve problem (3.41) for variables {pl, γl}l∈L. Denote the solution by
{p?l , γ?l }l∈L.

c) if maxl∈L |γ̂l − γ?l | > εγ set γ̂l = γ?l for all l ∈ L and repeat step 2(b).
Otherwise, set p(k)

l = p?l and γ(k)
l = γ?l for l ∈ L, and go to step 3.

3. Stopping criterion: if the stopping criterion is satisfied STOP by returning
the suboptimal solution {p(k)

l , γ
(k)
l ,v

(k)
l }l∈L. Otherwise, go to step 4.

4. Solve Subproblem 2: By fixing γl = γ
(k)
l for all l ∈ L, solve problem (3.44).

Denote the solution by t? and {M̃?
l }l∈L. Set m?

l =
√
λlul, where λl is the

dominant eigenvalue of M̃?
l and ul is eigenvector that corresponds to λl, for

all l ∈ L.
5. Update p(k+1)

l = ‖m?
l ‖22/t? and v

(k+1)
l = m?

l /‖m?
l ‖2 for all l ∈ L. Set

k = k + 1 and go to step 2.

The first step initializes the algorithm. Step 2 solves the approximated
Subproblem 1, i.e., problem (3.41). In step 2, problem (3.41) is solved repeatedly
such that the solution {γ?l }l∈L is within a desired tolerance12. Step 3 checks the
stopping criteria; here, the algorithm is stopped when the difference between
the achieved WSR values between the successive iterations is less than a given
12In order to reduce the computational cost of Subproblem 1, in step 2, problem (3.41) can be
solved for a fixed number of iteration.
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threshold. Step 4 solves the approximated Subproblem 2, i.e., problem (3.44).
Note that problem (3.41) is a GP and problem (3.44) is a SDP, hence both
problems can be solved efficiently by using interior point methods [29]. Finally,
step 5 updates the transmit power and beamforming direction, then repeats the
iteration from step 2.

3.3.3 Convergence of suboptimal algorithm

Algorithm 3.2 monotonically converges, if the solution of Subproblem 2 (i.e.,
variable M̃?

l for all l ∈ L in step 4 of the algorithm) is rank one. This is because
with a rank one solution of Subproblem 2, there is no loss in the beamforming gain
by the rank one approximation, and the saved power by solving Subproblem 2
can be used, further, to decrease the objective of Subproblem 1 13. This can be
realized by setting vl = m?

l /‖m?
l ‖2, pl = ‖m?

l ‖22/t?, and increasing γl such that
the SINR constraints of problem (3.38) are tight for all l ∈ L. Unfortunately, if
Subproblem 2 does not have a rank one solution, the monotonic convergence
of Algorithm 3.2 cannot be guaranteed. In such situations, we can run the
algorithm for a finite number of iterations, and take the best solution.

3.4 Numerical examples

We illustrate the performance of the proposed BB Algorithm 3.1 and Algorithm 3.2
with the setup N = 3 BSs and T = 2 transmit antennas at each one (see Fig. 3.1).
The BSs are placed in such a way that they form an equilateral triangle. The
distance between the BSs is denoted by DBS. We assume circular cells, where the
radius of each one is denoted by RBS. For simplicity, we assume that the network
is transmitting L = 6 data streams, 2 streams per each BS. The locations of
the users associated with each data stream are arbitrarily chosen as shown in
Fig. 3.1.

We assume an exponential path loss model, where the channel vector from
the transmitter of data stream j (i.e., BS tran(j)) to the receiver of data stream
l (i.e., user rec(l)) is modeled as

ĥjl =

(
djl
d0

)−η/2
cjl, (3.45)

13Note that we solve problem (3.38) for solving Subproblem 1.
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Fig. 3.1. MISO downlink wireless network with N = 3 BSs and L = 6 users. N = {1, 2, 3},
L(1) = {1, 2}, L(2) = {3, 4}, and L(3) = {5, 6}, [159] c©2015, IEEE.

where djl is the distance from tran(j) to rec(l), d0 is the far field reference
distance [173], η is the path loss exponent, and cjl ∈CT is arbitrarily chosen from
the distribution CN (0, I) (i.e., frequency-flat fading channel with uncorrelated
antennas). Here, we refer an arbitrarily generated set of fading coefficients
Č = {cjl|j, l ∈ L} as a single fading realization. Note that in expression (3.45)
the term (djl/d0)

−η/2 denotes large scale fading, and the term cjl denotes small
scale fading.

We set pmax
n = pmax

0 for all n ∈ N , and σl = σ for all l ∈ L. We define the
SNR operating point at a distance r as

SNR(r) =

(
r

d0

)−η
pmax

0

σ2
. (3.46)

In the following simulations, we set d0 = 1, η = 4, and the cell radius RBS is fixed
throughout the simulations such that SNR(RBS) = 10 dB for pmax

0 /σ2 = 40 dB.
We let DBS/RBS = 1.6. The weight βl associated with lth stream for all l ∈ L
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Fig. 3.2. CDF plot of channel gain deviation, [159] c©2015, IEEE.

are randomly generated. Furthermore, we assume that Qjl = (1/ξ2)I such that
the channel estimation error can take any value inside a ball with a radius ξ.

Note that because of the large scale fading coefficient in channel model (3.45),
even a small value of ξ imposes considerable uncertainty on the estimated value
of channel ĥjl. To illustrate the effect of a value of ξ, let us define a metric
g(ĥjl, ξ) = ξ2/‖ĥjl‖22, which is a ratio between the maximal CSI error and
estimated channel gain.

Fig. 3.2 shows the CDF of the metric g(ĥjl, ξ), for all j, l ∈ L, computed over
500 fading realizations for ξ = 0.001 and 0.01. Results show that when a value
of ξ = 0.001, for almost all the channels the value of metric g(ĥjl, ξ) is less than
0.5. But when a value of ξ = 0.01, only for about 61% of the channels the value
of metric g (i.e., a ratio between the maximal CSI error and estimated channel
gain) is less than 0.5. Hence, the channel estimation error is significantly high
when the channel uncertainty radius is set to ξ = 0.01.

To illustrate the convergence behavior of BB Algorithm 3.1, we consider a
single fading realization. We set the algorithm tolerance ε = 0.2 and the channel
uncertainty radius ξ = 0.01. Fig. 3.3 shows the evolution of the upper and lower
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Fig. 3.3. Upper and lower bound evolution, [159] c©2015, IEEE.

bound for the optimal value of problem (3.8) for SNR = 5 dB 14. Results show
that the upper and lower bound becomes tight with an increase in the number of
iterations. Furthermore, we can see that the proposed algorithm can find the
best upper bound value very fast. However, the algorithm takes more iterations
to certify that the achieved upper bound is close to the optimal value. For
example, to certify that the achieved upper bound is ε = 0.2 away from the
optimal value, the algorithm requires more than 3.5× 105 iterations.

We next evaluate the performance of Algorithm 3.2. Here, we first consider a
single fading realization. As benchmarks, we the consider proposed optimal
BB Algorithm 3.1 and a suboptimal algorithm proposed in recent paper [103].
To make a fair comparison with [103] on a required computational complexity
per iteration for convergence, we solve problem (3.41) only once at step 2 of
Algorithm 3.2 (with this setting Algorithm 3.2 solves one SDP and one GP at
each iteration, and algorithm [22] solves one SDP at each iteration). Furthermore,
we remove the trust region of problem (3.41). Algorithm 3.2 is initialized with

14For fixed radius RBS, different SNR
(
i.e., different SNR(RBS)

)
are obtained by changing

pmax
0 /σ2.
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Fig. 3.4. Worst-case WSR (bits/s/Hz) versus iteration for SNR = 5 dB and error radius ξ =

0.01, [159] c©2015, IEEE.

the transmit beamforming vectors with equal transmit power for all data streams.
For the BB Algorithm 3.1, we set the algorithm tolerance ε = 0.4.

Fig. 3.4 shows the convergence behavior of Algorithm 3.2 and algorithm [103],
along with the upper bound on the optimal value given by the proposed BB
Algorithm 3.1. We set SNR = 5 dB and the channel uncertainty radius ξ = 0.01.
For Algorithm 3.2, the achieved objective value is computed after step 2 of
the algorithm. Results show that both suboptimal algorithms (i.e, proposed
Algorithm 3.2 and algorithm [103]) can achieve the worst-case WSR close to the
optimal value. Moreover, results show that the convergence speed of proposed
Algorithm 3.2 is faster compared to that of algorithm [103].

In order to see the average behavior of proposed Algorithm 3.2, next, we run
Algorithm 3.2 and algorithm [103] for 300 fading realizations with the channel
uncertainty radius ξ = 0.01. Fig. 3.5 shows the average worst-case WSR versus
iteration for SNR = 5 dB and SNR = 20 dB. Plots are drawn for the first 40

iterations. Results show that for a low SNR value (i.e., SNR = 5 dB), both
Algorithm 3.2 and algorithm [103] nearly converge to the same objective value.
However, for high SNR value (i.e., SNR = 20 dB), the proposed algorithm
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Fig. 3.5. Convergence of the average worst-case WSR (bits/s/Hz): (a) SNR = 5 dB; (b) SNR =

20 dB, [159] c©2015, IEEE.
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achieves higher WSR compared to that of algorithm [103]. Moreover, results
show that the convergence speed of the proposed algorithm is faster compared
to that of algorithm [103]. Note that this gain comes at an additional cost of
solving one more GP per iteration compared to algorithm [103].

Fig. 3.6 shows the average worst-case WSR versus channel uncertainty radius.
Plots are drawn for the objective values obtained at iteration number 10 and 50

for a wide range of ξ values. Results show that the average objective values
achieved by the proposed algorithm at iteration number 10 and 50 is very close
for the wide range of ξ values. However, for algorithm [103] there is a noticeable
difference between the objective values achieved at iteration number 10 and
50. Hence, results show that the proposed Algorithm 3.2 provides an efficient
solution very fast compared to algorithm [103] for a wide range of the channel
uncertainty radius ξ values.

Fig. 3.7 shows the average worst-case WSR for different SNR values. To solve
Subproblem 1, in step 2 of Algorithm 3.2, we set εγ = 0.01. Plots are drawn
for α = 1.1, 3, and without the trust region (which we denote by α = ∞) in
problem (3.41). For a comparison, we use algorithm [103], and algorithm [176,
Sec. 4.3] that assumes perfect CSI. For a fair comparison, all algorithms are
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stopped when the difference between the achieved objective values between
successive iterations is less than 10−3.

Results show that for a small channel uncertainty region (i.e., Fig. 3.7(a))
algorithm [103] performs better than the proposed algorithm at low SNR values,
and both algorithms have the same performance at high SNR values. On the
other hand, in the case of a larger channel uncertainty region (i.e., Fig. 3.7(b)),
the performance of both algorithms is close at low SNR values. However, at
high SNR values, the proposed algorithm achieves better objectives values
than algorithm [103]. Note that this gain comes at the cost of solving one
additional signomial program (i.e., solving step 2 of Algorithm 3.2 several times to
achieve given εγ) per iteration compared to algorithm [103]. But this additional
computation complexity may be worthwhile as the proposed algorithm can
provide better objective value. Furthermore, results show that the performance
of the proposed algorithm can be improved by using a small value of α in
problem (3.41).

In practice, the channel estimation errors may have a statistical distribu-
tion [90, 96, 178]. Next, we show how we can apply our design methodology
(Algorithm 3.2)15 to a scenario with statistical channel errors. We consider
the least-squares training-based channel estimator [19]. Then the CSI errors
are zero-mean circular symmetric complex Gaussian random variables with
covariance Σ, i.e., ejl ∼ CN (0,Σ) for all j, l ∈ L.

The key idea behind applying Algorithm 3.2 in a scenario with Gaussian
distributed CSI errors is to design the ellipsoidal uncertainty region so that it
includes a certain percentage of the errors [179, 180]. We design the ellipsoidal
uncertainty region by utilizing the confidence ellipsoids [185, Sec. 3], [186]. The
κ-confidence ellipsoids Ejl(κ) for CSI errors ejl ∼ CN (0,Σ) can be written as

Ejl(κ) =
{
ejl|eH

jlΣ
−1ejl ≤ θ(κ)

}
, j, l ∈ L, (3.47)

such that Prob
(
ejl ∈ Ejl(κ)

)
≥ κ 16. Note that Ejl(κ) is the smallest volume

ellipsoid that contains κ% samples of the CSI errors ejl generated from the
distribution CN (0,Σ) [185, Sec. 3], [186]. Then by using κ-confidence ellipsoids
15Here, we evaluate the performance of Algorithm 3.2. The performance of BB Algorithm 3.1
can be evaluated in a similar way.
16The nonnegative random variable eH

jlΣ
−1ejl has a chi-square distribution with 2T degrees

of freedom. Thus, the value of θ(κ) for a given κ can be calculated by using the inverse CDF
of chi-square distribution.
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Fig. 3.7. Average worst case WSR (bits/s/Hz) versus SNR: (a) CSI uncertainty radius ξ =
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in Algorithm 3.2, a transmission rate and a beamformer associated with each
data stream is obtained. If the CSI errors lie inside the considered uncertainty
region, the SINRs associated with the obtained beamformers guarantee that the
allocated rates of all data streams are achieved. However, if the CSI errors lie
outside the considered κ-confidence ellipsoids, the allocated rates of all data
streams may not be achieved by using the beamformers, and hence there can be
an outage. Therefore, for a small confidence ellipsoid there may be a high outage
rate, since a larger subset of channel errors lie outside the considered confidence
ellipsoid. On the other hand, for a larger confidence ellipsoid the outage rate is
very small, but the transmission rates would be small due to the conservative
design of the considered κ-confidence ellipsoid. Thus, there is a trade-off between
the transmission rates and the outage, when the κ-confidence ellipsoid is used in
Algorithm 3.2 in a scenario with the statistical channel errors.

In order to elaborate the above mentioned trade off when utilizing κ-confidence
ellipsoids for Gaussian distributed CSI errors, we run Algorithm 3.2 for different
sizes of confidence ellipsoids

(
i.e., different values of κ in (3.47)

)
and evaluate

the performance of Algorithm 3.2. For a given κ and a fading realization, let us
denote the optimal solution set Sκ = {p?l , γ?l ,v?l }l∈L obtained from step 3 of
Algorithm 3.2. Then the transmission rate and the associated beamformer of
lth data stream is set to rl(Sκ) = log2(1 + γ?l ) and ml =

√
p?l v

?
l , respectively,

for all l ∈ L. However, the actual supported rates of data streams using the
beamformers {ml}l∈L depends on the actual SINR values (3.6)

(
i.e., by using

SINR (3.6) the supported rate of lth data stream is Rl(Sκ) = log2(1+Γl(m, el))
)
;

and these rates are unknown to the BSs since the CSI errors are unknown. Hence,
if the actual supported rate Rl(Sκ) is smaller than the allocated transmission rate
rl(Sκ), there will be an outage. Thus, the (actual) achieved WSR considering
the outage is fWSR−WO(Sκ) =

∑
l∈L βlrl(Sκ)Il, where, Il = 1 if Rl(Sκ) ≥ rl(Sκ)

and Il = 0 otherwise.
Fig. 3.8(a) shows the average achieved WSR fWSR−WO(Sκ) versus κ for

SNR = 10 dB and 15 dB. Each curve is averaged over 1000 fading realizations
(estimated CSI values), and for each realization the channel errors ejl are
arbitrarily chosen from the distribution CN (0,Σ). The horizontal lines in
Fig. 3.8(a) extend the average WSR values obtained by using κ = 0 (i.e.,
assuming the estimated CSI values as the actual channels); and those serve as
lower bounds (LBs). Fig. 3.8(b) shows the outage probability versus κ. In the
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Fig. 3.8. (a) Average achieved WSR fWSR−WO(Sκ) versus size of confidence ellipsoids η;
(b) outage probability versus size of confidence ellipsoids κ, [159] c©2015, IEEE.
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simulations, we use a least-squares channel estimator with a minimum length
optimal training sequence [19]. Hence, the channel error covariance matrix
Σ = (σ2

e/T )I, where σ2
e = σ2T 2/pmax

0 is the variance of the channel estimation
error [19, eq. (12)], [178]. Furthermore, we use equal weights for all data streams,
i.e., βl = 1 for all l ∈ L.

Fig. 3.8(a) shows that the confidence ellipsoids in between 20% to 50%

achieve the maximal WSR, and there is performance loss when the confidence
ellipsoid is either too small or large. In the case of smaller values of κ, the
performance loss is due to large outage (see Fig. 3.8(b)) caused by the optimistic
design (because it assumes that the CSI errors are small and the actual channels
are very close to the estimated CSI values). In the case of larger values of κ the
outage is small, but still there is performance loss (see Fig. 3.8(a)) due to the
overly conservative design (because the ellipsoidal uncertainty region is designed
considering that the CSI error could be very high). Results suggest that for any
value of κ within the interval of 20 to 50 percent, Algorithm 3.2 performs quite
well and achieves the trade-off between the transmission rates and the outage.

3.5 Summary and discussion

We have considered a robust WSRMax problem in multicell downlink MISO
systems. The CSI of all relevant users is assumed to be imperfectly known at the
base stations. The problem is known to be NP-hard even in the case of perfect
CSI. We have considered a bounded ellipsoidal model for the CSI errors. By
using the notion of worst-case optimization, we have proposed both optimal
and suboptimal algorithms for the WSRMax problem with CSI errors. The
proposed optimal Algorithm 3.1 is based on a BB method, and it globally solves
the worst-case WSRMax problem with an optimality certificate. Note that the
BB method basically implements some sort of exhaustive search in a systematic
manner. Hence, Algorithm 3.1 can be (and often is) slow. In the worst case,
the complexity of Algorithm 3.1 grows exponentially with the problem size.
Finding efficient (improved) bounding techniques could be one way to reduce
computational complexity of BB based Algorithm 3.1. As the convergence speed
of the BB method can be slow for large networks, we have also provided a
fast but possibly suboptimal algorithm based on the alternating optimization
technique in conjunction with sequential convex programming. The optimal
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BB based algorithm can be used to provide performance benchmarks for any
suboptimal algorithm. Furthermore, through a numerical example we have
shown how our design methodology can be applied to a scenario with statistical
channel errors.
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4 Distributed resource allocation for MISO
cellular networks

In this chapter we propose decentralized resource allocation methods for multicell
MISO downlink networks. Specifically, we consider the following optimization
problems: P1 - minimization of the total transmission power subject to minimum
SINR constraints of each user, and P2 - SINR balancing subject to total transmit
power constraint of each BS.

The main contribution of this chapter is to propose consensus-based dis-
tributed algorithms for problems P1 and P2, and a fast solution method via
ADMM [113]. The ADMM turns the original problem into a series of iterative
steps, namely, local variable update, global variable update, and dual variable
update [113]. The local and dual variable updates are carried out independently
in parallel by all BSs, while the global variable update is carried out by BSs
coordination. We first derive the distributed algorithm for problem P1. Then we
extend the formulation of problem P1 to derive the distributed algorithm for
problem P2. In particular, we recast the problem into a more tractable form and
combine a bracketing method (a golden ratio search) [187, 188] with ADMM to
derive the distributed algorithm for problem P2.

By considering the uncertainty in the channel measurements, for problem P1,
an algorithm based on ADMM has been proposed in [98]. In this chapter, we
consider perfect CSI, and use the consensus technique to solve the problem. Then
we apply ADMM to derive the distributed algorithm. The consensus technique
can be easily decomposed into a set of subproblems suitable for distributed
implementation [113, 189]. Hence, the algorithm formulation in this chapter is
more intuitive than that provided in [98]. For problem P1, we show that the
proposed distributed algorithm converges to the optimal centralized solution.
Moreover, for problem P1, we also provide a method to find ADMM penalty
parameter [113] which leads faster convergence of the algorithm.

Problem P2 is a quasiconvex problem. To the best of our knowledge there
is no convergence theory to the ADMM method for a quasiconvex problem.
However, if each step of the ADMM iteration is tractable, the ADMM algorithm
can still be used to derive (possibly suboptimal) distributed methods for problem
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P2 [113, Sec. 9]. Numerical results show that the proposed distributed algorithm
for problem P2 can find a close-to-optimal centralized solution.

4.1 System model and problem formulation

A multicell MISO downlink system, with N BSs each equipped with T transmit
antennas is considered. The set of all BSs is denoted by N , and we label them
with the integer values n = 1, . . . , N . The transmission region of each BS is
modeled as a disc with radius RBS centered at the location of the BS. A single
data stream is transmitted for each user. We denote the set of all data streams
in the system by L, and we label them with the integer values l = 1, . . . , L. The
transmitter node (i.e., the BS) of lth data stream is denoted by tran(l) and the
receiver node of lth data stream is denoted by rec(l). We have L = ∪n∈NL(n),
where L(n) denotes the set of data streams transmitted by nth BS. Note that
the intended users of the data streams transmitted by each BS are necessarily
located inside the transmission region of the BS (see Fig. 4.1).

The antenna signal vector transmitted by nth BS is given by

sn =
∑

l∈L(n)

dlml, (4.1)

where dl ∈ C represents the information symbol and ml ∈ CT denotes the
transmit beamformer associated with lth data stream. We assume that dl is
normalized such that E|dl|2 = 1. Moreover, we assume that the data streams are
independent, i.e., E{dld∗j} = 0 for all l 6= j, where l, j ∈ L.

The signal received at rec(l) can be expressed as

yl = dlh
H
llml +

∑
j ∈ L(tran(l)), j 6= l

djh
H
jlmj

(intra-cell interference)
+

∑
n∈N\{tran(l)}

∑
j ∈ L(n)

djh
H
jlmj + nl,

(out-of-cell interference)

(4.2)

where hH
jl ∈ C1×T is the channel vector between tran(j) and rec(l), and nl is

circular symmetric complex Gaussian noise with variance σ2
l . Note that the

second right hand term in (4.2) represents the intra-cell interference and the
third right hand term represents the out-of-cell interference. The received SINR
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of lth data stream is given by

Γl(m) =
|hH
llml|2

σ2
l +

∑
j ∈ L(tran(l)), j 6= l

|hH
jlmj |2 +

∑
n∈N\{tran(l)}

z2
nl

, (4.3)

where we use the notation m to denote a vector obtained by stacking ml

for all l ∈ L on top of each other, i.e., m = [mT
1 , . . . ,m

T
L]T, and variable

z2
nl =

∑
j∈L(n) |hH

jlmj |2 represents the power of the out-of-cell interference from
nth BS to rec(l).

The out-of-cell interference term in (4.3) (i.e.,
∑
n∈N\{tran(l)} z

2
nl) prevents

resource allocation on an intra-cell basis and demands BSs coordination. To
avoid unnecessary coordination between distantly located BSs, we make the
following assumption: transmission from nth BS interferes with the lth data
stream (transmitted by BS b 6= n) only if the distance between nth BS and
rec(l) is smaller than a threshold Rint

17. A disc with radius Rint centered at
17Similar assumptions are made, e.g., in[190] in the context of arbitrary wireless networks.
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Fig. 4.1. Multicell network, N = 3, L = 12, N = {1, 2, 3}, L = {1, . . . , 12}, L(1) = {1, . . . , 4},
L(2) = {5, . . . , 8}, L(3) = {9, . . . , 12}, and Lint = {1, 2, 6, 8, 10}.
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the location of any BS is referred to as the interference region of the BS (see
Fig. 4.1). Thus, if nth BS located at a distance larger than Rint to rec(l), the
associated znl components are set to zero18. Based on the assumption above, we
can express Γl(m) as

Γl(m) =
|hH
llml|2

σ2
l +

∑
j ∈ L(tran(l)), j 6= l

|hH
jlmj |2 +

∑
n∈Nint(l)

z2
nl

,

where Nint(l) ⊆ N\{tran(l)} is the set of out-of-cell interfering BSs that are
located at a distance less than Rint to rec(l). For example, in Fig. 4.1, we have
Nint(1) = {3}, Nint(2) = {2}, Nint(6) = {3}, Nint(8) = {1}, Nint(10) = {1} and
Nint(l) = ∅ for all l ∈ {3, 4, 5, 7, 9, 11, 12}. Moreover, it is useful to define the set
Lint of all data streams that are subject to the out-of-cell interference, i.e., Lint =

{l|l ∈ L,Nint(l) 6= ∅}. For example, in Fig. 4.1, we have Lint = {1, 2, 6, 8, 10}.
The total transmitted power of the multicell downlink system can be expressed

as

P =
∑
n∈N

∑
l∈L(n)

‖ml‖22.

Assuming that the SINR Γl(m) is subject to the constraint Γl(m) ≥ γl for each
user l ∈ L, the problem of minimizing the total transmitted power (i.e., P1) can
be expressed as

P1 : minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L(tran(l)), j 6= l

|hH
jlmj |2 +

∑
n∈Nint(l)

z2
nl

≥ γl, l ∈ L

z2
nl =

∑
j∈L(n)

|hH
jlmj |2, l ∈ Lint, n ∈ Nint(l),

(4.4)

18The value of Rint is chosen so that the power of the interference term is below the noise level
and this commonly used approximation is made to avoid unnecessary coordination between
distant BSs. The appropriate value of Rint can be chosen to trade-off between the required
backhaul signaling and the optimality of the solution. The effect of nonzero znl terms can be
modeled by changing the statistical characteristics of noise nl at rec(l). However, those issues
are extraneous to the main focus of this chapter.
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with variables {ml}l∈L and {znl}l∈Lint,n∈Nint(l)
19.

Providing fairness among the users with per BS power constraint is another
important resource allocation problem. One way20 of providing fairness among
the users is by maximizing the minimum SINR (i.e., P2) [132], which can be
formulated as

P2 : maximize min
l∈L

 |hH
llml|2

σ2
l +

∑
j ∈ L(tran(l)), j 6= l

|hH
jlmj |2 +

∑
n∈Nint(l)

z2
nl


subject to z2

nl =
∑

j∈L(n)

|hH
jlmj |2, l ∈ Lint, n ∈ Nint(l)∑

j∈L(n)

‖ml‖22 ≤ pmax
n , n ∈ N ,

(4.5)

where the variables are {ml}l∈L and {znl}l∈Lint,n∈Nint(l). In problem (4.5), the
second inequality constraints denote the per BS power constraints.

4.2 Sum-power minimization

In this section we derive a distributed algorithm for problem (4.4), i.e., P1. First,
we equivalently reformulate the original problem (4.4) in the form of a global
consensus problem. Then we derive the proposed distributed algorithm based on
ADMM [113].

19In problem (4.4) and (4.5), the set {znl}l∈Lint,n∈Nint(l)
is a collection of znl for which the

lth user is inside the interference region of BS n. Thus, the constrained for unconsidered
out-of-cell interference term (i.e., z2nl = 0) for lth user that is outside the interference region of
BS n is dropped in problem (4.4) and (4.5).
20A more general SINR balancing problem which can set the priority of users (keeping the
SINR values of the data stream to fixed ratios) [83, Sec. IV-C] can be formulated. To simplify
the presentation, we consider the maximization of the minimum SINR. Note that the proposed
decentralized method can be easily generalized to the more general problem considered in [83,
Sec. IV-C].
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BS 1

l
th

-data stream

z2l

z3l

out-off-cell 

interference

x2,2l x3,3l

x1,2l

x1,3l

BS 2 BS 3

Fig. 4.2. BS 2 and BS 3 are coupled with BS 1 due to coupling variables z2l and z3l, respec-
tively. To distribute the problem, local copy x1,2l of z2l at BS 1 and local copy x2,2l of z2l at
BS 2 are introduced. Similarly, local copy x1,3l of z3l at BS 1 and local copy x3,3l of z3l at BS
3 are introduced.

4.2.1 Equivalent reformulation

We start by reformulating sum-power minimization problem (4.4) as

minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L(tran(l)), j 6= l

|hH
jlmj |2 +

∑
n∈Nint(l)

z2
nl

≥ γl, l ∈ L

z2
nl ≥

∑
j∈L(n)

|hH
jlmj |2, l ∈ Lint, n ∈ Nint(l),

(4.6)

where the variables are {ml}l∈L and {znl}l∈Lint,n∈Nint(l). Problem (4.4) and (4.6)
are equivalent as it can be easily shown (e.g., by contradiction) that the second
inequality holds with equality at the optimal point.

Recall that z2
nl in problem (4.6) represents the power of the out-of-cell

interference caused by nth BS at rec(l), and hence, variable znl couples exactly
two BSs (i.e., BS n and BS tran(l)). We use a consensus technique to distribute
problem (4.6) over the BSs. The method consists of introducing local copies of
the coupling variables znl for all l ∈ Lint, n ∈ Nint(l) at each BS (see Fig. 4.2).

Let us define xk,nl as the local copy of znl at BS k. Thus for each znl, we
make two local copies, i.e., xn,nl at BS n and xtran(l),nl at BS tran(l). Then
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problem (4.6) can be written equivalently in a global consensus form as

minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L(tl), j 6= l

|hH
jlmj |2 +

∑
b∈Nint(l)

x2
n,bl

≥ γl, n ∈ N , l ∈ L(n)

x2
n,nl ≥

∑
j∈L(n)

|hH
jlmj |2, l ∈ Lint, n ∈ Nint(l)

xk,nl = znl, k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l),

(4.7)
with variables {ml}l∈L, {xk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l), and {znl}l∈Lint,n∈Nint(l).
Note that in the first set of constraints of problem (4.7) we have replaced zbl
with the local copy xn,bl, and used the fact that L = ∪n∈NL(n). In the second
inequality constraints of (4.7), we have replaced znl by the local copy xn,nl. The
last set of equality constraints of (4.7) are called consistency constraints, and they
ensure that the local copies xn,nl and xtran(l),nl are equal to the corresponding
global variable znl.

Problem (4.7) is not a convex problem. However, it can be equivalent
expressed as a SOCP [132, Sec. IV-B]. To do this, let us define the matrix
Mn = [ml]l∈L(n) obtained by concatenating the column vectors ml. Then by
following the approach of [132, Sec. IV-B], problem (4.7) can be equivalently
reformulated as

minimize
∑
n∈N

∑
l∈L(n)

‖ml‖22

subject to


√

1 + 1
γl

hH
llml

MH
nhll

x̃l

σl

 �SOC 0, n ∈ N , l ∈ L(n)

[
xn,nl

MH
nhjl

]
�SOC 0, l ∈ Lint, n ∈ Nint(l)

xk,nl = znl, k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l),

(4.8)

with the optimization variables {ml}n∈N ,l∈L(n), {xk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l),
and {znl}l∈Lint,n∈Nint(l), where vector x̃l = (xn,bl)b∈Nint(l), the vector hjl in the
second set of constraints denotes the channel from BS n to link l (i.e., the
index j in the second set of constraints denotes an arbitrary link in L(n)),
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and the notation �SOC denotes the generalized inequalities with respect to the
second-order cone [132], [29, Sec. 2.2.3].

In problem (4.8), the objective function and the first set of inequality
constraints are separable in n ∈ N (one for each BS). Also, it can be easily
shown that the second set of inequality constraints of (4.8) are separable in
n ∈ N . To do this, let us denote Iint(n) the set of links for which BS n acts as an
out-of-cell interferer, i.e., Iint(n) = {l|l ∈ Lint, n ∈ Nint(l)}. Then by noting that
the sets {(n, l)|l ∈ Lint, n ∈ Nint(l)} and {(n, l)|n ∈ N , l ∈ Iint(n)} are identical,
the second set of inequality constraints of (4.8) can be written as[

xn,nl

MH
nhjl

]
�SOC 0, n ∈ N , l ∈ Iint(n), (4.9)

which is separable in n ∈ N . Observe that without the consistency constraints,
problem (4.8) can now be easily decoupled into N subproblems, one for each BS.

We next express problem (4.8) more compactly. To do this, we first express
the consistency constraints of problem (4.8) more compactly by using vector
notations, which denote a collection of the local and global variables associated
with BS n. By using the equivalence between the sets {(n, l)|l ∈ Lint, n ∈ Nint(l)}
and {(n, l)|n ∈ N , l ∈ Iint(n)}, let us express the consistency constraints of
problem (4.8) as

xn,nl = znl, n ∈ N , l ∈ Iint(n)

xtran(l),nl = znl, l ∈ Lint, n ∈ Nint(l).
(4.10)

In the first set of equalities of (4.10), {xn,nl}l∈Iint(n) is a set of local variables
that are associated with BS n. Similarly, to find a set of local variables that are
associated with BS n in the second set of equalities of (4.10), let us define Lint(n)

as the set of links in BS n that are affected by the out-of-cell interference, i.e.,
Lint(n) = {l|l ∈ Lint ∩ L(n)}. Then by noting that the set Lint = ∪n∈NLint(n),
we can rewrite expression (4.10) as

xn,nl = znl, n ∈ N , l ∈ Iint(n)

xtran(l),bl = zbl, n ∈ N , l ∈ Lint(n), b ∈ Nint(l).
(4.11)

Clearly, in the second set of equalities of (4.11) 21, {xtran(l),bl}l∈Lint(n),b∈Nint(l) is
a set of local variables that are associated with BS n.
21Note that Lint(n) ⊆ L(n). Hence, tran(l) = n for all l ∈ Lint(n).
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We now denote (4.11) compactly using vector notation. Let us define vectors
xn and zn as 22

xn =
(
(xn,nl)l∈Iint(n), (xtran(l),bl)l∈Lint(n),b∈Nint(l)

)
zn =

(
(znl)l∈Iint(n), (zbl)l∈Lint(n),b∈Nint(l)

)
.

(4.12)

Then (4.11) can be compactly written as

xn = zn, n ∈ N . (4.13)

Note that xn is a collection of the local variables that are associated with
BS n, and zn is a collection of the global variables that are associated with the
components of variable xn.

Furthermore, for the sake of brevity, let us define the following set

Mn =


Mn,xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


√

1 + 1
γl

hH
llml

MH
nhll

x̃l

σl

 �SOC 0, l ∈ L(n)

[
xn,nl

MH
nhjl

]
�SOC 0, l ∈ Iint(n),


, (4.14)

where x̃l = (xn,bl)b∈Nint(l) is a subvector of xn, and the following function

fn(Mn,xn) =

{ ∑
l∈L(n) ‖ml‖22 (Mn,xn) ∈Mn

∞ otherwise
. (4.15)

Then by using notations (4.13), (4.14), and (4.15), consensus problem (4.8) can
be written compactly as

minimize
∑
n∈N

fn(Mn,xn)

subject to xn = zn, n ∈ N ,
(4.16)

where the variables are {Mn}n∈N , {xn}n∈N , and {zn}n∈N .

4.2.2 Distributed algorithm via ADMM

In this section we derive distributed algorithm for problem (4.16). The proposed
algorithm is based on ADMM [113]. We start by writing the augmented
22To simplify the presentation, here we have slightly abused the notation, i.e., we have
considered that the sets in (4.12) are ordered.
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Lagrangian [191] for problem (4.16) as

Lρ({Mn,xn, zn,un}n∈N ) =
∑
n∈N

fn(Mn,xn)

+
∑
n∈N

(
uT
n (xn − zn) +

ρ

2
‖xn − zn‖22

)
, (4.17)

where un for all n ∈ N are the dual variables23 associated with the equality
constraints of (4.16), and ρ > 0 is a penalty parameter that adds the quadratic
penalty to the standard Lagrangian L0 for the violation of the equality constraints
of problem (4.16).

Each iteration of the ADMM algorithm consists of the following three
steps [113]:

Mi+1
n ,xi+1

n = argmin
Mn,xn

Lρ
(
Mn,xn, z

i
n,u

i
n

)
, n ∈ N (4.18)

{zi+1
n }n∈N = argmin

{zn}n∈N

Lρ
(
{Mi+1

n ,xi+1
n , zn,u

i
n}n∈N

)
(4.19)

ui+1
n = uin + ρ

(
xi+1
n − zi+1

n

)
, n ∈ N , (4.20)

where superscript i is the iteration counter. Steps (4.18) and (4.20) are completely
decentralized, and hence, can be carried out independently in parallel in each BS.
Note that each component of zn couples two local variables that are associated
with the adjacent BSs (see consistency constraint of problem (4.8)

)
24. Thus,

step (4.19) requires to gather the updated local variables {Mi+1
n ,xi+1

n } and the
dual variables uin from all N BSs. In the sequel, we first explain in detail to
solve the ADMM steps in (4.18) and (4.19). Then we summarize the proposed
ADMM based distributed algorithm.

The local variable update {Mi+1
n ,xi+1

n } in (4.18) is a solution of the following
optimization problem:

minimize fn(Mn,xn) + uiTn (xn − zin) +
ρ

2
‖xn − zin‖22 (4.21)

with variables Mn and xn. Here, we write uiTn instead of (uin)T to lighten the
notation.
23Let uk,nl for all k ∈ {n, tran(l)}, l ∈ Lint, and n ∈ Nint(l) be the dual variables associated
with the equality constraints of problem (4.8), then by following steps (4.10) to (4.12), we can
easily express un =

(
(un,nl)l∈Iint(n), (un,bl)l∈Lint(n),b∈Nint(l)

)
for all n ∈ N .

24Variable znl (component of zn) couples two local variables xn,nl (component of xn) and
xtran(l),nl

(
component of xtran(l)

)
. Hence, in step (4.19) to update znl, coordination between

BS n and BS tran(l) is required.
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Let vn = (1/ρ)un be a scaled dual variable. For convenience we can combine
the second and third terms of the objective function of problem (4.21) as

uiTn (xn − zin) +
ρ

2
‖xn − zin‖22 =

ρ

2
‖xn − zin + vin‖22 −

ρ

2
‖vin‖22. (4.22)

Then by using notations (4.14), (4.15), and (4.22), problem (4.21) can be
equivalently expressed as

minimize
∑

l∈L(n)

‖ml‖22 +
ρ

2
‖xn − zin + vin‖22

subject to


√

1 + 1
γl

hH
llml

MH
nhll

x̃l

σl

 �SOC 0, l ∈ L(n)

[
xn,nl

MH
nhjl

]
�SOC 0, l ∈ Iint(n)

(4.23)

with variables Mn = [ml]l∈L(n) and xn, where x̃l = (xn,bl)b∈Nint(l) is a subvector
of xn (see (4.12)), the vector hjl in the second set of constraints denotes the
channel from BS n to link l (i.e., index j in the third set of constraints denotes
an arbitrary link in L(n)), and the notation �SOC denotes the generalized
inequalities with respect to the second-order cone [132], [29, Sec. 2.2.3]. Note
that in the objective function of (4.23) we have dropped a constant term ρ

2‖v
i
n‖22,

since it does not affect the solution of the problem.
Moreover, by writing problem (4.23) in the epigraph form, and then following

the approach of [132, Sec. IV-B], problem (4.23) can be equivalently reformulated
in a form of SOCP as

minimize t

subject to

 t

vec(Mn)√
(ρ/2)(xn − zin + vin)

 �SOC 0


√

1 + 1
γl

hH
llml

MH
nhll

x̃l

σl

 �SOC 0, l ∈ L(n)

[
xn,nl

MH
nhjl

]
�SOC 0, l ∈ Iint(n),

(4.24)
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with variables t, Mn, and xn. Let us denote t?, M?
n, and x?n the solutions of

problem (4.24), then the update Mi+1
n = M?

n and xi+1
n = x?n.

Now we turn to the second step of the ADMM algorithm and provide a
solution for the global variable update (4.19). The update {zi+1

n }n∈N is a
solution of the following optimization problem:

minimize
∑
n∈N

(
uiTn (xi+1

n − zn) +
ρ

2
‖xi+1

n − zn‖22
)
, (4.25)

with variable {zn}n∈N . By using the notations in (4.12), and further noting that
equalities (4.13) and the equality constraints of problem (4.8) are equivalent,
problem (4.25) in the components of xn, zn, and un can be expressed as

minimize
∑

l∈Lint

∑
n∈Nint(l)

∑
k∈{n,tran(l)}

(
uik,nl(x

i+1
k,nl − znl) +

ρ

2
(xi+1
k,nl − znl)

2
)
,

(4.26)
with variable {znl}l∈Lint,n∈Nint(l), where {uk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l) are the
dual variables associated with the equality constraints of problem (4.7) 25.

Problem (4.26) decouples across znl, for each l ∈ Lint and n ∈ Nint(l).
Moreover, the objective function of problem (4.26) is quadratic in znl. Hence, by
setting the gradient of (4.26) with respect to znl equal to zero, we can obtain the
solution z?nl which can be expressed as

z?nl =
1

2

(
xi+1
n,nl + xi+1

tran(l),nl +
1

ρ
(uin,nl + uitran(l),nl)

)
, (4.27)

for all l ∈ Lint and n ∈ Nint(l). Therefore, the update zi+1
nl = z?nl for all l ∈ Lint

and n ∈ Nint(l). Moreover, by substituting zi+1
nl in (4.20) 26, we can show that

the sum of the dual variables uin,nl + uitran(l),nl is equal to zero. Thus, the update
zi+1
nl further simplifies to

zi+1
nl =

1

2

(
xi+1
n,nl + xi+1

tran(l),nl

)
, (4.28)

for all l ∈ Lint and n ∈ Nint(l). Hence, the global variable update zi+1
nl is simply

the average of its local copies xi+1
n,nl and x

i+1
tran(l),nl.

25Note that variables un for all n ∈ N are the dual variables associate with the consistency
constraints of problem (4.16). By following steps (4.10) to (4.12), we can easily show that
un =

(
(un,nl)l∈Iint(n), (un,bl)l∈Lint(n),b∈Nint(l)

)
for all n ∈ N .

26Note that (4.20) in the components of un, xn, and zn can be expressed as ui+1
k,nl =

uik,nl + ρ(xi+1
k,nl − z

i+1
nl ) for all k ∈ {n, tran(l)}, l ∈ Lint, and n ∈ Nint(l).
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Finally, we summarize the proposed ADMM based distributed algorithm for
sum-power minimization problem (4.8) as follows 27

Algorithm 4.1. Proposed ADMM based distributed algorithm for sum-power
minimization

1. Initialization: given SINR target {γl}l∈L and penalty parameter ρ > 0. Set
u0
n = 0, and z0

n = 0 for all n ∈ N , and iteration index i = 0.
2. BS n = 1 . . . N update local variables {Mi+1

n ,xi+1
n } by solving problem (4.24).

3. BS n and BS tran(l) exchange their local copies xi+1
n,nl and x

i+1
tran(l),nl for all

l ∈ Lint and n ∈ Nint(l).
4. BS n = 1 . . . N update global variable zi+1

n by using expression (4.28).
5. BS n = 1 . . . N update dual variable ui+1

n by using expression (4.20).
6. If stopping criteria is satisfied, STOP. Otherwise set i = i + 1, and go to

step 2.

The first step initializes the algorithm. Step 2 updates the local variables of
each BS by solving problem (4.24). Step 2 is completely decentralized. In step 3,
the neighboring BSs that are coupled by variable znl, i.e., BS n and BS tran(l),
exchange their local copies xi+1

n,nl and x
i+1
tran(l),nl. In step 4, each BS updates the

global variable zi+1
n . Note that the global variable update zi+1

n in its component
is simply the average of its local copies, see (4.28). In step 5, the dual variables
are updated by each BS, by solving (4.20). Step 6 checks the stopping criteria28,
and the algorithm stops if the stopping criteria is satisfied. Otherwise, the
algorithm continues in an iterative manner. Note that in deriving Algorithm 4.1
we have considered perfect CSI in all relevant channels between BSs and receivers.
The impact of imperfect CSI in the derivation of the algorithm can be found
in [98].
27Algorithm 4.1 progresses when all BSs solve their respective subproblems. Thus, in practice,
a BS with the slowest processing speed (or communication delay) can affect the algorithm
convergence time. This delay in the progress of the algorithm can be minimized by adopting
the concept of an asynchronous ADMM [192].
28In the ADMM algorithm, standard stopping criteria is to check primal and dual residuals [113].
However, it is often the case that the ADMM can produce acceptable results of practical use
within a few tens of iterations [113]. As, a finite number of iterations is more favorable for
practical implementation, we adopt a fixed number of iterations to stop the algorithm.
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4.2.3 Finding feasible solution at each iteration

In many practical applications we have to stop the distributed algorithm after a
finite number of iterations before converging the algorithm. On the other hand,
the intermediate solutions provided by Algorithm 4.1 do not necessarily result
feasible solution. In particular, the SINR constraints of problem (4.4) may not
hold, since the local copies xn,nl and xtran(l),nl that correspond to the global
variable znl, for all l ∈ Lint and n ∈ Nint(l), may not be equal. Thus, we can get
SINR Γl(m) ≤ γl as a solution of step 2 of Algorithm 4.1 for some l ∈ L.

At the cost of solving one additional subproblem by each BS in each iteration,
we can find a set of feasible beamformers Mn for all n ∈ N . For this, in order to
make the local copies xn,nl and xtran(l),nl equal, we fix them to the consensus
value zinl (i.e., xn,nl = zinl and xtran(l),nl = zinl) for all l ∈ Lint and n ∈ Nint(l).
Then solve problem (4.24) in variables t and Mn by each BS, which can be
expressed as

minimize t

subject to

[
t

vec(Mn)

]
�SOC 0

√
1 + 1

γl
h

H
llml

M
H
n hll

x̃l

σl

 �SOC 0, l ∈ L(n)

[
xin,nl

M
H
n hjl

]
�SOC 0, l ∈ Iint(n),

(4.29)

where x̃l = (xn,bl)b∈Nint(l). Note that at iteration i the set of beamformer Mn for
all n ∈ N is feasible for the original problem (4.4), if problem (4.29) is feasible
for all BSs.

4.2.4 Convergence

The convergence of Algorithm 4.1 to the global optimal solution of problem P1
(i.e., problem (4.4)) can be established by using proposition 4.2 in [193].

First, by applying proposition 4.2 in [193] to problem (4.16), we can show
that the ADMM Algorithm 4.1 converges to the global optimal solution of
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problem (4.16) (note that problem (4.16) is a compact representation of prob-
lem (4.8)). Next, we note that the phase of the optimization variable {ml}l∈L
in problems (4.8) and (4.4) does not change the objective and the constraints
of both problems. Thus, the optimal solution obtained by Algorithm 4.1 for
problem (4.8) is also optimal for problem (4.4) (i.e., problem P1).

4.3 SINR balancing

In this section we derive a distributed algorithm for problem (4.5), i.e., P2.
As before in the sum-power minimization problem, we begin by reformulating
problem (4.5) in the global consensus form. Then we apply the ADMM [113] to
derive the distributed algorithm.

4.3.1 Equivalent reformulation

We start by equivalently reformulating SINR balancing problem (4.5) in the
epigraph form [29] as

minimize −γ

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L(tl), j 6= l

|hH
jlmj |2 +

∑
n∈Nint(l)

z2
nl

≥ γ, l ∈ L

z2
nl ≥

∑
j∈L(n)

|hH
jlmj |2, l ∈ Lint, n ∈ Nint(l)∑

j∈L(n)

‖ml‖22 ≤ pmax
n , n ∈ N ,

(4.30)

with variables γ, {ml}l∈L, and {znl}l∈Lint,n∈Nint(l).
We now follow a similar approach as in Section 4.2.1 to express problem (4.30)

in a global consensus form (i.e., we introduce the local copies of the coupling
variables γ and znl for each BS). Since the SINR variable γ couples all BSs via
SINR constraints, we introduce local copies αn for each BS such that αn = γ for
all n ∈ N . For the out-of-cell interference variable znl, we introduce local copies
xk,nl and xtran(l),nl, respectively, for BS n and BS tran(l) as in problem (4.7).
Then problem (4.30) in the global consensus form can be expressed equivalently
as
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minimize −γ

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L(n), j 6= l

|hH
jlmj |2 +

∑
b∈Nint(l)

x2
n,bl

≥ αn, n ∈ N , l ∈ L(n)

x2
n,nl ≥

∑
j∈L(n)

|hH
jlmj |2, n ∈ N , l ∈ Iint(n)∑

j∈L(n)

‖ml‖22 ≤ pmax
n , n ∈ N

xk,nl = znl, k ∈ {n, tran(l)}, l ∈ Lint, n ∈ Nint(l)

αn = γ, n ∈ N ,
(4.31)

where the variables are γ, {ml}l∈L, {αn}n∈N , {xk,nl}k∈{n,tran(l)},n∈N ,l∈Iint(n),
and {znl}l∈Lint,n∈Nint(l). Note that in the second set of inequality constraints
we use the equivalence between the sets {(n, l)|l ∈ Lint, n ∈ Nint(l)} and
{(n, l)|n ∈ N , l ∈ Iint(n)} (see (4.10)).

Now we express problem (4.31) more compactly. Note that except the third
and fifth constraints of problem (4.31), the constraints set of problem (4.31) is
identical to that of problem (4.7). Hence, we can use variables Mn, xn, and zn

to define a set

Cn =


Mn,xn, αn

∣∣∣∣∣∣∣∣∣∣∣∣∣

|hH
llml|2

σ2
l +

∑
j ∈ L(n), j 6= l

|hH
jlmj |2 +

∑
b∈Nint(l)

x2
n,bl

≥ αn, l ∈ L(n)

x2
n,nl ≥

∑
j∈L(n)

|hH
jlmj |2, l ∈ Iint(n)∑

j∈L(n)

‖ml‖22 ≤ pmax
n


,

(4.32)
and the following indicator function:

In(Mn,xn, αn) =

{
0 (Mn,xn, αn) ∈ Cn
∞ otherwise.

(4.33)

Then by using notations (4.32) and (4.33), consensus problem (4.31) can be
rewritten compactly as

minimize −γ +
∑
n∈N

In(Mn,xn, αn)

subject to xn = zn, n ∈ N
αn = γ, n ∈ N ,

(4.34)
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where the variables are γ, {Mn}n∈N , and {xn, zn, αn}n∈N . Furthermore, from
the second equality constraints of problem (4.34), we can write

∑
n∈N αn = Nγ.

Thus, problem (4.34) can be expressed equivalently as

minimize
∑
n∈N

(
− αn
N

+ In(Mn,xn, αn)
)

subject to xn = zn, n ∈ N
αn = γ, n ∈ N ,

(4.35)

with variables γ, {Mn}n∈N , and {xn, zn, αn}n∈N .

4.3.2 Distributed algorithm via ADMM

To derive the ADMM algorithm we first form the augmented Lagrangian [191] of
problem (4.35). Let un and vn be the dual variables associated with the first
and second consensus constraints of problem (4.35), respectively. Then the
augmented Lagrangian can be written as

Lρ
(
{Mn,xn, αn,un, vn, zn}n∈N , γ

)
=
∑
n∈N

(
− αn
N

+ In(Mn,xn, αn)
)

+
∑
n∈N

(
uT
n (xn − zn) + vn(αn − γ) +

ρ

2
‖xn − zn‖22 +

ρ

2
(αn − γ)2

)
, (4.36)

where ρ > 0 is the penalty parameter. Each iteration of ADMM consists of the
following steps [113]:

Mi+1
n ,xi+1

n , αi+1
n = argmin

Mn,xn,αn

Lρ
(
Mn,xn, αn,u

i
n, v

i
n, z

i
n, γ

i
)
, n ∈ N (4.37)

{zi+1
n }n∈N , γi+1 = argmin

{zn}n∈N ,γ

Lρ
(
{Mi+1

n ,xi+1
n , αi+1

n ,uin, v
i
n, zn}n∈N , γ

)
(4.38)

ui+1
n = uin + ρ

(
xi+1
n − zi+1

n

)
, n ∈ N (4.39)

vi+1
n = vin + ρ

(
αi+1
n − γi+1

)
, n ∈ N . (4.40)

Note that the first step is completely decentralized. Each BS n ∈ N updates
the local variables {Mi+1

n ,xi+1
n , αi+1

n } by solving the following optimization
problem:

minimize −αn
N

+ In(Mn,xn, αn) + uiTn (xn − zin) + vin(αn − γi)

+
ρ

2
‖xn − zin‖22 +

ρ

2
(αn − γi)2,

(4.41)
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with variables αn, Mn, and xn. Let vn = (1/ρ)un and λn = (1/ρ)vn, then by
simplifying the terms of the objective function of problem (4.41) 29, it can be
written as

minimize −αn
N

+ In(Mn,xn, αn) +
ρ

2
‖xn − zin + vin‖22 +

ρ

2
(αn − γi + λin)2,

(4.42)
with variables αn, Mn, and xn. Note that in the objective function of prob-
lem (4.42) the constant terms (ρ/2)‖vin‖22 and (ρ/2)(λin)2 are dropped, since
they do not affect the solution of the optimization problem.

Problem (4.42) is not a convex problem, because the indicator function
In(Mn,xn, αn) is a function of nonconvex set Cn (see expression (4.32)). However,
for fixed αn set Cn is a convex set, and hence problem (4.42) can be solved easily.
Therefore, to solve problem (4.42) we first find the optimal α?n, and determine
the corresponding M?

n and x?n.
For fixed αn, let us denote the optimal value function of problem (4.42) as

p(αn) = inf
Mn,xn

(
− αn
N

+ In(Mn,xn, αn) +
ρ

2
‖xn − zin + vin‖22

+
ρ

2
(αn − γi + λin)2

)
(4.43)

= inf
Mn,xn

(
In(Mn,xn, αn) +

ρ

2
‖xn − zin + vin‖22

)
− αn
N

+
ρ

2
(αn − γi + λin)2, (4.44)

where (4.44) follows by noting that αn/N and (ρ/2)(αn−γi+λin)2 are independent
of the optimization variables Mn and xn. Then the optimal value of problem (4.42)
is given by

p? = inf
αn

p(αn). (4.45)

For ease of presentation, let us express the optimal value function p(αn) in (4.44)
as

p(αn) = p̃(αn)− αn
N

+
ρ

2
(αn − γi + λin)2, (4.46)

29For convenience we can combine the terms in problem (4.41) as a) uiTn (xn−zin)+(ρ/2)‖xn−
zin‖22 = (ρ/2)‖xn−zin+vin‖22−(ρ/2)‖vin‖22 and b) vin(αn−γi)+(ρ/2)(αn−γi)2 = (ρ/2)(αn−
γi + λin)2 − (ρ/2)(λin)2.
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where p̃(αn) is the optimal value of the following optimization problem:

minimize
ρ

2
‖xn − zin + vin‖22

subject to
|hH
llml|2

σ2
l +

∑
j ∈ L(n), j 6= l

|hH
jlmj |2 +

∑
b∈Nint(l)

x2
n,bl

≥ αn, l ∈ L(n)

x2
n,nl ≥

∑
j∈L(n)

|hH
jlmj |2, l ∈ Iint(n)∑

j∈L(n)

‖ml‖22 ≤ pmax
n ,

(4.47)

with optimization variables xn and {ml}l∈L(n). Note that to write problem (4.47)
we have used the notations defined in (4.32) and (4.33). Furthermore, by writing
problem (4.47) in the epigraph form, and then following the approach of [132,
Sec. IV-B], it can be formulated equivalently in an SOCP form as

minimize t

subject to

[
t√

ρ/2(xn − zin + vin)

]
�SOC 0

√
1 + 1

αn
hH
llml

MH
nhll

x̃l

σn

 �SOC 0, l ∈ L(n)

[
xn,nl

MH
nhjl

]
�SOC 0, l ∈ Iint(n)[ √

pmax
n

vec(Mn)

]
�SOC 0,

(4.48)

with variables t, xn, and Mn, where x̃l = (xn,bl)b∈Nint(l) is a subvector of xn

(see expression (4.12)), the vector hjl in the third set of constraints denotes the
channel from BS n to link l (i.e., the index j in the third set of constraints denotes
an arbitrary link in L(n)). Note that to write problem (4.47) in the SOCP
form (4.48), we first took the square root of the objective function of (4.47).
Hence, the optimal value of problem (4.47) is given by t?2 (i.e., p̃(αn) = t?2),
where t? is the solution of problem (4.48).

We now propose a method to solve problem (4.45). Let an interval [0, αmax
n ]

denotes a range of feasible αn for problem (4.45). Note that the optimal value
p̃(αn) is a nondecreasing function of αn ∈ [0, αmax

n ]. Based on this observation,
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in Appendix 2 we have provided the condition for which p(αn) is a unimodal
function, and we use the bracketing method [187, 188] to solve problem (4.45). In
Algorithm 4.2, we summarize the bracketing method (golden ratio search) [187,
Sec. 8.1] to find the optimal α?n for problem (4.45).

Algorithm 4.2. Bracketing method to find optimal α?n for problem (4.45)

1. Initialization: given SINR interval [0, αmax
n ], k = (

√
5− 1)/2, and εg > 0. Set

a = 0, b = αmax
n , c = ka+ (1− k)b, and d = (1− r)a+ kb.

2. Compute p(c) and p(d) using (4.46).
3. Squeeze the search SINR range: if p(c) ≤ p(d), set b = d, else set a = c.
4. Compute c = ka+ (1− k)b and d = (1− k)a+ kb.
5. Stopping criterion: if b− a < εg, STOP, and set α?n = c. Otherwise, go to

step 2.

At step 2 of Algorithm 4.2, to compute expression (4.46), we need to solve
problem (4.48). Thus, the optimal x?n and M?

n = [m?
l ]l∈L(n) that are associated

with α?n are obtained as a by-product of Algorithm 4.2.
We now turn to the second step of ADMM in (4.38), where the global

variables {zi+1
n }n∈N and γi+1 are updated. By dropping the constant terms

which do not affect the solution, problem (4.38) can be written as

minimize
∑
n∈N

(
uiTn (xi+1

n − zn) + vin(αi+1
n − γ)

+
ρ

2
‖xi+1

n − zn‖22 +
ρ

2
(αi+1
n − γ)2

)
,

(4.49)

with variables {zn}n∈N and γ.
Problem (4.49) is separable in variables {zn}n∈N and γ. Note that the

minimization of problem (4.49) with respect to {zn}n∈N yields problem (4.25),
and hence, the solution {z?n}n∈N is given by (4.28). Here, we provide the solution
for γ. The minimization of problem (4.49) with respect to γ yields the following
optimization problem:

minimize
∑
n∈N

(
vin(αi+1

n − γ) +
ρ

2
(αi+1
n − γ)2

)
. (4.50)

Problem (4.50) is an unconstrained quadratic optimization problem in γ. There-
fore, by setting the gradient of problem (4.50) with respect to γ equal to zero,
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we can get

γ? =

∑
n∈N v

i
n + ραi+1

n

ρN
. (4.51)

Hence, the update γi+1 = γ?. Moreover, by substituting γi+1 in (4.40), we can
show that the sum of the dual variables

∑
n∈N v

i
n is equal to zero. Thus, the

update γi+1 (i.e., expression (4.51)) further simplifies to

γi+1 =

∑
n∈N α

i+1
n

N
. (4.52)

We now summarize the proposed ADMM based distributed algorithm for
SINR balancing problem P2 in Algorithm 4.3.

Algorithm 4.3. Proposed ADMM based distributed algorithm for SINR balancing
problem P2

1. Initialization: given maximum transmit power {pmax
n }n∈N and penalty pa-

rameter ρ > 0. Set u0
n = 0, v0

n = 0 for all n ∈ N , and iteration index i = 0.
2. BS n = 1 . . . N update local variables {Mi+1

n ,xi+1
n , αi+1

n } by using Algo-
rithm 4.2.

3. Exchange local updates:

a) BS n and BS tran(l) exchange their local copies xi+1
n,nl and x

i+1
tran(l),nl for

all n ∈ Lint and n ∈ Nint(l).
b) BS n transmits local copy αi+1

n to all other BSs, for all n ∈ N .

4. BS n = 1 . . . N update global variables zi+1
n and γ by using expressions (4.28)

and (4.52), respectively.
5. BS n = 1 . . . N update dual variables ui+1

n and vi+1
n by using expressions (4.39)

and (4.40).
6. If stopping criteria is satisfied, STOP. Otherwise set i = i + 1, and go to

step 2.

The computational steps of Algorithm 4.3 are similar to those of Algorithm 4.1.
As in Algorithm 4.1, step 1 initializes the algorithm. Step 2 updates the local
variables. In step 3, BSs exchange their local copies to update global variables.
Local copies xi+1

n,nl and x
i+1
tran(l),nl are exchanged between the adjacent BS n and
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BS tran(l), while local copy αn is broadcasted to all other BSs. Steps 4 and 5
update the global and dual variables, respectively. Note that steps 2, 4 and 5 are
completely decentralized. Step 6 checks the stopping criteria30.

4.3.3 Finding feasible solution at each iteration

Note that at each step of Algorithm 4.3, the locally obtained SINR αn for all
n ∈ N are not necessarily balanced (i.e., αn for all n ∈ N are not necessarily
equal) before converging the algorithm. So, we can take the global variable
γi, which is the average of αn for all n ∈ N , as the intermediate solution of
Algorithm 4.3. However, due to the difference in the local copies xi+1

n,nl at BS n
and xi+1

tran(l),nl at BS tran(l), and the maximum transmit power constraint of the
BSs, the intermediate solution γi may not be feasible for all BSs.

Therefore, it is necessary to check the feasibility of γi to use it as an
intermediate solution at each step of Algorithm 4.3. The SINR γi is feasible
for BS n, if their exist a feasible solution of problem (4.48) for αn = γi and
given out-of-cell interference value xn. Thus, we set αn = γi and xn = zin for
all n ∈ N (i.e., αn and xn are set equal to the consensus value). Then the
feasibility of problem (4.48) is checked by each BS in between steps 4 and 5 of
Algorithm 4.3, which is equivalent to the following SOCP feasibility problem:

find {ml}l∈L(n)

subject to



√
1 + 1

αn
hH
llml

M
H
n hll

x̃l

σl

 �SOC 0, l ∈ L(n)

[
xn,nl

MH
nhjl

]
�SOC 0, l ∈ Iint(n)[ √

pmax
n

vec(Mn)

]
�SOC 0, l ∈ Iint(n)

(4.53)

30In the ADMM algorithm, standard stopping criteria is to check primal and dual residuals [113].
However, it is often the case that the ADMM can produce acceptable results of practical use
within a few tens of iterations [113]. As, a finite number of iterations is favorable for practical
implementation, we adopt a fixed number of iterations to stop the algorithm.
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with variable Mn = [ml]l∈L(n), where x̃l = (xn,bl)b∈Nint(l) is a subvector of xn

(see (4.12)), the vector hjl in the third set of constraints denotes the channel
from BS n to link l (i.e., the index j in the third set of constraints denotes an
arbitrary link in L(n)). Note that γi is feasible for the original problem (4.5)
only if problem (4.53) is feasible for all BSs. Thus, in Algorithm 4.3 we can
update the feasible SINR γifeas as (assume γ0

feas = 0)

γifeas =

{
γi if problem (4.53) is feasible for all n ∈ N
γi−1

feas otherwise,
(4.54)

4.4 Numerical examples

In this section we numerically evaluate the performance of proposed Algorithm 4.1
and Algorithm 4.3. In our simulations two multicell wireless networks as shown
in Fig. 4.3 are considered. In the case of the first network [i.e., Fig. 4.3(a)], there
are N = 2 BSs with T = 4 antennas at each one. The distance between BSs
is denoted by DBS. In the case of second network [i.e., Fig. 4.3(b)], there are
N = 7 BSs with T = 6 antennas at each one. The BSs are located such that
they form a hexagon, and the distance between the adjacent BSs is denoted
by DBS. We assume that the BSs have circular transmission and interference
regions, where the radius of the transmission region of each BS is denoted by
RBS, and the radius of the interference region of each BS is denoted by Rint. For
simplicity, we assume 4 users per cell in the first network, and 3 users per cell in
the second network. The location of users associated with the BSs are arbitrarily
chosen as shown in Fig. 4.3.

We assume an exponential path loss model, where the channel vector between
BSs and users is modeled as

hjl =

(
djl
d0

)−η/2
cjl,

where djl is the distance from the transmitter of data stream j (i.e., BS tran(j))
to the receiver of data stream l (i.e., user rec(l)), d0 is the far field reference
distance [173], η is the path loss exponent, and cjl ∈CT is arbitrarily chosen from
the distribution CN (0, I) (i.e., frequency-flat fading channel with uncorrelated
antennas). Here, we refer to an arbitrarily generated set of fading coefficients
Č = {cjl|j, l ∈ L} as a single fading realization.
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Fig. 4.3. (a) Multicell network 1,N = {1, 2}, L(1) = {1, 2, 3, 4}, L(2) = {5, 6, 7, 8}, Lint = {2, 8};
(b) Multicell network 2, N = {1, 2, 3, 4, 5, 6, 7}, L(1) = {1, 2, 3}, L(2) = {4, 5, 6}, L(3) =

{7, 8, 9}, L(4) = {10, 11, 12}, L(5) = {13, 14, 15}, L(6) = {16, 17, 18}, L(7) = {19, 20, 21},
Lint = {1, 2, 3, 4, 5, 7, 10, 12, 14, 15, 16, 17, 18, 19}.

112



We assume that the maximum power constraint is same for each BS, i.e.,
pmax
n = pmax

0 for all n ∈ N , and σl = σ for all l ∈ L. We define the SNR operating
point at a distance r as

SNR(r) =

(
r

d0

)−η
pmax

0

σ2
. (4.55)

In the following simulations, we set d0 = 1 and η = 4; the cell radius RBS and the
radius of the interference region Rint are fixed throughout the simulations such
that SNR(RBS) = 5 dB and SNR(Rint) = 0 dB, respectively, for pmax

0 /σ2 = 45 dB.
We let DBS = 1.5×RBS.

To illustrate the convergence behavior of Algorithm 4.1, we consider a single
fading realization and run the algorithm for both networks shown in Fig. 4.3.
For a comparison, we consider a dual decomposition based distributed algorithm
(DDA) proposed in [129]. For DDA [129] we consider a fixed step size θ to solve
a master problem (see in [129]), which is based on the subgradient method [130].

Fig. 4.4 shows the normalized power accuracy |P i − P ?|/P ?, where P i is
the objective value at ith iteration, and P ? is the optimal objective value
obtained by using the centralized algorithm [132, Sec. IV]. The SINR target is
set to γl = 5 dB for all l ∈ L. DDA [129] plots are drawn for the subgradient
step size θ = 10, 50, 100. For Algorithm 4.1, the penalty parameter is set to
ρ = 0.5D,D, 2D, where D is defined as (detailed in Appendix 3)

D = max
n∈N

{∑
l∈L(n) (100.1×γl)/‖hll‖22

}
. (4.56)

Results show that the proposed Algorithm 4.1 converges much faster than
DDA [129]. For example, in both multicell networks Algorithm 4.1 can achieve
normalized power accuracy 10−2 in less than 10 iterations. However, in order to
achieve the same accuracy (i.e., normalized power accuracy of 10−2), the DDA
[129] requires more than 200 iterations for all simulated cases in both networks.
Results also show that Algorithm 4.1 performs very well for a wide range of
values of ρ. Hence Algorithm 4.1 is less sensitive to the variation of values of ρ,
while the results show that the convergence speed of DDA [129] is quite sensitive
to the variation of the subgradient step size θ.

In order to see the average behavior of the proposed Algorithm 4.1, we next
run Algorithm 4.1 for 500 fading realizations with the algorithm parameter
ρ = 2D for both networks shown in Fig. 4.3. We first present the feasibility rate
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Fig. 4.4. Normalized power accuracy versus iteration for SINR γl = 5 dB for all l ∈ L: (a)
Multicell network 1; (b) Multicell network 2.
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of the proposed algorithm, and then provide the average performance of the
algorithm.

Fig. 4.5 shows the feasibility rate of Algorithm 4.1 versus iteration for SINR
target γl = 5 dB and 15 dB for all l ∈ L. For a comparison, we consider
DDA [129] with a subgradient step size θ = 50. Plots are drawn for the first
50 iterations. Results show that in the case of multicell network 4.3(a), the
proposed algorithm achieves the feasible solution for all the simulated cases (see
Fig. 4.5(a)); and for multicell network 4.3(b) the feasibility rate improves with
iteration (see Fig. 4.5(b)). That is the proposed algorithm can achieves the
feasible solution for all channel realizations. However, for DDA [129] feasibility
rate depends on the network size and the SINR target. For example, in the case
of small network and low SINR target (i.e., multicell network 4.3(a) and SINR
target γl = 5 dB), DDA [129] can achieves the feasible solution for all simulated
cases. But, with increase in the SINR target and the network size, the feasibility
rate of DDA [129] drops significantly. For example, in multicell network 4.3(b)
for SINR target γl = 15 dB, DDA [129] is not able to find a feasible solution for
any of the fading realization (see Fig. 4.5(b)).

Fig. 4.6 shows the average sum-power versus iteration for multicell network
4.3(a). The SINR target γl is set to 15 dB for all l ∈ L. For a comparison, we
consider centralized algorithm [132, Sec. IV] and DDA [129]. DDA [129] plots
are drawn for the subgradient step size θ = 10, 50. For a fair comparison of
Algorithm 4.1, DDA [129], and the centralized algorithm [132, Sec. IV], the
plots are drawn for the fading realizations that are feasible for all considered
algorithms. Results show that the convergence speed of proposed Algorithm 4.1
compared with DDA [129] is fast, and can achieves the centralized solution in
less than 10 iterations.

Fig. 4.7 shows the average sum-power versus SINR target for multicell
network 4.3(b). For a comparison, we consider centralized algorithm [132,
Sec. IV]. To note a fair progress of the proposed algorithm for a wide SINR
target values, each curve is averaged for the fading realizations that are feasible
for all the SINR values. Plots are drawn for the average sum-power at iteration
number 20 and 50. Results show that the proposed Algorithm 4.1 can achieve
the centralized solution over a wide range of SINR target values.

We next evaluate the performance of Algorithm 4.3 for the SINR balancing
problem (P2). We first consider a single fading realization and run the algorithm
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Fig. 4.5. Feasibility rate versus iteration for SINR target γl = 5 dB and 15 dB for all l ∈ L: (a)
Multicell network 1; (b) Multicell network 2.
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for both networks shown in Fig. 4.3. As a benchmark, we consider centralized
optimal algorithm proposed in [132, Sec. V]. In the simulation, we set SNR = 5 dB,
and for Algorithm 4.2, we set εg = 0.1 and αmax

n = 2× 100.1×SNR for all n ∈ N .
Plots are drawn for ρ = 0.5, 1, 2.

Fig. 4.8 shows the progress of the global variable γ by iteration. Note that
the global variable γ is the average of SINR values α1, . . . , αN that are obtained
independently by all N BSs (see expression (4.52)). Results show that for all the
considered values of ρ, Algorithm 4.3 can obtain an SINR value γ that converges
to the optimal centralized solution. Since γ is the average of the SINR values
obtained independently in all N BSs, the intermediate values of γ may not be
feasible for all BSs before the algorithm converges. For example, the value of γ
for ρ = 0.5 is clearly infeasible at iteration step i = 4, 5, 6, 7, 8 in Fig. 4.8(a).
Therefore, to illustrate the convergence of a feasible value of γ, we define the
following metric:

γibest = max
t=1,...,i

{γtfeas}, (4.57)

where γibest is the best feasible SINR value at ith iteration and γtfeas is the feasible
SINR at tth iteration (see expression (4.54)).

Fig. 4.9 shows the behavior of γibest by iteration. Results show that Algo-
rithm 4.3 can achieve the feasible values of γ that converge to the centralized
solution. For example, with ρ = 0.5 the algorithm converges to the centralized
solution in just 10th iterations (see Fig. 4.9(a)).

Fig. 4.10 shows the SINR γibest for different SNR values31. Each curve is
averaged over 300 fading realizations. In the simulation, a penalty parameter ρ
is set to 0.5. Plots are drawn for the SINR values obtained at iterations 20,
30, and 50 of Algorithm 4.3. Results show that the proposed Algorithm 4.3
can achieve close to the centralized solution over the wide range of SNR values
without any tuning of ρ.

31For fixed radius RBS in Fig. 4.3, different SNRs (i.e., different SNR(RBS)) are obtained by
changing pmax

0
σ2 in (4.55).
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Fig. 4.8. Progress of global variable γ for SNR = 5 dB: (a) Multicell network 1; (b) Multicell
network 2.
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Fig. 4.9. Feasible SINR γibest versus iteration for SNR = 5 dB: (a) Multicell network 1; (b)
Multicell network 2.
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4.5 Summary and discussion

We have provided distributed algorithms for the radio resource allocation
problems in multicell downlink MISO systems. Specifically, we have considered
two optimization problems: P1 - minimization of the total transmission power
subject to SINR constraints of each user, and P2 - SINR balancing subject to
total transmit power constraint of BSs. We have proposed consensus-based
distributed algorithms, and the fast solution method via ADMM. First, we have
derived a distributed algorithm for problem P1. Then in conjunction with the
bracketing method, the algorithm is extended for problem P2. The proposed
distributed algorithm for problem P1 converges to an optimal centralized solution,
and this has been also demonstrated by numerical example. However, problem
P2 is not amendable to a convex formulation, and in this case the ADMM does
not need to converge to an optimal point. Numerical results show that the
proposed distributed algorithm for problem P2 finds a close-to-optimal solution.
The consensus based ADMM technique proposed in this chapter can also be
extended to derive a distributed algorithm for the WSRMax problem in multicell
MISO downlink networks.
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5 Dynamic resource allocation for cellular
network operators

In this chapter the problem of dynamic spectrum sharing in a MISO downlink
cellular network is considered. We assume a co-primary setup [25, 194], where
operators share a fraction of their licensed spectrum by forming a common
spectrum pool, which is dynamically allocated to the operators according to
their channel qualities, traffic demands, past activity, etc.

Clearly, by sharing the spectrum instead of using it individually the operators
can increase their profits, but this gives rise to a new problem: how to distribute
the surplus (i.e., the increase in the profit) fairly between the operators, so
that they have incentive to share their licensed spectrum with each other. For
example, the total (or sum) profit can be maximized by allocating each portion
of the shared spectrum to the operator that can make the most profit out of it.
However, such a simplistic strategy does not make much sense since it may lead
to a highly unfair outcome, where some operators may even suffer from reduced
profit instead of increasing it.

This problem of fair surplus management has been intensively studied,
especially in economics, and a solution has been proposed by Nash in 50’s [195].
The bargaining problem proposed in [195] has shown that under a reasonable set
of axioms, the fair operating point can be obtained by maximizing the product
of the incremental profit gains, with respect to the case when the agents do not
cooperate. We adopt this definition of fairness to share the licensed spectrum
band between two cellular network operators in this chapter.

Our goal is to propose a dynamic network control algorithm which decides
at each time slot: 1) the portion of spectrum band for each operator from the
common spectrum pool (i.e., divide the common spectrum pool orthogonally
between the operators), 2) beamformers, powers, transmission rates, admitted
data, etc., for users, and 3) possible inter-operator payments, such that the
surplus obtained from cooperation is fairly shared between the operators.

To achieve fairness in the surplus sharing between operators, we formulate (or
cast) the spectrum sharing problem as a Nash bargaining game [151, 195–198],
and then we use the Lyapunov drift plus penalty framework [42, 43] to derive a
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dynamic control algorithm which approximates its solution. The solution (control
algorithm) consists of solving the following (decoupled) tasks at each time slot: 1)
determine the spectrum price for the operators, 2) make flow control decisions for
the users’ data, and 3) jointly allocate the common spectrum pool orthogonally
to the operators and design the transmit beamformers and powers, which is
known as resource allocation (RA). The RA problem is the most challenging
one (combinatorial, NP-hard) and for this we propose both centralized and
distributed algorithms, and hence we have both centralized and distributed
versions of the dynamic control algorithm. The centralized algorithm is derived
by solving the RA problem via sequential convex programming [35], and the
distributed algorithm is derived by solving the RA problem via the ADMM [113]
in conjunction with the sequential convex programming. Numerically, we show
that the proposed distributed algorithm achieves almost the same performance
as the centralized one. Furthermore, the results show that there is a trade-off
between the achieved profits of the operators and network congestion.

5.1 System model and problem formulation

We consider a downlink wireless network consisting of a cell with two coexisting
BSs, belonging to two different operators. The set of BSs is denoted by N , and
we label them with the integer values n = 1, 2. The transmission region of the
BSs is modeled as a disc with a radius RBS centered at the location of the BS.
Each BS is equipped with T transmit antennas, and each user is equipped with
single receive antenna. We denote the set of all users in nth BS by L(n), and we
label them with the integer values l = 1, . . . , Ľn. Let each operator share an
equal32 amount of spectrum band B Hz with the other operator. Hence, a total
spectrum of bandwidth 2B Hz is available for both operators. Furthermore, we
assume that the total spectrum band 2B Hz is split into S subchannels. The
set of subchannels is denoted by S, and we label them with the integer values
s = 1, . . . , S. Let the bandwidth of sth subchannel be ws Hz, and we assume
that it is smaller than a coherence bandwidth. See Fig. 5.1 for the functional
architecture of the considered co-primary spectrum sharing setup.

32The work can be easily generalized to the case where operators share different portions of
the spectrum bands with each other.
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Fig. 5.1. High level functional architecture for co-primary spectrum sharing [25, 194, 199]:
Two operators (OP) share a common spectrum pool in the same geographical area. The us-
age conditions of the common spectrum pool are defined with mutual agreement between
the operators. The spectrum controller is responsible for inter-operator spectrum coordina-
tion. We refer the interested reader to [194] for more detail on co-primary sharing architec-
ture for a denser network, [165] c©2017, IEEE.

The network is assumed to be operating in slotted time with slots normalized
to integer values t ∈ {0, 1, 2, . . .}. At each time slot, a network controller
partitions the S subchannels orthogonally between the operators (i.e., between
the two BSs)33. Let the set of subchannels allocated to nth BS during time slot
t be S(n, t), and we label them with the integer values s = 1, . . . , Sn(t).

Let pnl,s(t) and vnl,s(t) denote the power and direction of the transmit
beamformer associated with lth user of BS n in subchannel s during time slot
t. We assume vnl,s(t) is normalized such that ‖vnl,s(t)‖2 = 1 for all n ∈ N ,
l ∈ L(n), and s ∈ S. Furthermore, let mnl,s(t) =

√
pnl,s(t)vnl,s(t), then the

SINR of lth user of BS n in subchannel s during time slot t is given by

Γnl,s(m̆n(t)) =
|hH
nl,s(t)mnl,s(t)|2

N0ws +
∑
j∈L(n),j 6=l |hH

nl,s(t)mnj,s(t)|2
, (5.1)

33We use the terminologies BS and operator interchangeably.
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where hH
nl,s(t) ∈ C1×T is the channel vector from nth BS to its lth user in

subchannel s, N0 is a noise power spectral density, and the notation m̆n(t)

denotes a vector obtained by stacking mnl,s(t) for all l ∈ L(n) and s ∈ S(n, t)

on top of each other, i.e.,

m̆n(t) = [mn1,1(t)T, . . . ,mnĽn,Sn(t)(t)
T]T.

We consider the case where all receivers are using single-user detection (i.e.,
a receiver decodes its intended signal by treating all other interfering signals as
noise), and assume that the achievable rate of lth user of nth BS during time
slot t is given by [9, Ch. 5]

rnl(t) , rnl
(
S(n, t), m̆n(t)

)
=

∑
s∈S(n,t)

ws log2

(
1 +

|hH
nl,s(t)mnl,s(t)|2

N0ws +
∑
j∈L(n),j 6=l |hH

nl,s(t)mnj,s(t)|2

)
, (5.2)

Furthermore, we assume that the power allocation is subject to a maximum
power constraint

∑
l∈L(n)

∑
s∈S(n,t) ‖mnl,s(t)‖22 ≤ pmax

n for each BS n ∈ N .

5.1.1 Spectrum pricing

At each time slot, the common spectrum pool 2B Hz (i.e., the set of S subchannels)
is partitioned between the operators. The total spectrum band allocated to
operator n ∈ N during time slot t is

∑
s∈S(n,t) ws. We assume that both

operators can use up to the amount of spectrum that they put into the common
spectrum pool without any payment. But, the operator pays for an extra band
of spectrum, if it uses more spectrum than it has put into the common spectrum
pool, to the other operator. Specifically, if a spectrum band used by nth operator∑
s∈S(n,t) ws is more than B Hz, operator n pays the other operator (i.e., the

opponent of nth operator) for the extra band of spectrum (
∑
s∈S(n,t) ws −B)

Hz. The amount to be paid is determined by the pricing rule established by a
control algorithm.

Let qn(t) be the per-unit price of spectrum during time slot t to charge the
nth operator’s opponent for using the extra spectrum band. To simplify the
notation, let us use n to denote the opponent of nth operator34. Then the
34For operator n = 1, its opponent is n = 2. Similarly, for operator n = 2, its opponent is
n = 1.

126



payment from operator n ∈ N , for using the extra band of spectrum, to its
opponent is qn(t)

(∑
s∈S(n,t) ws −B

)+.
With this spectrum pricing rule, operators with both low and high spectrum

demands can be benefitted. For example, an operator with high spectrum
demand can have access to more spectrum than it owns; while an operator with
low spectrum demand (or, no spectrum demand at all) gets paid for leasing
its spectrum. Even in the case when both operators use the same amount of
spectrum that they have put into the common spectrum pool (i.e., in the case of
equal spectrum demand), they can still gain as the operators have an opportunity
to access subchannels with better channel quality from the common spectrum
pool, free of charge.

5.1.2 Network queuing and time average profit

We consider a network utility maximization framework similar to the one
considered in [42, Sec. 5.1], [43, Ch. 5]. Specifically, exogenously arriving data is
not immediately admitted to the network layer of BSs. Instead, the exogenous
data is first placed in transport layer storage reservoirs. Let Dnl(t) represent the
transport layer storage backlog of lth user of BS n during time slot t, and λnl(t)
represents the amount of data that exogenously arrives to it. Then, at each time
slot a flow control decision is made, and the amount of each user data to be
admitted to the network layer from reservoir Dnl(t) is decided. Let anl(t) denote
the amount of data of lth user of nth BS that is admitted to the network layer
from the reservoir Dnl(t) during time slot t.

We assume that only the data currently available in Dnl(t) at the beginning
of slot t can be admitted to the network layer during that slot. The transport
layer storage reservoir may not always have data to be admitted to the network
layer, and hence the flow rate anl(t) is subject to a constraint anl(t) ≤ Dnl(t) for
each user. Then the dynamics of the transport layer storage reservoir Dnl(t)

from one time slot to the next can be expressed as35

Dnl(t+ 1) = max[Dnl(t)− anl(t), 0] + λnl(t), n ∈ N , l ∈ L(n). (5.3)

35In the case that the transport layer storage reservoir has a finite sizeDmax
nl ≥ 0, expression (5.3)

can be expressed as Dnl(t+ 1) = min
[
max[Dnl(t)− anl(t), 0] + λnl(t), D

max
nl

]
for all n ∈ N

and l ∈ L(n).
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Here, we assume that the exogenously arriving data {λnl(t)}n∈N ,l∈L(n) can have
arbitrary input rates (i.e., input rates can be inside or outside of the network
capacity region).

Furthermore, at the network layer each BS maintains a set of internal queues
for storing the current backlog (or unfinished work) of its users. Let Qnl(t)
represent the current backlog of lth user of nth BS. The evolution of the size of
Qnl(t) can be expressed as [42]

Qnl(t+ 1) = max[Qnl(t)− rnl(t), 0] + anl(t), n ∈ N , l ∈ L(n), (5.4)

where rnl(t) is the transmission rate (defined in (5.2)) offered to lth user of nth
BS during time slot t. Here, we adopt the notion of strong stability36, and we
say that the network is strongly stable if37 [42, 43]

Qnl , lim sup
t→∞

1
t

∑t−1
τ=0 E{Qnl(τ)} <∞, n ∈ N , l ∈ L(n), (5.5)

where the expectation depends on the control policy, and is with respect to the
random channel states and the control actions made in reaction to these channel
states38. Intuitively, expression (5.5) means that a queue is strongly stable if its
time average backlog is finite; and a network is strongly stable if all individual
queues in the network are strongly stable.

At each time slot, for lth user of BS n the network controller admits anl(t)
data into the internal queue for transmission. Note that under network stability,
the admitted data anl(t) for all t in the internal queue is transmitted to the
corresponding user over a finite period of time [43]. Thus, we define the utility of
the user in terms of the admitted data rate anl(t), instead of the transmission rate
rnl(t). To define the utility of lth user of BS n, let anl(t) denote the admitted
time average rate up to time slot t, i.e., anl(t) , 1

t

∑t−1
τ=0 E{anl(τ)}. Then,

associated with each user, we define a non-decreasing concave utility function
gnl(anl(t)). The utility function gnl(anl(t)) represents a monetary measure of
the satisfaction that nth operator receives by sending data to its lth user based

36A definition of strong stability is general, and it also implies other forms of stability [43,
Theorem 2.8].
37Note that we use a commonly used procedure, and express the long term average as the time
average of expectation, which leads to a tractable algorithm [46, 200–205].
38Throughout this chapter, all expectations are taken with respect to the random channel
states and the control actions made in reaction to these channel states, unless stated otherwise.
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on its current data rate anl(t). Finally, we define the time average expected
profit of nth operator as

Un , lim inf
t→∞

( ∑
l∈L(n)

gnl(anl(t)) + 1
t

t−1∑
τ=0

E
{
qn(τ)

( ∑
s∈S(n,τ)

ws −B
)+}

− 1
t

t−1∑
τ=0

E
{
qn(τ)

( ∑
s∈S(n,τ)

ws −B
)+})

, (5.6)

where the second right hand term in (5.6) represents an amount that nth operator
receives by leasing its spectrum band to its opponent; and the third right hand
term represents an amount that nth operator pays to its opponent for renting the
extra spectrum band. Note that during any given time slot, only one operator
can use more than B Hz from the spectrum pool 2B Hz. Hence, during any
given time slot, operators either lease or rent a portion of the common spectrum
band. Specifically, during time slot τ , either term qn(τ)

(∑
s∈S(n,τ) ws −B

)+ or

term qn(τ)
(∑

s∈S(n,τ) ws −B
)+ is nonzero.

5.1.3 Problem formulation

Our objective is to maximize the gain in profits of both operators by sharing their
licensed spectrum bands with each other, rather than using them exclusively.
That is, we want to distribute the surplus (i.e., the increase in the profit) fairly
between the operators, so that they have an incentive to share their licensed
spectrum with each other. To do this, we model the spectrum sharing between
two operators as a two-person bargaining problem [195–198] and cast it as a
stochastic optimization problem.

Let U0
n denote the utility gain of nth operator that it receives before sharing

its spectrum band with the other operator. In the context of bargaining problem,
the utility U0

n is commonly known as a disagreement point, and it is assumed to
be known. We assume that each operator knows a value of U0

n from their past
experience. Thus the benefits of the operators obtained by sharing their licensed
spectrum bands with each other is Un − U0

n for all n ∈ N . For tractability,
we assume that a per-unit price of the spectrum band set by each operator is
bounded, i.e., 0 ≤ qn(t) ≤ qmax for all n ∈ N . Then the optimization problem
to maximize the operators’ profit (i.e., Un − U0

n for all n ∈ N ) fairly, subject
to network stability and the maximum power constraint for each BS can be
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expressed as39 40

maximize
∑
n∈N log(Un − U0

n)

subject to Un ≥ U0
n, n ∈ N (5.7a)

Qnl <∞, n ∈ N , l ∈ L(n) (5.7b)

0 ≤ qn(t) ≤ qmax, n ∈ N ,∀t (5.7c)∑
l∈L(n)

∑
s∈S(n,t) ‖mnl,s(t)‖22 ≤ pmax

n , n ∈ N ,∀t (5.7d)

S(1, t) ∩ S(2, t) = ∅, S(1, t),S(2, t) ⊆ S,∀t, (5.7e)

with variables {qn(t)}n∈N , {anl(t)}n∈N ,l∈L(n), {mnl,s(t)}n∈N ,l∈L(n),s∈S , S(1, t),
and S(2, t) for all t ∈ {0, 1, 2, . . .}; where Un and Qnl are defined in (5.6)
and (5.5), respectively. The constraint (5.7a) ensures that the profits of the
operators obtained by sharing their spectrum bands are greater than without
sharing their spectrum bands with each other. The constraint (5.7b) ensures
that the network is stable. The constraint (5.7d) limits the total transmit power
of each BS, and constraint (5.7e) ensures that a subchannel is allocated only to a
single operator.

5.2 Dynamic algorithm via Lyapunov optimization

In this section we use the cross-layer stochastic optimization framework of [42, 43]
to solve problem (5.7). We start by transforming problem (5.7) so that it conforms
to the structure required for the drift-plus-penalty method of [42, 43]. Then, we
apply the drift-plus-penalty minimization method to the transformed problem to
derive the steps of the proposed dynamic control algorithms.

39Efficient utilization of the common spectrum pool can be obtained by maximizing the social
welfare objective

∑
n∈N Un, without regards to the spectrum prices {qn}n∈N because the

payment will be canceled out. However, in sharing the spectrum between operators, such a
strategy does not make much sense since it may lead to a highly unfair outcome, where some
operators may even suffer from reduced profit instead of increasing it.
40In the formulation (5.7), we have used the notion of a bargaining problem [195–198], where
the fair operating point is obtained by maximizing the product of the incremental profit gains,
with respect to the disagreement point. This is easy to see, as we can equivalently express the
objective function of problem (5.7) as log

∏
n∈N (Un − U0

n); and omit the log(·) function.
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5.2.1 Transformed problem via auxiliary variables

We start by equivalently reformulating problem (5.7) by introducing an auxiliary
variable µn, for all n ∈ N , as

maximize
∑
n∈N log(µn)

subject to µn ≤ Un − U0
n, n ∈ N

Un ≥ U0
n, n ∈ N

Qnl <∞, n ∈ N , l ∈ L(n)

0 ≤ qn(t) ≤ qmax, n ∈ N ,∀t∑
l∈L(n)

∑
s∈S(n,t) ‖mnl,s(t)‖22 ≤ pmax

n , n ∈ N ,∀t
S(1, t) ∩ S(2, t) = ∅, S(1, t),S(2, t) ⊆ S,∀t,

(5.8)

with variables {µn}n∈N , {qn(t)}n∈N , {anl(t)}n∈N ,l∈L(n), {mnl,s(t)}n∈N ,l∈L(n),s∈S ,
S(1, t), and S(2, t) for all t ∈ {0, 1, 2, . . .}. Note that the first inequality con-
straints of problem (5.8) hold with equality at the optimal solution due to a
monotonic increasing property of the objective function.

Note that problem (5.8) involves the statistics of random channel states, and
that we do not know. Our objective is to provide a dynamic control algorithm
that makes a decision in each time slot and solves problem (5.8). We achieve this
by using the drift-plus-penalty minimization method [42, 43], which converts a
long-term objective of problem (5.8) into a series of myopic optimizations. To do
this, we now assume that the auxiliary variable µn is a time average of auxilary
variables µn(t) for all t = {0, 1, 2, . . .}, i.e., µn , limt→∞

1
t

∑t−1
τ=0 E{µn(τ)}.

Then by following the approach of [43, Ch. 5.0.5], we modify problem (5.8) as
the following optimization problem:

maximize
∑
n∈N log(µn)

subject to µn ≤ Un − U0
n, n ∈ N (5.9a)

Un ≥ U0
n, n ∈ N (5.9b)

Qnl <∞, n ∈ N , l ∈ L(n) (5.9c)

0 ≤ qn(t) ≤ qmax, n ∈ N ,∀t (5.9d)∑
l∈L(n)

∑
s∈S(n,t) ‖mnl,s(t)‖22 ≤ pmax

n , n ∈ N ,∀t (5.9e)

S(1, t) ∩ S(2, t) = ∅, S(1, t),S(2, t) ⊆ S,∀t, (5.9f)
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with variables {µn(t)}n∈N , {qn(t)}n∈N {anl(t)}n∈N ,l∈L(n), S(1, t), S(2, t), and
{mnl,s(t)}n∈N ,l∈L(n),s∈S for all t ∈ {0, 1, 2, . . .}; where log(µn) is defined as

log(µn) , lim
t→∞

1
t

∑t−1
τ=0 E

{
log(µn(τ))

}
. (5.10)

Note that by using Jensen’s inequality we can easily verify that log(µn) is lower
bound on log(µn). Thus, the solution of problem (5.9) is also feasible for the
original problem (5.7), and hence problem (5.9) provides a reasonable lower
bound for the original problem (5.7).

5.2.2 Solving the transformed problem

In this section we use the drift-plus-penalty minimization method introduced
in [42, 43] to solve problem (5.9). In the drift-plus-penalty minimization method,
the inequality constraints (5.9a) and (5.9b) are enforced by transforming them
into a queue stability problem. In other words, for each inequality constraint,
in (5.9a) and (5.9b), a virtual queue is introduced in such a way that the stability
of these virtual queues implies the feasibility of constraints (5.9a) and (5.9b).

Let {Xn(t)}n∈N be virtual queues associated with constraint (5.9a). We
update the virtual queue Xn(t) for all n ∈ N at each time slot as

Xn(t+ 1) = max[Xn(t)− xout
n (t), 0] + xin

n (t), (5.11)

where,

xout
n (t) =

∑
l∈L(n) gnl(anl(t)) + qn(t)

(∑
s∈S(n,t) ws −B

)+
, (5.12)

xin
n (t) = µn(t) + U0

n + qn(t)
(∑

s∈S(n,t) ws −B
)+
. (5.13)

Note that Xn(t) can be viewed as a backlog in a virtual queue with an input rate
xin
n (t) and a service rate xout

n (t). If virtual queues {Xn(t)}n∈N are strongly stable
(see expression (5.5) for the definition of strong stability), then constraint (5.9a)
is satisfied, see Appendix 4.

Likewise, to ensure inequality constraint (5.9b), we define virtual queues
{Yn(t)}n∈N ; and update Yn(t) for all n ∈ N according to the following dynamics:

Yn(t+ 1) = max[Yn(t)− yout
n (t), 0] + yin

n (t), (5.14)
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where,

yout
n (t) =

∑
l∈L(n) gnl(anl(t)) + qn(t)

(∑
s∈S(n,t) ws −B

)+
, (5.15)

yin
n (t) = U0

n + qn(t)
(∑

s∈S(n,t) ws −B
)+
. (5.16)

The stability of virtual queues {Yn(t)}n∈N ensures constraint (5.9b), and this
can be shown by following the approach in Appendix 4.

We now define Lyapunov function and its drift, which will be used to define
a queue stability problem for the actual queues {Qnl(t)}n∈N ,l∈L(n) and the
virtual queues {Xn(t), Yn(t)}n∈N . For a compact representation, let us use
Θ(t) to denote a vector of the actual and the virtual queues, i.e., Θ(t) =

[Q11(t), . . . , Q1L1
(t), Q21(t), . . . , Q2L2

(t), X1(t), X2(t), Y1(t), Y2(t)]T. Then we
define a quadratic Lyapunov function L̃(Θ(t)) as [42, 43]

L̃Θ(t)) =
1

2

[∑
n∈N

∑
l∈L(n)Qnl(t)

2 +
∑
n∈N Xn(t)2 +

∑
n∈N Yn(t)2

]
. (5.17)

The Lyapunov function L̃(Θ(t)) is a scalar measure of network congestion.
Intuitively, if L̃(Θ(t)) is small then all the queues are small; and if L̃(Θ(t))

is large then at least one queue is large. Thus, by minimizing a drift in the
Lyapunov function (i.e., by minimizing a difference in the Lyapunov function
from one slot to the next) queues {Qnl(t)}n∈N ,l∈L(n) and {Xn(t), Yn(t)}n∈N
can be stabilized [43]. By using expression (5.17), the drift in the Lyapunov
function (i.e., the expected change in the Lyapunov function from one slot to the
next) can be written as

∆(Θ(t)) , E
{
L̃(Θ(t+ 1))− L̃(Θ(t))|Θ(t)

}
. (5.18)

We now use the drift-plus-penalty minimization method introduced in [42, 43]
to solve problem (5.9). In this method, a control policy that solves problem (5.9) is
obtained by minimizing an upper bound on the following drift-plus-penalty
expression [42, 43]:

∆(Θ(t))− V
∑
n∈N E{log(µn(t))|Θ(t)}, (5.19)

where V ≥ 0, subject to the constraints (5.7c)-(5.7e) in each time slot, i.e.,

0 ≤ qn(t) ≤ qmax, n ∈ N (5.20)∑
l∈L(n)

∑
s∈S(n,t) ‖mnl,s(t)‖22 ≤ pmax

n , n ∈ N (5.21)

S(1, t) ∩ S(2, t) = ∅, S(1, t),S(2, t) ⊆ S. (5.22)
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Note that the expression (5.19) has two terms. The first term is the drift
∆(Θ(t)); and in [42, 43] it is shown that by minimizing the drift ∆(Θ(t)), at
each time slot, we can satisfy inequality constrains (5.9a)-(5.9c). The second
term is −

∑
n∈N E{log(µn(t))|Θ(t)}, and by minimizing it at each time slot, the

objective of problem (5.9) is maximized. Thus, by varying parameter V we can
obtain a desired trade-off between the size of the queue backlogs and the profits
of the operators.

In the rest of this section, to simplify algorithm development, we first find
an upper bound of the expression (5.19). Then we present a dynamic control
algorithm to solve problem (5.9) that, at each time slot, minimizes the upper
bound of expression (5.19) subject to the constraints (5.20)-(5.22).

By using expressions (5.4), (5.11), and (5.14), we note that 41

Qnl(t+ 1)2 ≤ Qnl(t)2 + anl(t)
2 + rnl(t)

2 + 2Qnl(t)[anl(t)− rnl(t)], (5.23)

Xn(t+ 1)2 ≤ Xn(t)2 + xin
n (t)2 + xout

n (t)2 + 2Xn(t)[xin
n (t)− xout

n (t)], (5.24)

Yn(t+ 1)2 ≤ Yn(t)2 + yin
n (t)2 + yout

n (t)2 + 2Yn(t)[yin
n (t)− yout

n (t)]. (5.25)

Then, by using expressions (5.18) and inequalities (5.23)-(5.25), an upper
bound of expression (5.19) can be expressed as

∆(Θ(t))− V
∑
n∈N

E{log(µn(t))|Θ(t)} ≤ C − V
∑
n∈N

E{log(µn(t))|Θ(t)}

+
∑
n∈N

∑
l∈L(n)

Qnl(t)E{anl(t)− rnl(t)|Θ(t)}

+
∑
n∈N

Xn(t)E{xin
n (t)− xout

n (t)|Θ(t)}

+
∑
n∈N

Yn(t)E{yin
n (t)− yout

n (t)|Θ(t)}, (5.26)

where C is a finite positive constant that satisfies the following condition for all t:

C ≥ 1

2

[ ∑
n∈N

∑
l∈L(n)

E{anl(t)2 + rnl(t)
2|Θ(t)}+

+
∑
n∈N

E{xin
n (t)2 + xout

n (t)2 + yin
n (t)2 + yout

n (t)2|Θ(t)}
]
. (5.27)

41To write inequalities (5.23)-(5.25), we have used the fact that (max[Q − b, 0] + A)2 ≤
Q2 +A2 + b2 + 2Q(A− b) for any Q ≥ 0, b ≥ 0, and A ≥ 0.
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Furthermore, by substituting expressions (5.12), (5.13), (5.15), and (5.16)
in (5.26), we get

∆(Θ(t))− V
∑
n∈N

E
{

log(µn(t))|Θ(t)} ≤ C − V
∑
n∈N

E{log(µn(t))|Θ(t)
}

+
∑
n∈N

∑
l∈L(n)

Qnl(t)E
{
anl(t)− rnl(t)|Θ(t)

}
+

∑
n∈N

Xn(t)E
{
µn(t)

∣∣Θ(t)
}

+
∑
n∈N

Wn(t)E
{
U0
n + qn(t)

( ∑
s∈S(n,t)

ws −B
)+∣∣Θ(t)

}
−
∑
n∈N

Wn(t)E
{ ∑
l∈L(n)

gnl(anl(t)) + qn(t)
( ∑
s∈S(n,t)

ws −B
)+∣∣Θ(t)

}
, (5.28)

where Wn(t) = Xn(t) + Yn(t) for all n ∈ N .
Finally, we summarize the steps of the proposed dynamic control algorithms

based on the drift-plus-penalty minimization method [42, 43] to solve prob-
lem (5.9) in Algorithm 5.1. The proposed algorithms observe queue backlogs
Θ(t) and the channel states {hnl,s(t)}n∈N ,l∈L(n),s∈S , and makes a control action
to minimize the righthand side of expression (5.28) subject to constraints (5.20)-
(5.22). The minimization of the righthand side of expression (5.28) can be
decoupled across variables {qn(t)}n∈N , {anl(t)}n∈N ,l∈L(n), {µn(t)}n∈N , and
{{mnl,s(t)}n∈N ,l∈L(n),s∈S(n,t), {S(n, t)}n∈N }, resulting in subproblems as shown
in Algorithm 5.1. Note that the drift-plus-penalty minimization method [42, 43]
uses the concept of opportunistically minimizing an expectation [43, Ch. 1.8] to
solve each subproblems.

Algorithm 5.1. Algorithm for the spectrum sharing problem (5.9)

1. Pricing: for each n ∈ N , per-unit price qn(t) is chosen as

qn(t) =

{
qmax if Wn(t) > Wn(t)

0 otherwise
(5.29)

2. Flow control: for each n ∈ N , flow rate anl(t) = anl for all l ∈ L(n), where
{anl}l∈L(n) solves the following optimization problem:

maximize Wn(t)
∑
l∈L(n) gnl(anl)−

∑
l∈L(n)Qnl(t)anl

subject to 0 ≤ anl ≤ min[Dnl(t), A
max], l ∈ L(n),

(5.30)
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with variables {anl}l∈L(n), where Amax > 0 is the algorithm parameter as
described in [42, Sec. 4.2.1]. In the inequality constraint of problem (5.30),
the term Dnl(t) denotes the available data in the transport layer reservoir
(see Section 5.1.2).

3. Auxiliary variable: for each n ∈ N , auxiliary variable µn(t) = µn, where µn
solves the following optimization problem:

maximize V log(µn)−Xn(t)µn

subject to 0 ≤ µn ≤ µmax,
(5.31)

with variables µn, where µmax > 0 is the algorithm parameter as described
in [43, Ch. 5] .

4. Resource allocation: solve the following optimization problem:

maximize
∑
n∈N

∑
l∈L(n)Qnl(t)rnl

(
Sn,mn

)
+
∑
n∈N Wn(t)qn(t)

(∑
s∈S(n) ws −B

)+
−
∑
n∈N Wn(t)qn(t)

(∑
s∈S(n) ws −B

)+
subject to

∑
l∈L(n)

∑
s∈S(n) ‖mnl,s‖22 ≤ pmax

n , n ∈ N
S(1) ∩ S(2) = ∅, S(1),S(2) ⊆ S,

(5.32)

with variables {mnl,s}n∈N ,l∈L(n),s∈S and {S(n)}n∈N . Set mnl,s(t) = mnl,s

and S(n, t) = S(n) for all n ∈ N , l ∈ L(n), and s ∈ S(n).
5. Queue update: update {Dnl(t+1)}n∈N ,l∈L(n), {Qnl(t+1)}n∈N ,l∈L(n), {Xn(t+

1)}n∈N , and {Yn(t+1)}n∈N by using expressions (5.3), (5.4), (5.11), and (5.14).
Set t = t+ 1 and go to step 1.

In step 1, the per-unit price of the spectrum is set for the operators, and is
obtained by minimizing the righthand side of expression (5.28) over variables
{qn(t)}n∈N . A similar pricing strategy is obtained in [206], and this is known
as bang-bang pricing. This pricing strategy alternates between periods of
free service (i.e., a price set to zero) and periods where price is set to a pre-
specified maximum value qmax, according to the values of the virtual queues
{Wn(t) = Xn(t)+Yn(t)}n∈N . The value of virtual queueXn(t) can be interpreted
as the utility gain that nth operator has yet to obtain in order to maximize its
profit42. Thus, the bang-bang pricing strategy, in step 1, sets the price value to
42Similarly, the value of virtual queue Yn(t) can be interpreted as the utility gain that nth
operator has yet to obtain so that its utility is greater than its disagreement point U0

n.
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a pre-specified value qmax 43 for an operator, whose utility is lagging behind
than that of the other operator.

Observe that except step 4 of Algorithm 5.1, the problems in each step of the
algorithm are decoupled into two subproblems, one for each operator. To solve
step 1, the coordination between operators is required to exchange parameters
W1(t) and W2(t) (i.e., two real scalers are needed to be exchanged between the
operators). The signalling overhead required to solve step 4 depends on the,
specific, strategy that is adopted to solve problem (5.32). In Section 5.3 and
Section 5.4, we provide centralized and distributed algorithms to solve step 4 of
Algorithm 5.1, respectively. This leads to the centralized and the distributed
versions of Algorithm 5.1 (i.e., the centralized and the distributed dynamic
control algorithms)44.

The performance of Algorithm 5.1 can be evaluated by using Theorem 5.4
in [42]. By using Theorem 5.4 in [42], we can show that Algorithm 5.1 yields
the objective value of problem (5.7) and the network backlog with a trade-off
[O(1/V ), O(V )]. That is the objective value of problem (5.7) is pushed within
O(1/V ) of its maximum value, with an increase in the network backlog with V .

5.3 Resource allocation - centralized algorithm

In this section we focus on resource allocation problem (5.32). Problem (5.32) is a
combinatorial problem, and it requires exponential complexity to find the global
solution. Here, we derive a computationally efficient, but possibly suboptimal,
algorithm for problem (5.32). The proposed algorithm is based on the sequential
convex programming [35].

We start by introducing binary variables {bns}n∈N ,s∈S in problem (5.32).
Variable bns is set to one, if subchannel ws is assigned to nth operator, otherwise
it is set to zero. Hence, by using binary variables {bns}n∈N ,s∈S , problem (5.32)

43In the bargaining framework, it is assumed that both operators have full knowledge of
each other’s preferences [195]. Thus, we assume that a value of qmax is set by the operators
on mutual agreement. For example, a value of qmax can be related to the utilities that the
operators can get by using their spectrum bands, i.e., we can set qmax = c× gnl(Amax), for
some constant c > 0, (see step 2 of Algorithm 5.1 for a definition of Amax).
44In the case when an operator deploys a heterogeneous system (for example, see [207]), the
proposed Algorithm 5.1 can be extended by embedding the required inter-tier interference
coordination strategy in the resource allocation subproblem (5.32).
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can be equivalently written as

maximize
∑
n∈N

∑
l∈L(n)

Qnl(t)
∑
s∈S

bnsws log2

(
1

+
|hH
nl,s(t)mnl,s|2

bnsN0ws +
∑
j∈L(n),j 6=l |hH

nl,s(t)mnj,s|2

)
+
∑
n∈N

Wn(t)qn(t)
(∑

s∈S bnsws −B
)+

−
∑
n∈N

Wn(t)qn(t)
(∑

s∈S bnsws −B
)+

subject to
∑
l∈L(n)

∑
s∈S ‖mnl,s‖22 ≤ pmax

n , n ∈ N (5.33a)∑
n∈N bns = 1, s ∈ S (5.33b)

bns = {0, 1}, n ∈ N , s ∈ S, (5.33c)

with the optimization variables {bns}n∈N ,s∈S and {mnl,s}n∈N ,l∈L(n),s∈S ; where
Wn(t) = Xn(t) + Yn(t) for all n ∈ N . Note that we have used expression (5.2)
to write the objective function of problem (5.33), and variable ws is replaced
with bnsws. In problem (5.33) constraints (5.33b) and (5.33c) ensures that a
subchannel ws is allocated to a single operator. Hence, the constraints associated
with orthogonal subchannel allocation in problem (5.32) have been dropped out.

Now we relax hard binary constraint (5.33c), and employ a penalty function
to promote binary values for variables {bns}n∈N ,s∈S , leading to

maximize
∑
n∈N

∑
l∈L(n)

Qnl(t)
∑
s∈S

bnsws log2

(
1

+
|hH
nl,s(t)mnl,s|2

bnsN0ws +
∑
j∈L(n),j 6=l |hH

nl,s(t)mnj,s|2

)
+
∑
n∈N

Wn(t)qn(t)
(∑

s∈S bnsws −B
)+

−
∑
n∈N

Wn(t)qn(t)
(∑

s∈S bnsws −B
)+

+ δ
∑
n∈N

∑
s∈S

bns log(bns)

subject to
∑
l∈L(n)

∑
s∈S ‖mnl,s‖22 ≤ pmax

n , n ∈ N (5.34a)∑
n∈N bns = 1, s ∈ S (5.34b)

0 ≤ bns ≤ 1, n ∈ N , s ∈ S, (5.34c)

with variables {bns}n∈N ,s∈S and {mnl,s}n∈N ,l∈L(n),s∈S ; where δ > 0 is a problem
parameter. The penalty function bns log(bns) is the negative entropy function,
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and it has a maximum value at bns equal to zero or one45. Thus, there exists a
value for parameter δ that can achieve binary values for variables {bns}n∈N ,s∈S .
It is worth noting that problem (5.34) is a non-combinatorial optimization
problem, however, it is still a nonconvex problem. In fact, problem (5.34) is
NP-hard [30].

Since the RA problem (5.34) is NP-hard, we use sequential convex program-
ming to approximate its solution. In order to simplify the algorithm development,
let us introduce variables unl,s and znl,s for all n ∈ N , l ∈ L(n), and s ∈ S as

unl,s =
∑

j∈L(n)

|hH
nl,s(t)mnj,s|2

znl,s =
∑

j∈L(n),j 6=l
|hH
nl,s(t)mnj,s|2.

(5.35)

Furthermore, for the sake of brevity, let us define following functions:

ψnl(unl,bn) = −
∑
s∈S

bnsws log2

(
N0ws +

unl,s
bns

)
, (5.36)

φnl(znl,bn) = −
∑
s∈S

bnsws log2

(
N0ws +

znl,s
bns

)
, (5.37)

χ1(b1) =
(
W1(t)−W2(t)

)
q2(t)

( ∑
s∈S

b1sws −B
)+

, (5.38)

χ2(b2) =
(
W2(t)−W1(t)

)
q1(t)

( ∑
s∈S

b2sws −B
)+

, (5.39)

ζn(bn) =
∑
s∈S bns log(bns), (5.40)

where unl = [unl,1, . . . , unl,S ]T, znl = [znl,1, . . . , znl,S ]T, and bn = [bn1, . . . , bnS ]T.
Then, by using expressions (5.35)-(5.40), and changing the sign of the objective
function of problem (5.34), it can be equivalently expressed as the following

45Instead, a penalty function bns(bns − 1), for all n ∈ N and s ∈ S, can also be used to
promote binary value for variables {bns}n∈N ,s∈S .
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minimization problem:

minimize
∑
n∈N

( ∑
l∈L(n)

Qnl(t)
(
ψnl(unl,bn)− φnl(znl,bn)

)
− δζn(bn) + θn

)
subject to unl,s =

∑
j∈L(n)

|hH
nl,s(t)mnj,s|2, n ∈ N , l ∈ L(n), s ∈ S (5.41a)

znl,s =
∑

j∈L(n),j 6=l
|hH
nl,s(t)mnj,s|2, n ∈ N , l ∈ L(n), s ∈ S

(5.41b)

χn(bn) ≤ θn, n ∈ N (5.41c)∑
l∈L(n)

∑
s∈S ‖mnl,s‖22 ≤ pmax

n , n ∈ N (5.41d)∑
n∈N bns = 1, s ∈ S (5.41e)

0 ≤ bns ≤ 1, n ∈ N , s ∈ S, (5.41f)

with variables {unl, znl}n∈N ,l∈L(n), {bn, θn}n∈N , and {mnl,s}n∈N ,l∈L(n),s∈S .
Note that we have used the relation log(A/B) = log(A) − log(B) to express
the objective function in problem (5.41). In the sequel, we first approximate
problem (5.41) and express it as a DC programming problem [36]. We then
present an algorithm that finds a solution for DC problem (i.e., the solution for
problem (5.41)) by solving a sequence of approximated convex problems.

Note that functions ψnl(unl,bn), φnl(znl,bn), and ζn(bn) are convex [29,
Sec. 3.1.5 and 3.2.6]. Thus, the objective function of problem (5.41) can be
expressed as the difference of the following two convex functions:

f̆0 , f̆0({unl,bn, θn}n∈N ,l∈L(n))

=
∑
n∈N

∑
l∈L(n)Qnl(t)ψnl(unl,bn) + θn, (5.42)

ğ0 , ğ0({znl,bn}n∈N ,l∈L(n))

=
∑
n∈N

∑
l∈L(n)Qnl(t)φnl(znl,bn) + δζn(bn), (5.43)

i.e., the objective function of problem (5.41) becomes f̆0 − ğ0.
We now turn to the inequality constraint (5.41c). We can easily see that

functions χ1(b1) and χ2(b2) are convex functions if W1(t) ≥W2(t) and W2(t) ≥
W1(t), respectively. Otherwise, both functions χ1(b1) and χ2(b2) are concave
functions. Thus, we introduce the following approximations for functions χ1(b1)
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and χ2(b2):

χ̂1(b1) =


(
W1(t)−W2(t)

)
q2(t)

(∑
s∈S b1sws −B

)+

W1(t) ≥W2(t)

(W1(t)−W2(t)
)
q2(t)

(∑
s∈S b1sws −B

)
otherwise,

(5.44)

χ̂2(b2) =


(
W2(t)−W1(t)

)
q1(t)

(∑
s∈S b2sws −B

)+

W2(t) ≥W1(t)(
W2(t)−W1(t)

)
q1(t)

(∑
s∈S b2sws −B

)
otherwise.

(5.45)

Note that in expressions (5.44) and (5.45), we have used the upper bound
functions of χ1(b1) and χ2(b2) ifW1(t) < W2(t) andW2(t) < W1(t), respectively.

To approximate (5.41a) and (5.41b) with convex constraints, let us introduce
the new variable Mnl,s = mnl,sm

H
nl,s such that Rank(Mnl,s) = 1 for all n ∈ N ,

l ∈ L(n), and s ∈ S. Then by applying a standard SDR [182] and using
expressions (5.42)-(5.45), problem (5.41) can be approximated as the following
DC program:

minimize f̆0({unl,bn, θn}n∈N ,l∈L(n))− ğ0({znl,bn}n∈N ,l∈L(n))

subject to unl,s =
∑

j∈L(n)

hH
nl,s(t)Mnj,shnl,s(t), n ∈ N , l ∈ L(n), s ∈ S (5.46a)

znl,s =
∑

j∈L(n),j 6=l
hH
nl,s(t)Mnj,shnl,s(t), n ∈ N , l ∈ L(n),

s ∈ S (5.46b)

χ̂n(bn) ≤ θn, n ∈ N (5.46c)∑
l∈L(n)

∑
s∈S Trace(Mnl,s) ≤ pmax

n , n ∈ N (5.46d)∑
n∈N bns = 1, s ∈ S (5.46e)

0 ≤ bns ≤ 1, n ∈ N , s ∈ S (5.46f)

Mnl,s � 0, n ∈ N , l ∈ L(n), s ∈ S, (5.46g)

with variables {unl, znl}n∈N ,l∈L(n), {bn, θn}n∈N , and {Mnl,s}n∈N ,l∈L(n),s∈S .
Note that in problem (5.46) we have removed Rank(Mnl,s) = 1 constraint for all
n ∈ N , l ∈ L(n), and s ∈ S.

We find a solution for problem (5.46) by solving a sequence of approximated
convex problems [36]. The best convex approximation of problem (5.46) can be
obtained by replacing ğ0 with its first order approximation (i.e., by replacing
φnl(znl,bn) and ζn(bn) with their first order approximations) [36]. The first
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order approximation of φnl(znl,bn) and ζn(bn), respectively, near an arbitrary
positive point (ẑnl, b̂n) can be expressed as

φ̂nl(znl,bn) = φnl(ẑnl, b̂n) +
1

log(2)

∑
s∈S

(
− b̂nsws

b̂nsN0ws + ẑnl,s

)
(znl,s − ẑnl,s)

+
1

log(2)

∑
s∈S

ws

(
ẑnl,s

b̂nsN0ws + ẑnl,s

− log
( b̂nsN0ws + ẑnl,s

b̂ns

))
(bns − b̂ns) (5.47)

and
ζ̂n(bn) = ζn(b̂n) +

∑
s∈S

(
1 + log(b̂ns)

)
(bns − b̂ns). (5.48)

Hence, by using the expression of f̆0 (see 5.42) and the first order approximation
of ğ0 (obtained by substituting (5.47) and (5.48) in (5.43)), problem (5.46) near
an arbitrary positive point (ẑnl, b̂n) can be expressed as the following convex
optimization problem:

minimize
∑
n∈N

( ∑
l∈L(n)

Qnl(t)
(
ψnl(unl,bn)− φ̂nl(znl,bn)

)
− δζ̂n(bn) + θn

)
subject to constraints (5.46a)− (5.46g)

(5.49)
with variables {unl, znl}n∈N ,l∈L(n), {bn, θn}n∈N , and {Mnl,s}n∈N ,l∈L(n),s∈S .
Finally, we summarize the proposed algorithm based on sequential convex
programming for the resource allocation problem (5.33) in Algorithm 5.2.

Algorithm 5.2. Centralized algorithm for the resource allocation problem (5.33)

1. Initialization: given initial feasible starting point {z0
nl,b

0
n}n∈N ,l∈L(n) and

parameter δ > 0. Set iteration index k = 0.
2. Set ẑnl = zknl and b̂n = bkn, then form φ̂nl(znl,bn) and ζ̂n(bn) by using

expressions (5.47) and (5.48), respectively, for all n ∈ N and l ∈ L(n).
3. Solve problem (5.49), and denote the solution by {u?nl, z?nl}n∈N ,l∈L(n), {b?n}n∈N ,

and {M?
nl,s}n∈N ,l∈L(n),s∈S . Update uk+1

nl = u?nl, zk+1
nl = z?nl, bk+1

n = b?n, and
Mk+1

nl,s = M?
nl,s for all n ∈ N , l ∈ L(n), and s ∈ S.

4. Stopping criterion: if the stopping criterion is satisfied, go to step 5. Otherwise
set k = k + 1, and go to step 2.
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5. Obtain a rank one approximation of M?
nl,s and denote it by m?

nl,s, for all
n ∈ N , l ∈ L(n), and s ∈ S. Return solution {b?n,m?

nl,s}n∈N ,l∈L(n),s∈S .

The first step initializes the algorithm. Step 2 performs a first order
approximation of functions φ̂nl(znl,bn) and ζ̂n(bn) at the point (ẑnl, b̂n) for all
n ∈ N and l ∈ L(n). Then the approximated convex problem (5.49) is solved
at step 3. Step 4 checks the stopping criteria46. Note that we have dropped
the Rank(Mnl,s) = 1 constraint for all n ∈ N , l ∈ L(n), and s ∈ S to arrive
at problem (5.49); thus a solution {M?

nl,s}n∈N ,l∈L(n),s∈S obtained at step 3
may not be rank one in general. Hence, at step 5, we perform a rank one
approximation of {M?

nl,s}n∈N ,l∈L(n),s∈S to obtain the transmit beamformers
{m?

nl,s}n∈N ,l∈L(n),s∈S for problem (5.33). Specifically, we use the randomization
technique (randA method) presented in [209, Sec. IV] to obtain a rank one
solution. Then the power and direction of the transmit beamformer associated
with lth user of BS n in subchannel s can be set to pnl,s = ‖m?

nl,s‖22 and
vnl,s = m?

nl,s/‖m?
nl,s‖2, respectively.

In the randA method [209, Sec. IV], we calculate the eigen-decomposition
of M?

nl,s as M?
nl,s =

∑T
i=1 λ

i
nl,sv

i
nl,s(v

i
nl,s)

H; where λinl,s is the eigenvalue and
vector vinl,s is the corresponding eigenvector. Then a rank one approximation
of M?

nl,s is calculated as m?
nl,s =

∑T
i=1 c

i(λinl,s)
1/2vinl,s; where c

i is a random
variable uniformly distributed on the unit circle in the complex plane, i.e.,
ci = ejεi and εi is uniformly distributed on [0, 2π).

5.3.1 Signaling overhead

Algorithm 5.2 is a centralized algorithm. Hence, it is required to collect the value
of network layer queues {Qnl(t)}n∈N ,l∈L(n) and CSI {hnl,s}n∈N ,l∈L(n),s∈S of all
the users of the operators in a central controller (CC). That is a total of Ľ1 + Ľ2

real scalars of parameters {Qnl(t)}n∈N ,l∈L(n), and a total of 2S(Ľ1 + Ľ2) real
scalars of parameters for {hnl,s}n∈N ,l∈L(n),s∈S has to be sent to the CC. Hence,
the number of real scalars that has to be sent from the operators to the CC
is (2S + 1)(Ľ1 + Ľ2). Next, the CC has to send the computed beamformers
46The algorithm can be stopped either when a difference between the achieved objective value
of problem (5.46) between two successive iterations is less than a given threshold, or it runs for
a finite number of iterations [113, Sec. 3.2.2], [208, Sec. IV.B].
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associated with the users to their respective operators. This requires 2S(Ľ1 + Ľ2)

number of scalars to be sent to the operators. Thus, the total number of
real scalars required to be exchanged between the operators and the CC in
Algorithm 5.2 is (4S + 1)(Ľ1 + Ľ2).

5.3.2 Convergence

Algorithm 5.2 solves the DC programming problem (5.46) by using an approach
similar to that in [36]. Hence Algorithm 5.2 is a descent algorithm [36, Sec. 1.3].
The proof is identical to that provided in [36, Sec. 1.3], and it is omitted here for
brevity.

5.4 Resource allocation - distributed algorithm

In this section we extend Algorithm 5.2 to derive a distributed algorithm for
resource allocation problem (5.33). The distributed algorithm is derived by
solving step 3 of Algorithm 5.2 (i.e, problem (5.49)) using the ADMM [113].

We start by introducing an auxiliary variable xns as a copy of bns, for all
n ∈ N and s ∈ S. Then problem (5.49) can be equivalently written as

minimize
∑
n∈N

( ∑
l∈L(n)

Qnl(t)
(
ψnl(unl,bn)− φ̂nl(znl,bn)

)
− δζ̂n(bn) + θn

)
subject to constraints (5.46a)− (5.46d), (5.46f), (5.46g) (5.50a)

bns = xns, n ∈ N , s ∈ S (5.50b)∑
n∈N xns = 1, s ∈ S, (5.50c)

with variables {unl, znl}n∈N ,l∈L(n), {bn, θn}n∈N , {Mnl,s}n∈N ,l∈L(n),s∈S , and
{xns}n∈N ,s∈S . Observe that without constraint (5.50c), problem (5.50) can be
easily decoupled into two subproblems, one for each operator.
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We now express problem (5.50) more compactly. To do this, let us define the
matrix Mnl = [Mnl,1, . . . ,Mnl,S ], and the following set

On =

{unl, znl,
Mnl}l∈L(n),

bn, θn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

unl,s =
∑

j∈L(n)

hH
nl,s(t)Mnj,shnl,s(t), l ∈ L(n), s ∈ S

znl,s =
∑

j∈L(n),j 6=l
hH
nl,s(t)Mnj,shnl,s(t), l ∈ L(n), s ∈ S

χ̂n(bn) ≤ θn∑
l∈L(n)

∑
s∈S Trace(Mnl,s) ≤ pmax

n

0 ≤ bns ≤ 1, s ∈ S
Mnl,s � 0, l ∈ L(n), s ∈ S


.

(5.51)

Furthermore, for the sake of brevity, let us define the following functions

Φn
(
{unl, znl,Mnl}l∈L(n),bn, θn

)
=

∑
l∈L(n)Qnl(t)

(
ψnl(unl,bn)− φ̂nl(znl,bn)

)
−δζ̂n(bn) + θn {unl, znl,Mnl}l∈L(n),bn, θn ∈ On
∞ otherwise,

(5.52)

and

In
(
{xns}n∈N ,s∈S

)
=

{
0

∑
n∈N xns = 1 for all s ∈ S

∞ otherwise
. (5.53)

Then by using expressions (5.51)-(5.53), problem (5.50) can be written compactly
as

minimize
∑
n∈N

Φn
(
{unl, znl,Mnl}l∈L(n),bn, θn

)
+ In

(
{xns}n∈N ,s∈S

)
subject to bns = xns, n ∈ N , s ∈ S,

(5.54)
with variables {unl, znl,Mnl}n∈N ,l∈L(n), {bn, θn}n∈N , and {xns}n∈N ,s∈S .

5.4.1 Distributed algorithm via ADMM

To derive the ADMM algorithm for problem (5.54) we first form the augmented
Lagrangian [113]. Let {λns}n∈N ,s∈S be the dual variables associated with the
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equality constraints of problem (5.54). Then the augmented Lagrangian can be
written as

Lρ
(
{unl, znl,Mnl}n∈N ,l∈L(n), {bn, θn}n∈N , {xns, λns}n∈N ,s∈S

)
=∑

n∈N Φn
(
{unl, znl,Mnl}l∈L(n),bn, θn

)
+ In

(
{xns}n∈N ,s∈S

)
+
∑
n∈N

∑
s∈S

(
λns(bns − xns) + (ρ/2)(bns − xns)2

)
, (5.55)

where ρ > 0 is a penalty parameter that adds a quadratic penalty to the standard
Lagrangian L0 for the violation of the equality constraints of problem (5.54).

Each iteration of the ADMM algorithm consists of the following three
steps [113]

{ui+1
nl , z

i+1
nl ,M

i+1
nl }l∈L(n),b

i+1
n , θi+1

n = argmin
{unl,znl,Mnl}l∈L(n),bn,θn∈On

Lρ
(
{unl, znl,Mnl,

bn, θn, x
i
ns, λ

i
ns}l∈L(n),s∈S

)
, n ∈ N (5.56)

{xi+1
ns }n∈N ,s∈S = argmin

{xns}n∈N ,n∈S

Lρ
(
{ui+1

nl , z
i+1
nl ,M

i+1
nl ,

bi+1
n , θi+1

n , xns, λ
i
ns}n∈N ,l∈L(n),s∈S

)
(5.57)

λi+1
ns = λins + ρ

(
bi+1
ns − xi+1

ns

)
, n ∈ N , s ∈ S, (5.58)

where superscript i is the iteration counter. Note that steps (5.56) and (5.58)
are completely decentralized, and hence, can be carried out independently in
parallel by each operator. Step (5.57) requires to gather the updated local
variables

{
{ui+1

nl , z
i+1
nl }l∈L(n),b

i+1
n , θi+1

n

}
and the dual variables {λins}s∈S from

both operators. In the sequel we first explain, in detail, how to solve the ADMM
step (5.57), and then simplify the above ADMM update-steps (5.56)-(5.58) into
two update-steps. Then we summarize the proposed ADMM based distributed
algorithm.

The update {xi+1
ns }n∈N ,s∈S in (5.57) is a solution of the following optimization

problem:

minimize
∑
n∈N

∑
s∈S

(
λins(b

i+1
ns − xns) +

ρ

2
(bi+1
ns − xns)2

)
+ In

(
{xns}n∈N ,s∈S

)
,

(5.59)
with variable {xns}n∈N ,s∈S . Let vns = (1/ρ)λns be a scaled dual variable. Then
by using notation (5.53), problem (5.59) can be equivalently expressed as

minimize
∑
n∈N

∑
s∈S

(ρ/2)(xns − vins − bi+1
ns )2

subject to
∑
n∈N xns = 1, s ∈ S,

(5.60)
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with the optimization variable {xns}n∈N ,s∈S . Note that in the objective function
of problem (5.60) 47, we have dropped the constant term (ρ/2)(vins)

2 since
it does not affect the solution of the problem. For the equality constrained
convex optimization problem (5.60), we can easily find the optimal solution by
solving KKT optimality conditions [29, Ch. 5.5.3]. By solving KKT optimality
conditions of problem (5.60), the solution {x?ns}n∈N ,s∈S can be expressed as

x?ns = vins + bi+1
ns − ṽis − b̃i+1

s + 1/N, n ∈ N , s ∈ S, (5.61)

where N = |N |, ṽis = (1/N)
∑
n∈N v

i
ns and b̃i+1

s = (1/N)
∑
n∈N b

i+1
ns . Therefore,

the update xi+1
ns is

xi+1
ns = x?ns, n ∈ N , s ∈ S. (5.62)

Now we substitute expression (5.61) for xi+1
ns in the dual variable update

step (5.58). Furthermore, by using a scaled dual variable vns = (1/ρ)λns,
step (5.58) can be simplified as

vi+1
ns = ṽis + b̃i+1

s − 1/N, n ∈ N , s ∈ S. (5.63)

Expression (5.63) shows that the dual variables vns for all n ∈ N are equal.
Hence, the dual variables {vns}n∈N can be replaced with a single variable
vs ∈ IR in the ADMM iteration (5.56)-(5.58). Finally, by substituting the
expression for xins (that can be obtained from (5.62)) in (5.56), the ADMM
iteration (5.56)-(5.58) can be simplified into the following two-step iterative
algorithm:

{ui+1
nl , z

i+1
nl ,M

i+1
nl }l∈L(n),b

i+1
n , θi+1

n =

argmin
{unl,znl,Mnl}l∈L(n),bn∈On

(
Φn
(
{unl, znl,Mnl}l∈L(n),bn, θn

)
+
∑
s∈S

(ρ/2)(bns − bins + b̃is + vis − 1/N)2
)
, n ∈ N (5.64)

vi+1
s = vis + b̃i+1

s − 1/N, s ∈ S. (5.65)

Note that we have used expression (5.55) to arrive at (5.64). By using nota-
tion (5.52), the optimization problem to update variables {ui+1

nl , z
i+1
nl ,M

i+1
nl }l∈L(n),

47We can simplify λins(b
i+1
ns −xns)+(ρ/2)(bi+1

ns −xns)2 = (ρ/2)(xns−vins−b
i+1
ns )2−(ρ/2)(vins)

2.
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bi+1
n , θi+1

n in (5.64) can be expressed as

minimize
∑

l∈L(n)

Qnl(t)
(
ψnl(unl,bn)− φ̂nl(znl,bn)

)
− δζ̂n(bn) + θn

+
∑
s∈S

(ρ/2)(bns − bins + b̃is + vis − 1/N)2

subject to unl,s =
∑
j∈L(n) hH

nl,s(t)Mnj,shnl,s(t), l ∈ L(n), s ∈ S
znl,s =

∑
j∈L(n),j 6=l h

H
nl,s(t)Mnj,shnl,s(t), l ∈ L(n), s ∈ S

χ̂n(bn) ≤ θn∑
l∈L(n)

∑
s∈S Trace(Mnl,s) ≤ pmax

n

0 ≤ bns ≤ 1, s ∈ S
Mnl,s � 0, l ∈ L(n), s ∈ S,

(5.66)
with variables {unl, znl}l∈L(n), bn, θn, and {Mnl,s}l∈L(n),s∈S . We now summa-
rize the proposed distributed algorithm for problem (5.33) as follows:

Algorithm 5.3. Distributed algorithm for problem (5.33)

1. Initialization: given initial feasible starting points {z0
nl,b

0
n}n∈N ,l∈L(n), {v0

s},
and parameters δ > 0 and ρ > 0. Set iteration indices i = 0 and k = 0.

2. Set ẑnl = zinl and b̂n = bin, then form φ̂nl(znl,bn) and ζ̂n(bn) by using
expressions (5.47) and (5.48), respectively, for all n ∈ N and l ∈ L(n).

3. ADMM iteration:

a) each operator n ∈ N updates the local variables {ui+1
nl , z

i+1
nl ,M

i+1
nl }l∈L(n),

bi+1
n , and θi+1

n by solving (5.66).
b) operators exchange their updated local variables {bi+1

ns }s∈S with each
other.

c) each operator n ∈ N updates the dual variables {vi+1
s }s∈S by solv-

ing (5.65).
d) ADMM stopping criterion: if the stopping criterion is satisfied, go to

step 4. Otherwise, set i = i+ 1, and go to step 3a.

4. Stopping criterion: if the stopping criterion is satisfied, go to step 5. Otherwise
set i = i+ 1, k = k + 1, and go to step 2.

5. Set b?n = bi+1
n , obtain a rank one approximation of Mi+1

nl,s and denote it by
m?
nl,s, for all n ∈ N , l ∈ L(n), and s ∈ S. Return {b?n,m?

nl,s}n∈N ,l∈L(n),s∈S .

148



The steps of Algorithm 5.3 are similar to those of the centralized Algorithm 5.2,
except the step 3 of both algorithms. Step 3 of Algorithm 5.2 solves problem (5.49)
in a central controller. However, in Algorithm 5.3 the same problem is solved
by using ADMM (i.e., by performing iterations in steps (3.a)-(3.d)). Note
that we have applied ADMM to a convex problem, and therefore the ADMM
iterations converge to the global optimal value [193, Proposition 4.2], [113].
Thus, by following Section 5.3.2, we can see that a sequence of the objective
value of program (5.46), that is produced upon ADMM convergence (i.e., after
step 3 of Algorithm 5.3) is monotonic.

Step 3.d of Algorithm 5.3 checks the ADMM stopping criteria. In the
ADMM algorithm, standard stopping criteria is to check the primal and dual
residuals [113]. We refer to each execution of steps 2-4 as an outer iteration, and
we use index k to count this. Step 4 checks the stopping criteria for the outer
iteration48.

Since ADMM usually produces acceptable results for practical use within
only a few iterations, a predefined or fixed number of iterations can be used as
stopping criterion for the ADMM iterations [113], in step 3.d. The transmit
beamformers {m?

nl,s}n∈N ,l∈L(n),s∈S for problem (5.33) are computed at step 5,
upon the convergence of the algorithm. At step 5, we can use the randA method49

presented in [209, Sec. IV] to obtain {m?
nl,s}n∈N ,l∈L(n),s∈S . Then the power

and direction of the transmit beamformer associated with lth user of BS n

in subchannel s can be set to pnl,s = ‖m?
nl,s‖22 and vnl,s = m?

nl,s/‖m?
nl,s‖2,

respectively.

5.4.2 Signalling overhead

It is worth pointing out that, in Algorithm 5.3, operators do not need to share
their users’ data and the channel state information with each other. Except
step 3.b, all other steps of Algorithm 5.3 are decoupled over the operators.
Step 3.b requires coordination between operators to exchange their updated
value of local variables {bi+1

ns }s∈S . Hence, at each iteration an operator requires
48The algorithm can be stopped either when a difference between the achieved objective value
of problem (5.46) between two successive iterations is less than a given threshold, or when it
has run for a finite number of iterations [113, Sec. 3.2.2], [208, Sec. IV.B].
49The dominant eigenvalue and corresponding eigenvector of Mi+1

nl,s can also be used to obtain
a rank one approximation.
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S number of real scalars to be sent to the other operator. Thus, at each iteration
the total number of real scalars required to be exchanged between operators is
2S.

5.4.3 Early termination of ADMM iteration

To speed up Algorithm 5.3 we can stop the ADMM iteration after a finite
number of iterations before it converges. In this case the intermediate solutions
{bi+1
ns }n∈N ,s∈S provided by the ADMM iteration do not necessarily result in a

feasible solution for the original problem (5.33). In particular constraint (5.33b)
may not hold

(
i.e.,

∑
n∈N b

i+1
ns 6= 1 for some s ∈ S

)
. Thus, we need to project

{bi+1
ns }n∈N ,s∈S on the set F , defined as F = {{bns}n∈N ,s∈S |

∑
n∈N bns = 1, s ∈

S}, to evaluate expressions φ̂nl(znl,bn) and ζ̂n(bn) at step 2 of Algorithm 5.3.
The projection of {bi+1

ns }n∈N ,s∈S on the set F can be obtained by solving
problem (5.60), with vins set to zero for all n ∈ N and s ∈ S. Hence the
projection of {bi+1

ns }n∈N ,s∈S on the set F is {bi+1
ns − b̃i+1

s + 1/N}n∈N ,s∈S , which
is obtained by setting vins = 0 for all n ∈ N and s ∈ S in expression (5.61).

5.4.4 Complexity of the proposed algorithms

Algorithm 5.2 and Algorithm 5.3 are iterative50 algorithms. Thus, we focus on
characterizing their complexity per iteration. Note that both algorithms solve
convex problems at each iteration (i.e., problem (5.49) is solved in Algorithm 5.2,
and problem (5.66) is solved in Algorithm 5.3). Thus, these problems can
be efficiently solved by using an interior-point method that relies on the
Newton’s method applied to a sequence of modified versions of the original
problem [29, Ch. 11]. The complexity of solving a Newton step for problem (5.49)
is O((2LS(T 2 + 1) + NS + N + S)3), where L =

∑
n∈N Ľn; and that of

problem (5.66) is O((2ĽnS(T 2 + 1) + S + 1)3) [29, Ch. 10.4] 51. Note that, in
general, a convex problem requires only a modest number of Newton steps to

50It is important to point out that, in practice, the quality of the solution achieved within the
first few iterations are more important than the asymptotic results, as we usually have time to
perform only small number of iterations.
51The complexity order is computed by relaxing the first and second equality constraints of
problem (5.49) and (5.66), as they hold with equality at the optimal solution.
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solve it with high accuracy (i.e., a number of Newton steps between 30− 100 are
enough for most of the applications) [29, Ch. 11.3.2].

5.5 Numerical examples

We illustrate the performance of the proposed Algorithm 5.1, Algorithm 5.2,
and Algorithm 5.3 by using the setup as shown in Fig. 5.2. The network consists
of a cell with two coexisting BSs, belonging to two operators. The BSs are
assumed to be installed in a same tower [210–212], and they are placed at different
height levels of the tower52. Each BS consists of T = 2 transmit antennas. We
assume a circular cell, with a radius RBS. We assume that there are Ľ1 = 3 users
associated with BS 1, and Ľ2 = 6 users associated with BS 2. The locations of
the users associated with each BS are arbitrarily chosen as shown in Fig. 5.2.
We assume that each operator shares B = 2 MHz spectrum band, and hence,
the total spectrum band of 4 MHz is available for both operators. We split
the spectrum band 4 MHz into S = 4 subchannels, and the bandwidth of each
subchannel ws = 1 MHz.

We assume an exponential path loss model, where the channel vector from
nth BS to its lth user on subchannel s is modeled as

hnl,s(t) =

(
dnl(t)

d0

)−η/2
cnl,s(t), (5.67)

where dnl(t) is the distance from BS n to its lth user, d0 is the far field reference
distance [173], η is the path loss exponent, and cnl,s(t) ∈ CT is arbitrarily
chosen from the distribution CN (0, I) (i.e., frequency-flat fading channel with
uncorrelated antennas). Note that the term (dnl(t)/d0)

−η/2 denotes large scale
fading, and the term cnl,s(t) denotes small scale fading. Here, we refer an
arbitrarily generated set of fading coefficients Č(t) = {cnl,s(t), dnl(t)|n ∈ N , l ∈
L(n), s ∈ S} as a single fading realization.

52This particular setup is chosen to illustrate that the operators are operating in a same
geographical area. However, our problem formulation and the proposed algorithms are general,
and they are applicable when the BSs of the operators are far apart and also to the case of
correlated channels.

151



-5 0 5 10

-6

-4

-2

0

2

4

6

1
2

3

1

2

3

4

5

6

Operator 1 users
Operator 2 users

operators 
1 and 2 BSs

R
BS

Fig. 5.2. A cell with two coexisting BSs belonging to different operators. BSs are placed on
the same cell site. N = {1, 2}, L(1) = {1, 2, 3}, and L(2) = {1, 2, 3, 4, 5, 6}, [165] c©2017, IEEE.

We assume that pmax
n = pmax

0 for all n ∈ N . We define the SNR operating
point at a distance r as

SNR(r) =

(
r

d0

)−η
pmax

0

N0ws
. (5.68)

In the following simulations, we set d0 = 1, η = 4, and the cell radius RBS is fixed
throughout the simulations so that SNR(RBS) = 10 dB for pmax

0 /(N0ws) = 40 dB.
To solve step 4 of Algorithm 5.1, we use either centralized Algorithm 5.2 or

distributed Algorithm 5.3. Thus, we first present the performance of Algorithm 5.2
and Algorithm 5.3. Then we evaluate the performance of Algorithm 5.1. In
Algorithm 5.2 and Algorithm 5.3, we set a penalty parameter δ = (0.1ws)k.
That is a varying penalty parameter δ is used so that more weight is given
to the penalty function ζ̂n(bn) as the algorithm progresses. In Algorithm 5.3,
for the ADMM iteration, we use the standard stopping criteria presented
in [113, Sec. 3.3.1]. The stopping criteria in [113, Sec. 3.3.1] calculates the
primal residual ripri = (

∑
n∈N

∑
s∈S(bins − xins)

2)1/2 and the dual residual
ridual = (ρ

∑
n∈N

∑
s∈S(xins − xi−1

ns )2)1/2, see (5.61) for the expression of xins.
Then the ADMM iteration is stopped, if ripri ≤ ε and ridual ≤ ε, where ε > 0 is a
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given tolerance. In the simulation, we set ε = 0.1. Furthermore, we limit the
ADMM iteration to a maximum of 10 iterations.

To evaluate the performance of Algorithm 5.2 and Algorithm 5.3, we consider
a single fading realization. The weight Qnl(t) associated with each user is set to
one for all n ∈ N and l ∈ L(n); the price per-unit spectrum qn(t) of each operator
is set to zero for all n ∈ N . As we set qn(t) = 0 for all n ∈ N , Algorithm 5.2
and Algorithm 5.3 solve a WSR maximization problem (see problem (5.33)),
and that jointly allocates spectrum band to the operators and design transmit
beamformers.

Fig. 5.3 shows the convergence behavior of the centralized Algorithm 5.2 for
SNR = 5 dB and SNR = 10 dB. The WSR values of problem (5.33) are computed
after step 3 of the algorithm. Results show that the proposed Algorithm 5.2
converges within the first few iterations.

Fig. 5.4 shows the convergence behavior of the distributed Algorithm 5.3 for
SNR = 5 dB, along with the objective value obtained by the centralized Algo-
rithm 5.2. We set the ADMM penalty parameter ρ = 5ws and 10ws. The WSR
values of problem (5.33) are computed after step 3.c of Algorithm 5.3. The markers
“circle” and “asterisk” in the figure for ρ = 5ws and 10ws, respectively, represent
the start of the ADMM iteration for a new point

(
{ẑnl}n∈N ,l∈L(n), {b̂n}n∈N

)
that is set at step 2 of the algorithm. Results show that the proposed distributed
algorithm converges to the centralized objective value for different values of ρ.
Furthermore, results show that the number of iterations between two successive
“circle” markers (and also between two successive “asterisk” markers) decreases
as the algorithm progress. That is, a fewer number of ADMM iterations (i.e.,
step 3 of Algorithm 5.3) are required as the algorithm progresses.

In order to see the average behavior of Algorithm 5.2 and Algorithm 5.3, we
next consider the fading case. For Algorithm 5.3, we set ρ = ws, 5ws, and 10ws.
Let h̆k0 denote the objective value of problem (5.46) obtained at kth iteration,
i.e., h̆k0 = f̆0({uknl,bkn, θkn}n∈N ,l∈L(n)) − ğ0({zknl,bkn}n∈N ,l∈L(n)); we stop both
algorithms when either53 |h̆k+1

0 − h̆k0 |/|h̆k0 | ≤ 0.001, or the algorithms run for a
maximum of 25 iterations (see step 4 of both algorithms). To the best of our
knowledge there is no algorithm for joint subchannel allocation and beamforming
design for problem (5.33) in the literature. Thus, as a benchmark, we consider

53We use relative stopping criteria because it is scale-independent [213, Sec. 8.2].
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the zero-forcing beamforming (ZFBF) with user selection algorithm proposed
in [214, Sec. VI.B], and we partition the S subchannels between the operators by
exhaustive search and random allocation. In random subchannel allocations, the
subchannels are partitioned between the operators so that each of them receive
an equal number of subchannels. We refer to algorithm [214, Sec. VI.B] combined
with an exhaustive search for partitioning subchannels as exhaustive-ZFBF ; and
the algorithm [214, Sec. VI.B] combined with a random channel allocation as
random-ZFBF. We run all algorithms for 500 fading realizations.

Fig. 5.5 shows the average WSR (i.e., the average objective value of prob-
lem (5.33)), obtained by Algorithm 5.2 and Algorithm 5.3, versus SNR. In both
algorithms if the solution b?ns, for all n ∈ N and s ∈ S, is not exactly binary,
we round it to the nearest binary value to assign sth subchannel to a single
operator. Results show that the proposed algorithms perform slightly better
than exhaustive-ZFBF at low to medium SNR values, while exhaustive-ZFBF
performs better at high SNR values. However, exhaustive-ZFBF partitions the
S subchannels by exhaustive search, and its complexity is exponential in the
number of subchannels. Thus, it quickly becomes intractable as the number
of subchannels increases. On the other hand, both the proposed algorithms
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outperform random-ZFBF for the entire range of SNR values. Furthermore,
results show that the distributed Algorithm 5.3 achieves WSR values closer to
the centralized Algorithm 5.2.

In order to see the effect of the penalty function ζn(bn), we also run
Algorithm 5.2 by setting ζn(bn) =

∑
s∈S bns(bns−1) for all n ∈ N 54. Fig. 5.6(a)

shows the average WSR obtained by Algorithm 5.2 with ζn(bn) =
∑
s∈S ζns,

where ζns is set to bns log(bns) and bns(bns−1). Fig. 5.6(b) shows the distribution
of {b?ns}n∈N ,s∈S obtained by Algorithm 5.2 and Algorithm 5.3 for SNR = 10 dB.
Fig. 5.6(a) shows that the average WSR obtained by both penalty functions are
almost equal. However, the proposed algorithms with ζns = bns log(bns) achieve
the solution {b?ns}n∈N ,s∈S that is (almost) either near to zero or one, compared
to that obtained by using ζns = bns(bns − 1), see Fig. 5.6(b).

We now evaluate the performance of Algorithm 5.1. We suppose that the
utility functions of users are given by gnl(anl) = log(1 + anl) for all n ∈ N and
l ∈ L(n). The parameter Amax is computed as described in [42, Sec. 4.2.1], and
it is given by Amax = Sws log2(1 + pmax

0 /N0ws). In fact, parameter Amax is an
upper bound on the total transmission rate obtained by using S subchannels with
the transmit power pmax

0 . The maximum per-unit price of the spectrum band is
set to qmax = gnl(A

max) [unit/MHz] 55. The parameter µmax is set so that it
contains the optimal value of Un−U0

n for all n ∈ N [43, Ch. 5]. Since Amax is an
upper bound on the total transmission rate, we have Un−U0

n ≤ Amax +qmaxB 56.
Thus, we set µmax = Amax +qmaxB. A value of disagreement point U0

n is obtained
by solving a problem in Appendix 5, for all n ∈ N . For simplicity, we assume
that the transport layer storage reservoirs are saturated, i.e., there is always
enough data waiting to be sent.

We run centralized and distributed versions of Algorithm 5.1 for Tmax = 1000

time slots (fading realizations). The centralized version of Algorithm 5.1 is
obtained by solving step 4 of the algorithm by using Algorithm 5.2. The
distributed version of Algorithm 5.1 is obtained by solving step 4 of the algorithm

54The first order approximation of function ζn(bn) =
∑
s∈S bns(bns − 1) near an arbitrary

positive point b̂n is ζ̂n(bn) =
∑
s∈S(b̂2ns + 2b̂ns(bns − b̂ns)− bns).

55The proposed dynamic algorithms are independent of the unit of price, and hence we work
with a normalized unit. However, the results could be scaled with a proper price-unit value
that operators mutually agree on.
56Under network stability

∑
l∈L(n) anl(t) ≤ Amax for all n ∈ N . Hence from expression (5.6),

we have Un ≤ Amax + qmaxB for all n ∈ N .
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Fig. 5.6. (a) Average WSR (Mbits/s) versus SNR for Algorithm 5.2; (b) Distribution of variables
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by using Algorithm 5.3. As a benchmark, we consider the exhaustive-ZFBF
and random-ZFBF algorithms to solve step 4 of Algorithm 5.1. Furthermore,
to evaluate the performance of the proposed algorithms, we also consider a
time-division multiple access (TDMA) approach to solve step 4 of Algorithm 5.1;
specifically, operators are allowed to fully access the common spectrum pool in
alternating time slots. We run Algorithm 5.1 embedded with the TDMA approach,
with and without considering the spectrum pricing strategy of Section 5.1.1, for
Tmax = 4000 time slots57. In the simulations, we set SNR = 10 dB, and the
ADMM penalty parameter ρ = 10ws.

Fig. 5.7(a) shows the objective values of problem (5.7) versus parameter V .
Results show that the objective value improves as V increases. Fig. 5.7(b) shows
the time average network backlog, i.e., 1/Tmax

∑Tmax

τ=1

∑
n∈N

∑
l∈L(n)Qnl(τ)

versus parameter V . Results show that the time average network backlog
increases with the parameter V . For the TDMA based algorithm, the plots
are drawn starting from V = 50, as below this value the algorithm is unable
to obtain operators’ utilities above the disagreement points58. Fig. 5.7(a) and
Fig. 5.7(b) show that there is a trade-off between the achieved objective value of
problem (5.7) and the network congestion. That is when the objective value
increases, the network backlog is also increased. Furthermore, results show that
both centralized and distributed versions of Algorithm 5.1 perform almost the
same, and very close to those obtained by using the exhaustive-ZFBF based
dynamic control algorithm. However, the proposed centralized and distributed
versions of Algorithm 5.1 outperform control algorithms that are implemented
using random-ZFBF, TDMA, and TDMA with pricing (TDMA-pricing) to solve
step 4 of Algorithm 5.1. In addition, the TDMA based algorithms show that the
pricing strategy of Section 5.1.1 improves the objective of problem (5.7) while
increasing the queue backlog.

Fig. 5.8 shows the average profits of the operators {Un}n∈N versus parameter
V . Results show that the average profits of both the operators obtained by
sharing their spectrum band with each other are greater than their disagreement
points, i.e., Un ≥ U0

n for all n ∈ N . In other words, both operators gain in their

57We used larger averaging window as TDMA based algorithm requires slightly longer time to
reach a near steady state [43].
58Recall that in Algorithm 5.1 the value of V puts emphasis on the objective of problem (5.7),
see expression (5.19).
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Fig. 5.7. (a) Objective values of problem (5.7) versus parameter V ; (b) Average network
backlog versus parameter V , [165] c©2017, IEEE.
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profits by sharing their licensed spectrum band with each other, rather than
using them exclusively. Furthermore, results show that the proposed algorithms
outperform the control algorithms that are implemented by solving step 4 of
Algorithm 5.1 with the TDMA approach. Moreover, results show that when
Algorithm 5.1 is embedded with a TDMA approach, the operator with low
spectrum demand (see operator 1) increases its profit by using the pricing
strategy of Section 5.1.1. That is the operator with low spectrum demand gets
paid for leasing its spectrum. Figure shows that the profit of each operator
converges to its maximum value as V increases.

Fig. 5.9 shows the (sample path) evolution of the network queue backlog
defined as Qsum(t) =

∑
n∈N

∑
l∈L(n)Qnl(t). Here, step 4 of Algorithm 5.1 is

solved by using Algorithm 5.2. The algorithm is run for V = 10 and 1000.
Results show that the network queue backlog Qsum(t) increases until it reaches a
certain value (e.g., for V = 1000 around 1400 Mbits), and then it oscillates. This
is because of the negative drift property of the Lyapunov function [42, Ch. 4.4],
and it ensures all queues are bounded and the network is stable.

160



0 1000 2000 3000 4000 5000
t

0

500

1000

1500
Q

ue
ue

 e
vo

lu
tio

n 
Q

su
m

(t
) 

[M
bi

ts
]

V = 10
V = 1000
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5.6 Summary and discussion

The problem of spectrum sharing between two operators in a dynamic network
has been considered. We have allowed both operators to share (a fraction of)
their licensed spectrum band with each other by forming a common spectrum
band. The objective was to maximize the gain in profits of both operators by
sharing their licensed spectrum bands rather than using them exclusively, while
considering the fairness between the operators. This is modelled as a two-person
bargaining problem, and cast as a stochastic optimization. To solve this problem,
we have proposed centralized and distributed dynamic control algorithms by
using Lyapunov optimization. At each time slot, the proposed algorithms
perform the following tasks: 1) determine the spectrum price for the operators,
2) make flow control decisions for users’ data, and 3) jointly allocate spectrum
band to the operators and design transmit beamformers, which is known as
RA. Since the RA problem is NP-hard, we have to rely on sequential convex
programming to approximate its solution. To derive a distributed algorithm, we
have used ADMM for solving the RA problem. Numerically, we have shown that
the proposed distributed algorithm achieves almost the same performance as a
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centralized one. Furthermore, it has been shown that operators gain in their
profits by sharing their licensed spectrum band with each other, rather than
using them exclusively; and there is a trade-off between the achieved profits of
the operators and network congestion.

The proposed centralized algorithm can act as a tool to assess the gains
achievable by sharing the spectrum between the operators, via offline simulations.
The proposed distributed algorithm (or, approximate versions of it derived, e.g.,
by performing a finite number of iterations, exchanging quantized information,
etc.) is more suitable for sharing the spectrum between the operators, as it
requires a lower signaling overhead, compared with centralized one. In the
proposed dynamic algorithm, at each time slot, the spectrum price for the
operators is determined, and then a common spectrum pool is partitioned
between the operators. That is, spectrum trading is performed at each time slot.
It would be interesting to investigate the performance of the proposed algorithms
by performing spectrum trading on a slower time scale (i. e., determining the
spectrum price and portion of spectrum with long-term channel statistics). This
would reduce required signaling overhead between the operators.
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6 Conclusions and future work

6.1 Conclusions

The main focus of this thesis was to study radio resource management techniques
for multicell MISO downlink networks. The first chapter included the motivation
and the relevant literature associated with the scope of this thesis. In Chapter 2, a
beamforming technique for multicell MISO downlink networks based on WSRMax
criteria was studied. The WSRMax is central to many network optimization
methods, and it is known to be an NP-hard problem. For this problem, a global
solution method based on the BB technique was proposed. The proposed BB
based algorithm computes a sequence of asymptotically tight upper and lower
bounds. Novel bounding techniques via conic optimization were introduced. The
proposed algorithm can be used to provide a performance benchmark to evaluate
the performance loss of suboptimal algorithm. The proposed algorithm is not
limited to only the WSRMax problem, it can be easily extended to maximize
any system performance metric that can be expressed as a Lipschitz continuous
and increasing function of an SINR.

In Chapter 3 robust resource allocation algorithms for multicell MISO
downlink networks in the presence of imperfect CSI at BSs were studied. A
bounded ellipsoidal model was used to model the CSI errors. Specifically, the
problem of worst-case WSRMax in the presence of CSI errors was considered,
and an optimal solution method was proposed by extending the BB based
algorithm proposed in Chapter 2. The proposed optimal algorithm is a very
useful tool for providing a performance benchmark for suboptimal algorithm that
solves the worst-case WSRMax problem with CSI errors. As the convergence
speed of the BB method can be slow for large networks, a fast but possibly
suboptimal algorithm was also proposed using alternating optimization technique
and sequential convex programming. The suboptimal algorithm involves solving
SOCP and SDP at each iteration. In practice, the channel estimation errors
may have a statistical distribution. Numerically, we have also shown how the
proposed algorithms can be applied to a scenario with statistical channel errors.

In Chapter 4 distributed resource allocation algorithms for multicell MISO
downlink networks were studied. The optimization criteria used were: P1)
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minimization of the total transmission power subject to minimum SINR con-
straints of each user, and P2) SINR balancing subject to total transmit power
constraints of BSs. The notion of consensus optimization was adopted, and
decentralized algorithms for these problems were derived by using the ADMM.
Problem P1 is not convex as such, however it can be reformulated so that it
is convex. The proposed decentralized method for problem P1 converges to
a global optimal value. Problem P2 is a quasiconvex problem. To the best
of our knowledge there is no convergence theory to the ADMM method for a
quasiconvex problem. Thus, the proposed decentralized method for problem P2
is not provably optimal. Numerical results have been provided to demonstrate
the performance of the proposed distributed algorithms in comparison to the
optimal centralized solutions

In Chapter 5 a resource allocation problem between two wireless operators in
a dynamic network was studied. The objective was to maximize the gain in
profits of both operators by sharing their licensed spectrum bands rather than
using them exclusively, while considering the fairness between the operators.
The notion of a two-person bargaining problem was adopted. Then the spectrum
sharing problem was cast as a stochastic optimization problem, in order to
capture the dynamics of the network. Lyapunov drift theory was used to solve
the problem, and both centralized and distributed dynamic resource allocation
algorithms have been proposed. Dynamic algorithms perform the following tasks
at each time slot: 1) determine the spectrum price for the operators, 2) make
flow control decisions for the users’ data, and 3) jointly allocate the spectrum
band to the operators and design the transmit beamformers, which is known as
an RA problem. The RA problem leads to a general WSRMax problem, with an
additional cost function on the spectrum use. The RA problem is NP-hard. A
centralized algorithm for RA was derived using sequential convex programming.
ADMM in conjunction with sequential convex programming was adopted to
derive a distributed algorithm for RA. Numerically, it has been shown that with
the proposed dynamic algorithms, the operators gain in their profits by sharing
their licensed spectrum band with each other, rather than using them exclusively.
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6.2 Future work

There are several possible research directions to extend the work carried out
in this thesis such that it can be applied to the design and development of
future-generation wireless networks. One important direction of interest is the
development of radio resource management strategies for new mobile broadband
millimeter wave (mm-wave) communications [215]. Due to the scarcity of the
radio spectrum in the sub-6 GHz spectrum band (i.e., below 6 GHz band),
recently, there has been growing interest in the exploration of the underutilized
mm-wave frequency spectrum (30-300 GHz) for future-generation wireless
networks. The millimeter wave frequency band can offer multi-GHz bandwidth,
hence this increases the capacity of communications networks. However, in
terms of propagation characteristics there are fundamental differences between
mm-wave and sub-6GHz bands. For example, the mm-wave band suffers from
high attenuation, and hence highly directional antennas are required between the
transmitter and receiver. Therefore, by exploiting the intrinsic characteristics of
mm-wave propagation, it would be interesting to investigate efficient resource
management solutions, extending the methods presented in this thesis (e.g.,
optimal method in Chapter 2, the robust methods presented in Chapter 3, etc.).

In Chapters 4 and 5 we have used the ADMM to derive distributed algorithms.
It is assumed that the steps of the distributed algorithm are synchronized, i.e.,
the algorithm progress only when all the BSs solve their respective subproblems.
In practice, the processing speed of the BSs and the communication delay
between them can be different, and these facts affect the overall speed of such a
synchronous distributed algorithm. It is envisioned that the future-generation
wireless networks will consist of densely deployed BSs. Thus, it is of great
interest to design distributed algorithms that do not have to wait for the latest
updates from all the BSs, and can even work with outdated information by using
methods such as asynchronous ADMM [192], Fast-Lipschitz optimization [216],
etc.

It is well known that the performance of an ADMM based algorithm depends
on the choice of the penalty parameter [113]. For the problem P1 in Chapter 4,
we have proposed a heuristic method to set the penalty parameter, and numerical
results show that with this heuristic value the algorithm converges with high
accuracy on the optimal value within first few iterations. For the problem
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P2 in Chapter 4 and the problem in Chapter 5, we have set the ADMM
penalty parameters with arbitrary values. The performance of these distributed
algorithms could be improved, further, with careful selection of these parameters.
Hence, it would be interesting to investigate a method to select penalty parameters
that yield high performance for the ADMM based distributed algorithms.

The extension of the dynamic algorithms presented in Chapter 5 for more
than two operators, including micro operators, is also another possible future
direction for research. In Chapter 5, we used a cooperative game theoretic
approach (i.e., it was assumed that both operators have full knowledge of
each others’ preferences). However, an operator can be greedy, thus it would
also be interesting to investigate non-cooperative dynamic network control
mechanisms; or, methods that require negligible signaling overhead and simplify
the implementation of spectrum sharing [217, 218]. Further extensions may also
include incorporating operators’ spectrum demand learning and infrastructure
sharing between operators.
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Appendix 1 : SDP formulation of problem (3.24)

SDP formulation of problem (3.24) is based on the following S-lemma [29, 181]:

Lemma 1.0.1 (S-lemma). Let Ψi be a real valued function of an m-dimensional
complex vector y, defined as

Ψi(y) = yHAiy + 2Re(bH
i y) + ci, (1.0.1)

where Ai ∈ IHm, bi ∈ Cm, ci ∈ IR, and i = 0, 1. Assume that there exists a
vector ŷ ∈Cm such that Ψ1(ŷ) < 0. Then the following conditions are equivalent:

S1 : Ψ0(y) ≥ 0 for all y ∈Cm such that Ψ1(y) ≤ 0.
S2 : There exists λ ≥ 0 such that the following LMI is feasible:[

A0 b0

bH0 c0

]
+ λ

[
A1 b1

bH1 c1

]
� 0.

Now, let us consider constraints (3.24a) and (3.24b), and express them as

eH
llVlell + 2Re

(
(Vlĥll)

Hell
)

+ ĥH
llVlĥll

−
∑

n∈N\{tran(l)}

∑
j∈L(n) Ijl + σ2

n ≥ 0, l ∈ L (1.0.2)

eH
llQllell − 1 ≤ 0, l ∈ L, (1.0.3)

where Vl = M̃l/γl −
∑
j∈L(tran(l)),j 6=l M̃j . For ell = 0, the inequality (1.0.3)

satisfy strictly. Thus, we can consider the left hand side of (1.0.2) and (1.0.3)
as Ψ0(enn) and Ψ1(enn) in Lemma 1.0.1. Then, Lemma 1.0.1 implies that the
inequality (1.0.2) is satisfied for all channel errors ell that satisfy (1.0.3) if there
exists µll ≥ 0 and the following LMI is feasible Vl Vlĥll

ĥH
llVl ĥH

llVlĥll −
∑

n∈N\{tran(l)}

∑
j∈L(n) Ijl − σ2

n


+µll

[
Qll 0

0 −1

]
� 0, l ∈ L (1.0.4)
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Similarly, we can express inequalities (3.24c) and (3.24d) as

− eH
jlM̃jejl − 2Re

(
(M̃jĥjl)

Hejl
)

+ Ijl − ĥH
jlM̃jĥjl ≥ 0,

l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n) (1.0.5)

eH
jlQjlejl − 1 ≤ 0, l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n). (1.0.6)

Then, by following the same idea as in steps (1.0.2)-(1.0.4), we can express
inequalities (1.0.5) and (1.0.6) equivalently as the following LMI[

−M̃j −M̃jĥjl

−ĥH
jlM̃j Ijl − ĥH

jlM̃jĥjl

]

+ µjl

[
Qjl 0

0 −1

]
� 0, l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n) (1.0.7)

for µjl ≥ 0. Hence, problem (3.24) as an SDP can be expressed as

minimize
∑
l∈L Trace(M̃l)

subject to

 Vl Vlĥll

ĥH
llVl ĥH

llVlĥll −
∑

n∈N\{tran(l)}

∑
j∈L(n) Ijl − σ2

n


+µll

[
Qll 0

0 −1

]
� 0, l ∈ L[

−M̃j −M̃jĥjl

−ĥH
jlM̃j Ijl − ĥH

jlM̃jĥjl

]
+ µjl

[
Qjl 0

0 −1

]
� 0,

l ∈ L, n ∈ N\{tran(l)}, j ∈ L(n)

µjl ≥ 0, j, l ∈ L
M̃l � 0, l ∈ L∑
l∈L(n) Trace(M̃l) ≤ pmax

n , n ∈ N
Rank(M̃l) = 1, l ∈ L,

(1.0.8)

with variables M̃l, µjl, and Ijl, where Vl is defined as

Vl =
M̃l

γl
−

∑
j∈L(tran(l)),j 6=l

M̃j , (1.0.9)

for all l ∈ L.
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Appendix 2

In this appendix we propose a bracketing method [187, 188] to solve prob-
lem (4.45). Let us start by combining the second (linear) and third (quadratic)
terms of (4.46) as

p(αn) = p̃(αn) +
ρ

2

(
αn − γi + λin −

1

ρN

)2

− 1

N

(
γi − λin +

1

2

)
. (2.0.1)

Let us drop the constant term of (2.0.1) and express it as

p(αn) = p̃(αn) +
ρ

2
(αn −$)2, (2.0.2)

where $ = γi − λin + 1
ρN .

Note that the optimal value p̃(αn) is a nondecreasing function of αn ∈
[0, αmax

n ] 59. To examine that, let Pi and Pj be the feasible set of problem (4.47)
for αn = αin and αn = αjn, respectively. If αjn ≥ αin, then it is easy to see
that Pj ⊆ Pi. Hence, the optimal value p̃(αjn) ≥ p̃(αin) for all αjn ≥ αin

and αin, α
j
n ∈ [0, αmax

n ]. Furthermore, there exists a partition of [0, αmax
n ] as

[0, φ] ∪ [φ, αmax
n ] such that

p̃(αn) = c, αn ∈ [0, φ], (2.0.3)

where c is the optimal solution of problem (4.47) for αn = 0.
Next we propose to use bracketing method [187, 188] to find the infimum of

function p(αn) on the interval αn ∈ [0, αmax
n ]. First, in Lemma 2.0.1, we show

that the function p(αn) is a unimodal function on the interval αn ∈ [0, αmax
n ] for

the condition: C) $ ≤ φ .

Lemma 2.0.1. The function p(αn),

p(αn) = p̃(αn) +
ρ

2
(αn −$)2, (2.0.4)

is a unimodal function on the interval αn ∈ [0, αmax
n ] for the condition C.

Proof:
59The interval [0, αmax

n ] denotes the range of feasible αn for problem (4.47).
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1. For the case $ ≤ 0, the proof is trivial, since p(αn) is a sum of two increasing
functions on the interval αn ∈ [0, αmax

n ].
2. For the case $ > 0, let us partition [0, αmax

n ] as [0, $] ∪ [$,αmax
n ]. On the

interval αn ∈ [0, $], the function p̃(αn) takes a constant value c. On the
interval αn ∈ [$,αmax

n ], the function p̃(αn) is a nondecreasing function. Hence,
the function p(αn) is a sum of affine and convex functions on the interval
[0, $], and a sum of nondecreasing and increasing functions on the interval
[$,αmax

n ]. Thus, the function p(αn) is a unimodal function.

Lemma 2.0.1 implies that for the condition C (i.e., $ ≤ φ), the infimum of the
function p(αn) can be obtained optimally by using a bracketing method [187, 188].

For the case condition C is not satisfied (i.e., φ ≤ $), let us partition [0, αmax
n ]

as [0, φ] ∪ [φ,$] ∪ [$,αmax
n ]. On the interval αn ∈ [0, φ], the function p(αn) is a

decreasing function (since p̃(αn) takes a constant value c, and (αn −$)2 is a
decreasing function). On the interval αn ∈ [$,αmax

n ], the function p(αn) is an
increasing function (since p̃(αn) is a nondecreasing function and (αn −$)2 is an
increasing function). On the interval αn ∈ [φ,$], analytically expressing the
curvature of p(αn) is difficult, since the curvature of function p̃(αn) depends on
the numerical parameters. This implies that for the case φ ≤ $, the infimum of
the function p(αn) lies on the interval [φ,$], i.e.,

argmin
αn∈[0,αmax

n ]

p(αn) ∈ [φ,$]. (2.0.5)

Thus in the case φ ≤ $ (i.e., if condition C is not satisfied), the solution of
problem (2.0.5) obtained by using bracketing method [187, 188] lies at most
($ − φ) away from the optimal solution. However, in all of our numerical
simulations, we have always noted that the function p(αn) is a unimodal
function. In that case, problem (2.0.5) is solved optimally by the bracketing
method [187, 188]. Moreover, the convergence of the proposed Algorithm 4.3
(see numerical example, Section 4.4) to a centralized solution shows that the
bracketing method can be used to solve problem (4.45).
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Appendix 3

In this appendix we discuss a method to set a value for penalty parameter ρ for
Algorithm 4.1.

The ADMM method is guaranteed to converge for all values of its penalty
parameter ρ [113]. However, the rate of convergence of the ADMM algorithm
is sensitive to the choice of the penalty parameter ρ. In practice, the ADMM
penalty parameter ρ is either tuned empirically for each specific application, or
set equal to 1 by normalizing the problem data set [113, Ch. 11]. Note that in
Algorithm 4.1, to solve the local variable update (4.23), we can normalize the
problem data [i.e., sum-power (

∑
l∈L(n) ‖ml‖22)] by normalizing factor Dn > 0

and set ρ = 1, which is equivalent to setting ρ = Dn in Algorithm 4.1, if the
problem data [i.e., sum-power (

∑
l∈L(n) ‖ml‖22)] is not normalized. To elaborate

further, let us express problem (4.23) as

minimize
1

Dn

( ∑
l∈L(n)

‖ml‖22
)

+
1

2
‖xn − zin + vin‖22

subject to



√
1 + 1

γl
h

H
llml

M
H
n hll

x̃l

σl

 �SOC 0, l ∈ L(n)

[
xn,nl

M
H
n hjl

]
�SOC 0, l ∈ Iint(n)

(3.0.1)

with variables Mn = [ml]l∈L(n) and xn, where Dn > 0 is the normalizing factor,
x̃l = (xn,bl)b∈Nint(l) is a subset of xn (see (4.12)). Note that we have set ρ = Dn

in problem (4.23) to get problem (3.0.1).
Let {m?

l }l∈L(n) denote the optimal solution of problem (3.0.1). Then the
optimal value of Dn is

∑
l∈L(n) ‖m?

l ‖22. However, before the convergence of
Algorithm 4.1, we do not have optimal beamformers (i.e., m?

l for all l ∈ L(n)).
Thus, in our simulation, to estimate Dn, we ignore the interference and noise
terms, and find beamforming vector m̃l that achieves the required SINR threshold
γl (in dB scale), for all l ∈ L, which can be expressed as

m̃l =
√

100.1×γlhll/‖hll‖22, l ∈ L(n).
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Hence, we approximate the factor Dn for problem (3.0.1) as

Dn =
∑

l∈L(n)

‖m̃l‖22

=
∑

l∈L(n)

(100.1×γl)/‖hll‖22.

Furthermore, we find D = max
n∈N
{Dn}, and set ρ = D for Algorithm 4.1.
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Appendix 4

The stability of virtual queues {Xn(t)}n∈N ensures constraint (5.9a). To show
this, we start by noting the following inequality from expression (5.11):

Xn(t+ 1) ≥ Xn(t)− xout
n (t) + xin

n (t). (4.0.1)

Then, by summing the above expression (4.0.1) over t ∈ {0, 1, . . . , τ − 1}, and
dividing it by τ , we get

1
τ

∑τ−1
t=0 x

in
n (t) ≤ 1

τ

∑τ−1
t=0 x

out
n (t) + 1

τ

(
Xn(τ)−Xn(0)

)
. (4.0.2)

We now substitute expressions (5.12) and (5.13) into (4.0.2), and re-arrange the
resulting expression as

1
τ

∑τ−1
t=0 µn(t) ≤ 1

τ

∑τ−1
t=0

∑
l∈L(n) gnl(anl(t))

+ 1
τ

∑τ−1
t=0 qn(t)

(∑
s∈S(n,t) ws −B

)+
− 1

τ

∑τ−1
t=0 qn(t)

(∑
s∈S(n,t) ws −B

)+
− U0

n + 1
τ

(
Xn(τ)−Xn(0)

)
. (4.0.3)

By taking the expectations of both sides of expression (4.0.3) and lim inf as
τ →∞, we get

lim inf
τ→∞

1
τ

∑τ−1
t=0 E{µn(t)} ≤ lim inf

τ→∞

(
1
τ

∑τ−1
t=0

∑
l∈L(n) E

{
gnl(anl(t))}

+ 1
τ

∑τ−1
t=0 E

{
qn(t)

(∑
s∈S(n,t) ws −B

)+}
− 1

τ

∑τ−1
t=0 E

{
qn(t)

(∑
s∈S(n,t) ws −B

)+})− U0
n. (4.0.4)

Note that to write expression (4.0.4) from (4.0.3), we have used a property
lim inf
τ→∞

E{Xn(τ)}/τ = 0, which is satisfied if virtual queue Xn(t) is strongly
stable [42, Lem. 3.3]. Then by applying Jensen’s inequality,

1
τ

∑τ−1
t=0 E{gnl(anl(t))} ≤ gnl

(
1
τ

∑τ−1
t=0 E{anl(t)}

)
, (4.0.5)

to the right hand side of (4.0.4), we get µn ≤ Un − U0
n for all n ∈ N , i.e.,

constraint (5.9a).
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Appendix 5

In this appendix we discuss a method to set a value of disagreement point
U0
n for problem (5.7) to numerically evaluate the performance of the proposed

algorithms in Chapter 5.
We set U0

n to a value of utility that nth operator gains by using B Hz of
spectrum band (i.e., without sharing its spectrum band with the other operator).
The resource allocation problem for nth operator without sharing its licensed
spectrum band can be obtained by modifying problem (5.32). Specifically, by
dropping the constraint associated with the orthogonal subchannel allocation
of problem (5.32), and the payment terms with the spectrum pricing in the
objective function, the resource allocation problem for operator n ∈ N during
time slot t can be expressed as

maximize
∑

l∈L(n)

Qnl(t)
∑

s∈S(n,t)

ws log2

(
1

+
|hH
nl,s(t)mnl,s|2

N0ws +
∑
j∈L(n),j 6=l |hH

nl,s(t)mnj,s|2

)
subject to

∑
l∈L(n)

∑
s∈S(n,t) ‖mnl,s‖22 ≤ pmax

n ,

(5.0.1)

with variables {mnl,s}l∈L(n),s∈S(n,t). Note that problem (5.0.1) can be solved with
the approach presented in Section 5.3. Let us denote {m?

nl,s(t)}l∈L(n),s∈S(n,t) as
the solution of problem (5.0.1), and let the transmission rate be r?nl(t) of lth user
of nth operator

(
the transmission rate can be calculated by using expression (5.2)

)
.

Let r̄nl(t) denote the time average rate defined as r̄nl(t) = 1
t

∑t−1
τ=0 r

?
nl(τ). Then

the utility gain of lth user of nth operator based on its current data rate r̄nl(t) is
gnl(r̄nl(t)).

To estimate a value of {U0
n}n∈N , we solve problem (5.0.1) with Qnl(t) = 1 for

all n ∈ N and l ∈ L(n), and run simulation for 5000 fading realizations. Then a
disagreement point for nth operator is set to U0

n =
∑
l∈L(n) gnl(r̄nl(5000)).
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