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CHAPTER I 

INTRODUCTION 

More than a decade ago, Dana and Dawes (2004) published the results of a simulation 

study in which they compared the predictive accuracy of ordinary least squares (OLS) regression 

weights with alternative regression weights. Their results led Dana and Dawes to issue an 

unusually strong recommendation for when researchers ought to abandon OLS weights in their 

analyses and use equal or correlation weights instead: “[OLS] Regression coefficients should not 

be used for predictions unless error is likely to be extremely small by social science standards or 

sample sizes will be larger than 100 observations to predictors. In other words, [OLS] regression 

coefficients should almost never be used for social science predictions” (emphasis added, p. 

328).  

Any reader acquainted with the social science literature of the past decade will realize 

that few researchers have heeded Dana and Dawes’s advice, with a few notable exceptions in 

fields such as Industrial-Organizational Psychology (e.g., Graefe et al, 2013; Hattrup, 2012), 

decision theory (e.g., Dana and Davis-Stober, 2016; German et al, 2016), and program evaluation 

(e.g., Greer, et al, 2016; Smolkowski and Cummings, 2015). Nevertheless, the result is that Dana 

and Dawes’s (2004) study has been cited more than 100 times, including recent citations in 

major peer-reviewed journals (e.g., Behavior Research Methods, Journal of Personality 

Assessment, Psychological Methods). Their conclusions continue to be reviewed and promoted 

by alternative regression weight advocates.  For example, Dana and Davis-Stober (2016) cite 

Dana and Dawes (2004) alongside earlier studies, and remark: "When making predictions using 

the ubiquitous linear regression model, decades of research have shown that when sample sizes 

are limited or measurement is noisy, the equal weighting of predictors is likely to perform as 
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well as, or better, than standard regression estimates” (p. 66). Surprisingly, however, no study 

has attempted to replicate or extend Dana and Dawes (2004) and thus their conclusions have 

remained unchallenged in the literature. 

 Methodological practice and literature, therefore, are commonly at odds. The true state 

of the world is either that Dana and Dawes’s forceful recommendation is correct and applied 

researchers have stubbornly failed to adopt superior statistical methods, or that Dana and 

Dawes’s argument does not hold (at least in some circumstances) and awaits the identification of 

one or more flaws that limit their recommendations. In either case, a re-evaluation and update to 

the literature is due. The present study revisits their simulation, from its conceptual basis to its 

methods to its results, implements some important revisions, and provides evidence through new 

simulations that favors continued skepticism of alternatives to OLS regression weights. 

 

Alternative regression weights 

One of the most frequent and impactful ways that quantitative methods researchers 

translate their work for real-world application is by providing statistical models as a predictive 

tool for use by other researchers, practitioners and policymakers. The parameters in these models 

are sometimes estimated from large and reliable databases but more often are drawn from 

smaller convenience samples prone to high levels of statistical noise. The rationale for using 

alternative regression weights in these models rather than ordinary least squares (OLS) weights 

rests largely upon a great limitation of OLS weights: weights estimated from a single sample are 

calibrated to fit not only characteristics of the data that are descriptive of the population 

parameters (and therefore useful for prediction) but also characteristics that are specific to the 
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sample (and therefore irrelevant noise adding error to predictions). The problem grows as we try 

to get information about more parameters from fewer subjects: As the ratio of subjects in the 

calibration sample to predictors decreases and/or the predictability of the model (i.e., the 

population coefficient of multiple correlation, R) diminishes1, the upward bias of R will grow 

substantially (Dana and Dawes, 2004). This phenomenon will lead to shrinkage of the R when 

the model is applied to new samples, a threat to predictive validity.  

We often consider calculating adjusted or shrunken R as a solution, but adjusted R is 

dependent upon the same unique sample characteristics. Moreover, adjusted R only describes 

how much the present estimated model resembles the population model, not how well the present 

model will make predictions with future, independent samples. The ideal adjustment would alter 

the actual values of the model coefficients themselves, thus directly adjusting future predictions. 

This is exactly what alternative weighting achieves. 

 The suggestion that alternative weighting methods may be preferable in some 

circumstances to OLS weighting in regression dates back at least seventy-five years (Wilks, 

1938), but the more mathematically principled approach of using OLS clearly won out. Wainer 

(1976) hoped to bring attention to earlier discussion of the weaknesses of OLS regression 

(Gulliksen, 1950; Rozeboom, 1966; Goldberger, 1968; Schmidt, 1971) by proving 

mathematically that equal weights yield superior predictability compared with OLS weights 

across samples in a wide range of cases.2 His argument and conclusion were largely rejected 

                                                      
1 The coefficient of multiple correlation is the square root of the more familiar coefficient of determination, R2. I 

reference the former here and throughout to be consistent with the methods and reported results of Dana and 

Dawes (2004). 
2 Wainer’s robust championing of unit weights provoked some criticism, prompting him to publish a brief paper 

(Wainer, 1978) in which he acknowledged minor errors and potential limitations but also asserted that his 

argument was unaffected in the vast majority of realistic scenarios. 
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(see, in particular, Laughlin, 1978), but the factors he identified as making equal weights and 

unit weights3 so attractive remain undisputed: beyond their simplicity, they are independent of 

the sample data and so cannot be influenced by the idiosyncrasies of the sample. 

Additional support for unit and equal weights has been provided through empirical and 

simulation studies (Dawes and Corrigan, 1974; Dawes, 1979; Raju, Bilgic, Edwards & Fleer, 

1999; Dana and Dawes, 2004). More recent work has described unit weighting as one of an 

infinite variety of "constrained estimators," where other examples include rank weighting and 

"take the best" weighting (Davis-Stober, Dana and Budescu, 2010; Davis-Stober, 2011)4. The 

performance of each type of constrained estimator is determined by the underlying factor 

structure of the data, although unit weights have the lowest maximum mean squared error and so 

may be preferable when the precise structure is not known. 

 Correlation weights (the zero-order correlations between each predictor and outcome, 

also called validity weights) likewise have been demonstrated to produce regression models with 

coefficients of multiple determination (R2) less likely to shrink when applied outside of the initial 

sample (Campbell, 1974; Dana and Dawes, 2004; Davis and Sauser, 1991; Goldberg, 1972; 

Dunnette and Borman, 1979) and may produce more stable predictions (as assessed by the root 

mean squared error) than an OLS regression model (Finch et al., 2011). Waller and Jones (2010) 

attempted to lay a foundation for a mathematical theory of correlation weights and when they are 

                                                      
3 Unit weights are either -1, 0, or +1, whereas equal weights are all of the same sign. Wainer (1978) showed that 

including weak predictors in an equal-weights model can decrease predictability and so recommends their 

exclusion, essentially assigning a weight of 0. For the remainder of the paper, the term “unit weight” includes 

equal weights. 
4 To be clear, while these are clever and generally useful studies, I don’t describe them fully because they don’t 

quite apply to the issues at hand. First, I will include correlation weights in my simulation, but these studies are 

only helpful for choosing among the different types of fixed weights. Second, their methods assume knowledge of 

the underlying factor structure, a much stronger requirement than correctly specifying the regression model. 
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likely to be more or less predictive than OLS weights, but this preliminary work was in terms of 

population regression models. A general solution for when correlation weights will be preferable 

to OLS weights for a given set of predictors and criterion was not found. Their work did 

underline the complexity of the problem of selecting a priori the most efficient weight type: With 

little effort, they were able to construct a set of independent variables that yielded a coefficient of 

determination of .99 for a particular criterion using either OLS or correlation weights, whereas 

the same predictors with a second criterion saw a coefficient of only .09, even as the 

predictability of OLS weights remained unchanged. Surprisingly, these two criteria were 

correlated .98. Many other alternative weighting methods for regression exist, but unit weighting 

and correlation weighting are the most widely studied and most frequently used (Dana and 

Dawes, 2004; Waller and Jones, 2010; Davis-Stober, 2011).  

 

Simulation study by Dana and Dawes (2004) 

Dana and Dawes (2004) designed their simulation after conducting several resampling 

studies of five public datasets. As their metric for comparing the performance of the different 

types of regression weights, they used validated R, which is the correlation between criterion 

estimates generated with the sample weights and the population weights. For each data set, they 

drew repeated samples, calculated the validated R for the resulting regression weights for each 

sample, then reported the average of validated R across all samples5. They concluded that OLS 

                                                      
5 Validated R, as calculated by Dana and Dawes (2004), is a function of the estimated regression weights from a 

sample, and the population weights and predictor correlation matrix. The parameter values used for the empirical 

data sets were estimated from the total data, while those used in the Monte Carlo simulation were specified for 

each condition of the simulation. See Chapter II for a full description of the formula and its use. 
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regression performs best relative to alternatives6 when the population R (ρ) was large, and the 

size of ρ had a much greater impact than did the ratio of predictors to sample size (possibly due 

to differences between the models as specified and the true “models” underlying the real-world 

data). When this ratio and ρ were small, unit and correlation weights always performed best, and 

there was little loss of predictability in general even when these factors increased and OLS 

regression performed best.  

Their Monte Carlo design used simulated data with multiple levels of sample size, 

number of predictors, population error and multicollinearity. The weights compared were OLS, 

correlation, unit and two other alternative weights suggested in the literature.7 Performance was 

compared on the basis of average validated R and also reported in terms of estimated ρ. One 

difference in the results compared with the performance of weights using empirical data sets was 

that rho no longer had a greater impact on weight performance than did sample size, likely 

because all models used in the Monte Carlo study were correctly specified by design.  

A perfect regression model would have a validated R equal to the population R8, 

indicating that it is yielding as much information about the criterion as the predictors can 

possibly reveal. Comparing OLS weights with correlation and unit weights, Dana and Dawes 

(2004) found that, on average, correlation weights produced a larger mean validated R when the 

population predictability was greater than .6, and both OLS and correlation weights were bested 

                                                      
6 These were correlation weights, unit weights, "take the best" weights (Gigerenzer and Todd, 1999) and the OLS 

model with the best Mallows Cp (Mallows, 1973). 
7 These were “take the best,” which uses only the predictor most highly correlated with the criterion, and ridge 

regression. Ridge regression reduces multicollinearity and shrinks R by adding a small amount k to the diagonal 

values in the predictor correlation matrix. Neither method consistently performed better than OLS, equal and 

correlation weights in the simulation, and neither factored into the conclusions or recommendations of the study. 
8 The population R is the maximum value of the validated R, otherwise we would be claiming that the model is 

divining more information from the sample than actually exists in the population. 
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by unit weights when ρ < .4, even with as many as 100 subjects per predictor. These findings led 

to the following practical recommendation:  

[OLS] Regression coefficients should not be used for predictions unless error is likely to 

be extremely small by social science standards [rho > .6] or sample sizes will be larger 

than 100 observations to predictors. In other words, regression [OLS] coefficients should 

almost never be used for social science predictions. Simple alternatives will usually yield 

better predictions. (Dana and Dawes, 2004, p. 328) 

 

Critiquing Dana and Dawes (2004) 

 As noted above, the Dana and Dawes (2004) study has not been replicated or extended, 

and subsequent references to their findings have been generally supportive. Nonetheless, I will 

describe several apparent weaknesses and ambiguities in their study design that bolster the 

argument for replication and reassessment. First, a major obstacle to full understanding of their 

methods is that the description of the design and requisite assumptions upon which it depends is 

lacking precise detail. For example, Dana and Dawes stated that their procedure for simulating 

random data were an adaptation of the methods introduced by Wherry et al. (1965), yet the 

methods described in Wherry et al. were far too simple to produce the results in Dana and 

Dawes. Wherry’s method took as input a single set of factor loadings, whereas Dana and Dawes 

simulated results across a continuous range of values for each predictor, collinearity, and 

predictability. The adaptation made for their study was not described in sufficient detail to be 

fully understood or replicated. 
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 Dana and Dawes reported that the patterns in their results were not “sensitive” (p. 326) to 

differences in absolute sample size (but were dependent on the ratio of sample size to number of 

predictors) and variation in predictor collinearity (pairwise correlations among predictors) and 

validity (pairwise correlations between the criterion and each predictor). However, they did not 

present to the reader any evidence illustrating such lack of impact, only stating that including 

these factors would not have changed their conclusions. This lack of information prevents the 

reader from making his or her own assessment of the data or of the authors’ judgment concerning 

the data, an especially important point considering that the data that were summarized in the 

paper averaged across these factors. Dana and Dawes (2004) may thus have inadvertently 

obscured important variation between or interactions among factors, a problem compounded by 

their reporting these means without standard deviations or other indications of variability9 

 Samples assessed in the study were simulated from population correlation matrices with 

factor loadings sampled from m-dimensional Dirichlet distributions (where m is the number of 

regression model parameters), and error was scaled using a random draw from a uniform 

distribution of values, (0,.5). In this way, Dana and Dawes (2004) were able to address questions 

of regression weight performance across a continuous spectrum of all possible populations and 

all possible samples from those populations, maximizing the generalizability of their findings. 

An implicit assumption of this approach, however, is that all conceivable relationships among 

variables are equally likely. In reality, researchers usually choose their study variables from a 

much narrower range of possible joint distributions (with the possible exception of extreme 

                                                      
9 The overall impact of both population predictability and sample size was compared using effect sizes, which 

account for the standard deviation, but only on the omnibus level. That is, it appears that they tested whether 

there were any significant differences in weight performance across all the levels of a factor (e.g., all ratios of 

subjects to predictors) but did not compute pairwise contrasts between levels of a factor (e.g., between 5 subjects 

per predictor and 100 subjects per predictor). 
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datamining), using some a priori knowledge of the respective parameters, and in any event 

correlations among social science variables tend not to demonstrate such broad ranges of 

variability.  

 

The present study 

 Research on alternative weights has continued, from using fungible weights to assess 

coefficient sensitivity (Waller, 2008) to using random weights as the baseline for quantifying the 

relative information content of a regression model (Davis-Stober and Dana, 2013). Most of this 

work has been either analytic/theoretical, or attempts to characterize the geometry underlying 

alternative regression weight performance (rather than generating practical guidance). This 

leaves Dana and Dawes (2004) as the only concrete guide for alternative weights, but their 

analysis had a major drawback: they simulated weight performance across almost the entire 

spectrum of possible regression studies, then averaged results across factors. These results were 

the basis for conclusions that, although true in the theoretical universe of all possible studies, 

could still problematic for the narrower statistical space in which an actual researcher operates. A 

more realistic simulation design could reasonably consider a more limited range, with focus on 

plausible parameter values rather than the entire universe of values. The present study modifies 

and simplifies their simulation design by narrowing the range of each factor (i.e., fewer factor 

levels) so that I can describe the variability in results rather than averaging across cells. This 

allows me to directly examine the impact of specific patterns of parameter values on the results, 

varying the equality, magnitude and spread of collinearities and validities. Should the results of 

my simulations vary meaningfully from those of Dana and Dawes, this finding would suggest 
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that a more skeptical view of alternative regression weights as a replacement for OLS weights 

may be appropriate. 
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CHAPTER II 

OVERALL STUDY METHODS 

 

 Dana and Dawes (2004) may have obscured some of their important findings by 

averaging across the effects of variation in validities, as well as across variation in predictor 

collinearities, within their population correlation matrices. They reported that these factors did 

not significantly impact weight performance in their results, but across such a wide range of 

values for all the simulation parameters, significant differences with respect to these factors 

could easily have been overshadowed or even cancelled out. A second issue is that, by reporting 

mean validated R’s but not their standard errors, Dana and Dawes (2004) omitted an important 

measure of relative precision. Even if alternative weights do provide an advantage in 

predictability over OLS weights in the long run, the variability of that advantage could diminish 

its impact in the short run. 

 The present study addressed the latter concern by including confidence intervals around 

the mean validated R. The result shows not only the average validated R yielded across all 

samples drawn from a given population but also the range in which the validated R would fall 

ninety-five percent of the time. Assessing the relationship between weight performance and 

population correlation matrix parameters is more complex, requiring the systematic variation of 

both the set of predictor validities (i.e., correlations between each predictor and the criterion) and 

their collinearities (i.e., the correlations among predictors) of simulated populations. For 

example, validities may be more or less equal to one another, as may collinearities; the average 

magnitude of validities and collinearities may be higher or lower; and the distribution of 
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validities may be either a) evenly spaced, b) skewed so that the validities are positively 

associated with collinearities (i.e., the predictor with the greatest validity also has the greatest 

multicollinearity with other predictors, and the predictor with the least validity also has the least 

multicollinearity with other predictors), or c) skewed so that the validities are negatively 

associated with collinearities. A thorough examination is only possible if the simulated samples 

are drawn from populations that reflect multiple levels of each factor in combination. 

Yet, as previous simulation studies have implied, it is computationally impractical to 

simulate thousands of pre-defined populations and then analyze the results for each population 

matrix, all without averaging across matrix characteristics. The alternative approach used in the 

present study is to surrender some of the generalizability afforded by simulating thousands of 

different populations, but achieving a closer examination of specific, plausible population 

structures. The parameter values in the population correlation matrices have been restricted to a 

plausible range for a typical study. The different levels of each simulation condition use 

parameter values that are at either end of that plausible range. For example, weight performance 

is compared when validities are nearly equal and when they are very different, as opposed to 

examining results for hundreds of populations with validities across a continuous range between 

equality and extreme inequality.  

An advantage of this approach is that it can be matched to realistic research scenarios, 

where a researcher is working with a particular population, often with characteristics that can be 

partially anticipated a priori. The rationale for selecting each specific population matrix is given 

below, but each is a variation on a matrix with average validities near .3 and all collinearities 

averaging .3. This combination is consistent with what has been found to be the most common 

magnitude for correlations in the social sciences (c.f., Maxwell, 2000). An additional constraint 
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on validities is that none are less than .1, the minimum used by Waller and Jones (2011). Smaller 

validities are more likely to result in suppression effects (i.e., the multiple R is increased by 

including an independent variable that is significantly correlated with other predictors but not 

with the criterion), which were specifically excluded by Dana and Dawes (2004) from their 

simulations.  

When specifying population correlation matrices for simulation studies and generating sample 

correlation matrices, it is important to assess whether matrices are mathematically admissible. There are 

constraints on correlation matrices such that not all patterns of correlations that one might specify can 

actually be observed (Marsaglia and Olgin, 1984; Holmes, 1991). To solve this problem, I use a 

formula adapted by Andrew Tomarken (personal communication) from one first presented in 

Maxwell (2000): although the original formula could be used to calculate R2 from population 

correlation matrices, the adapted formula below allows one to specify the parameter values for 

predictor collinearities and R2 and analytically derive validities that satisfy certain requirements.  

 

��� = �� ���′
����� 

where ρxy is the vector of criterion-predictor correlations, R2 is the squared coefficient of 

multiple determination, Rxx is the population predictor correlation matrix, and v is a vector of 

values equivalent to the ratios of predictor validities (e.g., if the second of two predictors 

correlates half as much as the first with the criterion, the values in v would be 1 and .5). In this 

way, I insure the population model for each regression is valid and has the characteristics I 

require for testing my research questions.  
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As an example, if I wish to generate a design matrix with three predictors, the population 

R2 = .5, all predictors correlate .5 with each other, and all predictors correlate equally with the 

criterion (the equal validities condition), I must solve for: 

��� = 
111�� . 5�1 1 1� 
1.5 −.5 −.5−.5 1.5 −.5−.5 −.5 1.5� 
111� = 	 
. 58. 58. 58� 

In this case, each of the predictors has a validity equal to the square root of one third, or 

approximately .58, and the final correlation matrix for Y, X1, X2, and X3 is: 

� 1. 58 1. 58 . 50 1. 58 . 50 . 50 1 � 
where the first column and row are validities and the interior values are collinearities.  

For most of my simulations, I need validities to have a target average value (e.g., .3) and 

to adhere to target ratios (e.g., the second predictor should be twice as large as the first, while the 

third is three times as large). Due to the constraints placed on valid matrices, these target values 

are only approximated in the population matrices that are used in the simulations. This difference 

between targeted and generated sets of parameters is not a problem, however.  Because the 

parameter values still represent relative extremes within a plausible range, they are effective in 

testing the impact of realistic parameter variability on regression weight performance. (See 

Appendix E for further details.) 

 Once population correlation matrices are selected for each combination of factors, 

samples are simulated using the method originally described by Kaiser and Dickman (1962). The 

advantages of this method are, first, that it is a widely known and frequently used simulation 
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method, second, that it only requires as input a single correlation matrix to produce simulated 

sample datasets, and third, it is kernel of the method Dana and Dawes (2004) used in their 

simulation (albeit with complex extensions). I am thus able to create data with the specific 

properties I wish to test. All of these steps in the simulation are incorporated into the R programs 

in Appendix A, which accomplishes the following: 

1. Takes as input the desired characteristics for a population predictor-criterion correlation 

matrix (i.e., population multiple R, the number of independent variables, and the 

population inter-correlations among predictors); 

2. Generates a population predictor-criterion correlation matrix using the equation adapted 

from Maxwell (2000); 

3. Generates data representing 10,000 independent and random samples from the 

population; 

4. Saves population and sample correlation matrices, and confirms that they are admissible 

correlation matrices (i.e., they are positive definite); 

5. For each sample, calculates the estimated regression coefficients for each type of weight 

(OLS, correlation and equal weights); 

6. Calculates the validated R statistic for every set of weights in every sample; 

7. Repeats the above steps for each desired sample size; and 

8. Plots the results (average validated R by weight type and sample size) for comparison 

with the results given by Dana and Dawes (2004), with the addition of confidence 

intervals around validated R (calculated as the interval between the 2.5 and 97.5 

percentiles from the simulated distribution). 
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The method and results are divided into three studies, each involving a different set of 

population correlation matrices that assess the effects of a different set of simulation factors. 

Study 1 compares results for combinations of equal and unequal collinearities and validities. 

Study 2 compares higher and lower magnitudes of validities.  Study 3 compares variations of 

validity skewness and association with collinearities. Each study also includes levels of factors 

varied by Dana and Dawes (2004): validated R (.4 or .7), number of predictors (three or five), 

and number of observations per predictor (5, 10, 15, 20, 30, 50, 75, or 100). The number of 

levels of validated R and predictors was reduced from their study for computational tractability, 

and in order to focus on the factors not included. See Figure 1 for a complete diagram of the 

design of all three studies. 

As in Dana and Dawes (2004), I use validated R as the measure of the performance of 

regression weights. The maximum value of validated R for a regression model is the population 

R, which signifies how much covariance in the population can potentially be described by the 

model coefficients. A set of weights with a validated R nearer to the population R therefore can 

be interpreted as outperforming a set with a lower value.   Validated R is calculated using the 

following formula: 

������ !�	� = "′�#"′∑" 

where w is a vector of regression weights produced by the simulation, v is the vector of 

population correlations between predictors and criterion (i.e., true validities), and ∑ is the 

population correlation matrix among predictors (i.e., true collinearities). Because the only 

empirical estimates in the equation are the regression weights, and equal regression weights are 
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Study 1 design: 2 predictors X 2 R X 2 Collinearities X 2 Validities = 16 graphs, eight ratios of sample size to #predictors per graph = 

128 total cells 

Three Predictors Five Predictors 

R = .4 R = .7 R = .4 R = .7 

Equal Collinearity Unequal 

Collinearity 

Equal Collinearity Unequal 

Collinearity 

Equal Collinearity Unequal 

Collinearity 

Equal Collinearity Unequal 

Collinearity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

Equal 

Validity 

Unequal 

Validity 

 

Study 2 design: 2 #predictors X 2 R X 2 validity magnitudes = 8 graphs, eight ratios of sample size to #predictors per graph = 64 

total cells 

Three Predictors Five Predictors 

R = .4 R = .7 R = .4 R = .7 

Lower validities Higher validities Lower validities Higher validities Lower validities Higher validities Lower validities Higher validities 

 

Study 3 design: 2 #predictors X 2 R X 2 validity spreads = 8 graphs, eight ratios of sample size to #predictors per graph = 64 total 

cells 

Three Predictors Five Predictors 

R = .4 R = .7 R = .4 R = .7 

1 dominant 

validity 

2 dominant 

validities 

1 dominant 

validity 

2 dominant 

validities 

1 dominant 

validity 

4 dominant 

validities 

1 dominant 

validity 

4 dominant 

validities 

PA* NA* PA* NA* PA* NA* PA* NA* PA* NA* PA* NA* PA* NA* PA* NA* 

*PA = The progression of validities is positively associated with predictors’ respective multicollinearities, so that the predictor with the largest 

validity has the largest collinearity, and validities increase with multicollinearities.  

NA = The progression of validities is negatively associated with predictors’ respective multicollinearities, so that the predictor with the largest 

validity has the smallest collinearity, and validities decrease as multicollinearities increase. 

Figure 1. Simulation Designs. 
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always the same by definition, the estimate of validated R for equal weights will have no 

variability and therefore no confidence interval when graphed.  

Results in all studies are graphed in a manner similar to Dana and Dawes (2004), with 

cases per predictor on the x-axis and mean validated R on the y-axis. One notable difference, 

however, is that the cases per predictor in their graphs are equally spaced along the x-axes, 

whereas my x-axes are ratio scales and thus reflect the actual magnitude of the cases per 

predictor values. The reason for this change is that the original scales give the impression of a 

more dramatic improvement in weight performance as a function of sample size than was 

actually the case. Another difference in the graphs is the addition of 95 percent confidence bars 

for each mean, calculated empirically from simulations, to indicate relative variability of weight 

performance. 
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CHAPTER III 

STUDY 1 

 

Study 1 Methods  

 The initial study was designed to evaluate how varying validities and collinearities 

between equality and inequality can impact relative weight type performance when all variables 

correlate around .3. I created a set of population matrices with validities that are either equal or 

unequal, and with collinearities that are either equal or unequal. Crossing these factors, in 

combination with two levels of population multiple R (.4 and .7, representing lower and higher 

predictabilities) and two levels of number of predictors (three and five), resulted in sixteen 

distinct populations. (Tables representing the design cells are below; their respective population 

matrices, mean validated R values, and graphed results are in Appendices II-IV.) For each 

population, I simulated 10,000 samples for each of the eight levels of cases per predictor (5, 10, 

15, 20, 30, 50, 75, 100), or 16 populations X 8 cases per predictor X 10,000 replications = 

1,280,000 samples total. 

As examples from Study 1, the matrices used for the equal validities and equal 

collinearities (left), and unequal weights and unequal collinearities (right), with three predictors 

and R = .4 are shown below (leftmost column of each matrix contains validities): 

        Y      X1   X2   X3 

 

Y     1.00  

X1      0.29 1.00 

X2      0.29 0.30 1.00  

X3      0.29 0.30 0.30 1.00 

 

        Y      X1   X2   X3 

 

Y     1.00  

X1      0.13 1.00 

X2      0.26 0.20 1.00  

X3      0.38 0.30 0.40 1.00 
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It should also be noted that the validities in Study 1, when unequal, were generated to be 

close to evenly distributed (e.g., [.13, .26, .38]) and the predictor with the largest validity also 

had the highest multicollinearity. This means that results in this phase are biased toward 

correlation weights, although not to great effect10. The impact of varying the distribution of 

validities, both in terms of spread and collinearity, is investigated in Study 3. 

 

Study 1 Results 

 Overall, graphs of study 1 results reveal that varying population validities has far more 

impact on weight performance than varying collinearities. In each graph, equal weights (green) 

dominate correlation (blue) and OLS (red) weights whenever the validities are also equal, 

regardless of the other factors (sample size, number of predictors, validated R, and collinearity). 

This makes sense given that equal weights have zero error, while weights estimated from the 

sample will always have some error and so would never be all equal. When validities are 

unequal, the performance of equal weights is much worse, and they are never the best choice 

when there are at least ten subjects per predictor.  

 The result most consistent with Dana and Dawes (2004) is that correlation weights 

perform better than OLS weights at the very lowest ratio of 5 subjects per predictor at the lower 

predictability of R = .4, and frequently perform at least as well as OLS weights when there are 10 

or 15 subjects per predictor. Even at the higher predictability of R = .7, the advantage of OLS 

weights is small and its confidence intervals tend to be wider compared with those of correlation 

                                                      
10 When I reversed collinearity for these models, the same sets of factors favored correlation weights over OLS 

weights, but to a lesser extent. 
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weights. Of course, these results should be given a limited interpretation: the design of Study 1 

represents only one way of varying model parameters, while other designs might yield different 

results. Fifteen subjects per predictor is far fewer than the 100 subjects per predictor standard 

issued by Dana and Dawes (2004), however, and OLS weights ultimately perform as well as or 

better than correlation weights. 
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Figure 2. Relative performance of weight types as a function of equality of validities. 

 

 It is useful to compare these results with the equivalent results from Dana and Dawes 

(2004), to evaluate how their results and recommendations would serve a researcher constructing 

regression models based on the population characteristics used for my simulations. To that end, I 

developed a table format that overlays my results and theirs. Tables 1A through 1D present 

Study 1 results in terms of which weight type performed best for a given set of parameters (green 
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cells) superimposed over the equivalent data from Dana and Dawes (2004) (cells with “D&D”). 

Note that, because Dana and Dawes (2004) did not include as many factors in their simulations, 

their results are repeated within the tables for each combination of factors. In other words, each 

table takes a set of their simulations and disaggregates the results into four levels of the validities 

and collinearities factors in my design. 

 For example, in Table 1A where models have three predictors and R = .4, my results 

indicate that equal weights perform best for all ratios of subjects to predictor whenever validities 

are equal, irrespective of collinearities (the first and third scenarios in the table); whereas 

unequal validities favor different weight types (equal, then correlation, then OLS) as the ratio 

increases. Because Dana and Dawes (2004) did not disaggregate their results but rather averaged 

across these levels of the parameters, their results predict the same pattern in each of the four 

scenarios in Table 1A, a pattern that unsurprisingly resembles an average of my results (and 

which provides a validity check on both sets of results). 

Table 1A  

Comparison of Study 1 Results for 3 Predictors and R = .4 

3 predictors, R=.4, equal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

3 predictors, R=.4, equal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

3 predictors, R=.4, unequal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 
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OLS         

3 predictors, R=.4, unequal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

 

Table 1B  

Comparison of Study 1 Results for 3 Predictors and R = .7 

3 predictors, R=.7, equal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

3 predictors, R=.7, equal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

3 predictors, R=.7, unequal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

3 predictors, R=.7, unequal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

 

Table 1C  

Comparison of Study 1 Results for 5 Predictors and R = .4 

5 predictors, R=.4, equal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, equal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 
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Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, unequal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, unequal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

 

Table 1D 

Comparison of Study 1 Results for 5 Predictors and R = .7 

5 predictors, R=.7, equal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, equal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, unequal collinearities, equal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, unequal collinearities, unequal validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

 

 Overall, the results from the previous and present studies diverge frequently, and the 

manner of divergence varies between conditions. Results are most similar in tables and graphs 
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when both the conditions of very small samples and lower predictabilities apply, although 

differences are small. Results begin to diverge as the number of subjects per predictor rise above 

5 or 10, still well within the range where Dana and Dawes (2004) consider alternative weights 

most useful. In the tables as in the graphs, equal weights perform best, but the results tend to 

favor OLS weights with unequal validities. Results from Dana and Dawes (2004), in contrast, 

generally lie between these two extremes, frequently favoring correlation weights. Their results 

are consistent with their practice of simulating samples from population matrices with the full 

range of possible validity and collinearity values, then averaging across all validated R’s. In other 

words, their recommendations are based on weight performance in the average population, from 

which any specific population may deviate considerably. 

 We can also quantify how often the weight type favored by Dana and Dawes’s (2004) 

results failed to perform best in this study, signified in the table as red text. Across all 128 

combinations of factor levels, the Dana and Dawes (2004) analysis suggested an incorrect 

dominant weight type compared to results from the current simulation in 78 cases, or 60.9 

percent of the time. The greatest number of discrepancies (22 of 32) occurred when there were 

five predictors and R = .4, and the fewest (17 of 32) occurred with three predictors and R = .4. 

For the three smallest sample sizes, when one would be most likely to seek the benefits of 

alternative weights, 47.9 percent (23 of 48) of cases differed when the equality of validities and 

collinearities was taken into account. Of course, these sorts of calculations ignore the fact that 

the size of the differences in weight performance often are essentially negligible, as is 

demonstrated by the confidence intervals in the graphed results. Nonetheless, a researcher 

choosing the best weight type for her/his analysis might easily infer from extant literature on 

alternative weights that the results should be parsed in this way. 
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 In summary, equal weights dominate the other weight types when validities are equal, but 

otherwise tend to be dominated by correlation and OLS weights. Collinearity equality had little 

impact in comparison with validity equality, perhaps because the constraints of average r = .3 

limited how different the unequal collinearities could be. Although correlation weights are more 

precise when samples are at their smallest, the difference is slight. Finally, Dana and Dawes’s 

(2004) results appear to be most applicable for populations with validities that are not equal but 

also not too unequal; relative weight performance can be quite different at either extreme, a 

conclusion that cannot be ascertained from their results because of their averaging approach.  
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CHAPTER IV 

STUDY 2 

 

Study 2 Methods 

 Study 1 results established that varying validities, even while holding their average 

constant, can impact the performance of alternative weights relative to OLS weights. Given that 

perfectly (or even approximately) equal validities are unlikely in the real world, the design for 

Study 2 assumes unequal validities but varies in other factors. Study 1 also showed that the 

pattern of collinearities matters less than validities, at least for what I have defined as a typical 

population correlation matrix with average collinearities of around r = .3. Accordingly, for Study 

2, I fix the values of collinearities for every simulation, using more realistic unequal correlations. 

Otherwise, the simulation methods remain the same as in Study 1. Most factors and their levels 

(eight ratios of subjects per predictor, predictabilities of .4 or .7, three or five predictabilities) are 

also unchanged. 

 The factor examined in Study 2 is the average magnitude of validities. This is yet another 

factor that was not considered in the results reported by Dana and Dawes (2004): while their 

simulation sampled across the widest possible range of magnitudes for this and other parameters, 

the results were averaged across that range. I hypothesize that, as a consequence of their 

averaging across different magnitudes of average validities, the performance of different weight 

types in Study 2 frequently deviates from their predictions.  

 As before, population matrices for Study 2 were created by specifying values for R and 

the collinearities, resulting in the desired properties of lower or higher magnitude validities.  As 



 

31 

 

an example, below are the actual lower magnitude average validities (left) and higher magnitude 

average validities (right) with R = .4 and three predictors. In practice, the lower validities are not 

that different from the higher validities, due to the constraints of average validity size and model 

predictability (this is much less of an issue when R = .7). However, the important point is that the 

results for each population are reported separately instead of being aggregated so that we can see 

any impact of this factor on weight performance. If we find that the best choice of weights 

changes even when the average magnitude of validities is only varied by such a small amount, 

then there are even greater implications for abandoning OLS weights. 

        Y      X1   X2   X3 

 

Y     1.00  

X1      0.13 1.00 

X2      0.26 0.20 1.00  

X3      0.38 0.30 0.40 1.00 

 

        Y      X1   X2   X3 

 

Y     1.00  

X1      0.21 1.00 

X2      0.28 0.20 1.00  

X3      0.36 0.30 0.40 1.00 

 

 

 

As you can see, the larger magnitude set of validities on the right are closer to equality than those 

on the left. This is because the constraints I have placed on the parameters (unequal validities 

that are approximately equally spaced, averaging near .3, and R = .4) strictly limit the possible 

range of validities. Increasing the validities’ average magnitude while maintaining these 

constraints necessarily squeezes their range up against that ceiling. As a result, the low and high 

magnitude conditions in Study 2 can also be understood as a variation on the unequal and equal 

validity conditions in Study 1, although unlike Study 1, the matrices represent degrees of 

inequality with no scenario of perfect equality. 
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Study 2 Results 

 The greatest impact of varying the average magnitude of validities (and thus their relative 

equality) was for simulations with population multiple R = .4. As shown in Figure 3, higher 

average validities favored equal weights over OLS and correlation weights only for the lowest 

ratios of observations per predictor and then only barely, and it is rapidly matched or overtaken 

by correlation weights and then OLS weights at higher ratios. Once again, models of populations 

with lower validities slightly favored correlation weights at the lowest subject ratios, this time at 

ratios of 20 to 30 subjects or fewer per predictor, and OLS weights at higher ratios, both beating 

equal weights handily. A multiple R of .7 appears to be sufficiently large to negate equal 

weights’ advantage even when average validities are high; instead, correlation weights 

dominated OLS weights (and had narrower confidence intervals) and equal weights at lower 

ratios, then were surpassed by OLS weights for higher ratios (Figure 3). 

 If we consider the correspondence between magnitude and degree of equality, these 

results echo Study 1 results: equal weights perform best when validities are closer to equality, 

although the fact that validities in Study 2 are never particularly close to equality means that their 

advantage is small and they are eventually dominated in many cases. This pattern is less 

pronounced with the higher predictability of .7, because population validities are spread across a 

wider range whether their mean is high or low. Also, as in Study 1 results, confidence intervals 

around both the correlation and OLS weights are wide, and while correlation weight confidence 

intervals were narrower than OLS intervals, the magnitude of the errors still dwarfs the 

magnitude of improvement in validated R. 
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Figure 3. Relative performance of weight types as a function of magnitude of validities. 

 

 Tables 2A – 2D, comparing Study 2 results (green cells) with those of Dana and Dawes 

(2004) supports the hypothesis that their predictions cannot be relied upon when results are 

broken out by different levels of the factor. Their results nearly agree with mine when 

predictability is .4 and validities are higher, conflicting only at a ratio of 20 subjects per 

predictor. This is the point at which they say one ought to stop using equal weights and start 

using correlation weights, so disagreement here is consequential. Of course, the graphs show that 
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the improvement gained by using alternatives to OLS weights is very small and rapidly 

diminishes with larger samples and validities anyway, just as in Study 1.  

Table 2A  

Comparison of Study 2 Results for 3 Predictors and R = .4 

3 predictors, R=.4, low magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

3 predictors, R=.4, high magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

 

Table 2B  

Comparison of Study 2 Results for 3 Predictors and R = .7 

3 predictors, R=.7, low magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

3 predictors, R=.7, high magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

 

Table 2C  

Comparison of Study 2 Results for 5 Predictors and R = .4 

5 predictors, R=.4, low magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, high magnitude validities 
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 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

 

Table 2D 

Comparison of Study 2 Results for 5 Predictors and R = .7 

5 predictors, R=.7, low magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, high magnitude validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

 

The tables confirm that correlation weights consistently outperform OLS weights only at 

ratios of 30 subjects per predictor or below, given a population R of .4. This is in contrast with 

Dana and Dawes’s (2004) recommendation that OLS weights not be used when population R is 

below .6 or the number of subjects per predictor is 100. One might be tempted to take these 

results to suggest a narrower version of their rule of thumb: equal weights should always be used 

when R is less than or equal to .4 and there are 5 subjects or fewer per predictor, and correlation 

weights should always be used when R is at or below .4 and there are 10 to 30 subjects per 

predictor. That conclusion is overreaching given that this study’s design, as mentioned above, 

sacrifices generalizability for specificity. It is designed to show that there are plausible 

populations for which alternative regression weights perform in ways that Dana and Dawes 

(2004) did not anticipate; it cannot show that the results for some plausible populations 

generalize to all others. At best, Study 2 results support the application of such a rule of thumb 
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only when criterion and predictor parameters are known to have a pattern of correlations similar 

to the those in the matrices used in Study 2. This is a level of information about parameters that, 

for most studies and most parameters, is highly improbable. As Study 3 will show, there are 

other patterns with different consequences for choice of weights. 
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CHAPTER V 

STUDY 3 

 

Study 3 Methods 

 The designs of the preceding two studies both compared weight performance between 

populations with different distributions of validities, but always spread evenly. The Study 3 

design differs in that it compares weight type performance in populations with validities that are 

skewed (each vector has one validity much smaller than the others or much greater than the 

others), and that are either positively associated with collinearities (predictors with larger 

validities also have larger collinearities) or negatively associated (predictors with larger validities 

have smaller collinearities).  

 Results from Study 1 and especially Study 2 imply that correlation weights often may 

outperform OLS weights, but the validities in those simulations were all positively associated 

with the collinearities, a condition more likely to favor correlation weights. The reason for this is 

that correlation weights and OLS weights will be correlated when the association is positive, 

potentially telling the same story with fewer parameter estimates, but this is not so when the 

association is negative. Take, for example, when the first predictor in a model has a much higher 

correlation with the criterion than do the other predictors. If validities and collinearities are 

positively associated, then the largest correlation weight will go to the predictor that both 

contributes the most information about the criterion (highest validity) and that best accounts for 

information from all the other predictors in the model (highest collinearities). On the other hand, 

if we reverse the association, the low validity predictors are now less redundant with the first 

predictor, yet they receive the exact same correlation weights as before. In contrast, OLS weights 
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would change to reflect this difference. The Study 3 design therefore also includes a factor 

reflecting whether the predictor with the highest multicollinearity has either the highest or lowest 

validity.  

 To illustrate, below are the actual population matrices used for the simulations with one 

dominant validity and validities positively associated with collinearities (left), and two dominant 

validities and validities negatively associated with collinearities (right), with R = .4 and three 

predictors: 

        Y      X1   X2   X3 

 

Y     1.00  

X1      0.13 1.00 

X2      0.20 0.20 1.00  

X3      0.40 0.30 0.40 1.00 

 

        Y      X1   X2   X3 

 

Y     1.00  

X1      0.33 1.00 

X2      0.28 0.20 1.00  

X3      0.11 0.30 0.40 1.00 

 

 

 

Study 3 Results 

 In general, equal weights performed best for the smallest ratios when the multiple R was 

smaller, but worst for all ratios when it was larger. Their performance compared to correlation 

and OLS weight performance was largely unaffected by number of predictors, validity-

collinearity association, or whether the outlying validity value was larger or smaller than the 

others. Thus, consistent with other findings, patterns of validities only impacted equal weight 

performance as they approached or deviated from equality (as in Studies 1 and 2); when degree 

of equality is not manipulated (as in Study 3), results for equal weights resemble those of Dana 

and Dawes (2004).  
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As predicted, correlation weights gave their best performance across conditions where the 

highest multicollinearities coincide with the highest validities, but even then, they were bested by 

equal weights at the lowest ratios when multiple R = .4. When correlation weights did overtake 

the other weight types, its advantage in terms of mean validated R’s was quite small. As 

expected, OLS weights almost invariably outperformed alternative weights as the number of 

subjects per predictor rose, especially with the higher predictability of multiple R = .7. Even at 

the lower predictability of .4, OLS sometimes performed best at ratios as low as fifteen subjects 

per predictor when validities and collinearities were negatively associated. Conversely, OLS was 

never outperformed when predictability and sample size were high. In practice, this means that 

underestimating the population predictability of the model is very likely to lead to overestimating 

the performance of alternative weights.  

With population multiple R = .4, correlation weights went from performing slightly better 

than OLS weights at lower ratios to essentially tying when the associations between validities 

and collinearities were switched from positive to negative. Once again, confidence intervals for 

both types of weights were wide, but this time the OLS and correlation weight intervals were 

nearly equal, meaning that even when correlation weights performed better on average they 

would also frequently perform worse. 
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Figure 4. Relative performance of weight types with one or all but one predictor larger than the 

others, and validities positively or negatively associated. 

 

 Exactly half of the 128 combinations of factors in Study 3 yielded results that were 

inconsistent with Dana and Dawes’s (2004) findings as to which weight type performed best. As 

can be seen in the tables below, most of the inconsistencies were due to the relative performance 

of correlation weights, and then mostly due to the negative association between validities and 

collinearities. For matrices with positive associations, there was disagreement only 37.5 percent 
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of the time, whereas results for matrices with negative associations differed between studies in 

62.5 percent of cases. For example, in Table 3A, Dana and Dawes (2004) underestimated the 

performance of OLS weights at higher ratios in all four scenarios, but they also underestimated 

correlation weight performance at lower ratios when the association between validities and 

collinearities was negative. 

Table 3A  

Comparison of Study 3 Results for 3 Predictors and R = .4 

3 predictors, R=.4, one dominant, positively associated validities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

3 predictors, R=.4, two dominant, positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

3 predictors, R=.4, one dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

3 predictors, R=.4, two dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

 

Table 3B 

Comparison of Study 3 Results for 3 Predictors and R = .7 

3 predictors, R=.7, one dominant, positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 
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3 predictors, R=.7, two dominant, co positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

3 predictors, R=.7, one dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

3 predictors, R=.7, two dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

 

Table 3C 

Comparison of Study 3 Results for 5 Predictors and R = .4 

5 predictors, R=.4, one dominant, positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, four dominant, positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, one dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         

5 predictors, R=.4, four dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D D&D D&D      

Correlation    D&D D&D D&D D&D D&D 

OLS         
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Table 3D 

Comparison of Study 3 Results for 5 Predictors and R = .7 

5 predictors, R=.7, one dominant, positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, four dominant, positively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, one dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 

5 predictors, R=.7, four dominant, negatively associated validities/collinearities 

 5m 10m 15m 20m 30m 50m 75m 100m 

Equal D&D        

Correlation  D&D D&D      

OLS    D&D D&D D&D D&D D&D 
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CHAPTER VI 

DISCUSSION 

 

 In the present study, I have revisited the conclusions of Dana and Dawes (2004) using a 

design that focuses on variation in population predictor validities and collinearities, factors 

overlooked in their study. Specifically, I have examined the relative performance of OLS, equal, 

and correlation regression weights as I varied the set of predictor validities’ equality, magnitude, 

and spread relative to predictors’ collinearities. In contrast to their design, which simulated a 

great variety of populations with parameter values across their entire possible range, my design 

limited each parameter value to a narrow, plausible range and then simulated populations with 

parameters across that range.  

I found that the type of regression weights that produced the best validated R depended 

on the distribution of validities relative to the distribution of collinearities: more equal validities 

favored equal weights, while correlation weights performed best when validities were positively 

associated with collinearities. Equal weights consistently outperformed correlation and OLS 

weights at the lowest levels of predictability and subjects per predictor. At low to moderate 

levels of these factors, OLS weights frequently performed as well or better than the alternatives, 

even when predictability was low and subjects per predictor were few. When correlation weights 

did outperform OLS weights at these levels, the addition of confidence intervals revealed that the 

difference was negligible. As expected, OLS weights performed best at higher levels of 

predictability and subjects per predictor. 
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Based on the results of these three studies, equal weights should not be expected to be the 

best weight type when there are more than five subjects per predictor or the population 

predictability is lower than .4. Correlation weight performance is suspect when there are fewer 

than twenty subjects per predictor and population multiple R is lower than .4. The consequences 

of using alternative weights under these circumstances could include decreasing validated R even 

as you believe you are increasing it. Note that these observations are not phrased as 

recommendations: these studies demonstrate several populations that may undermine alternative 

weight performance compared with OLS weights, but the types of scenarios I have examined are 

far from exhaustive. It is therefore more accurate to say that the results neither prove nor 

disprove that alternative weights will be the best choice for regression with few subjects and low 

predictabilities, although results are suggestive of the patterns identified above.  

 To summarize results across all three phases of this study, the predictions of Dana and 

Dawes (2004) as to the performance of alternative weights, in terms of which weight type would 

perform best in an absolute sense, frequently failed when the values of regression parameters 

were fixed within a plausible range. Furthermore, the way in which their predictions differed 

from my findings varied depending on the patterns of validities and collinearities in the 

population matrices, patterns that are unlikely to be apparent a priori to real researchers. When 

validities are equal, as in Study 1, they favor equal weights; equal weights give way to 

correlation weights as validities diverge from equality but remain evenly distributed, as in Study 

2; unless, as Study 3 shows, the validities are negatively associated with collinearities, in which 

case correlation weights may be bested by OLS weights even at lower ratios of subjects to 

predictors and even when predictability is low. 
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 The results presented above clearly indicate that the alternative weights selected can 

outperform OLS weights in realistic scenarios, but whether the better choice is correlation 

weights or equal weights, and where the best choice transitions from one weight type to another, 

depends on characteristics of the data a researcher is unlikely to know when planning the 

analysis. OLS weight performance frequently is between that of equal weights and correlation 

weights, so in many cases we gain the possibility of making better predictions than OLS 

regression only if we are willing to also risk worse predictions. In short, a researcher who knows 

enough about the variables of interest to select the best alternative weights with confidence may 

have the least to learn from the analysis in the first place. Improvement over such knowledge 

may require a rich dataset with large samples or highly predictable criteria, in which case 

alternative regression weights almost never outperform OLS weights.  

A researcher working under more typical conditions, who chooses to use alternative 

weights without either strong a priori knowledge or unusually high-quality data, is adding 

uncertainty to parameter estimates through a process that is supposed to reduce uncertainty, and 

is more confident of her predictions when she should be less. This directly contradicts Dana and 

Dawes’s (2004) argument that we ought not to use methods that produce predictions that imply 

greater precision than the data can support. It turns out that using blunter tools to make noisier 

estimates often increases imprecision. Instead, we should sharpen our interpretations by 

calculating and reporting confidence intervals around the OLS weights in our models as well 

around their criterion estimates. 

One might argue that it is unnecessary to know in advance the patterns of correlations 

among all the model parameters, given that the sample at hand can be used to estimate those 

correlations. For example, a researcher might be tempted to use equal weights only when sample 
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validities are near equal (setting aside the issue of how “near equal” should be defined), 

correlation weights when validities are not too skewed and are positively associated enough with 

collinearities (again, however defined), and otherwise use OLS weights. There are two problems 

with this approach, one methodological and the other ethical. Methodologically, the use of 

different weights based on sample characteristics is the very definition of overfitting and carries 

with it all the problems of overfitting (e.g., poor predictions with other samples) combined with 

the problems of post hoc analysis (e.g., standard errors that are too small and confidence 

intervals that are too narrow). But worse than increased error in predictions is the bias introduced 

by post hoc weight selection. If we deviate from OLS weights only when correlation patterns 

show less variability, then our methods will systematically decrease the variability in the long 

run, particularly when using equal weights. We will also be routinely (but unknowingly) 

penalizing individual variables that have high collinearities in the population, or sets of variables 

with patterns of intercorrelations in the population that would significantly impact model 

predictions. 

The ethical dimension of weight choice relates to the difference between predictive and 

explanatory regression models. While explanatory models often inform theory or policy, 

predictive models frequently determine individuals’ access to important resources and major life 

opportunities. Corporations and governments have long used predictive models to inform 

decisions about who will be hired or promoted or laid off, while many educational institutions 

have developed their own predictive models for accepting or rejecting students. Increasingly, the 

justice system is using predictive models to decide which defendants should get bail and which 

convicts should be paroled (Dewan, 2015). These models use demographic variables like race, 

sex, disability and others associated with historically underrepresented populations—populations 
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for which small samples are a concern in many settings. At best, the use of alternative weights 

may be a threat to face validity in such cases; at worst, the use of a highly consequential formula 

may consistently ignore or overemphasize personal characteristics of individuals, embedding 

bias in a process that statistical methods are thought to render more objective. 

Dawes (1979) made a slightly different case for what he called improper weights, 

regression weights chosen independent of the data (e.g., equal weights). He showed that these 

insensitive weights at the very least provide better predictions compared to predictions from 

clinical judgment. Clinicians’ work would thus benefit from using improper weights, which also 

have the advantages of simplicity of face validity (for those who distrust methods that intensively 

manipulate the data). In the modern age, however, simplicity is a weak rationale, as most 

professionals who work with data are quite familiar with OLS regression, and the software for 

employing it is inexpensive and user-friendly. Those who continue to eschew actuarial 

approaches likely do so for philosophical reasons and are therefore unlikely to be persuaded by 

statistical arguments.  

These arguments lead me to conclude that, without a clearer picture of when to use which 

alternative weights, avoiding OLS regression weights for prediction is difficult to justify, 

virtually regardless of one’s actuarial inclinations. For scientists, alternative regression weights 

are intriguing but rarely useful; for non-scientists, they are potentially useful but rarely 

appealing. This is a verdict that could be as sweeping as that of Dana and Dawes (2004) but for 

the several limitations of the present study.  However, there are some important limitations that 

contextualize the current findings. I had to sacrifice breadth of analysis for specificity, which 

required making informed assumptions as to what constitutes a typical range for parameters. My 

conclusions therefore are most applicable for research in domains where these assumptions hold: 
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where the mean of predictor validities and collinearities is about .3, where patterns of 

correlations among parameters vary in ways not described by strong theory, and where 

predictabilities are unlikely to range across the entire spectrum between zero and one.11 This 

study could be usefully replicated for typical populations in particular social science fields. 

Alternatively, this study’s design could be augmented to investigate those scenarios by 

treating the variable sets in the present simulation as templates, and generating many more 

variable sets that gradually deviate from each template across combinations of the relevant 

factors.12 Evaluating so many data points would be impractical for a person but probably could 

be managed by a program written to automatically “score” weight performance and output 

summary results. 

 The current results would also be bolstered if the same results are obtained with different 

data and additional weight types. The overall design should be applied to large, publicly 

available real datasets through resampling simulations, like those conducted by Dana and Dawes 

(2004) that supported their other results. They also included several other types of weights, all of 

which underperformed in comparison with equal, correlation and OLS weights. I included only 

the last three in order to directly test Dana and Dawes’s (2004) recommendation to researchers. 

Future research could also evaluate other weight types, including what they called “more 

                                                      
11 One could also include as factors violations of design assumptions (e.g., correctly specified models, no 

suppression) or assumptions of the multiple regression procedure itself (e.g., linearity, normality, 

homoscedasticity), but the relative robustness of alternative weights to assumption violations is a separate 

question from their performance when the assumptions hold. 
12 This approach resembles Waller and Jones’s (2011) simulation that gradually varied the validities of three 

predictors, where each set of three validities corresponds to the coordinates of a criterion moving from one 

endpoint of a three-dimensional arc to the other. However, the proposed design would vary many more factors, 

whereas their design fixed all other factors.  
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principled” (p. 325) options like ridge regression. Such weights often are designed to address 

particular problems with data and theoretically would be exceptions to an “always OLS” rule.  

 This study will not result in a major change in the typical practices of researchers, but it 

does bolster those practices against an old and somewhat enduring critique. There may be greater 

implications for the more general practice of creating predictive composite indices. For example, 

although standardized tests and commercial measures generally eschew multiple regression for 

multidimensional item response theory (MIRT) or other latent-variable approaches for creating 

composite scores from subscales (Yao, 2011; Wall and Li, 2003), this option is not available for 

ad hoc measures with fewer items or studies with small samples. My results suggest that it would 

be worthwhile to determine if the use of composite scores risks the same weaknesses as with 

their regression equivalents (e.g., averaging variables for composites and equal weights for 

predictors). 

A similar question frequently arises in the context of evaluating the implementation and 

outcomes of complex interventions. Researchers often use measures of implementation fidelity 

to predict outcomes because the model can be used to 1) support the relationship between 

treatment and impact and 2) predict outcomes in the program’s future and at other sites that may 

replicate it. As yet, there is no general agreement on how to combine different measures of 

fidelity or even whether the method should vary depending on program design. Complete models 

may involve many predictors because interventions commonly have multiple components and 

each component may be measured in multiple ways. The problem is exacerbated when fidelity is 

measured for only a subset of sites or participants due to the need to devote scare resources to 

assessing outcomes. Again, this study’s results imply that OLS regression is often the best 

choice. 
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APPENDIX A 

 

R Code for Simulations 

 

 

 

############ Libraries ############ 

 

library(semTools) 

library(Matrix) 

 

############ WRAPPER FUNCTIONS ############ 

 

# Take a standardized multivariate normal sample with n cases and 1+m  

# variables (criterion+predictors) and return a vector of m  

# correlations between the criterion and each predictor 

 

get.cor.weights=function(samp){return(c(cor(samp)[1,2:length(samp[1,])

]))} 

 

# Take a standardized multivariate normal sample with n cases and 1+m  

# variables (criterion+predictors), run the regression analysis, and  

# return the beta coefficients 

 

get.ols.weights=function(samp){ 

vars=length(samp[1,]) 

return(summary(lm(samp[,1]~samp[,2:vars]))$coefficients[2:vars])} 

 

# Take a standardized multivariate normal sample with n cases and 1+m  

# variables (criterion+predictors), confirm eigenvalues of its  

# correlation matrix are positive, and return whether it's PD (1) or  

# not (0)  

 

is.PD.sample.matrix=function(samp){ifelse(min(eigen(cor(samp),symmetri

c=T,only.values=T)$values) >= 0,return(1),return(0))} 

 

# Take an mX1 vector of weights of one type, along with the population  

# correlation matrix, and calculate the validated R's using D&D's  

# equation (p. 320, D&D): (w'*v)/sqrt(w'*Sigma*v), where w is the  

# vector of weights for the sample, v is the vector of population  

# correlations 

# between the DV and the p predictors, and Sigma is the population  

# matrix of correlations among p predictors 

 

get.valid.Rs=function(weight1,pop.cor){ 

vars=length(pop.cor[,1]) 

return((weight1%*%pop.cor[1,2:vars])/sqrt(weight1%*%pop.cor[2:vars,2:v

ars]%*%weight1))} 
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############ MAIN FUNCTIONS ############ 

 

# Take population values for R-squared, the predictor correlation  

# matrix Rxx, and a vector v that scales the correlations among the  

# criterion and the predictors pxy; calculate the population values  

# for pxy using Maxwell's (2007) equation 7 rearranged to solve for  

# pxy, bind pxy to Rxx to create the population correlation matrix  

# pop.cor; and return pop.cor if it is PD 

 

make.cor.matrix=function(R2,Rxx,v) 

{ 

t=t(v)%*%solve(Rxx)%*%v 

pxy=v%*%sqrt(R2/t) 

A1=cbind(pxy,Rxx) 

A2=cbind(1,t(pxy)) 

pop.cor=rbind(A2,A1) 

if(min(eigen(pop.cor,symmetric=T,only.values=T)$values) >= 

0)return(pop.cor) 

} 

 

# Take population correlation matrix pop.cor along with the sample  

# size num.cases and the number of samples to be generated from the  

# population num.samples, use function kd to apply Kaiser & Dickman's  

# method and generate a list of samples from the population, and  

# return if population, and return the list only if all samples  

# correlation matrices are PD 

 

get.all.samples=function(pop.cor,num.cases,num.samples) 

{ 

scores=lapply(rep(list(pop.cor),num.samples),kd,num.cases,"sample") 

if(prod(as.numeric(lapply(scores,is.PD.sample.matrix)))==1)return(lapp

ly(scores,scale)) 

} 

 

# Take a list of samples and the number of samples in the list, call 

# separate wrapper functions for each type of weight to make a 3 lists 

# of m weights for each sample, return a num.samples X 3 list where  

# each row is the list of weights for one sample and each column is a  

# different weight type 

 

get.all.weights=function(scores,num.samples) 

{ 

unit.weights=rep(list(rep(1,(length(scores[[1]][1,]))-1)),num.samples) 

cor.weights=lapply(scores,get.cor.weights) 

ols.weights=lapply(scores,get.ols.weights) 

return(cbind(unit.weights,cor.weights,ols.weights)) 

} 

 

# Take 3 lists weights (one for each weight type) and the population  

# correlation matrix, send each list to a function calculating  

# validated R, and return a single list containing the validated Rs  

# for the 3 types of weights 
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get.all.valid.Rs=function(unit.weights,cor.weights,ols.weights,pop.cor

) 

{ 

unit.valid.Rs=lapply(unit.weights,get.valid.Rs,pop.cor) 

cor.valid.Rs=lapply(cor.weights,get.valid.Rs,pop.cor) 

ols.valid.Rs=lapply(ols.weights,get.valid.Rs,pop.cor) 

return(cbind(unit.valid.Rs,cor.valid.Rs,ols.valid.Rs)) 

} 

 

# Take R-squared, the population predictor correlation matrix, vector  

# v that scales the criterion-predictor correlations, the sample size,  

# and the number of samples; create the population matrix with  

# make.cor.matrix(), create the scores for all samples simultaneously  

# using get.all.samples(), create the three types of weights for every  

# sample with get.all.weights(), and calculate the validated R's for  

# each set of weights using get.all.valid.Rs(); and return the list of  

# validated R's 

 

dndSIM=function(R2,Rxx,v,num.cases,num.samples) 

{ 

pop.cor=make.cor.matrix(R2,Rxx,v) 

scores=get.all.samples(pop.cor,num.cases,num.samples) 

weights=get.all.weights(scores,num.samples) 

valid.Rs=get.all.valid.Rs(weights[,1],weights[,2],weights[,3],pop.cor) 

return(valid.Rs) 

} 

 

############ MAIN PROGRAM CODE ############ 

 

# Define the population multiple R, the number of independent  

# variables, the population predictor matrix, and the vector v that  

# scales criterion-predictor correlations 

 

 

seed=11111 

R=.4 

IV=3 

Z.0=matrix(c(1,.3,.3,.3,1,.3,.3,.3,1),3,3) 

v.0=matrix(c(.3,.3,.3),IV,1) 

 

# For each sample size used by D&D, call dndSIM to return validated  

# R's 

 

num.5IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=5*IV, 

num.samples=10000) 

num.10IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=10*IV, 

num.samples=10000) 

num.15IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=15*IV, 

num.samples=10000) 

num.20IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=20*IV, 

num.samples=10000) 
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num.30IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=30*IV, 

num.samples=10000) 

num.50IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=50*IV, 

num.samples=10000) 

num.75IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=75*IV, 

num.samples=10000) 

num.100IV=dndSIM(R2=(R^2),Rxx=Z.0,v=v.0,num.cases=100*IV, 

num.samples=10000) 

 

############ GRAPHING CODE ############ 

 

 

## Define number of subjects per predictor (x-axis coordinates) 

 

ratios=c(5,10,15,20,30,50,75,100) 

 

 

##Create vector of mean validated R's (y-axis coordinates) 

 

#Equal weights means 

 

means1=c(mean(as.numeric(num.5IV[,1])),mean(as.numeric(num.10IV[,1])),

mean(as.numeric(num.15IV[,1])),mean(as.numeric 

 

(num.20IV[,1])),mean(as.numeric(num.30IV[,1])),mean(as.numeric(num.50I

V[,1])),mean(as.numeric(num.75IV[,1])),mean 

 

(as.numeric(num.100IV[,1]))) 

 

#Correlation weights means 

 

means2=c(mean(as.numeric(num.5IV[,2])),mean(as.numeric(num.10IV[,2])),

mean(as.numeric(num.15IV[,2])),mean(as.numeric 

 

(num.20IV[,2])),mean(as.numeric(num.30IV[,2])),mean(as.numeric(num.50I

V[,2])),mean(as.numeric(num.75IV[,2])),mean 

 

(as.numeric(num.100IV[,2]))) 

 

#OLS weights means 

 

means3=c(mean(as.numeric(num.5IV[,3])),mean(as.numeric(num.10IV[,3])),

mean(as.numeric(num.15IV[,3])),mean(as.numeric 

 

(num.20IV[,3])),mean(as.numeric(num.30IV[,3])),mean(as.numeric(num.50I

V[,3])),mean(as.numeric(num.75IV[,3])),mean 

 

(as.numeric(num.100IV[,3]))) 

 

 

##Create vector of lower confidence limits (250th out of 10000 sorted 

values) across subject ratios  



 

59 

 

 

#Correlation weight lower limits 

 

lci2=c(sort(as.numeric(num.5IV[,2]))[250],sort(as.numeric(num.10IV[,2]

))[250],sort(as.numeric(num.15IV[,2]))[250],sort 

 

(as.numeric(num.20IV[,2]))[250],sort(as.numeric(num.30IV[,2]))[250],so

rt(as.numeric(num.50IV[,2]))[250],sort(as.numeric 

 

(num.75IV[,2]))[250],sort(as.numeric(num.100IV[,2]))[250]) 

 

#OLS weight lower limits 

 

lci3=c(sort(as.numeric(num.5IV[,3]))[250],sort(as.numeric(num.10IV[,3]

))[250],sort(as.numeric(num.15IV[,3]))[250],sort 

 

(as.numeric(num.20IV[,2]))[250],sort(as.numeric(num.30IV[,2]))[250],so

rt(as.numeric(num.50IV[,2]))[250],sort(as.numeric 

 

(num.75IV[,2]))[250],sort(as.numeric(num.100IV[,2]))[250]) 

 

 

##Create vector of upper confidence limits across subject ratios 

(9751st out of 10000 sorted values) 

 

#Correlation weight upper limits 

 

uci2=c(sort(as.numeric(num.5IV[,2]))[9751],sort(as.numeric(num.10IV[,2

]))[9751],sort(as.numeric(num.15IV[,2]))[9751],sort 

 

(as.numeric(num.20IV[,2]))[9751],sort(as.numeric(num.30IV[,2]))[9751],

sort(as.numeric(num.50IV[,2]))[9751],sort 

 

(as.numeric(num.75IV[,2]))[9751],sort(as.numeric(num.100IV[,2]))[9751]

) 

 

#OLS weight upper limits 

 

uci3=c(sort(as.numeric(num.5IV[,3]))[9751],sort(as.numeric(num.10IV[,3

]))[9751],sort(as.numeric(num.15IV[,3]))[9751],sort 

 

(as.numeric(num.20IV[,3]))[9751],sort(as.numeric(num.30IV[,3]))[9751],

sort(as.numeric(num.50IV[,3]))[9751],sort 

 

(as.numeric(num.75IV[,3]))[9751],sort(as.numeric(num.100IV[,3]))[9751]

) 

 

##Define the width of horizontal lines at ends of confidence intervals 

 

epsilon <- 0.5 

 

##Creating initial plot with axis labels 
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plot(ratios,means1,xaxt="n",ylim=c(.0,1),col="green",xlab="Ratio of 

subjects to predictors",ylab="Mean validated R",title 

 

("3 predictors, Ro=.7, Equal Collinearities, Equal Validities")) 

 

 

##Drawing line graphs and confidence intervals 

 

#Equal weight line 

 

points(ratios,means1,col="green") 

lines(ratios,means1,col="green") 

 

#Correlation weight line 

 

points(ratios,means2,col="blue") 

lines(ratios,means2,col="blue") 

 

#Correlation weight intervals 

 

segments(ratios, lci2,ratios, uci2,col="blue") 

segments(ratios-epsilon,lci2,ratios+epsilon,lci2,col="blue") 

segments(ratios-epsilon,uci2,ratios+epsilon,uci2,col="blue") 

 

#OLS weight line 

 

points(ratios,means3,col="red") 

lines(ratios,means3,col="red") 

 

#OLS weight intervals 

 

segments(ratios, lci3,ratios, uci3,col="red") 

segments(ratios-epsilon,lci3,ratios+epsilon,lci3,col="red") 

segments(ratios-epsilon,uci3,ratios+epsilon,uci3,col="red") 

 

##Create legend 

 

legend("bottomright",c("Equal","Corr","OLS"),lty=c(1,1,1),lwd=c(2.5,2.

5,2.5),col=c("green","blue","red")) 

 

##Create x-axis 

 

axis(side=1,at=ratios,las=1) 
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Appendix B 

 

Study 1 Matrices and Arrays of Mean Validated R Values 

 

 

Equal collinearities and equal validities, R = .4 

1.0000000  

0.2921187 1.0000000  

0.2921187 0.3000000 1.0000000  

0.2921187 0.3000000 0.3000000 1.0000000 

equal.curve 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 

cor.curve  0.3158637 0.3667404 0.3827165 0.3889442 0.3937787 0.3967898 0.3979321 0.3985152 

ols.curve  0.2595590 0.3232200 0.3487953 0.3622271 0.3749508 0.3855525 0.3903106 0.3929288 

 

Equal collinearities and unequal validities, R = .4 

1.0000000  

0.1242911 1.0000000  

0.2485822 0.3000000 1.0000000  

0.3728733 0.3000000 0.3000000 1.0000000 

equal.curve 0.3403852 0.3403852 0.3403852 0.3403852 0.3403852 0.3403852 0.3403852 0.3403852 

cor.curve  0.2903773 0.3441682 0.3614512 0.3698964 0.3759084 0.3795165 0.3812481 0.3818025 

ols.curve  0.2610611 0.3239987 0.3489310 0.3625837 0.3752660 0.3854818 0.3906217 0.3928986 

 

Equal collinearities and equal validities, R = .7 

1.0000000  

0.5112077 1.0000000  

0.5112077 0.3000000 1.0000000  

0.5112077 0.3000000 0.3000000 1.0000000 
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equal.curve 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 

cor.curve  0.6761044 0.6917638 0.6951943 0.6965773 0.6978166 0.6987324 0.6991694 0.6993919 

ols.curve  0.6315892 0.6702752 0.6810434 0.6861831 0.6909757 0.6946360 0.6964688 0.6973861 

 

Equal collinearities and unequal validities, R = .7 

1.0000000  

0.2175094 1.0000000  

0.4350188 0.3000000 1.0000000  

0.6525282 0.3000000 0.3000000 1.0000000 

equal.curve 0.5956741 0.5956741 0.5956741 0.5956741 0.5956741 0.5956741 0.5956741 0.5956741 

cor.curve  0.6398837 0.6602232 0.6647647 0.6669568 0.6682461 0.6693821 0.6700289 0.6703598 

ols.curve  0.6304613 0.6704466 0.6814830 0.6863164 0.6911296 0.6947799 0.6965983 0.6974187 

 

Unequal collinearities and equal validities, R = .4 

1.0000000  

0.2912236 1.0000000  

0.2912236 0.2000000 1.0000000  

0.2912236 0.3000000 0.4000000 1.0000000 

equal.curve 0.3987743 0.3987743 0.3987743 0.3987743 0.3987743 0.3987743 0.3987743 0.3987743 

cor.curve  0.3125404 0.3662640 0.3812851 0.3876491 0.3926109 0.3954078 0.3966831 0.3972585 

ols.curve  0.2595489 0.3249604 0.3488975 0.3619278 0.3753647 0.3852901 0.3903340 0.3928674 

 

Unequal collinearities and unequal validities, R = .4 

1.0000000  

0.1280203 1.0000000  

0.2560405 0.2000000 1.0000000  

0.3840608 0.3000000 0.4000000 1.0000000 

equal.curve 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 

cor.curve  0.2964258 0.3487023 0.3677698 0.3743718 0.3806271 0.3838771 0.3851752 0.3858065 

ols.curve  0.2589079 0.3215605 0.3487811 0.3617377 0.3751130 0.3855824 0.3902950 0.3928226 
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Unequal collinearities and equal validities, R = .7 

1.0000000  

0.5096413 1.0000000  

0.5096413 0.2000000  

0.5096413 0.3000000 0.4000000 1.0000000 

equal.curve 0.6978551 0.6978551 0.6978551 0.6978551 0.6978551 0.6978551 0.6978551 0.6978551 

cor.curve  0.6724258 0.6894243 0.6927781 0.6944088 0.6956329 0.6965849 0.6970215 0.6972107 

ols.curve  0.6303976 0.6703849 0.6811776 0.6861619 0.6910539 0.6946375 0.6964696 0.6973553 

 

Unequal collinearities and unequal validities, R = .7 

1.0000000  

0.2240355 1.0000000  

0.4480709 0.2000000 1.0000000  

0.6721064 0.3000000 0.4000000 1.0000000 

equal.curve 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 

cor.curve  0.6494405 0.6682358 0.6718323 0.6738308 0.6754113 0.6766433 0.6770946 0.6773447 

ols.curve  0.6315652 0.6710561 0.6814868 0.6866801 0.6914484 0.6948195 0.6966165 0.6974865 

 

Equal collinearities and equal validities, R = .4 

1.00000  

0.26533 1.00000  

0.26533 0.30000 1.00000  

0.26533 0.30000 0.30000 1.00000  

0.26533 0.30000 0.30000 0.30000 1.00000  

0.26533 0.30000 0.30000 0.30000 0.30000 1.00000 

equal.curve 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 

cor.curve  0.3539056 0.3838697 0.3913093 0.3942170 0.3964141 0.3980029 0.3987162 0.3990390 

ols.curve  0.2644249 0.3218332 0.3457424 0.3593424 0.3719094 0.3831947 0.3888669 0.3915397 
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Equal collinearities and unequal validities, R = .4 

1.00000000  

0.06786463 1.00000000  

0.13572925 0.30000000 1.0000000  

0.20359388 0.30000000 0.3000000 1.0000000  

0.27145850 0.30000000 0.3000000 0.3000000 1.0000000  

0.33932313 0.30000000 0.3000000 0.3000000 0.3000000 1.0000000 

equal.curve 0.3069293 0.3069293 0.3069293 0.3069293 0.3069293 0.3069293 0.3069293 0.3069293 

cor.curve  0.3021518 0.3391802 0.3508009 0.3551621 0.3589154 0.3604387 0.3613039 0.3615311 

ols.curve  0.2634291 0.3210328 0.3460484 0.3592528 0.3720831 0.3834273 0.3887012 0.3915491 

 

Equal collinearities and equal validities, R = .7   

1.0000000  

0.4643275 1.0000000  

0.4643275 0.3000000 1.0000000  

0.4643275 0.3000000 0.3000000 1.0000000  

0.4643275 0.3000000 0.3000000 0.3000000 1.0000000  

0.4643275 0.3000000 0.3000000 0.3000000 0.3000000 1.0000000 

equal.curve 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 0.7000000 

cor.curve  0.6878615 0.6951657 0.6969206 0.6977849 0.6985683 0.6991573 0.6994386 0.6995878 

ols.curve  0.6282458 0.6675082 0.6789813 0.6844647 0.6897090 0.6938703 0.6959486 0.6969917 

 

Equal collinearities and unequal validities, R = .7      

1.0000000  

0.1187631 1.0000000  

0.2375262 0.3000000 1.0000000  

0.3562893 0.3000000 0.3000000 1.0000000  

0.4750524 0.3000000 0.3000000 0.3000000 1.0000000  

05938155 0.3000000 0.3000000 0.3000000 0.3000000 1.0000000 
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equal.curve 0.5371263 0.5371263 0.5371263 0.5371263 0.5371263 0.5371263 0.5371263 0.5371263 

cor.curve  0.6169993 0.6287804 0.6312070 0.6321259 0.6330300 0.6338158 0.6338347 0.6341159 

ols.curve  0.6270844 0.6665128 0.6784282 0.6842493 0.6895946 0.6937984 0.6958965 0.6969344 

 

Unequal collinearities and equal validities, R = .4      

1.0000000  

0.2611463 1.0000000  

0.2611463 0.1500000 1.0000000  

0.2611463 0.1830000 0.2830000 1.0000000  

0.2611463 0.2170000 0.3170000 0.3830000 1.0000000  

0.2611463 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

equal.curve 0.3936929 0.3936929 0.3936929 0.3936929 0.3936929 0.3936929 0.3936929 0.3936929 

cor.curve  0.3458096 0.3773913 0.3851181 0.3878788 0.3902285 0.3918023 0.3924400 0.3927739 

ols.curve  0.2631933 0.3214953 0.3462462 0.3588587 0.3724195 0.3833394 0.3886619 0.3915948 

 

Unequal collinearities and unequal validities, R = .4 

1.00000000  

0.07370387 1.00000000  

0.14740775 0.15000000 1.0000000  

0.22111162 0.18300000 0.2830000 1.0000000  

0.29481549 0.21700000 0.3170000 0.3830000 1.0000000  

0.36851937 0.25000000 0.3500000 0.4170000 0.4500000 1.0000000 

equal.curve 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 

cor.curve  0.3220801 0.3576407 0.3668152 0.3698606 0.3724839 0.3743262 0.3750006 0.3752513 

ols.curve  0.2614803 0.3217418 0.3463975 0.3581450 0.3722649 0.3833072 0.3887453 0.3916041 
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Unequal collinearities and equal validities, R = .7      

1.0000000  

0.4570061 1.0000000  

0.4570061 0.1500000 1.0000000  

0.4570061 0.1830000 0.2830000 1.0000000  

0.4570061 0.2170000 0.3170000 0.3830000 1.0000000  

0.4570061 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

equal.curve 0.6889626 0.6889626 0.6889626 0.6889626 0.6889626 0.6889626 0.6889626 0.6889626 

cor.curve  0.6766586 0.6840718 0.6859376 0.6866702 0.6875059 0.6881273 0.6884188 0.6885825 

ols.curve  0.6278189 0.6669777 0.6787585 0.6842906 0.6896219 0.6939294 0.6958871 0.6969438 

 

Unequal collinearities and unequal validities, R = .7       

1.0000000  

0.1289818 1.0000000  

0.2579636 0.1500000 1.0000000  

0.3869453 0.1830000 0.2830000 1.0000000  

0.5159271 0.2170000 0.3170000 0.3830000 1.0000000  

0.6449089 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

equal.curve 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 

cor.curve  0.6437610 0.6530680 0.6547794 0.6558432 0.6568583 0.6574783 0.6578118 0.6579022 

ols.curve  0.6270285 0.6670084 0.6788489 0.6845266 0.6897414 0.6939889 0.6960538 0.6969995 
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Appendix C 

 

Study 2 Matrices and Arrays of Mean Validated R Values 

 

 

Low Magnitude Validities, R = .4 

1.0000000  

0.1280203 1.0000000  

0.2560405 0.2000000 1.0000000  

0.3840608 0.3000000 0.4000000 1.0000000  

unit.curve 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 0.3505979 

cor.curve  0.2977281 0.3491389 0.3671282 0.3740650 0.3806128 0.3838842 0.3851380 0.3857929 

ols.curve  0.2596417 0.3219706 0.3482994 0.3618335 0.3756658 0.3854300 0.3902721 0.3929277 

 

High Magnitude Validities, R = .4 

1.0000000  

0.2132604 1.0000000  

0.2843472 0.2000000 1.0000000  

0.3554340 0.3000000 0.4000000 1.000000  

unit.curve 0.3893584 0.3893584 0.3893584 0.3893584 0.3893584 0.3893584 0.3893584 0.3893584 

cor.curve  0.3126870 0.3636311 0.3802645 0.3863961 0.3913833 0.3945978 0.3957474 0.3963177 

ols.curve  0.2600166 0.3228993 0.3489080 0.3619142 0.3748278 0.3855868 0.3903278 0.3927335 

 

Low Magnitude Validities, R = .7 

1.0000000  

0.1357673 1.0000000  

0.4073018 0.2000000 1.0000000  

0.6788364 0.3000000 0.4000000 1.0000000 
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unit.curve 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 0.6135464 

cor.curve  0.6487972 0.6680160 0.6719387 0.6738887 0.6753469 0.6764969 0.6769978 0.6773647 

ols.curve  0.6310371 0.6707285 0.6815707 0.6865647 0.6911906 0.6949537 0.6965890 0.6974198 

 

High Magnitude Validities, R = .7 

1.0000000  

0.3732057 1.0000000  

0.4976076 0.2000000 1.0000000  

0.6220095 0.3000000 0.4000000 1.0000000 

unit.curve 0.6813773 0.6813773 0.6813773 0.6813773 0.6813773 0.6813773 0.6813773 0.6813773 

cor.curve  0.6721099 0.6876309 0.6912355 0.6925767 0.6940036 0.6949438 0.6954280 0.6956371 

ols.curve  0.6319840 0.6708385 0.6811362 0.6863590 0.6909958 0.6948542 0.6965368 0.6973809 

 

Low Magnitude Validities, R = .4 

1.00000000  

0.07370387 1.00000000  

0.14740775 0.15000000 1.0000000  

0.22111162 0.18300000 0.2830000 1.0000000  

0.29481549 0.21700000 0.3170000 0.3830000 1.0000000 

0.36851937 0.25000000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 0.3333383 

cor.curve  0.3231196 0.3580199 0.3669760 0.3700612 0.3727942 0.3743768 0.3749873 0.3753003 

ols.curve  0.2626082 0.3220292 0.3468212 0.3590352 0.3724678 0.3833418 0.3888257 0.3915246 
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High Magnitude Validities, R = .4 

1.0000000  

0.1861954 1.0000000  

0.2234345 0.1500000 1.0000000  

0.2606736 0.1830000 0.2830000 1.0000000  

0.2979126 0.2170000 0.3170000 0.3830000 1.0000000  

0.3351517 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.3929802 0.3929802 0.3929802 0.3929802 0.3929802 0.3929802 0.3929802 0.3929802 

cor.curve  0.3526633 0.3817674 0.3895504 0.3925352 0.3946781 0.3962026 0.3968745 0.3971893 

ols.curve  0.2647336 0.3211058 0.3454586 0.3591084 0.3722585 0.3833750 0.3887280 0.3916349 

 

Low Magnitude Validities, R = .7 

1.0000000  

0.1289818 1.0000000  

0.2579636 0.1500000 1.0000000  

0.3869453 0.1830000 0.2830000 1.0000000  

0.5159271 0.2170000 0.3170000 0.3830000 1.0000000  

0.6449089 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 0.5833420 

cor.curve  0.6440979 0.6530275 0.6548612 0.6558621 0.6567325 0.6575426 0.6577894 0.6578831 

ols.curve  0.6274718 0.6674326 0.6787826 0.6845171 0.6897384 0.6939676 0.6960076 0.6970173 

 

High Magnitude Validities, R = .7 

1.0000000  

0.3258419 1.0000000  

0.3910103 0.1500000 1.0000000  

0.4561787 0.1830000 0.2830000 1.0000000  

0.5213471 0.2170000 0.3170000 0.3830000 1.0000000  

0.5865155 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 
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unit.curve 0.6877153 0.6877153 0.6877153 0.6877153 0.6877153 0.6877153 0.6877153 0.6877153 

cor.curve  0.6844807 0.6917754 0.6935779 0.6944599 0.6952071 0.6958536 0.6961437 0.6963032 

ols.curve  0.6293681 0.6671737 0.6788613 0.6843380 0.6896907 0.6939116 0.6959564 0.6970102 
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Appendix D 

 

Study 3 Matrices and Arrays of Mean Validated R Values 

 

 

One Dominant Validity, Positively Associated Validities and Collinearities, R = .4 

1.0000000  

0.1325056 1.0000000  

0.1987584 0.2000000 1.0000000  

0.3975167 0.3000000 0.4000000 1.0000000 

unit.curve 0.3326413 0.3326413 0.3326413 0.3326413 0.3326413 0.3326413 0.3326413 0.3326413 

cor.curve  0.2861758 0.3396078 0.3595643 0.3669130 0.3726802 0.3764402 0.3776498 0.3783080 

ols.curve  0.2577136 0.3218101 0.3492782 0.3627905 0.3751078 0.3855087 0.3904106 0.3929170 

 

One Dominant Validity, Negatively Associated Validities and Collinearities, R = .4 

1.0000000  

0.3813012 1.0000000  

0.1906506 0.2000000 1.0000000  

0.1271004 0.3000000 0.4000000 1.0000000 

unit.curve 0.3190722 0.3190722 0.3190722 0.3190722 0.3190722 0.3190722 0.3190722 0.3190722 

cor.curve  0.2790435 0.3313539 0.3527280 0.3609847 0.3680640 0.3726569 0.3741052 0.3750345 

ols.curve  0.2602713 0.3223425 0.3500845 0.3622169 0.3752020 0.3854417 0.3903544 0.3928253 

 

One Dominant Validity, Positively Associated Validities And Collinearities, R = .7 

1.0000000  

0.2318848 1.0000000  

0.3478271 0.2000000 1.0000000  

0.6956543 0.3000000 0.4000000 1.0000000 
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unit.curve 0.5821223 0.5821223 0.5821223 0.5821223 0.5821223 0.5821223 0.5821223 0.5821223 

cor.curve  0.6341561 0.6543631 0.6587662 0.6608397 0.6623491 0.6634812 0.6639921 0.6643030 

ols.curve  0.6298076 0.6707193 0.6817341 0.6868910 0.6913616 0.6949861 0.6966753 0.6974981 

 

One Dominant Validity, Negatively Associated Validities and Collinearities, R = .7 

1.0000000  

0.6672771 1.0000000  

0.3336386 0.2000000 1.0000000  

0.2224257 0.3000000 0.4000000 1.0000000 

unit.curve 0.5583764 0.5583764 0.5583764 0.5583764 0.5583764 0.5583764 0.5583764 0.5583764 

cor.curve  0.6202899 0.6469851 0.6527257 0.6550040 0.6567603 0.6582218 0.6588207 0.6592710 

ols.curve  0.6291351 0.6700151 0.6811795 0.6865527 0.6911649 0.6949089 0.6965554 0.6974141 

 

Two Dominant Validities, Positively Associated Validities and Collinearities, R = .4 

1.0000000  

0.1205359 1.0000000  

0.3013397 0.2000000 1.0000000  

0.3616077 0.3000000 0.4000000 1.0000000 

unit.curve 0.3576096 0.3576096 0.3576096 0.3576096 0.3576096 0.3576096 0.3576096 0.3576096 

cor.curve  0.3043519 0.3540126 0.3728045 0.3789834 0.3845539 0.3879232 0.3890904 0.3897522 

ols.curve  0.2607574 0.3228860 0.3501712 0.3618318 0.3751033 0.3858019 0.3904105 0.3927126 

 

Two Dominant Validities, Negatively Associated Validities and Collinearities, R = .4 

1.0000000  

0.3305883 1.0000000  

0.2754902 0.2000000 1.0000000  

0.1101961 0.3000000 0.4000000 1.0000000 

unit.curve 0.3269331 0.3269331 0.3269331 0.3269331 0.3269331 0.3269331 0.3269331 0.3269331 

cor.curve  0.2753374 0.3271158 0.3488143 0.3574887 0.3647911 0.3690282 0.3707720 0.3713226 

ols.curve  0.2609551 0.3208338 0.3489886 0.3615778 0.3750288 0.3854272 0.3902382 0.3926781 
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Two Dominant Validities, Positively Associated Validities and Collinearities, R = .7 

1.0000000  

0.2109378 1.0000000  

0.5273445 0.2000000 1.0000000  

0.6328134 0.3000000 0.4000000 1.0000000 

unit.curve 0.6258167 0.6258167 0.6258167 0.6258167 0.6258167 0.6258167 0.6258167 0.6258167 

cor.curve  0.6568485 0.6748706 0.6787838 0.6808092 0.6823512 0.6831436 0.6837218 0.6840217 

ols.curve  0.6302861 0.6706777 0.6815143 0.6863120 0.6910464 0.6947606 0.6965182 0.6974182 

 

Two Dominant Validities, Negatively Associated Validities and Collinearities, R = .7 

1.0000000  

0.5785295 1.0000000  

0.4821079 0.2000000 1.0000000  

0.1928432 0.3000000 0.4000000 1.0000000 

unit.curve 0.5721330 0.5721330 0.5721330 0.5721330 0.5721330 0.5721330 0.5721330 0.5721330 

cor.curve  0.6172584 0.6416537 0.6462934 0.6485850 0.6504825 0.6514719 0.6518915 0.6521615 

ols.curve  0.6302618 0.6700150 0.6801979 0.6856912 0.6908701 0.6946004 0.6964156 0.6973034 

 

One Dominant Validity, Positively Associated Validities and Collinearities, R = .4 

1.0000000  

0.1287386 1.0000000  

0.1716515 0.1500000 1.0000000  

0.2145643 0.1830000 0.2830000 1.0000000  

0.2574772 0.2170000 0.3170000 0.3830000 1.0000000  

0.3862158 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.3493453 0.3493453 0.3493453 0.3493453 0.3493453 0.3493453 0.3493453 0.3493453 

cor.curve  0.3269083 0.3610599 0.3697628 0.3726166 0.3752542 0.3768180 0.3773884 0.3777142 

ols.curve  0.2622233 0.3219953 0.3468865 0.3590422 0.3724642 0.3833949 0.3888304 0.3915361 
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One Dominant Validity, Negatively Associated Validities and Collinearities, R = .4 

1.0000000  

0.3413416 1.0000000  

0.2275611 0.1500000 1.0000000  

0.1896342 0.1830000 0.2830000 1.0000000  

0.1517074 0.2170000 0.3170000 0.3830000 1.0000000  

0.1137805 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.3087551 0.3087551 0.3087551 0.3087551 0.3087551 0.3087551 0.3087551 0.3087551 

cor.curve  0.2940261 0.3323288 0.3450766 0.3501109 0.3538563 0.3563322 0.3572497 0.3576045 

ols.curve  0.2639888 0.3212264 0.3450975 0.3586814 0.3720692 0.3833409 0.3887137 0.3916398 

 

One Dominant Validity, Positively Associated Validities and Collinearities, R = .7 

1.0000000  

0.2252926 1.0000000  

0.3003901 0.1500000 1.0000000  

0.3754876 0.1830000 0.2830000 1.0000000  

0.4505851 0.2170000 0.3170000 0.3830000 1.0000000  

0.6758777 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.6113544 0.6113544 0.6113544 0.6113544 0.6113544 0.6113544 0.6113544 0.6113544 

cor.curve  0.6492202 0.6575299 0.6593109 0.6602599 0.6610398 0.6617848 0.6620654 0.6621268 

ols.curve  0.6276813 0.6676865 0.6789267 0.6846247 0.6897960 0.6940155 0.6960354 0.6970424 

 

One Dominant Validity, Negatively Associated Validities and Collinearities, R = .7 

1.0000000  

0.5973478 1.0000000  

0.3982319 0.1500000 1.0000000  

0.3318599 0.1830000 0.2830000 1.0000000  

0.2654879 0.2170000 0.3170000 0.3830000 1.0000000 

0.1991159 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 
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unit.curve 0.5403214 0.5403214 0.5403214 0.5403214 0.5403214 0.5403214 0.5403214 0.5403214 

cor.curve  0.6072231 0.6210588 0.6240256 0.6257769 0.6255501 0.6266644 0.6267954 0.6272150 

ols.curve  0.6271853 0.6665696 0.6785640 0.6839434 0.6894747 0.6937586 0.6958938 0.6968989 

 

Four Dominant Validities, Positively Associated Validities and Collinearities, R = .4 

1.0000000  

0.1301946 1.0000000  

0.2169909 0.1500000 1.0000000  

0.2603891 0.1830000 0.2830000 1.0000000  

0.3037873 0.2170000 0.3170000 0.3830000 1.0000000  

0.3471855 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.3794663 0.3794663 0.3794663 0.3794663 0.3794663 0.3794663 0.3794663 0.3794663 

cor.curve  0.3480053 0.3790841 0.3864002 0.3889052 0.3911651 0.3926621 0.3934003 0.3937162 

ols.curve  0.2627525 0.3222701 0.3462673 0.3591267 0.3722676 0.3833282 0.3888338 0.3915942 

 

Four Dominant Validities, Negatively Associated Validities and Collinearities, R = .4 

1.0000000  

0.2983460 1.000000  

0.2610527 0.150000 1.0000000 

0.2237595 0.183000 0.2830000 1.0000000 

0.1864662 0.217000 0.3170000 0.3830000 1.0000000 

0.1118797 0.250000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.3260858 0.3260858 0.3260858 0.3260858 0.3260858 0.3260858 0.3260858 0.3260858 

cor.curve  0.2986015 0.3362371 0.3482601 0.3532553 0.3559498 0.3583254 0.3590123 0.3595234 

ols.curve  0.2618514 0.3206783 0.3454897 0.3589560 0.3716301 0.3830212 0.3887058 0.3916065 
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Four Dominant Validities, Positively Associated Validities and Collinearities, R = .7 

1.0000000  

0.2278405 1.0000000  

0.3797341 0.1500000 1.0000000  

0.4556809 0.1830000 0.2830000 1.0000000  

0.5316278 0.2170000 0.3170000 0.3830000 1.0000000  

0.6075746 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.6640660 0.6640660 0.6640660 0.6640660 0.6640660 0.6640660 0.6640660 0.6640660 

cor.curve  0.6784405 0.6856684 0.6874153 0.6883541 0.6891385 0.6897753 0.6899983 0.6902468 

ols.curve  0.6286255 0.6678152 0.6789413 0.6843794 0.6897866 0.6938997 0.6959572 0.6969924 

 

Four Dominant Validities, Negatively Associated Validities and Collinearities, R = .7 

1.0000000  

0.5221055 1.0000000  

0.4568423 0.1500000 1.0000000  

0.3915791 0.1830000 0.2830000 1.0000000  

0.3263159 0.2170000 0.3170000 0.3830000 1.0000000  

0.1957895 0.2500000 0.3500000 0.4170000 0.4500000 1.0000000 

unit.curve 0.5706501 0.5706501 0.5706501 0.5706501 0.5706501 0.5706501 0.5706501 0.5706501 

cor.curve  0.6138219 0.6254747 0.6276327 0.6281797 0.6292490 0.6297096 0.6300061 0.6301074 

ols.curve  0.6265186 0.6667276 0.6783157 0.6838503 0.6894482 0.6936969 0.6958424 0.6969097 
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Appendix E 

 

Adaptation of Maxwell’s Formula for Estimating R2 from Model Parameters 

 

 The purpose of Maxwell’s (2000) paper is to provide researchers with statistical tools for 

estimating the required sample size for obtaining a desired level of power in a regression 

analysis. As one part of this effort, Maxwell provided (and proved) his equation 7: �� = �′��
������� 

where R2 is the squared coefficient of multiple determination, ρxy is the vector of criterion-

predictor correlations, and Rxx is the population predictor correlation matrix. Maxwell provided 

this formula to allow researchers to estimate the anticipated effect size in a planned study, which 

in turn could be used in the power analysis. 

 My study has the advantage of being a simulation, allowing me to select parameter values 

a priori, but not all combinations of parameter values are actually possible. That is, it is 

impossible to specify both the coefficient of multiple determination and the predictor-criterion 

matrix independently and with certainty that the mathematical relationships among regression 

parameters will hold. Maxwell’s equation would be helpful in this regard except that the levels of 

R2 are predetermined in my simulation design and therefore cannot be solved for as an unknown. 

Instead, it is necessary to solve for the values in ρxy (which are not part of the design) using a 

rearranged function (shown to be equivalent in a proof by Andrew Tomarken, personal 

communication, 2015): 

��� = �� ���′
����� 

where v is a vector of values equivalent to the ratios of predictor validities (e.g., if the second of 

two predictors correlates half as much as the first with the criterion, the values in v would be 1 

and .5). 

 As an example, if I wish to generate a design matrix with three predictors, the population 

R2 = .5, all predictors correlate .5 with each other, and all predictors correlate equally with the 

criterion, I must solve for: 

��� = %111&' . 5�1 1 1� %1.5 −.5 −.5−.5 1.5 −.5−.5 −.5 1.5& %111&
= 	 � 1 . 58 . 58 . 58. 58 1 . 50 . 50. 58 . 50 1 . 50. 58 . 50 . 50 1 � 

In this case, each of the predictors has a validity equal to the square root of one third, or 

approximately .58. 
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