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ABSTRACT OF THE DISSERTATION

Decoding the computations of sensory neurons

by

Joel Thomas Kaardal

Doctor of Philosophy in Physics

University of California, San Diego, 2017

Professor Henry D. I. Abarbanel, Co-Chair
Professor Tatyana O. Sharpee, Co-Chair

The nervous system encodes information about external stimuli through sophisti-

cated computations performed by vast networks of sensory neurons. Since the space of

all possible stimuli is much larger than the space of those that are ultimately meaningful,

dimensionality reduction techniques were developed to identify the subspace of stimulus

space relevant to neural activity. However, dimensionality reduction methods provide

limited insight into the nonlinear functions that build the nervous system’s internal model

of the world. In Chapter 2, the functional basis is introduced that transforms the relevant

subspace to a basis that describes the computational function of the subunits that make

xi



up the neural circuitry. This functional basis is used to uncover novel insights about

the computations performed by neurons in low-level vision and, later on, high-level

auditory circuitry. For the latter, significant barriers are found in the capability of current

dimensionality reduction methods to recover the relevant subspaces of high-level sensory

neurons. This barrier is caused by the relative difficulty of stimulating high-level sensory

neurons, which are often unresponsive to noise stimuli, while still maintaining a thorough

exploration of the stimulus distribution. In response, a new approach to dimensionality

reduction is formulated in Chapter 3 called the low-rank maximum noise entropy method

that makes it possible to overcome challenges presented by high-level sensory systems.

In Chapter 4, functional bases derived from the relevant subspaces recovered by the

low-rank maximum noise entropy method are employed to study the neural computations

performed by high-level auditory neurons.
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Chapter 1

Introduction and survey of neural

coding methods

Through the collective action of vast, hierarchical networks of neurons, the

brain is capable of representing abstract concepts and making sophisticated decisions.

Understanding the neural computations that lead to such complex phenomena is an

important area of research that can be considered on multiple scales from the peripheral

nervous system, to neural circuits, down to the fundamental computational unit: the

neuron. This dissertation focuses on methods for decoding neural computations on the

scale of single sensory neurons.

Sensory neurons are excitable cells that have roughly binary “on” and “off” states

that are stimulated by external sensory signals, analogous in some ways to digital logic

gates. A fundamental description of those stimuli that cause a neuron to reach its “on”

state, responding with an action potential or spike (so-called due to its transient nature),

is termed the receptive field. Put simply, the receptive field can be defined as the set of

all stimuli that modulate the neural response. In reality, however, the sets of stimuli that

do and do not modulate a neuron’s response are not generally disjoint sets. Rather it is

1
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possible on repeated presentations of the same stimulus that a neuron will sometimes

produce a spike and sometimes not. If one were to take the average of these responses,

one could compute the probability of a spike given that stimulus. Done over all possible

stimuli, one can compute a mapping between a stimulus and the probability that a neuron

will spike. Approximating aspects of this input-output mapping is the concern of the field

called neural coding. By approximating the extent of the receptive field and mapping

the input-output function of each neuron in a circuit, one can determine what role each

of the neurons plays in the phenomena that emerge from the neural circuitry. In the

following sections, a survey of methods used to decode the receptive fields of neurons

from stimulus and response pairs is provided.

1.1 Linear-nonlinear model

The linear-nonlinear (LN) model [1–5] is a general computational framework

that can be used to approximate the receptive field and input-output function. The

model is composed of the two namesake stages (i) a linear projection of a stimulus

vector, s ∈ RD, onto a set of vectors, {ωk} ≡ {ωk ∈ RD|∀k ∈ {1, · · · , r}} where r is the

number of vectors in the set, and (ii) a nonlinear stage that approximates the input-output

mapping as a function of the linear projections, g(ΩTs) = P(y = 1|s), where y ∈ {0,1}

corresponds to the neural response state and Ω= [ω1,ω2, · · · ,ω3] ∈ RD×r. Note that Ω

is invariant to rotations that preserve the range space, R(Ω). That is, when Ω′ = RθΩ

where Rθ ∈Rr×D such that R(Ω′) =R(Ω), both Ω and Ω′ are equivalent linear models.

Since the input-output function (at least as it is defined here) is the probability of a

spike, defined as state y = 1, given some stimulus, the input-output function is inherently

nonlinear and is also referred to as the nonlinearity. In this model, the {ωk} vectors

approximately span the receptive field and the nonlinearity is a function of the products



3

{ωk · s}.

There are several different methods available for estimating {ωk} and the non-

linearity. The most common approaches are the following spike-triggered methods and

information-theoretic methods.

1.2 Dimensionality reduction

Ultimately, since a neuron is selective for particular objects or patterns in the envi-

ronment, the receptive field is expected to be spanned by a lower number of components

than those that could describe the environment in its entirety. In other words, r� D

provided the stimulus space is comprehensive. The act of finding a lower-dimensional

space that describes the activity of the neuron is called dimensionality reduction. If r is

the number of components that significantly contribute to the neural response, then the

receptive field can be estimated by the stimuli projected into the subspace of stimulus

space defined by the r significant components of Ω.

1.3 Spike-triggered methods

Spike-triggered methods use spike-weighted moments of the stimulus distribution

to compute a nonlinearity-independent estimate of the receptive field. These methods are

widely used because they are quick to compute and work well under certain assumptions

about the stimulus distribution.

1.3.1 Spike-triggered average

The spike-triggered average (STA) [2,4] is among the simplest methods for recon-

structing the receptive field. The STA performs an average of the stimulus distribution
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weighted by the measured response distribution,

ω(STA) =
1

Nspk

Nsamp

∑
t=1

ytst (1.1)

where st and yt are the tth sample from the stimulus-response distribution, Nsamp is the

total number of samples, and Nspk is the total number of spikes (Nspk = ∑
Nsamp
t=1 yt).

1.3.2 Spike-triggered covariance

One of the downsides of the STA is that it can only reconstruct a single component

of the receptive field. It has been shown that many neurons are selective for more than one

component; the so-called multidimensional receptive field or multicomponent receptive

field [6–19]. The discovery of multicomponent receptive fields has led to the development

of quadratic methods where the feature space is expanded to include pairwise products,

sis j, of the stimulus vector [4, 20–25]. An example of a quadratic method is the spike-

triggered covariance (STC) which is an extension of the STA from a spike-weighted

first-order moment of the stimulus distribution to a spike-weighted second-order moment

of the stimulus distribution. The STC is calculated by first forming the spike-triggered

stimulus covariance matrix,

C(spk) =
1

Nspk

Nsamp

∑
t=1

ytstsT
t (1.2)

and the stimulus covariance matrix,

C(stim) =
1

Nsamp

Nsamp

∑
t=1

stsT
t . (1.3)

Then, the difference matrix, C(diff) = C(spk)−C(stim), is computed. The estimated vectors

Ω are then exposed via eigendecomposition of C(diff); i.e. C(diff) = ΩΛΩT where Ω
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are the eigenvectors and Λ are the eigenvalues. A variation of STC subtracts the STA,

ω(STA), from each stimulus vector in C(spk) and then later includes ω(STA) in Ω [4]. The

form in Eq 1.2 without this subtraction will be used throughout this volume.

1.3.3 Statistical limitations

The main limitation of spike-triggered methods is that the estimate of the receptive

field is biased unless the stimuli are drawn from a limited number of distributions. For

the STA, an unbiased estimate of the receptive field can be obtained if the stimulus

distribution is zero-centered and spherically symmetric [4]. For STC, the stimuli must

be drawn from an uncorrelated, zero-centered Gaussian distribution [4]. This limitation

can be a major hindrance for receptive field recovery, especially in the case of high-

level sensory neurons that are not easily stimulated by noise. This limitation led to the

development of the following information-theoretic methods.

1.4 Maximally informative dimensions

Maximally informative dimensions (MID) [26] is a nonlinearity-independent

dimensionality reduction technique that can be applied to non-Gaussian distributed

stimulus distributions without the biases intrinsic to the aforementioned spike-triggered

methods. MID searches for the set of vectors {ωk} that maximize the mutual information

per spike,

I (y = 1;{ωk}) =
∫

dxP(x|y = 1) log
[

P(x|y = 1)
P(x)

]
(1.4)



6

where x =ΩTs. This is done by making empirical estimates of the posterior distribution,

P(x|y = 1)≈

〈
y

r

∏
k=1

δ(x−ωk · s)

〉
y,s

, (1.5)

and prior distribution,

P(x)≈

〈
r

∏
k=1

δ(x−ωk · s)

〉
s

(1.6)

where δ(·) is the Dirac delta function. This is typically achieved by binning the responses

in x space. The mutual information is maximized using a global optimization heuristic

since the mutual information is nonconcave [26].

1.4.1 The curse of dimensionality

The binning procedure used to compute the posterior and prior distributions

require that the data samples be divided among nbins bins along r components leading to

a total of rnbins total bins among which a given sample uniquely belongs to only one. This

means that the average number of samples per bin is Nsamp/rnbins which gets exponentially

smaller as r increases eventually leading to poor sampling of the distributions if Nsamp

is not sufficiently large. This is known as the curse of dimensionality where typically

only up to three or four components can be reliably optimized. However, second-

order extensions of MID have been proposed as possible solutions to avoid the curse

of dimensionality where the subspace projection is changed to x = hTs+ sTJs and the

optimization is performed over h and J instead [27, 28]. The receptive field is then

recovered by diagonalizing J.
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1.5 Maximum noise entropy

Maximum noise entropy (MNE) [28, 29] is one of the more recently developed

dimensionality reduction methods that is meant to be an answer to both the issues spike-

triggered methods have with correlated stimuli and the curse of dimensionality experi-

enced by MID. Along with MID, MNE is an information-theoretic approach to dimension-

ality reduction. However, MNE minimizes rather than maximizes the mutual information

between the response and the stimuli in an effort to limit bias from arbitrary stimulus

distributions. The mutual information written in terms of the response entropy, Hresp =

−
∫

dyP(y) log
(
P(y)

)
, and noise entropy, Hnoise =−

∫
dydsP(y|s)P(s) log

(
P(y|s)

)
, is

I (y;s) = Hresp−Hnoise [28–31]. Since P(y) is already known in virtue of being sim-

ply calculated by averaging the response, Hresp is fixed and I (y;s) is maximized when

I (y;s) = Hresp. Therefore, minimizing the mutual information is equivalent to maximiz-

ing the noise entropy with respect to the conditional probability P(y|s).

Of course, P(y|s) is ambiguous in the absence of further constraints being placed

on the noise entropy maximization. In an attempt to introduce as little bias as possible

into the model, only empirical constraints derived from the data and normalization

are imposed. For instance, the statistics of the model can be constrained to match the

response-weighted moments of the stimulus distribution 〈y〉y, 〈ys〉y,s, and 〈yssT〉y,s, etc.

Furthermore, since the responses can be assumed to be binary, the probability of of being

in states P(y = 1|s) and P(y = 0|s) must add up to one. Under these constraints, the

maximum noise entropy nonlinearity has the analytic form of a logistic function,

P(y = 1|s) = 1
1+ e−z(s) , (1.7)

where z(s) = a+hTs+ sTJs+ · · · and a, h, J, etc. are the Lagrange multipliers from

the constrained noise entropy maximization, which shall be referred to as the “weights”



8

from here on, that must be optimized to finish computing the entropy maximization. This

makes MNE a nonlinearity-dependent method. Despite this, the nonlinearity adheres

to the principle of maximum entropy and is designed to be minimally biased in an

information-theoretic sense towards unseen data.

The unknown weights in the nonlinearity are found by minimizing the negative

log-likelihood,

L(a,h,J) =− 1
Nsamp

∑
t

[
yt log

(
P(y = 1|st)

)
+(1− yt) log

(
1−P(y = 1|st)

)]
, (1.8)

where it is defined here as an average over samples and the model is truncated to second-

order. Conveniently, this optimization happens to be convex and is therefore guaranteed

to converge to a global minimum in polynomial time.

1.5.1 Overfitting

Since the argument of the nonlinearity, z(s), is a polynomial of arbitrary order,

the number of terms that appear must be truncated because each additional order m of

weights included in the polynomial add an additional Dm weights that must be optimized.

This explosion of dimensionality has led to the models typically being truncated to either

first-order for single component receptive fields or second-order for multicomponent

receptive fields where J is diagonalized to recover the receptive field components [28].

For the first-order and second-order MNE models, the results can be improved by

including early stopping as a mild form of regularization to prevent overfitting [28]. The

model is optimized on a training set and the prediction error of the model is measured on

a separate cross-validation set over the course of the optimization. After several failures

of the optimization to find a solution with lower prediction error, the optimization returns

those weights that minimize the prediction error on the cross-validation set.
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1.6 Statement of the problem

While the dimensionality reduction methods summarized above are able to re-

construct a subspace of stimulus space relevant to a neural response, they provide only

a partial view of the underlying neural computations from which they are derived that

must be subjected to further inspection. In Chapter 2, a method called the functional

basis will be proposed that seeks to reveal more about neural computations by modeling

the underlying functional neural circuitry. Applications of the functional basis method

to early vision neurons and later in Chapter 4 to high-level auditory neurons provide

novel conclusions about the type of computations that are performed by populations of

neurons in these regions and provide evidence of a potential difference in how sensory

information is processed in portions of the visual and auditory systems.

At high-levels of sensory processing, dimensionality reduction methods have

so far had limited success in recovering multicomponent receptive fields. Resolving

multicomponent receptive fields of high-level auditory neurons was found to be consistent

with these past methodological struggles. In order to make progress on the study of the

functional neural circuitry of high-level auditory neurons, it became necessary during

the intermediate part of the analysis to expand upon the second-order MNE method

to handle the harsher realities that accompany analysis of high-level sensory neurons.

This method, called the low-rank MNE method, is the subject of Chapter 3 where the

theoretical argument is presented and part of Chapter 4 where the practical application of

the method is discussed before being applied to data recorded from high-level auditory

neurons.



Chapter 2

Identifying functional bases of neural

computations

In Chapter 1, several methods were introduced to reconstruct the receptive field,

Ω, of a neuron. Each of these methods define a set of basis vectors that are relevant

to the neural response. However, if one were to test all of these methods on the same

data set for a neuron with a multicomponent receptive field (where r > 1) subject to

stimuli that satisfy the necessary statistics for STC analysis, one is likely to find that

each method produces different basis vectors. Of course, this is not surprising given the

different measure by which extracted components are considered optimal. For instance,

the information-theoretic approaches reconstruct components that either minimize or

maximize the mutual information between the stimuli and spikes [26, 28, 29] while

STC returns directions of largest absolute variance from the spike-weighted stimulus

covariance matrix [4,20–25]. On the other hand, it is expected that each of these methods

will span the same subspace of stimulus space as discussed in regard to the LN model.

While these methods have meaning in terms of their respective measures and strong

theoretical backing for decoding the receptive field, these bases lack apparent biological

10
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interpretability in terms of a description of the functional neural circuitry. This motivates

the introduction of a functional basis that explicitly attempts to reconstruct components

of the receptive field reflective of the underlying functional neural circuitry.

In this context, to decode the functional neural circuitry is to understand what

decision is being made by the neuron based on external sensory input. Note that treating

external sensory stimuli as input is defined here as the functional neural circuitry to dis-

tinguish it from the local electrical/chemical input that neurons receive at their dendrites.

While the the number of anatomical inputs a single neuron might receive number on the

order of 103−104 [32], the number of functional inputs are in practice much fewer (e.g.

∼ 10 in early vision layers).

In this chapter, noisy Boolean operations corresponding to logical OR and logical

AND functions are proposed to study the computations performed by neurons early in

the vision neural circuitry. It is thought that these logical functions can describe the com-

putations that lead to translation invariance [33, 34], motion selectivity [35], coincidence

detection [36], and constructing selectivity for sophisticated sensory structures [37]. Here

the functional basis method is described in detail and the proposed logical operations

are shown to yield biologically interpretable functional bases that are consistent with

established knowledge about early visual processing.

2.1 Functional bases

At its core, the functional basis method computes a LN model (Section 1.1)

where the nonlinear function g(CTs) = P(y = 1|s) is some hypothesis about the under-

lying neural computation where C ∈ RD×n is a matrix of n functional basis vectors,{
ck ∈ RD|∀k ∈ {1, · · · , n}

}
. The notation uses n to distinguish the number of the func-

tional basis vectors from the number of components spanning the receptive field, r,
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since the functional basis can be undercomplete or overcomplete. Undercomplete and

overcomplete bases are defined as basis set sizes where n < r and n > r, respectively.

Since the receptive field captures a full description of the subspace relevant to a neural

response, it can be concluded that C is a subspace of Ω (i.e. R(C)⊆R(Ω)). Therefore,

in the overcomplete case, at least one column of C is linearly dependent on the other

columns.

From a theoretical point of view, a neuron’s functional basis is expected to be

composed non-orthogonal components. In fact, it would be surprising if the functional

basis is orthogonal given that objects in the sensory environment are not identified by

orthogonal features. As an intuitive example, consider a neuron that is selective for the

colors purple or blue (i.e. the neuron will spike to either purple or blue light but nothing

else). The receptive field of the neuron can be completely defined by an orthogonal basis

where one axis is blue and the other is red (and green can be safely ignored). Purple,

however, projects onto both the red and blue axes. In this example, the neuron would

be more accurately described as being selective for blue and purple rather than blue and

red. Similar observations are made in the literature, where retinal ganglion cells (RGCs)

are known to receive signals from bipolar cells as input whose receptive fields often

spatially overlap and are therefore unlikely to be orthogonal [38, 39]. The bipolar cells

have relatively simple receptive fields, often composed of a single component that is

sensitive to roughly circular patches of light intensity [39]. Yet, if one were to apply

the STC or second-order MNE dimensionality reduction methods on a multicomponent

RGC, these methods by construction produce orthogonal receptive fields that are linear

combinations of the incident bipolar cell receptive fields.

This scenario is illustrated in Fig 2.1 highlighting the misalignment of the recep-

tive field components obtained through STC and a more interpretable functional basis. In

this figure, the responses of two sensory neurons to stimuli drawn from a Gaussian white
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Figure 2.1: Illustration of two neurons computing Boolean operations in a two-
dimensional stimulus space. The responses of two sensory neurons to stimuli defined
in a two dimensional stimulus space follow a noisy logical OR operation (A) and a
logical AND operation (B). The functional input thresholds (dashed lines) demarcate a
transition between spiking and silent responses. The STC components are marked with
arrows.

noise distribution are plotted as filled and open circles corresponding to spiking (y = 1)

and silent (y = 0) responses. In Fig 2.1A, a noisy n = 2 logical OR neuron is generated

via

g(CTst) =


1, if ∃k, cT

k st +ηk ≥ θk

0, otherwise
(2.1)

where ηk is a normally distributed random number quantifying the input noise and θk

is the activation threshold of the kth input. The noisy n = 2 logical AND neuron that

appears in Fig 2.1B was generated by changing the spiking condition in Eq 2.1 from

existence, ∃k, to for all, ∀k.

Overcompleteness of the functional basis, where n > r, can occur if the neuron

receives linearly dependent inputs. However, such a case does not seem likely to occur in

practice given how unlikely it is that multiple presynaptic neurons would have perfectly
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redundant receptive fields. For instance, in the case of RGCs, even if the presynaptic

bipolar cells encode roughly the same information about the stimulus, it is unlikely their

receptive fields would perfectly overlap. A more likely scenario is a practical failure of

the chosen dimensionality reduction technique to recover the entire subspace spanning

the receptive field.

2.2 Modeling the functional basis with Boolean opera-

tions

From the prior discussion, it is easy to see the intuition motivating the use of

Boolean operations to describe the neural computations of sensory neurons. If a neuron

is selective for some specific property of the stimulus, it would make sense that the

neuron would want to make a provisional binary decision about the presence or absence

of that property. This suggests that the selectivity for such properties could hypothetically

be manifested as a binary decision with a threshold defined as a (D− 1)-dimensional

hyperplane normal to a property vector, c, in stimulus space. The final binary decision of

the neuron to produce a spike or not is then based on combined state of these provisional

binary decisions about the inputs analogous to a truth table in digital logic.

The simplest Boolean operations are logical OR,

POR(y = 1|s) = 1−
n

∏
k=1

[
1−σk

(
cT

k s
)]
, (2.2)

and logical AND,

PAND(y = 1|s) =
n

∏
k=1

σk
(
cT

k s
)

(2.3)
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where σk is a function bounded between 0 and 1 that corresponds to the input nonlinearity

or input activation function. In digital logic, where the signal-to-noise ratio of the

nonlinearity is approximately infinite at the scale of typical applications, the input

nonlinearities are deterministic where σk can be modeled by a Heaviside step function.

Neurons, on the other hand, exhibit substantial noise in the region of stimulus space

that transitions from silent to spiking responses. Therefore, σk is modeled as a logistic

function

σk
(
cT

k s
)
=

1

1+ e−bk−cT
k s

(2.4)

where bk is a scalar threshold. A couple alternatives that could also be used are σk (·) =
1
2 [1+ tanh(·)] or σk (·) = 1

2 [1+ erf(·)] (where erf(·) is the Gauss error function). The

logistic function is chosen because it is a continuously differentiable function and it is

the the function that maximizes the noise entropy between the input and the provisional

decision in similar fashion to Section 1.5 [28] (where y in this case is the provisional

decision rather than a spike) which may limit the bias in the estimate of the functional

basis. If the noise around the threshold is Gaussian distributed, a good argument could

be made for using the error function input nonlinearity instead. However, the logistic

distribution has a similar shape to the Gaussian distribution and has worked well in

practice.

2.2.1 Optimization procedure

The Boolean operations are optimized by searching for the maximum likelihood

estimate of P(y = 1|s) with respect to the thresholds and functional basis vectors. This
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can be achieved by minimizing the mean negative log-likelihood cost function,

L(b,C) =− 1
Nsamp

Nsamp

∑
t=1

[
yt log

(
P(y = 1|st)

)
+(1− yt) log

(
1−P(y = 1|st)

)]
, (2.5)

where bT = [b1, · · · , bn] collects the input thresholds into a vector. When n = 1, both

the logical AND and logical OR models are equivalent to first-order MNE (Chapter 1.5)

and therefore any local minimum of the n = 1 model is globally optimal. When n > 1,

however, the cost function is nonconvex and may possess suboptimal local minima or

saddle points. Since the cost function is continuously differentiable, gradient based

methods such as conjugate gradient descent or Newton-type methods may be used to

optimize the functional basis to local optimality [40, 41]. Global optimization heuristics

such as running the optimization many times with several different initializations or

stochastic gradient descent [42] may be used if the global minimum is desirable. Deter-

ministic global optimization techniques that attain certifiable global optimality (to some

precision), such as branch and bound [43], may be attempted but are intractable for large

D or n since they converge at worst in exponential time.

2.2.2 Taking advantage of dimensionality reduction

Since R(C) ⊆R(Ω), it is not necessary for one to optimize C in the full D-

dimensional stimulus space but rather within a reduced subspace defined by the receptive

field estimate. A reduced subspace of stimulus space can be defined by projecting s

into the basis recovered from a dimensionality reduction method such as STC where the

reduced subspace is then s∗ =ΩTs and the rank of Ω is assumed to be less than D. One

can then find the maximum likelihood estimate of P(y = 1|s) in terms of a (potentially)

much smaller set of reduced functional basis vectors, Φ∈Rr×n. The nonlinearities would

then be some combination of the input nonlinearities defined in the reduced subspace,
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σk
(
φT

k s∗
)

where φk is the kth column of Φ. After finding the optimal Φ, the functional

basis can be transformed back into the full stimulus space by a backwards transformation

C =ΩΦ.

It is recommended to take advantage of dimensionality reduction when applying

the functional basis method for several practical reasons. With the exception of MID,

the other dimensionality reduction techniques suggested in the introduction provide

globally optimal estimates of the receptive field in polynomial time. Optimizing the

functional basis in the reduced subspace can then lead to overall improvement in the

computation time required to reach a globally optimal solution relative to optimizing

in the full stimulus space due to a reduction in size of the search space. In particularly

low-r cases, deterministic global optimization techniques may be practically employed.

Related to this, the reduced subspace is likely to have a much smaller number of local

minima and saddle points than the full stimulus space. Lastly, since undercompleteness

and overcompleteness are expected to be rare, the number of components that make up

the receptive field can act as a guide in setting the functional basis set size. The matter of

determining the optimal number of components that make up the functional basis set is a

topic that is discussed in a practical context in the following section.

2.3 Demonstration on synthetic neurons

The functional basis method was tested on three synthetic vision neurons to

observe whether the maximum likelihood estimate (Eq 2.5) could recover the functional

basis. For each neuron, 200,000 stimuli were drawn from a Gaussian white noise

distribution. All of the synthetic neurons had multicomponent receptive fields and were

designed to be integrative, spiking if the projection of a stimulus on any functional input

component was above its respective spiking threshold. This corresponds to the logical



18

OR function. Noisy data was generated according to Eq 2.1 and a threshold common to

the all input components was adjusted until the mean probability of a spike was between

0.2 and 0.4.

One key property of interest in neural coding is the ability of models to capture

invariances in the inputs; e.g., translation, rotation, and scale invariance. Invariances in

this context means that the neuron will respond in kind to the same stimulus subject to

changes in either the location of the object of interest in the field of view (translation),

the two or three-dimensional orientation of an object in space (rotation), or the various

sizes the same object might take (scale). To test the ability of the functional basis method

to capture invariant input components, a translationally and rotationally invariant neuron

were generated.

The four input components of the translationally invariant neuron appear in

Fig 2.2A. Each component features the same center-surround structure shifted to the four

different corners of the image. At the center of the images, the input components overlap

and are apparently non-orthogonal. As such, dimensionality reduction techniques that

yield orthogonal components of the receptive field can be expected to fail to recover the

functional input components. Since the synthetic neuron was stimulated by Gaussian

white noise stimuli, STC was the model of choice for recovering the receptive field.

Indeed, the STC components behave as expected in Fig 2.2B where the resulting com-

ponents are linear combinations of the functional inputs in Fig 2.2A. This is not to say,

however, that STC has failed in its more general purpose of reconstructing the receptive

field. An overlap metric [44, 45] defined as

O(A,B) =
|Det

(
ATBBTA

)
|

1
2rmin

|Det(ATA) |
1

2rA |Det(BTB) |
1

2rB

(2.6)

can be used to measure to what degree matrix A defines a subspace of matrix B or vice
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versa where rA = rank(A), rB = rank(B), and rmin = min(rA,rB). The overlap is bound

between 0 and 1. If the subspaces are disjoint (i.e. R(A)∩R(B) = /0), then O = 0. If

the subspaces have an overlap of O = 1, at least one of the matrices defines a subspace

of the other (e.g. R(A) ⊆R(B)). Comparing the overlap of the STC receptive field

with the ground truth functional inputs yields an overlap of 0.992 indicating that STC is

performing triumphantly in its stated purpose.

Exploiting prior knowledge from the construction of the synthetic neuron, an

n = 4 logical OR model was fit to the pairs of reduced stimuli and responses. The

logical OR functional basis in the full stimulus space is presented in Fig 2.2C where the

underlying translation invariance is recovered as hoped. To show the significance of the

logical OR model, the logical AND model was also fit, recovering the functional basis

that appears in Fig 2.2D. The logical AND functional basis illustrates how important

the choice of nonlinearity is to functional basis recovery since the logical AND model

roughly recovers four repeats of the STA. The predicted probabilities of a spike appears in

Fig 2.2E for a 100 frame selection of stimuli drawn from the test set are shown alongside

the ground truth spiking response where, by eye, the logical OR model can be seen

to make better predictions. This is verified quantitatively by comparing the ability of

each of the models to predict the spikes in the test sets. Logical OR was found to be a

better predictor with a prediction error (negative log-likelihood) of L = 0.1099±0.0007

(correlation coefficient: Rc = 0.9119±0.0001) averaged across the test sets compared to

logical AND where L = 0.340±0.005 (Rc = 0.6791±0.0001).

Of course, to make this simulation of the analysis more realistic, one cannot

generally assume omniscience of which model is most appropriate and how many input

components, n, should enter the functional basis set. While it is likely that n will be equal

to the dimensionality of the receptive field, it would be useful to have a procedure to show

this to be the case empirically to rule out (or discover) the however uncommon possibility
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Figure 2.2: The functional basis method applied to a synthetic translationally in-
variant vision neuron. (A) The functional inputs are composed of four translationally
invariant components. (B) STC recovers four orthonormal components. (C) A maxi-
mum likelihood estimated logical OR model recovers the functional input components.
(D) The maximum likelihood estimated of a logical AND model recovers components
resembling the STA. (E) The first 100 frames of the test set are plotted (top) alongside
predictions from the logical OR (middle) and logical AND models (bottom). (F) The
prediction error (negative log-likelihood) evaluated on four cross-validation sets satu-
rates at four components for the logical OR model and one component for the logical
AND model.
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of undercompleteness or overcompleteness of the functional basis. The prescribed

approach is to perform empirical model selection where the negative log-likelihood

is evaluated on a cross-validation set. An example of the model selection procedure

appears in Fig 2.2F where both logical OR and logical AND models are fit on four

different training sets for all n ∈ {1, · · · , 8} and then a curve is plotted of the negative

log-likelihood evaluated on four unique cross-validation sets. For a given model, the

best fit basis set size is the minimal n where the log-likelihood plateaus or, more loosely,

when the curve is deemed to provide diminishing returns (similar to the “elbow method”

used in clustering [46]). For logical OR, the best model is n = 4, the same number of

components as the ground truth. Logical AND, by contrast, saturates immediately at

n = 1 which reflects the fact that the logical AND functional basis only recovers repeats

of what resembles the STA. Once the best functional basis set sizes are known for each

model, the best from each model type are then compared through evaluation of the

prediction error on the cross-validation set and the model with the lowest prediction error

is selected. Clearly, in Fig 2.2F, the logical OR model with n = 4 is the best fit.

The rotationally invariant synthetic neuron features a single curved component

rotated eight times at kπ/4 radians where k ∈ {1, . . . , 8} in a logical OR configuration is

shown in Fig 2.3A. STC is again employed to estimate the receptive field and appears in

Fig 2.3B where, once again, the STC components bear little resemblance to the functional

input components. In fact, seeing the three largest absolute variance components (the

three left-most components of Fig 2.3B), one may mistakenly conclude that the functional

inputs are more localized to the center of the image. On the other hand, the lower absolute

variance components (at the right end of Fig 2.3B) may be erroneously assumed to be

largely a product of noise. However, these lower absolute variance components contain

important structure and if one were then to decide to exclude them, it is possible that

important ingredients necessary to recover the functional input space could be missing.
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A

B
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D

Figure 2.3: The functional basis method applied to a synthetic rotationally invari-
ant neuron. (A) A rotationally invariant synthetic neuron is constructed from eight
functional input components. (B) An orthonormal set of components spanning the
receptive field is recovered using STC. (C) A receptive field where the right-most com-
ponent from B is dropped was fit with an overcomplete logical OR model displaying
subtlety diminished central amplitude. (D) Using the full receptive field estimate, the
functional input components are reconstructed using a logical OR model.

For instance, in Fig 2.3C the right-most component of the receptive field is dropped such

that r = 7 and an overcomplete n = 8 logical OR model is computed. Though it is subtle,

there is a decrease in amplitude near the center of the components in Fig 2.3C compared

to the ground truth. The impact of this subtle difference is a statistically significant

increase in prediction error evaluated on the test sets where the overcomplete model’s

prediction error is L = 0.241± 0.002 (Rc = 0.8020± 0.0003) vs. L = 0.187± 0.002

(Rc = 0.8522±0.0002) for the r = 8 and n = 8 logical OR model featured in Fig 2.3D.

What impact does varying n have on the functional basis reconstruction of the

rotationally invariant neuron? The result of fitting an undercomplete logical OR model

is shown in Fig 2.4A for n = 7 (while r = 8) where it can be seen that the first compo-

nent of the reconstruction recovers a linear combination of two of the functional input

components leading to an increase in the prediction error to L = 0.242± 0.001 (and
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Figure 2.4: The functional input components recovered with undercomplete and
overcomplete functional bases. (A) An undercomplete logical OR model recovers the
first six functional input components but fails to recover the seventh (marked with a red
’x’ and corresponding to the missing component below) and produces a compromised
eighth component (boxed by a red dashed line). (B) The overcomplete logical OR
model recovers all of the functional input components but also fits a novel component
at the right end (boxed by a red dashed line).

decrease in the correlation coefficient: Rc = 0.805± 0.001). An overcomplete model

where n = 9 is also fit with a logical OR model recovering the components in Fig 2.4B

without significant change in prediction error of the models (L = 0.187± 0.002 and

Rc = 0.8523±0.0003) relative to the complete n = 8 model. The overcomplete model

recovers the rotationally invariant receptive field but also includes a novel component that

marginally overfits to the noise in the data. Though it is not the case here, overcomplete

models have also been known to occasionally yield repeated components.

The final simulated analysis is of a synthetic logical OR RGC to examine the abil-

ity of the functional basis method to identify bipolar cell inputs (Fig 2.5A) in preparation

for the forthcoming application to authentic data recorded from the retina. It is worth

mentioning here that this synthetic RGC was created and analyzed before attempting

to apply the functional basis method to the retinal data. Its structure was therefore not

defined after the fact but was rather hypothesized based on prior knowledge [39] and can

act as a form of validation later on. Unlike the other model neurons, the synthetic RGC

cannot be clearly demarcated as either translationally or rotationally invariant but rather

could be argued to exhibit an inexact form of translation invariance. The STC basis in

Fig 2.5B is especially difficult to interpret because the components reveal no apparent
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A B C

Figure 2.5: The functional basis method applied to a synthetic retinal ganglion cell
(RGC). (A) The functional input components of the synthetic RGC are composed of
bivariate Gaussians dispersed across field of vision. (B) The receptive field recovered via
STC contains sophisticated structures that are difficult to interpret. (C) The maximum
likelihood estimate of a logical OR model recovers the functional input components.

localized structure and are bimodal in stark contrast to the functional input components.

Linear combinations of the STC basis computed with the logical OR model in Fig 2.5C

bear a strong resemblance to the functional input components. This demonstrates a signif-

icant advantage of the functional basis method over convolutional methods [47,48] in that

the functional basis method can recover approximate invariances whereas convolutional

methods would average out the details of the components.

2.4 Functional neural circuitry of retinal ganglion cells

To study the functional neural circuitry of early vision neurons, the functional

basis method was applied to a data set composed of electrophysiological recordings of

53 RGCs from the salamander retina gathered in a prior study by Marre, et al. [49]. The

neurons were subjected to visual stimulation in the form of a video where each frame

was a 40×40 pixel image of binary white noise. To be more specific, the pixels were

spatiotemporally uncorrelated and their values were drawn independently with uniform

probability from si ∈ {−1,1} for the ith pixel. The video had a total of 137,145 frames
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that were presented at a 60 Hz frame rate (∼ 38 total minutes of stimulation). The total

number of spikes each neuron elicited ranged from 118 to 30,908 with a median of 5,453

spikes.

The stimuli were preprocessed by (i) using a filtering technique such that the

recovered spatiotemporal receptive field would be transformed into a purely spatial recep-

tive field and (ii) extracting a relevant patch of the images to reduce the dimensionality

of the stimulus space. The filtration was performed by computing a spatiotemporal

STA (Eq 1.1) where nine additional frames preceding time t are included in each stim-

ulus vector (i.e. st ← [st−9, st−8, · · · , st ]). The spatiotemporal component recovered

from the STA was then reshaped into a 1600× 10 matrix where each column corre-

sponds to a frame. The singular value decomposition of this matrix was then computed,

matrix
(
ω(STA)

)
= K(spat)ΣK(temp)T, where K(spat) ∈ R1600×10 and K(temp) ∈ R10×10

are matrices whose columns correspond to bases of spatial and temporal components,

respectively, and Σ ∈ R10×10 is a diagonal matrix of the singular values in descending

order from top-left to bottom-right. Since the largest singular value was much larger

than the remainder, the spatial and temporal activity of the receptive field were deemed

approximately separable into a spatial and temporal kernel [50] obtained from the first

column of K(spat) and K(temp). A stimulus vector that would ostensibly produce a purely

spatial receptive field was then generated by taking a weighted sum of the ten spatial

stimuli that precede time t:

s(spat)
t =

9

∑
τ=0

st−τK(temp)
t−τ,1 . (2.7)

This approach was reasonable in this case because the spatiotemporal receptive field was

separable and therefore the dimensionality of the problem could be reduced by removing

the temporal dependence of the response without significantly impacting the overall
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Figure 2.6: Example showing the spatial and temporal separability of an RGC
receptive field. Here is an example RGC where the spatial and temporal modulation of
the STA can be seen to be reasonably separable. At top is the spatiotemporal STA, in
the middle are the temporal components weighted by singular values where the largest
variance mode stands out, and the bottom shows the spatial kernels where all but the
highest variance kernels are dominated by noise (note that the variances are all positive
in this case).

shape of the spatial receptive field (see Fig 2.6 for an example). The dimensionality of

the stimuli was then reduced further by removing the empty space on the periphery of

the STA such that any pixels outside of the relevant ∼ 16×16 patch of pixels centered

on the largest magnitude pixel of the STA were discarded. Because the neurons were

sensitive to activity in different sectors of the full, non-patched image, this patching was

determined uniquely for each neuron.

The analysis of the RGCs largely mirrored that of the model neurons. The first

step was dimensionality reduction. Since the stimulus distribution was radially symmetric,

STC remained a reasonable choice for the recovery of the receptive field. Even though

the stimuli were not Gaussian distributed, the results of STC analysis did not appear

to exhibit noticeable distortion. Due to the presence of noise in the stimulus/response
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distribution, the STC method required the introduction of an additional step to resolve

which components were significant contributors to the response from those that originated

from noise. The eigenvalue spectra from the STC method were compared against those

from decorrelated STC where the correlations between the stimuli and responses were

broken such that P(y,s) ≈ P(y)P(s). The decorrelation was achieved by first shifting

the responses backward in time by a minimal amount to break causation between the

stimulus and response at sample t. Then the STC was computed for several different

shifts backwards in time and the eigenvalues were pooled. Those positive eigenvalues

from the initial correlated STC that exceeded the maximum eigenvalue pooled from the

decorrelated STCs and those negative eigenvalues of the initial STC that were more

negative than the minimum pooled eigenvalue were considered significant components.

It is claimed that this approach is better than randomly shuffling the response because

it preserves the overall structure of the spike train [20]. In this specific application, the

minimum shift was 100 frames and the eigenvalue spectra of 200 backward shifts were

combined.

Of the total 53 neurons, 49 neurons were found to have multicomponent receptive

fields and were therefore of particular interest for further analysis (recall that the STC

basis should be equal to the functional basis when the receptive field possesses a single

component). Note that this is an improvement over the original publication where Kaardal

et al. [51] found 30 neurons with multicomponent receptive fields. This improvement

was obtained by adjusting the delay between spikes and stimuli using a combination of

visual inspection and the magnitude of the largest variance component from the STC

method whereas the original publication made this adjustment using the maximum pixel

value from the STA. These selected neurons had total spike counts ranging from 192 to

21,894 with a median of 5,426. The receptive fields recovered from two example neurons

appear in Fig 2.7. The observed spatial receptive fields are quite similar across the three
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Figure 2.7: Receptive fields and functional bases from two RGCs. Estimates of the
receptive fields of two example RGC neurons were obtained using STC. Functional
bases were computed for each neuron by taking linear combinations of the components
spanning the receptive fields as prescribed by maximum likelihood estimates of logical
OR and logical AND models.

presented neurons with the most dominant component being monophasic (unmodulated)

and the remaining multiphasic with contiguous regions of amplitude and alternating

polarity similar to findings in the primary visual cortex [17].

Both logical AND and logical OR models were fit for the 49 selected neurons.

The jackknife method [52] was used to form distinct training and cross-validation sets by

dividing the stimulus/response pairs into sections containing 25% of samples. The models

were then trained on 50% of the samples by choosing two of the sections. The remaining

two sections were each assigned to cross-validation and test sets, respectively. Each
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model was fit on four unique arrangements of the sections into training, cross-validation,

and test sets. To compare the relative quality of fit of two models (such as logical OR

versus logical AND), a normalized difference in the log-likelihood was calculated,

∆LA,B =
LB−LA

LA +LB
, (2.8)

where LA and LB are the log-likelihoods of models A and B, respectively, evaluated on

the cross-validation set. When the mean difference taken across jackknives, ∆LA,B, is

greater than zero, model A is deemed to be the more predictive model while B is when

∆LA,B is less than zero. With regard to the two example neurons, logical OR was found

to be the better model for both of them. The neuron labeled neuron #3 (Fig 2.7) had

a relative prediction error of ∆LOR,AND = 0.024±0.002 indicating that the logical OR

model was a significantly better description than the logical AND model. This was

likewise the case for neuron #4 (Fig 2.7) where ∆LOR,AND = 0.034±0.003.

As a baseline assessment of model quality, the functional bases were also com-

pared against predictions made from the STC dimensions. Since STC is nonlinearity-

independent, the function relating the linear projections ΩTst to the probabilistic output

is ambiguous. To limit bias from choosing a potentially erroneous functional form for the

nonlinearity, a primitive choice is to compute an empirical nonlinearity by averaging the

responses from the training set into discrete bins as a function of the stimulus projection

into the receptive field components. Then predictions can be made by projecting novel

stimuli into the receptive field components and looking up the expected response. This

approach was used in Kaardal et al. [51] and is partially reproduced here. However,

this procedure does not scale well because the nonlinearity falls victim to the curse

of dimensionality (Section 1.4.1) and takes exponentially long (as a function of r) to

compute. This became an issue in this reproduction because up to eight receptive field
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components were found for some neurons while only four were found in Kaardal et

al. [51] due to the adjustments made here in the time delays between the alignment of

stimuli and responses.

An alternative binning procedure employed here was to instead average over a

multivariate Gaussian distribution like so:

P(y = 1|st∗) =
∑t∈Ttrain yt e−(∆xt∗, t)

TK−1∆xt∗, t

∑t∈Ttrain e−(∆xt∗, t)TK−1∆xt∗, t
(2.9)

where Ttrain is the set of sample labels that belong to the training set, st∗ is a novel stimulus

(t∗ /∈ Ttrain), ∆xt∗, t = xt∗−xt , xt =ΩTst , and K is a covariance matrix. Intuitively, Eq 2.9

predicts the conditional spiking probability by taking the mean response from the training

set weighted by a Gaussian centered at the novel stimulus projected into the receptive

field. In this case, the covariance matrix was defined as

K−1 =
nbins

σ2
Gauss

diag
(

x(max)−x(min)
)2

(2.10)

where

x(max)
k = max

({
xk,t = ωk · st |∀t ∈ Ttrain

})
, (2.11)

x(min)
k = min

({
xk,t = ωk · st |∀t ∈ Ttrain

})
, (2.12)

nbins = 10, and σGauss was set such as to minimize the negative log-likelihood of predic-

tions made on the cross-validation sets (σGauss ≈ 0.27). The advantage of this procedure

is that the computation scales linearly because there is no need to create a map of the

nonlinearity before forming predictions, the extrapolation to unexplored regions of stim-

ulus space is simpler to compute, and the predictions are more stable to adjustments of

nbins which may suggest that it more efficiently uses the data than the standard binning
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Figure 2.8: Comparing the prediction error of empirical nonlinearities across the
population of RGCs. The relative prediction error (∆LGauss,map) shows that the empiri-
cal Gaussian nonlinearity makes better predictions on the test sets for all neurons in the
data set compared to the discrete mapping of the nonlinearity to bins.

procedure. A comparison is made between the new Gaussian and old discrete mapping

predictions in Fig 2.8 for neurons where r ≤ 6 showing that the new procedure forms

universally better predictions on the test sets and thus the Gaussian nonlinearity will be

used in place of the old approach in the remainder of the chapter.

For both example neurons, it was found that either choice of logical OR or logical

AND models performed better than the empirical STC nonlinearity. Neuron #3’s logical

OR and logical AND models when compared to the STC model performed better with

∆LOR,STC = 0.038±0.004 and ∆LAND,STC = 0.014±0.004, respectively. Similarly, for

neuron #4, ∆LOR,STC = 0.16± 0.02 and ∆LAND,STC = 0.13± 0.02 for logical OR and

logical AND models, respectively.

Across the population of 49 neurons found to have multicomponent receptive

fields, the results largely reflected those of the two example neurons. The logical OR

models outperformed the logical AND models across the neuron population when the

relative prediction error was evaluated on the cross-validation sets (Fig 2.9A). The only

neurons for which the performance was equal were single-component neurons where the



32

10 30 50

0

0.04

0.08

neuron #

Δ
L

O
R

, A
N

D

logical OR

logical AND

10 30 50
neuron #

Δ
L

O
R

, S
T

C

0

0.2

0.4 logical OR

STC

1 2 3 4 5 6 7 80
0

4

8

12

functional basis set size

# 
of

 n
eu

ro
ns

A B

C

Figure 2.9: Comparison of the prediction error between Boolean functional bases
and empirical nonlinearities and the distribution of functional basis set sizes
across RGCs. (A) The relative prediction error (∆L) between the logical OR and
logical AND models evaluated on the cross-validation sets shows that logical OR is the
better model across the data set. (B) The relative prediction error between the best found
functional basis models (which happen to be all logical OR) and the empirical STC
nonlinearity evaluated on the test sets shows that the functional basis models are a better
fit for the vast majority of neurons and comparable on the rest. (C) The distribution of
functional basis set sizes across the population for the logical OR models.

logical OR and logical AND models are equivalent. The logical OR models were then

shown to have mostly better and sometimes comparable prediction error to the empirical

STC nonlinearity (Eq 2.9) evaluated on the test sets (Fig 2.9B).

Unlike the STC-recovered components, each component of the logical OR func-

tional basis in Fig 2.7 is spatially localized and monophasic. While each of the compo-



33

nents explore unique regions of stimulus space, they still overlap near the center of the

image and have non-zero projection onto each other. The functional bases of the example

neurons bear a strong resemblance to what was hypothesized, closely matching the profile

of the literature-inspired RGC in Fig 2.5 where the functional input components were

composed of bipolar cell receptive fields. The number of bipolar cell inputs that ought

to be expected is known to vary with eccentricity (i.e. the angle of a point on the retina

with respect to an axis passing through the fovea and the center of the lens), ganglion cell

type, and species. Past physiological studies have concluded that the number of bipolar

cell inputs should average somewhere between 2 and 10 [39, 53]. For example, a study

by Soodak, Shapley, & Kaplan [53] found that ganglion cells of the domesticated cat

averaged between 2 and 5 distinguishable bipolar cell inputs (dependent on the cell type),

but noted that the number of bipolar cell inputs could be larger due to indistinguishability

of any approximately redundant inputs. Though it is not exactly clear what the expected

number of bipolar cell inputs should be for salamander RGCs, the number of components

in the estimated functional bases were consistent with general expectations, albeit on the

low end of the expected range, where the mean number of functional input components

was 4±2 ranging from zero (neuron #45 had no significant components from the STC

analysis) to eight components (see the histogram in Fig 2.9C for complete results).

To emphasize the difficulty in interpreting neural computations in the space

defined by dimensionality reduction techniques such as STC, empirically binned nonlin-

earities that map stimulus projections onto pairs of basis vectors to predicted responses

are plotted in Fig 2.10 for neuron #3. The plotted nonlinearities correspond to the

marginal conditional probability distributions P(y = 1|xi,x j) for i 6= j where xi = ωi · st

for projections onto the STC components and xi = ci · st for projections onto the func-

tional basis components. It is worth keeping in mind when inspecting Fig 2.10 that the

conditional probabilities are not adjusted in any way to account for poorly sampled priors,
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Figure 2.10: Empirical nonlinearities of an example RGC projected into the re-
ceptive field and functional bases. Empirical nonlinearities are mapped from the
training set data along pairs of components from STC, logical OR, and logical AND
models. Note that the black bins correspond to bins where no training samples were
measured.

P(xi,x j), on the periphery of the distribution and therefore random noise is more likely

to have an influence at the edges (though one would not expect this noise to be correlated

between neighboring bins).

Clearly, the computation of this neuron is more interpretable when projected into

the logical OR functional basis since the probability of a spike increases approximately

monotonically along any ci component (Fig 2.10) and it can be readily assumed that

this trend will continue for those pairs not pictured. The logical AND nonlinearity is

consistent with what would be expected given that neuron #3’s logical AND functional
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basis (Fig 2.7) is composed of four repeats of the STA. The computation is more com-

plicated in STC space, displaying a crescent-like nonlinearity that has been observed

in prior studies [9, 17, 54]. This crescent-like shape makes interpretation of the neural

computation difficult because the threshold-crossing from a primarily silent domain to a

spiking domain is not a monotonic function along the STC components. While the paired

subspaces are computationally meaningful in the functional basis space, the plotted

subspaces are arbitrary in the STC basis and the possibility that these subspaces need to

be rotated to find a more interpretable view of the nonlinearity is a significant limitation

when r > 2, unlike the simple examples in Fig 2.1. From Fig 2.1A one can also see the

resemblance of the logical OR model to a crescent-like nonlinearity in STC space, which

may serve as motivation to try logical OR models when crescent-like nonlinearities are

observed elsewhere. This demonstrates how useful the functional basis method may be

in the effort to better understand the functional neural circuitry.

2.5 Discussion and extensions

While dimensionality reduction techniques have been widely successful in char-

acterizing receptive fields, these methods are ultimately designed to flexibly recover the

receptive field independent of the underlying neural computation. In other words, a good

dimensionality reduction technique is one that is able to reconstruct the receptive field

without significant bias from the specific nonlinearity relating spikes to stimuli. For

dimensionality reduction techniques, it does not matter whether the underlying neural

computation is, say, a logical OR or logical AND. The receptive field is recoverable by

the technique either way. The functional basis method, on the other hand, attempts to

uncover the specific neural computation being performed by the neuron by proposing

and testing hypotheses about the nonlinearity. Through this, the functional basis method
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can discover biologically interpretable components to describe the functional inputs of

neurons. By leveraging both dimensionality reduction and the functional basis method in

conjunction, it is now possible to gain new insights into the neural circuitry behind the

processing of sensory information.

The functional basis also has practical advantages over convolutional dimension-

ality reduction techniques when identifying invariant inputs. Convolutional techniques

succeed when there is a single functional input that is transformed in some sense (e.g.

translation or rotation), but will fail when there are any distinct functional inputs that can-

not be simply related through invariance constraints. Since these convolutional methods

are ultimately optimizing a single component, these techniques may miss any unique

structure of the individual functional inputs like those of the bipolar cells in Fig 2.5

& 2.7. The functional basis method, on the other hand, is able to recover invariant or

approximately invariant inputs without any explicit imposition of invariance on the model.

Of course, whether to use the convolutional methods or the functional basis method may

be dependent on knowledge of the problem since either of the methods require some

assumption about either an explicit relationship between the input components or the

input nonlinearities. It would seem, however, that the functional basis method may be a

better choice in general for its flexibility.

Although this chapter has focused on functional bases derived from Boolean

logical AND and logical OR nonlinearities, the functional basis method can be extended

to include other reasonable hypotheses descriptive of neural computations. For instance,

one may expect that some neurons may receive both excitatory and suppressive inputs

where the neuron will spike provided any excitatory input when no suppressive inputs are

sufficiently activated. If any suppressive inputs are activated, this would be analogous to

inhibition of the neuron’s spiking activity where the neuron will not spike even when an

excitatory input in activated. Such a neuron could be modeled by a product of a logical
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Figure 2.11: Illustration of quadratic functional inputs. In which picture can a
sphere be identified?

AND and logical OR function,

PMIX(y = 1|s) = POR(y = 1|s)PAND(y = 0|s) (2.13)

where PAND(y = 0|s) = 1−PAND(y = 1|s). Numerous other possibilities can be hy-

pothesized as well, including many more Boolean expressions. The functional input

nonlinearities, σk, can also be modified to take account of what is known about the

sensory system. For instance, a quadratic input nonlinearity,

σk(cT
k s) =

1

1+ e−bk−ζ1cT
k s−ζ2(cT

k s)2 , (2.14)

where ζ1 and ζ2 are weightings of a linear and quadratic term in the activation, could be

used to model the functional inputs of a vision neuron that recognizes the presence of an

object under different viewing conditions (e.g. Fig 2.11).

It is worth pointing out that there may be some cases where a functional basis

may be impossible to define as a type of LN model. For example, radially symmetric

nonlinearities where the spiking threshold is circular in some subspace of stimulus space

has been proposed as a computational model for complex cells in V1 of the visual
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cortex [17, 55]. Yet, imperfect radial symmetry could still allow for a functional basis

to be recovered using LN type models. This scenario would appear to be likely given

the imperfections observed in the studied RGCs where the bipolar inputs were only

approximately invariant. Furthermore, given that the physiological inputs of a neuron are

ultimately discrete, such radial symmetry may approximately emerge from functional

input vectors starting from some central origin that are distributed at uniform angles

across the unit circle with equal thresholds.

Having shown the functional basis approach to be of use in studying low-level

vision neurons, the following chapters now expands from the study of early vision

neurons to high-level auditory neurons. The study of high-level auditory neurons presents

new challenges that cannot be simply addressed with the tools previously discussed in

Chapters 1 & 2. Rather, it becomes necessary to return to the problem of dimensionality

reduction and develop a new technique which is the subject of the following chapter.

Chapter 2 is based on material that was published in Kaardal, Fitzgerald, Berry,

and Sharpee, Neural Computation (2013). The dissertation author was the primary

investigator and author of this paper.



Chapter 3

Low-rank minimal models for

multicomponent computations

Having shown that functional bases can be a valuable tool for identifying biologi-

cally interpretable functional inputs to early vision neurons, it is desirable to extend such

analyses to gain insight into the neural computations performed in other sensory systems

and in higher-level regions of the brain. Analyzing high-level neurons is particularly

challenging for dimensionality reduction methods because the computations performed

by such neurons are relatively sophisticated compared to those in early sensory regions

and are often less responsive to noise stimuli. Intuitively, this unresponsiveness is caused

by the unlikelihood that a stimulus will be drawn from a noise distribution with the

specific structure necessary for a high-level neuron to recognize an object and therefore

elicit a spike.

This alone makes methods such as the STA [2,4] and STC [4,20–25] inappropriate

for studying high-level neurons without modifications (see Sections 1.3.1 & 1.3.2) such

as stimulus whitening [56] or removing components from the stimulus space [57, 58].

However, both of the latter come with substantial biases. For instance, one may note that

39
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performing STC on a set of whitened stimuli is equivalent to a linear transformation of the

estimated receptive field from the stimulus space to a “whitened” space. The ambiguity

that remains is whether the receptive field components that appear in this whitened space

are meaningful in the stimulus space since a reversal of the linear transformation back into

stimulus space negates the whitening procedure. Methods that remove components from

the stimulus space have the potential pitfall of removing important structure leading to

artifacts in the receptive field estimate (e.g. removing low absolute variance components

of the stimulus space can lead to high spatial frequencies missing from the estimate).

Using information-theoretic approaches like MID [26] or MNE [28, 29] (see

Sections 1.4 & 1.5) are attractive under such circumstances due to their resistance to

bias when presented with correlated stimuli. Since high-level neural computations are

expected to be sophisticated, exhibiting invariances such as those in Figs 2.2 & 2.3,

one may expect the number of components that span the receptive field to be at least as

many as those in early sensory regions like the retina, where the number of components

was found to range up to eight (Section 2.4). If true, this would make first-order MID

a poor choice due to the curse of dimensionality. Second-order MID [27, 29] may be

tractable and has the advantage of being nonlinearity-independent, but the dependence

of the results on binning an empirical nonlinearity can be a disadvantageous, especially

when the amount of data available is limited. It was decided, therefore, that second-order

MNE [28, 29] would be an appropriate choice for studying high-level sensory neurons.

Although MNE is nonlinearity-dependent, unlike MID and STC, the nonlinearity is

principled and limits bias as discussed in Section 1.5.

Recall that second-order MNE takes the form

P(y = 1|s) = 1
1+ e−z(s) , z(s) = a+hTs+ sTJs (3.1)
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where a ∈ R, h ∈ RD, and J ∈ RD×D are unknown weights determined by minimizing

the negative log-likelihood. Altogether, the number of unique weights necessary to

optimize is 1+D+D(D+1)/2 (note that the D(D+1)/2 term comes from the fact that

an arbitrary antisymmetric matrix can be added to J without changing the output of the

nonlinearity) while only 1+D+ rD weights are ultimately necessary to specify an r

component receptive field. The dimensionality of second-order MNE (and second-order

MID, for that matter) is problematic because the number of weights vastly exceeds the

number of samples in typical data sets. Systems having more weights than samples have

an elevated risk of overfitting because there is at least one predictive variable for each

sample encountered. This sampling problem is amplified for correlated and especially

natural stimuli where the relationships between stimuli can cause the stimulus distribution

to be poorly explored, effectively reducing the sample size of the data set.

In this chapter, the second-order MNE model is extended with applications to high-

level sensory neurons in mind by (i) transforming the second-order MNE optimization

problem into a structured matrix factorization problem and (ii) applying a specific kind

of regularization known as the nuclear-norm (or trace-norm) regularization [59–61]

to de-noise the receptive field estimate. This model extension will be referred to as

the low-rank MNE model and the optimization procedure the low-rank MNE method.

Henceforth, the usual second-order MNE without the proposed extensions will be referred

to as full-rank MNE to distinguish it from low-rank MNE. This chapter focuses on the

theoretical development of the low-rank MNE method. Later on, Chapter 4 will cover

practical elements of the method and applications to high-level auditory neurons where

the method is shown to not only lead to a substantial improvement over prior methods,

but is the only one of the tested models that recovers multicomponent receptive fields of

high-level auditory neurons with statistical significance.
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3.1 The low-rank MNE model

Since the purpose of the second-order MNE method is to ultimately recover

components spanning the receptive field through factorization of the optimal matrix

J, a reasonable strategy to reduce the dimensionality of the weight space is to pre-

factorize J prior to optimization into the bilinear outer-product, J = UVT, of the two

matrices, U,V ∈RD×r. This bilinear factorization reduces the size of the weight space to

1+D+2rD and is especially helpful when r� D. The weights a, h, U, and V can then

be found, once again, by minimizing the negative log-likelihood,

L(a,h,U,V) =
1

Nsamp

Nsamp

∑
t=1

[
yt log

(
Pt
)
+(1− yt) log

(
1−Pt

)]
, (3.2)

which is reproduced here to introduce a shorthand for the nonlinearity at sample t,

Pt = P(y = 1|st). Since real eigenvalues and eigenvectors are desired, the resulting

optimal J can be symmetrized,

Jsym =
1
2
(
J+JT) , (3.3)

without loss of generality and then Jsym can be diagonalized to reveal components of the

receptive field.

Following the above procedure, one may be perplexed when the rank of Jsym

is found to be greater than r. This inconsistency of expectations (i.e. rank
(
Jsym

)
=

rank(J)≤ r) versus the emergent reality is due to a subtle problem caused by the bilinear

factorization of J. When J is factorized into U and V and optimized, J and JT are not

guaranteed to span the same range space unless R(U) =R(V).

Proof. Case 1: suppose, without loss of generality, R(U)⊃R(V). Then the projection

of U into the null space of V is non-zero, PN (V)U 6= 0, where PN (V) = I−VV†
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is the null space projection operator and V† is the generalized inverse of V. Case 2:

conversely, if R(U) =R(V), then PN (V)U = 0. Since in both cases PN (V)JT = 0

and PN (U)J = 0 but PN (V)J =PN (U)JT = 0 is only guaranteed to be true in case

2, then PN (J)JT =PN
(
JT)J = 0 can only be guaranteed when R(J) =R

(
JT).

Consequently, R
(
Jsym

)
⊇R(J) and Jsym may take on rank

(
Jsym

)
≤ 2r even while

rank(J) ≤ r. This is clearly problematic because if U and V are only able to take on

a maximum rank of r, there is not generally a sufficient number of weights present

to adequately fit a rank 2r matrix. A remedy to this problem that will guarantee that

rank
(
Jsym

)
= rank(J) is to add the restriction that valid low-rank MNE models must be

constrained to satisfy the range space constraint:

R(U) =R(V) . (3.4)

3.1.1 Constraint formulations

There are several possible ways to constrain U and V to satisfy Eq 3.4, a few

of which are surveyed here along with a discussion of their respective merits. The first

proposal is the set of quadratic constraints expressed by

UUT = VVT (3.5)

which satisfy Eq 3.4 proven in the following.

Proof. The quadratic constraints in Eq 3.5 satisfy Eq 3.4 because PN (U)UUT =

[PN (U)U]UT = 0 and PN (V)UUT = PN (V)VVT = 0 therefore PN (V)U = 0

which guarantees the condition in Eq 3.4 is satisfied (and vice versa when U is re-

placed with V).

The trouble with this formulation is that the there are D(D+ 1)/2 unique constraints
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added to the problem that may be intractable to satisfy for large D (and may defeat

possible goals like reducing memory usage or increasing computation speed over the

full-rank MNE method, for instance) and are independent of r. A similar formulation is

the bilinear constraints,

UVT = VUT, (3.6)

that, when satisfied, ensure that Jsym = J = JT and trivially satisfy Eq 3.4. This is only

a marginal improvement over the quadratic constraints for large D, where there are

D(D−1)/2 unique constraints.

A third constraint one might propose are the inner-product constraints,

(
U•,k ·V•,k∥∥U•,k
∥∥

2

∥∥V•,k
∥∥

2

)2

= 1 ⇒
(
U•,k ·V•,k

)2
=
∥∥U•,k

∥∥2
2

∥∥V•,k
∥∥2

2 , ∀k, (3.7)

where ‖·‖2 is the `2-norm (i.e. ‖v‖2 =
√

∑
D
i=1 v2

i ). This form of the constraints satisfies

Eq 3.4 by forcing U•,k and V•,k to be parallel. Unlike the quadratic and bilinear con-

straints, the inner-product constraints are relatively compact, where the total number

of constraints is r, and would work nicely to keep the problem size small. However,

numerical experiments performed with an interior-point method found this form of the

constraints has difficulty converging to a feasible point, which is likely due to the fact

that it is quite nonlinear and nonlinear constraints can potentially lead to convergence

at an infeasible stationary point. Of course, the square of the term on the left-hand-side

could be replaced with an absolute value, but that would likely not improve the trickiness

of the optimization because the absolute value would introduce non-differentiability. In

fact, the quadratic (Eq 3.5) and bilinear constraints (Eq 3.6) may not be guaranteed to

converge either since the Jacobians of the constraints with respect to the weights can
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be rank-deficient which can result in the Karush-Kuhn-Tucker (KKT) conditions (also

known as first-order necessary conditions) not being satisfied at a stationary point on the

boundary of the feasible region of the weight space [41]. Since the condition in Eq 3.4

implies the necessity of equality constraints, any feasible stationary point must lie on the

boundary of the feasible region.

There are several conditions in which the constraints can be guaranteed to satisfy

the KKT conditions at a solution known as constraint qualifications (or regularity

conditions) [41]. Unfortunately, all of the constraints proposed thus far do not satisfy

any known constraint qualifications. This does not mean that the optimization will not

converge with quadratic, bilinear, or inner-product constraints for a given problem, but

rather that the optimization cannot be guaranteed to converge. The simplest constraints

that guarantee convergence to a feasible stationary point are affine functions (satisfying

the linear independence constraint qualification [41]). A set of linear equality constraints

can be formulated by splitting J into the sum of a positive semidefinite (PSD) and negative

semidefinite (NSD) matrix, J = J(PSD)+ J(NSD). These two matrices each have their

own assigned rank, rPSD and rNSD, and the rank of J is therefore rank(J)≤ rPSD + rNSD.

Each of these matrices can then be factorized separately into U(PSD),V(PSD) ∈ RD×rPSD

and U(NSD),V(NSD) ∈ RD×rNSD . The linear constraints can be written in terms of the

factorization matrices as

U(PSD) = V(PSD), U(NSD) =−V(NSD). (3.8)

These constraints keep the problem size small (the number of constraints is rD), unlike

the quadratic and bilinear constraints, while having better convergence properties than the

inner-product constraints and satisfy Eq 3.4. The disadvantage of the linear constraints

is having to choose the hyperparameters rPSD and rNSD; but principled strategies are
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available that make these hyperparameters less burdensome.

The final constraint proposed here is a relaxation of the linear equality constraints

(Eq 3.8) by instead only insisting that U and V are equal up to a variable diagonal scaling

matrix, W ∈ Rr×r. These relaxed linear equality constraints can be written as

V = UW. (3.9)

This would avoid the necessity of choosing rPSD and rNSD. However, if these constraints

are directly inserted into the model such that zt = a+hTst + sT
t UWUTst (Eq 3.1), the

optimization would be with respect to a third-order polynomial of the weights (since W

would need to be optimized too) which may be a more difficult optimization. Furthermore,

if the constraints are imposed via the method of Lagrange multipliers, the constraints

would not only fail to satisfy a known constraint qualification, the objective function

has no dependence on W and therefore the Hessian of the objective function will be

perpetually singular.

3.1.2 Nuclear-norm regularization

In its present formulation, the low-rank MNE method attempts to find a low-rank

compression of a solution to the full-rank MNE problem (without early stopping or any

other form of regularization). Since the full-rank MNE method is likely to overfit, the

low-rank compression is therefore prone to recovering components that are dominated

by overfitting artifacts. These artifacts can be largely eliminated through a principled

application of regularization.

In data-driven applications where the proposed model is intended to find the

best solution given the data (as opposed to optimization problems that involve solving

an exact function), the ability of a model to generalize to unseen data is often given
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great importance. In other words, a good model should be able to predict responses to

novel stimuli reasonably well. In such data-driven problems, solutions that lower the

generalization error may take on a higher priority than globally optimal solutions on the

training data. One technique to reduce generalization error is to penalize the objective

function through some form of regularization. The type of regularization that is applied

influences the model by biasing it towards some target structure. It is therefore important

for one to be careful about what type of regularization is applied since a decrease in

generalization error can come at the cost of increasingly biased models [62].

Some well known types of regularization penalties include the Frobenius-norm

and LASSO regularization. These types of regularization are applied by adding a penalty

function into the objective function; e.g.

f (x) = L(x)+ ε`(x) (3.10)

where L(x) is the negative log-likelihood of some weights, x, `(x) ≥ 0 is a penalty

function, ε≥ 0 is a regularization parameter that adjusts the strength of the penalty, and

f (x) is the regularized objective function. Revisiting the full-rank MNE model, one

could attenuate the noise in J by applying Frobenius-norm regularization as such,

`F(J) = ‖J‖2
F =

D

∑
i=1

D

∑
j=1

J2
i, j, (3.11)

which has the impact of decreasing the overall magnitude of the matrix elements taken

in quadrature and consequently leads to a reduction in the absolute variance of J’s

eigenvalue spectrum. If one instead intends to search for a sparse version of J, LASSO
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regularization can be generalized from vectors to matrices by the function

`1(J) = ‖J‖1 =
D

∑
i=1

D

∑
j=1
|Ji, j|, (3.12)

where the model is pressed to limit the number of non-zero elements in J. Ideally, penalty

functions such as these would be applied where there is justification for the imposed

structure on J. Under the present circumstances, there would appear to be little general

motivation for employing these two forms of regularization. The only expectation about

J is that its eigendecomposition will uncover at least a partial description of the receptive

field. For the sake of interpretability, and because the low-rank MNE method is intended

to be a dimensionality reduction technique, one may then hope or even insist that r� D.

Low-rank structure may be imposed on J via sparse regularization of its eigen-

value spectrum where the objective function can be penalized by counting the number of

non-zero eigenvalues in J’s eigenvalue spectrum. In a way, this is already being done

by the bilinear factorization of J where rPSD + rNSD would be the number of non-zero

eigenvalues less any additional rank-deficiency of J. It would, however, be desirable to

have more flexibility in adjusting the rank of the model since the function that counts

the number of non-zero eigenvalues is discontinuous. Furthermore, as will be shown

later in Chapter 4, it would also be helpful to have a way to adjust the variance of the

receptive field components such that the MNE models have better generalization ability

and, importantly, to eliminate insignificant from the receptive field estimate. It will turn

out that the addition of regularization is indispensable in practical applications.

This is where the nuclear-norm [59–61] can be of value because the nuclear-

norm penalizes J such that its eigenvalue spectrum is sparse. Similar to how LASSO

regularization uses the absolute value to encourage elementwise sparsity, the nuclear-
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norm promotes sparsity of the eigenvalue spectrum via the function

`∗(J) = Tr |Λ|=
D

∑
k=1
|Λk,k| (3.13)

where Tr(·) is the trace of a matrix. This incarnation of the nuclear-norm may give the

reader pause. After all, this function implies the optimization would need to be penalized

by a function of the eigendecomposition of J for which there is not an analytic expression

of the form Λ(J). Of course, had J been guaranteed to be positive semidefinite, then

a simple workaround would be to take Tr(J) (or −Tr(J) if J is negative semidefinite).

This is unfortunately not generally quite as straight-forward for low-rank MNE because

J cannot be assumed to be a semidefinite matrix of either sort. However, splitting J

into the two semidefinite matrices from above is a resolution to this problem where the

nuclear-norm can be simply written as

`∗(J) = Tr
(

J(PSD)−J(NSD)
)
. (3.14)

For the full-rank MNE method, this would require the addition of semidefiniteness

constraints, transforming the optimization from a nonlinear program to a nonlinear

semidefinite program that may not scale well to large D problems. This regularization is

quite tractable for the linearly constrained low-rank MNE problems, however. It follows

from Eq 3.14 that

`∗(U,V) =Tr
(

U(PSD)V(PSD)T
)
−Tr

(
U(NSD)V(NSD)T

)
=

1
2

Tr
(

U(PSD)U(PSD)T
+V(PSD)V(PSD)T

)
+

1
2

Tr
(

U(NSD)U(NSD)T
+V(NSD)V(NSD)T

)
⇒ `∗(U,V) =

1
2

(
‖U‖2

F +‖V‖
2
F

)
(3.15)
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reached by substitution with the linear equality constraints (Eq 3.8). Apparently, nuclear-

norm regularization reduces to Frobenius-norm regularization with respect to U and V

in this case. Since one may entertain the possibility of using constraints alternative to

the linear equality constraints, it can also be shown that the nuclear-norm will follow

the same form more generally by invoking a semidefinite embedding of J within a larger

positive semidefinite matrix [59–61, 63]. If a matrix Q is defined as

QT =

[
UT, VT

]
, (3.16)

then the outer-product is the positive semidefinite matrix

X = QQT =

 UUT, J

JT, VVT

 (3.17)

where J is embedded on the off-diagonal blocks. If one takes the trace of X , the same

result from Eq 3.15 is obtained:

1
2

Tr(X ) =
1
2

Tr
(
UUT)+ 1

2
Tr
(
VVT)= 1

2

(
‖U‖2

F +‖V‖
2
F

)
(3.18)

≡ 1
2
‖Q‖2

F . (3.19)

Indeed, it can then be proven that regularizing over this semidefinite embedding is an

effective proxy for the nuclear-norm even in the absence of the linear equality constraints.

Proof. Since U spans the same range space as UUT and V spans the same range space

as VVT, it can be shown that regularizing over Tr(X ) can be used in place of Eq 3.13.

Since PN (U)J = 0 and PN (V)JT = 0, this means that the left eigenvectors of J, ΩL

are a subset of U and the right eigenvectors of J, ΩR, are a subset of V. This leads to the

relation rank(J)≤min(rank(U) , rank(V)) and thus it can be concluded that penalizing
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Tr(X ) is an effective surrogate for the nuclear-norm penalty.

An atypical modification to the nuclear-norm regularization procedure is used to

gain further improvements on the estimated low-rank MNE models. Instead of using

a single regularization parameter to adjust the strength of the nuclear-norm penalty,

multiple regularization parameters are defined with respect to each of the paired columns

of U and V. Explicitly, the penalized objective function is (in terms of Q from Eq 3.16)

f (a,h,Q) = L(a,h,Q)+
r

∑
k=1

εk`∗(Q•,k) (3.20)

= L(a,h,Q)+
1
2

r

∑
k=1

εk
∥∥Q•,k

∥∥2
F (3.21)

where εk ≥ 0 are the regularization parameters. When using a single regularization

parameter, there is a substantial risk that the amount of regularization necessary to

eliminate (usually low absolute variance) fictitious components from noisy data may be at

the expense of substantial degradation of the higher absolute variance components. Using

multiple regularization parameters circumvents this problem but does so by introducing a

larger hyperparameter search space.

For a short digression about a Bayesian interpretation of the nuclear-norm, see

Appendix A.
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3.2 The optimization problem

Putting all the pieces together from the prior section, the low-rank MNE problem

is a nonlinear program of the form

min
a,h,Q

f (a,h,Q) = min
a,h,Q

L(a,h,Q)+
r

∑
k=1

εk`∗
(
Q•,k

)
subject to ∀k, Ak,kQ•,k = 0

(3.22)

where
{

Ak,k ∈ RD×2D|k ∈ {1, · · · , r}
}

are a set of matrices defined as

Ak,k =

[
I, πkI

]
(3.23)

that impose the linear equality constraints in Eq 3.8 and Q was defined in Eq 3.16. The

parameter πk ∈ {−1,1} determines whether the kth component of Q is constrained by

the positive semidefinite constraints (πk =−1) or the negative semidefinite constraints

(πk = 1). The minimization problem in Eq 3.22 will be called the low-rank MNE problem

from here onward. The goal is to find the weights a∗, h∗, and Q∗ that are a feasible local

minimizer of the low-rank MNE problem.

There are two approaches that may be used to find a feasible local minimizer. The

first way, as touched on before, is to directly substitute V =−πkU into f transforming

the problem into an unconstrained optimization problem. The second way is to impose

the constraints by forming the Lagrangian,

L(a,h,Q;Ψ) = f (a,h,Q)−
r

∑
k=1

ΨT
•,kAk,kQ•,k, (3.24)

where Ψ ∈ RD×r is a matrix of Lagrange multipliers. The results are the same regardless

of which approach is used. For the ensuing theoretical discussion, the Lagrangian
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approach will be studied since it is easier to transform the analysis to other constraints (if

one so chooses to do so).

3.2.1 Optimality conditions

To certify that a set of weights is a feasible local minimizer of the low-rank MNE

problem, the first-order necessary conditions (the KKT conditions) and the second-order

sufficient conditions must be satisfied. For convex problems like the full-rank MNE

problem, it is both necessary and sufficient that the KKT conditions be satisfied since

it is a convex problem. The low-rank MNE problem, on the other hand, is shown to

be nonconvex where the second-order conditions are needed for sufficiency. These

optimality conditions are derived here because they will become useful later. In the

following discussion, it will be helpful to define a weight vector,

xT =

[
a, hT, QT

•,1, · · · , QT
•,r

]
, (3.25)

and a quadratic feature matrix,

Dt =

 0, stsT
t

stsT
t ,0

 (3.26)

for the tth sample of the stimulus space. Gradients with respect to subsets of the weights

are represented by ∇a, ∇h, ∇Q•,k , etc., having the same shape and ordering as the

weights represented in the subscript.

The KKT conditions are summarized in Prop 3.1.

Proposition 3.1. Karush-Kuhn-Tucker (KKT) conditions: the first-order necessary con-

ditions for a feasible local minimum of f (x) are that the gradient of the Lagrangian with
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respect to the weights should be zero,

∇aL =
1

Nsamp
∑
t
(Pt− yt) = 0 (3.27)

∇hL =
1

Nsamp
∑
t
(Pt− yt)st = 0 (3.28)

∇Q•,kL =

[
1

Nsamp
∑
t
(Pt− yt)Dt + εkI

]
Q•,k−AT

k,kΨ•,k = 0, ∀k, (3.29)

and the solution must satisfy the equality constraints,

Ak,kQ•,k = 0, ∀k. (3.30)

As was already noted before, the low-rank MNE problem is guaranteed to satisfy the

KKT conditions at a feasible local minimizer because the constraints satisfy the linear

independence constraint qualifications [41]. Since the (penalized) objective function, f ,

of the low-rank MNE problem is bounded from below, there is also guaranteed to be

at least one feasible stationary point that satisfies the KKT conditions. However, it is

not possible from the KKT conditions alone to determine whether a stationary point is a

local minimum, local maximum, or saddle point; hence why the KKT conditions are, in

general, necessary but insufficient to certify the type of local optima.

Notably, when the KKT conditions are satisfied Q•,k must be complementary to

Eq 3.29 because
(

QT
•,kAT

k,k

)
Ψ•,k = 0 (Eq 3.22) and therefore

QT
•,k

[
1

Nsamp
∑
t
(Pt− yt)Dt + εkI

]
Q•,k = 0

⇒
[

1
Nsamp

∑
t
(Pt− yt)Dt + εkI

]
Q•,k = 0

(3.31)

where the bottom line follows because the bracketed term is a symmetric matrix. This
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further implies that Ψ•,k is complementary to the column-space of Ak,k. These results

will become important in the forthcoming discussion of the locally and globally optimal

regularization domains.

To certify that a stationary point is a local minimum requires an assessment of

the second-order sufficient conditions in Prop 3.2.

Proposition 3.2. Second-order sufficient conditions: if the KKT conditions in Prop 3.1

are satisfied at point x∗ in weight space and

S =N (A)∇2
xx f |x∗N (A)T ≥ 0 (3.32)

where A ∈ RrD×(1+D+2rD) is the Jacobian matrix of the constraints and N (A) returns

the null space of A, then x∗ is a feasible local minimum of f . Note that the comparison

of the matrix S to a scalar indicates the definiteness of the matrix (e.g. S ≥ 0 means S

is positive semidefinite).

The intuition for Prop 3.2 is that the Hessian of f (x) must be positive semidefinite for

displacements of x along any feasible directions arbitrarily close to a stationary point, x∗,

in order for the stationary point to be a local minimum.

In terms of zt (Eq 3.1), the Hessian is

∇2
xx f =

positive semidefinite, RRT︷ ︸︸ ︷
1

Nsamp
∑
t

Pt(1−Pt)∇xzt (∇xzt)
T

+
1

Nsamp
∑
t
(Pt− yt)∇2

xxzt︸ ︷︷ ︸
indefinite, M

+
r

∑
k=1

εk∇2
xx`∗(Q•,k)︸ ︷︷ ︸

positive semidefinite, E

(3.33)
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where the Hessian operator is ∇xx =∇x∇T
x ,

∇2
xxzt =



0, 0, · · · , 0

0, Dt ,
. . . ,

...
..., . . . , . . . , 0

0, · · · , 0, Dt


, and E =



0, 0, · · · , 0

0, ε1I, . . . ,
...

..., . . . , . . . , 0

0, · · · , 0, εrI


. (3.34)

The matrix ∇2
xxzt is a symmetric indefinite block diagonal matrix and E is a strictly posi-

tive semidefinite matrix (“strictly” is used here to indicate that the matrix is guaranteed

to have eigenvalues equal to zero, thus excluding the possibility of positive definiteness).

Because of the indefinite matrix M in Eq 3.33, the objective function f is nonconvex.

Application of the linear equality constraints does not change the nonconvexity of the

problem and it can be concluded that the low-rank MNE problem is nonconvex.

The nonconvexity of the low-rank MNE problem invites the possibility that the

objective function defined on the feasible weight space has saddle points and local

minima, many of which may be suboptimal. However, nonconvexity alone does not

prove the existence of suboptimal local minima. An empirical approach was used to

investigate the existence of suboptimal local minima by generating random optimization

problems. These random problems were generated by drawing Nsamp = 100 stimulus

samples of dimensionality D = 2 from a normal distribution and drawing random weight

vectors, x, from a normal distribution with variance 0.1. The ground truth model defined

by x had rank ropt = 2. Low-rank MNE problems with r = 1 models were optimized

10 times with random initializations using an interior-point algorithm (see Section 3.3)

with fixed sign for π1 (Eq 3.22 & 3.23) across trials and ε1 = 0. If at least two models in

these ten trials differed in negative log-likelihood by 1 ·10−4, the problem was stored for

later visual inspection to ensure that this difference was not due to imprecise fitting. This

visual inspection was performed by plotting f in U space and observing the existence
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of spatially separated minima (apart from those that are due to symmetry across the

origin). Indeed, counterexamples were found that nullify the hypothesis that the low-

rank MNE problem does not have suboptimal local minima; one of which is shown

in Fig 3.1. However, few counterexamples were witnessed, requiring around ∼ 103

random problems be generated to find a counterexample with the vast majority of random

problems having only global minima. It was observed that suboptimal minima appeared

to only occur when there was some approximate degeneracy in the length of Q•,1 for

each solution and, when suboptimal local minima did exist, there were only up to ropt

unique local minima. For random problems where x was drawn from distributions with

larger variance and with D > 2 and ropt > 2, counterexamples were similarly difficult

to find (in fact, counterexamples were harder to find at higher variances). It appears,

then, that suboptimal local minima may be rare at the very least for the most predictive

components of the low-rank MNE models.

3.2.2 Locally and globally optimal regularization domains

Since the nuclear-norm penalty functions, `∗, are convex functions with respect to

the weights, it is possible to manipulate the regularization parameters, {εk}, such that the

eigenvalues of the positive semidefinite matrix E overwhelm the contributions of negative

variance from the indefinite matrix M in the Hessian. By doing so, it can be shown that

there is a domain for which solutions of the low-rank MNE problem are guaranteed to be

globally optimal. First, one may observe that there are some values of {εk} such that the

Hessian of f becomes positive semidefinite for a given x.

Proposition 3.3. Given an arbitrary weight vector x, there is a threshold value of εk that

satisfies εk ≤ λmax (M) (where λmax (M) is the largest eigenvalue of M) such that if all

εk are greater than or equal to this threshold then ∇2
xx f evaluated at x is guaranteed to

be positive semidefinite.
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Figure 3.1: It is possible for suboptimal local minima to exist in the low-rank MNE
problem. The negative log-likelihood, L, is plotted as a function of dimensions U1
and U2 (where a and h are computed for each U1 and U2) of a randomly generated
problem constructed from ground truth weights: a =−0.6680, hT = [0.5251,−0.4768],
UT
•,1 = VT

•,1 = [0.1722,−0.5515], and UT
•,2 = VT

•,2 = [−0.6045,−0.1284]. Note that
the components of the ground truth matrix U are plotted as arrows. Suboptimal local
minima (north-south red circles) and global minima (east-west blue circles) are marked
where minima symmetric across the origin are equivalent solutions.

Proof. Assuming that x is fixed, the characteristic polynomial of M+E is

det(M+E−λI) =−λ

r

∏
k=1

det
(
[λ− εk]

2 I− [∇JL]2
)
= 0 (3.35)

obtained through the block LDU decomposition where λ is an eigenvalue of the Hessian

and ∇JL ∈ RD×D is a gradient matrix of the negative log-likelihood with respect to J.

For any λ that is a solution to Eq 3.35, there is a corresponding eigenvalue, λ
′
, symmetric

across εk that is also a solution: λ
′
= εk±|λ−εk|. Since all εk ≥ 0, the minimum possible

eigenvalue of M+E at x appears when εk = 0 and is therefore equal to the minimum

eigenvalue of M, λmin (M). Due to symmetry of the eigenvalue spectrum, λmin (M) =

−λmax (M). Therefore, if εk ≥ λmax (M) for all k at x, the Hessian is then guaranteed
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to be positive semidefinite at x. Because λmin
(
∇2

xx f
)
≥ λmin

(
RRT)+ λmin (M+E),

εk = λmax (M) is an upper bound on εk at and above which the Hessian can be guaranteed

to be positive semidefinite.

Now, suppose a (nonlinear) semidefinite program (SDP) is designed equivalent to

the low-rank MNE problem [64]:

min
a,h,{Xk}

f (a,h,{Xk})

subject to ∀k,


Jk−JT

k = 0,

rank(Xk)≤ 1,

Xk ≥ 0

(3.36)

where f is minimized with respect to a, h, and a set of matrices,
{
Xk ∈ R2D×2D|k ∈

{1, . . . , r}
}

. When the positive semidefiniteness constraint is imposed, each Xk is

equivalent to a semidefinite embedding matrix (Eq 3.17), Xk = Q(k)Q(k)T where Q(k) ∈

RD×D are the set of factorization matrices associated with Xk. When the rank constraint

is imposed on the SDP, then Xk = Q•,kQT
•,k. The nuclear-norm regularization penalty

function is then simply `∗(Xk) =
1
2 Tr(Xk) for the kth embedding matrix.

In its present form, the SDP is nonconvex due to the rank constraint where any iter-

ation X (n+1)
k =X (n)

k +α∆Xk for α > 0 from point X (n)
k towards point X (n+1)

k is infeasi-

ble unless the update α∆Xk is such that (i) R
(
X (n+1)

k

)
=R

(
X (n)

k

)
and rank

(
X (n)

k

)
=

1 or (ii) R
(
X (n+1)

k

)
6=R

(
X (n)

k

)
, rank

(
X (n)

k

)
= 1, and rank

(
X (n+1)

k

)
= 1. Updates

along the direction of the first case are convex but this case is a relatively boring rescaling

of the matrix from iteration n. The second case is more interesting because it fundamen-

tally changes the embedding matrix; but it is nonconvex because it passes through an

intermediate infeasible space where X (n)
k +α∆Xk when ∆Xk is non-trivial. If, however,

the SDP is relaxed by either dropping the rank constraint or equivalently replacing the
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rank constraint with rank(Xk)≤ 2D, the SDP is well-known to be convex [65, 66]. This

convex relaxation of the SDP can be exploited to show that there exists a globally optimal

regularization domain.

Proposition 3.4. (based on proposition 4 from Bach et al. [64] and theorem 2 from

Haeffele et al. [67]) If x∗ is a feasible local minimizer of the low-rank MNE problem

(Eq 3.22 & Eq 3.36) and the condition

∀k, min({εk})≥ λmax

(
1

Nsamp
∑
t
(Pt− yt)Dt

)
= 2λmax(∇XkL) (3.37)

is satisfied at x∗ then x∗ is a feasible global minimizer of the low-rank MNE problem (note

that ∇XkL ∈ R2D×2D is a gradient matrix of the negative log-likelihood with respect to

Xk).

Proof. According to Prop 3.3, there is some εk above which 2∇Xk f is positive definite

for a given x. It turns out since ∇XiL = ∇X jL for any of the ith or jth member of

the set {Xk} that the value of εk such that the Hessian is positive semidefinite is equal

for all i and j. Thus, if the minimum εk across all k satisfies Eq 3.37, the Hessian is

guaranteed to be positive semidefinite at x. Suppose x∗ is a feasible local minimizer of

the low-rank MNE problem and the conditions in Prop 3.4 are satisfied, then ∇Xk f are

positive semidefinite for all k and ∇Xk fX ∗k = 0 (Eq 3.31) when evaluated at the solution

x∗. It follows from here that x∗ is then a feasible global minimizer of the relaxed SDP

and more generally of f . This is because the corresponding weights from the SDP for

a∗, h∗, and {X ∗k } are feasible global minimizers of the relaxed SDP shown through the
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first-order Taylor series expansion of f with respect to {Xk} about the solution:

f (a∗,h∗,{Xk})≈ f (a∗,h∗,{X ∗k })+
r

∑
k=1

Tr
([

∇Xk f |a∗,h∗,{X ∗k }
]T

[Xk−X ∗k ]
)

= f (a∗,h∗,{X ∗k })+
r

∑
k=1

Tr
([

∇Xk f |a∗,h∗,{X ∗k }
]T

Xk

)
. (3.38)

No feasible Xk can locally decrease f because the trace of the product of two positive

semidefinite matrices is either positive or zero. This, combined with the fact that the

relaxed SDP is convex, leads to the conclusion that x∗ is a feasible global minimizer of f .

Therefore, solutions to the low-rank MNE problem are globally optimal when Prop 3.4 is

satisfied.

Low-rank MNE models optimized to satisfy Prop 3.4 belong to a regularization

domain with globally optimal solutions. It should be made clear, however, that these

solutions are globally optimal for a low-rank MNE problem given a specific set of regu-

larization parameters and are not globally optimal solutions to the unregularized problem.

In some cases, solutions in the globally optimal domain can be good approximations

to the global minimum of the unregularized problem [64, 66, 67]. In past studies of

structured matrix factorization problems [64, 66, 67], the use of convex relaxations has

been motivated by the goal of obtaining good approximations to the global minimum

of some low-rank nonconvex matrix factorization problem. A secondary motivation can

also be to find good approximate factorizations of low-rank matrices in extremely large-

scale convex programs where solving for J, for instance, is impractical. For problems

where J is not low-rank (either due to the ground truth being of higher-rank or noise

corruption) but a low-rank approximation is desirable, the globally optimal domain may

poorly approximate the components due to the large amount of regularization required to

eliminate undesired components. This makes the locally optimal regularization domain

of value because it may be possible to find more generalizable solutions with smaller
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regularization parameters. This topic will be discussed further when the low-rank MNE

method is applied in Chapter 4. It is worth noting that if r = D in the low-rank MNE

model, any local minimum is a global minimum for any feasible {εk} because ∇XL = 0

at a local minimum under the minimal regularization εk = 0 for all k.

With regard to the to locally optimal domain, there is a secondary notable conse-

quence of Prop 3.4 that is stated here for the sake of completeness.

Proposition 3.5. Given a feasible local minimizer x∗ of the low-rank MNE problem, the

quadratic weights at the solution, Q∗, are a unique solution along the unit matrix Q̂∗

up to a change in sign of the columns; i.e. ±Q̂•,k for any k are equivalent solutions. If

Q∗Q∗T is degenerate (i.e. has sets of eigenvalues with equal variance), then the solution

is unique along directions within the subspace spanned by the degenerate eigenvectors of

Q∗Q∗T. Note that a unit matrix is defined here as Q̂ = Q/‖Q‖F.

Proof. In contrast to the globally optimal domain, ∇Xk f is not guaranteed to be positive

semidefinite at a feasible local minimizer x∗. Yet, f remains a convex function of the

SDP weights a, h, and {Xk} and {X ∗k } is still a set of matrices complementary to ∇Xk f

due to the satisfaction of Eq 3.31 at x∗. Intuitively, this means that the direction of

descent of the convex objective function with respect to {Xk} is perpendicular to the

direction defined by {X ∗k } as in Eq 3.38 and f is therefore monotonically increasing

along the set of unit embedding matrices {X̂ ∗k } in directions pointing away from the

solution. Thus, each X ∗k is a unique solution along unit matrix X̂ ∗k . In factorized

space, these unit embedding matrices can be uniquely decomposed up to a sign as

X̂ ∗k =
(
±Q̂∗•,k

)(
±Q̂∗T•,k

)
= Q̂∗•,kQ̂∗T•,k unless some subset of {X ∗k } are degenerate in

which case the decomposition of the degenerate embedding matrices is unique up to a

rotation of the collection of their eigenvectors.

The intuitive meaning of Prop 3.5 is that a solution with Q∗ is globally optimal

along the unit matrix Q̂. This conclusion could be potentially of interest for finding
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globally optimal solutions in the locally optimal domain and is derived in preparation for

possible future advancements in mathematical optimization methods. At the moment,

applying Prop 3.5 would theoretically decrease the number of iterations required to reach

a solution in a branch and bound algorithm. This would, however, be impractical for the

problem sizes in this paper (at least at the time of writing this) since the modified branch

and bound algorithm would still be at worst an exponential time algorithm.

3.3 Optimizing the model weights

The focus of this section is on solving the low-rank MNE problem in Eq 3.22

for a given set of nuclear-norm regularization parameters, {εk}. The topic of finding

appropriate settings for the regularization parameters is treated separately in Section 4.1.

More specifically, the focus here is to propose algorithms that guarantee convergence

to a feasible local minimizer of the objective function, f , with respect to the weights at

some finite feasible point in weight space, a∗, h∗, Q∗. Any gradient-based solver can

be used with some degree of success, though second-order methods such as Newton’s

method and quasi-Newton methods are recommended, depending on the problem size,

since these methods can explicitly avoid convergence to saddle points.

To leave open the option of using the method of Lagrange multipliers, a brief

summary of an interior-point method based on Chapter 19 of Nocedal & Wright [41] is

provided. The interior-point method searches iteratively for a feasible local minimizer,

x∗, of f by recursively solving the linear system

 ∇2
xxL , AT

A, 0


︸ ︷︷ ︸
constrained Hessian, H

 px

−pΨ

=−

 ∇xL

∇ΨL


︸ ︷︷ ︸
KKT conditions

(3.39)
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where A is the full Jacobian of the constraints, px is the update direction of the weight

vector, x, pΨ is the update direction of the Lagrange multipliers unrolled into a vector,

and ∇ΨL is the gradient of the Lagrangian with respect to the Lagrange multipliers

unrolled into a vector. Note that for the linear equality constraints, ∇2
xxL =∇2

xx f and

(∇ΨL)T =

[
QT
•,1AT

1,1, QT
•,2AT

2,2, · · · , QT
•,rAT

r,r

]
. (3.40)

Apparently, the optimization completes when the vector on the right-hand-side of Eq 3.39

is zero since the vector is equal to the KKT conditions (Prop 3.1).

The remaining problem is making sure that the interior-point method converges

to a feasible local minimizer rather than a local maximum or saddle point. This is done

with a backtracking line search where a candidate point is accepted only when there is

sufficient decrease of f and infeasibility and by adding a diagonal shift matrix to the

Hessian to maintain appropriate matrix inertia [41]. The diagonal shift matrix, δI where

δ ≥ 0 is added to the Hessian of the Lagrangian, ∇2
xxL + δI such that the number of

positive eigenvalues, m, the number of negative eigenvalues, n, and the of eigenvalues

equal to zero, l, are equal to the to total number of weights, the total number of constraints,

and zero, respectively. If the constrained Hessian does not meet these conditions, δ is

adjusted to enforce the matrix inertia [41]. For an unconstrained problem, this procedure

is equivalent to maintaining positive definiteness of the Hessian.

For large-scale problems, where computing and inverting the constrained Hessian

is impractical, the Hessian of the Lagrangian may be approximated using L-BFGS [41,68].

Since the L-BFGS procedure is lengthy to describe, it will not be described here in more

detail except to note that the algorithm gains speed over using the exact Hessian by

reducing the size of the matrices that must be inverted (or eliminates the inversion

entirely for unconstrained problems). Furthermore, the approximation to the Hessian by
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L-BFGS is positive definite by definition and maintains the proper matrix inertia making

it less likely to converge to a saddle point compared to first-order methods like gradient

descent [41]. The main downside of L-BFGS is that it takes more iterations to converge

than the exact Hessian which, for low dimensional problems, may actually cause L-BFGS

to be slower. Although for low dimensional problems where this would occur, the timing

difference is not likely to be significant making L-BFGS often a good choice regardless.

Block coordinate descent is another algorithm that may be used to reduce the size

of large scale problems. Block coordinate descent can be particularly useful when the

problem size is so large that even computing and storing the gradient of the full problem

is impractical. This may be useful for extremely high-resolution imaging, for example.

Block coordinate descent can also be used in place of L-BFGS where the problem is

broken up such that the exact Hessians of the weights in each block are more practical to

compute. Of course, block coordinate descent requires solving a subproblem with respect

to the block weights which can also be solved with L-BFGS (or gradient descent, etc.). A

block coordinate descent algorithm was developed for the low-rank MNE problem where

block weights xT
k =

[
a, hT, QT

•,k

]
are defined for all k ∈ {1, · · · , r}. The algorithm then

cyclically solves the r block subproblems:

block k subproblem:


min

a,h,Q•,k
f (a,h,Q)

subject to Ak,kQ•,k = 0
(3.41)

until the KKT conditions (Prop 3.1) and second-order sufficient conditions (Prop 3.2)

are satisfied. This algorithm provably converges under very mild conditions to a local

minimum of the low-rank MNE problem as shown in Appendix B.
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3.4 Hyperparameter optimization problems

The hyperparameters of the optimization are the structural parameters of the

model and the objective function that may be adjusted but are not optimized to minimize

the objective function, f , evaluated on the training set. The hyperparameters of the

low-rank MNE problem are {εk}, rPSD, and rNSD. It is easy to see why {εk} in particular

cannot be optimized to minimize f on the training set because the solution would be

trivially εk = 0 for all k. Similarly, setting rPSD and rNSD to minimize f on the training set

bears the significant risk of overfitting since more weights will produce a model that fits

the training set equal to or better than models with fewer weights. This section discusses

principled ways to choose the hyperparameter settings of the low-rank MNE problem.

3.4.1 Regularization parameters

Finding reasonable settings for the nuclear-norm regularization parameters is

goal-dependent. For instance, does one seek a consistent solution that approximates the

global minimum of the unregularized problem or a solution that will generalize well

to novel data? In principle, one could achieve both in tandem, but these two scenarios

will be treated separately and then combined later as one optimization problem. The

two cases that will be looked at first are solutions in the globally optimal domain that

are close approximations to the global minimum of L evaluated on the training set and

solutions in either domain that best fit the cross-validation set data.

Starting with the former, globally optimal approximations to the unregularized

problem would mean finding those {εk} that satisfy Prop 3.4. However, since one would

like the optimization problem to be as close as possible to the unregularized problem

while minimizing bias from the nuclear-norm penalty, one would want to apply the

minimal amount of regularization necessary to reach the globally optimal regularization
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domain (Prop 3.4). Explicitly, one searches for a solution to the nonlinear program

min
a,h,Q,{εk}

f (a,h,Q;{εk})

subject to ∀k,

 Ak,kQ•,k = 0

εk−2λmax
(
∇XkL

)
= 0.

(3.42)

Note that inequality in Eq 3.37 has been replaced with an equality. Furthermore, it

is already known from Props 3.35 & 3.4 that εi = ε j for any i and j and therefore

this optimization only has one independent regularization parameter, εk = ε for all k.

Solutions to Eq 3.42 are called the globally optimal approximation.

Regularization domain-agnostic solutions that instead search for {εk} that best

generalizes to novel data instead takes on the form

{ε∗k} = argmin
{εk}

L(x∗)|TCV

subject to εk ≤ εk+1,

∀k ∈ KPSD
⋃

KNSD


x∗ = argmin

x
f (x;{εk})|Ttrain

subject to Ak,kQ•,k = 0,

∀k ∈ {1, · · · r}

(3.43)

where the weight vector x is used for conciseness, TCV and Ttrain are non-intersecting sets

of sample indices (t) that belong to the cross-validation and training sets, respectively.

The sets KPSD and KNSD are column indices for Q where KPSD =
{

1, 2, · · · , rPSD−1
}

and KNSD =
{

rPSD +1,rPSD +2, · · · ,r−1
}

and the components of Q•,k are assumed to

be arranged such that πk =−1 (Eq 3.23) for any k ∈
{

1, 2, · · · , rPSD
}

and πk = 1 for any

k ∈
{

rPSD +1, rPSD +2, · · · , r
}

. The minimization problem to the right of the bracket

in Eq 3.43 constitutes a subproblem that must be minimized and whose solution acts as

fixed input to the problem on the left of the bracket. Solving the problem in Eq 3.43 will

be called empirical model selection.

One may notice that the problem in Eq 3.43 now includes a new set of constraints



68

on the regularization parameters. These constraints are introduced because the nonlin-

earity P(y = 1|st) is invariant to the rearrangement of Q’s columns and therefore any

problems that are the same up to a permutation of the pairs εk and πk are equivalent

optimization problems. Therefore, the volume of the regularization parameter search

space can be substantially decreased without loss of generality.

Finally, one may insist on finding a solution that will generalize well to novel

data while at the same time belonging in the globally optimal domain. This can be

achieved simply by adding the constraint from Eq 3.37 without modification (i.e. keep

the inequality this time) to the problem in Eq 3.43.

3.4.2 Rank parameters

The strategy for setting the maximum rank hyperparameters, r = rPSD + rNSD,

is goal and problem dependent. For instance, the strategies may differ if a globally

optimal approximation is sought versus generalizable approximations. The strategy may

be further modified if one’s interest is in finding a receptive field of optimal rank versus a

receptive field of a given rank r.

The case that will become of most interest in this volume is finding generaliz-

able approximations to receptive fields with unknown optimal rank. Compared to the

regularization parameters, setting the maximum rank r = rPSD + rNSD of the low-rank

MNE model is relatively easy in this case. Since nuclear-norm regularization may be

used to lower the overall rank of J, it therefore makes sense to set rPSD and rNSD relative

to an upper bound on the expected rank of the model. For example, if one knows (or

suspects) that the receptive field of a neuron is spanned by four components but does

not know what the sign of those components might be, one can set rPSD = rNSD = 5

and let the regularization procedure “prune” irrelevant components. The reason why

rPSD and rNSD are set to five instead of four is because excess dimensions provide infor-
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mation about whether the number of prescribed components is sufficient. If more than

enough positive and negative components are provided to capture the receptive field, then

rank(J(PSD))< rPSD and rank(J(NSD))< rNSD and raising rPSD or rNSD will not provide

any new non-zero components to the basis. Procedurally, one should thus increment rPSD

and rNSD until this condition is met.

If instead one wants to recover a compressed reconstruction of the receptive

field of a particular maximum rank r using either the globally optimal approximation

or empirical model selection, the above procedure is not applicable. In this case, one

would need to instead enumerate the different combinations of rPSD and rNSD such that

rPSD + rNSD = r. This is not difficult to perform, but it does mean an increase in the

number of models that must be fit relative to the upper bounding procedure. Depending

on one’s preferences, either the training set or the cross-validation set can be used for

model selection (i.e. determining the most appropriate model for the application). One

can also use other principled methods for setting rPSD and rNSD; for example, using the

signs from the largest absolute variance components of J obtained from the full-rank

MNE model.

The globally optimal approximation was left out from the aforementioned pruning

procedure because the globally optimal approximation does not necessarily guarantee

that an upper bound r greater than the optimal rank will ultimately yield an equivalent

model. This is because the ε that satisfies the relevant equality constraint in Eq 3.42 may

change for different r.

This concludes the theoretical background of the low-rank MNE method. In the

next chapter, the low-rank MNE method will be discussed in practical terms, including

the introduction of algorithms to determine the regularization parameter settings and

simulated analyses to demonstrate the application of the low-rank MNE method. The

practical discussion will culminate in an application to recovering spectrotemporal
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receptive fields of high-level auditory neurons.

Chapter 3 contains work that was published in Kaardal, Theunissen, and Sharpee,

Frontiers in Computational Neuroscience (2017). The dissertation author was the primary

investigator and author of the paper.



Chapter 4

Low-rank minimal models in practice:

applications to the auditory system

In the prior chapter, the theoretical foundation of the low-rank MNE method was

established and various properties of the optimization problem were analyzed including

the derivation of globally optimal and locally optimal regularization domains. In the

present chapter, the focus shifts to practical applications of the low-rank MNE method

towards reconstructing the spectrotemporal receptive fields of auditory neurons recorded

from the zebra finch auditory forebrain. Before delving into the analysis of the auditory

system, algorithms are proposed for solving the optimization problems in Eqs 3.42 &

3.43 and the analysis is simulated on synthetic neurons for validation.

4.1 Optimization algorithms

Finding a globally optimal approximations (Eq 3.42) may be achieved in a couple

ways. One simple way is to initialize εk = ε = 0 for all k and then solve Eq 3.22

using standard methods for optimizing continuously differentiable functions (such as

71
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Algorithm 4.1 Globally optimal approximation of a low-rank MNE model.
1: inputs: rPSD, rNSD, {(yt ,st)}; initial guess for a, h, U, and V
2: initialization: ε← 0
3:
4: while ε 6= 2λmax (∇XL) do
5: Reinitialize U•,k and V•,k for any k if U•,k = 0 or V•,k = 0
6: a, h, U, V← solve Eq 3.22
7: compute λL← 2λmax (∇XL)
8: if ε > λL then
9: choose new ε from [λL, ε)

10: else if ε < λL then
11: choose new ε from (ε,λL]

12: J← UVT

13:
14: returns: a, h, J

the interior-point/Newton’s method from Section 3.3). Then, one can test if ε is feasible

by checking whether ε− 2λmax (∇XL) = 0 holds (defining X = ∑
r
k=1Xk) where the

affirmative would indicate ε is feasible and the negative that ε is infeasible. If ε is feasible

and the rest of the KKT conditions are satisfied (Prop 3.1), then a globally optimal

approximation has been found. If ε is infeasible but the rest of the KKT conditions are

satisfied (Prop 3.1), then ε is adjusted to be closer to the present value of 2λmax
(
∇XkL

)
.

Pseudocode of this algorithm appears in Alg 4.1. It is possible a more sophisticated

algorithm may be derived by forming the Lagrangian of Eq 3.42,

Lglobal(a,h,Q;ε) = f (a,h,Q;ε)−
r

∑
k=1

ΨT
•,kAk,kQ•,k−Ψε [ε−2λmax (∇XL)] (4.1)

where Ψε is a Lagrange multiplier. The considerable downside of this constraint is that it

does not have an analytic gradient. It is unclear whether there is a quick way to solve this

problem, so this is left behind in favor of the simple algorithm from Alg 4.1.

Despite the global optimality of the solutions, the nonconvexity of the problem

means that one must still take care to avoid poor initializations. For instance, it is trivially
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Figure 4.1: Relaxation from a globally optimal approximation to a locally optimal
solution does not guarantee global optimality. This is the same problem as appears
in Fig 3.1. The magenta dots show progress of a slow relaxation (annealing) of the
regularization parameter ε from the globally optimal domain where ε > 0 to ε = 0 via
the update ε← ε−η where here η = 1 · 10−3. Each magenta dot corresponds to a
solution to the low-rank MNE problem given a value of ε using an interior-point method.
The relaxation of the regularization parameter results in convergence to the southern
local minimum where L = 0.636464 while the global minima to the east and west have
function value L = 0.634719. Reducing η to 1 · 10−4 did not change the result. The
arrows correspond to the ground truth U components as defined in Fig 3.1.

the case that ∇Q•,k f = 0 when Q•,k = 0 (Prop 3.1) but Q•,k = 0 is not necessarily a

local minimum and can in fact be a local maximum. It is worth noting that relaxation

of the nuclear-norm regularization parameter (where the the regularization parameter

is annealed from a globally optimal ε to zero) from a solution in the globally optimal

domain into a solution of the unregularized problem (where ε = 0) does not guarantee

convergence to the global minimum of L. Examples were found among randomly

generated problems (Section 3.2.1) that relaxed into suboptimal local minima instead;

for instance, the problem in Fig 4.1 where the solution relaxes into a suboptimal local

minimum.
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The empirical model selection (Eq 3.43) method must be solved with a completely

different approach since there are no constraints to prevent {εk} from taking on the trivial

solution. Measuring the optimality of a model in terms of the negative log-likelihood

evaluated on the cross-validation set requires a search algorithm that is different from

the usual gradient-based algorithms because L (evaluated on the cross-validation set)

does not have an analytic form in terms of {εk}. Three choices that may be used,

in order of sophistication, are a grid search [69], random search [69], and Bayesian

optimization [69–71]. Since only the grid search and Bayesian optimization approaches

were implemented, these are described in more detail below.

4.1.1 Grid search

In a grid search, a grid is formed over the domain of {εk} where a set of discrete

points on the domain of εk is denoted by gk. The discrete, finite set that enumerates all

possible combinations of elements from every gk is defined by the Cartesian product,

G = g1× g2× ·· · × gr. To perform the grid search, then one would iterate over all

elements of G, {εk} ∈ G, solving Eq 3.22 for each set of coordinates, and return the

model that leads to the minimal L evaluated on the cross-validation set. This is considered

the most generalizable estimate of the receptive field. This makes a grid search an easy

and intuitive approach to hyperparameter optimization that works well provided the

cardinality of G is reasonably small. Unfortunately, with increasing r, one may be forced

to reduce the cardinality of each gk for the search to remain tractable. Supposing that

the domain is discretized by the same number of samples, n, along each εk, the number

of feasible grid coordinates (accounting for the inequality constraints in Eq 3.43) is a
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product of two figurate numbers:

card(G) =
k2

∑
k1=1
· · ·

n

∑
krPSD=1

krPSD+2

∑
krPSD+1

· · ·
n

∑
kr

1 =
∏

rPSD−1
j=0 (n+ j)

rPSD!
∏

rNSD−1
j=0 (n+ j)

rNSD!
(4.2)

(note that when r·SD = 0 then the product ∏
r·SD−1
j=0 (n+ j) is defined to be one). Conse-

quently, grid search is susceptible to an explosion of dimensionality as the rank of the

model increases since card(G) is a monotonically increasing function of r. Furthermore,

it can be shown that card(G) is divergent for large r when n > 1.

Proof. Suppose n is some positive integer where n > 1 and r is an arbitrary positive

integer where it can be assumed that either rPSD = 0 or rNSD = 0 without loss of generality.

It is then possible to show rigorously that the cardinality of the set G diverges as r

asymptotically increases:

lim
r→∞

card(G) = lim
r→∞

(n+ r−1)!
(n−1)! r!

=
1

(n−1)!
lim
r→∞

n−1

∏
j=1

(r+ j) = ∞. (4.3)

Therefore, card(G) is a monotonically increasing function of r and diverges when n > 1.

This explosion of dimensionality sets a practical limit on the precision to which a grid

search can be used to solve Eq 3.43 for multiple nuclear-norm regularization parameters.

In response to this problem, a heuristic algorithm was proposed [72] using block

coordinate descent (Eq 3.41) that exploits the blockwise dependence on a single regular-

ization parameter. For the kth block, a grid search is performed over gk while holding

the remaining dimensions fixed, keeping the block solution with minimal prediction

error on the cross-validation set before moving on to the next block. This procedure

repeats cyclically until several consecutive cycles through all r blocks fail to lead to a

reduction in the prediction error. This procedure bears some similarity to the empirical

form of early stopping since the optimization pulls the model towards a local minimum
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Algorithm 4.2 Empirical model selection using a block coordinate descent heuristic
for low-rank MNE model estimation.

1: inputs: rPSD, rNSD, {(yt ,st)}; initial guess for a, h, U, V; define sets sampling the
domains of the regularization parameters {gk}; training and cross-validation sets
Ttrain and TCV, respectively, where Ttrain∩TCV = /0; maximum failures to find a better
solution, Mfail

2: Initialization: a′← a, h′← h, U′←U, V′←V, Lbest← L(a,h,U,V)|TCV , mfail← 0
3:
4: while mfail < Mfail do
5: initialize failure switch ξ← 1
6: for k ∈ {1, · · · , r} do
7: for εk ∈ gk do
8: a′, h′, U′•,k, V′•,k← solve Eq 3.41 with respect to the training set, Ttrain

9: compute Lnew← L(a′,h′,U′,V′)
10: if Lnew is sufficiently less that Lbest then
11: /* better solution found */
12: Lbest← Lnew
13: a← a′, h← h′, U•,k← U′•,k, V•,k← V′•,k
14: mfail← 0
15: ξ← 0
16: mfail← mfail +ξ

17: J← UVT

18:
19: returns: a, h, J

on the training set but does not necessarily return a converged solution. A pseudocode

implementation of this algorithm may be found in Alg 4.2. It is recommended, when

passing through the kth set gk to optimize the models in order from the lowest to highest

values of the regularization parameter. By doing so, one may use the solution obtained

with the previous εk as input to the problem with the next largest εk on the grid for a

swifter optimization. Passing through the grid from highest to lowest is not recommended

without protecting against poor initialization. This heuristic algorithm was found to work

reasonably well in Kaardal et al. [72]. The main drawback of this algorithm is that this it

requires substantial computation time (though usually not nearly as much as the standard

grid search would require).
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4.1.2 Bayesian optimization

Bayesian optimization may be used as an alternative to grid search for optimizing

the hyperparameters of a problem [70, 71]. Indeed, after the publication of Kaardal et

al. [72], it was soon found that Bayesian optimization is not only competitive, but can

often be a much faster approach to finding appropriate regularization parameter settings

for the low-rank MNE problem in Eq 3.43.

Generally speaking, the goal of Bayesian optimization is to find the global op-

timum of a function on some finite domain of the independent variables in (hopefully)

sub-exponential time. What makes Bayesian optimization different from other determin-

istic methods for global optimization is that it can also be used to efficiently find the

global optimum of an unknown or hidden function. In the case of the low-rank MNE

problem, the negative log-likelihood evaluated on the cross-validation set as a function

of the nuclear-norm regularization parameters, L(ε) where ε = [ε1, · · · , εr], would be

an example of such an unknown function because it does not have an analytic form.

Provided L(ε) can be assumed to be continuous, the gradient of L(ε) is bounded on

some finite domain in ε. Thus, given a point ε and the maximum gradient defined on

the domain, a linear extrapolation outwards from ε sets a lower bound on the objective

function at any other point on the domain (doing this in branch and bound form is known

as Lipschitzian optimization). However, the maximum slope of L(ε) is not known; and

as such, a probabilistic approach may be taken where instead L(ε) is treated as a random

variable drawn from some distribution, typically a Gaussian process.

Given ερ and Lρ where ρ ∈ {1, · · · , Nρ} is the sample label of L(ε) measured

at point ερ, a Gaussian process is defined where each Lρ is a Gaussian distributed

random variable parameterized by ερ and any subset of {Lρ} of cardinality greater than

one is drawn from a multivariate Gaussian distribution [73]. The Gaussian process is

completely defined by the mean, µ(ε), and a covariance function, κ(ε,ε′), where ε′ is
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a reference point on the domain of ε. Without loss of generality, µ(ε) can be set to

zero [70, 73]. In Bayesian optimization, a Gaussian process is used as a prior distribution

on the objective function: L(ε)∼ GP
(
0,κ(ε, ε′)

)
. Bayesian inference is then used to

recursively update the prior distribution, P
(
L;SNρ

)
, as new samples are added to the set

of pairs SNρ
=
{
(Lρ,ερ)

}
. The probability distribution of the Gaussian random number

LNρ+1 at some new point εNρ+1 is estimated through the posterior, P(LNρ+1|εNρ+1;SNρ
).

Explicitly, a new point εNρ+1 is incorporated into the covariance matrix like so

K1:Nρ+1,1:Nρ+1 =



κ(ε1,ε1), κ(ε1,ε2), · · · , κ(ε1,εNρ+1)

κ(ε2,ε1), κ(ε2,ε2),
. . . ,

...
...,

. . . ,
. . . , κ(εNρ

,εNρ+1)

κ(εNρ+1,ε1), · · · , κ(εNρ+1,εNρ
), κ(εNρ+1,εNρ+1)


(4.4)

and LNρ+1 is drawn from a univariate normal distribution, LNρ+1∼N norm

(
µNρ+1,σ

2
Nρ+1

)
,

at εNρ+1 where the mean and variance are derived from K1:Nρ+1:

µNρ+1 =KNρ+1,1:Nρ
K−1

1:Nρ+1,1:Nρ+1L1:Nρ
(4.5)

σ
2
Nρ+1 = κ(εNρ+1,εNρ+1)−KNρ+1,1:Nρ

K−1
1:Nρ+1,1:Nρ+1K1:Nρ,Nρ+1 (4.6)

(for the derivation, see Brochu et al. [70]). Here, LT
1:Nρ

=
[
L1, · · · , LNρ

]
. This vector

of objective function values is then augmented to include the measured value of LNρ+1

by concatenation to the end of L1:Nρ
giving L1:Nρ+1. The new prior distribution is then

L(ε)∼N
(
0,K1:Nρ+1,1:Nρ+1

)
and then the procedure is repeated.

The choice of covariance kernel is chosen to be based on a Euclidean distance

metric (i.e. |ε−ε′|) since L(ε) has been found empirically to be at least approximately

continuous. In Snoek et al. [71], the authors recommend using the Matérn 5/2 kernel [74]

while the python software that was used for the low-rank MNE problem, GPyOpt [75],
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used the Matérn 3/2 kernel [74] as a default. There was not found to be significant

practical differences between the two kernels so the default Matérn 3/2 kernel was used.

Explicitly, the Matérn 3/2 kernel is

κ(ε,ε′) = ν
2
(

1+
√

3
‖ε−ε′‖2

η

)
e−
√

3‖ε−ε
′‖2

η (4.7)

where ν is the variance and η is the length scale which can be optimized to best fit the

observed covariance of the measurements.

One of the strongest points of Bayesian optimization is how it chooses the next

trial point, εNρ+1. Since the goal is to find a global optimum of L(ε), a reasonable goal

for making the choice would be to develop an acquisition function that balances between

exploitation (or convergence) and exploration. Several of these are available, including

probability of improvement, expected improvement, and lower confidence bound [70, 71].

Without going into the details of each of the acquisition functions, it was found that the

software’s [75] lower confidence bound acquisition function worked better than expected

improvement. Probability of improvement was not evaluated because it is a legacy

method that seems to have largely fallen into disfavor [70, 71]. The lower confidence

bound also includes a parameter that can be adjusted to either force the optimization to

spend more time exploring or to quench into a minimum of L(ε). The lower confidence

bound acquisition function is

fLCB(εNρ+1) = µNρ+1− τσNρ+1 (4.8)

where τ ≥ 0 is the exploration weighting. The new trial is the feasible εNρ+1 that

minimizes fLCB. Intuitively, one can think of the lower confidence bound as being some

fractional standard deviation estimate of the lower bound on the function L. When τ is

close to zero, the optimization will prefer exploitation and choose points with minimal
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estimated mean. Large τ promotes exploration where L(εNρ+1) with large standard

deviation can be more favorable.

In the acquisition function minimization routine, it became necessary to make a

small modification to the Bayesian optimization software [75]. A Monte Carlo search

was used to initialize ε when minimizing fLCB where an initial point was chosen with

uniform probability from within the domain of ε and any infeasible point according to the

constraints in Eq 3.43 was rejected. There are two problems related to this procedure: (i)

if an infinite number of Monte Carlo trials are tested until the desired number of feasible

initializations are found, it may take a long time to find a feasible trial point and (ii) if a

finite number of Monte Carlo trials are tested, it is possible that no feasible trial points

will be recovered. This is particularly problematic for the low-rank MNE problem where

the introduction of the simplifying constraints on {εk} in Eq 3.43 inadvertently leads to

increasing difficulty in randomly selecting a feasible point as r increases as shown in the

following.

Proof. Suppose the domain of all members of {εk} is [0, w] where w > 0. The volume of

the feasible region is

vol(G) = lim
n→∞

[
card(G)

wr

nr

]
=

∫ w

0
· · ·

∫
εrPSD+2

0

∫ w

0
· · ·

∫
ε2

0
dε=

wrPSD

rPSD!
wrNSD

rNSD!
(4.9)

where G and n are the same as those in Eq 4.3 and dε= ∏
r
k=1 dεk. Since the volume of

the domain is wr, the probability of choosing a feasible random point uniformly from the

domain is p = (rPSD!)−1(rNSD!)−1. Because p is a monotonically decreasing function in

r·SD and lim
r·SD→∞

p = 0, it is increasingly unlikely that a random point in the domain of ε

will be feasible as rPSD and rNSD grow larger and the volume is asymptotically zero.

This problem did not become noticeable until rPSD ≥ 5 and rNSD ≥ 5 low-rank MNE

models were tested where it was found, more often than not, that a feasible point could
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not be found among 5,000 trial points. This was fixed by introducing a customized Monte

Carlo where the random samples {εk} were rearranged such that any trial point was

feasible (Eq 3.43).

If one so desires, Bayesian optimization can also be used to find settings for

discrete hyperparameters such as rPSD and rNSD which can add an extra degree of

flexibility to the optimization procedure. However, this was not implemented.

4.2 Validation on synthetic neurons

A simulated analysis of three synthetic neurons was performed to demonstrate

the low-rank MNE method’s ability to recover receptive fields. The results were val-

idated against the ground truth receptive field and compared to performance of other

dimensionality reduction techniques; specifically, STC, first-order MNE, and full-rank

(second-order) MNE methods. The dimensionality reduction techniques were compared

and contrasted based on their abilities to recover the correct subspace of stimulus space

that spans the receptive field and to predict neural responses to novel stimuli. Both

globally optimal approximations (Eq 3.42) and empirical model selection (Eq 3.43) will

be shown to have practical merit for recovering receptive fields.

4.2.1 “Auditory” neuron

A synthetic “auditory” neuron was constructed by generating six bivariate Gaus-

sians in (16×16) spectrotemporal space such that the sum of the six Gaussians (Fig 4.2)

bears a receptive field resembling a bivariate “Mexican hat” distribution similar to what

has been observed in single component auditory receptive fields [76, 77]. These Gaus-

sian components were then combined to form the ground truth matrix JGT ∈ RD×D via

the weighted outer product JGT = FWFT where F ∈ RD×rGT is a matrix with rGT = 6
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Figure 4.2: Constructing the receptive field of a synthetic auditory neuron. A
receptive field reminiscent of single component reconstructions of spectrotemporal
auditory receptive fields is constructed from bivariate Gaussians plotted left to right in
order of high to low variance. The weighted average of these components appears at
right following the arrow.

columns corresponding to the six D = 256 components in Fig 4.2. W ∈ RrGT×rGT is a

diagonal matrix that weighs the contribution of each component to the receptive field.

Three of the components are excitatory (positive eigenvalues) while the remaining three

are suppressive (negative eigenvalues). The ground truth receptive field is then obtained

by diagonalizing JGT and the resulting receptive field components are plotted in Fig 4.3.

The synthetic neuron was stimulated by spectrograms (in logarithmic amplitude

and linear time/frequency scales) drawn from a mildly-correlated Gaussian noise distri-

bution where each stimulus was generated from a multivariate Gaussian distribution with

covariance kernel

K= G(kern)T
G(kern) (4.10)

where

G(kern)
xi,y j ∝

D

∑
k=1

D

∑
l=1

exp

[ xi− xk, y j− yl

]
C−1

cov

 xi− xk

y j− yl


, (4.11)

xi and yi are the temporal and spectral coordinates of the spectrogram, respectively, and

Ccov ∈ R2×2 is the covariance matrix Ccov = diag([3, 3]). Intuitively, the elements that

make up the spectrogram are most strongly correlated with nearby elements and the

correlations are isotropic. The tth stimulus vector is then generated by drawing a vector
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ŝt ∈ RD×1 from an uncorrelated multivariate normal distribution and multiplying by the

matrix square root of the covariance kernel: st =K 1
2 ŝt . A total of Nsamp = 100,000 total

stimulus samples were generated.

The response of the synthetic neuron was fabricated by calculating the nonlinear-

ity, P(y = 1|st), according to Eq 3.1 for each of the 100,000 stimulus samples. For each

sample t, a uniform random number ξt ∈ [0,1] was drawn. If ξt < P(y = 1|st), then the

response, yt , was set to one; otherwise, yt was zero. The synthetic neuron had a mean

spiking probability of ∼ 25% across all samples.

The data was first analyzed using STC (see Chapter 1.3.2) using the full data

set. The highest variance components of the reconstructed receptive field are shown

in Fig 4.3A. Looking at this reconstruction, there is clear distortion of the receptive

field where the regions of non-zero amplitude are much broader and exhibit additional

regions of activity compared to the ground truth in Fig 4.3A. This observation is not,

however, the result of a benign rotation of the receptive field because the overlap (Eq 2.6)

between the reconstructed and ground truth receptive fields is 0.003. Despite appearances,

this indicates that the receptive fields largely are not spanning the same subspace. The

observed distortion is consistent with what was alluded to in Section 1.3.3 where STC is

known to be biased when presented with correlated stimulus distributions.

Full-rank MNE was fit using the empirical early stopping procedure (Chap-

ter 1.5.1) as a mild form of regularization that attempts to limit overfitting. The data

was divided into 70% training, 20% cross-validation (used for early stopping), and 10%

testing sections where each sample belonged to one section only. Jackknife analysis was

performed by circularly shifting the indices of the samples in each of the sections by 25%

of the total samples as shown in Fig 4.4. Following optimization, J was averaged across

the four jackknives and was then diagonalized, revealing the receptive field captured

by the three largest positive and three most negative variance components in Figs 4.3A
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Figure 4.3: The receptive fields of the synthetic auditory neuron recovered using
STC, full-rank MNE, and low-rank MNE methods. (A) The ground truth receptive
field of the synthetic auditory neuron is plotted beside the reconstructions estimated
by the six most significant components from each dimensionality reduction method.
The ground truth is plotted from left to right from highest to lowest variance. (B) The
eigenvalues of the full-rank and low-rank MNE models are plotted for comparison to
the ground truth (dashed lines).

& B. Full-rank MNE appears to have done a reasonable job of capturing the first three

or four components, but the fifth and sixth components are heavily corrupted by noise.

Notably, two of the largest positive variance components have lower magnitude than

several fictitious negative components and five of the six significant components are
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jackknife 1

jackknife 2

jackknife 3

jackknife 4

train CV test

Figure 4.4: Diagram showing how the data is divided into training, cross-
validation, and test sets. Analysis is performed on four jackknives where data is
split between training (green), cross-validation (blue), and test (red) sets.

nearly engulfed by fictitious components. One may be tempted to say that STC has

outperformed full-rank MNE in this task given the lack of noise corruption in the STC

reconstruction. However, even with its flaws, full-rank MNE still produces a better

subspace with an overlap of 0.7±0.1.

Low-rank MNE models with rPSD = 3 and rNSD = 3 were optimized to find

a globally optimal approximation via Alg 4.1 with the equality constraints (Eq 3.8)

directly inserted into the nonlinearity (Eq 3.1) and L-BFGS was used to minimize the

subproblems. The analysis was performed with the data divided into jackknives in exactly

the same way as the full-rank MNE analysis (Fig 4.4). The amount of regularization

necessary to transition to the globally optimal regularization domain (Prop 3.4) across

all jackknives was ∼ 0.045 which was low enough that distortion was not a substantial

issue. The six largest variance components obtained from diagonalizing the mean J

across jackknives are plotted in Fig 4.3A. Unlike the full-rank MNE models, the low-rank

MNE models capture all six of the ground truth components (Fig 4.3A) with remarkable

clarity and without referencing the cross-validation set. The low-rank MNE model’s

receptive field captures the ground truth components almost exactly with an overlap of

0.9861±0.0009 on average across jackknives.

One potential drawback of the low-rank MNE method is that nuclear-norm

regularization may ultimately attenuate the components’ variance relative to the ground

truth which may lead to either distortion of the receptive field (when the regularization
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parameters are large) and perhaps worse predictions on the test sets. Of course, the latter

is less important if the ultimate goal is not to make predictions but instead to employ the

recovered receptive field in a separate linear-nonlinear model or to compute a functional

basis. The attenuation of the components can be seen in the eigenvalue spectrum of the

mean J that appears in Fig 4.3B where all six of the outstanding eigenvalues exhibit a

noticeable damping of their absolute variance. This reduction in magnitude did not end

up being detrimental to the predictive power of the low-rank MNE models where the

mean negative log-likelihood evaluated on the test sets was L = 0.210±0.003. This is a

significant improvement over the full-rank MNE model where L = 0.229±0.003 and

the first-order MNE model where L = 0.564±0.002.

The low-rank MNE method was used to recover a globally optimal low-rank

compression of the receptive field where rPSD = 2 and rNSD = 2 and a globally optimal

expanded basis where rPSD = 4 and rNSD = 4. The mean compressed and expanded

basis receptive fields may be found in Fig 4.5. The compressed receptive field still has

good overlap (0.9752±0.0007) indicating that the compressed components largely lie

within a smaller subspace of the ground truth receptive field, as ought to be the case

for a good compression. In terms of prediction error, the compressed models perform

better than the first-order MNE models with L = 0.278±0.002. The compressed models

perform worse by this measure compared to the full-rank MNE models, but that is

because predictions from the full-rank MNE models are made using all components of J

sans dimensionality reduction. The expanded basis (Fig 4.5) performs equivalently to the

r = 6 low-rank MNE models from above with a prediction error of L = 0.210±0.003.

The difference in the negative log-likelihood estimate is not statistically significant. These

two models perform equivalently because the two extra dimensions that appear in the

expanded basis have variance ∼ 10−4 and do not contribute significantly to the predicted

response. The subspace is also of high quality since the ground truth receptive field
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Figure 4.5: A globally optimal compression and expansion of the synthetic audi-
tory neuron’s receptive field using the low-rank MNE method. The extra dimen-
sions in the expanded basis boxed in the red dashed-line line have variance ∼ 10−4.

components lie almost perfectly within the recovered receptive field yielding an overlap

of 0.9894±0.0009.

4.2.2 “Vision” neurons

In some cases, reaching a globally optimal approximation (Eq 3.42) may require

an excessively large nuclear-norm regularization parameter such that the components

spanning the receptive field become heavily distorted. This problem may also occur

when performing empirical model selection (Eq 3.43) with a single nuclear-norm regu-

larization parameter when the components that span the receptive field have dissimilar

absolute variances. In such cases, empirical model selection with multiple regularization

parameters may produce better models. Fitting low-rank MNE models using empirical

model selection will be demonstrated on two vision-inspired synthetic neurons that

share the same vaguely center-surround receptive field one may expect to encounter in

the early visual system [78, 79]. As with the synthetic auditory neuron, the receptive

field is constructed from rGT = 4 bivariate Gaussians (Fig 4.6) in a 20×20 pixel image

space (D = 400). From here, the data is generated with an identical procedure to that

of the synthetic auditory neuron with one exception: instead of generating correlated

Gaussian stimuli from the covariance kernel in Eqs 4.10 & 4.11, the covariance kernel is
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Figure 4.6: Constructing the synthetic vision neurons’ receptive field. The high
and low SNR synthetic vision neurons have a center-surround type receptive field
constructed from bivariate Gaussians.

instead derived from a covariance matrix of images from the Van Hateren natural image

database [80]. The total number of stimuli and response samples is Nsamp = 48,510.

The two neurons are distinguished by the gain of the nonlinearity where one

neuron has a high signal-to-noise ratio (SNR) while the other has a low SNR. To be clear,

what is meant by SNR here is the relative decisiveness of the neuron where the high SNR

neuron is more likely to have spiking probability closer to either zero or one relative to

the low SNR neuron which is more likely to take on intermediate probabilities. The total

number of spikes elicited by the high SNR neuron was 11,031 and the low SNR neuron

was 10,434.

As before, STC and full-rank MNE methods are used as a performance standard.

However, for these neurons, the STC method is performed on each of the jackknives

(in the same 70%/20%/10% sections as in Fig 4.4) to compare the predictive power of

STC to the other dimensionality reduction methods. STC performs as expected as seen

in Fig 4.7B where the non-zero amplitude of the four largest variance components is

distorted even more so than was the case for the synthetic auditory neuron in Fig 4.3

caused by the stronger correlations in the stimulus distribution. This distortion is mani-

fested quantitatively by a mean overlap of 0.32±0.05 across jackknives for both neurons.

Dimensionality reduction was performed in the typical way for STC (see Sections 1.3.2

& 2.4) and the prediction error on the test sets was determined by fitting a full-rank

MNE model with the stimuli projected into the STC receptive field (in order to place the

competing receptive field estimates on equal footing) and computing the mean negative
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Figure 4.7: Receptive fields recovered using STC, full-rank MNE, and the em-
pirical model selection approach to the low-rank MNE method for two synthetic
vision neurons. (A) The ground truth receptive field of the high and low SNR neurons
is plotted as four orthonormal vectors. (B) The four “significant” components from the
STC, full-rank MNE, and low-rank MNE methods demonstrate how well each method
recovers the receptive field for each neuron. (C) The mean eigenvalue spectrum from
each method is plotted for comparison against the ground truth spectrum (dashed lines)
of each neuron.

log-likelihood across the test sets. The prediction error of STC with a logistic nonlinearity

was L = 0.40±0.01 and L = 0.47±0.01 for the high and low SNR neuron, respectively.

Compared to STC, the receptive field recovered by the full-rank MNE models

leads to an improvement on the high SNR neuron (Fig 4.7B) where the four largest

variance components have an overlap of 0.909± 0.008 and the models have a mean
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prediction error of L = 0.32± 0.02. However, on the low SNR neuron the full-rank

MNE models performed worse with an overlap of 0.17±0.05 and L = 0.50±0.01. The

overlap is so poor in this case because the four largest variance components do not

correspond to the four most significant or relevant components in this case (see Fig 4.7C).

Two of the positive variance components have a lower absolute variance than the that of

some of the fictitious components. Unlike in Kaardal et al. [72] where the four largest

variance components are analyzed, the rigidity of using variance to determine the most

relevant components is relaxed for the moment to reveal the two right-most components in

Fig 4.7B. Using these significant components instead, the overlap increases to 0.74±0.02

and, despite the dominance of noise in the two lowest absolute variance components,

this choice better represents the underlying receptive field than STC. This problem of

choosing significant components will be returned to later on in the discussion section.

Low-rank MNE models were optimized using the block coordinate descent

heuristic in Alg 4.2 where the interior-point method [41] from Section 3.3 was used to

solve the block subproblems. Models were fit for each r ∈ {1, · · · , 8} using the signs

of the r largest variance eigenvalues of J averaged across jackknives from the full-rank

MNE models of the high SNR neuron to assign rPSD and rNSD. The grid search iterated

over the domain εk ∈ [0, 1] for all k with a resolution of 0.001 and the block coordinate

descent heuristic proceeded until Mfail = 3, the maximum number of consecutive cycles

through the blocks that failed to uncover a solution that reduced the generalization error.

The upper bound on the regularization parameters was chosen because U•,k ≈ 0 when

εk = 1. Since min
(
{ε∗k}

)
(i.e. the regularization parameter settings that minimize the

negative log-likelihood evaluated on the cross-validation set) did not satisfy the condition

required for certifiable global optimality (Eq 3.37) for all optimized models on either

neuron, these low-rank MNE models lie in the locally optimal regularization domain.

In Section 3.4.2, it was proposed that low-rank MNE models may be optimized
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by setting an expected upper bound on rPSD and rNSD. This proposal was tested and the

results are shown in Fig 4.8A where one expects the negative log-likelihood evaluated on

the cross-validation set to saturate for r ≥ 4 much like what was observed for the func-

tional basis set size (Section 2.3, in particular Fig 2.2F). Indeed, the predicted saturation

occurs at r = 4 where all r > 4 models are equivalent to the r = 4 model. This is possible

because the extra components in the r > 4 models are eliminated by the regularization

parameters and have variance approximately equal to zero. By the r = 6 models, both

J(PSD) and J(NSD) are rank deficient with rank below rPSD and rNSD, respectively, satis-

fying the convergence condition from the upper bounding procedure in Section 3.4.2.

The compressed models also behave as expected, having higher generalization error than

the r ≥ 4 models while each additional component up to r = 4 leads to improvement.

This analysis provides evidence that setting upper bounds on the rank can be used to fit

models of optimal rank.

The recovered receptive fields of the r = 4 models appear in Fig 4.7B for both the

high and low SNR neurons. Qualitatively, the recovered receptive fields do particularly

well at capturing the details of the lower variance components relative to the receptive

fields captured by the full-rank MNE method. The overlap of the recovered receptive

fields of the r = 4 low-rank MNE models was 0.933± 0.007 and 0.83± 0.02 for the

high and low SNR neurons, respectively. The prediction error was L = 0.233±0.009

for the high SNR neuron and L = 0.45±0.01 for the low SNR neuron. Each of these

measures indicate that the low-rank MNE models much better capture the receptive

field and predict responses than the STC and full-rank MNE models. The overlaps and

prediction errors of the models are summarized in Fig 4.8B.

Returning to the statement at the beginning of this section, there are improvements

that may be gained by finding solutions in the locally optimal regularization domain

on this problem. Using Alg 4.1 to find globally optimal approximations yields the
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Figure 4.8: Selecting the best model among STC, full-rank MNE, and the empiri-
cally selected low-rank MNE models for two synthetic vision neurons. (A) Plots of
the prediction error of low-rank MNE models evaluated on four cross-validation sets
as a function of rank saturate as the rank increases above the optimal rank of r = 4
(rPSD = 3 and rNSD = 1). (B) A summary of performance measures from different
dimensionality reduction methods show that the low-rank MNE models perform best.
The gray bar on the bottom plot refers to the mean overlap of the four largest variance
components of the full-rank MNE models while the orange bar is the mean overlap of
the full-rank components plotted in Fig 4.7B.

receptive field estimates in Fig 4.9. The estimate for the high SNR neuron has a similar

appearance to the full-rank MNE reconstruction in Fig 4.7B though with some apparent

smoothing of the noise. Compared to the full-rank MNE model, the globally optimal

approximation is still an improvement with an overlap of 0.954±0.003 and prediction

error L = 0.252±0.006. While the subspace overlap is higher than the receptive fields

obtained through empirical model selection, the empirical model selection produces

receptive fields that better predict the neural responses by a large margin. With respect to

the low SNR neuron, the globally optimal approximation exhibits substantial distortion

reducing the overlap to 0.85±0.02 which is comparable to the locally optimal models.

However, the locally optimal models still have the edge in predicting responses since

the globally optimal approximation has a prediction error of L = 0.46±0.01 on the low
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Figure 4.9: Globally optimal approximations to the receptive field of two synthetic
vision neurons. The recovered receptive fields of the high and low SNR neurons are
shown in order of highest (left) to lowest (right) absolute variance.

SNR neuron.

The fact that the empirical model selection procedure leads to better predictions

is likely a results of targeting solutions towards generalizability. The cross-validation

procedure has the additional advantage of allowing optimization from an upper bound

on r. By contrast, the globally optimal approximation cannot be relied upon to saturate

above rPSD = 3 and rNSD = 1 since the necessary regularization is inversely proportional

to these quantities (a consequence of the bracketed term in Eq 3.29). This is shown in

Fig 4.10 where, compared to the saturation observed in Fig 4.8A, the globally optimal

approximations do not reach a definitive saturation for r ≥ 4, especially for the low

SNR neuron where the optimal rank is dubious. Therefore, the upper bounding from

Section 3.4.2 suggested for use in computing generalizable models of optimal rank is

unreliable for globally optimal approximations.

Another area in which the solutions in the locally optimal domain outperformed

the globally optimal approximation was in more closely capturing the variance of each

component. The components in Fig 4.9 are presented deliberately in order of high to

low variance to emphasize that the components have not maintained the same order

as a function of absolute variance from the ground truth in Fig 4.7A. If one compares

the eigenvalue spectra of the globally optimal approximations in Fig 4.11 to those of

the locally optimal models in Fig 4.7C, the attenuation of the eigenvalue spectra in the
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Figure 4.11: Eigenvalue spectra of the globally optimal approximations to the
receptive fields of the two synthetic vision neurons. Eigenvalue spectra of mean J
from the globally optimal approximation are plotted for the high and low SNR neurons.

globally optimal models is much more severe, being much closer to the baseline than to

the ground truth eigenvalues.

Finally, the experiments on the synthetic neurons conclude with a test of Bayesian

optimization to determine regularization parameter settings that minimize the general-

ization error. Low-rank models with ranks rPSD = 10 and rNSD = 10 were fit to recover

the receptive fields of the high and low SNR neurons. The domain of the regularization

parameters was εk ∈ [0, 1] for all k. In the Bayesian optimization software [75], the

primary bottleneck was found to be the update of the hyperparameters ν and η in the
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Mat’ern 3/2 kernel (Eq 4.7) since the problem size grew superlinearly as a function of

the number of iterations. To mitigate this, the hyperparameters were fixed to ν2 = 1 and

η = 0.1 which appeared to work well in practice. The Bayesian optimization began with

up to 300 iterations allocated to first solving Eq 3.43 with all εk constrained to be equal

to ε, a universal regularization parameter. Following this phase, the regularization param-

eters were allowed to vary independently, only constrained by the inequality constraints

in Eq 3.43 and the box constraints defined by the domain. The exploration weighting,

τ in Eq 4.8, was annealed from 2 to 0 over the remaining 600 iterations to encourage

exploration at the beginning and exploitation as the optimization neared its imposed end.

L-BFGS was used to optimize the subproblem to the right of the bracket in Eq 3.43 with

the equality constraints on U and V directly inserted into the nonlinearity.

The results of the Bayesian optimization are featured in Fig 4.12. The eight largest

variance components are pictured in Fig 4.12 to show what becomes of the insignificant

components in the low-rank MNE method. The insignificant components (those boxed in

by red dashed-lines) are almost entirely composed of random noise and have variance

that is approximately zero. The significant components match closely to what was found

using Alg 4.2. The overlap of the four largest variance components and the ground truth

components (Fig 4.7A) is 0.93±0.01 and 0.85±0.01 for the high and low SNR neuron,

respectively. The prediction error is L = 0.234± 0.009 for the high SNR neuron and

L = 0.45±0.01 for the low SNR neuron. The results are equivalent to those found using

Alg 4.2 and either algorithm may be used to find solutions for the low-rank MNE problem

in Eq 3.43.
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Figure 4.12: Receptive field components of two synthetic vision neurons recovered
using Bayesian optimization. The reconstructed receptive fields of the high and
low SNR neurons where empirical model selection is performed using the Bayesian
optimization approach appear with four extra insignificant components boxed in the red
dashed lines.

4.3 Neural coding in the auditory system

Here it is sought to make progress on three contemporary problems in the field

of computational neuroscience. The first is the more general goal of showing that the

low-rank MNE method is a novel dimensionality reduction technique that may be used

to recover multiple receptive field components from both low and high-levels of sensory

processing whereas this goal has been out of reach with previous methods. High-level, in

this case, refers to neurons at a depth in the neural circuitry where the neurons become

selective for sophisticated representations of objects in and properties of the environment

that depart from the simplicity of, for example, (for vision neurons) center-surround

and (for auditory neurons) monotones and “clicks” (a fleeting burst of sound that spans

a wide range of perceptible frequency). There is, of course, no strict threshold above

which a neuron can be defined to be “sufficiently sophisticated” as to be high-level.

However, a working definition of high-level sensory neurons are those that are unlikely to

be stimulated by external sensory stimuli drawn from an uncorrelated noise distribution

over the course of a typical experiment. The second problem where progress is made is

on characterizing multicomponent receptive fields of high-level auditory neurons which

has not, as far as the author is aware, been achieved with confidence in prior studies. The
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final problem that is addressed is a modest description of the functional neural circuitry in

high-level auditory regions, especially insofar as it suggests a divergence in how neurons

from some auditory and visual regions process sensory input.

4.3.1 The dataset and preprocessing procedure

Data from the CRCNS database used with permission from the Theunissen

laboratory at the University of California, Berkeley was composed of in vivo electro-

physiological recordings of anesthetized adult male zebra finches subject to auditory

stimulation [81, 82]. From this dataset, analysis focused on neurons from the high-level

auditory regions field L and the caudal mesopallium (CM) from the auditory forebrain.

Single neuron action potentials were recorded from a total of 189 neurons from field

L and 37 neurons from CM. The responses were sampled at a 1 ms resolution. These

responses were elicited due to stimulation by two types of auditory stimuli: (i) 2 sec-

ond samples of conspecific birdsong recorded from 20 male zebra finches and (ii) 10

synthesized spectrotemporal ripple stimuli. These stimuli were bandpass filtered from

250 Hz to 8 kHz (within the perceptible frequency range of the zebra finch [83, 84]).

Each stimulus was presented up to ten times to the zebra finches via speakers in a sound

attenuation chamber.

The stimuli were preprocessed by first transforming from amplitude-time space

to spectrotemporal space with the spectrogram function in MATLAB. Using a Hamming

window where neighboring windows had a 50% overlap, it was found that a 250 Hz fre-

quency resolution coupled with a 2 ms temporal resolution provided a reasonable balance

between the spectral and temporal resolution of the spectrograms as observed through

visual inspection of the linear weights (h) of first-order MNE models. With these settings,

the linear weights resolved clear spectrotemporal structure (without significant bias along

either the spectral or temporal axes) while providing plenty of stimulus/response pairs.
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The response was provided as a list of spike times that were accumulated in

equally spaced temporal bins with 2 ms width to match the resolution of the spectrotem-

poral stimuli. Any empty bins were set to zero (no spikes). For repeated trials of stimuli,

the corresponding response bins were averaged across trials providing an estimate of the

mean firing rate given a stimulus. Since the MNE methods require that yt ∈ [0, 1], each

bin is divided by the maximum firing rate, ymax = max
(
{y1, y2, · · · , yNsamp}

)
which is

equivalent to upsampling the temporal resolution by the factor ymax.

Stimulus samples were extracted from the spectrograms by taking 40-60 ms

windows preceding the response yt and unrolling the spectrogram into the stimulus vector

st . To reduce the dimensionality of the stimulus vectors, first-order MNE was used

to refine the frequency range of stimuli where frequency bins well above and below

the observed single component receptive fields were excluded. The stimulus/response

pairs were then randomly shuffled to break correlations between neighboring stimuli

and to ensure a wide sampling of the stimulus/response distribution in the training,

cross-validation, and test sets which were divided into 70%/20%/10% sections as was

previously done with respect to the synthetic neurons (Fig 4.4).

Of the 189 field L and 37 CM neurons, 41 field L and 9 CM neurons were selected

for further analysis. This selection was based on whether a spectrotemporal window

could be identified exhibiting observable structure in the single component receptive

field estimate. The alignment between the stimulus and response samples (due to a

time delay between presentation of stimuli and recording of spikes) and spectrotemporal

windowing of the stimuli were adjusted manually until any observed amplitude of the

receptive field was confined to the spectrotemporal window. Initially, the STA method

was used due to its simplicity. However, in the best cases, it was prone to overestimating

the spectrotemporal extent of the receptive fields (e.g. the bias observed in Fig 4.9)

leading to more windows that were at times much larger than necessary. In the worse



99

(and indeed most) cases, the STA was misleading, often exhibiting amplitude at any

alignment; even those greater than 100 ms from the spike-onset time. The first-order

MNE method was not prone to these well-known biases of the STA and was determined

to be an adequate substitute for the STA. The 50 neurons chosen were those that exhibited

spectrotemporal structure in the linear weights of the first-order MNE models. Second-

order methods such as STC and second-order MNE were not applied to this windowing

procedure for the sake of expediency and because the first-order MNE method is usually

a linear combination of the second-order components making it an adequate proxy for

determining the spatiotemporal extent of a multicomponent receptive field. While this

procedure may bias the subsequent analysis towards first-order MNE models, the later

results show that this bias, if it exists, can still be overcome by the low-rank MNE models.

Among this subset of neurons, the number of samples range from 9,800 to 58,169

with a median of 42,474. The total number of spikes (prior to preprocessing) ranged

from 276 to 29,121 with a median total of 6,120. STC, first-order MNE, full-rank MNE,

low-rank MNE, and functional basis methods were optimized across four jackknives for

each of the neurons.

4.3.2 Multicomponent receptive fields of high-level auditory neu-

rons

In this section, it is shown that the low-rank MNE method can recover multicom-

ponent receptive fields of high-level auditory neurons from regions field L and CM of

the songbird brain. Since the number of components that span the receptive fields of the

auditory neurons is not known a priori, the upper bounding procedure from Section 3.4.2

is used. Tests using the globally optimal approximation method (Eq 3.42 and Alg 4.1)

found that the amount of regularization necessary to reach the globally optimal regu-

larization domain (Prop 3.4) was comparable to the model neurons in the prior section.
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However, as touched on in the prior section, the upper bounding method can and did

fail on the tested neurons to find appropriately sparse receptive fields. While globally

optimal approximation and empirical model selection produced models that had similar

prediction error on the tested neurons, the empirical model selection did so with fewer

non-zero components and with greater clarity. Under the circumstances it was therefore

decided to search for generalizable models via empirical model selection rather than

globally optimal approximations to the receptive fields. Since the ground truth was not

known, the overlap metric could not be applied here. Instead, the relative quality of the

models was judged first by prediction error (i.e. the model that minimizes the negative

log-likelihood across test sets) and second, when the two models had similar prediction

error, by the model that is able to attain that prediction error while optimizing the least

number of weights.

Solutions to the low-rank MNE problems were found using the block coordinate

descent heuristic (Alg 4.2) with the interior-point method [41] from Section 3.3 used to

solve the block subproblems (Eq 3.41). This choice was made over Bayesian optimization

simply because the data analysis with Alg 4.2 was already completed before Bayesian

optimization was considered as an alternative. Optimized models with upper bounds

rPSD = 10 and rNSD = 10 were found to satisfy the conditions rank(JPSD) < 10 and

rank(JNSD) < 10 to ∼ 10−4 precision on at least two jackknives (and usually all) for

each neuron in the population.

One remaining data analysis challenge was resolving which components were

significant contributions to the receptive field after averaging J across jackknives since

rank(J) may be slightly different for each jackknife. An approach to significance testing

based on random matrix theory was used to make this determination and is described in

Appendix C. The rank of J from each jackknife was usually similar, being only different

by a few components, so the disparity is not overly troublesome.
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The multicomponent receptive fields of two example neurons, named blabla0713_

3_B and oo2015_8_A, recovered using the low-rank MNE, full-rank MNE, and STC

methods appear in Fig 4.13. The components shown are the largest variance components

of the receptive fields where the number of components plotted was determined through

significance testing of the eigenvalues of mean J from the low-rank MNE models. The

low-rank MNE method produced much sharper components that were more localized in

both frequency and time compared to either of the full-rank MNE and STC models. The

contrast between the STC components and the low-rank MNE components is particularly

stark, though the failure of STC is expected given the statistics of the stimuli. The

largest absolute variance components of the low-rank and full-rank MNE models bear

a strong resemblance, but the structures that appear in the components diverge for the

lower absolute variance components at the right-hand-side of Fig 4.13. For example,

the four lowest absolute variance components in Fig 4.13 in the full-rank model present

receptive field components that feature frequency gratings with long temporal extent that

one may surmise to be fictitious given their absence in the first-order and low-rank MNE

receptive fields, given that the prediction errors of the first-order and low-rank MNE

models are significantly reduced compared to the full-rank MNE model. The low-rank

MNE models also outperformed both the STC models on these two example neurons.

For neuron blabla0713_3_B, the prediction error was 0.133± 0.002, 0.158± 0.004,

and 0.16±0.02 for the low-rank MNE, full-rank MNE, and STC models, respectively

(where the prediction error of the STC models was computed using a logistic nonlin-

earity as described in Section 4.2.2). For neuron oo2015_8_A, the prediction error was

0.166±0.007, 0.188±0.007, and 0.19±0.03 for the low-rank MNE, full-rank MNE,

and STC models, respectively.

The improvement of the low-rank MNE models over the full-rank MNE models

for the two example neurons is sustained over the entire neuron population. In Fig 4.14A,
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Figure 4.13: Multicomponent receptive fields recovered from two field L neurons.
Multicomponent receptive fields of two field L neurons, blabla0713_3_B and oo2015_
8_A, are recovered via the low-rank MNE, full-rank MNE, and STC dimensionality
reduction methods. The MNE components are ordered from highest (left) to lowest
(right) variance.

two graphs show how the prediction error of the low-rank MNE models compares to

the full-rank MNE and STC models using the first-order MNE models as a baseline for

comparison. The left-most plot is particularly enlightening not just because the low-rank

MNE models universally outperform the full-rank MNE models, but the full-rank MNE

models are also outperformed by the first-order MNE models for all neurons in the

population even though the first-order MNE models recover only a single component.
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This may provide evidence for why second-order methods have failed to characterize high-

level auditory neurons in the past: none of the second-order components are significant.

Furthermore, this gives reason to be skeptical of the observed structure in the full-

rank MNE components. While the full-rank MNE receptive fields are insignificant,

most of the low-rank MNE models by contrast perform better than the first-order MNE

models suggesting that the low-rank MNE models may be more reliable estimates of the

spectrotemporal receptive fields (Fig 4.14B). To be more specific, the low-rank MNE

method leads to improved predictions over the first-order MNE models in 37 of the 50

neurons, including the two example neurons in Fig 4.13. Unsurprisingly, the low-rank

MNE models are also better at predicting responses on the test sets than the STC models

as shown in the central graph of Fig 4.14A. To try to improve the STC results, STC was

performed on zero-phase whitened [56] stimuli but the receptive fields in the whitened

space lead to substantially worse predictions over unwhitened STC [72].

The novel components characterized by the low-rank MNE method have provided

new insights into the receptive fields of high-level sensory neurons. Additionally, these

results demonstrate an advancement in techniques for reconstructing receptive fields of

high-level sensory neurons. Based on the provided evidence, one might surmise that the

low-rank MNE method may be key to making at least partial progress on solving the

standing problems in computational neuroscience that were introduced at the beginning

of this section.

4.3.3 Functional neural circuitry of high-level auditory neurons

Receptive field reconstructions are alone limited in their ability to provide insight

into the conceptual aspects of neural computation. As such, more may be learned about

the auditory system by studying more informative aspects of sensory systems such

as the functional neural circuitry. Here the functional basis method [51] (Chapter 2)
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Figure 4.14: Selecting the best model among STC and first-order, full-rank, and
low-rank MNE methods across the population of auditory neurons. (A) The dif-
ference in the negative log-likelihood evaluated on the test sets between the labeled
models and the first-order MNE models is computed to compare the relative prediction
error of first-order MNE, low-rank MNE, full-rank MNE, and STC across the auditory
neurons. Above the horizontal dashed line, the first-order MNE model performs better
than the low-rank MNE model. To the right of the vertical dashed line, the first-order
MNE model performs better than the model labeled on the x-axis. The solid gray line
compares the relative prediction error of the low-rank MNE model vs. the model on
the x-axis where points below the line indicate that the low-rank MNE model performs
better. (B) A bar plot shows the number of auditory neurons best fit by each of the
models as determined from A where here “linear” refers to the first-order MNE models.

takes a reprising role where the reconstructed receptive fields from the low-rank MNE

method will be utilized to reach new conclusions about the computations performed by

populations of high-level auditory neurons.

The analysis focuses particularly on functional bases derived from the simple

Boolean operations logical OR and logical AND due to their ease of interpretation
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as being primarily integrative or discriminatory, respectively, towards collections of

functional inputs. More intuitively, a logical OR operation is integrative because it

expresses a form of invariance where any relevant input has the ability to cause a neuron

to elicit a response. Logical AND is discriminative because the neuron responds only

when a coincidence of all relevant sensory inputs are present which can be viewed as

negation of the logical OR operation where logical AND is invariant to the absence of a

relevant sensory input leading to a silent response.

Logical OR and logical AND functional bases were computed for each neuron

across the population within the mean relevant subspace from each of the multicomponent

dimensionality reduction methods (low-rank MNE, full-rank MNE, and STC) using

quadratic input nonlinearities for added flexibility (Eq 2.14). As usual, four jackknives

were computed with the data set divided into 70% training/20% cross-validation/10%

test sets consistent with (Fig 4.4). The procedure otherwise follows along to the same

steps used to optimize the functional bases in Chapter 2 where L-BFGS is employed to

minimize the negative log-likelihood evaluated on the training set and the optimal number

of functional basis components is determined via saturation of the negative log-likelihood

evaluated on the cross-validation sets. In this case, the global optimization procedure

completed following 50 consecutive failures of the algorithm to find a better training set

solution with random weight initializations.

The two example neurons that appeared in Fig 4.13 return in Fig 4.15 where

the logical AND functional basis is pictured for linear combinations of the receptive

field estimates from each method in Fig 4.13. Logical AND was chosen for these

neurons because the logical AND models had a lower prediction error than the logical

OR models when measured on the cross-validation sets. For example, the normalized

relative prediction errors (Eq 2.8) of the functional bases derived from the low-rank MNE

estimates of the receptive fields were ∆LOR,AND = −0.0235± 0.001 and ∆LOR,AND =
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(−3±1) ·10−3 for neurons blabla0713_3_B and oo2015_8_A, respectively, indicating

logical AND was a significantly better hypothesis than logical OR.

Clearly, STC provides inadequate estimates of the receptive fields for this appli-

cation where the repeated dimensions in Fig 4.15 reveal an undercomplete basis which

ought to be unlikely unless the number of components spanning the receptive field is

overestimated. If one had reasonably speculated that the broad temporal gratings ob-

served in the full-rank MNE receptive field reconstruction of neuron blabla0713_3_B

from Fig 4.13 were benign and would perhaps cancel out when computing the functional

basis, the result in Fig 4.15 dispels that notion (at least for logical OR and logical AND

models) given that the gratings still occur prominently in four of the five functional basis

components. For this neuron, the functional basis remains largely divergent from those

that are reconstructed from the low-rank MNE models with arguably the exception of

two of the five components. The oo2015_8_A neuron fares a little better since two of the

four components are similar between the full-rank and low-rank MNE models but the

remaining two functional basis components derived from the full-rank MNE models are

nearly empty spectrograms.

The population of auditory neurons was by far better modeled by logical AND

operations with respect to the low-rank MNE receptive field estimates. This is shown

graphically in Fig 4.16 where the the vast majority of the neurons, including 40 of the 41

field L neurons and 8 of the 9 CM neurons, are positioned below the horizontal dashed

line indicating that logical AND best predicts responses across the test sets. This plot

also shows how the difference in performance between the logical AND and logical OR

models is correlated with the overall balance of the positive and negative components

of the eigenvalue spectra represented by Tr(J) on the x-axis of Fig 4.16. Receptive

fields dominated by negative variance components were better described by logical

AND models instead of logical OR models with a t-test p-value of 0.1%. Overall, the
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Figure 4.15: Functional bases of two field L neurons. Functional bases (“F. B.”)
derived from a logical AND model are plotted for the two field L neurons confined to
the recovered receptive fields from the low-rank MNE, full-rank MNE, or STC models.
The receptive fields (“R. F.”) reconstructed by the low-rank MNE models are reproduced
here for the reader’s convenience.
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Figure 4.16: The logical AND functional basis is the dominant description of the
auditory neurons and is correlated with an imbalance of excitation and suppres-
sion. Differences in the negative log-likelihood of the logical AND and logical OR
models evaluated on the test sets are plotted as a function of Tr(J) from the low-rank
MNE models for all of the auditory neurons. Neurons above the horizontal gray dashed
line are better fit by logical OR models while those below are better fit by logical AND
models. Neurons to the left of the vertical dashed line have receptive fields composed
of components dominated by negative-variance while those on the right are dominated
by positive-variance.

dominance of logical AND computations in the population suggests that auditory neurons

in field L and CM are discriminatory. This could be interpreted as meaning that these

neurons are selective for very specific qualities of auditory stimuli.

4.4 Discussion

By developing a low-rank MNE method designed to resist overfitting and bias

from arbitrary stimulus distributions, it was possible to estimate multicomponent receptive

fields of high-level auditory neurons with greater precision and significance than was

previously possible. Dramatic improvements were observed not only in the quality

of the receptive fields (certifiably in the case of the synthetic neurons) but also in

the ability of the low-rank MNE models to predict responses of the neurons to novel
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stimuli. Furthermore, the reconstructions of the receptive fields even at this high-level of

processing were found to be spanned by few components (r≤ 20) which is a small enough

space to allow for interpretable models to be constructed that describe the underlying

neural computations.

Despite the relatively few components recovered from each auditory neuron, the

low-rank MNE models were shown to outperform the full-rank MNE models. At the other

extreme, the low-rank MNE models were shown to also outperform the first-order MNE

models on the majority of neurons in the population. There are several reasons why these

improvements were encountered. As was repeated on several occasions throughout this

volume (and will be restated once more), MNE models often yield better reconstructions

than spike-triggered methods like STC because MNE models were principally designed

to have low susceptibility to bias when faced with non-Gaussian stimulus distributions.

Examples of STC exhibiting sometimes substantial biases were presented throughout the

chapter where the low-rank and first-order MNE methods were ubiquitous improvements

over the STC models.

Compared to the full-rank MNE method, the low-rank MNE method has three

primary advantages: (i) the explicit rank constraint reduces the number of weights to

optimize, (ii) nuclear-norm regularization can limit or entirely eliminate the influence

of fictitious components, and (iii) the matrix J is decomposed via a nonlinear matrix

factorization. The first case simply renders the low-rank MNE model less prone to

overfitting by reducing the number of weights per data sample. In the second case, the

nuclear-norm imposes a well-defined low-rank structure on the matrix J; a property of

which is fundamental to dimensionality reduction. The full-rank MNE method’s usage of

early stopping [28] may behave unpredictably as was observed throughout the chapter

and it certainly cannot be expected to push the optimization towards rank-deficient

solutions. Yet, dropping the early stopping procedure would make matters worse since
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the full-rank MNE model would proceed to overfit, at least on the data set sizes in this

chapter. Lastly, the third point is important because one cannot necessarily assume there

is a strict relationship between the variance of components in J and the contribution

a component makes towards the predictive power of the model. One cannot generally

assume that the components of J will behave like a linear matrix factorization where the

eigenvalues/eigenvectors are local minima and larger absolute variance components are

proportional to the depth of the minimum. In fact, in the process of generating the random

problems in Section 3.2.1, counterexamples were found where the component located

at a suboptimal local minimum could exist with higher variance than the the globally

optimal component. The low-rank MNE problem circumvents this issue by fitting a

low-rank bilinear factorization of J rather than the two-stage procedure (optimization of

J followed by factorization) employed in the full-rank method.

The results highlight an interesting possible difference in how information is

processed between visual and auditory systems. Recent investigations [51, 85], including

those in Chapter 2, have shown that logical OR operations provide a better description

of the computations in early vision. This is in contrast to the findings in this chapter

that the computations performed by high-level auditory neurons from the avian auditory

forebrain are overwhelmingly better described by logical AND operations. It is possible

that these results indicate that auditory and vision neurons are sensitive to the presence of

different types of stimulus transformations. The logical OR models can be interpreted as

a max pooling of responses along excitatory dimensions of the inputs while logical AND

models perform a max pooling operation along suppressive input dimensions and the two

operations are related through negation. Another possibility is that early sensory regions

are better described by logical OR while higher-level sensory regions are better described

by logical AND. Determining which of these hypotheses, or others, are true would require

the study of additional sensory regions and would be an interesting direction for future
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research.

Chapter 4 contains work that was published in Kaardal, Theunissen, and Sharpee,

Frontiers in Computational Neuroscience (2017). The dissertation author was the primary

investigator and author of the paper.



Appendix A

Bayesian interpretation of the

nuclear-norm

The nuclear-norm penalty function can be viewed from the Bayesian perspective

as a prior distribution on the weights of the form

P(a,h,Q) =
r

∏
k=1

P(Q•,k) =
r

∏
k=1

(
εk

2π

)D
2

e−
εk
2 QT
•,kQ•,k (A.1)

which is a product of multivariate normal distributions with covariance ε
−1
k I. If the

weights are assumed to be drawn from this prior distribution, the objective function can be

reformulated in terms of the posterior distribution, P(a,h,Q|y,st)∝ P(y|st ;a,h,Q)P(a,h,Q),

as (where, to be concise, P(y) has been dropped since it is a constant):

f (a,h,Q) =− 1
Nsamp

∑
t

[
yt log

(
P(y = 1|st ;a,h,Q)P(a,h,Q)

)
+(1− yt) log
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)]
. (A.2)
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This can be shown to reduce to the form in Eq 3.21 as follows:

⇒− 1
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∑
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− 1
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where P(y|st) ≡ P(y|st ;a,h,Q) and QT
•,kQ•,k ≡

∥∥Q•,k
∥∥2

F. The right-most sum can be

safely ignored because it does not explicitly depend on any of the weights and therefore

has no impact on the solutions to the minimization problem. Thus, the nuclear-norm can

be interpreted as a product of independent prior distributions composed of multivariate

normal distributions on the components of Q and uniform distributions on a and h. This

prior distribution assumes that the variances of the components that make up Q are more

likely to lie close to zero.



Appendix B

Convergence of the block coordinate

descent algorithm

A block coordinate descent algorithm can be used to find a feasible local mini-

mizer of the low-rank MNE problem (Eq 3.22). The block coordinate descent is taken

with respect blocks of weights unrolled into block vectors

xT
k =

[
a, hT, QT

•,k

]
(B.1)

and the block k subproblems (Eq 3.41) can be solved cyclically. To prove that the

block coordinate descent algorithm converges, one must show that the KKT conditions

(Prop 3.1) and second-order sufficient conditions (Prop 3.2) of the low-rank MNE problem

(Eq 3.22) are satisfied when the block KKT and block second-order sufficient conditions

are satisfied across all blocks.

The block k subproblem (Eq 3.41) can be minimized by recursively solving the
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linear system

 ∇2
xkxk

L , A(k)T

A(k), 0


 pxk

−pΨk

=−

 ∇xkL

∇ΨkL

 (B.2)

with the remaining Q•, j ( j 6= k) held fixed using the interior-point method discussed in

Section 3.3. The new matrices, A(k) ∈ RD×1+D+2rD, are the block constraint Jacobians.

The cyclic block minimization leads to a monotonically decreasing series f (x( j)
1 ) ≥

f (x( j)
2 )≥ ·· · ≥ f (x( j)

r ) for the jth cycle through the blocks. Since the objective function

is bounded from below, f (x)≥ 0, the objective function cannot decrease indefinitely and

will eventually saturate as j→ ∞ to a stationary point. At this stationary point, the block

KKT and block second-order sufficient conditions are satisfied.

Proposition B.1. Block KKT conditions: the first-order necessary conditions for x∗k to

be a feasible local minimizer of the block subproblem (Eq 3.41) are

∇xkL = 0, ∇Ψ•,kL = 0 (B.3)

where the latter equation corresponds to satisfaction of the linear equality constraints

and both equations are evaluated at x∗k .

As was the case for the full problem in Eq 3.22, the block subproblems can be guaranteed

to satisfy the KKT conditions at a stationary point because the constraints are linear.

Proposition B.2. Block second-order sufficient conditions: for the block weights x∗k to be

a feasible local minimizer of the block subproblem (Eq 3.41), the second-order sufficient

conditions are

Sk =N
(

A(k)
)
∇xkxk f |x∗kN

(
A(k)

)T
≥ 0. (B.4)
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Since the block subproblem is nonconvex, it is both necessary and sufficient that a

solution x∗k satisfy Props B.1 & B.2.

Before beginning with the proof, the following submatrices are defined to make

the notation less cumbersome:

A∗Ti: j,i: j =



A∗Ti,i , 0, · · · , 0

0, A∗Ti+1,i+1,
. . . ,

...
..., . . . , . . . , 0

0, . . . , 0, A∗Tj, j


, (B.5)

B =
1
N ∑

t
Pt(1−Pt)

 1

st

[ 1, st

]
, (B.6)

Ri: j,•RT
i′: j′,• =

1
N ∑

t
Pt(1−Pt)



DtQ•,i

DtQ•,i+1

...

DtQ•, j





DtQ•,i′

DtQ•,i′+1

...

DtQ•, j′



T

, (B.7)

Yi: j,• =
1
N ∑

t
Pt(1−Pt)



DtQ•,i

DtQ•,i+1

...

DtQ•, j


[

1, sT
t

]
, (B.8)
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Zi: j,i: j =
1
N ∑

t
(Pt− yt)



Dt , 0, · · · , 0

0, Dt ,
. . . ,

...
..., . . . , . . . , 0

0, · · · , 0, Dt


+



εiI, 0, · · · , 0

0, εi+1I, . . . ,
...

..., . . . , . . . , 0

0, · · · , 0, ε jI


(B.9)

where i and j are indices that extract a submatrix from a larger matrix and 0 < i≤ j ≤ r

(the same goes for i′ and j′).

The proof of convergence is made under two mild assumptions.

Assumption B.1. The first-order feature space satisfies the condition

rank

 1
Nsamp

∑
t

 1

st

[ 1, sT
t

]= D+1 (B.10)

or has been transformed such that this is true.

This first assumption means that the covariance of the first-order feature space (the stimu-

lus vector augmented by the element one) should be full-rank. Even if this assumption is

not immediately satisfied, the feature space can be transformed without loss of generality

by projecting the first-order feature space into the non-zero principal components of the

feature space.

Assumption B.2. Any overlap in the subspace that spans the positive variance compo-

nents of Rk,•RT
k,• and the subspace that spans the negative variance components of Zk,k

have non-degenerate magnitude.

Intuitively, the second assumption means that if eigendecomposition of Rk,•RT
k,• and Zk,k

produce overlapping subspaces, the variance of these subspaces is assumed to be such

that R
(

Rk,•RT
k,•+Zk,k

)
⊇R

(
Rk,•RT

k,•

)
. Given the dissimilarity of these two matrices,

it is unlikely that this assumption would be broken. Furthermore, this assumption
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can theoretically be satisfied through an infinitesimal adjustment of the nuclear-norm

regularization parameters. The reasoning behind the second assumption is not obvious

and will be made clear later on. These assumptions are laid out here not because the

cyclic block coordinate descent will not converge otherwise, but instead to emphasize

that the following proof only guarantees convergence under these assumptions.

Now, it will be shown that under Assumptions B.1 & B.2 that satisfaction of

Props B.1 & B.2 simultaneously leads to the satisfaction of Props 3.1 & 3.2.

Proposition B.3. If, for all k, each x∗k is a feasible local minimizer of their respective

block subproblem in Eq 3.41 satisfying Prop B.1, then x∗ (the full weight vector) is a

KKT point of the low-rank MNE problem Eq 3.22 satisfying Prop 3.1.

Proof. The KKT conditions in Prop 3.1 are trivially satisfied when Prop B.1 is simulta-

neously satisfied by all r blocks because the gradient of the Lagrangian of the full-rank

MNE problem must be zero and x∗ must be feasible in order to satisfy the block KKT

conditions in Prop B.1.

Proving that the second-order sufficient conditions are satisfied is quite a bit more

involved and makes up the remainder of this section.

Proposition B.4. Under Assumptions B.1 & B.2 and supposing that the KKT conditions

are satisfied according to Prop B.3 for all x∗k that are feasible local minima of the block

subproblem (Eq 3.41, satisfaction of the block second-order sufficient conditions in

Prop B.2 is sufficient to guarantee that the full weight vector x∗ simultaneously satisfies

the second-order sufficient conditions of the full low-rank MNE problem are satisfied

(Prop 3.2).

Proof. Under Assumption B.1, the matrix Ri: j,•RT
i: j,• is positive definite provided Q•,k 6= 0

for all k ∈ {i, · · · , j} and strictly positive semidefinite if any Q•,k = 0. When all of the
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nuclear-norm regularization parameters, {εk}, satisfy Prop 3.4, the matrix Zi: j,i: j is

positive semidefinite; otherwise Zi: j,i: j is indefinite. From Eq 3.31, it is known that the

rank-deficiency of Zi: j,i: j is rank
(
N (Zi: j,i: j)

)
≥ rank

([
Q•,i, · · · , Q•, j

])
. The matrix B

is positive definite.

In terms of the abbreviations in Eqs B.5, B.6, B.7, B.8, & B.9, Sk (Prop B.2) may

written as  I, 0

0, A∗k,k


 B, YT

k,•

Yk,•, Rk,•RT
k,•+Zk,k


 I, 0

0, A∗Tk,k


=

 B, YT
k,•A

∗T
k,k

A∗k,kYk,•, A∗k,k
(

Rk,•RT
k,•+Zk,k

)
A∗Tk,k

 .
(B.11)

The Schur complement of Sk taken over B is

(Sk
/

B) = A∗k,k
(
Rk,•RT

k,•+Zk,k
)

A∗Tk,k−A∗k,kYk,•B−1YT
k,•A

∗T
k,k (B.12)

which is positive definite because Sk is positive definite at a local minimizer of each

block. Since Sk is positive semidefinite and B is positive definite, it follows from the Schur

complement condition for positive semidefiniteness that

Θk,k = A∗k,k
(
Rk,•RT

k,•+Zk,k
)

A∗Tk,k (B.13)

is also positive semidefinite. Note that Assumptions B.1 & B.2 guarantee that Θk,k is

only strictly positive semidefinite when Q•,k = 0 and is otherwise positive definite.

Using Eq B.13 and the conclusions about the definiteness of Θk,k, convergence

of cyclic block coordinate descent to a feasible local minimizer of the low-rank MNE

problem (Eq 3.22) can be shown through recursive application of the Schur complement.
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First, the second-order sufficient conditions of the low-rank MNE problem, S (Prop 3.2),

can be rewritten as I, 0

0, A∗1:r,1:r


 B, YT

1:r,•

Y1:r,•, R1:r,•RT
1:r,•+Z1:r,1:r


 I, 0

0, A∗T1:r,1:r


=

 B, YT
1:r,•A

∗T
1:r,1:r

A∗1:r,1:rY1:r,•, A∗1:r,1:r

(
R1:r,•RT

1:r,•+Z1:r,1:r

)
A∗T1:r,1:r

 .
(B.14)

Then, the Schur complement of S is taken with respect to B:

(S
/

B) =Θ1:r,1:r−A∗1:r,1:rY1:r,•B−1YT
1:r,•A

∗T
1:r,1:r, (B.15)

where

Θi: j,i′: j′ = A∗i: j,i: j

(
Ri: j,•RT

i′: j′,•+Zi: j,i′: j′
)

A∗Ti′: j′,i′: j′. (B.16)

From here, the Schur complement of Θk:r,k:r over Θk,k forms the sequence

(Θ1:r,1:r
/
Θ1,1) =Θ2:r,2:r−Θ2:r,1Θ

−1
1,1Θ1,2:r

(Θ2:r,2:r
/
Θ2,2) =Θ3:r,3:r−Θ3:r,2Θ

−1
2,2Θ2,3:r

(Θ3:r,3:r
/
Θ3,3) =Θ4:r,4:r−Θ4:r,3Θ

−1
3,3Θ3,4:r

...

(Θr−1:r,r−1:r
/
Θr−1,r−1) =Θr,r−Θr−1:r,r−1Θ

−1
r−1,r−1Θr−1,r−1:r.

(B.17)

When all Q•,k 6= 0, then according to Eq B.13 all Θk,k are positive definite.

Therefore, the last Schur complement of sequence indicates that Θr−1:r,r−1:r must be

positive definite because Θr,r and Θr−1,r−1 are positive definite. This result can than be

used to show that Θr−2:r,r−2:r is also positive definite. In the same fashion, by inserting



121

the results below into the equation above and backtracking through the sequence from

bottom to top, one would find that all θk:r,k:r are positive definite when all Q•,k 6= 0 and

therefore S is positive definite and x∗ is a feasible local minimizer of the low-rank MNE

problem.

If, on the other hand, Q•,k = 0 for some k, then Θk,k is strictly positive semidefinite

for that k. Let Q have ropt non-zero columns where ropt < r. Without loss of generality,

the columns of Q can be rearranged such that the first r− ropt columns are zero (Q•,k = 0

for k≤ r− ropt). Then the elements of the submatrices R1:r−roptRT
1:r,• and R1:r,•RT

1:r−ropt,•

are all zero and therefore Θ1:r−ropt,1:r−ropt = Z1:r−ropt,1:r−ropt is a block diagonal matrix,

Θr−ropt+1:r,r−ropt+1:r is positive definite, and the remaining submatrices of R1:r,•RT
1:r,•

are all zeros. Because Θk,k for k < r− ropt is rank-deficient, Θk:r,k:r can be proven to

be positive semidefinite via the generalized Schur complement. To do so, the matrix

inverses, Θ−1
k,k , of the top r− ropt lines of the recursive Schur complement (Eq B.17) must

be substituted by a generalized inverse, Θ†
k,k, and satisfy the additional requirement

that N
(
Θk,k+1:r

)
⊇N

(
Θk,k

)
for all k. Of course, this condition is trivially satisfied

because Rk,• = 0 when Q•,k = 0 and therefore Θk,k+1:r = A∗k,kRk,•RT
k+1:rA

∗T
k+1:r,k+1:r = 0

and N
(
Θk,k+1:r

)
is full-rank. Backtracking once again from the bottom equation in the

sequence to the top of the sequence in Eq B.17 shows that S is positive semidefinite when

some Q•,k = 0. Therefore, cyclic block coordinate descent converges to a feasible local

minimizer of the low-rank MNE problem (Eq 3.22) under Assumptions B.1 & B.2.

Appendix B contains work that was published in Kaardal, Theunissen, and

Sharpee (2017). The dissertation author was the primary investigator and author of the

paper.



Appendix C

Resolving the optimal rank of

second-order MNE models

In second-order MNE models where the multicomponent receptive field is re-

covered by diagonalizing (symmetrized) J, solutions for J originating from multiple fits

of the models to different data sets may produce conflicting answers with regard to the

number of significant components that make up J. One quick way to resolve this issue is

to instead determine the number of significant components from J averaged across the

different fits. However, this still leaves open the question of a strategy for determining

which components of the averaged J ought to be considered significant. The approach

taken here determines the number of significant components based on ideas from random

matrix theory.

Suppose that the mean J matrix was drawn from a distribution of distribution

of random numbers, J , with zero mean and positive variance σ̂2. If J is a large matrix

with D� 1, then the distribution of eigenvalues of random matrices whose elements are
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drawn from J are distributed according to the Wigner semi-circle law:

P(β) =


1

2πσ̂2

√
4σ̂2−β2 if −2|σ̂| ≤ β≤ 2|σ̂|

0 otherwise
(C.1)

where β is the variance of an eigenvalue. Unfortunately, it is not known from which

probability distribution J has been drawn; but a conservative estimate can be made on

the bounds of the null distribution in Eq C.1 under the assumption that the distribution

J has similar statistics to matrix J itself. To limit any further assumptions being set

on J , no explicit functional form is imposed on J . Rather, a large number of random

matrices is generated by symmetrically shuffling the elements of J with the sign of each

element decided with uniform probability to ensure that the mean of the distribution

remains at zero. Each of these random symmetric matrices are diagonalized and the

largest magnitude positive and negative eigenvalues are aggregated from each matrix.

The number of significant components is then determined to the desired probability,

pthres, that the eigenvalue is within the bounds of the null distribution (Eq C.1) defined

by the aggregated eigenvalues from the random matrices. The significant components are

outliers from the null distribution with probability 1− pthres. A pseudocode outline of

this procedure appears in Alg C.1.

Appendix C contains work that was published in Kaardal, Theunissen, and

Sharpee (2017). The dissertation author was the primary investigator and author of the

paper.
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Algorithm C.1 Resolving the rank of the matrix J.
1: inputs: J, pthres, the number of random matrices to generate M
2: initialization: compute a vector of eigenvalues β← eig(J), initialize the significant

number of components ropt ← 0, initialize an empty set to store the eigenvalue
bounds ζ← /0

3:
4: for m ∈ {1, · · · , M} do
5: Ŷ← randomly sample D(D+1)/2 elements from ±J with uniform probability
6: into a D×D symmetric matrix
7: ζ← ζ

⋃{
|min

(
Ŷ
)
|,max

(
Ŷ
)}

8: for k ∈ {1, · · · , D} do

9: p← 1
2M

2M

∑
m=1

H (ζm−|βk|) /* where H(·) is the Heaviside step function */

10: if p≥ pthres then
11: break
12: else
13: ropt← k

14: returns: ropt
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