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ABSTRACT OF THE DISSERTATION

Information-theoretic aspects of signal analysis and reconstruction

by

Taehyung Lim

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2017

Professor Massimo Franceschetti, Chair

The objective of this thesis is to develop a few approaches to wave theory of

information. Specifically, this dissertation focuses on two special types of waveforms,

bandlimited and multi-band signals. In both cases, we investigate the waveforms in the

context of signal analysis and reconstructions.

In the first part of this thesis, we derive the amount of information that can be

transmitted by bandlimited waveforms under perturbation, and the amount of information

required to represent any bandlimited waveforms within a specific accuracy. These

goals can be studied using a stochastic approach or a deterministic approach. Despite

x



their shared goal of mathematically describing communication using the transmission

of waveforms, as well as the common geometric intuition behind their arguments, the

two approaches to information theory have evolved separately. The stochastic approach

flourished in the context of communication, becoming the pillar of modern digital

technologies, while the deterministic approach impacted mostly mathematical analysis.

Recent interest in deterministic models has been raised in the context of networked control

theory. This brings renewed attention to the deterministic approach in information theory.

However, in contrast with the stochastic approaches where the tight results are already

known, the previous deterministic results only provide the loose bounds. We improve

these results by deriving tight results, and compare our results with the stochastic ones,

which reveals the intrinsic similarities of two different approaches.

In the second part of this dissertation, we derive the minimum number of mea-

surements to reconstruct multi-band waveforms, without any spectral information aside

from the measure of the whole support set in the frequency domain. This problem is

called the completely blind sensing problem and has been an open question. Until a

recent date, partially blind sensing has been performed commonly instead, assuming to

have some partial spectral information available a priori. We provide an answer for the

completely blind sensing problem by deriving the minimum number of measurements to

guarantee the reconstruction. The blind sensing problem shares some similarities with

the compressed sensing problem. Despite these similarities, due to their different settings,

the blind sensing problem contains a few additional difficulties which are not included in

the compressed sensing problem. We independently develop our own theory to solve the

completely blind sensing problem, and compare our results to those of the compressed

sensing problem to reveal the similarities and differences between the two problems.
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Chapter 1

Introduction

How much information can be carried in a prescribed waveform? This question is

of broad mathematical and physical interest, and has numerous engineering applications,

including in communications, sensing, imaging, radar detection and classification systems.

In order to answer this question, we should determine a way to gauge the amount of

information included in waveforms. We firstly use the notions of capacity and entropy to

quantify the amount of information in bandlimited waveforms, and secondly derive the

number of measurements needed to represent the amount of information in multi-band

waveforms.

In chapter 2, the deterministic notions of capacity and entropy are studied in the

context of communication and storage of information using square-integrable, bandlim-

ited signals subject to perturbation. The (ε,δ )-capacity, that extends the Kolmogorov

ε-capacity to packing sets of overlap at most δ , is introduced and compared to the

Shannon capacity. The functional form of the results indicates that in both Kolmogorov

and Shannon’s settings, capacity and entropy grow linearly with the number of degrees

of freedom, but only logarithmically with the signal to noise ratio. This basic insight

transcends the details of the stochastic or deterministic description of the information-

theoretic model. For δ = 0 the analysis leads to a tight asymptotic expression of the

Kolmogorov ε-entropy of bandlimited signals. A deterministic notion of error exponent

1
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is introduced. Applications of the theory are briefly discussed.

In chapter 3, a solution for the completely blind sensing problem of recovering

multi-band signals from measurements without any spectral information beside an upper

bound on the measure of the whole support set in the frequency domain is presented.

Determining the number of measurements necessary and sufficient for reconstruction has

been an open problem, and usually partially blind sensing is performed, assuming to have

some partial spectral information available a priori. In this paper, the minimum number

of measurements that guarantees perfect recovery in the absence of measurement error,

and robust recovery in the presence of measurement error, is determined in a completely

blind setting. Results show that a factor of two in the measurement rate is the price pay

for blindness, compared to reconstruction with full spectral knowledge. The minimum

number of measurements is also related to the fractal (Minkowski-Bouligand) dimension

of a discrete approximating set, defined in terms of the Kolmogorov ε-entropy. These

results are analogous to a deterministic coding theorem, where an operational quantity

defined in terms of minimum measurement rate is shown to be equal to an information-

theoretic one. A comparison with parallel results in compressed sensing is illustrated,

where the relevant dimensionality notion in a stochastic setting is the information (Rényi)

dimension, defined in terms of the Shannon entropy.



Chapter 2

Information Without Rolling Dice

2.1 Introduction

Claude Shannon introduced the notions of capacity and entropy in the context of

communication in 1948 [1], and with them he ignited a technological revolution. His

work instantly became a classic and it is today the pillar of modern digital technologies.

On the other side of the globe, the great Soviet mathematician Andrei Kolmogorov

was acquainted with Shannon’s work in the early 1950s and immediately recognized

that “his mathematical intuition is remarkably precise.” His notions of ε-entropy and

ε-capacity [2, 3] were certainly influenced by Shannon’s work. The ε-capacity has the

same operational interpretation of Shannon’s in terms of the limit for the amount of

information that can be transmitted under perturbation, but it was developed in the purely

deterministic setting of functional approximation. On the other hand, the ε-entropy

corresponds to the amount of information required to represent any function of a given

class within ε accuracy, while the Shannon entropy corresponds to the average amount

of information required to represent any stochastic process of a given class, quantized at

level ε . Kolmogorov’s interest in approximation theory dated back to at least the nineteen-

thirties, when he introduced the concept of N-width to characterize the “massiveness” or

effective dimensionality of an infinite-dimensional functional space [4]. This interest also

3
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eventually led him to the solution in the late nineteen-fifties, together with his student

Arnold, of Hilbert’s thirteenth problem [5].

Even though they shared the goal of mathematically describing the limits of

communication and storage of information, Shannon and Kolmogorov’s approaches to

information theory have evolved separately. Shannon’s theory flourished in the context

of communication, while Kolmogorov’s work impacted mostly mathematical analysis.

Connections between their definitions of entropy have been pointed out in [6]. The

related concept of complexity and its relation to algorithmic information theory has been

treated extensively [7, 8]. Kolmogorov devoted his presentation at the 1956 International

Symposium on Information Theory [9], and Appendix II of his work with Tikhomirov [3]

to explore the relationship with the probabilistic theory of information developed in the

West, but limited the discussion “at the level of analogy and parallelism.” This is not

surprising, given the state of affairs of the mathematics of functional approximation in

the nineteen-fifties — at the time the theory of spectral decomposition of time-frequency

limiting operators, needed for a rigorous treatment of continuous waveform channels,

had yet to be developed by Landau, Pollack and Slepian [10, 11].

Renewed interest in deterministic models of information has recently been raised

in the context of networked control theory [12, 13], and in the context of electromagnetic

wave theory [14, 15, 16]. Motivated by these applications, in this paper we define the

number of degrees of freedom, or effective dimensionality, of the space of bandlimited

functions in terms of N-width, and study capacity and entropy in Kolmogorov’s determin-

istic setting. We also extend Kolmogorov’s capacity to packing sets of non-zero overlap,

which allows a more detailed comparison with Shannon’s work.
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2.1.1 Capacity and packing

Shannon’s capacity is closely related to the problem of geometric packing “billiard

balls” in high-dimensional space. Roughly speaking, each transmitted signal, represented

by the coefficients of an orthonormal basis expansion, corresponds to a point in the

space, and balls centered at the transmitted points represent the probability density of the

uncertainty of the observation performed at the receiver. A certain amount of overlap

between the balls is allowed to construct dense packings corresponding to codebooks of

high capacity, as long as the overlap does not include typical noise concentration regions,

and this allows to achieve reliable communication with vanishing probability of error.

The more stringent requirement of communication with probability of error equal to

zero leads to the notion of zero-error capacity [17], which depends only on the region

of uncertainty of the observation, and not on its probabilistic distribution, and it can be

expressed as the supremum of a deterministic information functional [13].

Similarly, in Kolmogorov’s deterministic setting communication between a trans-

mitter and a receiver occurs without error, balls of fixed radius ε representing the uncer-

tainty introduced by the noise about each transmitted signal are not allowed to overlap,

and his notion of 2ε-capacity corresponds to the Shannon zero-error capacity of the

ε-bounded noise channel.

In order to represent a vanishing-error in a deterministic setting, we allow a

certain amount of overlap between the ε-balls. In our setting, a codebook is composed by

a subset of waveforms in the space, each corresponding to a given message. A transmitter

can select any one of these signals, that is observed at the receiver with perturbation at

most ε . If signals in the codebook are at distance less than 2ε of each other, a decoding

error may occur due to the overlap region between the corresponding ε-balls. The total

volume of the error region, normalized by the total volume of the ε-balls in the codebook,
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represents a measure of the fraction of space where the received signal may fall and result

in a communication error. The (ε,δ )-capacity is then defined as the logarithm base two

of the largest number of signals that can be placed in a codebook having a normalized

error region of size at most δ . We provide upper and lower bounds on this quantity,

when communication occurs using bandlimited, square-integrable signals, and introduce

a natural notion of deterministic error exponent associated to it, that depends only on

the communication rate, on ε , on the signals’ bandwidth, and on the energy constraint.

Our bounds become tight for high values of the signal to noise ratio, and their functional

form indicates that capacity grows linearly with the number of degrees of freedom, but

only logarithmically with the signal to noise ratio. This was Shannon’s original insight,

revisited here in a deterministic setting.

For δ = 0 our notion of capacity reduces to the Kolmogorov 2ε-capacity, and we

provide bounds on this quantity. By comparing the lower bound for δ > 0 and the upper

bound for δ = 0, we also show that a strict inequality holds between the corresponding

values of capacity if the signal to noise ratio is sufficiently large. The analogous result in

a probabilistic setting is that the Shannon capacity of the uniform noise channel is strictly

greater than the corresponding zero-error capacity.

2.1.2 Entropy and covering

Shannon’s entropy is closely related to the geometric problem of covering a

high-dimensional space with balls of given radius. Roughly speaking, each source

signal, modeled as a stochastic process, corresponds to a random point in the space,

and by quantizing all coordinates of the space at a given resolution, Shannon’s entropy

corresponds to the number of bits needed on average to represent the quantized signal.

Thus, the entropy depends on both the probability distribution of the process, and the

quantization step along the coordinates of the space. A quantizer, however, does not
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need to act uniformly on each coordinate, and can be more generally viewed as a discrete

set of balls covering the space. The source signal is represented by the closest center

of a ball covering it, and the distance to the center of the ball represents the distortion

measure associated to this representation. In this setting, Shannon’s rate distortion

function provides the minimum number of bits that must be specified per unit time to

represent the source process with a given average distortion.

In Kolmogorov’s deterministic setting, the ε-entropy is the logarithm of the

minimum number of balls of radius ε needed to cover the whole space and, when taken

per unit time, it corresponds to the Shannon rate-distortion function, as it also represents

the minimum number of bits that must be specified per unit time to represent any source

signal with distortion at most ε . We provide a tight expression for this quantity, when

sources are bandlimited, square-integrable signals. The functional form of our result

shows that the ε-entropy grows linearly with the number of degrees of freedom and

logarithmically with the ratio of the norm of the signal to the norm of the distortion.

Once again, this was Shannon’s key insight that remains invariant when subject to a

deterministic formulation.

The leitmotiv of the paper is the comparison between deterministic and stochastic

approaches to information theory, and the presentation is organized as follows: In

Section 2.2 we informally describe our results, in section 2.3 we present our model

rigorously, provide some definitions, recall results in the literature that are useful for our

derivations, and present our technical approach. Section 2.4 briefly discusses applications.

Section 2.5 provides precise mathematical statements of our results, along with their

proofs. A discussion of previous results and the computation of the error exponent in the

deterministic setting appear in the Appendixes.
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2.2 Description of the results

We begin with an informal description of our results, that is placed on rigorous

grounds in subsequent sections.

2.2.1 Capacity

We consider one-dimensional, real, scalar waveforms of a single scalar variable

and supported over an angular frequency interval [−Ω,Ω]. We assume that waveforms

are square-integrable, and satisfy the energy constraint

∫
∞

−∞

f 2(t)dt ≤ E. (2.1)

These bandlimited waveforms have unbounded time support but are observed over a

finite interval [−T/2,T/2], and the distance between any two waveforms is

d( f1, f2) =

(∫ T/2

−T/2
| f1(t)− f2(t)|2dt

)1/2

. (2.2)

In this way, and in a sense to be made precise below, any signal can be expanded in terms

of a suitable set of basis functions, orthonormal over the real line, and for T large enough

it can be seen as a point in a space of essentially

N0 = ΩT/π (2.3)

dimensions, corresponding to the number of degrees of freedom of the waveform, and of

radius
√

E.

To introduce the notion of capacity, we consider an uncertainty sphere of radius ε

centered at each signal point, representing the energy of the noise that is added to the
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observed waveform. In this model, due to Kolmogorov, the signal to noise ratio is

SNRK = E/ε
2. (2.4)

A codebook is composed by a subset of waveforms in the space, each correspond-

ing to a given message. Signals in a codebook are 2ε-distinguishable if the distance

between any two of them exceeds 2ε .

Definition 1. The 2ε-capacity is the logarithm base two of the maximum number M2ε(E)

of 2ε-distinguishable signals in the space, namely

C2ε = logM2ε(E) bits. (2.5)

When taken per unit time, we have

C̄2ε = lim
T→∞

logM2ε(E)
T

bits per second. (2.6)

The operational meaning of the 2ε-capacity is as follows: a transmitter can select

any signal in the codebook, that is observed at the receiver with perturbation at most

ε . If the signals in the codebook are at distance at least 2ε of each other, the receiver

can decode the message without error. The 2ε-capacity is the logarithm base two of

the cardinality of the largest codebook which guarantees decoding without error. It

geometrically corresponds to the maximum number of disjoint balls of radius ε with their

centers situated inside the signals’ space.

A similar Gaussian stochastic model, due to Shannon, considers bandlimited

signals in a space of essentially N0 dimensions, subject to an energy constraint over the
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interval [−T/2,T/2] that scales linearly with the number of dimensions

∫ T/2

−T/2
f 2(t)dt ≤ PN0, (2.7)

and adds a zero mean Gaussian noise variable of standard deviation σ independently to

each coordinate of the space. In this model, the signal to noise ratio on each coordinate is

SNRS = P/σ
2. (2.8)

Definition 2. The Shannon capacity is the logarithm base two of the largest number of

messages Mδ
σ (P) that can be communicated with probability of error δ > 0, namely

C(δ ) = logMδ
σ (P) bits. (2.9)

When taken per unit time, we have

C = lim
T→∞

logMδ
σ (P)

T
bits per second, (2.10)

and it does not depend on δ .

The definition in (2.10) should be compared with (2.6). The geometric insight

on which the two models are built upon is the same. However, while in Kolmogorov’s

deterministic model packing is performed with “hard” spheres of radius ε and com-

munication in the presence of arbitrarily distributed noise over a bounded support is

performed without error, in Shannon’s stochastic model packing is performed with “soft”

spheres of effective radius
√

N0σ and communication in the presence of Gaussian noise

of unbounded support is performed with arbitrarily low probability of error δ .

Shannon’s energy constraint (2.7) scales with the number of dimensions, rather
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than being a constant. The reason for this should be clear: since the noise is assumed to

act independently on each signal’s coefficient, the statistical spread of the output, given

the input signal, corresponds to an uncertainty ball of radius
√

N0σ . It follows that the

norm of the signal should also be proportional to
√

N0, to avoid a vanishing signal to

noise ratio as N0→ ∞. In contrast, in the case of Kolmogorov the capacity is computed

assuming an uncertainty ball of fixed radius ε and the energy constraint is constant. In

both cases, spectral concentration ensures that the size of the signals’ space is essentially

of N0 dimensions. Probabilistic concentration ensures that the noise in Shannon’s model

concentrates around its standard deviation, so that the functional form of the results is

similar in the two cases.

Shannon’s celebrated formula for the capacity of the Gaussian model is [1]

C =
Ω

π
log(

√
1+SNRS) bits per second. (2.11)

Our results for Kolmogorov’s deterministic model are (Theorem 4)


C̄2ε ≤

Ω

π
log
(

1+
√

SNRK/2
)

bits per second,

C̄2ε ≥
Ω

π

(
log
√

SNRK−1
)

bits per second.

(2.12)

(2.13)

The upper bound (2.12) is an improved version of our previous one in [?]. For

high values of the signal to noise ratio, it becomes approximately Ω

π

(
log
√

SNRK−1/2
)
,

i.e. tight up to a term Ω/(2π). Both upper and lower bounds are improvements over the

ones given by Jagerman [18, 19], see Appendix 2.6.1 for a discussion. Similar bounds

are obtained by Wyner [20] for timelimited, rather bandlimited signals, assuming they

are well concentrated inside the bandwidth, namely only a small fraction of their energy

falls outside the band.
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To provide a more precise comparison between the deterministic and the stochas-

tic model, we extend the deterministic model allowing signals in the codebook to be

at distance less than 2ε of each other. We say that signals in a codebook are (ε,δ )-

distinguishable if the portion of space where the received signal may fall and result in a

decoding error is of measure at most δ .

Definition 3. The (ε,δ )-capacity is the logarithm base two of the maximum number

Mδ
ε (E) of (ε,δ )-distinguishable signals in the space, namely

Cδ
ε = logMδ

ε (E) bits. (2.14)

When taken per unit time, we have

C̄δ
ε = lim

T→∞

logMδ
ε (E)

T
bits per second. (2.15)

In this case we show (Theorem 5) that for any ε,δ > 0


C̄δ

ε ≤
Ω

π
log
(

1+
√

SNRK

)
bits per second,

C̄δ
ε ≥

Ω

π
log
√

SNRK bits per second.

(2.16)

(2.17)

As in Shannon’s case, these results do not depend on the size of the error region

δ . They become tight for high values of the signal to noise ratio.

The lower bound follows from a random coding argument by reducing the prob-

lem to the existence of a coding scheme for a stochastic uniform noise channel with

arbitrarily small probability of error. The existence of such a scheme in the stochastic

setting implies the existence of a corresponding scheme in the deterministic setting as
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well. Comparing (2.12) and (2.17), it follows that if

1+
√

SNRK/2≤
√

SNRK (2.18)

or equivalently √
SNRK ≥

√
2√

2−1
, (2.19)

then C̄δ
ε is strictly larger than C̄2ε . This means that in the high SNRK regime having a

positive error region guarantees a strictly larger capacity, or equivalently that the Shannon

capacity of the uniform noise channel strictly greater than the corresponding zero-error

capacity.

The analogy between the size of the error region in the deterministic setting and

the probability of error in the stochastic setting also leads to a notion of deterministic

error exponent. We define the error exponent in a deterministic setting as the logarithm

of the size of the error region divided by observation time T . Letting the number of

messages in the codebook be M = 2T R, where the transmission rate R is smaller than the

lower bound (2.17), in Appendix 2.6.3 we show that the size of the error region is at most

δ ≤ 2−T(Ω

π
log
√

SNRK−R), (2.20)

so that the error exponent is

Er(R) =
Ω

π
log
√

SNRK−R > 0, (2.21)

which depends only on Ω, E, ε , and on the transmission rate R. From (2.21), it follows

that for any rate less than the (ε,δ )-capacity, the size of error region can be arbitrarily

small as the observation time goes to infinity.
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2.2.2 Entropy

We consider the same signals’ space as above, corresponding to points of essen-

tially N0 = ΩT/π dimensions and contained in a ball of radius
√

E. A source codebook

is composed by a subset of points in this space, and each codebook point is a possible

representation for the signals that are within radius ε of itself. If the union of the ε balls

centered at all codebook points covers the whole space, then any signal in the space can be

encoded by its closest representation. The radius ε of the covering balls provides a bound

on the largest estimation error between any source f (t) and its codebook representation

f̂ (t). When signals are observed over a finite time interval [−T/2,T/2], this corresponds

to

d[ f , f̂ ] =
∫ T/2

−T/2
[ f (t)− f̂ (t)]2dt ≤ ε

2. (2.22)

Following the usual convention in the literature, we call this distortion measure noise, so

that the signal to distortion ratio in this source coding model is again SNRK = E/ε2.

Definition 4. The ε-entropy is the logarithm base two of the minimum number Lε(E) of

ε-balls covering the whole space, namely

Hε = logLε(E) bits. (2.23)

When taken per unit time, we have

H̄ε = lim
T→∞

logLε(E)
T

bits per second. (2.24)

An analogous Gaussian stochastic source model, due to Shannon, models the

source signal f(t) as a white Gaussian stochastic process of constant power spectral

density P of support [−Ω,Ω]. This stochastic process has infinite energy, and finite
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average power

E(f2(t)) = Rf(0) =
1

2π

∫
∞

−∞

Sf(ω)dω =
PΩ

π
, (2.25)

where Rf and Sf are the autocorrelation and the power spectral density of f(t), respectively.

When observed over the interval [−T/2,T/2], the process can be viewed as a random

point having essentially N0 independent Gaussian coordinates of zero mean and variance

P, and of energy ∫ T/2

−T/2
E(f2(t))dt =

PΩT
π

= PN0. (2.26)

A source codebook is composed by a subset of points in the space, and each codebook

point is a possible representation for the stochastic process. The distortion associated to

the representation of f(t) using codebook point f̂(t) is defined in terms of mean-squared

error

d[f, f̂] =
∫ T/2

−T/2
E[f(t)− f̂(t)]2dt. (2.27)

Definition 5. The rate-distortion function is the logarithm base two of the smallest

number of codebook points Lσ (P) per unit time that can be used to represent the source

process with distortion at most σ2N0, namely

Rσ = lim
T→∞

logLσ (P)
T

bits per second. (2.28)

In this setting, Shannon’s formula for the rate distortion function of a Gaussian

source is [1]

Rσ =
Ω

π
log(

√
SNRS) bits per second. (2.29)

We show the corresponding result in Kolmogorov’s deterministic setting (Theo-

rem 6)

H̄ε =
Ω

π
log(

√
SNRK) bits per second. (2.30)
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Table 2.1. Comparison of stochastic and deterministic models

Stochastic Deterministic

Transmitted Signal
∫ T/2
−T/2 f 2(t)dt ≤ PN0

∫
∞

−∞
f 2(t)dt ≤ E

Additive Noise E∑
N0
i=1 n

2
i = N0σ2

∑
∞
i=1 n2

i ≤ ε2

Signal to Noise Ratio SNRS = P/σ2 SNRK = E/ε2

Capacity C = Ω

π
log(

√
1+SNRS)

Ω

π
log
√

SNRK ≤ C̄δ
ε ≤ Ω

π
log(1+

√
SNRK)

Source Signal
∫ T/2
−T/2E(f

2(t))dt = PN0
∫

∞

−∞
f 2(t)dt ≤ E

Distortion d[f, f̂]≤ N0σ2 d[f, f̂]≤ ε2

Rate Distortion Function Rσ = Ω

π
log
√

SNRS H̄ε =
Ω

π
log
√

SNRK

Previously, Jagerman [18, 19] has shown

0≤ H̄ε ≤
Ω

π
log
(

1+2
√

SNRK

)
, (2.31)

see Appendix 2.6.1 for a discussion.

Our result in (2.30) can be derived by combining a theorem of Dumer, Pinsker

and Prelov [21, Theorem 2], on the thinnest covering of ellipsoids in Euclidean spaces

of arbitrary dimension, our Lemma 1, on the phase transition of the dimensionality of

bandlimited square-integrable functions, and an approximation argument given in our

Theorem 6. Instead, we provide a self-contained proof.

2.2.3 Summary

Table 2.1 provides a comparison between results in the deterministic and in the

stochastic setting. In the computation of the capacity, a transmitted signal subject to a

given energy constraint, is corrupted by additive noise. Due to spectral concentration,

the signal has an effective number of dimensions N0. In a deterministic setting, the noise

represented by the deterministic coordinates {ni}, can take any value inside a ball of
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radius ε . In a stochastic setting, due to probabilistic concentration, the noise represented

by the stochastic coordinates {ni}, can take values essentially uniformly at random inside

a ball of effective radius N0σ2. In both cases, the maximum cardinality of the codebook

used for communication depends on the error measure δ > 0, but the capacity in bits

per unit time does not, and it depends only on the signal to noise ratio. The special case

δ = 0 is treated separately, and it does not appear in the table. This corresponds to the

Kolmogorov 2ε-capacity, and is the analog of the Shannon zero-error capacity of an

ε-bounded noise channel.

In the computation of the rate distortion function, a source signal is modeled

as either an arbitrary, or stochastic process of given energy constraint. The distortion

measure corresponds to the estimation error incurred when this signal is represented by

an element of the source codebook. The minimum cardinality of the codebook used

for representation depends on the distortion constraint, and so does the rate distortion

function.

2.3 The signals’ space

We now describe the signals’ space rigorously, mention some classic results

required for our derivations, introduce rigorous notions of capacity and entropy, and

present the technical approach that we use in the proofs.

2.3.1 Energy-constrained, bandlimited functions

We consider the set of one-dimensional, real, bandlimited functions

BΩ = { f (t) : F f (ω) = 0, for |ω|> Ω}, (2.32)
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where

F f (ω) =
∫

∞

−∞

f (t)exp(− jωt)dt, (2.33)

and j denotes the imaginary unit.

These functions are assumed to be square-integrable, and to satisfy the energy

constraint (2.1). We equip them with the L2[−T/2,T/2] norm

‖ f‖=

(∫ T
2

− T
2

f 2(t)dt

)1/2

(2.34)

It follows that (BΩ,‖ · ‖) is a metric space, whose elements are real, bandlimited func-

tions, of infinite duration and observed over a finite interval [−T/2,T/2]. The elements

of this space can be optimally approximated, in the sense of Kolmogorov, using a finite

series expansion of a suitable basis set.

2.3.2 Prolate spheroidal basis set

Given any T,Ω > 0, there exists a countably infinite set of real functions {ψn(t)},

where 1 ≤ n ≤ ∞, called prolate spheroidal wave functions (PSWF), and a set of real

positive numbers 1 > λ1 > λ2 > · · · with the following properties:

Property 1. The elements of {λn} and {ψn} are solutions of the Fredholm integral

equation of the second kind

λnψn(t) =
∫ T

2

− T
2

ψn(s)
sinΩ(t− s)

π(t− s)
ds. (2.35)

Property 2. The elements of {ψn(t)} have Fourier transform that is zero for

|ω|> Ω.

Property 3. The set {ψn(t)} is complete in BΩ.
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Property 4. The elements of {ψn(t)} are orthonormal in (−∞,∞)

∫
∞

−∞

ψn(t)ψm(t)dt =


1 n = m,

0 otherwise.
(2.36)

Property 5. The elements of {ψn(t)} are orthogonal in
(
−T

2 ,
T
2

)
∫ T

2

− T
2

ψn(t)ψm(t)dt =


λn n = m,

0 otherwise.
(2.37)

Property 6. The eigenvalues in {λn} undergo a phase transition at the scale of

N0 = ΩT/π: for any α > 0

lim
N0→∞

λb(1−α)N0c = 1, (2.38)

lim
N0→∞

λb(1+α)N0c = 0. (2.39)

Property 7. The width of the phase transition can be precisely characterized: for

any k > 0

lim
N0→∞

λbN0+k log(N0π/2)c =
1

1+ ekπ2 . (2.40)

For an extended treatment of PSWF see [22]. The phase transition behavior of

the eigenvalues is a key property related to the number of terms required for a satisfactory

approximation of any square integrable bandlimited function using a finite basis set.

Much of the theory was developed jointly by Landau, Pollack, and Slepian, see [11] for

a review. The precise asymptotic behavior in (2.40) was finally proven by Landau and

Widom [23], after a conjecture of Slepian supported by a non-rigorous computation [24].
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2.3.3 Approximation of BΩ

Let X = L2[−T/2,T/2] be the space of square-integrable signals with the norm

(2.34) as metric, the Kolmogorov N-width [25] of BΩ in X is

dN(BΩ,X ) = inf
XN⊆X

sup
f∈BΩ

inf
g∈XN

‖ f −g‖, (2.41)

where XN is an N-dimensional subspace of X . For any µ > 0, we use this notion to

define the number of degree of freedom at level µ of the space BΩ as

Nµ(BΩ) = min{N : dN(BΩ,X )≤ µ}. (2.42)

In words, the Kolmogorov N-width represents the extent to which BΩ may be

uniformly approximated by an N-dimensional subspace of X , and the number of degrees

of freedom is the dimension of the minimal subspace representing the elements of BΩ

within the desired accuracy µ . It follows that the number of degrees of freedom represents

the effective dimensionality of the space, and corresponds to the number of coordinates

that are essentially needed to identify any one element in the space.

A basic result in approximation theory (see e.g. [25, Ch. 2, Prop. 2.8]) states that

dN(BΩ,X ) =
√

EλN+1, (2.43)

and the corresponding approximating subspace is the one spanned by the PSWF basis set

{ψn}N
n=1. It follows that any bandlimited function f ∈BΩ can be optimally approximated

by retaining a finite number N of terms in the series expansion

f (t) =
∞

∑
n=1

bnψn(t), (2.44)
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and that the number of degree of freedom in (2.42) is given by the minimum index N

such that
√

λN+1 ≤ µ/
√

E. The phase transition of the eigenvalues ensures that this

number is only slightly larger than N0. More precisely, for any µ > 0, by (2.40) we may

choose an integer

N = N0 +
1

π2 log
(

E
µ2 −1

)
log
(

N0π

2

)
+o(logN0), (2.45)

and approximate

BΩ =

{
b = (b1,b2, · · ·) :

∞

∑
n=1

b2
n ≤ E

}
, (2.46)

within accuracy µ as N0→ ∞ using

B
′
Ω =

{
b = (b1,b2, · · · ,bN) :

N

∑
n=1

b2
n ≤ E

}
, (2.47)

equipped with the norm

‖b‖′ =

√
N

∑
n=1

b2
nλn. (2.48)

The energy constraint in (2.47) follows from (2.1) using the orthonormality

Property 4 of the PSWF, the norm in (2.48) follows from (2.34) using the orthogonality

Property 5 of the PSWF, and the desired level of approximation is guaranteed by Property

7 of the PSWF.

By (2.45) it follows that the number of degrees of freedom is an intrinsic property

of the space, essentially dependent on the time-bandwidth product N0 = ΩT/π , and only

weakly, i.e. logarithmically, on the accuracy µ of the approximation and on the energy

constraint E.

These approximation-theoretic results show that any energy-constrained, ban-

dlimited waveform can be identified by essentially N0 real numbers. This does not pose a
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limit on the amount of information carried by the signal. The real numbers identifying

the waveform can be specified up to arbitrary precision, and this results in an infinite

number of possible waveforms that can be used for communication. To bound the amount

of information, we need to introduce a resolution limit at which the waveform can be

observed, which allows an information-theoretic description of the space using bits rather

than real numbers. This description is given in terms of entropy and capacity.

2.3.4 ε-entropy and ε-capacity

Let A be a subset of the metric space X = L2[−T/2,T/2]. A set of points in

A is called an ε-covering if for any point in A there exists a point in the covering at

distance at most ε from it. The minimum cardinality of an ε-covering is an invariant of

the set A , which depends only on ε , and is denoted by Lε(A ). The ε-entropy of A is

the base two logarithm

Hε(A ) = logLε(A ) bits, (2.49)

see Fig. 2.1-(a). The ε-entropy per unit time is

H̄ε(A ) = lim
T→∞

Hε(A )

T
bits per second. (2.50)

A set of points in A is called ε-distinguishable if the distance between any two

of them exceeds ε . The maximum cardinality of an ε-distinguishable set is an invariant

of the set A , which depends only on ε , and is denoted by Mε(A ). The ε-capacity of A

is the base two logarithm

Cε(A ) = logMε(A ) bits, (2.51)
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Figure 2.1. Part (a): Illustration of the ε-entropy. Part (b): Illustration of the ε-capacity.
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Figure 2.2. Part (a): Illustration of the error region for a signal in the space, where
∆1 = (c+ e+ f +g+ i)/(a+b+ c+d + e+ f +g+h+ i). Part (b): Illustration of the
(ε,δ )-capacity. An overlap among the ε-balls is allowed, provided that the cumulative
error measure ∆≤ δ .

see Fig. 2.1-(b). The ε-capacity per unit time is

C̄ε(A ) = lim
T→∞

Cε(A )

T
bits per second. (2.52)

The ε-entropy and ε-capacity are closely related to the probabilistic notions of

entropy and capacity used in information theory. The ε-entropy corresponds to the rate

distortion function, and the ε-capacity corresponds to the zero-error capacity. In order to

have a deterministic quantity that corresponds to the Shannon capacity, we extend the

ε-capacity and allow a small fraction of intersection among the ε-balls when constructing

a packing set. This leads to a certain region of space where the received signal may fall
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and result in a communication error, and to the notion of (ε,δ )-capacity.

2.3.5 (ε,δ )-capacity

Let A be a subset of the metric space X = L2[−T/2,T/2]. We consider a set

of points in A , M = {a(1),a(2), · · · ,a(M)}. For a given a(i), 1≤ i≤M, we let the noise

ball

S i = {x ∈X : ‖x−a(i)‖ ≤ ε}, (2.53)

where ε is a positive real number, and we let error region with respect to minimum

distance decoding

D i = {x ∈S i : ∃ j 6= i : ‖x−a( j)‖ ≤ ‖x−a(i)‖}. (2.54)

We define the error measure for the ith signal

∆i =
vol(D i)

vol(S i)
, (2.55)

where vol(·) indicates volume in X , and the cumulative error measure

∆ =
1
M

M

∑
i=1

∆i, (2.56)

Fig. 2.2-(a) provides an illustration of the error region for a signal in the space. Clearly,

we have 0 ≤ ∆ ≤ 1. For any δ > 0, we say that a set of points M in A is (ε,δ )-

distinguishable set if ∆≤ δ . The maximum cardinality of an (ε,δ )-distinguishable set is

an invariant of the space A , which depends only on ε and δ , and is denoted by Mδ
ε (A ).

The (ε,δ )-capacity of A is the base two logarithm

Cδ
ε (A ) = logMδ

ε (A ) bits, (2.57)
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see Fig. 2.2-(b). The (ε,δ )-capacity per unit time is

C̄δ
ε (A ) = lim

T→∞

Cδ
ε (A )

T
bits per second. (2.58)

The 2ε-capacity can be regarded as the special case of the (ε,δ )-capacity when δ = 0.

Accordingly, from now on we use the notation C0
ε (A ) and C̄0

ε (A ) to represent C2ε(A )

and C̄2ε(A ).

2.3.6 Technical approach

Our objective is to compute entropy and capacity of square integrable, bandlimited

functions. First, we perform this computation for the finite-dimensional space of functions

B
′
Ω

that approximates the infinite-dimensional space BΩ up to arbitrary accuracy µ > 0

in the L2[−T/2,T/2] norm, as N0→∞. Our results in this setting are given by Theorem 1

for the ε-capacity, Theorem 2 for the (ε,δ )-capacity, and Theorem 3 for the ε-entropy.

Then, in Theorems 4, 5, and 6, we extend the computation to the ε-capacity, (ε,δ )-

capacity, and ε-entropy of the whole space BΩ of bandlimited functions.

When viewed per unit time, results for the two spaces are identical, indicating

that using a highly accurate, lower-dimensional subspace approximation leaves only a

negligible “information leak” in higher dimensions. We bound this leak in the case of

ε-entropy and ε-capacity by performing a projection from the high-dimensional space

BΩ onto the lower-dimensional one B
′
Ω

and noticing that distances do not change

significantly when these two spaces are sufficiently close to one another. On the other

hand, for the (ε,δ )-capacity the error is defined in terms of volume, which may change

significantly, no matter how close the two spaces are. In this case, we cannot bound

the (ε,δ ) capacity of BΩ by performing a projection onto B
′
Ω

, and instead provide a

bound on the capacity per unit time in terms of another finite-dimensional space that
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asymptotically approximates BΩ with perfect accuracy µ = 0, as N0→ ∞.

2.4 Possible applications and future work

Recent interest in deterministic models of information has been raised in the

context of control theory and electromagnetic wave theory.

Control theory often treats uncertainties and disturbances as bounded unknowns

having no statistical structure. In this context, Nair [13] introduced a maximin infor-

mation functional for non-stochastic variables and used it to derive tight conditions

for uniformly estimating the state of a linear time-invariant system over an error-prone

channel. The relevance of Nair’s approach to estimation over unreliable channels is

due to its connection with the Shannon zero-error capacity [13, Theorem 4.1], which

has applications in networked control theory [12]. In Appendix 2.6.2 we point out that

Nairs’ maximum information rate functional, when viewed in our continuous setting of

communication with bandlimited signals, is nothing else than C̄(BΩ).

In electromagnetic wave theory, the field measurement accuracy, and the cor-

responding image resolution in remote sensing applications, are often treated as fixed

constants below which distinct electromagnetic fields, corresponding to different images,

must be considered indistinguishable. In this framework, much work has been devoted in

finding the number of degrees of freedom of radiating fields from their bandlimitation

properties [26, 27]. In communication theory, the number of parallel channels available

in spatially distributed multiple antenna systems is related to the number of degrees

of freedom and can be expressed as the measure of the cut-set boundary separating

transmitters and receivers [14]. In this context, our results can be used to obtain a more

refined estimate of the size of the signals’ space in terms of entropy and capacity, rather

than only a first-order characterization in terms of dimensionality. Since electromagnetic

signals are functions of space and time, this would require extending results to signals of
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multiple variables using similar arguments.

Several other applications of the deterministic approach pursued here seem worth

exploring, including the analysis of multi-band signals of sparse support. More generally,

one could study capacity and entropy under different constrains beside bandlimitation,

and attempt, for example, to obtain formulas analogous to waterfilling solutions in a

deterministic setting. [28]

2.5 Nothing but proofs

We start with some preliminary lemmas that are needed for the proof of our main

theorems. The first lemma is a consequence of the phase transition of the eigenvalues,

while the second and third lemmas are properties of Euclidean spaces.

Lemma 1. Let

ζ (N) =

(
N

∏
i=1

λi

)1/(2N)

, (2.59)

where N = N0 +O(logN0) as N0→ ∞. We have

lim
N0→∞

ζ (N) = 1. (2.60)

Proof: For any α > 0, we have

logζ (N) =
1

2N

N

∑
i=1

logλi

=
1

2N

(
b(1−α)N0c

∑
i=1

logλi

+
N

∑
i=b(1−α)N0c+1

logλi

)
. (2.61)
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From Property 6 of the PSWF and the monotonicity of the eigenvalues it follows that the

first sum in (2.61) tends to zero as N0→ ∞. We turn our attention to the second sum. By

the monotonicity of the eigenvalues, we have

N

∑
i=b(1−α)N0+1c

logλi ≥ (N− (1−α)N0) logλN . (2.62)

Since N = N0 +O(logN0) as N0→ ∞, there exists a constant k such that for N0

large enough N ≤ N0 + k logN0 and the right-hand side is an integer. It follows that for

N0 large enough, we have

N

∑
i=b(1−α)N0+1c

logλi ≥ (αN0 + k logN0) logλN

≥ (αN0 + k logN0)

× log(λN0+k logN0). (2.63)

Substituting (2.63) into (2.61) it follows that for N0 large enough

logζ (N)≥ αN0 + k logN0

2N
log(λN0+k logN0), (2.64)

and since by Property 7 of the PSWF log(λN0+k logN0) tends to 1/(1+ eπ2k) as N0→ ∞,

we have

lim
N0→∞

logζ (N)≥ α

2
log
(

1
1+ eπ2k

)
. (2.65)

The proof is completed by noting that α can be arbitrarily small. �

Lemma 2. [29, Lemma 6.1] Let m be a positive integer and let x,x(1), · · · ,x(m) be
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arbitrary points in n-dimensional Euclidean space, (En, ‖ · ‖). We have

m

∑
j=1

m

∑
k=1
‖x( j)−x(k)‖2 ≤ 2m

m

∑
j=1
‖x−x( j)‖2. (2.66)

Lemma 3. [30, Theorem 2] Let L be the cardinality of the minimal ε-covering of the
√

E-ball S√E in En. If n≥ 9, we have

L≤
4e ·n3/2

(√
E

ε

)n

lnn−2
[n · lnn+o(n · lnn)] (2.67)

where 1 <
√

E
ε

< n
lnn .

2.5.1 Main theorems for B
′

Ω

Although the set B
′
Ω

in (2.47) defines an N-dimensional hypersphere, the metric

in (2.48) is not Euclidean. It is convenient to express the metric in Euclidean form by

performing a scaling transformation of the coordinates of the space. For all n, we let

an = bn
√

λn, so that we have

B
′
Ω =

{
a = (a1,a2, · · · ,aN) :

N

∑
n=1

a2
n

λn
≤ E

}
(2.68)

and

‖a‖′ =

√
N

∑
n=1

a2
n. (2.69)

We now consider packing and covering with ε-balls inside the ellipsoid defined in (2.68),

using the Euclidean metric in (2.69).
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Theorem 1. For any ε > 0, we have


C̄0

ε (B
′
Ω)≥

Ω

π

(
log
√

SNRK−1
)
,

C̄0
ε (B

′
Ω)≤

Ω

π
log
(

1+
√

SNRK/2
)
,

(2.70)

(2.71)

where SNRK = E/ε2.

Proof: To prove the result it is enough to show the following inequalities for the

2ε-capacity

C0
ε (B

′
Ω)≥ N

[
log

(
ζ (N)

√
E

ε

)
−1

]
,

C0
ε (B

′
Ω)≤ N

[
log

(
1+

√
E√
2ε

)]
+ log

(
1+

N
2

)
,

(2.72)

(2.73)

because limT→∞ ζ (N) = 1 and log
(
1+ N

2

)
= o(T ).

Lower bound. Let M 0
ε be a maximal (ε,0)-distinguishable subset of B

′
Ω

and M0
ε (B

′
Ω
)

be the number of elements in M 0
ε . For each point of M 0

ε , we consider an Euclidean ball

whose center is the chosen point and whose radius is 2ε . Let U be the union of these

balls. We claim that B
′
Ω

is contained in U . If that is not the case, we can find a point of

B
′
Ω

which is not contained in M 0
ε , but whose distance from every point in M 0

ε exceeds

2ε , which is a contradiction. Thus, we have the chain of inequalities

vol(B
′
Ω)≤ vol(U )≤M0

ε (B
′
Ω)vol(S2ε), (2.74)

where S2ε is an Euclidean ball whose radius is 2ε and the second inequality follows

from a union bound. Since vol(Sε) = βN · εN , where βN is the volume of S1, by (2.74)

we have (
1
2

)N vol(B
′
Ω
)

vol(Sε)
≤M0

ε (B
′
Ω). (2.75)
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Since B
′
Ω

is an ellipsoid of radii {
√

λiE}N
i=1, we also have

vol(B
′
Ω) = βN

N

∏
i=1

√
λiE = βN

(
ζ (N)

√
E
)N

, (2.76)

and
vol(B

′
Ω
)

vol(Sε)
=

(
ζ (N)

√
E

ε

)N

. (2.77)

By combining (2.75) and (2.77), we get

C0
ε (B

′
Ω) = logM0

ε (B
′
Ω)≥ N

[
log

(
ζ (N)

√
E

ε

)
−1

]
. (2.78)

Upper bound. We define the auxiliary set

B̄
′
Ω =

{
a = (a1,a2, · · · ,aN) :

N

∑
n=1

a2
n ≤ E

}
. (2.79)

The corresponding space (B̄
′
Ω
,‖ · ‖′) is Euclidean. Since B

′
Ω
⊂ B̄

′
Ω

, it follows that

C0
ε (B

′
Ω
)≤C0

ε (B̄
′
Ω
) and it is sufficient to derive an upper bound for C0

ε (B̄
′
Ω
).

Let M 0
ε = {a(1),a(2), · · · ,a(M)} be a maximal (ε,0)-distinguishable subset of

B̄
′
Ω

, where M = M0
ε (B̄

′
Ω
). Let {a(i1),a(i2) · · ·a(im)} be any subset of M 0

ε . For any integer

j 6= k, j,k ∈ {1, . . .m}, we have

‖a(i j)−a(ik)‖′ ≥ 2ε, (2.80)

and
m

∑
j=1

m

∑
k=1
‖a(i j)−a(ik)‖′2 ≥ 4ε

2m(m−1). (2.81)
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By Lemma 2 it follows that

m

∑
j=1
‖a−a(i j)‖′2 ≥ 2ε

2(m−1). (2.82)

We now define the function

γ(x) = max{0,1− 1
2ε2 x2}, (2.83)

and for any a ∈ EN , we let Ma = {a(i1),a(i2) · · ·a(im)} be a subset of M 0
ε whose distance

from a is not larger than
√

2ε . We have

M

∑
j=1

γ(‖a−a( j)‖′) =
m

∑
k=1

γ(‖a−a(ik)‖′)

=
m

∑
k=1

(
1− 1

2ε2‖a−a(ik)‖′2
)

= m− 1
2ε2

m

∑
k=1
‖a−a(ik)‖′2

≤ m− (m−1)

= 1, (2.84)

where the last inequality follows from (2.82). If a /∈S√E+
√

2ε
, then ∑

M
j=1 γ(‖a−a( j)‖′)=

0 because Ma = /0. By using (2.84) and this last observation, we perform the following
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computation:

vol
(
S√E+

√
2ε

)
=

∫
S√E+

√
2ε

da

≥
∫
S√E+

√
2ε

M

∑
j=1

γ(‖a−a( j)‖′)da

=
M

∑
j=1

∫
EN

γ(‖a−a( j)‖′)da

= M
∫
EN

γ(‖a‖′)da

= M
∫ √2ε

0
γ(x)d(βNxN)

= βNMN
∫ √2ε

0
γ(x)xN−1dx

=
2βNM
N +2

(
√

2ε)N , (2.85)

where the inequality follows from (2.84), the third equality follows from the fact that the

value of the integral is independent of a( j), and the last equality follows from (2.83).

Since vol
(
S√E+

√
2ε

)
= βN(

√
E +
√

2ε)N , we obtain

M0
ε (B̄

′
Ω) = M ≤ N +2

2

(
1+

√
E√
2ε

)N

. (2.86)

The proof is completed by taking the logarithm. �

Theorem 2. For any 0 < δ < 1 and ε > 0, we have


C̄δ

ε (B
′
Ω)≥

Ω

π
log
√

SNRK,

C̄δ
ε (B

′
Ω)≤

Ω

π
log
(

1+
√

SNRK

)
.

(2.87)

(2.88)

where SNRK = E/ε2.
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Proof: To prove the result it is enough to show the following inequalities for the

(ε,δ )-capacity

Cδ
ε (B

′
Ω)≥ N

[
log

(
ζ (N)

√
E

ε

)]
+ logδ ,

Cδ
ε (B

′
Ω)≤ N

[
log

(
1+

√
E

ε

)]
+ log

1
1−δ

,

(2.89)

(2.90)

because limT→∞ ζ (N) = 1 and both logδ and log 1
1−δ

are o(T ).

Lower bound. We show that there exists a codebook M = {a(1),a(2), · · · ,a(M)}, where

M = δ

(
ζ (N)

√
E

ε

)N

, (2.91)

that has cumulative error measure ∆≤ δ . To prove this result, we consider an auxiliary

stochastic communication model where the transmitter selects a signal uniformly at

random from a given codebook and, given the signal a(i) is sent, the receiver observes

a(i)+n, with n distributed uniformly in Sε . The receiver compares this signal with all

signals in the codebook and selects the one that is nearest to it as the one actually sent.

Using the definitions of S i and D i in (2.53) and (2.54), the decoding error probability of

this stochastic communication model, averaged over the uniform selection of signals in

the codebook, is represented by

Perr =
1
M

M

∑
i=1

vol(D i)

vol(S i)
, (2.92)

and by (2.55) and (2.56) it corresponds to the cumulative error measure ∆ of the deter-

ministic model that uses the same codebook. It follows that in order to prove the desired

lower bound in the deterministic model, we can show that there exists a codebook in the

stochastic model satisfying (2.91), and whose decoding error probability is at most δ .

This follows from a standard random coding argument, in conjunction to a less standard
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geometric argument due to the metric employed.

We construct a random codebook by selecting M signals uniformly at random in-

side the ellipsoid B
′
Ω

. We indicate the average error probability over all signal selections

in the codebook and over all codebooks and by P̄err. Since all signals in the codebook

have the same error probability when averaged over all codebooks, P̄err is the same as the

average error probability over all codebooks when a(1) is transmitted. Let in this case the

received signal be y and let S y
ε be an Euclidean ball whose radius is ε and center is y.

The probability that the signal y is decoded correctly is at least as large as the

probability that the remaining M−1 signals in the codebook are in B
′
Ω
\S y

ε . By the

union bound, we have

1− P̄err ≥ 1− (M−1)
vol(S y

ε )

vol(B′
Ω
)

≥ 1−M
vol(S y

ε )

vol(B′
Ω
)

= 1−M
(

ε

ζ (N)
√

E

)N

, (2.93)

where the last equality follows from (2.77). Letting M = δ

(
ζ (N)

√
E

ε

)N
, we have

P̄err ≤ δ . This implies that there exist a given codebook for which the average probability

of error over the selection of signals in the codebook given in (2.92) is at most δ . When

this same codebook is applied in the deterministic model, we also have a cumulative

error measure ∆≤ δ .

Upper bound. Let M δ
ε be a maximal (ε,δ )-distinguishable subset of B

′
Ω

and

Mδ
ε (B

′
Ω
) = M be the number of elements in M δ

ε . Let B̂
′
Ω

be the union of B
′
Ω

and

the trace of the inner points of an ε-ball whose center is moved along the boundary of

B
′
Ω

, as depicted in Fig. 2.3.
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ε

Figure 2.3. Illustration of the relationship between B
′
Ω

and B̂
′
Ω

.

Since
⋃M

i=1 S i ⊂ B̂
′
Ω

, we have

vol

(
M⋃

i=1

S i

)
≤ vol

(
B̂
′
Ω

)
. (2.94)

Since
⋃M

i=1 S i =
⋃M

i=1(S
i \D i) and (S i \D i)∩ (S j \D j) = /0 for i 6= j, we obtain

vol

(
M⋃

i=1

S i

)
=

M

∑
i=1

[
vol(S i)−vol(D i)

]
=

M

∑
i=1

vol(S i)

[
1− vol(D i)

vol(S i)

]
=

M

∑
i=1

vol(S i)(1−∆i)

= M ·vol(Sε)(1−∆). (2.95)

Since B̂
′
Ω
⊂S√E+ε

, (2.94) can be rewritten as

Mvol(Sε)(1−∆)≤ vol
(
S√E+ε

)
(2.96)

or equivalently

M ≤ 1
1−∆

vol
(
S√E+ε

)
vol(Sε)

=
1

1−∆

(
1+

√
E

ε

)N

. (2.97)
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Since Cδ
ε (B

′
Ω
) = logM and ∆≤ δ , the result follows. �

Theorem 3. For any ε > 0, we have

H̄ε(B
′
Ω) =

Ω

π
log
√

SNRK, (2.98)

where SNRK = E/ε2.

Proof: To prove the result it is enough to show the following inequalities for the

ε-entropy

Hε(B
′
Ω)≥ N

[
log

(
ζ (N)

√
E

ε

)]
,

Hε(B
′
Ω)≤ N

[
log

(√
E

ε

)]
+η(N),

(2.99)

(2.100)

where η(N) = o(T ) and limT→∞ ζ (N) = 1.

Lower bound. Let Lε be a minimal ε-covering subset of B
′
Ω

and Lε(B
′
Ω
) be the

number of elements in Lε . Since Lε is an ε-covering, we have

vol(B
′
Ω)≤ Lε(B

′
Ω)vol(Sε), (2.101)

where Sε is an Euclidean ball whose radius is ε . By combining (2.77) and (2.101), we

have

Lε(B
′
Ω)≥

(
ζ (N)

√
E

ε

)N

. (2.102)

The proof is completed by taking the logarithm.

Upper bound. We define the auxiliary set

B̄
′
Ω =

{
a = (a1,a2, · · · ,aN) :

N

∑
n=1

a2
n ≤ E

}
. (2.103)

The corresponding space (B̄
′
Ω
,‖ · ‖′) is Euclidean. Since B

′
Ω
⊂ B̄

′
Ω

, it follows that
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Hε(B
′
Ω
)≤ Hε(B̄

′
Ω
) and it is sufficient to derive an upper bound for Hε(B̄

′
Ω
).

Let Lε be a minimal ε-covering subset of B̄
′
Ω

and Lε(B̄
′
Ω
) be the number of

elements in Lε . By applying Lemma 3, we have

Lε(B̄
′
Ω)≤

4eN3/2
(√

E
ε

)N

lnN−2
[N lnN +o(N lnN)] , (2.104)

for N ≥ 9 and 1 <
√

E
ε

< N
lnN . By taking the logarithm, we have

Hε(B̄
′
Ω)≤ N log

(√
E

ε

)

+ log

(
4eN3/2

lnN−2
[N lnN +o(N lnN)]

)
. (2.105)

Letting η(N) be equal to the second term of (2.105) the result follows. �

2.5.2 Main theorems for BΩ

We now extend results to the full space BΩ. We define the auxiliary set

BΩ =

{
b = (b1, · · · ,bN ,0,0, · · ·) :

N

∑
n=1

b2
n ≤ E

}
(2.106)

whose norm is defined by

‖b‖=

√
∞

∑
n=1

b2
nλn. (2.107)

We also use another auxiliary set

B
′′
Ω =

{
b = (b1,b2, · · · ,bN′) :

N′

∑
n=1

b2
n ≤ E

}
(2.108)
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equipped with the norm

‖b‖′′ =

√√√√ N′

∑
n=1

b2
nλn. (2.109)

where N′ = (1+α)N0 for an arbitrary α > 0.

Theorem 4. For any ε > 0, we have


C̄0

ε (BΩ)≥
Ω

π

(
log
√

SNRK−1
)

C̄0
ε (BΩ)≤

Ω

π
log
(

1+
√

SNRK/2
)
,

(2.110)

(2.111)

where SNRK = E/ε2.

Proof: By the continuity of the logarithmic function, to prove the upper bound it

is enough to show that for any ε > µ > 0

C̄0
ε (BΩ)≤

Ω

π

[
log

(
1+

√
E

(ε−µ)
√

2

)]
, (2.112)

and in order to prove (2.110) and (2.112), it is enough to show the following inequalities

for the 2ε-capacity: for any ε > µ > 0

C0
ε (BΩ)≥C0

ε (B
′
Ω),

C0
ε (BΩ)≤C0

ε−µ(B
′
Ω),

(2.113)

(2.114)

and then apply Theorem 1.

Lower bound. Let D be a maximal (ε,0)-distinguishable subset of BΩ whose cardinal-

ity is 2C0
ε (BΩ). Similarly, let E be a maximal (ε,0)-distinguishable subset of BΩ whose

cardinality is 2C0
ε (BΩ). Note that E is also a (ε,0)-distinguishable subset of BΩ. Thus,
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we have

2C0
ε (BΩ) = |E | ≤ |D |= 2C0

ε (BΩ). (2.115)

From which it follows that

C0
ε (BΩ)≤C0

ε (BΩ). (2.116)

Since C0
ε (BΩ) =C0

ε (B
′
Ω
), the result follows.

Upper bound. For any ε > µ > 0, we consider a projection map βµ : BΩ →BΩ.

Let D be a maximal (ε,0)-distinguishable subset of BΩ whose cardinality is 2C0
ε (BΩ).

Similarly, let E be a maximal (ε−µ,0)-distinguishable subset of BΩ whose cardinality

is 2C0
ε−µ (BΩ).

We define E ′= βµ(D). In general, βµ is not one-to-one correspondence, however

|D |= |E ′|. If this is not the case, then there exist a pair of points b(1),b(2) ∈D satisfying

βµ(b(1)) = βµ(b(2)) = a, and we have

‖b(1)−b(2)‖= ‖b(1)−a+a−b(2)‖

≤ ‖b(1)−a‖+‖a−b(2)‖

≤ µ +µ

≤ 2ε, (2.117)

which is a contradiction. Thus, we have

2C0
ε (BΩ) = |D |= |E ′|. (2.118)

The distance between any pair of points in E ′ exceeds 2(ε−µ). If this is not the

case, then there exist a pair of points in E ′ whose distance is smaller than 2(ε−µ). These

two point can be represented by a(1) = βµ(b(1)) and a(2) = βµ(b(2)), where b(1),b(2) ∈D .
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It follows that

‖b(1)−b(2)‖= ‖b(1)−a(1)+a(1)−a(2)+a(2)−b(2)‖

≤ ‖b(1)−a(1)‖+‖a(1)−a(2)‖

+‖a(2)−b(2)‖

≤ µ +2(ε−µ)+µ

≤ 2ε, (2.119)

which is a contradiction. Thus, E ′ is a (ε−µ,0)-distinguishable subset of BΩ, and we

have

|E ′| ≤ |E |= 2C0
ε−µ (BΩ). (2.120)

By combining (2.118) and (2.120), we obtain

2C0
ε (BΩ) = |D |= |E ′| ≤ |E |= 2C0

ε−µ (BΩ). (2.121)

From which it follows that

C0
ε (BΩ)≤C0

ε−µ(BΩ). (2.122)

Since C0
ε−µ(BΩ) =C0

ε−µ(B
′
Ω
), the result follows. �

Theorem 5. For any 0 < δ < 1 and ε > 0, we have


C̄δ

ε (BΩ)≥
Ω

π
log
(√

SNRK

)
C̄δ

ε (BΩ)≤
Ω

π
log
(

1+
√

SNRK

)
,

(2.123)

(2.124)

where SNRK = E/ε2.

Proof: In this case, while the lower bound follows from a corresponding inequal-
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ity on the (ε,δ )-capacity, the upper bound follows from an approximation argument and

holds for the (ε,δ )-capacity per unit time only.

Lower bound. Let E be a maximal (ε,δ ′)-distinguishable subset of B
′
Ω

whose

cardinality is 2Cδ ′
ε (B

′
Ω
). We define a map α : B

′
Ω
→BΩ such that, for b = (b1, · · · ,bN) ∈

B
′
Ω

, we have

α(b) = (b1, · · · ,bN ,0,0, · · ·) ∈BΩ. (2.125)

It follows that α(E ) is a (ε,δ ′′)-distinguishable subset of BΩ, where 0≤ δ ′′ ≤ 1 and δ ′′

tends to zero as δ ′→ 0. For any δ > 0, we can now choose δ ′ so small that δ ′′ < δ . In

this case, we have

2Cδ ′
ε (B

′
Ω
) = |E | ≤ 2Cδ ′′

ε (BΩ). (2.126)

Also, since δ ′′ < δ , we have

Cδ ′′
ε (BΩ)≤Cδ

ε (BΩ). (2.127)

By combining (2.126) and (2.127), we obtain

Cδ ′
ε (B

′
Ω)≤Cδ

ε (BΩ). (2.128)

The result now follows from Theorem 2.

Upper bound. We define

d(B
′′
Ω,BΩ) = sup

f∈BΩ

inf
g∈B′′

Ω

‖ f −g‖ (2.129)

which is a measure of distance between B
′′
Ω

and BΩ. From the Property 6 of the PSWF,

we have

d(B
′′
Ω,BΩ)→ 0 as N0→ ∞. (2.130)
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which implies

C̄δ
ε (BΩ) = C̄δ

ε (B
′′
Ω). (2.131)

Thus, in order to prove the upper bound of C̄δ
ε (BΩ), it is sufficient to derive an upper

bound for C̄δ
ε (B

′′
Ω
).

By using the same proof technique as the one in Theorem 2, we obtain

Cδ
ε (B

′′
Ω)≤ N′

[
log

(
1+

√
E

ε

)]
+ log

1
1−δ

(2.132)

which implies

C̄δ
ε (B

′′
Ω)≤ (1+α)

Ω

π

[
log

(
1+

√
E

ε

)]
. (2.133)

Since α is an arbitrary positive number, the result follows. �

Theorem 6. For any ε > 0, we have

H̄ε(BΩ) =
Ω

π
log
√

SNRK, (2.134)

where SNRK = E/ε2.

Proof: By the continuity of the logarithmic function, to prove the result it is

enough to show that for any ε > µ > 0

H̄ε(BΩ)≥
Ω

π

[
log

(√
E

ε

)]
,

H̄ε(BΩ)≤
Ω

π

[
log

( √
E

ε−µ

)]
,

(2.135)

(2.136)

and in order to prove (2.135) and (2.136), it is enough to show the following inequalities
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for the ε-entropy: for any ε > µ > 0

Hε(BΩ)≥ Hε(B
′
Ω)

Hε(BΩ)≤ Hε−µ(B
′
Ω),

(2.137)

(2.138)

and then apply Theorem 3.

Lower bound. For any ε > µ > 0, we consider a projection map βµ : BΩ→BΩ. Let

D be a minimal ε-covering subset of BΩ whose cardinality is 2Hε (BΩ). Similarly, let E

be a minimal ε-covering subset of BΩ whose cardinality is 2Hε (BΩ).

We define E ′ = βµ(D). We claim that E ′ is also a ε-covering subset of BΩ. Let

p be a point of BΩ. Since D is an ε-covering subset of BΩ and BΩ ⊂BΩ, there exists

a point b ∈D such that ‖b−p‖ ≤ ε . Note that ‖βµ(b)−p‖ ≤ ‖b−p‖ and βµ(b) ∈ E ′.

This means that, for any point p ∈BΩ, there exists a point in E ′ whose distance from p

is equal or less than ε , which implies E ′ is a ε-covering subset of BΩ. Thus, we have

|E ′| ≥ |E |= 2Hε (BΩ). (2.139)

Since |D | ≥ |E ′|, we obtain the following chain of inequalities:

2Hε (BΩ) = |D | ≥ |E ′| ≥ |E |= 2Hε (BΩ). (2.140)

From which it follows that

Hε(BΩ)≤ Hε(BΩ). (2.141)

Since Hε(BΩ) = Hε(B
′
Ω
), the result follows.

Upper bound. Let D be a minimal ε-covering subset of BΩ whose cardinality is

2Hε (BΩ). Similarly, let E be a minimal (ε−µ)-covering subset of BΩ whose cardinality
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is 2Hε−µ (BΩ).

We claim that E is also an ε-covering subset of BΩ. Let p be a point of BΩ.

Since E is an (ε−µ)-covering subset of BΩ and βµ(p) ∈BΩ, there exists a point a ∈ E

such that ‖a−βµ(p)‖ ≤ ε−µ . Then,

‖a−p‖= ‖a−βµ(p)+βµ(p)−p‖

≤ ‖a−βµ(p)‖+‖βµ(p)−p‖

≤ ε−µ +µ

= ε. (2.142)

This means that, for any point p ∈BΩ, there exists a point in E whose distance from p

is equal or less than ε , which implies E is an ε-covering subset of BΩ. Thus, we have

2Hε−µ (BΩ) = |E | ≥ |D |= 2Hε (BΩ). (2.143)

From which it follows that

Hε−µ(BΩ)≥ Hε(BΩ). (2.144)

Since Hε−µ(BΩ) = Hε−µ(B
′
Ω
), the result follows. �

2.6 Appendix

2.6.1 Comparison with Jagerman’s results

A basic relationship between ε-entropy and ε-capacity, given in [3], is

C2ε(A )≤ Hε(A ). (2.145)
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Figure 2.4. Lattice packing in Jagerman’s lower bound.

It follows that a typical technique to estimate entropy and capacity is to find a lower

bound for C2ε and an upper bound for Hε , and if these are close to each other, then they

are good estimates for both capacity and entropy.

Following this approach, Jagerman provided a lower bound on the 2ε-capacity

and an upper bound on the ε-entropy of bandlimited functions. In our notation, the lower

bound [18, Theorem 6] can be written as

C2ε ≥ N0 log

(
2√
10

√
SNRK

N0
+1

)
, (2.146)

where the result is adapted here to real signals.

Jagerman’s proof roughly follows the codebook construction corresponding to

the lattice packing depicted in Figure 2.4. In higher dimensions the side length of

the hypercube corresponding to the square in Figure 2.4 becomes 2
√

E/N0, which

divided by the diameter 2ε of the noise sphere gives the leading term
√

SNRK/N0 inside

the logarithm. The precise result requires a more detailed analysis of the asymptotic

dimensionality of the space. This lower bound becomes very loose as N0→ ∞. In this
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case, by using the Taylor expansion of log(1+ x) for x near zero in (2.146), it follows

that C2ε grows only as
√

N0 and, as a consequence, we have the trivial lower bound on

the 2ε-capacity per unit time

C̄2ε ≥ 0. (2.147)

Geometrically, this is due to the volume of the high-dimensional sphere tending to

concentrate on its boundary. For this reason, the packing in the inscribed hypercube

in Figure 2.4 captures only a vanishing fraction of the volume available in the sphere.

In contrast, our lower bound in Theorem 1 is non-constructive, and it gives the correct

scaling order of the number of bits that can be reliably communicated over the channel,

namely N0 rather than
√

N0, yielding a non-trivial lower bound on the 2ε-capacity per

unit time.

In the same paper, Jagerman derives an upper bound on the ε-entropy [18, Theo-

rem 8] by applying Mitjagin’s theorem [31], which relates entropy to the Kolmogorov

N-width. This standard technique is also illustrated in [32, Theorem 8]. For bandlimited

signals, Jagerman further improves Mityagin’s bound in a subsequent paper [19, Theorem

1], obtaining in our notation

Hε ≤ N log

(
2
√

E
ε−µ

+
ε +µ

ε−µ

)
, (2.148)

where 0 < µ < ε and N is defined in (2.45). Since µ is an arbitrary positive number,

(2.148) can be approximated by

Hε ≤ N log
(

2
√

SNRK +1
)
. (2.149)
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The ε-entropy per unit time is then bounded as

H̄ε ≤
Ω

π
log(2

√
SNRK +1). (2.150)

By combining (2.145),(2.147) and (2.150), Jagerman obtains

0≤ H̄ε ≤
Ω

π
log
(

2
√

SNRK +1
)
, (2.151)

while we provide a tight characterization of the same quantity in Theorem 6 of this paper.

If we use this tight result to bound the 2ε-capacity using the classic approach of (2.145),

we obtain

C̄2ε ≤
Ω

π
log
√

SNRK, (2.152)

while our direct bounds yield, for high values of SNRK ,


C̄2ε ≥

Ω

π

(
log
√

SNRK−1
)

C̄2ε ≤
Ω

π

(
log
√

SNRK−1/2
)
,

(2.153)

(2.154)

These are essentially the same bounds obtained by Wyner [20] in a slightly different

context.

2.6.2 Relationship with Nair’s work

Nair defined the peak maximum information rate R∗ in [13, Lemma 4.2] and

showed R∗ equals the zero-error capacity [13, Theorem 4.1]. In his paper, Nair defined

R∗ for a discrete time channel, but this definition can be modified for a continuous time

channel as follows:

R∗ = lim
T→∞

sup
X :X⊂BΩ

I∗(X ;Y )
T

, (2.155)
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where Y is the uncertain output signal yielded by X .

When we consider our channel model, it is clear that the supremum is achieved

when X is a maximal 2ε-distinguishable set, M2ε . In this case, I∗(X ;Y ) = log |X | =

logM2ε(BΩ). Thus (2.155) can be rewritten as follows:

R∗ = lim
T→∞

logM2ε(BΩ)

T
. (2.156)

The right-hand side of (2.156) is the definition of C̄2ε(BΩ). Thus, we conclude

that C̄2ε(BΩ) is a peak maximum information rate and equals the zero-error capacity in

our setting.

2.6.3 Derivation of the error exponent

By (2.93), we have

∆ = Perr ≤M
(

ε

ζ (N)
√

E

)N

. (2.157)

Let M = 2T R, where the transmission rate R is smaller than the lower bound on C̄δ
ε . Then,

(2.157) can be rewritten as

∆ = Perr ≤ 2−T
[

N
T log

(
ζ (N)

√
E

ε

)
−R
]
. (2.158)

In a stochastic setting the error exponent is defined as the logarithm of the error probability.

It follows that we may also define the error exponent in our deterministic model

Er(R) =
N
T

log

(
ζ (N)

√
E

ε

)
−R. (2.159)
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Since N/T tends to Ω/π and ζ (N) tends to 1 as T → ∞ , we can approximate the error

exponent when N0 is sufficiently large by

Er(R) =
Ω

π
log

(√
E

ε

)
−R. (2.160)
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Chapter 3

Deterministic coding theorems for
blind sensing: optimal measurement
rate and fractal dimension

3.1 Introduction

3.1.1 Problem set-up

Let f : R→ R be square-integrable and such that

F f (ω) = 0, for ω 6∈Q, (3.1)

where F indicates Fourier transform, ω indicates angular frequency, and Q is a subset of

the interval [−Ω,Ω] of measure

m(Q)≤ 2Ω
′. (3.2)

A typical example occurs when Q is the union of a finite number of disjoint

sub-intervals of [−Ω,Ω] and Ω′�Ω, see Figure 3.1.

These kind of signals arise in many applications, ranging from radio, to audio,

and biological communication and sensing systems. A natural question is what is the

minimum number of measurements that can be performed over a given time interval and

51
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Ω
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      [−Ω,Ω]
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|    f(ω)|
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    m    )( ≤ 2Ω’    2Ω 

    -T/2 

Figure 3.1. Illustration of a sparse multi-band signal observed over a single time interval.

that guarantees reconstruction with a minimum amount of error.

To address this question, we consider a measurement vector y ∈ RM

y =M f (t)+ e, (3.3)

where M is an operator from multi-band signals to M-dimensional vectors and e ∈RM is

the measurement error.

We assume each measurement yn ∈ y results from observing the signal over the

interval [−T/2,T/2] through the inner product with a bandlimited kernel, plus an error

term.

Definition 6. (Measurements) For all n ∈ {1, . . . ,M}, we have

yn =
∫ T/2

−T/2
f (t)ϕn(t)dt + en, (3.4)

where

Fϕn(ω) = 0 for ω 6∈ [−Ω,Ω]. (3.5)

This set-up covers a wide range of real measurements. Possible bandlimited ker-
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** +

Pre-Filter Post-Filter

x

Figure 3.2. Block diagram for sampling measurement and reconstruction. The symbol ∗
indicates convolution.

nels that fall in this framework include the Shannon cardinal basis sinc(·) functions [33],

the Slepian prolate spheroidal wave functions (PSWF) [11], as well as other bandlimited

functions of practical interest, such as wavelets, and splines. The measurements are

functionals of the signal over the entire observation interval, but in some cases they can

reduce to the sampled signal values. For example, for the cardinal basis the measure-

ments in (3.4) also correspond to low-pass filtering and sampling, and the signal can

be recovered by low-pass filtering the sampled signal values [34]. This special case is

illustrated in Figure 3.2. The general case is illustrated in Figure 3.3.

In the general setting, our aim is to determine the smallest measurement rate

M̄ = lim
T→∞

M
T

(3.6)

for which it is possible to obtain an approximation fM of f from y, such that the energy of

the reconstruction error is at most proportional to the energy of the measurement error, as

the size of the observation interval T → ∞. This corresponds to determining the scaling

of the minimum number of measurements M = M(T ) that guarantees robust recovery of

any multi-band signal, namely a small perturbation in the measurement does not lead to

a large reconstruction error.

Definition 7. (Robust recovery). There exists a universal constant c≥ 0, such that for T
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Figure 3.3. Block diagram for general measurement and reconstruction. The box D/C
stands for discrete-to-continuous transformation and performs the reconstruction of the
signal from the discrete measurements.

large enough

‖ f − fM‖2 =
∫ T/2

−T/2
[ f (t)− fM(t)]2dt

≤ c
M

∑
n=1

e2
n. (3.7)

When the measurement error tends zero, robust recovery reduces to perfect

recovery of the signal. Namely,

Definition 8. (Perfect recovery).

lim
T→∞
‖ f − fM‖2 = 0. (3.8)

3.1.2 Bandlimited signals

Since our signals are assumed to be bandlimited to Ω, one may readily observe

that in the absence of measurement error they can be perfectly recovered from a number

of measurements slightly above the Nyquist number

N0 = ΩT/π. (3.9)
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For any f satisfying (3.1) and (3.2), and ν > 0, we can construct an approximation

fN of f from a measurement vector y of size

N = (1+ν)ΩT/π, (3.10)

and such that

lim
T→∞
‖ f − fN‖2 = 0. (3.11)

This classic result is equivalent to stating that a measurement rate strictly above Ω/π

is sufficient for reconstruction of any bandlimited singnal, and constitutes one of the

milestones of electrical and communication engineering.

For bandlimited signals, the rate Ω/π is also optimal, in the following approxima-

tion theoretic sense. Consider performing signal reconstruction by a linear interpolation

of a number N > 0 of orthogonal basis functions

fN(t) =
N

∑
n=1

ynϕn(t), (3.12)

and let the Kolmogorov N-width be the smallest approximation error achievable for

all signals in the space, over all possible choices of basis sets. This minimum error is

achieved by measurements that provide the coefficients of the interpolation through the

integrals

yn =
1
λn

∫ T/2

−T/2
f (t)ϕn(t)dt, n ∈ {1, . . . ,N}, (3.13)

where {λn} are the eigenvalues of a Fredholm integral equation of the second kind arising

from Slepian’s concentration problem [11], and the basis functions {ϕn} are the corre-

sponding eigenfunctions, called PWSF [22]. The measurement rate Ω/π corresponds to

the critical threshold at which the Kolmogorov N-width transitions from strictly positive

values to zero, as T → ∞ [25]. This phase transition behavior of the approximation error
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Figure 3.4. Phase transition of the Kolmogorov N-width dN of bandlimited signals.

is illustrated in Figure 3.4. With a number of measurements (1+ν)ΩT the error tends to

zero as T → ∞, while with a number of measurements ΩT/π +o(T ) the error remains

positive as T → ∞.

3.1.3 Multi-band signals

For bandlilmtied signals that are supported over disjoint sub-bands, an important

extension of the results above, due to Landau and Widom [23], states that if we have a

priori knowledge of the size and positions of all the sub-bands, then signal reconstruction

with vanishing error as T →∞ is also possible using the smaller number of measurements

S = (1+ν)Ω′T/π. (3.14)

A simple way to achieve this result is to demodulate each sub-band down to

baseband, isolate it through low-pass filtering, and then sample each sub-band separately.

The key contribution of Landau and Widom is to consider the optimal subspace approx-

imation, and show a phase transition of the error expressed in terms of Kolmogorov

N-width. As in the single-band case, a subspace approximation with vanishing error

for all multi-band signals of a given frequency allocation is obtained with a number of

measurements (1+ν)Ω′T , while a subspace approximation with vanishing error is not
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possible for all multi-band signals using a number of measurements Ω′T/π +o(T ), and

the value of the error is controlled by the pre-constant in the o(T ) term. It follows that

for multi-band signals the Nyquist number N0 = ΩT/π can be replaced by the “sparsity

number”

S0 = Ω
′T/π, (3.15)

and the occupied portion of the frequency bandwidth determines the critical measure-

ment rate Ω′/π required for reconstruction. In the case of sampling measurements,

Landau [35] also showed that a rate Ω′/π is necessary for reconstruction, regardless of

the reconstruction strategy being linear or not.

The results of above rely on two critical assumptions. First, they need a priori

knowledge of the spectral occupation, since the eigenvalues and the optimal eigenfunc-

tions used for reconstruction are solutions of an integral equation that depends on the

spectral support set. In practice, it might be difficult to know the exact number of sub-

bands, their location, and their widths prior to the measurements. A second critical

assumption is the absence of measurement error. In practice, the measurement process

always carries a certain amount of error and its impact on the reconstruction error should

be taken into account.

3.1.4 Completely blind sensing

In this paper, we consider robust signal reconstruction in the presence of mea-

surement error and without any a priori knowledge of the sub-bands beside an upper

bound on the measure of the whole support set of the signal in the frequency domain. We

call this robust, completely blind sensing. The blindness requirement is important when

detecting the sub-bands is impossible or too expensive to implement. The robustness

requirement is important to guarantee stability in the reconstruction process.

Partially blind sensing, where some partial spectral information is assumed, has
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been studied extensively. First key results were given in a series of papers by Bresler

and co-authors [36, 37, 38]. Later extensions [39, 40] reduced the number of a priori

assumptions, but still require knowledge of the number of sub-bands, and of their widths.

The same assumptions are made in [41, 42, 43]. The main result in this setting is that

the price to pay for partial blindness is a factor of two in the measurement rate. Several

reconstruction strategies have been proposed using a measurement rate above 2Ω′/π ,

all assuming some partial spectral knowledge, and lacking an information-theoretic

converse.

We remove these assumptions, show that a measurement rate 2Ω′/π is sufficient

for robust reconstruction in a completely blind setting, and provide a tight converse result.

We also provide a deterministic coding theorem for continuous analog sources, giving

an interpretation of the minimum number of measurements in terms of the “effective”

Minkowski-Boulingand dimension of the infinite-dimensional set of multi-band signals,

expressed in terms of the Kolmogorov ε-entropy. This is compared with an analogous

interpretation arising in the framework of compressed sensing, where the objective is the

lossless source coding of a discrete, analog, stochastic process [44, 45]. In that case, an

analogous coding theorem has been given in terms of the Rény dimension, expressed in

terms of the Shannon entropy.

Finally, we remark that while in the case of multi-band signals of a given sub-band

allocation the results of Landau and Widom provide an optimal subspace approximation

in terms of a linear interpolation of eigenfunctions supported over multiple sub-bands,

and having the highest energy concentration over the observation domain, our results

only provide an answer to the question of whether recovery is possible or not, without

giving an explicit approximation procedure. In our case, the discrete-to-continuous block

in Figure 3.3 remains unknown.

Nevertheless, from an information-theoretic perspective one is primarily inter-
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ested in the possibility of recovery using any discrete to continuous transformation, and

does not wish to restrict reconstruction to a linear approximation strategy. The explicit

construction of practical blind recovery strategies is certainly of interest, and these should

be compared with the information-theoretic optimum determined here.

The rest of this chapter is organized as follows: In section 3.2 we describe our

results. In section 3.3 we compare our results with compressed sensing and illustrate

coding theorems in deterministic and stochastic settings. In section 3.4 we provide some

definitions and preliminaries that are useful for our derivation. Proofs are given in section

3.5 and 3.6. Section 3.7 draws conclusions and discusses future work.

3.2 Description of the results

3.2.1 Noiseless Case

Theorem 7. (Direct). In the absence of measurement error, we can perfectly recover any

signal f satisfying (3.1) and (3.2) using a measurement rate

M̄ >
2Ω′

π
. (3.16)

Theorem 8. (Converse). In the absence of measurement error, we cannot perfectly

recover all signals f satisfying (3.1) and (3.2) using a measurement rate

M̄ ≤ 2Ω′

π
. (3.17)

These results can interpreted in terms of the effective dimensionality of the signals’

space, leading to a coding theorem. For bandlimited signals, the effective number of

dimensions can be identified with the Nyquist number N0 = ΩT/π . For multi-band

signals for which the location and widths of all the sub-bands is fixed a priori, as in the
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Landau-Widom case, it can be identified with the sparsity number S0 = Ω′T/π . On the

other hand, without any a priori knowledge, we need to account for the additional degrees

of freedom of allocating the sub-bands in the frequency domain, and our results indicate

that the effective dimensionality increases to 2S0.

To make these considerations precise, we consider an information-theoretic

quantity that measures the dimensionality of a set in metric space, namely its fractal

(Minkowski-Bouligand) dimension, which corresponds to the rate of growth of the

Kolmogorov ε-entropy of successively finer discretizations of the space, and represents

the degree of fractality of the set [46].

Definition 9. (Fractal dimension). For any subset X of a metric space, the fractal

dimension is

dimF(X ) = lim
ε→0

Hε(X )

− logε
, (3.18)

where Hε is the Kolmogorov ε-entropy [3].

If this limit does not exist, then the corresponding upper and lower fractal dimen-

sions are defined using lim sup and lim inf, respectively.

We also define the dilation

Definition 10. (Minkowski sum).

X ⊕X = {x1 +x2 : x1,x2 ∈X }. (3.19)

Consider now the set of all bandlimited signals whose energy is at most one.

These signals can be approximated by an infinite set XB of vectors, each containing

N = (1+ν)ΩT/π real coefficients. Using the PSWF as a basis for interpolation, every

assignment of coefficients satisfying the given energy constraint approximates, with

vanishing error as T → ∞, a bandlimited signal.
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In the appendix, we show that

dimF(XB) = dimF(XB⊕XB), (3.20)

and letting the fractal dimension rate of the approximating set be

RF(XB) = lim
T→∞

dimF(XB)

T
, (3.21)

we have

RF(XB) = Ω/π, (3.22)

which coincides with the measurement rate needed for reconstruction.

Next, we quantize the bandwidth at level ∆ > 0 and let

J = {−Ω,−Ω+∆,−Ω+2∆, · · · ,Ω}. (3.23)

We consider the subset of all multi-band signals of a given sub-band allocation, whose

energy is at most one, and such that the extremal points of all sub-bands belong to J .

This subset of signals approximates, with vanishing energy error as ∆→ 0, the one of all

multi-band signals of a given sub-band allocation and of energy at most one. It can also

be approximated, with vanishing error as T → ∞, by an infinite set XMB(∆) of vectors,

each containing N = (1+ν)ΩT/π real coefficients of a PSWF interpolation. Compared

to the previous case, the choice of the coefficients is now restricted by the given sub-band

allocation, so that we have

XMB(∆)⊂XB. (3.24)
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Following the same argument used to derive (3.20), we obtain

dimF [XMB(∆)] = dimF [XMB(∆)⊕XMB(∆)]. (3.25)

In this case, however, the N-dimensional prolate spheroidal approximation is somewhat

redundant, and following the same argument used to derive (3.22), we obtain

lim
∆→0

RF [XMB(∆)] = Ω
′/π, (3.26)

which coincides with the Landau-Widom rate [23, 35] needed for reconstruction.

Finally, consider the subset of all multi-band signals whose energy is at most

one, having an arbitrary sub-band allocation of measure at most 2Ω′, and such that the

extremal points of all sub-bands belong to J . These signals can be approximated, as

T → ∞, by an infinite set X (∆) of vectors, each containing N = (1+ ν)ΩT/π real

coefficients of a PSWF interpolation. The choice of the coefficients is now restricted only

by the measure of the occupied portion of the spectrum and not by a specific sub-band

allocation, and we have

XMB(∆)⊂X (∆)⊂XB. (3.27)

By combining Theorems 7 and 8 with Theorems 9 and 10 below, we obtain

lim
∆→0

RF [X (∆)] = Ω
′/π. (3.28)

Theorem 9. (Direct). In the absence of measurement error, we can perfectly recover any

signal f satisfying (3.1) and (3.2) using a measurement rate

M̄ > 2 lim
∆→0

RF [X (∆)]. (3.29)
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Theorem 10. (Converse). In the absence of measurement error, we cannot perfectly

recover all signals f satisfying (3.1) and (3.2) using a measurements rate

M̄ ≤ 2 lim
∆→0

RF [X (∆)]. (3.30)

In section 3.4, we also show that

RF [X (∆)⊕X (∆)] = 2RF [X (∆)], (3.31)

which also implies

lim
T→∞

dimF [X (∆)⊕X (∆)]

dimF [X (∆)]
= 2. (3.32)

We now give a geometric interpretation of these results. The set of all multi-band

signals is the union of infinitely many subsets, each corresponding to the multi-band

signals of a given sub-band allocation. The Minkowski sum in (3.19) takes into account

the additional degrees of freedom of allocating the sub-bands in the frequency domain.

Within any subset, any multi-band signal is specified by essentially dimF [X (∆)] co-

ordinates, but when considering the union of all subsets, it is specified by essentially

2dimF [X (∆)] coordinates. By (3.31) it then follows that the relevant information-

theoretic quantity that characterizes the possibility of reconstruction is the fractal dimen-

sion rate of the dilation, rather than the fractal dimension rate of the set itself.

Finally, it is useful introduce the sparsity fraction as the ratio of the fractal

dimension of the approximating set and its ambient dimension:

Definition 11. (Sparsity fraction).

σ = inf
ν>0

lim
∆→0

lim
T→∞

dimF [X (∆)]

N
. (3.33)
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By the results above, it is easy to see that the sparsity fraction is equal to the

fraction of occupied bandwidth, namely substituting N = (1+ν)ΩT/π into (3.33) we

get

σ = inf
ν>0

lim
∆→0

RF [X (∆)]

Ω

π

(1+ν)
=

Ω′

Ω
, (3.34)

and twice the sparsity fraction corresponds to the critical number of measurements per

unit ambient dimension necessary and sufficient for reconstruction.

3.2.2 General Case

Results generalize to the noisy case. The critical threshold for the number of

measurements is not affected by the presence of a measurement error, provided that we

ask for robust, rather than perfect reconstruction.

Theorem 11. (Direct). We can robustly recover all signals f satisfying (3.1) and (3.2)

using a measurements rate

M̄ > 2 lim
∆→0

RF [X (∆)] =
2Ω′

π
. (3.35)

Theorem 12. (Converse). We cannot robustly recover all signals f satisfying (3.1) and

(3.2) using a measurements rate

M̄ ≤ 2 lim
∆→0

RF [X (∆)] =
2Ω′

π
. (3.36)

A factor of two is the price to pay for blindness for both robust recovery and

perfect recovery of multi-band signals, and in virtue of (3.31) the relevant dimensionality

notion is the one associated to the dilation of the set.
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Figure 3.5. Illustration of a discrete vector with a sparse representation.

3.3 Comparison with compressed sensing

There are analogies between our results and the ones in compressed sensing. We

illustrate similarities and differences in deterministic and stochastic settings. For simplic-

ity, we only consider the case of zero measurement error, but the same considerations

apply to the case of non-zero measurement error.

3.3.1 Deterministic setting

Consider an N-dimensional vector x such that

x = ΦX, (3.37)

where Φ is an N×N orthogonal matrix and X has at most S non-zero elements. If S� N

we say that X is a sparse representation of x. An example is illustrated in Figure 3.5.

We define a measurement vector

y = Ax, (3.38)

where A is an M×N matrix, and M is the number of measurements. Cleary, x can

be recovered from N measurements by observing all the elements of x. In this case,

the N×N measurement matrix A is diagonal. If we know the position of the nonzero

elements of X, then S measurements are also enough to perfectly reconstruct x. In this

case, each measurement extracts the nth coefficient of X from Φ−1x, and the signal is
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recovered by performing a final multiplication by Φ. However, if we only know that x has

a sparse representation, but we do not know the positions of the nonzero elements of X,

without further investigation we can only conclude that that the minimum number M of

measurements sufficient for reconstruction is S≤M ≤ N. The objective of compressed

sensing is to reconstruct any sparse, discrete signal x using M� N measurements [47].

Without worrying about an explicit reconstruction procedure, a simple linear

algebra argument [44, Remark 2], [47, Section 2.2] shows that the necessary and sufficient

number of measurements for reconstruction is 2S. It follows that in both the continuous

and discrete settings, the number of linear measurements necessary and sufficient for

reconstruction is equal to twice the sparsity level of the signal. The main differences

between the two settings are as follows: the compressed sensing formulation assumes

knowledge of the matrix Φ, corresponding to the basis where the discrete signal is sparse.

In the case of blind sensing, it is only assumed that the signal does not occupy the whole

frequency spectrum, but the discrete basis set required for the optimal representation

is unknown a priori. A more extreme situation is the blind compressed sensing set-

up [48, 49], where there is a complete lack of knowledge about the signal. In this case,

the basis must either be learned from data, or selected from a restricted set. Finally,

in blind sensing the reconstruction error tends to zero as T → ∞, while in compressed

sensing perfect reconstruction is possible for all N.

3.3.2 Stochastic setting

The problem of compressed sensing can also be formulated in a probabilistic

setting. In this case, the discrete signal to be recovered is modeled as a stochastic process

and the objective is to reconstruct the signal with arbitrarily small probability of error,

given a sufficiently long observation sequence. Viewing the measurement operator as an

encoder and the reconstruction operator as a decoder acting on a sequence of independent,
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Encoder Decoder
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Figure 3.6. Source coding view of compressed sensing.

identically distributed (i.i.d.), real-valued random variables, the compressed sensing

set-up corresponds to lossless source coding of analog memoryless sources when the

encoding operation C : RN → RM is the multiplication by a real-valued matrix, see

Figure 3.6.

Compared to the deterministic setting, where reconstruction is required for all

possible source signals, here the performance is measured on a probabilistic basis by

considering long block lengths and averaging with respect to the distribution of the source

signal. Compared to the continuous setting, probabilistic concentration is used to bound

the error performance as N→ ∞, instead than spectral concentration as T → ∞.

Modeling x in (3.38) as a random vector composed of N independent random

variables (X1,X2, . . .XN), all distributed as X, to capture the notion of sparsity in a

probabilistic setting we may consider the following mixture distribution for the source

sequence

pX(x) = (1− γ)δ (x)+ γ p′(x), (3.39)

where δ (·) is Dirac’s distribution, 0≤ γ ≤ 1, and p′ is an absolutely continuous probabil-

ity measure 1.

By the law of large numbers, the parameter γ in (3.39) represents, for large

values of N, the level of sparsity of the signal in terms of the fraction of its nonzero

elements. Given this source model, a basic result for probabilistic reconstruction by

Wu and Verdú [44, 45] shows that the threshold for the smallest measurement rate that
1Results hold more generally for discrete-continuous mixtures, not only when the discrete part is a

Dirac’s distribution.
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guarantees reconstruction with vanishing probability of error is independent of the prior

distribution of the non-zero elements p′, and equals the sparsity level γ . Comparing

this result with the deterministic case, it follows that probabilistic reconstruction, rather

than reconstruction for all signals in the space, yields an improvement in the number of

measurements of a factor of two.

Wu and Verdú also showed that their result can be viewed in terms of the infoma-

tion (Rényi) dimension of the source process. This is somewhat analogous to a coding

theorem, where an operational quantity, such as the smallest rate for recovery, is shown

to be equal to an information-theoretic one. Consider the quantized version Xε of X

obtained from the discrete probability measure induced by partitioning the real line into

intervals of size ε and assigning to the quantized variable the probability of lying in each

interval. The Rényi dimension of X is defined as [50]

Definition 12. (Information dimension).

dimI(X) = lim
ε→0

HXε

− logε
, (3.40)

where HXε indicates the Shannon entropy of Xε .

In the case the limit in (3.40) does not exist, then lower and upper information

dimensions are defined by taking lim inf and lim sup, respectively.

The definition immediately extends to a sequence of N i.i.d. random variables

dimI(X1,X2, . . .XN) = NdimI(X), (3.41)

and should be compared with Definition 9 for continuous signals in a deterministic

setting.

We can also give an information-theoretic definition of the sparsity fraction in the
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stochastic setting that is analogous to Definition 11.

Definition 13. (Sparsity fraction —stochastic setting).

γ =
dimI(X1,X2, . . .XN)

N
. (3.42)

For a mixture distribution such as (3.39), assuming H(bXc)< ∞, Rényi showed

that [50]

dimI(X) = γ. (3.43)

Combining this result with (3.41) it follows that the sparsity fraction is also equal to

γ , and the fraction of non-zero elements of the signal coincides with the information

dimension per unit ambient dimension. In the analogous deterministic setting, the fraction

of occupied bandwidth plays the role of the fraction of non-zero elements of the discrete-

time signal, and this coincides with the fractal dimension per unit ambient dimension of

its prolate spheroidal approximation.

3.3.3 Coding theorems

The results of Wu and Verdú combined with Rényi’s one in (3.43) yield the

following general coding theorem:

Theorem 13. (Coding theorem —stochastic setting).

The minimum number of measurement per unit dimension sufficient for reconstruction

with vanishing probability of error of an analog, γ-sparse, memoryless, discrete-time

process coincides with the information dimension per unit ambient dimension of the

space, which is equal to γ .

The analogous deterministic coding theorem in our continuous setting is obtained

by combining Theorems 9 and 10, and using Definition 11:
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Theorem 14. (Coding theorem —deterministic setting).

The minimum number of measurement per unit dimension sufficient for reconstruction

with vanishing error of any σ -sparse, continuous-time signal coincides with twice the

fractal dimension per unit ambient dimension of its prolate spheroidal approximation,

which is equal to 2σ .

A factor of two appears in the deterministic formulation, due to the worst case

reconstruction scenario.

3.4 Technical Preliminaries

3.4.1 Metric spaces

We begin our proofs by defining the metric spaces associated to the bandlimited

and multi-band signals satisfying (3.1) and (3.2). Let f ∈ L2(−∞,∞), 2Ω′ < Ω, and

BΩ = { f (t) : F f (ω) = 0, for |ω|> Ω}, (3.44)

BQ = { f (t) : F f (ω) = 0, for ω /∈Q}, (3.45)

Q′ = {Q : Q ⊂ [−Ω,Ω] and m(Q)≤ 2Ω
′}, (3.46)

BQ′ =
⋃

Q∈Q′
BQ. (3.47)

It follows that BQ′ ⊂BΩ. We equip BΩ and BQ′ with the L2[−T/2,T/2] norm

‖ f‖=
(∫ T/2

−T/2
f 2(t)dt

)1/2

. (3.48)

It follows that (BΩ,‖ · ‖) and (BQ′ ,‖ · ‖) are metric spaces, whose elements are square-

integrable, real, bandlimited or multi-band signals, of infinite duration and observed over

the finite interval [−T/2,T/2].
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3.4.2 Optimal representations

Let Q be a measurable subset of R and T = [−T/2,T/2]. We define the

following time-limiting and band-limiting operators

TT f (t) = 1T f (t) (3.49)

BQ f (t) = F−1
1QF f (t), (3.50)

where 1(·) is the indicator function. We consider the following eigenvalues equation

TTBQTT ψ
Q(t) = λ

Q
ψ

Q(t). (3.51)

There exists a countably infinite set of real functions {ψQ
n (t)}∞

n=1 and a set of

real positive numbers 1 > λQ
1 > λQ

2 > · · ·> 0 with the following properties, see [51].

Property 1. The elements of {λQ
n } and {ψQ

n (t)} are solutions of (3.51).

Property 2. The elements of {ψQ
n (t)} are in BQ.

Property 3. {ψQ
n (t)} is complete in BQ.

Property 4. The elements of {ψQ
n (t)} are orthonormal in (−∞,∞).

Property 5. The elements of {ψQ
n (t)} are orthogonal in (−T/2,T/2)

∫ T/2

−T/2
ψ

Q
n (t)ψQ

m (t)dt =


λQ

n n = m,

0 otherwise.
(3.52)

We write ψ(t) and λ instead of ψQ(t) and λQ when Q= [−Ω,Ω]. In this special

case, the eigenfunctions {ψn(t)} are the prolate spheroidal wave functions (PWSF) [22].

Lemma 4. (Slepian [11]). For any ν > 0, N = (1+ν)ΩT/π , and f ∈BΩ, there exist
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real coefficients {xn}, such that the approximation

fN(t) =
N

∑
n=1

xnψn(t) (3.53)

has vanishing error norm ‖ f − fN‖, as T → ∞.

Lemma 5. (Landau and Widom [23]). For any ν > 0,S = (1+ν)Ω′T/π , and f ∈BQ′ ,

there exist real coefficients {αn}, such that the approximation

fS(t) =
S

∑
n=1

αnψ
Q
n (t), (3.54)

has vanishing error norm ‖ f − fS‖, as T → ∞.

3.4.3 Measurement vector

We consider the measurements of f (t) ∈BQ′ ⊂BΩ

yn =
∫ T/2

−T/2
f (t)ϕn(t)dt + en, n ∈ {1, . . . ,M}, (3.55)

where en is the measurement error and each measurement kernel ϕn is a bandlimited

function. Since ϕn is bandlimited, this can be represented by a linear combination of the

“canonical” PSWF basis of BΩ, namely

ϕn(t) =
∞

∑
k=1

ankψk(t) (3.56)
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Using the completeness of the {ψn(t)} in BΩ, and their orthogonality property, it follows

that the n-th measurement can also be expressed as

yn =
∫ T/2

−T/2
f (t)ϕn(t)dt + en

=
∫ T/2

−T/2

∞

∑
j=1

x jψ j(t)
∞

∑
k=1

ankψk(t)dt + en

=
N

∑
j=1

an jx j

√
λ j +

∞

∑
j=N+1

an jx j

√
λ j + en. (3.57)

Letting N = (1+ν)ΩT/π , we have

lim
T→∞

∞

∑
j=N+1

an jx j

√
λ j = 0. (3.58)

It follows that as T → ∞ the measurements become

yn =
N

∑
j=1

an jx j

√
λ j + en +o(1). (3.59)

Letting y = (y1, · · · ,yM), x = (x1
√

λ1, · · · ,xN
√

λN), and A be an M×N matrix such that

[A]n j = an j, we define

y = Ax+ e, (3.60)

and consider the set

X =
{

x : x =
(

x1
√

λ1, · · · ,xN
√

λN

)}
. (3.61)

In virtue of Lemma 4, there exists a one-to-one correspondence between BQ′ and X , as

T → ∞. By (3.59) it then follows that to complete our proofs we can derive lower and

upper bounds on the number of rows of A required to recover x ∈X from y = Ax+e in
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(3.60), and then evaluate their order of growth as T → ∞.

3.5 Proofs of Theorems 7 and 8

We consider a function ζ (t) such that

fN(t) = fS(t)+ζ (t), (3.62)

where fN(t) and fS(t) are given in (3.53) and (3.54), and let

ζk =
∫ T/2

−T/2
ζ (t)ψk(t)dt. (3.63)

It follows that for all 1≤ k ≤ N, we have

√
λkxk =

∫ T/2

−T/2

S

∑
n=1

αnψ
Q
n (t)ψk(t)dt +ζk

=
S

∑
n=1

αn

∫ T/2

−T/2
ψ

Q
n (t)ψk(t)dt +ζk. (3.64)

We now define

ϕ
Q
k,n =

∫ T/2

−T/2
ψ

Q
n (t)ψk(t)dt, (3.65)

so that we have

√
λkxk =

S

∑
n=1

αnϕ
Q
k,n +ζk. (3.66)

We rewrite (3.66) in vector form as

x = ΦQα +ζ , (3.67)
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where x ∈X , α = (α1, · · · ,αS), ζ = (ζ1 · · · ,ζN), and ΦQ is an N×S matrix such that

[ΦQ]k,n = ϕ
Q
kn . (3.68)

By Lemmas 4 and 5, we have that ζ tends to the all zero vector as T → ∞. Therefore, it

is enough to determine the minimum number of measurements to recover

x = ΦQα. (3.69)

Let us define the following set

D = {ΦQ : Q ∈Q′}. (3.70)

We rewrite X in (3.61) as follows:

X = {x : x = ΦQα where ΦQ ∈D and α ∈ RS}. (3.71)

Lemma 6. For all Φ1,Φ2 ∈ D , there exists an m×N matrix A s.t. rank(A[Φ1,Φ2]) =

rank[Φ1,Φ2], provided that

m≥ max
Φ1,Φ2∈D

(rank[Φ1,Φ2]) . (3.72)

Proof: It is enough to show that for all Φ1,Φ2 ∈ D , if A is an i.i.d Gaussian

random matrix of size m×N, then rank(A[Φ1,Φ2]) = rank([Φ1,Φ2]) with probability

1. Since rank(A[Φ1,Φ2])≤ rank([Φ1,Φ2]), it is enough to show that rank(A[Φ1,Φ2])≥

rank([Φ1,Φ2]). For convenience, we let [Φ1,Φ2] = Φ and we will show rank(AΦ) ≥

rank(Φ).
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Note that Φ is an N×2S matrix with rank(Φ) = r ≤ m. Collect r independent

columns of Φ and compose an N× r matrix Φ′. Using the Gram-Schmidt process, we

can transform Φ′ into ΦG, an N× r matrix, whose columns are orthonormal. By adding

redundant N− r orthonormal columns followed by the original r columns of ΦG, we

obtain an N×N orthogonal matrix ΦG.

Let us define σ(X) as the smallest number of linearly dependent columns of a

matrix X. It is well known that, if A is an i.i.d. Gaussian random matrix of size m×N,

where m < N, then σ(AP) = m+1 with probability 1 for any fixed orthogonal matrix

P, see for example [48, Proposition 1] for a proof. Therefore, the first r columns of

AΦG are independent. Thus, we have rank(AΦG) = r, which implies rank(AΦ′) = r.

We can then conclude that AΦ contains at least r independent columns, which implies

rank(AΦ)≥ r = rank(Φ). �

Lemma 7. A number of measurements

m≥ max
Φ1,Φ2∈D

(rank[Φ1,Φ2]) , (3.73)

is sufficient to recover all the elements of X .

Proof: From Lemma 6 it follows that for all Φ1,Φ2 ∈D there exists an m×N

matrix A such that rank(A[Φ1,Φ2]) = rank[Φ1,Φ2]. Let us assume Ax1 = Ax2 where

x1 = Φ1α1 and x2 = Φ2α2. The expression Ax1 = Ax2, can be rewritten as

A[Φ1,Φ2]

α1

α2

= 0, (3.74)

namely [α1,α2]
T belongs to the null space of A[Φ1,Φ2]. Since rank(A[Φ1,Φ2]) =

rank[Φ1,Φ2], the null space of A[Φ1,Φ2] is the same as the null space of [Φ1,Φ2]. It
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follows that [α1,α2]
T belongs to the null space of [Φ1,Φ2], or equivalently

[Φ1,Φ2]

α1

α2

= 0. (3.75)

This means Φ1α1 = Φ2α2, namely x1 = x2. Therefore, A is one-to-one on X , which

implies that the elements of X can be recovered. �

Lemma 8. A number of measurements

m < max
Φ1,Φ2∈D

(rank[Φ1,Φ2]) (3.76)

is not sufficient to recover all the elements of X .

Proof: If all elements x ∈X can be recovered from the measurements y = Ax,

where A is an m×N matrix, this means A is one-to-one on X . Therefore, for all x1

and x2, Ax1 = Ax2 implies x1 = x2. Let us assume x1 = Φ1α1 and x2 = Φ2α2, then

AΦ1α1 = AΦ2α2 implies Φ1α1 = Φ2α2. This is equivalent to saying that

A[Φ1,Φ2]

α1

α2

= 0 (3.77)

implies

[Φ1,Φ2]

α1

α2

= 0. (3.78)

Namely, the null space of A[Φ1Φ2] is contained in the null space of [Φ1Φ2]. By the
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rank-nullity theorem, we have

rank(A[Φ1,Φ2])≥ rank[Φ1,Φ2]. (3.79)

Since m≥ rank(A[Φ1,Φ2]) and (3.79) holds for all Φ1,Φ2 ∈D , the result follows. �

Lemma 9. We have

lim
T→∞

maxΦ1,Φ2∈D (rank[Φ1,Φ2])

2S
= 1. (3.80)

Proof: Let Q1,Q2 ∈Q′, and consider the multi-band signals

f1(t) =
S

∑
n=1

αnψ
Q1
n (t), (3.81)

f2(t) =
S

∑
n=1

βnψ
Q2
n (t), (3.82)

and

fS(t) = f1(t)+ f2(t). (3.83)

Consider the N-dimensional vector

z = [ΦQ1,ΦQ2]



α1

...

αS

β1

...

βS,


. (3.84)
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whose elements, by (3.65) and (3.68), and then using (3.81), (3.82), (3.83), are

zn =
S

∑
j=1

α jϕ
Q1
n, j +

S

∑
j=1

β jϕ
Q2
n, j

=
S

∑
j=1

α j

∫ T/2

−T/2
ψ

Q1
j (t)ψn(t)dt

+
S

∑
j=1

β j

∫ T/2

−T/2
ψ

Q2
j (t)ψn(t)dt

=
∫ T/2

−T/2
f1(t)ψn(t)dt +

∫ T/2

−T/2
f2(t)ψn(t)dt

=
∫ T/2

−T/2
fS(t)ψn(t)dt. (3.85)

We consider the case when z is the all zero vector. In this case, since by (3.85)

the elements {zn} are also the PSWF coefficients of fS(t), it follows that

lim
T→∞

fS(t) = 0. (3.86)

We now choose Q1 and Q2 such that Q1∩Q2 = /0, so that (3.86) implies

lim
T→∞

f1(t) = lim
T→∞

f2(t) = 0. (3.87)

It follows that all coefficients {αn} and {βn} in (3.81) and (3.82) must tends to zero as

T → ∞, the columns of [ΦQ1,ΦQ2 ] become independent, and we have

lim
T→∞

rank[ΦQ1,ΦQ2]

2S
= 1. (3.88)

On the other hand, rank[Φ1,Φ2]≤ 2S for all Φ1,Φ2 ∈D because the number of columns

of [Φ1,Φ2] is 2S. It follows that our choice Φ1 = ΦQ1 and Φ2 = ΦQ2 achieves the

maximum rank and the result follows. �
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By combining Lemmas 7 and 9 it follows that with 2S = 2(1+ν)Ω′T/π mea-

surements we can recover any vector x in (3.69) with vanishing error as T → ∞, and

since the vector ζ tends zero we can also recover any vector x in (3.67). It follows that

we can recover the coefficients representing any signal in BQ′ with vanishing error using

a measurement rate

M̄ =
2Ω′

π
+2ν

Ω′

π
>

2Ω′

π
, (3.89)

and the proof of Theorem 7 is complete.

On the other hand, by combining Lemmas 8 and 9 it follows that with less than

2S = 2(1+ν)Ω′T/π measurements we cannot recover all possible vectors x in (3.69)

with vanishing error as T → ∞. This also means that we cannot recover all possible

vectors x in (3.67). It follows that with a number of measurements M = 2Ω′T/π +o(T ),

and hence a measurement rate

M̄ = 2Ω
′/π (3.90)

we cannot recover all signals in BQ′ , and the proof of Theorem 8 is also complete.

3.6 Proofs of Theorems 9-12

In the following, we use ‖ · ‖ to denote the Euclidean norm for vectors in RN

‖x‖=

√
N

∑
n=1

x2
n, (3.91)

and the spectral norm for matrices

‖A‖= sup
x 6=0

‖Ax‖
‖x‖

. (3.92)

We also use the usual notation for signals defined in (3.48).
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3.6.1 The key lemmas

Let B∆ be the collection of all elements in BQ′ such that the extremal points of

all sub-bands belong to the discrete set J defined in (3.23). For any signal f ∈BQ′ , let

f∆ ∈B∆ such that

f∆ = argmin
f ′∈B∆

‖ f − f ′‖. (3.93)

Since all f ∈BQ′ are square-integrable, it follows that

lim
∆→0
‖ f − f∆‖= 0. (3.94)

Hence, if f∆ can be recovered using a measurement rate M̄∆, then f can be recovered

using a measurement rate

M̄ = lim
∆→0

M̄∆. (3.95)

Consider now the set X (∆) of vectors of N = (1+ ν)ΩT/π real coefficients,

such that every element of B∆ is approximated, with vanishing error as T → ∞, by an

element of X (∆). We also consider X (∆)⊂X (∆) containing all elements of X (∆)

that have norm at most one. To prove Theorems 9-12, it is enough to prove following

two lemmas.

Lemma 10. We can robustly recover all signals f ∈B∆ using a measurements rate

M̄∆ > RF [X (∆)⊕X (∆)]. (3.96)

Lemma 11. In the absence of measurement error, we cannot perfectly recover all signals

f ∈B∆ using a measurement rate

M̄∆ < 2RF [X (∆)]. (3.97)
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To see that Theorems 9-12 follow from these two lemmas, first note that the

lemmas imply

RF [X (∆)⊕X (∆)]≥ 2RF [X (∆)], (3.98)

on the other hand, we have

dimF [X (∆)⊕X (∆)]≤ 2dimF [X (∆)], (3.99)

which implies

RF [X (∆)⊕X (∆)]≤ 2RF [X (∆)]. (3.100)

Combining (3.98) and (3.100) it follows that

RF [X (∆)⊕X (∆)] = 2RF [X (∆)]. (3.101)

Theorem 11 now follows from Lemma 10 and (3.101) by taking the limit for

∆→ 0, and Theorem 9 follows directly from Theorem 11. On the other hand, from

Lemma 11 it follows by taking the limit for ∆→ 0 that with a measurement rate

M̄ < lim
∆→0

2RF [X (∆)] (3.102)

we cannot perfectly recover all signals f ∈BQ′ . As for the equality, combining this

result with Theorems 7, 8, and 9, we conclude that

lim
∆→0

2RF [X (∆)] =
2Ω′

π
, (3.103)

which completes the proof of Theorem 10. Theorem 12 follows directly from Theorem

10.
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3.6.2 Proof of Lemma 10

Definition 14. (Inverse Lipschitz condition.) A matrix A satisfies the inverse Lipschitz

condition on a set U if there exists a constant β > 0 such that for all u1,u2 ∈U , we

have

β‖u1−u2‖ ≤ ‖Au1−Au2‖. (3.104)

We claim that if A satisfies the inverse Lipschitz condition on X (∆), then every

x ∈X (∆) can be robustly recovered from y = Ax+ e. To prove this claim, consider the

following two cases: (a) y ∈ AX (∆), where AX (∆) is the set {Ax : x ∈X (∆)}, and

(b) y /∈ AX (∆). In the first case, let x′ be a solution of y = Ax′ and let x′ be the vector

used to recover x. Then, the recovery error is bounded as

β‖x−x′‖ ≤ ‖Ax−Ax′‖= ‖e‖, (3.105)

which guarantees robust recovery. On the other hand, if y /∈ AX (∆), let x′′ ∈X (∆)

such that Ax′′ is the closest to y among all the elements of AX (∆). By letting x′′ be the

vector used to recover x, we can bound the recovery error as

β‖x−x′′‖ ≤ ‖Ax−Ax′′‖ (3.106)

≤ ‖Ax−y‖+‖y−Ax′′‖ (3.107)

≤ 2‖e‖, (3.108)

which guarantees robust recovery. The claim now follows and we can proceed to derive

a sufficient condition that ensures A satisfies the inverse Lipschitz condition on the set

X (∆).

By letting Z (∆) = X (∆)⊕X (∆), the inverse Lipschitz condition is equivalent
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to stating that for all z ∈Z (∆)

β‖z‖ ≤ ‖Az‖. (3.109)

Consider the normalized set Z
′
(∆)⊂Z (∆) containing all the elements of Z (∆) that

are vectors of unit norm, and let k′ = dimF [Z
′
(∆)]. If (3.109) holds for all z ∈Z (∆),

then it also holds for all z ∈Z
′
(∆), and vice versa. In the following, we consider Z

′
(∆)

instead than Z (∆).

Let Lε [Z
′
(∆)] be a minimal ε-covering set of Z

′
(∆), namely a minimum

cardinality set such that any point in Z
′
(∆) is within distance ε from at least one point of

Lε [Z
′
(∆)]. Let Lε [Z ′(∆)] = |Lε [Z

′
(∆)]|. We need the following preliminary results.

Lemma 12. [53, Fact 2.1.]

dimF [Z
′
(∆)] = inf{d : ∀ε ∈ (0,1)∃γ > 0 :

Lε [Z
′
(∆)]≤ γ

(
1
ε

)d
}
. (3.110)

Let G be the space of all orthogonal projections in RN of rank m, and µ be the

invariant measure on G with respect to orthogonal transformations.

Definition 15. (Shadow of a set). The shadow of a set B in RN is

S(B) = {P ∈ G : 0 ∈ PB}. (3.111)

Lemma 13. [53, Theorem 5.1.] The measure of the shadow of a ρ-ball B centered at a

distance r from the origin is bounded as

µ(S(B))≤ δ

(
ρ

r

)m
, (3.112)

where δ is a positive constant.
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We now provide a key lemma.

Lemma 14. For almost every projection P of rank m > k′, there exists a constant c such

that, for all z ∈Z
′
(∆)

‖Pz‖> c‖z‖. (3.113)

Proof: From Lemma 12, it follows that for any 0 < ε < 1 there exists a constant

γ > 0 such that

Lε [Z
′
(∆)]≤ γ

(
1
ε

)k′

. (3.114)

By definition of ε-covering, for any z ∈Z
′
(∆), there exists a vector l ∈Lε [Z

′
(∆)] such

that

‖z− l‖ ≤ ε. (3.115)

Letting v = z− l, we have

‖Pz‖= ‖P(l+v)‖

≥ ‖Pl‖−‖Pv‖

≥ ‖Pl‖− ε, (3.116)

where the last inequality follows from

‖Pv‖ ≤ ‖P‖‖v‖

= ‖v‖

≤ ε. (3.117)

From (3.116) we have that if for all l ∈Lε [Z
′
(∆)] we have ‖Pl‖ > 2ε , then we also

have ‖Pz‖> ε = ε‖z‖, and letting c = ε the result follows. What remains to be shown



86

then, is that for almost every projection P of rank m, and for all l ∈Lε [Z
′
(∆)], we have

‖Pl‖> 2ε .

We let

Lε [Z
′
(∆)] = {l1, · · · , lL}, (3.118)

where L = Lε [Z
′
(∆)], and for all 1≤ i≤ L we define

Hi = {P ∈ G : ‖Pli‖ ≤ 2ε}. (3.119)

We also let

H =
L⋃

i=1

Hi, (3.120)

so that

µ(H ) = µ

(
L⋃

i=1

Hi

)
≤

L

∑
i=1

µ(Hi). (3.121)

We claim that if ‖Pl‖ ≤ 2ε , then 0 ∈ PBl
2ε

, where Bl
2ε

is a 2ε-ball whose center

is l. This can be shown as follows: let b = l−Pl, then b ∈Bl
2ε

and Pb = Pl−P2l = 0. It

follows that

µ(Hi) ≤ µ

(
{P ∈ G : 0 ∈ PBli

2ε
}
)

= µ(S(Bli
2ε
))

≤ δ (2ε)m , (3.122)

where the last inequality follows from Lemma 13. We now have

µ(H ) ≤
L

∑
i=1

µ(Hi)

≤ Lδ (2ε)m

≤ γδ2m
ε

m−k′, (3.123)
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where the last inequality follows from (3.114). By taking a sufficiently small ε , we can

now make µ(H ) arbitrary close to 0, and the proof is complete. �

By Lemma 14, there exists a projection P of rank m such that for all z ∈Z
′
(∆)

we have ‖Pz‖ > c‖z‖. By applying Gaussian elimination to such a projection and

selecting the non-zero rows of it, we obtain an m×N matrix A. Since ‖Pz‖= ‖Az‖, it

follows that any x ∈X (∆) can be robustly recovered from y = Ax+ e with a number of

measurements larger than k′.

What remains to be done is to show that k′ = dimF [Z
′
(∆)] ≤ dimF [X (∆)⊕

X (∆)]. Let Z (∆) ⊂ Z (∆) containing all elements of Z (∆) that have norm at most

one. Since Z
′
(∆)⊂Z (∆), we have k′ ≤ dimF [Z (∆)]. It is then enough to show that

dimF [Z (∆)] = dimF [X (∆)⊕X (∆)].

Lemma 15. We have

dimF [Z (∆)] = dimF [X (∆)⊕X (∆)] (3.124)

Proof: Let z ∈ Z (∆) be a vector of coefficients of a multi-band function fz

whose spectral support is bounded by 4Ω′ and whose energy is bounded by one. It

follows that fz can be represented as

fz = fx1 + fx2 (3.125)

where fxi, i ∈ {1,2} is a multi-band signal whose spectral support is bounded by 2Ω′ and

whose energy is bounded by one. Let xi be a vector of coefficients for fxi , i ∈ {1,2}.

Then, we have

z = x1 +x2 (3.126)
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where xi ∈X (∆). Since Z (∆)⊂X (∆)⊕X (∆), we conclude that

dimF [Z (∆)]≤ dimF [X (∆)⊕X (∆)]. (3.127)

Conversely, let us consider x1,x2 ∈X (∆). Then, we have

x1 +x2

2
∈Z (∆), (3.128)

which implies X (∆)⊕X (∆)⊂ 2Z (∆), where 2Z (∆) indicates the set {2z : z∈Z (∆)}.

Therefore, we conclude that

dimF [Z (∆)]≥ dimF [X (∆)⊕X (∆)]. (3.129)

By combining (3.127) and (3.129), we obtain the desired result. �

3.6.3 Proof of Lemma 11

If all vectors x∈X (∆) can be recovered from y=Ax , then all vectors x∈X (∆)

can also be recovered from y = Ax, and vice versa. In the following, we consider X (∆)

rather than X (∆).

In order to prove Lemma 11, it is enough to show that a number of measurements

m < 2 dimF [X (∆)] (3.130)

is not sufficient to recover all the elements of X (∆) as T → ∞.

Let us define the set W (∆) = X (∆)⊕X (∆). If all x ∈X (∆) can be recovered

from y, then A is a one-to-one map on X (∆), and vice versa. Also, if A is a one-to-one
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map on X (∆), then

ker(A)∩W (∆) = {0}, (3.131)

and vice versa, where ker(A) indicates the kernel of A. We then need to show that (3.130)

violates (3.131). For convenience of notation, we define k = 2 dimF [X (∆)].

Let us assume that W (∆) contains a k-dimensional Euclidean ball. Note that

(3.130) implies rank(A)< k. Since rank(A)+nullity(A) = N, it follows that nullity(A)

is greater than N−k. This means that the dimension of ker(A) is larger than N−k, which

violates (3.131) because W (∆) contains a k-dimensional Euclidean ball.

It follows that in order to prove Lemma 11, it is enough to show that W (∆)

contains a k-dimensional Euclidean ball. We will show that this is the case when T → ∞.

We need some additional definitions, followed by a preliminary result.

Definition 16. (Diameter). For any S ⊂ RN , we let

diam(S ) = sup
x,y∈S

‖x−y‖. (3.132)

Definition 17. (Hausdorff measure). Let U ⊂ RN and {Si} be a cover of U formed by

balls of radius r < µ . We let

ζ
s
µ(U ) = inf

{Si}
∑

i
[diam(Si)]

s. (3.133)

The s-dimensional Hausdorff measure of U is given by the limit

ζ
s(U ) = lim

µ→0
ζ

s
µ(U ). (3.134)

Definition 18. (Hausdorff dimension). For any U ⊂RN , the Hausdorff dimension of U
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is

dimH(U ) = sup{s≥ 0 : ζ
s(U ) = ∞}. (3.135)

The Hausdorff dimension has the following two important properties, see [46].

Property 1. (Unit ball). For any integer d such that 0 ≤ d ≤ N, the Hausdorff

dimension of the unit ball Bd(0,1)⊂ Rd ⊂ RN is d.

Property 2. (Countable stability). Let Ui ⊂ RN . Then, dimH(
⋃

∞
i=1 Ui) =

supi{dimH(Ui)}

From these definitions it follows that

dimH(U )≤ dimF(U ). (3.136)

However, by Lemma 16 below, if a set satisfies a quasi self-similar property, then the

Hausdorff dimension is equal to the fractal dimension.

Definition 19. (Quasi self-similarity) Let U ⊂ RN . If for all x,y ∈U ∩B, there exist

a,r0 > 0 such that for any ball B with radius r < r0, there is a mapping φ : U ∩B→U

satisfying

a · ‖x−y‖ ≤ r · ‖φ(x)−φ(y)‖, (3.137)

then, we say that U is quasi self-similar.

Lemma 16. [52, Theorem 3.] Let U be a nonempty compact subset of RN that is quasi

self-similar. Then,

dimH(U ) = dimF(U ). (3.138)

We are now ready to show our final step.

Lemma 17. For sufficiently large T , the set W (∆) = X (∆)⊕X (∆) contains a k-

dimensional Euclidean ball.
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Proof: We have

X (∆) =
⋃

i

Xi (3.139)

where Xi is the set of coefficient vectors of all multi-band signals of a fixed sub-band

allocation of measure at most 2Ω′ and norm at most one. Since X (∆) is a countable

union, by Property 2 of the Hausdorff dimension we have

dimH [X (∆)] = sup
i
{dimH(Xi)}. (3.140)

Since the Hausdorff dimension of Xi does not depend on i, we also have that for all i

dimH [X (∆)] = dimH(Xi). (3.141)

Since X (∆) is a nonempty compact subset of RN that is also quasi self-similar with

a = r0 = 1 and φ(x) = x/r, it follows that

dimH [X (∆)] = dimF [X (∆)]. (3.142)

Next, we consider two sets of coefficient vectors X1 and X2, whose sub-bands

do not have any intersection. We have

Xi = {x : x = Φiα where ‖x‖ ≤ 1 and α ∈ RS}, (3.143)

for i = 1,2. By the same argument used in the proof of Lemma 9, it follows that for

T large enough the columns of Φ1 and Φ2 are independent. Also, note that Xi is an

Euclidean ball and by Property one of the Hausdorff dimension it follows that Xi is a

dimH(Xi)-dimensional Euclidean ball. Now, by definition, W (∆) includes X1⊕X2,

and since X1 and X2 are dimH(Xi)-dimensional Euclidean balls and the columns of
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Φ1 and Φ2 are independent, it follows that W (∆) contains a 2dimH(Xi)-dimensional

Euclidean ball. Using (3.141) and (3.142), it follows that for T large enough W∆ contains

a 2dimF [X (∆)] Euclidean ball, or equivalently, a k-dimensional Euclidean ball. �

3.7 Conclusion

We have investigated the phase-transition threshold of the minimum measurement

rate sufficient for completely blind reconstruction of any multi-band signal of given

spectral support measure. This threshold has been shown to coincide with twice the fractal

dimension per unit ambient dimension of the space spanned by the optimal approximation

for bandlimited signals. This result provides an operational characterization of the fractal

dimension, and parallels an analogous coding theorem for the compression of discrete-

time, analog, i.i.d. sources, where the critical threshold is shown to be equal to the

information dimension per unit ambient dimension of the source [44, 45]. Advantages of

the deterministic approach include being oblivious to a priori assumptions on the source

distribution, and providing recovery guarantees for all signals, rather than for a large

fraction of them. In both cases, fundamental limits apply to the asymptotic regime of

large signal dimension. In the stochastic case, probabilistic concentration is achieved

exploiting the ergodicity of the process, while in the deterministic case vanishing error

energy is achieved exploiting spectral concentration. Despite both results can be viewed

at the high level as an instance of dimensional reduction due to regularity constraints, the

tools required in the deterministic setting are quite different from those used in traditional

information theory, and include machinery from approximation theory, and geometry

of functional spaces. The systematic study of these techniques is clearly desirable, and

this recommendation dates back to Kolmogorov [3]. Exploiting some of our recent

results [55], we have shown that the price to pay to obtain deterministic guarantees of

reconstruction for all signals is only a factor of two in the measurement rate, compared
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to probabilistic reconstruction. It is also the case that the absence of additional spectral

information such as the one assumed in [39, 40, 43], does not lead to any penalty in the

measurement rate.

Practical achievability schemes for blind reconstruction of continuous signals

that come close to the information-theoretic optimum remain an open problem, while

much progress has been made for both discrete-time and continuous-time settings, under

various assumptions on what information about the signal is available a priori [39, 40,

43, 44, 45, 56]. Another interesting open question is the determination of the critical

threshold for linear approximation schemes. In this case, without any knowledge of the

spectral support it is not possible to set-up the eigenvalue equation leading to the optimal

subspace approximation [23], and the challenge is to infer the basis functions directly

from the measurements. Investigation of sampling schemes for blind reconstruction is

also of interest, due to their relevance for practical applications. Our results provide an

information-theoretic baseline for performance assessment in all of these cases. Finally,

extensions to signals of multiple variables would be of interest in various settings, for

example in the context of remote sensing. In this case, a desirable outcome would be

the computation of the fractal dimension of signals radiated from a bounded domain,

generalizing the notion of number of degrees of freedom for bandlimited signals studied

in [14], to signals that are sparse in both the frequency and the wavenumber spectrum.

3.8 Appendix

3.8.1 Proofs of (3.20) and (3.22)

First let us consider (3.20). Since XB ⊂XB⊕XB, we have

dimF(XB)≤ dimF(XB⊕XB). (3.144)
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For any x ∈ XB⊕XB, we have x/2 ∈ XB, or equivalently x ∈ 2XB, where 2XB

indicates the set {2x : x ∈XB}. This implies XB⊕XB ⊂ 2XB, and we have

dimF(XB)≥ dimF(XB⊕XB). (3.145)

Combining (3.144) and (3.145), we obatin (3.20).

Next, we consider (3.22). We let X ′
B be a set of vectors such that for any

x = (x1, · · · ,xN) ∈XB, x′ ∈X ′ is the vector of its first N′ components, namely x′ =

(x1, · · · ,xN′) where N′ = ΩT/π +o(T ). From inequality (137) in Theorem 6 of [55], we

have

Hε(XB)≥ Hε(X
′
B). (3.146)

By inequality (99) of Theorem 3 in [55], we have

Hε(X
′
B)≥ N′

[
log
(

ζ (N′)
1
ε

)]
, (3.147)

where ζ (N′) is independent of ε . Combining (3.146) and (3.147), we obtain

Hε(XB)≥ N′
[

log
(

ζ (N′)
1
ε

)]
. (3.148)

Similarly, by inequality (138) of Theorem 6 in [55] we have

Hε(XB)≤ Hε−µ(X
′
B), (3.149)

and using inequality (100) of Theorem 3 in [55], we have

Hε−µ(X
′
B)≤ N′ log

(
1

ε−µ

)
+η(N′), (3.150)
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where 0 < µ < ε , and η(N′) is independent of ε . Combining (3.149) and (3.150), we

obtain

Hε(XB)≤ N′ log
(

1
ε−µ

)
+η(N′). (3.151)

Since µ can be arbitrarily small and the logarithm is a continuous function, it follows that

Hε(XB)≤ N′ log(1/ε)+η(N′). (3.152)

Putting together (3.148) and (3.152), we finally obtain


Hε(XB) ≥ N′ log [ζ (N′)1/ε] ,

Hε(XB) ≤ N′ log(1/ε)+η(N′).
(3.153)

Dividing both sides of (3.153) by − logε and taking the limit for ε → 0, we have

dimF(XB) = N′, (3.154)

so that

lim
T→∞

dimF(XB)

T
= Ω/π. (3.155)
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