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Vallivaara, Ilari, Simultaneous localization and mapping using the indoor magnetic field. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. C 642, 2018
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

The Earth’s magnetic field (MF) has been used for navigation for centuries. Man-made metallic
structures, such as steel reinforcements in buildings, cause local distortions to the Earth’s magnetic
field. Up until the recent decade, these distortions have been mostly considered as a source of error
in indoor localization, as they interfere with the compass direction. However, as the distortions are
temporally stable and spatially distinctive, they provide a unique magnetic landscape that can be
used for constructing a map for indoor localization purposes, as noted by recent research in the
field.

Most approaches rely on manually collecting the magnetic field map, a process that can be both
tedious and error-prone. In this thesis, the map is collected by a robotic platform with minimal
sensor equipment. It is shown that a mere magnetometer along with odometric information
suffices to construct the map via a simultaneous localization and mapping (SLAM) procedure that
builds on the Rao-Blackwellized particle filter as means for recursive Bayesian estimation.
Furthermore, the maps are shown to achieve decimeter level localization accuracy that combined
with the extremely low-cost hardware requirements makes the presented methods very lucrative
for domestic robots. In addition, general auxiliary methods for effective sampling and dealing with
uncertainties are presented.

Although the methods presented here are devised in mobile robotics context, most of them are
also applicable to mobile device-based localization, for example, with little modifications.
Magnetic field localization offers a promising alternative to WiFi-based methods for achieving
GPS-level localization indoors. This is motivated by the rapidly growing indoor location market.

Keywords: localization, magnetic field, mapping, mobile robotics, particle filter, SLAM





Vallivaara, Ilari, Samanaikainen paikannus ja kartoitus sisätilojen magneettikentän
avulla. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta
Acta Univ. Oul. C 642, 2018
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Maan magneettikenttään perustuvat kompassit ovat ohjanneet merenkäyntiä vuosisatojen ajan.
Rakennusten metallirakenteet aiheuttavat paikallisia häiriöitä tähän magneettikenttään, minkä
vuoksi kompasseja on pidetty epäluotettavina sisätiloissa. Vasta viimeisen vuosikymmenen aika-
na on huomattu, että koska nämä häiriöt ovat ajallisesti pysyviä ja paikallisesti hyvin erottele-
via, niistä voidaan muodostaa jokaiselle rakennukselle yksilöllinen häiriöihin perustuva mag-
neettinen kartta, jota voidaan käyttää sisätiloissa paikantamiseen.

Suurin osa tämänhetkisistä magneettikarttojen sovelluksista perustuu kartan käsin keräämi-
seen, mikä on sekä työlästä että tarjoaa mahdollisuuden inhimillisiin virheisiin. Tämä väitöstut-
kimus tarttuu ongelmaan laittamalla robotin hoitamaan kartoitustyön ja näyttää, että robotti pys-
tyy itsenäisesti keräämään magneettisen kartan hyödyntäen pelkästään magnetometriä ja renkai-
den antamia matkalukemia. Ratkaisu perustuu faktoroituun partikkelisuodattimeen (RBPF), joka
approksimoi täsmällistä rekursiivista bayesilaista ratkaisua. Robotin keräämien karttojen tark-
kuus mahdollistaa paikannuksen n. 10 senttimetrin tarkkuudella. Vähäisten sensori- ja muiden
vaatimusten takia menetelmä soveltuu erityisen hyvin koti- ja parvirobotiikkaan, joissa hinta on
usein ratkaiseva tekijä.

Tutkimuksessa esitellään lisäksi uusia apumenetelmiä tehokkaaseen näytteistykseen ja epä-
varmuuden hallintaan. Näiden käyttöala ei rajoitu pelkästään magneettipaikannukseen- ja kartoi-
tukseen.

Robotiikan sovellusten lisäksi tutkimusta motivoi voimakkaasti kasvava tarve älylaitteissa
toimivalle sisätilapaikannukselle. Tämä avaa uusia mahdollisuuksia paikannukselle ympäristöis-
sä, joissa GPS ei perinteisesti toimi.

Asiasanat: kartoitus, magneettikenttä, mobiilirobotiikka, paikannus, partikkelisuodatin, SLAM





I always ask myself:

"How can I be more like a spiny lobster today?"

Now I’ll be one step closer to my goal

ANONYMOUS COWARD
Comment on news.slashdot.org about magnetic

field-based localization and IndoorAtlas
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Preface

I still remember vividly sitting in the 3rd floor CSE lobby at the University of Oulu
almost ten years ago and waiting for my turn for a job interview. I had applied as a
mathematics major for a research assistant’s position in embedded systems without
any experience in the field. The interviewers were stern-faced Anssi and comparably
kind-looking Janne, and somehow I managed to convince them to give me the position.
Due to my background the job description was changed from embedded systems to
more theoretical robotics research, and that is how I joined the CSE Robotics Group.

At first I worked on evolutionary and swarm robotics and Ant Colony Optimization.
However, after a while my advisor Dr. Janne Haverinen started talking more and more
about Spiny Lobsters and their magnificent ability to navigate in the magnetic field.
He was convinced that mobile robots should be able to do the same. After he got
promising seminal results in localization [1], I was encouraged to try simultaneous
localization and mapping based on the collected magnetic field data. The first prototype
used a swarm robotics simulator [2] and a graphics-library to smooth the magnetic
field maps represented as RGB images. The results were promising, and my PhD topic
clarified soon after. It has been very interesting to see a methodology rise in so little
time: when I started my research, there were only a few research papers describing the
use of magnetic field maps for localization, and most of those did it only to correct the
compass-provided heading. Tackling such a new field has been both frustrating and
rewarding.

As smartphones became more common, the concept of indoor magnetic field
localization was refined into a business idea. I was honored being asked to be one of the
co-founders of IndoorAtlas Ltd. It is a rare and fortunate situation to be able to transfer
your academic knowledge and interests so directly to commercial use.

It has been a long and rewarding journey from sitting nervously in the CSE Lobby
to be working full-time in a growing start-up company. I am most grateful for the
opportunities I have been given. Research-wise, if I were to do the experiments and
write the papers now, I would most certainly do many things differently. But I guess that
is an essential part of the of this journey after all.
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List of symbols and abbreviations

Mathematical notations

(di, j) distance matrix, where elements di, j = d(i, j) are pairwise distances

between states i and j (defined by distance function d)

||x|| Euclidean norm of vector x
xx,y vector consisting of x and y components of vector x
|x| absolute value of number x

|X | number of elements in set X

(x,y,z)T vector with scalar elements x,y,z

x ∝ y x is proportional to y

X ∼ f random variable X has distribution f

Abbreviations

2D, 3D two-dimensional, three-dimensional

API application programming interface

BLE Bluetooth Low Energy

BT Bayes’ theorem

cdf cumulative density function

CPU central processing unit

DTW dynamic time warping

GP Gaussian Process

GPS global positioning system

i.i.d. independent and identically distributed

IMU inertial measurement unit

kNN k nearest neighbors

LTP Law of total probability

MA Markov assumption

MC Monte Carlo

MCL Monte Carlo localization

MF magnetic field

MSE mean square error
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pdf probability density function

pmf probability mass function

PF particle filter

PDR pedestrian dead reckoning

RBPF Rao-Blackwellized particle filter

RMSE root mean square error

SIR sampling importance resampling

SIS sequential importance sampling

std standard deviation

SLAM simultaneous localization and mapping

T, µT tesla, microtesla

w.r.t. with respect to

QMC Quasi-Monte Carlo

Symbols

1A(x) indicator function: 1A(x) = 1, when x ∈ A, and 0 otherwise

η normalization constant (depending on context)

δx(x0) Dirac delta function: δx(x0) = δ (x−x0)

δx(A) Dirac measure: δx(A) = 1A(x)
θ yaw or heading of a robot or magnetic measurement vector on a plane

B magnetic field vector consisting of three scalar components: B =

(Bx,By,Bz)
T ∈ R3 (in this thesis in µT).

E f [X] expected value of random variable X
m(k) map corresponding to particle k

m(x) map function that maps states to MF vectors; m(x) : X → R3

N(µ,σ2) normal distribution with mean µ and variance σ2

p(A) probability of event A, p(A) = p(x ∈ A) =
∫

A p(x)dx
p(A|B) conditional probability of A given B

p(·) probability density function

p(x) abbreviation for probability p(X= x)
p(xt |Zt ,Ut) posterior density; belief at time t

bel(xt) belief function over states at time t, bel(xt) = p(xt |Zt ,Ut)

bel(xt) belief function before incorporating the latest measurement, p(xt |Zt−1,Ut)

X set of states, state space; for poses X ⊆ {(xx,y,θ) ∈ R2×S}
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S rotation space: S= [0,2π[

x state belonging to the state space, x = (x,y,θ) ∈ R2×S, where xx,y is

the spatial coordinate and θ is the heading

t time step corresponding to a discrete moment in time

ut control for the robot at time t

Ut ordered set of controls U1:t = {u1, ...,ut}
P number of particles P = |{x(i)t }|
Rn Euclidean n-dimensional space

x,y,z Cartesian x,y, and z coordinates

xt state at time t

w(i)
t importance factor (weight) of particle x(i)t at time t

x̂ estimate or approximation of x
σ standard deviation

Xt set of particles {x(i)t } at time t, where x(i)t ∈ X

x(i)t particle i at time t

Xt trajectory consisting of ordered poses X1:t = {x1, ...,xt}
z measurement or magnetic field measurement, z = (zx,zy,zz)

T ∈ R3,

where zx,zy,zz are the three components of the magnetic field

z⊥ yaw-independent measurement, z⊥ = (||zx,y||,zz)
T

Zt ordered set of collected measurements Z1:t = {z1, ...,zt}
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1 Introduction

1.1 Background

The ability to localize itself is one of the most vital abilities for an autonomous mobile
agent. The localization problem is considered one of the most fundamental ones in
mobile robotics [8, 9]. Whether you are a mobile robot or human, in order to make
informed decisions and planning, you have to be able to differentiate where you are.
Humans are usually able to make this automatically via visual and other clues, but in
robotics, robust localization is an active research topic. Robotics localization is a vast
research field, influencing many application domains from self-driving cars to simple
domestic robots, such as autonomous vacuum cleaners [10–12].

Simultaneous localization and mapping (SLAM) takes the problem one step further
and requires the robot to collect the map while localizing itself. Traditionally, SLAM in
robotics has been tackled with laser or vision-based approaches. The most common map
representations are feature-based, where the map consists of discriminative features
in the environment, such as tree trunks, or occupancy grid-based, where the map is
represented by a dense grid where each cell represents its probability of being occupied.
However, recently, also more unconventional sensor modalities for SLAM have gained
attention. Often, these sensors are of lower quality due to their very low-cost or ability to
measure only one point in space at a time. This makes SLAM by using such sensors, e.g.,
magnetometers [3, 13], depth sensors [14], or WiFi receivers [15], more challenging but
still possible. However, the lower price point makes them applicable in many application
domains where, e.g., a laser range finder would not be suitable. For example, many
modern smart phones include a sensor setup consisting of magnetometer, barometer,
WiFi receiver, light sensor, often accompanied with accelerometer and gyroscope. The
sensors make movement tracking possible via inertial measurement unit (IMU). Cadena
et al. [9] provide a very current (2016) view on the state of SLAM, including open
problems, and also briefly discuss novel sensor modalities.

Distortions in the Earth’s magnetic field have been usually seen as a source of
error for compasses and magnetometers. However, in their work Haverinen et al. [16]
showed that the anomalies in indoor magnetic field can be manually collected to build a
map that can be utilized to localize both robots and humans equipped with wearable
sensors. Figure 1 illustrates how modern indoor environment at the University of Oulu

23



Fig. 1. The magnetic landscape in Discus Entrance Hall at the University of Oulu. The
figure illustrates the strong variation in a modern office environment. Magnitude (µT) of the
magnetic field is depicted as the height of the surface, and the color illustrates the direction
of the vector. The significant anomalies caused by steel in the pillars can be clearly seen in
the landscape.

has strong variation in the magnetic fields and the resulting magnetic landscape. The
arduous magnetic data collection can be partly automatized by using a mobile robot that
solves the SLAM problem relying solely on the magnetic field data (Publication I).
Furthermore, the acquired maps are accurate enough to be used in mobile robot cleaning
task, with an accuracy of approximately 10 cm in a modern office building environment
(Publication II).

1.2 Motivation

The motivation for magnetic field-based SLAM (MF-SLAM) research is three-fold. The
first motivation is to automatically provide MF maps for other agents, e.g. for human
users. This could include equipping the robot with other, possibly high-quality, sensors
for higher precision with or without sensor fusion. The second motivation is using the
MF as the only external signal (coupled possibly with odometry), yielding a system with
very minimal sensor requirements. The final motivation is providing SLAM methods for
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sensor data that is similar to the magnetic field measurements. These three main aspects
are discussed shortly in the next subsections.

1.2.1 Human use of indoor MF maps

For outdoor localization, GPS has established itself as the dominant technology for
common everyday use, running on billions of consumer-grade devices. It is used to
power huge domains from navigation to very recently surfaced augmented reality
applications, such as the highly popular Pokémon Go that added 7.5 billion dollars
to Nintendo’s stock value almost overnight [17]. For indoor localization, this is not
the case, and there is not a single established method for localization. Indoors, where
GPS does not work, there is an ongoing battle of technologies to claim the throne of
"indoor-GPS".

Indoor positioning systems are becoming more and more viable in consumer grade
devices, such as smart phones and tablets. With estimated 4.4 billion dollar indoor
location market in 2019 [18], indoor localization with mobile devices has become an
active research topic. Lymberopoulos et al. [19] evaluate 22 different indoor localization
technologies attending 2014 Microsoft Indoor Localization Competition. The reported
localization errors range from 0.72 m to 10.22 m. Despite three top competitors
[20–22] achieving localization error less than 2 m, the authors conclude that the indoor
localization problem is not solved to offer GPS-like performance due to inconsistencies
in accuracy, sensibility to environment changes, and high costs of deployment for both
infrastructure-based and infrastructure-free solutions.

Despite its shortcomings [23, 24], using WiFi signal maps is the most common
method for indoor localization. Magnetic field-based localization is one of the promising
technologies for indoor localization, as the indoor magnetic field is temporally stable,
requires no hardware installation, and often yields comparable or better results to
WiFi-based localization [24–26]. However, the cost of collecting a comprehensive MF
map can be high [25, 27, 28], as it is most often performed manually, sometimes with a
dedicated application [24, 25, 29]. Figure 2 (a) illustrates the mapping process using
IndoorAtlas MapCreator 2 application [29]. Reducing these map collection costs with
automated SLAM systems like the ones presented in this thesis or in [28] could make
large scale collecting of dense maps significantly more plausible.
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1.2.2 Magnetometer as the lone sensor

The main problem addressed in this thesis is SLAM using only magnetometer readings
and odometry. A clear advantage of the minimal sensor requirements of the presented
methods is that they are applicable on very low-end and low-cost robotic platforms, such
as often used in swarm robotics, thus making the solution possibly very scalable. If the
achieved accuracy permits for example room-to-room navigation in apartment-sized
environments, it is often perfectly sufficient for domestic robotics. Another advantage of
the minimal setup is that it sets a lower bound for SLAM performance that can be easily
improved by adding other sensors.

1.2.3 SLAM with similar sensors

Many sensor measurements, such as depth, WiFi, and light intensity, are similar to
magnetometer readings. They provide scattered data from which a signal map can
be constructed. Because of their similarity, also the applicable methods are similar.
Figure 2 (b) illustrates a mapped lake environment with three scalar measurements:
depth, vegetation, and seafloor density. Although the lake environment in Figure 2
(b) was collected with GPS and manually set route, GPS is not always available, e.g.,
for autonomous underwater vehicles (AUVs) [14]. The three measurements form a
three-component vector that could be utilized in SLAM with the methods presented
in this thesis. Furthermore, if the environment contains MF variation, other similar
low-cost sensors could be fused in to obtain more informative measurements and maps.
This could possibly result in significantly more robust SLAM with almost as minimal
sensor requirements as discussed in the previous subsection. This thesis concentrates on
MF-SLAM, but the methods presented here should be easily transferable to domains
utilizing similar-enough sensors. Addressing these interesting possibilities was left out
of the scope of this thesis and are considered topics for future research.

1.3 Problem and hypothesis

The problem consists of a robot operating on bounded but previously unknown 2D
planar indoor environment. The robot is equipped with a magnetometer and (wheel)
actuators that are able to move it around. The magnetometer provides noisy observations
of the indoor magnetic field from one spatial point at a time and the wheel encoders
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(a) (b)

Fig. 2. (a) Indoor mapping process using publicly available IndoorAtlas MapCreator 2 An-
droid application. Courtesy of IndoorAtlas Ltd [29]. (b) Mapping process of a lake with the
resulting depth, vegetation, and seafloor density maps (from left to right). The diameter of
the lake is approximately 2.7 km. Courtesy of Aquamarine Robots [30].

provide noisy information about the robot’s movement (odometry). The robot is allowed
to drive around and it is assumed the odometry is somewhat reliable, i.e., the error
in odometry is bounded on short time intervals. This includes that the robot either
does not collide with walls (manually driven) or is able to detect collision (bumper
sensor). Also it is assumed that the robot is driven so that it crosses its trajectory making
map matching and loop closure possible. This is achieved either through control or by
physically bounding the environment. The hypothesis is that the indoor magnetic field
variations contain enough information that the robot is able to simultaneously collect a
map of the magnetic field and localize itself with respect to that map using only the
magnetometer and odometry information. The end result is a geometrically correct map
of the magnetic landscape in the environment that can be used for localization purposes
later on.

1.4 Scope and approach

The problem is approached from the standard probabilistic robotics viewpoint, where the
uncertain state of the robot is modeled as a probability distribution over all possible states
[8]. To recursively estimate this density, a popular numerical approximation method
called the particle filter (PF) is used. The particle filter uses the sensor and odometry data
and provides an approximate solution to the underlying recursive Bayesian estimation
problem (see Chapter 3).
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The research presented in the accompanying Publications I–V is guided by very
practical needs and the presented methods and results concentrate on applicability to
real-world scenarios. Publications I–II act as feasibility studies to confirm the hypothesis
with real-world data. Publications III–V, in their turn, present auxiliary methods that
can be used to improve the performance and robustness of the basic idea presented
in the first two publications. It should be noted, however, that the presented auxiliary
methods are general in nature and not limited to this particular use case. All presented
results are empirically validated with as much real-world data as practically reasonable.
That said, the contributions of this thesis are not theoretical in nature, but rather propose
empirically validated solutions to practical problems.

This overview is structured as follows: Chapter 2 addresses the characteristics of
the indoor magnetic field for localization purposes. Chapter 3 shortly presents the
theoretical background behind PF-based localization and illustrates the PF solution
in MF-localization context. Chapter 4 covers the related work done in the field of
MF-localization. Chapter 5 extends the PF approach to handle SLAM and covers
literature in MF-SLAM context.

1.5 Contribution and summary of original papers

One of the main contributions of the research presented in the accompanied publications
is to validate the feasibility of simultaneous localization and mapping based on indoor
magnetic field. Experimental results demonstrate that geometrically consistent 2D maps
up to 300 m2 can be automatically collected from modern buildings utilizing only odom-
etry and a three-axis magnetometer. The large size of the real-life environments used in
the experiments is still to be matched with more recent research utilizing similar features
[13, 31, 32]. Furthermore, the acquired maps offer localization accuracy measured in
decimeter level. With this accuracy and the extremely low sensor requirements, magnetic
field localization offers a truly viable alternative to many traditional approaches.

Other main contributions are the proposed novel helper methodology. These include
uncertainty handling in sparse magnetic field maps, a general and very efficient sampling
method, and a scattered data map representation algorithm that is useful for but not
limited to magnetic field SLAM domain. The main contributions of each Publication
I–V are presented in the list below.
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I The idea of simultaneous localization and mapping is experimentally validated
with real world magnetic field data. A randomly driving robot is able to collect
geometrically consistent 2D maps of several room-sized environments. The work
addresses several practical key aspects of making magnetic field SLAM feasible.

II The mapping process with real world data is further investigated and refined. Magnetic
field SLAM is verified in larger lobby-like environments with approximate area of
300 m2. The paper also evaluates the map quality; the produced maps offer estimated
worst case localization accuracy of approximately 10 cm. The accuracy is argued to
be sufficient for mobile robot floor-cleaning tasks.

III A method is presented to handle the uncertainty in predictive models that are used
to estimate the magnetic field in non-mapped locations. Addressing the problem
is crucial with the sparse and uncertain maps inherent in magnetic field SLAM.
The proposed method generalizes the conditional weight update rules utilized in
Publications I–II and is able to increase robustness of localization without sacrificing
much of convergence speed.

IV A general method is described to generate batches of low-variance samples efficiently
from a given discrete distribution. The batches can be used for particle propagation
when modeling their movement, for example. As the method needs only one
random number per patch, it achieves an order-of-magnitude speed improvement over
multinomial sampling which is relevant on mobile or embedded devices with low
computing power. Furthermore, the decreased variance is demonstrated to improve
particle filter performance with low particle counts when the samples are used to
propagate the particles.

V The paper describes how the memory and time complexity of the particle filter-based
MF-SLAM solution can be improved by using quadtree-based ancestry trees. The
presented methodology enables particle counts in tens of thousands and makes some
previously unsolvable instances tractable.

1.5.1 Author’s contribution

In all of the publications I–V, the author had the main responsibility in writing the
article and designing and conducting the experiments. Dr. Haverinen provided expertise
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on the MF localization and gave advice in publications I–II. Kemppainen wrote the code
and text for the Gaussian Process-related parts in I–II and provided technical help in the
experiments. Poikselkä and Rikula had a minor but important role in discussing the
ideas and details in publications III–V and IV, respectively. Prof. Röning provided
useful guidance and feedback on all of the publications I–V.

The author has also participated in writing publications left out of this thesis based
on their non-related topic [33, 34] and/or author’s minor role [35–39].
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2 Indoor magnetic field

2.1 Introduction

Steel structures, such as pillars and rebars (reinforcement bars), are known to cause
distortions to the Earth’s magnetic field that affect the field significantly, especially
in indoor environments [40]. This is illustrated in Figure 3. These distortions are
temporally stable and vary spatially, so they offer potentially a way to construct
informative magnetic field maps of the environment. This chapter presents a short
overview on the literature about the indoor magnetic field studied for its suitability for
indoor localization purposes. Magnetic field-based indoor localization itself is addressed
in Chapter 4. First, some definitions and assumptions are presented. The magnetic
landscape of the University of Oulu Discus Entrance Hall is studied and visualized as
an example. Then, the characteristics of the indoor MF, such as variability, temporal
stability and effect of moving metallic object, are evaluated based on research addressing
these issues for localization purposes [41–44].

2.2 Definitions and assumptions

The definitions and assumptions presented here are inspired by the presentations in
Angermann and Frassl et al. [42, 45] and Gutmann et al. [12, 46]. The magnetic field
can be thought of a continuous 3D vector field defined spatially everywhere. It can be
formalized as a function

fB(x) : R3→ R3 (2.2.1)

that maps any Cartesian coordinate x = (x,y,z)T ∈ R3 to a magnetic field value B =

(Bx,By,Bz)
T , consisting of three orthogonal components Bi, which are reported in

microteslas (µT) in this thesis. The magnetic field can be measured using sensors
called magnetometers that report the magnetic field in the sensor coordinate frame.
That is, the measurement depends on the sensor’s location x ∈ R3 and orientation
r = (rx,ry,rz)

T ∈ S3, where ri denote rotation around the corresponding axis (pitch, roll,

yaw) and S= [0,2π[ . This can be formalized as a sensing function
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(a) landscape (b) ||z|| (c) direction in horizontal plane

(d) zx (e) zy (f) zz

Fig. 3. The magnetic landscape of the Univesity of Oulu Discus entrance hall visualized with
respect to different components. The spatial scale is in meters and the MF values in µT.

fs(x,r) : R3×S3→ R3 (2.2.2)

that maps the magnetic field value to a sensor reading depending on location x and
rotation r. In reality, this function may have many stochastic uncertainties due to
such factors as soft and hard iron biases or sensor noise, but for the purposes of this
presentation, fs is assumed to be free of such uncertainties. Magnetometer calibration is
discussed in detail, e.g., in [43, 47]. The map function

mB(x) : X → R3 (2.2.3)

is an approximation of the MF function fB, describing it over some subset of Cartesian
coordinates X ⊂ R3, where X depends on the map representation. The function is also
called the magnetic map of X , or sometimes magnetic landscape of X if the map is
dense enough.

Most modern mobile devices include an accelerometer than can sense the gravity
vector. This can be used to estimate the sensor’s pitch and roll [48], thus leaving the yaw
as the remaining rotational degree of freedom. The pitch and roll can be used to extract

32



(a) University of Oulu Discus entrance hall (b) iRobot Create equipped with a magnetometer

Fig. 4. (a) University of Oulu Discus entrance hall. The dimensions of the main area are
about 15m×20m = 300m2. (b) The robot and the magnetometer used to collect the data. Only
the magnetometer is used of the sensors that are part of the sensor connectivity board
described in [50].

the vertical component and the horizontal components of the magnetic field by rotating
the measurement accordingly [41, 43, 45]. For convenience, notation

z⊥ = (||zx,y||,zz)
T (2.2.4)

for these yaw-independent measurements is adopted. If in addition the z coordinate of
the sensor is known, the situation is similar to the case of a mobile robot operating on a
2D plane with a fixed magnetometer. Such a robot is illustrated in Figure 4 (b) and
its state can be characterized by its pose (xx,y,θ) ∈ R2×S, where xx,y represents the
robot’s location and θ represents its heading. This simplifies the sensing function to

f ′s(xx,y,θ) : R2×S→ R3. (2.2.5)

Currently, most MF localization approaches fall into this category [16, 25, 45, 47, 49],
but in robotics the situation may tilt towards 3D as drones become more common. For
the remainder of the thesis, the z coordinate of the sensor is assumed fixed and the
measurements are assumed to be normalized w.r.t. pitch and roll, and the measurement
is simply denoted by z = (zx,zy,zz)

T ∈ R3. For the purposes of this thesis we also make
the following simplifying but justified assumptions and clarifications:

1. The magnetic field can be measured. A sensor (magnetometer) is assumed that is
able to measure the MF in the sensor’s coordinate frame.
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2. Non-biased sensor. If the sensor’s orientation is known, the measurement can be
rotated (normalized) into world coordinates. Subsequently, the measurement can be
used to estimate the sensor’s orientation at a given location if the MF is known.

3. The magnetic field varies spatially. The MF is assumed to be non-constant and to
vary in the spatial domain. See, section 2.5.

4. The magnetic field is temporally stable. The MF is assumed to be temporally stable,
and, e.g., changing electric currents or geomagnetic storms or more long term
changes, such as the wandering of the Earth’s magnetic poles, are not taken into
account. See, section 2.6.

5. Source and physics agnostic. Besides noting that the magnetic field is usually
non-zero (especially in the horizontal plane), no distinction is made between the main
field and the distortions. No attempt is made to infer or model the physical objects
that cause the variation in the MF, or to model the magnetic field in a physically
correct way, for that matter.

2.3 Earth’s magnetic field

The geomagnetic field on the Earth’s surface is a combination of fields generated by
multiple sources, such as ferromagnetic objects and electrical devices, and it varies from
place to place. However, 90% of the field consists of the main field, generated by the
Earth’s outer core, and its magnitude ranges approximately from 25 to 65 µT [51]. The
main field changes slowly in time and it can be described with mathematical models,
such as the International Geomagnetic Reference Field (IGRF) [52]. The Earth may
be approximated as a giant magnetic dipole, and its interaction with other magnetic
sources may be modeled as a multiple dipole system, as done in some related work [53].
Because the main field is so dominant in most outdoor scenarios and the compass needle
aligns itself with the horizontal component of the Earth’s magnetic field – pointing to
the magnetic north – the compass has been used for centuries for navigation.

2.4 Distortions caused by metal structures

Because the intensity of a field caused by a steel structure decreases strongly with
distance to the magnetic body, the effect of the smaller sources of variation (e.g.,
rebars) quickly diminishes when not measured in the utmost vicinity, and the lower
spatial frequencies start to dominate the field (e.g., steel pillars, elevators). Therefore
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Angermann et. al [42] measure the MF as close to the floor as possible to obtain a very
detailed landscape. This is done to capture the fine details of the rebar structure under
the floor and achieve centimeter level accuracy in localization. Larger structures, such as
steel-reinforced pillars and elevator shafts, cause big distortions in the field that can be
measured meters away [53–55], e.g., in the middle of a corridor. However, instead of
centimeters, the spatial frequency of these variations is typically from few decimeters to
meters. Chung et al. [44] report that they can measure distinctive magnetic features
within 2.5 cm radius in a middle of a corridor.

Despite acknowledging the physical causes of the anomalies in the MF, no attempt is
made in this thesis to model or infer the sources of the magnetic field. The MF is rather
seen as an abstract vector field with some desirable properties. A similar approach is
taken by Angermann and Frassl et al. [42, 45] in related research where they study
the characteristics of the magnetic field for localization and mapping purposes. For
explicit physical source modeling in localization context, see the work by Subbu et
al. [53, 54], where the effects of pillars and other big objects are modeled based on
physical properties of the ferromagnetic material. Similarly, Wahlström et al. [56] derive
a Gaussian Process model based on the Maxwell’s equations and are able to estimate,
e.g., shapes of objects from the MF measurements.

2.5 Spatial variation: how informative is a single measurement?

The Discus entrance hall (Fig. 3 and Fig. 4 (a)) is a typical public indoor space at the
University of Oulu main building, with a main area of about 300 m2. The reinforced
pillars and steel structures near the walls cause significant variations in the magnetic
landscape, collected about 40 cm height from the floor (Fig. 4 (b)). In order to visualize
how distinctive the magnetic measurements actually are, the MF map of the Discus
entrance hall is evaluated at poses with fixed heading in different discrete evenly spaced
locations. The distance between the MF values at states i and j can be defined in
multiple ways (discussed later). The distances can be represented as an N×N distance
matrix (di, j), where each element corresponds to the pairwise distance between the
states. The discretization of states is done to make visualization as distance matrices
possible. The 288 discrete locations and measurement statistics over the corresponding
poses are depicted in Figure 5. Units in the statistics are in µT , except for the heading,
the unit is degrees (chosen over radians for visualization). As can be seen, the magnetic
field has about 5-10 µT standard deviation depending on the channel.
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Fig. 5. (a) Discrete locations (N = 288) on Discus entrance hall map. (b) Statistics of different
magnetic field features over the locations. The spatial scale is in meters and the MF statistics
in µT, except the heading that is in degrees (for similar scale).

If heading is known, the magnetic similarity of two locations can be acquired by
comparing the full measurement vectors. However, as the heading is not generally known,
the yaw-independent measurement z⊥ = (||zx,y||,zz)

T in specific spatial coordinates xx,y

can be expressed as the vertical component zz and the norm of the horizontal components
||zx,y|| [41, 43, 45]. All possible measurements in xx,y can be then obtained by rotating
zx,y on the horizontal plane. In illustrations, such as Figure 3, the heading is assumed
fixed but arbitrary. Comparing the vector z⊥ describes the situation most accurately
when trying to figure out the magnetic similarity of two locations for localization
purposes.

In the following the difference between two vectors is computed as the Euclidean
distance of their difference, and the distance matrices are computed over the discrete
states visualized in Figure 5 (a). The matrix values are clamped between 0 and 20 µT in
order to allow easier comparison and more clear visualization. Figures 6 (b-d) illustrate
the distance matrices (pairwise distances) of x, y, and z components of the magnetic
field. In addition, pairwise spatial distances of the locations are visualized (a) in order
to perceive pattern similarities and spatial correlation. Figure 7, in its turn, illustrates
the differences associated with the three alternative measurement models presented
explicitly in several papers [41, 43, 45]:
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(a) Norm of the measurement. The least distinctive one is using the difference of the
norm of the field, although it has the advantage that the sensor orientation is not
required. The distance matrix for ||z|| is depicted in Fig. 7(a).

(b) Norm of the horizontal component and the vertical component. If direction of
gravity can be estimated, z⊥ = (||zx,y||,zz)

T can be used to differentiate between
locations. This corresponds to the robot localization in planar environments. The
distance matrix for z⊥ is depicted in Fig. 7 (b).

(c) Full measurement vector. If the sensor orientation is fully known, the locations can
be differentiated by the full vector. This is clearly the most distinctive of the three
measurement models. The distance matrix for zx,y,z is depicted in Fig. 7 (c).

For completeness, the yaw-distances are depicted in Figure 7 (d), as heading is used as
magnetic signature in some work [49, 57].

2.6 Temporal stability and effect of metallic objects

Obtaining a magnetic field map would be close to useless if it was not temporally stable.
The Earth’s magnetic field is known to fluctuate on a daily basis due to diurnal cycle,
slowly in time due to movement of magnetic poles, and more randomly, e.g., due to
geomagnetic storms caused by solar flares. However, for all practical purposes, although
measurable, the fluctuations are negligible when compared to the typical variation inside
a building. For example, Frassl et al. [45] report that the daily fluctuations in range of
10 nT to 30 nT are less than 0.1% of the average magnitude of 48µT in their location.
Perhaps more importantly, such variations are less than 1% of typical variation inside a
modern building (Fig. 5 (b)). For this reason, it is justifiable to ignore the effect of these
fluctuations, as done in majority of research [42, 45, 47]. Stability of the magnetic fields
is empirically studied further, e.g., in [41, 44, 55, 58]. The overall consensus is that the
MF is temporally stable enough for localization purposes.

Another possible cause for changing magnetic field is the moving metallic objects
present in modern environments. As the magnetic intensity degrades strongly with
distance, several papers have found that small metallic objects, such as watches, phones,
and laptops, have very short range of about 15-25 cm in affecting the magnetic field
[41, 43, 44, 59]. The effect of massive objects, namely elevator carts, is also studied
in the literature. Li et al. [41] report that the activity of two adjacent elevators causes
variation in the field intensity up to 7 m away. However, even as close as 1 m, the
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(a) Spatial state distances (b) zx

(c) zy (d) zz

Fig. 6. (a) Pairwise spatial state distances and (b-d) channel-wise magnetic field distance
matrices for the discrete states depicted in Fig. 5. The spatial distances are in meters and
the MF distances in µT.
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(a) ||z|| (b) (||zx,y||,zz)
T

(c) zx,y,z (d) Heading

Fig. 7. Distance matrices related to typical MF measurement models (a-c) and heading (d)
for the discrete states depicted in Fig. 5. The MF distances are in µT, except for the heading,
that is in radians.
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standard deviation caused by the elevators is less than 5% of the total intensity, and for 2
m, it is about 2%, respectively (judging from the published graph). This is similar to
results reported by Chung et al. [44]: at the distance of 1.3 m from the elevator, the
RMSE in the MF intensity drops below 1 µT . The small effect of moving elevator
carts is further verified by Shu et al. [58]. They measure that the effect of walking past
an elevator shaft is much greater than the effect of a moving elevator cart 1 m away.
Similarly, in their experiment, cars 1 m away in an underground parking lot do not have
a significant effect on the magnetic intensity signal. From these results, it is quite safe to
conclude that despite metallic objects affect the MF, their effect in the majority of cases
is much smaller in amplitude than the variations in the indoor magnetic field caused by
the static structures. This means, in practice, that even when the environment contains
moving metallic objects, even in the size of elevator carts, the MF map can remain
useful.

2.7 Modeling the magnetic field

As acquiring the true field is infeasible, it is approximated by an estimate m(x) :R3→R3

based on a finite number of datapoints. The estimate can be modeled in a multitude of
ways, differing in computational complexity and estimation error. The methods include
for example piece-wise linear or bilinear interpolation [12, 13, 25, 57, 60], nearest
neighbor and natural neighbor interpolation [61], and more recently, Gaussian Process
(GP) [62] approaches [37, 56, 61, 63–65]. Wahlström et al. [56, 66] use GPs to model
the MF based on electromagnetic theory. They are able to model the magnetic field
sources and extract their properties, such as approximate shape, from the measurements.
However, for localization purposes, they report only a small improvement over less-
disciplined independent GP approach used, e.g., in Publication I. Solin et al. [64]
improve the computational aspects of this approach by rewriting the GP model and
demonstrate the model’s feasibility for robotics and smartphone map generation. In his
doctoral dissertation, Canciani studies modeling the MF with GPs and utilizes the GP
variance in aircraft positioning [67]. GPs have also been successfully used to model the
signal strength in WiFi-based SLAM [15].
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2.8 Conclusions

This chapter has discussed the character of the indoor magnetic field and particularly its
suitability for indoor localization purposes. Magnetic landscapes in typical modern
buildings seem to have enough spatial variation to allow even sub-centimeter localization.
The indoor MF is also temporally stable enough for collected maps to be usable for long
periods of time. The effect of moving metallic objects is surprisingly low.
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3 Recursive state estimation

3.1 Introduction

The state of the environment, especially from the robot’s point of view, is not often
directly observable but contains inherent uncertainty. Information is gathered by making
indirect observations about the state and changing the state by moving around. As the
state is uncertain, it is represented by a probability distribution over the state space.

Recursive Bayesian filtering [68] describes a principled way to recursively estimate
the stochastic state when new observations are obtained and when the state changes.
However, in all but few special cases, the equations in Bayesian filtering cannot be
solved exactly, and approximations must be used. These include decomposing the state
space into a discrete grid and making simplifying assumptions about the dynamic model.

An alternative to discretization is to recursively approximate the state probabilities
numerically by an adaptive set of discrete samples, that evolves in an evolutionary-like
manner based on observations, and to simulate the uncertain sample movements. These
methods are called particle filters (PFs) also known as Sequential Monte Carlo (SMC)
methods. They were introduced by Gordon et al. [69] in 1993. As particle filters can
approximate distributions of any shape and are exceptionally easy to implement, they
soon became a very popular estimation method, e.g., in mobile robotics [70] and terrain
navigation [71, 72].

This chapter describes shortly the foundations of recursive state estimation and
specifically particle filtering. An example of magnetic field localization with PF is
given to connect the theory into practice. The theory-describing sections 3.2, 3.3, and
3.4 and their content and notation are heavily influenced by the presentations in the
book "Probabilistic Robotics" by Thrun et al. [8] and Karlsson’s PhD thesis about
particle filtering [73]. An introduction to recursive Bayesian estimation can be found
in a textbook by Särkkä [68] and its application to terrain navigation, e.g., in [74, 75].
Doucet et al. [76], Arulampalam et al. [77], and Tulsyan et al. [78] provide good
tutorials on particle filters.
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3.2 Discrete-time state space model

More often than not, the environment’s state xt at time t is not directly available but only
observable through uncertain measurements zt about the state. Numerous practical
problems, such as mobile robot localization [8, 79] or aircraft or submarine terrain
navigation [73, 74], can be expressed as a probabilistic discrete-time state space model,
described by two stochastic processes characterized by two conditional probabilities

xt ∼ p(xt |xt−1,ut) (3.2.1)

zt ∼ p(zt |xt), (3.2.2)

where p(xt |xt−1,ut) is called the state transition probability or motion model and
p(zt |xt) is called the measurement probability or measurement model. The motion
model describes the probability of moving from state xt−1 to state xt given control ut .
The transition model describes the probability of observing measurement zt in state xt .

Let Xt = X1:t = {x1, ...,xt} denote an ordered set of states, Zt = Z1:t = {z1, ...,zt}
ordered set of measurements, and Ut = U1:t = {u1, ...,ut} ordered set of controls.
In probabilistic framework, the knowledge about the environment is expressed as
a probability density function bel(xt), called belief distribution or simply belief. It
describes a probability distribution over the states conditioned on measurements Zt and
controls Ut :

bel(xt) = p(xt |Zt ,Ut). (3.2.3)

If the initial belief p(x0) is known, the belief over time can be computed recursively by
incorporating the most recent controls and measurements. The recursive Bayes filter
derived in the next section does exactly that.

3.3 Bayes filter

In this section, the recursive Bayes update rule is shortly derived. In the following,
certain assumptions about the model are made. A stochastic process is said to have
the Markov property, if it is memoryless in the sense that if the current state xt is
known, past and future data are independent. This can be formulated as the Markov

assumption (MA) about the model that consists of two parts. The first one is called
Markov property of states, stating that if the current state xt is known, the future state
xt+1 does not depend on anything happened before t (3.3.1), and that also the past state
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xt−1 is independent of the future states (3.3.2):

p(xt+1|Xt ,Zt ,Ut) = p(xt+1|xt) (3.3.1)

p(xt−1|Xt:T ,Zt:T ,Ut:T ) = p(xt−1|xt). (3.3.2)

The second is called conditional independence of measurements. The measurements zt

are assumed to be conditionally independent of measurements and controls given xt .
That is, the measurement zt depends only on the current state xt :

p(zt |Xt ,Zt−1,Ut) = p(zt |xt). (3.3.3)

In addition the control is assumed to be random. Further, the Bayes’ theorem (BT) and
the Law of total probability (LTP) are needed in the derivation. The Bayes’ theorem can
be written as

p(x|y) = p(x∩ y)
p(y)

=
p(y|x)p(x)

p(y)
. (3.3.4)

As the denominator p(y) in (3.3.4) does not depend on x, it stays the same for all x and
(3.3.4) can be rewritten as

p(x|y) = η p(y|x)p(x) ∝ p(y|x)p(x), (3.3.5)

where η is a normalization constant. Let yi form a partition of the sample space. Then
the Law of total probability for the discrete case is stated as

p(x) = ∑
i

p(x∩ yi) = ∑
i

p(x|yi)p(yi). (3.3.6)

Assume that belief bel(xt−1) from the previous time step is known. It follows from
BT and measurement independence assumption (3.3.3) that

bel(xt)
def
= p(xt |Zt ,Ut) (3.3.7)
BT
= η p(zt |xt ,Zt−1,Ut)p(xt |Zt−1,Ut) (3.3.8)

(3.3.3)
= η p(zt |xt)p(xt |Zt−1,Ut). (3.3.9)

The rightmost distribution is called the prediction distribution and denoted by bel(xt).
It is obtained by incorporating the most recent control ut , but before using the most
current measurement zt . The prediction distribution can be computed recursively from
the previous belief, using the Markov assumption and Law of total probability
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bel(xt) = p(xt |Zt−1,Ut) (3.3.10)
LTP
= ∑

x′
p(xt |x′t−1,Zt−1,Ut)p(x′t−1|Zt−1,Ut−1) (3.3.11)

def
= ∑

x′
p(xt |x′t−1,Zt−1,Ut)bel(x′t−1) (3.3.12)

MA
= ∑

x′
p(xt |x′t−1,ut)bel(x′t−1). (3.3.13)

Note that in (3.3.11), the most current control ut could be removed from the condition
set, as the controls were assumed to be random. This leads to Bayes filter recursive
update rule for the discrete case, defined by the prediction (3.3.14) and the measurement
update (3.3.15) steps, computed over all xt :

bel(xt) = ∑
x′

p(xt |x′t−1,ut)bel(x′t−1) (3.3.14)

bel(xt) = η p(zt |xt)bel(xt). (3.3.15)

The continuous case can be derived analogously, and gives update rules

bel(xt) =
∫

xt−1

p(xt |xt−1,ut)bel(xt−1)dxt−1 (3.3.16)

bel(xt) = η p(zt |xt)bel(xt). (3.3.17)

Given initial belief bel(x0), the update rules above give the optimal solution to the
recursive Bayesian estimation problem. The distributions in the continuous case are not
generally available in closed form. In order to make the problem tractable, one must
often rely on numerical approximations of the state space, such as dividing it into a
discrete grid, or make simplifying assumptions about the state space model, such as
assuming the state transition and measurement probabilities to be expressed as linear
combination of Gaussians [80]. The Bayes filter can be implemented in many ways,
such as point mass filters (PMF) [74], Kalman filters (KF) and its variations [80], and
particle filters (PF) [77], each approximating different aspects of the problem and having
different advantages and disadvantages. All Publications I-V use PF in estimation, as PF
is known to perform well in multimodal environments and the magnetic environment is
multimodal. Therefore, this thesis concentrates on the PF implementation presented in
section 3.4.
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3.4 Particle filter

Particle filter is based on the idea that the belief or target distribution can be recursively
approximated by a large discrete set of weighted samples, called particles. Each particle
represents a hypothesis about the state, and the weight or importance factor represents
the probability of the hypothesis. The weights are computed from the mismatch between
the target and the proposal distribution. As the PF approximates the densities in
the Bayes filter, it provides a non-parametric approximate solution to the recursive
Bayesian estimation problem. In order to concentrate the computation on areas with
high probability, particles are resampled from time to time based on the weights. This
can be thought of as an analogy to survival of the fittest, where each hypothesis is
deemed to reproduce or perish based on its fitness (weight).

One of the main advantages of the PF is that the particles can approximate dis-
tributions of any shape. This makes it particularly suitable for environments where
the distributions are multimodal and where linear or Gaussian approximations do not
work [77]. The indoor magnetic field described in Chapter 2 is a good example of
such multimodal environment. The multimodality is revisited later in section 3.6.4.
Another important factor is that the PF is very easy and intuitive to implement. For these
reasons, the particle filter has become a very popular tool for recursive state estimation,
ranging from submarine and aircraft terrain navigation [71, 81] to robot localization
and mapping [82, 83]. One of the main drawbacks of PF is that in high-dimensional
state space, the particle density drops exponentially. This sparsity has a significant
negative effect on the quality of the discrete approximation. This is known as the curse

of dimensionality [71, 74, 84]. However, for example in mobile robot localization, the
state dimension can be kept usually quite low (e.g., d = 3 for poses on a 2D plane).

3.4.1 Standard particle filter algorithm

Let us denote the particles as a set of P weighted samples Xt = {x(i)t } and the corre-
sponding weights asWt = {w(i)

t }. The approximation ˆbel(xt) of the belief in terms of
the samples and weights can be written as follows:

ˆbel(xt) =
P

∑
i=1

w(i)
t δ

x(i)t
(xt)≈ bel(xt), (3.4.1)

where δ
x(i)t

(xt) is the Dirac delta function. The PF obtains the approximate belief
ˆbel(xt) recursively from ˆbel(xt−1) by applying three consecutive steps, depicted in
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Fig. 8. Left: Samples (25) drawn i.i.d. from the proposal g(x). Right: Samples weighted by
w(x) = f (x)/g(x) now approximate the target distribution f (x). The size of the marker corre-
sponds to the weight.

Algorithm 1, describing the Standard particle filter. First, each particle from the previous
approximation Xt−1 is propagated based on the motion model p(xt |xt−1,ut) (prediction,
PR: in Alg. 1). Then each particle is weighted by the measurement likelihood p(zt |xt)

(measurement update, MU: in Alg. 1). Finally, the particles are resampled if resampling
condition is met (RS: in Alg. 1). This procedure yields the samples Xt for the next
generation.

3.4.2 Importance factor

Along with resampling, the importance factor is one of the key contributors to the basis
of successful particle filtering. Let us consider two probability density functions f and g

with the following properties:

• It is difficult or impossible to sample from f .
• It is easy to sample from g (e.g., Gaussian).
• Both f (x) and g(x) are easy to evaluate point-wise.
• f (x)> 0 implies g(x)> 0.

Function f is called the target distribution, and g is called the proposal distribution. The
mismatch between f and g can be evaluated point-wise by

w(x) := f (x)/g(x). (3.4.2)

The w(x) above is called the importance factor.
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Algorithm 1: Standard particle filter

Input: Xt−1: particles,Wt−1: weights, zt : measurement, ut : control
Output: Xt : updated particles,Wt : updated weights

X t ← /0, P← |Xt−1|
PR: for i← 1 to P do

draw x(i)t from p(x|x(i)t−1,ut)

X t ← X t ∪x(i)t

end

Wt ← /0
MU: for i← 1 to P do

w(i)
t ← p(zt |xt)w

(i)
t−1

Wt ←Wt ∪w(i)
t

end
Wt ← normalize(Wt ) to sum to 1

Xt ← /0
RS: if doResample then

while |Xt | ≤ P do
draw x′ from X t proportionally toWt

Xt ← Xt ∪x′

end

foreach w(i)
t ∈Wt do

w(i)
t ← 1/P

end
else
Xt ← X t

end

return Xt ,Wt
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Let us examine the probability that x falls inside a interval A. This probability is
f (x ∈ A) = f (A), and through expectation, it gives a relation between f (A) and g(A):

f (A) = E f [δx(A)] (3.4.3)

=
∫

f (x)δx(A)dx (3.4.4)

=
∫ f (x)

g(x)
g(x)δx(A)dx (3.4.5)

=
∫

w(x)g(x)δx(A)dx, (3.4.6)

where δx(A) is the Dirac measure. If g is approximated by discrete samples {x(i)t },
then f (A) can be approximated by weighting each sample with point-wise evaluated
importance factor w(i)

t = f (x(i)t )/g(x(i)t ):

f (A) =
∫

w(x)g(x)δx(A)dx (3.4.7)

≈ η

P

∑
1

f (x(i)t )/g(x(i)t )δ
x(i)t

(A) (3.4.8)

= η

P

∑
i=1

w(i)
t δ

x(i)t
(A), (3.4.9)

where η = 1/∑w(i)
t is a normalizing factor. Therefore, the target function f can be

approximated by the weighted sum of the particles drawn from the proposal g:

f (x)≈ η

P

∑
i=1

w(i)
t δ

x(i)t
(x) = f̂ (x). (3.4.10)

It can be shown that the empirical probability of x ∈ A converges to g(A), when P→ ∞:

ĝ(x) =
1
P

P

∑
i=1

δx(i)(A)−→
∫

A
g(x)dx. (3.4.11)

Further, it can be shown that the weighted approximation f̂ (A) converges to f (A):

f̂ (x) = [
P

∑
i=1

w(i)]−1
P

∑
i=1

w(i)
δx(i)(A)−→

∫
A

f (x)dx. (3.4.12)

A survey of PF convergence results can be found in [85]. In particle filtering,
f corresponds to target belief bel(xt) and g usually corresponds to the proposal
p(xt |xt−1,ut) = bel(xt), as the proposal is easy to sample from. In this case, f/g

corresponds to the measurement likelihood:
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η p(zt |xt)bel(xt)

bel(xt)
∝ p(zt |xt) (3.4.13)

computed in the measurement update of Algorithm 1. A particle filter with this particular
choice is known as the bootstrap filter [69].

3.4.3 Motion model

In mobile robotics, the transition model p(xt |xt−1,ut) is called the motion model. In
PF, this is implemented by simulating the robot’s motion by drawing samples from
the motion model and then propagating the particles accordingly (see, Algorithm 1
PR:). The motion models in this thesis consider a robot operating on a plane, i.e.,
xt = (xt ,yt ,θt)

T , that receives a control ut = (x′t ,y
′
t ,θ
′
t )

T . A very simple motion model
xt = xt−1 +ut + e(ut) for such robot can be described as

xt = xt−1 + x′t + ex(ut) (3.4.14)

yt = yt−1 + y′t + ey(ut) (3.4.15)

θt = θt−1 +θ
′
t + eθ (ut), (3.4.16)

where ei are errors depending on the control and the robot motion dynamics [86].
Propagating particles with this kind of model are illustrated in Figure 10, and an example
of mobile robot localization using such a model is given in section 3.6.

3.4.4 Measurement model

For the purposes of this thesis, the measurement model p(zt |xt) is considered for
measurements consisting of the magnetic field vector z = (zx,zy,zz)

T . In the literature
[41, 43, 45], magnetic measurement models are based basically on three different vectors
extracted from the measurement vector z, discussed more thoroughly in section 2.5:
norm of the vector ||z||, yaw-independent vector z⊥ = (||zx,y||,zz)

T , and full vector z.
The distinctiveness of the vectors is illustrated in Figure 7. The likelihood function can
be for example a Gaussian

p(zt |xt) = η exp
(
−d(zt ,m(xt))

2

2σ2

)
, (3.4.17)
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where η is a normalization factor, d(z,m(xt)) is a distance between the measurement
and estimated measurement in the map, and σ2 is the variance capturing, e.g., map
estimation errors and measurement noise. Euclidean and Manhattan distances are found
to give similar results [41]. This kind of measurement model is used in the example in
section 3.6. Not surprisingly, the full vector, when applicable, has been found to provide
the best results, as it is able to distinguish the different orientations of the sensor with
respect to the MF [41, 45, 87]. Other possible three-component vector representation
is to use z⊥ with the full vector’s heading on the horizontal plane. This allows more
control over heading likelihood, although in the rare case when zx,y is close to zero it
may be sensitive, e.g., to noise.

An alternative for using the full vector is to use independent likelihood functions for
each channel. This can be done to model, e.g., the outlier distribution for each channel
separately, possibly making the model more robust to channel-wise bias and noise.
Another advantage is the possibility to tune the parameters, e.g., variance, for each
channel separately. This approach was taken in Publications I and II, where channels
were given different variances based on learned data and the likelihoods were modeled
as a mixture of a Gaussian and uniform distribution.

An important note about the measurement model is that although single measure-
ments are often not able to determine the place unambiguously, as can be seen, e.g.,
from the MF distance matrices in Chapter 2, the recursive multiplicative weight update
will very quickly discriminate between paths even in the presence of noise. Robertson et
al. [88] make an analogy to communications theory, where single observations about the
field intensities correspond to code symbols and sequences of observations correspond
to code words, whose distance to competing words grows with the word length.

3.4.5 Resampling

Without the resampling step, the particle weights would soon become very unevenly
distributed, and eventually all but one particle would have negligible weights. This
problem is known as particle depletion and it is tackled by the resampling step introduced
by Gordon et al. [69]. In resampling, particles with small weights are replaced with
copies of particles with high weights, after which the weights are set uniform. This
guides the particle approximation to regions with high probability. As the selection is
done proportional to the particle weights, the resulting particle set with uniform weights
still approximates the posterior [89]. If the particle-based filtering is done without the
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resampling step, the algorithm is known as sequential-importance-sampling (SIS),
and if resampling is performed (every step or adaptively), it is known as sequential-

importance-resampling (SIR) [77, 90]. The resampling is often done by roulette wheel
selection, i.e., drawing particles with replacement based on the distribution defined by
the particle weights. Alternative resampling techniques, such as residual and systematic
resampling, exist as well. They have been shown to produce samples with less sampling
variance and more efficiently [91, 92], therefore being superior to i.i.d. sampling in most
practical cases.

3.4.6 Estimates and density extraction

It is often enough to obtain a single point estimate from the particle representation of the
belief. The most commonly used one is the minimum mean square (MMS) estimate that
is obtained directly by computing the weighted mean of the particles

x̂MMS
t =

P

∑
i=1

x(i)t w(i)
t (3.4.18)

that minimizes the sum of squared differences from the mean. Other alternatives
include, e.g., the maximum a posteriori (MAP) estimate that is simply the particle with
the highest weight [73]. Sometimes, however, one wants to turn the particles into a
density representing the belief. In unimodal case, a Gaussian approximation is often
adequate. For multimodal cases, the density can be extracted, e.g., using histogram
approximations or kernel density estimation, where each particle is replaced, e.g., by
a Gaussian kernel. The kernel densities are then summed to obtain the final density.
Examples of densities obtained by both methods are visualized in Figure 9. It should be
noted that the estimation using any of these methods should be done before resampling,
as resampling introduces additional randomness in the current approximation [89]

3.5 Sampling variance

The sampling in Monte Carlo approximations introduces additional random error to
the approximation, caused by sampling variance. This affects both resampling and
prediction steps in the PF algorithm. For example, in resampling, especially with
i.i.d. roulette wheel sampling, particles with significant weight can be chosen to be
randomly replaced. This so-called sample impoverishment causes similar effect to
particle depletion, where the posterior is approximated only a small number of (copied)
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samples [77]. One way to tackle this is to reduce the variance in the resampling step.
This can be done by selecting the surviving particles more systematically. Examples of
such resampling schemes are Residual Resampling and systematic sampling [89, 91, 92].

Another way to reduce the error caused by resampling is to use an adaptive
resampling scheme, where the resampling step is only taken when there is enough
variation in the particle weights. The effective sample size [89] can be approximated
using the variance of the normalized weights

Ne f f =
1

∑(w(i)
t )2

. (3.5.1)

This ranges from 1 to N, and can be thought of as the number of particles contributing
significantly to the posterior. It has been shown to decrease stochastically over time
[93]. Adaptive resampling based on Ne f f has become the standard approach [8, 94]. For
example, a predefined threshold Ne f f < P/2 can be used to decide if to carry out the
resampling step in the Standard particle filter (Algorithm 1).

The other step introducing sampling variance is the prediction step. This is discussed
in section 3.5.1.

3.5.1 Improving the proposal approximation

In optimal situation, the proposal would be directly replaced by the so-called optimal

importance density p(xt |x(i)t−1,zt), as it minimizes the variance between the importance
weights [93]. However, using it is not generally possible, and usually if one wants to
improve the proposal, approximations must be used. Traditionally, in robotics, the
proposal distribution is improved by reducing the mismatch between the proposal and
the posterior in order to get away with a small number of particles. The number may
be constrained, e.g., due to memory constraints caused by large occupancy grid maps
[94–96]. When the number of particles is low, it is crucial that the samples drawn from
the proposal end up in areas with high likelihood [77, 89]. There are many approaches
to this problem. Grisetti et al. achieve this by adapting the proposal by utilizing the most
recent laser range measurement [96], and Grzonka et al. use look-ahead particles to peek
into the future to produce an improved proposal to cope with feature-poor environments
[97]. Both approaches improve the PF performance considerably. However, even when
such an approach is not possible, e.g., when information about the posterior is not
available [98], the proposal approximation can be improved by decreasing the sampling
variance. This can be achieved, e.g., by generating the proposal-approximating samples
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Fig. 9. Density extraction from the approximated posterior visualizes the possible negative
effect of sampling variance (left column) and how it can be alleviated by systematic sam-
pling (right column). The top row illustrates the 25 samples xi drawn both i.i.d. (left) and sys-
tematically (right) from the proposal g(x) and the approximation f̂ (x) as a sum of weighted
Gaussians. The bottom row illustrates a histogram approximation.

systematically as evenly as possible instead of using i.i.d. sampling. The method is also
known as quasi-random sampling [99], and it is proven to lower the error rate of the
particle filter [98, 100, 101].

Publication IV introduces Systematic Alias Sampling (SAS) as a way to produce low-
variance samples very effectively from an arbitrary discrete distribution. SAS is based
on the idea of combining the alias method by Walker [102] and systematic sampling
used widely in robotics [77]. Figure 9 illustrates how i.i.d. sampling procedure may
produce samples (P = 25) that represent the proposal g very badly. As a consequence,
the approximation f̂ of the posterior f is also very poor. The figure illustrates densities
extracted from the samples both as a sum of weighted Gaussians (σ2 = 12) and also
as a histogram. Figure 10 illustrates the same phenomenon in the context of motion
model. Two particle filters with 50 particles, depicted in blue (i.i.d.) and red (SAS), are
compared w.r.t. the mean estimate of a filter with 5,000 particles (grey). The left side
illustrates the simulated proposal for six consecutive steps with the corresponding mean
estimates, and the right side depicts the difference to the PF with 5,000 particles over 20
similar steps. Again, systematic sampling estimates the proposal better. Systematic
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Fig. 10. The effect of sampling variance to sampling from a motion model. (a): Two sets of
50 particles (blue, red) are propagated for six steps with different sampling strategies (i.i.d.
and systematic). The weighted average is compared to average of a 5,000 particle set (grey).
(b): The difference for 20 time steps averaged over 30 runs.

sampling in the motion model is especially beneficial when the majority of particles
have converged to a single point. Ormoneit et al. [100] construct an example case where
i.i.d. sampling in motion model fails with high probability. Systematic samples for
both illustrations are generated with SAS by using a 1009-valued approximation of the
normal distribution (see, IV for details).

3.6 Example: Monte Carlo localization on the magnetic landscape

In robotics, localization using a particle filter is often called Monte Carlo Localization
(MCL) [79, 82]. Using an illuminating example, this section shows that a magnetic field
map contains enough information to be used for localization. A particle filter is used to
localize and track a robot using only noisy control commands and noisy magnetometer
readings. The localization presented here is very close to terrain navigation on magnetic
landscape by Solin et al. [103] that uses a mobile device carried by human to perform
a similar localization task. The environment is the University of Oulu Discus Lobby
presented in Chapter 2. A grid map of the magnetic landscape with resolution of 0.2
m is collected beforehand and considered known. The robot follows a random spline
trajectory X ′t depicted as a green dashed line in Figure 11. The state of the robot is
estimated using the standard particle filter described in Algorithm 1 with 1,000 particles
and the following parameters.
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3.6.1 Controls and Motion model

The controls are in form ut = (xt ,yt ,θt)
T , representing a translation (m) followed

by a rotation (rad). The controls are given in approximately 20 cm interval, as 250
consecutive segments of a polyline approximating the spline trajectory. The control
components are derived from the segments u′t = (x′t ,y

′
t ,θ
′
t )

T of the true trajectory and
are affected by the following random error terms:

x = x′t +0.2 x′t e1 (3.6.1)

y = y′t +0.2 y′t e2 (3.6.2)

θt = θ
′
t +0.2 θ

′
t e3 +0.002 (|x′t |+ |y′t |) π e4, (3.6.3)

where ei are drawn from the standard normal distribution. The error terms depend
mainly on the corresponding element, but the angular term also has a cross-component
that is affected by the translational elements in the control. For the sake of simplicity,
the error model is assumed to be known and it is used directly to propagate the particles.

3.6.2 Measurements, Measurement model, and Resampling

The measurements zt = m(x′t)+ ez are generated by the nearest neighbor interpolation
from the MF map by rotating the interpolated values around z-axis based on the
simulated poses in the trajectory X ′t . In addition, independent Gaussian noise ez with
σ = 3 (µT ) is added to each channel. The true and noisy signals are depicted in Figure
12 (a). The measurement model is defined as a Gaussian

p(z|x) = η exp
(
−d1(m(x),z)2

2σ2
z

)
, (3.6.4)

where σ2
z = 102 and d1(m(x),z) is the Manhattan distance between the map value in

pose coordinates and the measurement. Using Euclidean distance with scaled variance
should yield similar results [41]. Resampling is performed only when Ne f f drops below
P/2. The particles are resampled using the Residual Resampling [89].

3.6.3 Localization along a simulated trajectory

A standard particle filter with the given parameters and input is used to estimate the
traveled trajectory. The particles are initialized uniformly on the map. The localization
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Fig. 11. Snapshots from different time steps of MF-based simulated MCL experiment su-
perimposed on the MF magnitude map (µT). Green circle and dotted line represent the true
location and path, respectively. Estimated pose and path are depicted in red. Particles are
in shades of gray, where shades toward white represent high weight.
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(a) Magnetic measurements along the path.
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components. The intersections reveal the inherent
multimodality.

Fig. 12. Visualization of the magnetic data over the path used for localization

is illustrated in Figure 11. The true trajectory and pose are depicted in green, particles in
shades of gray (light color meaning high weight), and weighted mean estimate and
its path in red. Initially, the particles are distributed evenly in the state space (a). As
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the robot moves, the particles start to concentrate to multiple modes due to PF update
(b-c). Finally, only the true mode is left (d). Distinct features in the MF concentrate
the particles very tightly (e). More flat regions make the cloud disperse but still stay
easily on track (f). As can be seen, the particle filter is able to both converge to the true
location and after that track the trajectory of the robot.

3.6.4 Note on multimodality - signal as a random walk

Figure 12 (c) depicts the walk of z⊥t = (||zx,y||,zz)
T
t in R2. Despite the robot trajectory

intersects itself only once at the very end (Fig. 11), it can be seen that z⊥t intersects itself
very often. This means that, if the heading is not known, there are multiple locations with
an identical magnetic field, even along the measured path. With no information about
the indoor MF, when the signal is collected along a continuous path, it is reasonable to
think of z⊥t as a continuous random walk in 2D that is (physically) constrained more or
less around the mean (Earth’s MF). Generally, even non-constrained random walks
in 2D tend to intersect, as for both simple random walks and Brownian motion, the
probability for non-intersecting paths has exponential decay [104], with the exception of
an exponentially small number of self-avoiding walks [105]. Furthermore, it has been
proven that for a certain type of continuous n-step random walk, the expected number of
self-intersections is asymptotically (2/π2)n logn [106, 107]. Empirical data visualized
in Figure 12 (c) clearly suggests that MF signal as a random walk does not seem to be an
exception and highlights the inherent multimodality present in MF localization. This is
not surprising, as there is no reason to assume a self-avoiding property in the MF signal.

3.7 Conclusions

This chapter has provided the building blocks for MF-localization using a particle filter
to obtain an approximate solution to the Bayesian filtering problem. The solution is
visualized with a concrete example in MF-localization. Additionally, some improvements
in the motion model sampling procedure have been discussed as well.
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4 Magnetic field navigation and localization

4.1 Introduction

Magnetic field localization is closely related to MF-SLAM. The main difference is
that in localization, the map of the environment is assumed to be known. This chapter
provides a short description of the early work and methods most commonly used in the
field. For details, the reader is referred to the literature provided.

Traditionally, compasses and magnetometers have been used to estimate the compass
heading that is used, e.g., for robot localization or gyroscope drift correction in IMU-
based approaches. In many cases, the magnetic disturbances caused by the ferromagnetic
structures inside the buildings have been seen as erroneous readings that must be
compensated or at least detected and ignored [108–112]. Sometimes, the magnetic
anomalies are seen completely adversary to localization and impossible to estimate
[113], as it corrupts the "correct" compass heading for foot-mounted IMU purposes.
Sometimes even the magnetic map is collected in order to get corrected compass
readings [57]. Beginning from seminal work by Haverinen et al. [1] in 2008, a gradual
paradigm shift begun in which the anomalies are seen as a source of information for
localization rather than an error.

The most popular indoor localization techniques in the robotics literature are based
on range sensors. Laser-based localization has long provided very accurate estimates in
controlled and static environments, and even ultrasonic sensors provide accuracy that is
good enough for many practical settings. However, there are many real environments
with features that have been proven difficult, e.g., for laser-based localization. For
example, windows or walls made of glass, very small objects, smoke, and crowded,
dynamic environments all pose hurdles for the localization [114–116].

One way to overcome these obstacles is to design algorithms that are able to handle
the difficult and unambiguous sensor readings. Another way is to use sensor fusion to
incorporate information from other sensors to reduce the overall uncertainty. Magnetic
field measurements have been used for this purpose in conjunction with range and
radio-based measurements in several papers [109, 117–120]. The main advantage of
using magnetic field sensors is that the measurements are usually very weakly correlated
with measurements provided by other sensors, and therefore, the magnetic field can be
used to derive independent information about the surroundings. For example in [118],
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magnetic field measurements are used with laser-based localization to aid in global
localization after robot kidnapping.

4.2 Magnetoreception in animals

Many animals, from insects to vertebrates, are known to have magnetoreception, i.e.,
they are able to detect the Earth’s magnetic field [121, 122]. The animals utilize the
Earth’s magnetic field for either navigation or other purposes, such as orientation
detection [123]. The species that are known to navigate via magnetoreception include
migratory birds [124, 125], bats [126], salmon [127], marine turtles, and spiny lobsters
[128, 129]. Many insects, such as hornets, ants and termites [130–132], utilize the
magnetic field to orient themselves for example when building the nest, and disturbed
magnetic field, e.g., near power lines, may lead to nest structures aligned with the
magnetic field. The exact method of how the animals sense the magnetic field is
still unknown. Many competing theories have been proposed to explain the nature of
magnetoreception [121]. In a very recent study, the authors were able to identify an
iron-containing protein spontaneously aligning in the magnetic field that is possibly
responsible for the magnetic sensing [133].

4.3 Early work

As such, the idea of using the variation in the Earth’s magnetic field for tracking and
navigation is not new. In 1982, Tyrén [134] suggests that the variation could be used
as a basis for ground-speed estimation for vehicle and aircraft localization and later
describes a navigation system for submarines that utilizes the underwater magnetic field
anomalies to track the vehicle [135]. The undergraduate report by McKay et al. [136] in
1998 is the first study of which the author is aware of where the indoor magnetic field
disturbances are used to localize a mobile robot. The paper describes a robotic mapping
system, where the robot collects compass data on predefined coordinate nodes and later
utilizes the disturbance signature to localize the robot to the best matching node. The
system achieves about one meter accuracy in small environments and near walls, where
there is enough variation in the magnetic landscape. Probably due to the immaturity of
the mobile robot localization and mapping at the time, the promising preliminary results
were not taken further. With very few exceptions, the next studies on the subject begun
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to surface almost ten years later, e.g., after particle filters were widely adopted in mobile
robotics localization research [16, 47].

One of the earliest works utilizing a magnetic field disturbance map is by Suk-
sakulchai et al. [49] in 2000. The robot is manually driven along corridors to collect the
map and the local headings are recorded using an electronic compass. These deviations
from the compass direction are then used to perform robot localization. The localization
method considers a moving window of measurements and is based on minimizing the
least squares problem between the measurements and the map reference. The method
achieves corridor-level accuracy.

In the work starting at 2008 Haverinen et al. [1, 16, 137] suggest that the indoor
magnetic field could be used as a signal for localization purposes. They describe the
first modern solution to indoor magnetic field localization and mapping. The magnetic
field is measured along corridors to produce one-dimensional magnetic signal maps.
Localization is performed using an SIR particle filter and the norm of the measurements,
as the orientation of the sensor is not available. Experiments in multiple buildings for
both robot and wearable sensor show that the magnetic field is temporally stable and
indeed usable for indoor localization purposes, achieving mean estimation errors from
0.1 m (robot) to 3.5 m (wearable sensor). The applicability of the method is later verified
also in underground mines [87].

In 2009, Rahok et al [138] describe a system to correct errors in robot odometry
using the variations in the indoor magnetic field. Map of the three-component magnetic
vector is collected and the robot is localized along a rectangular trajectory in a small
environment (0.75× 6.0 m2) using vision-based wall-following system that is able
to keep the robot’s distance from walls constant. Sub-decimeter estimation error is
obtained.

4.4 Localization methods

Magnetic field localization is in many ways similar to terrain navigation, that has
been used to track submarines and aircraft based on the terrain elevation maps [74,
75, 139, 140]. If only the norm of the magnetic field is used, as in many papers
[60, 118, 137, 141], the magnetic landscape is very similar to the terrain height map. If
more components of the measurement vector are used, also directional information can
be utilized [25, 41, 43, 45, 103]. Some of the early work rely solely on the heading
information [49, 57]. Due to similarities to terrain navigation, similar methods, such as
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PFs, are applicable also to MF navigation [25, 42, 103, 118, 137]. When the trajectories
can be restricted to one-dimensional paths, e.g., in the middle of corridors, also methods
such as dynamic time warping can be used [53, 142, 143]. Also Kalman filters are used
in some of the research [47, 144].

4.5 Magnetic field map model

Modeling the magnetic field ranges from detecting and modeling clear landmarks,
such as elevators and pillars [54, 55, 145], or detecting room-level signatures [146] to
interpolating raw data on a grid [16, 25, 57, 60] or using Gaussian mixture models [147].
More recently, the magnetic field has been modeled for localization purposes using
sophisticated physics-based Gaussian Process models to deal with sparse data and model
the associated uncertainties [63, 65–67, 103, 117]. Most of the research depends on the
natural magnetic variation, but in some work, artificial fields are induced using magnetic
coils with known properties [65, 144, 148].

4.6 Mobile devices

Almost all modern mobile devices have a multitude of sensors, including an accelerome-
ter, gyroscope, and magnetometer. This has made the MF localization possible using
smartphones in indoor environments, where GPS is not available. This offers business
opportunities in the indoor location market [18, 29]. The early ideas from robotics
were soon adopted to mobile devices [25, 55, 103, 117, 149, 150]. Gozick et al. [55]
propose the first approach to build indoor magnetic maps using smartphones. In their
approach the map consists of magnetic landmarks, such as elevators and steel pillars,
that are shown to provide temporally stable and device-independent features in the
norm of the magnetic field that can be used for localization. LeGrand et al. [25]
manually collect a non-parametric dense 2D grid map of the magnetic field using the
full three-component magnetic field vector. It is demonstrated how the map can be
used to localize a smartphone with 0.7 m accuracy. Torres-Sospedra et al. [24] provide
benchmark data sets for both WiFi and MF-based indoor localization.

An accelerometer can detect the direction of gravitation, so the magnetometer
reading can be rotated to the horizontal plane [48]. If we assume the mobile device is
held approximately at constant height and localize with respect to the mobile device
coordinates, the situation becomes similar to the 2D mobile robot case, as only the
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planar coordinates and heading need to be estimated. In general, however, the magnetic
field localization on mobile devices is much harder. For example, the sensor height,
orientation, and movement must be estimated. In addition, possible dynamic sensor
biases due to the device’s physical electrical and metal components must be accounted
[47]. On dedicated platforms, such as mobile robots, one can position the magnetometer
away from the platform’s electrical and metal components, thus minimizing interference
[42, 64, 137]. On consumer-grade electronics, such as smartphones and tablets, this is
not often feasible, as the sensors are embedded inside the device. For example, the
changing CPU load can cause electromagnetic inference to the MF readings, and a
metal casing may introduce a constant bias. These usually do not pose problems for
the average developer, as typical uses for compass heading and inertial measurement
unit (IMU) are fairly robust to these kind of changes, and, e.g., Android API provides
automatically bias-corrected sensor readings. On the other hand, the gap between
consumer-grade sensors and the sensors that have been used in research, is closing, and
the manufacturers are reacting to the need of high-quality sensor data. As from Android
API level 20 (2014), the developer has been able to request also raw, uncalibrated
magnetometer readings to be used for custom calibration. To mitigate the sensor power
consumption problem, Google introduced The Android Sensor Hub (2015) on a few
selected mobile phone models. It is a dedicated low-power processor used on mobile
devices to exclusively handle sensor data relieving the main CPU from the task, dropping
power consumption to only a fraction of current consumption.

4.7 Conclusions

During the last fifteen years the variations in indoor magnetic field have gone through a
paradigm shift from a source of errors to source of information. Magnetic field-based
indoor localization is an active research field in both robotics and mobile device context.
With improving sensor technology on consumer-grade devices, magnetic field based
localization is becoming one of the most promising solutions to take the place of the
"indoor-GPS".
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5 Simultaneous localization and mapping

5.1 Introduction

The map of the environment is not always readily available, and the agent (human or
robot) has to come up with a map on its own during the localization. This is called the
simultaneous localization and mapping (SLAM) problem. It was first introduced by
Smith et al. [151]. It is considered one of the most fundamental problems in the mobile
robotics literature [8, 9]. SLAM is often described as a chicken-egg problem [8]. On the
other hand, it can also be considered as a sequence of localization problems with very
poor or virtually non-existent maps – problems that (hopefully) become progressively
easier as the mapping continues. The main goal is to properly maintain the very uncertain
distribution over the trajectories until the localization becomes unambiguous. In robotics
the measurements traditionally come from a laser range finder. The problem has been
tackled with particle filters [96] and more recently via graph-based (GraphSLAM)
approaches [152]. At first, the occupancy grid-based SLAM problem was tackled with a
PF with only a single map [153]. The introduction of Rao-Blackwellized particle filter

(RBPF), where each particle carries its own map, improved the results significantly.
RBPF for grid maps was first introduced by Murphy [154] and Doucet [93]. It was
later improved to handle large environments with high resolution [83, 94, 155, 156].
Montemerlo et al. [157] provide an RBPF solution to large scale landmark-based SLAM.
Cadena et al. [9] give a very recent (2016) survey on current state and future directions
of SLAM. It also briefly discusses the use of non-traditional sensors.

As early as 1987, Tyren [135] suggested underwater magnetic field SLAM in the
form of gradual map enlarging. However, as far as the author knows, Publications
I and II were the first ones daring to tackle the indoor SLAM problem using only
the magnetometer readings along with odometry. Since then, magnetic field-based
SLAM or more shortly MF-SLAM has quickly become an active research topic
[13, 27, 88, 118, 158–160]. After introducing the theory behind MF-SLAM methods in
Publications I - II and V, the most relevant research on MF-SLAM is shortly reviewed
in section 5.5.
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5.2 Rao-blackwellized particle filter

The idea of Rao-Blackwellised particle filter is to estimate the joint posterior p(Xt ,mt |Zt ,Ut)

of the trajectory of poses Xt and the map mt conditioned on the observations Zt and
controls Ut . Under the assumption that the map does not depend on the control if the
poses and measurements are known, the following factorization of the joint posterior is
obtained:

p(Xt ,mt |Zt ,Ut) = p(mt |Xt ,Zt ,Ut)p(Xt |Zt ,Ut) (5.2.1)

= p(mt |Xt ,Zt)︸ ︷︷ ︸
map

p(Xt |Zt ,Ut)︸ ︷︷ ︸
≈Xt

. (5.2.2)

The right side can be recursively approximated by a particle filter. For each particle, the
map can be built analytically from the poses and the measurements, also known as
mapping with known poses [83]. In other words, each particle x(i)t carries its own map
m(i)

t , and the measurement update for the PF becomes

w(i)
t = p(z|x(i)t ,m(i)

t−1)w
(i)
t−1. (5.2.3)

Map m(i)
t for each particle is then computed (or updated) analytically based on the

trajectory X (i)
t and the measurements Zt . Particle filter utilizing the above factorization

is known as the Rao-Blackwellized particle filter.

5.3 Map representation

Different SLAM algorithms have different map representations and implementations. In
very general setting, a map can be represented and stored as M data points each fitting in
constant memory. The way the map is stored affects the memory requirements and map
access operations. Dense square grid maps in Rd are represented by M = Nd grid cells,
where N is the number of grid cells along a dimension. In R2, this yields a memory
requirement of O(N2) for a single map. Such representation is justifiable and used in
many application domains, as an array implementation yields very fast map access
operations and very large arrays fit in the memory of a modern computer. For example,
many laser-based approaches [95, 155, 156] store the map as an occupation grid [161].
Grid-based map representations, often accompanied with interpolation, are also adopted
in MF localization [13, 25, 42, 45, 57, 60].
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In order to save memory, the grid map may be made sparse and stored in a spatial
search hierarchy [84]. Quadtrees have been used to represent sparse 2D occupancy grid
maps for laser-range data [162, 163]. Similarly, octrees have been used for efficient
representation of 3D environments [164, 165]. Publications I and II take a slightly
different approach and store the maps as simple hash map-based adaptive grids, where
the state space is quantized into a regular grid and grid cells with measurements
are represented by a key-value pair in the hash map. Another way is to model the
environment with a very coarse regular grid and interpolate the values in between
[12, 13, 31]. Furthermore, many variations of the grid map exist, such as hexagonal
hierarchical grid adopted in FootSLAM-algorithms [88, 166].

A grid-free way to implement the map is to store only the measurements Zn and their
coordinates as scattered data. For maps in Rd , the memory requirements depend on the
dimension of the measurement dz, yielding memory requirement of O(n(d +dz)). This
means that for high-dimensional measurements, such as laser-scans, the grid approach
is often preferable, as the grid cells may often be used to combine information from
several measurements [161]. However, for low-dimensional measurements, such as
scalars or magnetometer readings, the constant factor dz is negligible. For maps in R2,
the memory requirements become O(n).

5.3.1 Bottleneck: memory and resampling

Because in RBPF each of the P particles carries its own map, the memory requirements
O(PM) of naive implementation may become a bottleneck. In addition, naively
implemented resampling means that every time resampling occurs, P maps are copied.
This leads to O(PM) time complexity. This can be a huge bottleneck for large maps,
such as fine-grained occupancy grids. As magnetic measurements are low-dimensional
compared, e.g., to laser scans, the maps built from n measurements typically consume
less memory at least when mapping new areas. Despite that, the memory and resampling
bottleneck is still present also in RBPF MF-SLAM. In Publications I and II, the non-
optimized implementation constrained the number of particles available for SLAM to
about 200, which was unable to handle feature-poor SLAM data, although achieving a
success rate of 19/20 in feature-rich environments with careful parameter tuning and
heuristics. Being able to use more particles would alleviate this.

One way to tackle the complexity problems above is to keep P and M low. For
fine-grained occupancy grids with high M, this means reducing P. Because the choice of
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proposal distribution affects PF performance considerably, informed proposals have
been used for great success [95–97]. Grisetti et al. [96] achieve this by adapting the
proposal by utilizing the most recent laser-range measurement. Stachniss et al. [83]
analyse the Gaussians used in the informed proposals. The adapted proposals allow very
low particle counts, such as P = 15 [96], to be used for SLAM.

Another route is to minimize M averaged over particles. In a series of self-improving
publications Eliazar and Parr [115, 156, 167] introduce DP-SLAM, a way to effectively
store the RBPF occupancy grid maps in a structure called the ancestry tree that shares
the mutual history of particles. They show in the final paper [156] that the structure may
be implemented to have the same asymptotic time complexity O(AP) as localization
with a single map, where P is the particle count and A is the number of grid cells
accessed per measurement. In addition, empirical data suggests that in practice the
memory requirements seem to drop from O(PM) of naive RBPF to O(M+APC) due to
the nature of the ancestry tree, where C is a smallish constant (C < 90). This allows
to use a very large number of particles (e.g., P = 10,000). Publication V adopts the
ancestry tree idea for MF point cloud maps stored in quadtrees. The approach solves the
memory and resampling bottlenecks present in Publications I and II and memory-wise
allows using at least three magnitudes more particles. This makes even the feature-poor
SLAM data sets solvable.

5.4 Loop closing

As with localization, the accumulating odometric error poses a problem also in SLAM.
The unbounded odometric error is visualized in Figure 13 (a). In localization, the
accumulated error corrupts only the pose estimate, which can be later corrected, e.g., by
re-initialization. By contrast, in SLAM, the error may make the whole map useless, as
standard RBPF has no mechanism to correct erroneous maps even if current correct
pose is recovered. In order to constrain the accumulating errors, the robot has to
eventually return to a previously visited place in the map. This is known as loop closing

and it is an essential part of SLAM [9, 94, 168]. In laser-based SLAM, "returning"
to a previously mapped place does not require the robot to be exactly in the same
coordinates, as range sensor readings are able to provide constraints about relative
transformations between poses [152]. However, for magnetometer-based SLAM, the
situation is different. Because the magnetometer measures the field only in one spatial
point at a time, the robot has to be very close to the previously measured locations
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before it can be considered being in a mapped area. The distance depends on the map
uncertainty, which in its turn depends on the magnetic landscape and the number of
samples in the map. The uncertainty can be very high especially at the beginning
of mapping. In order to close loops, it is essential for MF-SLAM that the trajectory
intersects itself several times until a good enough map function is obtained.

In many MF-SLAM and localization papers, either implicitly or explicitly, an
assumption is made that the trajectories will have significant segments that will be
both parallel and overlapping [13, 16, 28, 49, 88, 142, 143, 158, 169]. This makes the
corresponding map matching problem one-dimensional in nature. As such, it also
becomes considerably easier. This is a fair assumption in many cases, especially when
other sensors are used to constraint the movement or the movement is geometrically
constrained. For example, laser-based sensing may be used to keep the robot in the
middle of corridors. The assumption also makes it possible to use some methodologies,
e.g., dynamic time warping [28, 142, 143], that are not directly applicable for the non-
constrained case. However, in general case of mapping, a 2D area with magnetometer as
the only sensor, parallel and overlapping paths are hard to guarantee. This work makes
no such assumptions about the geometry or trajectories.

The FootSLAM line of work by Robertson et al. [88, 166], that successfully uses
foot-mounted sensor for RBPF SLAM purposes, relies explicitly and extensively on the
assumption that natural human trajectories avoid walls and form a hexagonal transition
map based on the assumption. Jung et al. [158, 169] perform graph-based magnetic
loop closing by driving the robot on simple rectangular or eight-shaped paths in such a
way that significant parts of the trajectory are parallel and overlapping. From these
paths, batches of measurements are obtained for comparison in graph-optimization.

Active loop closing tries to return the robot to already mapped areas before the
uncertainty grows too large. This has been studied, e.g., by Stachniss et al. [168]
for occupancy grid maps. In MF-SLAM context, active loop closing would be very
beneficial, as it would often generate overlapping and even parallel paths that are easy to
match. Exploration-based strategies evaluated in simulation proposed by Kemppainen et
al. [37] and Ruiz et al. [170] could provide a good starting point for a loop closing
solution. However, to the author’s knowledge, at the time, no such solution has been
validated for MF-SLAM in practice.
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5.4.1 Example on MF-based loop closing

The example illustrates the nature and difficulty of loop closing in 2D MF-SLAM and
how it depends on both odometric information and measurements. It clarifies further that
the full vector measurement model discussed in sections 2.5 and 3.4.4 is very sensitive
to yaw differences. To get a clear picture of this, the 200 first time steps of CSE lobby
SLAM data are briefly analyzed. A description of the full data and SLAM experiments
using it can be found in Publications II and V. Figure 13 (a-b) visualizes the odometry
and the partial path chosen for the example, (c) the obtained odometry, and (d) the walk
of z⊥. The correct loop closure points depicted in Figure 14 (f) are approximately at
time steps tLC

1 = (10,120) and tLC
2 = (25,190).

Pairwise Euclidean distances dz
i, j between the measurements are visualized for

||zx,y||, zz, yaw-independent vector z⊥, and full vector zx,y,z (rotated based on the
odometry-given yaw). These are depicted in Figure 14 (a-b, d-e). For visual clarity,
the MF differences are again clamped between 0 and 20 µT. Differences in z⊥ and zz

(a-b) show extreme multimodality. Even from z⊥ and zx,y,z, it is very hard to visually
detect the two loop closure points, as there is multiple minima (z⊥) or one minimum
missing (zx,y,z) outside the diagonal component. Spatial dissimilarity on such a short
path between the odometry-given poses can be approximated by the pairwise Euclidean
spatial distances di, j. To account for the uncertain odometry, the distances are further
restricted from below to obtain d̂i, j = max(di, j,0.5). That is, states are considered being
spatially identical if their distance is below 0.5 m. This roughly models the possible
error in odometry in a short path like this and detects approximate possible loop closing
points rather well. Naturally, with longer paths, the odometric error constantly grows, as
can be seen from the full trajectory in Figure 13 (a). The spatial distance defined by
d̂i, j is depicted in Figure 14 (c). When the differences are weighted and heuristically

combined with
√
(dz

i, j)
2 +(5.0d̂i, j)2, we obtain distance matrices depicted in Figure 14

(f-g). (Actually, this combination corresponds to log-likelihood of two independent
likelihood functions.) The correct loop closure points can be now seen more clearly in
the yaw-independent combination (f), although there is still multiple modes present. The
other point in tLC

1 = (10,120) still stays hidden in the full vector combination (g).
In conclusion, loop closing in non-constrained 2D environment is not an easy task,

as the magnetic landscape is heavily multimodal. However, combining measurements
over time with constraining odometry information, loop closing is possible as first
demonstrated in Publications I and II. A successful SLAM run with the quadtree map
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(d) Walk of z⊥ = (||zx,y||,zz) over the first 200 mea-
surements

Fig. 13. The first 200 steps of CSE Lobby SLAM data, visualizing the loop closing points
(a-b) and the MF data (c-d).
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representation from Publication V is demonstrated in Figure 15. Full vector difference is
very sensitive to slight yaw-errors, suggesting that a combination of z⊥ and yaw-based
likelihood functions could be considered, as discussed in section 3.4.4.

5.5 SLAM in the magnetic field

This section describes some work the author considers most relevant to MF-SLAM.
Although all presented research is not directly based on the magnetic field, the methodol-
ogy and assumptions are so similar that almost direct application to magnetic signatures
is possible.

5.5.1 VF-SLAM and its MF derivations

Gutmann et al. [12] propose a very general way to model continuous vector fields
on 2D planar environments in conjunction with a method called Vector Field SLAM
(VF-SLAM). The field is represented by an automatically updating regular grid of coarse
resolution (1-2 m), and bilinear interpolation is used to estimate the vector field values
in between. The assumptions made about the vector field signal are very similar to
those of MF: ". . . the signals change continuously over space, the variability on rotation

is independent of position, and the vector of signals provides enough information to

estimate pose." They show that the grid representation is suitable for many different
SLAM approaches, such as ESEIF-SLAM [171] and GraphSLAM [152]. The used
vector field is generated by Northstar infrared beacon system. Approximately decimeter
accuracy is achieved in SLAM experiments with a custom vacuum cleaner in small
environments (4×5 m2). The method is later evaluated in home-sized environments
with area of 125 m2 [32].

Lee et al. [13] utilize the grid-based representation of VF-SLAM for magnetic vector
fields. The work strives for better modeling of the indoor MF by using bicubic instead
of bilinear interpolation. The SLAM problem is tackled with a RBPF. The feasibility of
the proposed approach is verified in simulation and on an actual robot by driving the
robot in small environments (7.5–15 m2) along a boustrophedon and rectangular paths
with significant parallel and overlapping segments. Sub-decimeter estimation errors are
reported, yielding notable improvement over bilinear interpolation and raw odometry.
In another paper [31], also based on VF-SLAM and RBPF, the authors study how the
ambiguity of MF observations can be alleviated by using a dual-sensor setup. They use
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Fig. 14. Distance matrices along the 200-step trajectory depicted in Figure 13. The multi-
modality illustrates the difficulty of MF-based loop closing even on such a short path.
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Fig. 15. Snapshots of MF-SLAM in action. Particles are depicted in gray. Only the map of
particle x(1) is visualised. The colors on the path correspond to the ancestry structure in
the maps, and the overlapping squares are the quadtrees that store the data points. See
Publication V for details.

simulated and real environments similar to the previous study and report significant
improvement over single-sensor setup.

5.5.2 Bathymetric SLAM

Although operating on seafloor structures instead of indoor MF landscape, the featureless
bathymetric SLAM (BPSLAM) by Barkby et al. [14] is perhaps methodologically
most close to Publications I–III and V. The maps are represented by a shared 2D grid
similar to DP-SLAM [167] with 1.0 m cell size, and a RBPF is used to solve the SLAM
problem to ensure self-consistent seafloor depth maps. Special care is taken not to
resample particles, when they have not gathered meaningful information. When a
particle arrives to a non-visited grid cell, its measurement there is not considered to
match the map either well or poorly. Particles are chosen for resampling based on the
ratio of the particle’s measurements that are overlapping the previously visited grid
cells. The effect of this is similar to the GP variance-based measurement model in
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[67] and it is conceptually very close to the conditional weight update in Publications
I–II, where the weight was not updated unless the MF estimate was certain enough.
The conditional weight update logic in Publications I–II is later made more general in
Publication III. The BPSLAM approach is verified on very large data sets, including
maps up to approximately 200×350 m2.

5.5.3 FootSLAM and MagSLAM

FootSLAM by Angermann et al. [166] is a PDR SLAM method based on foot-mounted
sensors. It builds heavily on the assumption that natural human motion indoors is
constrained by the geometric structure of the building, and that some places, such as
corridors and entrances, will be visited more often and are therefore more probable
locations for loop closures. This assumption is used to build a probabilistic transition
model represented by a hexagonal grid, that together with low level state-of-the-
art PDR from the foot-mounted IMU and a RBPF is able to produce geometrically
consistent representations of the 2D indoor environment and bound the positioning
accuracy to about 2 m level. It is argued that future mobile devices will achieve similar
localization accuracy that is achieved with foot-mounted sensors in the study, and that
the collaborative and crowd-sourceable version FeetSLAM [172] has the most potential
in the future.

Building on FootSLAM, Robertson et al. augment the hexagonal grid cells with
magnetic field intensity information to construct a MF-utilizing version of the FootSLAM
algorithm, called MagSLAM [88]. The hexagonal grid is further divided into overlapping
hierarchical layers of coarse and more fine-grained hexagonal grids in order to model the
magnetic field with respect to the local measurement density. Again, a RBPF combined
with PDR information is used for solving the SLAM problem. The diameters of the
hexagonal bins range from 0.15 m to 0.70 m. The use of magnetic information and
hierarchical grids improves the performance significantly: the 2D positioning errors are
reported to be in range from 0.1 to 0.2 m.

5.5.4 Graph-based approaches

In a technical report based on his doctoral dissertation, Gao [28] addresses the problem
of improving and automating GP-based WiFi and BLE signal map collection for human
mapper and consumer-grade smartphones. The work first studies how path-based
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map collection compares to fingerprint-based manual mapping and concludes that the
path-based method can produce comparable maps in a fraction of collection time if the
mapping is done densely enough. This is done using paths with known ground truth.
The thesis proceeds to propose an offline graph-based SLAM approach, that compares
sequences of PDR and MF data to obtain loop closures using DTW. The approach relies
explicitly and heavily on the assumption that the map collector follows certain collection
guidelines and that majority of the paths are parallel with and overlap previous parts of
themselves. The overlapping parts are based on the corridors of the building. In addition,
the drift is addressed by straightening the PDR path on a case-by-case basis with a line
filter, that assumes straight corridors and a clear angle differences between two corridors.
The tested environments are mostly office-like buildings with clear geometric structure,
and the approach is able to produce the geometric shape of the floor plan in all of the
cases.

Quite surprisingly the author suggests that the use of MF signal should be restricted
to the mapping phase, as they have found that MF-based localization is unreliable
with consumer-grade smartphones for various reasons, such as decalibration, need for
movement, unknown device orientation, and issues in regression. They use the MF
signal only to help produce the WiFi and BLE signal maps.

Jung et al. [169] describe a pose graph-based approach that solves the SLAM
problem in a small rectangular environment (3×3 m2) by utilizing sequences of MF
data and pose constraints. In addition, to obtain the ground truth, the robot uses a laser
range finder to constrain its trajectory implicitly on a rectangular path that provides loop
closures in the form of parallel and overlapping MF sequences. In their other work
[120] the authors extend the approach to work with similarly constrained longer looping
paths (up to 45×56 m2) and somewhat more complex eight-shaped trajectories in small
environments (4×3 m2).

The path constraints in these graph-based approaches are the main difference
compared to the data used in this thesis. To the author’s knowledge, there is no research
that addresses the MF-SLAM problem with a graph-based SLAM formulation without
significant implicit or explicit constraints on the trajectory.

5.6 Conclusions

This chapter has presented the RBPF and efficient map representation methods as the
final building blocks needed to implement a fully-working MF-SLAM algorithm for
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mobile robots in 2D planar indoor environments. Loop closing and the implicit and
explicit assumptions taken in different SLAM and localization implementations were
discussed, and an illustrating example of MF multimodality in loop closing situation
was given. Finally, few selected related works were shortly presented as well.
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6 Conclusions and future directions

This overview has shortly presented the problem of magnetic field-based localization
and SLAM and the theoretical background of solving the SLAM problem with the
Rao-Blackwellized particle filter. The characteristics of the indoor magnetic field and its
suitability for localization purposes were addressed. In addition, related research was
summarized. The author believes that the literature presented in this overview represents
the majority of related work, although magnetic field-based localization and SLAM is a
rapidly growing research topic.

In contrast to vision or laser-based SLAM that are very mature research topics
and can be considered solved at least in controlled environments [9], the research on
MF-SLAM – including this thesis – is still in proof-of-concept stage. There are still
several open research questions. How much MF-SLAM can be improved by fusing in
other low-costs sensors? In how large environments it can scale to, and how to increase
its robustness? Also utilizing the presented methods on completely different sensor
modalities, e.g., seafloor depth and vegetation, is left for future research. The thesis
tackled the SLAM problem using the RBPF framework, but it is unknown how well,
e.g., graph-based SLAM formulation is suited for the problem in larger environments or
with less constrained trajectories.

Publications I–II constructed a local GP model of the MF for each particle in
every update. In Publication V, a simpler approach was taken by introducing an
easy-to-compute local interpolant that was straightforward to use with the ancestry tree
map formulation. Being able to effectively compute or approximate a full GP model for
each particle could prove very beneficial for MF-SLAM. However, although effective
updating for single GP map exists [64], the author is not aware if this can be extended
to be used, e.g., with the ancestry tree approach and RBPF SLAM with thousands of
particles.

For a SLAM system to be fully autonomous, active localization is needed. Develop-
ing such an autonomic system was not unfortunately possible in the limited scope of
this thesis. This could be a fruitful direction of future research. Also the applicability
of the presented methods for PDR-based systems or mobile devices could be studied.
Furthermore, more theoretical analysis of the sampling method presented in Publication
IV offers an academically interesting topic.
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