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ABSTRACT	OF	THE	DISSERTATION	

Understanding	the	Impact	of	Support	for	Iteration	on	Code	Search	

By	

Lee	Thomas	Martie	

Doctor	of	Philosophy	in	Software	Engineering	

University	of	California,	Irvine,	2017	

Professor	André	van	der	Hoek,	Chair	

	

Sometimes,	when	programmers	use	a	search	engine,	they	know	more	or	less	what	they	need.	

Other	times,	programmers	use	the	search	engine	to	look	around	and	generate	possible	ideas	

for	the	programming	problem	on	which	they	are	working.	The	key	insight	we	explore	in	this	

dissertation	is	that,	in	the	latter	case,	the	results	found	tend	to	serve	as	inspiration	or	triggers	

for	the	next	queries	issued.		

	

We	 introduce	 two	 search	 engines,	 CodeExchange	 and	 CodeLikeThis,	 both	 of	 which	 are	

specifically	designed	to	enable	the	user	to	directly	leverage	results	from	a	previous	query	in	

formulating	a	next	query.	CodeExchange	does	this	with	a	set	of	four	features	that	enable	the	

programmer	to	use	characteristics	of	the	results	to	find	other	code	with	or	without	those	

characteristics.	For	instance,	by	selecting	characteristics	of	the	results	the	programmer	likes	

(e.g.,	 libraries	 used	 or	 method	 calls)	 or	 dislikes	 (e.g.,	 code	 complexity	 or	 size),	 the	

programmer	 can	 refine	 their	 query	 for	 results	 with	 or	 without	 those	 characteristics.	

CodeLikeThis	explores	a	different	mechanism	of	supporting	iteration	by	letting	developers	

simply	select	an	entire	result	to	find	code	that	is	analogous,	to	some	degree,	to	that	result.	
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For	instance,	the	developer	can	select	an	algorithm	implementation	(e.g.,	quick	sort)	with	a	

directive	 to	 find	 more	 similar	 implementations,	 less	 similar	 implementations	 (e.g.,	 heap	

sort),	or	somewhat	similar	implementations.	

	

We	evaluated	the	impact	of	CodeExchange	and	CodeLikeThis	on	the	experience,	time,	and	

success	 of	 the	 code	 search	 process.	 We	 compared	 our	 iterative	 approaches	 with	 two	

approaches	 not	 explicitly	 supporting	 iteration,	 a	 baseline	 and	 Google,	 in	 a	 laboratory	

experiment	among	24	developers.	We	found	that	search	engines	that	support	using	results	

to	 form	 the	 next	 query	 can	 improve	 the	 programmers’	 search	 experience	 and	 different	

approaches	to	iteration	can	provide	better	experiences	depending	on	the	kind	of	task.	

	

The	main	contributions	of	this	dissertation	are	six-fold.	First,	it	contributes	a	new	approach	

to	code	search,	implemented	in	CodeExchange,	that	supports	the	programmer	in	iteratively	

searching	by	bringing	characteristics	of	the	results	into	their	query.	Second,	it	contributes,	a	

new	approach	to	code	search,	implemented	in	CodeLikeThis,	that	supports	the	programmer	

in	iteratively	searching	by	simply	selecting	a	result	to	issue	a	query	for	other	similar	code.	

Third,	it	contributes	an	extensive	laboratory	experiment	evaluating	the	impact	of	iterative	

approaches	 on	 the	 experience,	 time,	 and	 success	 of	 the	 code	 search	 process.	 Fourth,	 it	

contributes	 new	 findings	 about	 how	developers	 search	 for	 code.	 Fifth,	 it	 contributes	 the	

implementation	of	CodeExchange	and	CodeLikeThis	as	fully	functioning	search	engines	over	

10	million	Java	classes	mined	off	the	Internet.	Sixth,	it	contributes	an	Index	of	10	million	Java	

classes	indexed	by	different	technical	and	social	properties.	
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Chapter	1	

Introduction	
	

Programming	“amounts	to	determining	in	advance	everything	the	computer	will	do”	[78].		

The	process	of	determining	what	a	 computer	will	do	has	been	 likened	 to	 the	work	of	 an	

“architect,	a	composer,	or	a	writer”	[32],	but	where	the	programmer	translates	their	ideas	

into	source	code	and	iteratively	modifies	their	creation	to	meet	various	criteria	[32].		Some	

criteria	could	be	aesthetic	(e.g.,	look	and	feel	of	the	program	[121]	or	its	source	code	[69]),	

functional	(e.g.,	what	the	program	does),	or	non-functional	(e.g.,	how	fast	the	program	runs).	

	

The	ideas	that	are	programmed	depend	on	the	situation.		If	the	programmer	is	in	the	position	

to	create	software	to	their	liking,	then	they	have	full	control	of	what	ideas	are	programmed	

(e.g.,	 Linus	Torvalds	and	his	 first	 release	of	Linux	 [124]).	 	Alternatively,	 the	programmer	

might	work	in	a	company	that	has	teams	of	various	sizes	addressing	a	variety	of	projects,	

and	 the	 programmer’s	 ideas	 are	 scoped	 by	 the	 project	 they	 work	 on,	 modified	 to	
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accommodate	 other	 team	 members’	 ideas,	 and	 narrowed	 by	 the	 task	 to	 which	 the	

programmer	is	assigned	[55].		Or,	the	programmer	might	join	an	open	source	project,	where	

the	project	scopes	the	ideas,	but	the	programmer	can	freely	choose	what	part	of	the	project	

they	want	to	enhance	or	fix	[90],	[103].	Regardless	of	situation,	and	influence	of	team	and	

project,	what	a	developer	programs	is	never	fully	specified	–	they	still	must	decide	what	to	

program	specifically.	

	

Deciding	what	 to	 program	 is	 often	 a	 problem	 solving	 process	 [109].	 This	 entails	making	

choices,	 such	 as	 what	 the	 architecture,	 algorithms,	 and	 data	 structures	 should	 be	 [32].		

Different	needs	can	drive	these	decisions.	For	example,	if	the	program	needs	to	evolve,	then	

modular	approaches	for	architecture	might	be	better.		As	another	example,	depending	on	the	

data	structures	chosen,	some	algorithms	might	work	better	or	worse	(e.g.,	Radix	Sort	can	

sort	integers	and	strings	faster	than	other	algorithms,	but	it	cannot	be	used	for	certain	other	

types	of	data	structures).	

	

When	programmers	engage	in	problem	solving,	it	has	been	observed	that	they	might	sketch	

on	 a	 white	 board	 [72],	 talk	 with	 colleagues	 [130],	 or	 just	 think.	 They	 might	 sketch	 an	

architecture	or	algorithm	to	examine	it	or	use	it	as	a	focal	point	of	discussion.		They	might	

talk	with	colleagues	to	get	their	insight	or	experience	on	solving	a	problem.		Or,	they	might	

just	 think	 about	 their	 problem	 by	 mentally	 simulating	 different	 solutions,	 considering	

alternative	implementations,	reflecting	back	on	previous	solutions	they	have	used,	and	so	

on.	
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It	has	also	been	observed	that	programmers	search	for	previously	written	source	code.	When	

programmers	search	for	source	code,	they	look	for	code	by	matching	it	with	the	problem	

being	faced	[27].		Sometimes	the	code	is	matched	by	remembering	that	it	was	used	to	solve	

the	problem	in	the	past	[13].	Other	times,	programmers	match	source	code	found	by	making	

analogies	between	the	problem	the	source	code	solves	and	the	current	problem	they	face	

[27].		If	the	source	code	can	be	reasonably	adapted	by	the	programmer	to	solve	the	current	

problem,	then	the	programmer	will	often	use	that	source	code	[27].	This	dissertation	focuses	

on	the	code	search	activity,	and	particularly	seeks	to:	(1)	understand	how	developers	search	

and	(2)	help	them	in	this	task.	

	

How	programmers	have	searched	for	code	has	evolved	with	computers	and	software.		In	the	

1970s,	programmers	would	regularly	search	using	command	line	tools,	such	as	grep	[39],	to	

search	 through	 their	 files	 for	 some	 particular	 source	 code	 [111].	 	 Grep	 takes	 a	 regular	

expression	 query	 to	 find	 files	 that	 have	 lines	matching	 the	 query.	 	 Figure	 1	 presents	 an	

example	in	which	a	hypothetical	programmer	searches	for	C	files	containing	the	character	

‘x’,	presumably	looking	for	uses	of	a	variable.	The	results,	as	a	list	of	files	with	matching	lines	

of	code,	are	printed	below	the	command.		
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While	the	use	of	grep	was	helpful	in	many	instances,	it	is	limited	to	searching	local	code	that	

is	 authored	 by	 the	 programmer	 or	 their	 team	 and	 accessible	 on	 the	 local	 file	 system.	

Searching	source	code	by	other	authors	elsewhere	cannot	be	done	with	grep,	which	is	why	

programmers	 often	 would	 subscribe	 to	 magazines,	 such	 as	 Creative	 Computing	 [2]	 or	

Compute!	[141],	that	would	regularly	publish	all	sorts	of	source	code,	including	games,	AI	

algorithms,	or	graphical	programs.	Figure	2	presents	one	page	of	 a	 space	game	 from	 the	

Creative	Computing	magazine.		Programs	like	this	not	only	illustrate	how	to	make	games,	but	

can	be	modified	by	the	programmer	to	create	games	suiting	their	needs.	Figure	3	is	another	

page	 from	 Creative	 Computing,	 illustrating	 how	 to	 implement	 Heapsort,	 where	 the	

introduction	paragraph	explains	 that	 the	code	 is	 intended	 to	 support	 the	programmer	 to	

both	understand	the	algorithm	and	implement	it.	Flipping	through	magazines	typically	was	

a	time	consuming	and	laborious	process,	but	programmers	needed	and	wanted	code,	so	they	

tended	to	read	these	magazines	“religiously”	[104].			

Figure 1 Grep in use to find ‘x’ in C code. 
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Figure 2 Creative Computing Deep Space Game. 
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Figure	3	Creative	Computing	Heapsort.	
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Figure	4	Bulletin	Board	System	Menu.	
	

With	new	technology,	finding	code	became	easier.		In	the	1980s,	as	modems	became	cheaper,	

programmers	began	to	distribute	code	over	networks.		One	particular	method	was	sharing	

code	over	bulletin	board	systems	(BBS).		Programmers	would	use	a	modem	to	dial	into	a	BBS	

(a	 telnet	 server)	 and	 be	 presented	 with	 a	 splash	 screen	 as	 shown	 in	 Figure	 4.	 	 The	

programmer	 could	 then	 use	 the	 file	 menu	 to	 browse	 through	 the	 different	 source	 code	

examples	made	available.		Interestingly,	often	the	code	found	on	a	BBS	was	source	code	that	

could	be	used	to	extend	the	BBS	itself.	Figure	5	shows	the	top	of	some	example	code	[138]	in	

C,	distributed	on	a	BBS	from	1980.			

	

	

/* EXAMPLE GAME FORMAT FOR THE GATEWAYS PROJECT - A SIMPLE GUESSING GAME */ 
/* Designed and written by David M. Larson, BBS: 916-753-8788 */ 
/* Dynasoft, P.O. Box 915, Davis, CA 95617 */ 
#include "GATEWAYS.H" 
#include "D0MAIN.H" 
 
/*----------------------------------------------------------*/ 
void d0read_d0questions() 
{ 
d0quest_struct *ptr; 
memset(d0questions,0,MAX_QUEST*sizeof(*d0questions)); 
gfd0=og_open("D0QUEST",0); 
if(gfd0==-1) return; /* file didn't exist */ 
if(keystat()==1) /* I put this here so carrier loss while the file is open 

Figure 5 Game Code Example for BBS. 
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Companies	also	began	developing	support	for	searching	for	code	internal	to	the	company.	

AT&T	Bell	Labs,	for	example,	developed	a	system	called	CATALOG	[35],	which	supported	the	

programmer	in	issuing	keywords	that	it	would	then	use	to	match	code	indexed	under	those	

words.	Another	example	by	AT&T	Bell	Labs	was	a	system	called	the	Modeling	Expert	System	

(MES)	[93],	that	would	take	in	a	series	of	constraints	for	transmissions	equipment	to	find	

source	code	used	in	equipment	matching	these	constraints.		For	example,	the	programmer	

could	specify	dimensions	and	hardware	components	of	transmissions	equipment.	

	

In	the	1990s,	the	amount	of	source	code	to	search	began	growing	considerably	because	of	

the	 rapid	 growth	 of	 the	 Internet	 [59].	 It	 was	 not	 long	 before	 programmers	 saw	 the	

advantages	of	setting	up	their	own	servers	to	support	sharing	source	code.		As	early	as	1991,	

for	 example,	 the	 source	 code	 for	 Linux	was	 being	 distributed	 on	 the	 Internet	 through	 a	

simple	file	transfer	protocol	(FTP)	server	[79].	In	1999,	SourceForge	[162]	released	the	first	

server	aimed	at	supporting	collaborative	development	of	source	code	for	anyone	to	read,	

use,	 or	 add	 to	 (referred	 to	 today	 as	 open	 source	 [103]).	 	 SourceForge	 freely	 gave	 away	

storage	for	code	by	providing	an	online	repository	with	version	control	and	issue	tracking	

tools	 to	 use.	 Within	 a	 year	 after	 1999,	 a	 few	 thousand	 software	 projects	 were	 on	

SourceForge,	a	number	that	jumped	to	30,000	in	2001	and	then	jumped	again	to	150,000	in	

2007	[167].		

	

Today,	the	amount	of	source	code	on	the	Internet	has	grown	by	at	least	a	factor	of	100	since	

2007,	if	not	more,	from	software	projects	in	the	hundreds	of	thousands	to	the	tens	of	millions	

[1]	 and	 appears	 to	 be	 growing	 exponentially	 [26].	 GitHub,	which	 today	 hosts	 the	 largest	
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online	collection	of	projects	and	their	source	code,	was	estimated	in	2013	to	have	over	10	

million	 projects	 [1].	 	 Other	 online	 repositories	 exist	 as	well	 [139],	 [160],	 [168].	 Further,	

source	 code	 now	 also	 appears	 in	 a	 variety	 of	 contexts	 outside	 of	 dedicated	 online	

repositories.	 On	 question	 and	 answer	 forums,	 such	 as	 StackOverflow	 [163],	 individual	

questions	 or	 answers	 frequently	 contain	 some	 lines	 of	 code	 to	 introduce	 a	 problem	 or	

illustrate	how	to	solve	the	problem.		Tutorial	web	pages	can	be	found	with	source	code,	such	

as	code	illustrating	how	to	use	a	library	for	domain	specific	applications	(e.g.,	sample	code	

using	 Eclipse	 libraries	 [143]	 to	 add	 features	 to	 the	 Eclipse	 integrated	 development	

environment	[127]),	or	implementing	a	fundamental	algorithm	(e.g.,	the	A*	algorithm	[96]	

for	basic	path	finding	for	robot	navigation	[151]).					

	

Finding	particular	source	code	across	 this	vast	amount	of	possibilities	 is	commonly	done	

with	search	engines	-	servers	on	the	Internet	that	have	indexed	content	elsewhere	(e.g.,	web	

pages,	online	repositories,	or	other	kinds	of	files).	Two	types	of	search	engines	have	emerged	

that	support	searching	for	source	code,	web	search	engines	and	code	search	engines.		Web	

search	engines,	with	Alta	Vista	and	Infoseek	being	among	the	first	and	Google	being	the	most	

popular	today	[161],	take	keywords	and	then	return	a	list	of	links	to	any	web	page	matching	

the	keywords.	Code	search	engines	focus	the	search	on	source	code	only	and	will	commonly	

return	a	list	of	links	to	code	matching	the	keyword	query.		Most	code	search	engines	focus	

on	 indexing	code	 in	online	repositories,	 such	as	GitHub	or	SourceForge.	Some	exceptions	

exist,	however,	with	Example	Overflow	[9]	indexing	code	mined	from	StackOverflow	posts.	
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Various	tradeoffs	exist	between	using	web	search	engines	versus	code	search	engines.		Web	

search	 engines	 have	 a	wide	 range	 of	 content	 that	 they	 have	 indexed,	 so	 they	 can	 return	

results	that	include	code	posted	on	tutorial	pages	that	have	illustrative	pictures,	or	code	on	

question	and	answer	forums	that	have	descriptive	comments.		However,	web	search	engines	

also	might	match	off	topic	files	having	nothing	to	do	with	code	or	only	containing	a	few	lines	

of	code	that	 illustrate	a	point,	but	are	otherwise	incomplete	and	thus	not	useful	 for	some	

situations.	Code	search	engines	have	the	advantage	of	searching	over	only	source	code,	often	

in	 actual	 projects,	 and	 can	 leverage	 this	 fact	 to	 support	 different	 kinds	of	 filters,	 such	 as	

filtering	results	by	programming	language	or	project	[144].		The	disadvantage	of	code	search	

engines	is	that	they	may	return	results	that	have	few	comments	or	are	hard	to	read,	making	

the	results	difficult	to	comprehend	and	apply	[16].	Both	web	search	engines	and	code	search	

engines	share	the	disadvantage	that	they	may	return	code	of	low	quality;	often	any	and	all	

code	found	is	indexed,	but	that	does	not	guarantee	the	code	is	bug	free,	performant,	easily	

maintainable,	and	so	on.	

	

Given	 the	 advantages	 and	 disadvantages	 of	 search	 engines	 today	 and	 the	 importance	 of	

search	in	developing	software	(programmers	report	searching	for	code	frequently	as	part	of	

their	 practice	 [97],	 [108]),	 software	 engineering	 researchers	 are	 investigating	 how	 to	

improve	code	search	engines.			Some,	for	instance,	have	been	investigating	how	to	support	

more	expressive	queries	(e.g.,	searching	by	test	case	or	method	signatures)	that	afford	more	

precise	matching	of	code	compared	to	keywords	(e.g.,	[4],	[15],	[54],	[65],	[71],	[82],	[91],	

[110],	[122],	[142]).		Others	have	investigated	new	matching	and	ranking	algorithms	(e.g.,	

ranking	 code	higher	with	method	names	or	 class	names	matching	 the	keywords)	 so	 that	
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more	results	presumed	to	better	match	the	topic	described	by	the	keywords	are	returned	

and	appear	towards	the	top	of	the	list	(e.g.,	[12],	[28],	[40],	[44],	[51],	[66],	[67],	[76],	[131]).		

Both	more	expressive	queries	and	improved	matching	and	ranking	algorithms	have	shown	

that	explicitly	leveraging	certain	proprieties	of	source	code	can	improve	the	performance	of	

search	engines	compared	to	approaches	that	treat	code	as	any	other	content	(including	web	

search	engines	like	Google).		For	instance,	the	Specificity	ranking	algorithm	[67]	ranks	code	

higher	that	has	names	(e.g.,	class	name)	matching	the	keywords	and	was	reported	to	provide	

a	better	 ranking	 than	Google.	 	As	 another	example,	 S6	 [91]	 takes	 test	 cases	as	 input	 and	

transforms	the	structural	properties	of	the	code	indexed	so	that	the	code	can	be	run	against	

the	test	case	–	enabling	a	type	of	search	very	different	from	what	is	possible	today.	

	

While	 many	 different	 approaches	 to	 improving	 code	 search	 exist,	 these	 approaches	 are	

generally	similar	in	one	very	visible	design	decision:	they	are	non-iterative	approaches.	They	

expect	 a	 query	 and	 optimize	 on	 returning	 the	 best	 matching	 results	 for	 the	 query,	

occasionally	offering	filters	to	help	scope	the	results	(e.g.,	programming	language	or	file	type	

filters)	[144],	[158].	This	focus	on	a	non-iterative	design	for	search	engines	is	mirrored	in	

how	search	engines	are	evaluated	[152].	Typically,	a	group	of	experts	score	the	performance	

of	search	engines	by	the	results	returned	for	some	representative	set	of	queries,	with	the	

score	reflecting	how	on	topic	the	results	are.	

	

If	we	are	 to	 imagine	 the	most	 ideal	 search	engine,	 in	 terms	of	 effort	 to	 find	 code,	 a	non-

iterative	approach	is	appealing,	because	it	offloads	all	work	to	the	search	engine,	other	than	

the	need	for	a	programmer	to	actually	issue	a	query	(presumably	the	programmer’s	mind	
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cannot	be	read).	In	this	ideal	world,	indeed,	the	search	engine	matching	algorithm	returns	

exactly	what	the	programmer	needs	after	the	first	query,	every	time.	A	software	tool	doing	

all	the	work	is	what	many	imagine	as	the	goal	for	software	tools	in	general,	and	this	view	is	

increasingly	being	adopted	as	machine	learning,	a	non-iterative	approach	using	AI,	becomes	

ever	more	popular	 [58].	 	Recently,	 for	 instance,	Google	has	moved	away	 from	its	original	

PageRank	[85]	algorithm	to	a	machine	learning	algorithm,	RankBrain	[147],	to	rank	search	

results.	As	another	example,	Sonia	Haiduc	et	al.	are	working	to	incorporate	machine	learning	

in	code	search	engines	[44].	

	

While	a	search	engine	that	returns	the	results	the	programmer	is	looking	for	after	the	first	

query	is	ideal,	the	reality	today	is	that	search	is	iterative.	Often,	programmers	do	not,	and	

cannot,	search	for	code	with	a	single	query.	 Instead,	 they	 issue	multiple	queries	[7],	 [13],	

[50],	[106],	[115],	where,	after	receiving	results,	the	programmer	modifies	their	query	by	

removing	 keywords,	 adding	 keywords,	 or	 some	 combination	 of	 both,	 and	 repeats	 this	

process	multiple	times	[7],	[50],	[106].		That	is,	search	looks	like	the	programmer	submitting	

a	query,	getting	results,	submitting	a	modified	query,	getting	new	results,	and	so	on,	until	the	

programmer	stops	searching	because	they	find	what	they	were	looking	for	or	give	up.	

	

The	mismatch	between	the	framing	of	an	ideal	“one	query	for	success”	search	taken	by	non-

iterative	approaches	and	the	iterative	behavior	observed	during	empirical	studies	has	two	

possible	 explanations.	 	 First,	 one	 could	 argue	 (and	 many	 do)	 that	 the	 non-iterative	

approaches	to	code	search	need	more	work,	because	the	programmer	is	having	to	submit	

multiple	queries	to	get	the	code	they	are	looking	for.		Second,	one	could	argue	that,	perhaps,	
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the	 idealistic	 non-iterative	 approach	 to	 search	 is	 wrong,	 and	 that	 search	 for	 code	 is	

inherently	an	iterative	process	between	the	programmer	and	the	search	engine.	

	

Cognitive	processes	in	which	programmers	engage	explain	why	the	second	answer	–	code	

search	is	iterative	–	is	preferred.		Particularly,	unlike	when	people	search	to	be	aware	of	the	

latest	 news,	 a	 distinctly	 informational	 activity	 [94],	 programmers	 search	 for	 source	 code	

when	 they	 are	 problem	 solving,	 where	 what	 they	 are	 looking	 for,	 a	 solution,	 is	 not	

immediately	understood	[24]	and	it	is	not	clear	how	to	find	what	they	are	looking	for	[24].	

As	 the	 programmer	 begins	 to	 understand	 their	 current	 problem,	 they	 begin	 to	 consider	

solutions,	but	 these	solutions	can,	 in	 turn,	make	 the	programmer	rethink	 the	problem	by	

presenting	 constraints	 or	 different	 perspectives	 that	 the	 programmer	 did	 not	 previously	

consider	[27].	 	Rethinking	the	problem	will	push	the	programmer	to	consider	alternative	

representations	of	the	problem	or	to	further	define	the	problem,	which	changes	the	solutions	

they	 next	 consider[24],	 [70],	 [81],	 [109].	 	 That	 is,	 possible	 solutions	 often	 change	 the	

understanding	 of	 the	 problem	 and	 in	 turn	 change	 the	 next	 solutions	 considered.	 	 The	

implication,	then,	is	that	when	programmers	receive	code	results	from	a	search	engine,	these	

results	will	sometimes	cause	them	to	rethink	the	problem	they	are	trying	to	solve	and	they	

will	issue	a	modified	query	driven	by	their	new	understanding	of	the	problem	–	making	the	

search	iterative.		For	example,	let	us	consider	the	following	hypothetical	scenario.		Suppose	

a	programmer	needs	to	implement	a	general	purpose	algorithm	to	stack	N	aliens	for	a	new	

game	(one	instance	is	illustrated	in	Figure	6).		The	goal	of	the	game	is	to	stack	all	the	aliens	

onto	the	rightmost	column,	where	an	alien	can	only	be	stacked	on	top	of	an	alien	with	more	

eyes.	The	programmer	searches	 for	code	they	could	possibly	reuse	to	solve	this	problem.	
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Issuing	the	keywords	stacking	aliens	game	 to	her	favorite	search	engine	yields	no	results.		

Upon	reflection,	she	generalizes	the	search,	as	often	happens	[106],	to	find	a	general	solution	

to	any	stacking	game	that	she	can	adapt	and	use	for	her	alien	game.	With	a	new	goal	in	mind,	

she	next	issues	the	keywords	stacking	game.			After	looking	through	the	results,	she	is	unable	

to	find	any	general	purpose	stacking	game	algorithm,	but	she	does	find	a	Towers	of	Hanoi	

[30]	implementation.	She	recalls	from	her	undergraduate	education	that	Towers	of	Hanoi	is	

a	stacking	problem,	where	the	goal	is	to	stack	disks	onto	the	right	most	pole	and	that	disks	

can	only	be	stacked	on	top	of	larger	ones.	She	makes	the	analogy,	as	programmers	often	do	

for	 reuse	 [27],	 [120],	 between	 the	 number	 of	 alien	 eyes	 and	 the	 size	 of	 the	 disk	 and	

immediately	understands	the	problem	she	is	working	on	as	the	Towers	of	Hanoi	problem;	

one	she	understands	well.		The	programmer’s	next	keywords	are	Towers	of	Hanoi,	and	she	

then	begins	searching	and	further	refining	her	query	to	find	an	implementation	that	would	

be	easy	to	adapt	to	her	stacking	alien	problem.	

	

Figure 6 Alien Stacking Game Example. 
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This	dissertation	investigates	what	happens	when	programmers	are	explicitly	supported	in	

searching	iteratively	for	code.		It	particularly	answers	the	following	research	question:	

	

	

To	answer	this	question,	I	designed	and	developed	two	new	approaches	to	code	search:	(1)	

CodeExchange	and	(2)	CodeLikeThis.		The	insight	behind	both	approaches	is	that	the	next	

query	is	not	typically	created	at	random,	but	formulated	in	response	to	aspects	of	the	current	

results.		For	instance,	as	discussed	above,	it	has	been	observed	that	certain	results	can	give	

the	programmer	different	ideas	or	constraints	on	the	solution	that	they	did	not	previously	

consider	[27],	which	can	drive	the	programmer	to	issue	a	modified	query	trying	to	find	more	

code	with	those	constraints	[24],	[70],	[81],	[109]	(e.g.,	trying	to	use	code	from	a	result	as	

keywords	in	the	next	query	[50]).		Alternatively,	the	programmer	may	discover	something	

unfavorable	about	the	solutions	given	in	a	set	of	results	(e.g.,	discovering	the	results	all	use	

an	incompatible	library)	and	attempt	a	different	query	[7],	[106]	to	find	solutions	without	

those	 unfavorable	 characteristics.	 Our	 work	 generalizes	 these	 individual	 situations	 and	

makes	iteration	primary	in	the	design	of	both	CodeExchange	and	CodeLikeThis.	

	

The	 designs	 of	 CodeExchange	 and	 CodeLikeThis	 offer	 two	 alternative	 approaches	 to	

explicitly	 support	 iteration.	 	 CodeExchange	 gives	 the	 programmer	 manual	 control	 to	

incrementally	modify	 the	query	 for	code	 that	 is	 (dis)similar	 to	 the	current	 results	 in	 two	

ways:	 (1)	 it	 supports	 specializing	 the	 query	 by	 selecting	 aspects	 of	 the	 results	 that	 are	

similar/dissimilar	to	what	the	programmer	has	in	mind,	and	(2)	it	decomposes	the	query	

What	is	the	impact	of	explicitly	supporting	software	developers	in	searching	
iteratively	on	the	experience,	time,	and	success	of	the	code	search	process? 
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into	parts	that	can	be	individually	toggled	to	generalize	or	specialize	the	query.	In	this	way,	

by	selecting	aspects	of	the	results	the	programmer	likes	(e.g.,	libraries	used	or	method	calls)	

or	dislikes	(e.g.,	code	complexity	or	size)	the	programmer	can	refine	their	query	for	results	

with	 or	 without	 those	 aspects.	 Alternatively,	 by	 toggling	 parts	 of	 the	 query	 on/off	 the	

programmer	 can	 quickly	 try	 different	 combinations	 of	 various	 aspects	 of	 their	 query	 in	

response	to	the	results.	

	

CodeLikeThis,	 taking	 somewhat	 of	 an	 opposite	 approach,	 offers	 automatic	 support	 for	

iteration	in	two	ways:	(1)	the	result	set	from	the	first	keyword	query	is	always	diverse,	to	

provide	 the	 developer	 with	 a	 variety	 of	 possible	 starting	 points,	 and	 (2)	 in	 subsequent	

queries,	the	developer	searches	by	selecting	one	of	the	code	results	as	a	directive	that	guides	

whether	 the	next	code	results	are	more	similar,	 somewhat	similar,	or	 less	similar	 to	 that	

result.	In	this	way,	the	programmer	can	search	by	recognizing	if	a	code	result	is	(dis)similar	

to	what	they	have	in	mind	without	needing	to	specify	how.		For	example,	after	issuing	the	

query	quick	sort,	some	results	might	only	call	quick	sort	methods,	others	might	offer	code	

that	tests	quick	sort	methods,	and	yet	others	might	be	quick	sort	implementations.	 	If	the	

programmer	 was	 looking	 for	 implementations,	 then	 she	 can	 select	 one	 of	 the	

implementations	 to	 find	 more	 quick	 sort	 implementations,	 but	 she	 does	 not	 need	 to	

construct	 or	 think	 of	 a	 query	 to	 only	 get	 implementations	 or	 code	 more	 like	 a	 specific	

implementation.		

	

We	evaluated	CodeExchange	and	CodeLikeThis	in	a	user	study	among	24	developers	with	an	

average	 of	 approximately	 4	 years	 of	 professional	 development	 experience,	 where	 we	
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compared	 CodeExchange,	 CodeLikeThis,	 Google,	 and	 a	 baseline	 search	 engine	

(CodeExchange	minus	iterative	features).	In	a	counterbalanced	design,	each	participant	was	

assigned	two	of	the	four	code	search	engines	and	used	them	to	complete	eight	different	code	

search	tasks,	alternating	the	search	engine	used	with	each	task.	The	search	tasks	covered	a	

range	from	those	that	are	more	open	ended	to	those	that	are	more	well	defined,	in	order	to	

represent	a	variety	of	real-world	internet-scale	code	search	scenarios	[7],	[48],	[50],	[76],	

[107],	[116].		After	each	search	task,	each	participant	was	asked	to	rate	their	experience	in	

using	the	assigned	search	engine	for	that	task.		At	the	end,	each	participant	first	filled	out	a	

questionnaire	about	the	two	search	engines	they	used	and	finally	was	interviewed.	

	

To	understand	the	impact	of	explicitly	supporting	iteration,	we	analyzed	the	collected	data	

for	the	experience	ratings,	task	times,	and	task	completion	rates.	From	this	analysis,	three	

primary	results	emerged:	

• Iterative	search	improves	code	search	for	some	tasks.	Compared	to	the	baseline	search	

engine,	 we	 found	 that	 there	 existed	 an	 iterative	 approach	 providing	 better	

experiences	in	6/8	tasks	and	equal	experiences	in	2/8	tasks.			Compared	to	Google,	

we	found	that	there	existed	an	iterative	approach	providing	better	experiences	in	3/8	

tasks,	equal	experiences	in	2/8	tasks,	and	worse	experiences	in	3/8	tasks.	

• Some	 kinds	 of	 search	 tasks	 are	 better	 suited	 for	 CodeExchange	 and	 others	 for	

CodeLikeThis.	 We	 found	 the	 incremental	 approach	 to	 iteration	 supported	 by	

CodeExchange	gave	a	better	experience	for	searching	when	the	search	task	was	more	

open	ended.		However,	we	also	found	the	automatic	approach	to	iteration	supported	
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by	CodeLikeThis	gave	a	better	experience	 for	searching	when	 the	search	 task	was	

more	defined.	

• Regardless	of	search	engine,	participants	tried	to	iteratively	search	for	code.		Across	all	

search	engines,	users	submitted	multiple	queries	per	search	task	and	specialized	and	

generalized	the	current	query	to	create	the	next	query.	

1.1	Dissertation	Structure	
	

This	dissertation	 is	organized	 into	8	chapters.	 	The	remaining	chapters	are	structured	as	

follows:	

	

Chapter	2	–	Background	

This	chapter	presents	an	overview	of	empirical	studies	in	the	literature	studying	code	search,	

the	state	of	the	art	in	code	search	engines,	and	relevant	background	in	information	retrieval.	

	

Chapter	3	–	Research	Question	

This	chapter	first	motivates	and	then	introduces	the	research	question	investigated	in	this	

dissertation.		

	

Chapter	4	–	CodeExchange	

This	chapter	presents	our	first	new	approach	designed	explicitly	to	support	iterative	code	

search,	as	embedded	in	our	prototype	search	tool	CodeExchange.		This	chapter	also	presents	

results	 of	 a	 field	 study	 and	 user	 study	 conducted	 as	 a	 preliminary	 study	 evaluating	
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CodeExchange	and	GitHub.		

	

Chapter	5	–	CodeLikeThis	

This	chapter	discusses	CodeLikeThis,	our	prototype	search	tool	that	embodies	our	second	

new	 approach	 designed	 explicitly	 to	 support	 iterative	 code	 search.	 	 This	 chapter	 also	

presents	the	results	of	a	user	study	to	preliminary	evaluate	CodeLikeThis’	diversity	ranking	

algorithm	for	keywords.	

	

Chapter	6	–	Experiment	Design	and	Results	

This	 chapter	presents	key	decisions	 in	 the	experiment	design	 though	which	we	assessed	

both	 CodeExchange	 and	 CodeLikeThis	more	 comprehensively.	 This	 chapter	 presents	 the	

experiment	 setup,	 the	 rationale	 of	 the	 design,	 and	 dependent	 variables	 we	 explore.	 The	

experiment	design	is	then	followed	by	the	results	of	the	experiment	and	our	analysis	of	the	

collected	 data	 to	 understand	 the	 impact	 of	 explicitly	 supporting	 software	 developers	 in	

searching	iteratively	on	the	experience,	time,	and	success	of	the	code	search	process.	

	

Chapter	7	–	Discussion	

This	 chapter	 takes	 a	 step	 back	 and	 presents	 the	 lessons	 learned	 from	 our	 study.	 	 It	

particularly	 discusses	 the	 high-level	 takeaways,	 key	 individual	 results,	 and	 overall	

implications	for	the	design	of	iterative	code	search	engines.		

	

Chapter	8	–	Conclusion	

In	this	section,	we	summarize	the	dissertation	and	discuss	our	future	work.	
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Chapter	2	

Background	
	
Previous	research	in	code	search	can	be	divided	into	empirical	studies	that	capture	various	

aspects	 of	 the	 process	 by	 which	 the	 programmers	 search	 and	 into	 research	 design	 and	

development	that	seeks	to	provide	new	ways	of	supporting	code	search.		In	this	section,	we	

present	a	comprehensive	summary	of	both	groups	of	research	and	at	the	end	of	each	major	

subsection	present	tables	providing	a	high-level	overview	of	this	work.		We	conclude	with	a	

brief	summary	of	relevant	work	in	information	retrieval.	

	

2.1	Empirical	Studies	on	Code	Search	
	
Several	types	of	studies	(e.g.,	surveys,	search	log	analysis,	field	studies,	and	lab	studies)	have	

been	 conducted	 to	 understand	 why	 and	 how	 developers	 search	 for	 code.	 In	 the	 below	

subsections,	 we	 summarize	 relevant	 results	 from	 these	 studies,	 as	 organized	 by	 type	 of	

study.		
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2.1.1	Surveys	
	
Surveys	asking	programmers	why	they	search	for	code	on	the	Internet	have	been	conducted	

by	Sim	et	al.	[107],	Sadowski	et	al.	[97],	Stolee	et	al.	[116],	and	Hucka	and	Graham	[53].	In	

Sim	et	al.’s	survey,	all	69	participants	reported	that	they	searched	on	the	Internet	either	for	

code	 to	use	as	a	 reference	or	 for	 code	 that	 they	can	use	as-is.	 	With	 respect	 to	 code	as	a	

reference,	 programmers	 reported	 that	 they	 needed	 reference	 examples	 to	 check	 if	 their	

implementations	were	correct,	learn	how	to	use	an	application	programming	interface	(API),	

learn	 how	 to	 use	 different	 programming	 language	 constructs,	 or	 learn	 a	 programming	

concept	(e.g.,	threading).		With	respect	to	searching	for	code	as-is,	programmers	searched	

for	reusable	code	they	could	copy	and	paste	or	use	as	a	library	in	an	existing	project	or	to	use	

as	a	starting	point	for	a	data	structure	or	algorithm.				

	

Stolee	et	al.	surveyed	99	people	with	programming	experience	about	why	they	search	on	the	

Internet	for	code.	Their	participants	most	often	reported	that	they	search	to	get	 ideas	for	

programming	(71%	of	all	responses	included	this	as	a	reason),	but	also	frequently	reported	

that	they	search	to	find	code	to	adapt	to	their	current	project.	A	few	programmers	reported	

using	code	as-is,	without	any	modification.	These	results	confirm	the	findings	of	Sim	et	al.	

that	developers	search	for	code	as	a	reference	and	to	use	as-is,	but	offers	different	nuances	

as	to	why.		In	particular,	the	study	finds	that	programmers	most	often	search	to	get	ideas	or	

to	rewrite/adapt	into	their	projects	rather	than	to	use	as-is.	
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Sadowski	 et	 al.	 asked	 programmers	 at	 Google	why	 they	 searched	 Google’s	 internal	 code	

repository.		The	survey’s	questions	cover	local	code	search,	as	opposed	to	Internet-scale	code	

search	discussed	in	this	dissertation,	but,	since	this	is	a	large,	company	wide	repository,	it	

also	includes	code	that	programmers	have	no	affiliation	with	or	knowledge	of,	making	the	

setting	at	least	somewhat	similar	to	Internet-scale	code	search.	In	this	survey,	programmers	

reported	in	60%	of	responses	that	they	searched	to	learn	how	to	accomplish	a	programming	

task	and	to	explore	code	to	read	for	a	better	understanding.	Other	responses	were	geared	

toward	 local	 search	reasons,	 such	as	 finding	possible	places	where	a	planned	or	ongoing	

change	may	have	impact,		locating	where	certain	code	is	implemented,	identifying	who	made	

certain	changes,	or	figuring	out	when	some	changes	were	made.	In	relation	to	Stolee	et	al.’s	

and	Sim	et	al.’s	survey,	programmers	also	reported	searching	to	learn,	but	contrasting	with	

these	studies,	other	than	the	explicit	local	search	motivations,	was	a	more	specific	motivation	

to	search	for	a	better	understanding	by	exploring	code.		For	example,	participants	reported	

to	search	to	read	code	without	a	specific	goal,	understand	how	a	function	is	implemented,	or	

check	how	a	coding	task	is	usually	completed.	

	

Lastly,	Hucka	and	Graham	 [53]	 surveyed	scientists	across	a	variety	of	 fields	who	also	do	

programming	 for	 their	 research.	 	As	 in	previous	 surveys,	 it	was	 found	 that	 the	 scientists	

looked	 for	 example	 code	 for	 implementations	 (e.g.,	 algorithms	 or	 data	 structures),	 to	

remember	 how	 to	 program	 some	 function,	 learn	 new	 concepts,	 or	 to	 discover	 new	

algorithms.	However,		contrasting	with	Sim	et	al.’s	[107]	survey,	Hucka	and	Graham	found	

that	the	participants	often	reported	looking	for	code	to	reuse	as-is.	Also,	different	than	other	
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surveys,	the	participants	reported	to	search	to	find	more	efficient	code	than	what	they	had	

written.		

	

Overall,	these	survey	studies	provide	an	important	understanding	of	the	motivations	behind	

searching	for	code,	documenting	the	motivations	for	code	search	that	guide	the	design	of	

code	 search	 engines.	 These	 motivations	 include	 getting	 ideas/inspiration,	 learning,	

remembering,	clarifying	knowledge,	and	finding	code	to	reuse	as-is.	Researchers	of	future	

code	 search	 engines	 can	 use	 these	 motivations	 to	 design	 and	 evaluate	 their	 tools.	 	 For	

instance,	researchers	could	test	how	much	a	programmer	learned	or	the	number	of	ideas	a	

programmer	can	generate	using	different	kinds	of	code	search	engines.	

	

2.1.2	User	Studies	
	

Three	user	studies	have	been	conducted	that	look	at	how	programmers	search	for	code.	Scott	

Henninger	[48],	in	the	first	user	study	of	code	search,	conducted	a	user	study	among	nine	

students	with	programming	experience	to	evaluate	code	search	tasks	using	three	different	

small	scale	code	search	engines	(each	indexing	1800	Lisp	functions):	CodeFinder,	Helgon+,	

and	Document	Examiner.	CodeFinder	and	Helgon+	both	provided	explicit	tool	support	for	

the	programmer	to	refine	their	query,	while	Document	Examiner	served	as	a	baseline	search	

engine	offering	no	such	refinement	support.		This	study	revealed	that,	on	average,	the	users	

submitted	 7.25	 queries	 and	 specialized	 (also	 known	 as	 refined)	 their	 query	 by	 adding	

keywords.		
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In	an	experiment	by	Sim	et	al.	[106],	24	programmers	were	given	programming	tasks	to	find	

reference	examples	as	functions/classes	or	to	find	subsystems	of	code	to	reuse	as-is	(e.g.,	

libraries).	Each	task	was	performed	with	one	of	 five	search	engines:	Google	[145],	Krugle	

[149],	 Koders	 (no	 longer	 available),	 Google	 Code	 Search	 (no	 longer	 available),	 and	

Sourceforge	[162].		The	authors	found	that	looking	for	references	usually	took	more	queries,	

more	query	terms,	more	modifications,	and	more	time	than	searching	for	subsystems.	 	 In	

general,	 depending	 on	 the	 search	 engine	 used,	 the	 average	 number	 of	 terms	 in	 a	 query	

ranged	from	3.8	to	4.7	and	the	average	number	of	queries	was	2.38.	Frequently,	to	create	

new	queries,	current	queries	were	modified	by	generalizing	(e.g.,	removing	keywords	or	a	

filter),	specializing	(e.g.,	adding	keywords	or	a	filter),	or	a	combination	of	generalizing	and	

specializing	(e.g.,	removing	and	adding	keywords	and	filters	but	still	preserving	some	terms	

from	the	previous	query).	Less	common	were	modifications	that	changed	all	keywords	in	the	

query	or	corrected	spelling	mistakes.	These	results	build	on	and	confirm	Henninger’s	study	

showing	that	the	next	query	is	often	created	by	specialization,	but	also	showing	that	it	can	

be	created	by	generalization	or	a	combination	of	generalization	and	specialization.	Further,	

this	study	shows	that	searching	for	code	as	a	reference	takes	more	time	and	iterations	that	

searching	for	code	to	reuse	as-is.	

	

Joel	 Brandt	 et	 al.	 [13]	 conducted	 a	 user	 study	 among	 20	 students	 with	 programming	

experience.		The	participants	needed	to	complete	programming	tasks	inside	an	incomplete	

preexisting	project,	using	the	Internet	as	an	aid.	In	general,	they	found	that	the	participants	

often	 used	 the	 Internet	 to	 find	 code	 to	 learn	 how	 to	 use	 an	 API,	 clarify	 some	 existing	
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knowledge	to	accomplish	a	task,	or	as	an	external	memory	aid	where	they	looked	up	code	to	

remember	how	to	accomplish	a	task.	Further,	they	found	that,	when	programmers	needed	

to	learn	how	to	accomplish	a	programming	task,	they	would	learn	not	just	by	reading,	but	

also	by	pasting	the	code	into	their	editors,	modifying	it,	and	running	it.	Similar	to	the	findings	

from	the	survey	studies,	these	participants	reported	to	search	for	code	as	a	reference	from	

which	 to	 learn,	 clarify	 knowledge,	 and	 remember	 to	 successfully	 complete	 their	

programming	tasks.		

Overall,	 the	 studies	 by	 Henninger,	 Sim	 et	 al.,	 and	 Brandt	 et	 al.,	 provide	 insight	 into	 the	

fundamental	behavior	of	code	search.	Their	findings	suggest	that	searching	for	code	is	highly	

iterative,	spanning	a	sequence	of	queries,	where	each	new	query	is	often	a	modification	of	

the	 previous.	 	 Researchers	 can	 use	 this	 insight	 to	 design	 and	 evaluate	 search	 engines	

explicitly	supporting	iteration	(as	done	in	this	dissertation).	

	

2.1.2	Log	Analysis	
	
Three	 studies	 examined	patterns	 in	 search	 engine	 logs	 to	understand	how	programmers	

search	 for	code,	 the	kinds	of	queries	 they	 issue,	and	 the	kinds	of	 code	 that	 they	 look	 for.	

Bajracharya	 et	 al.	 [7]	 analyzed	 the	 logs	 from	 the	 commercial	 code	 search	 engine	Koders	

(unfortunately,	no	longer	available)	over	a	year	time	span.	The	analysis	of	the	keywords	in	

the	logs	revealed	that	programmers	most	often	searched	for	domain	or	application	specific	

code	(e.g.,	mobile	games	or	calendar	scheduling),	algorithm	and	data	structure	code	(e.g.,	

traversing	graphs	or	B	 tree	data	structures),	and	 framework	code	(e.g.,	 examples	of	code	

using	 Java	 or	 Eclipse	 libraries).	 Further,	 the	 analysis	 showed	 that,	 overall,	 programmers	

looked	 for	 code	with	keywords	 comprised	of	 just	 one	 term,	with	 an	 average	of	 just	 1.31	
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terms.		Further,	the	analysis	revealed	that	programmers	would	often	submit	more	than	one	

query	during	their	search	(2.16	queries	on	average),	where	queries	were	modified	by	totally	

changing	 the	 keywords,	 specializing	 them,	 generalizing	 them,	 or	 using	 advanced	 query	

options.	 	 However,	 contrasting	 with	 Sim	 et.	 al.’s	 user	 study	 [106],	 which	 showed	 that	

programmers	most	often	specialize	and	generalize	 their	queries,	Bajracharya	et	al.	 found	

programmers	 most	 often	 totally	 changed	 their	 keywords.	 There	 currently	 is	 no	

understanding	as	to	why	there	is	a	difference,	but	it	could	be	an	artifact	of	the	methodologies	

of	either	study.	Using	logs	to	study	code	search	necessarily	means	encountering	more	noise	

and	having	less	control	as	to	why	users	are	searching,	but	the	data	is	collected	from	a	real	

world	setting.		The	user	study	performed	by	Sim	et	al.	has	the	benefit	of	controlling	the	noise	

and	 only	 looking	 at	 results	 from	 code	 search	 tasks,	 but	 the	 data	 is	 collected	 from	 a	 less	

realistic	lab	setting.	

	

Brandt	et	al.	[13]	analyzed	query	logs	during	July	2008	from	the	Adobe	Developer	Network	

website	 explicitly	 about	 the	 Adobe	 Flex	Web	 framework.	 They	 sampled	 300	 from	 about	

70,000	search	sessions	(defined	as	periods	of	queries	and	clicks	no	more	than	6	minutes	

apart)	and	hand	coded	them	into	categories.		The	researchers	found	that	most	queries	were	

about	reminding	oneself	of	how	to	use	the	framework	(78%)	and	the	rest	about	learning	new	

concepts	(22%).		Further,	it	was	found	that	learning	sessions	started	with	natural	language	

queries	in	about	50%	of	the	cases,	but	reminding	sessions	usually	started	with	code	specific	

terms	(75%	of	cases).	They	found	that,	across	sessions,	about	1.45	queries	are	issued,	where	

the	 next	 query	 is	 created	 by	 modifying	 the	 current	 query	 though	 generalization,	

specialization,	 a	 combination	 of	 generalization	 and	 specialization,	 creating	 a	 totally	 new	
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query,	or	correcting	a	spelling	mistake.		Brandt	et	al.	note	that	the	number	of	queries	is	lower	

than	other	studies,	which	might	be	due	to	its	particular	focus.			

	

Lastly,	Holmes	[50]	analyzed	the	search	logs	from	nearly	100	users	of	the	Strathcona	search	

engine	in	order	to	characterize	code	search	behavior.	 	Strathcona	is	not	a	keyword	query	

search	 engine,	 but	 rather	 supports	 the	 programmer	 to	 select	 parts	 of	 code	 in	 the	

programmer’s	development	environment	to	serve	as	the	context	 in	which	Strathcona	will	

automatically	create	a	query	and	return	matching	code.	Holmes	found	that	developers	often	

selected	many	different	parts	of	their	local	project	(e.g.,	classes	or	methods)	of	the	code	in	

their	project	for	Strathcona	to	automatically	construct	a	query	from.	Further,	Holmes	found	

that	 programmers,	 after	 viewing	 search	 results	 that	 were	 returned,	 would	 refine	 their	

selection	with	additional	code	in	their	project	(2.5	queries	were	issued	on	average	during	a	

search	session).	 	Holmes	speculated	 that	developers	might	be	gleaning	some	 information	

from	the	results	that	inform	them	how	to	modify	their	selection.		Similar	to	previous	studies	

discussed,	Holmes	also	finds	that	programmers	submit	multiple	queries	to	search	for	code,	

even	when	not	using	keywords.		Further,	Holmes	finds	the	queries	to	be	heterogeneous	in	

nature,	since	queries	often	were	composed	from	different	parts	of	the	programmer’s	project.	

	

Overall,	the	studies	analyzing	the	log	files	of	different	search	engines	confirm	some	of	the	

findings	from	the	surveys	and	lab	studies.		Programmers	submit	multiple	queries	and	some	

of	their	motivations	include	learning	new	concepts	or	being	reminded	how	to	accomplish	a	

programming	task.		However,	the	studies	also	provide	important	nuanced	findings,	such	as	

Holmes’	results	showing	that	queries	are	heterogeneous.	We	also	see	a	difference	 in	how	
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queries	are	usually	modified	between	Bajracharya	et	al.	and	Sim	et	al.’s	user	study	[106],	

suggesting	further	clarifying	research	needs	to	be	done.	

	

2.1.3	Field	Studies	

Rosalva	Gallardo-Valencia	et	al.	 [37]	conducted	a	 field	study	onsite	at	a	company	 in	Peru	

where	they	observed	employees	search	for	code	and	had	them	write	down	their	queries	and	

their	goals	for	their	search.	The	researchers	found	that:	

• 38%	 of	 searches	were	 concerned	with	 a	 need	 to	 learn	 how	 to	 figure	 out	 how	 to	

complete	a	task,	use	code	they	already	had,	or	to	configure	code	they	had;	

• 24%	of	searches	were	concerned	with	a	need	to	remember	how	parts	of	some	code	

work	or	the	meaning	of	parameters,	flags,	or	what	a	method	does;	

• 14%	of	searches	were	concerned	with	a	need	to	gain	a	deeper	understanding	of	the	

code	so	that	they	could	write	better	documentation	or	make	modifications	to	it;	

• 11%	of	searches	were	concerned	with	a	need	to	solve	a	bug;	

• 8%	 of	 searches	 were	 concerned	 with	 a	 need	 for	 libraries	 translating	 English	 to	

Spanish;	and	

• 5%	 of	 searches	 were	 concerned	 with	 finding	 and	 comparing	 multiple	 candidate	

software	components	to	use	in	a	project.	

The	results	of	this	study	provide	important	results	from	a	realistic	setting	that	confirm	the	

results	 in	 lab	 studies	 and	 surveys	 that	 show	 motivations	 to	 find	 code	 include	 learning,	

remembering,	to	clarify/gain	a	deeper	understanding,	and	as	method	to	fix	a	bug.	
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2.1.4	Empirical	Study	Discussion	

The	 empirical	 studies	 on	 code	 search	 indicate	 that	 programmers	 search	 iteratively	 and	

search	for	many	reasons.	Emphasizing	this	point,	we	present	in	Table	1	a	high-level	summary	

of	 the	 findings	 from	 the	 empirical	 studies.	 	 The	 Behavior,	 Query	 Types,	 and	Motivations	

column	 headers	 organize	 findings	 from	 all	 empirical	 studies	 discussed	 and	 each	 row	

references	specific	studies	by	author	name.	 	Cells	with	a	value	of	 “✓”	map	studies	 to	 the	

corresponding	phenomenon	 found	and	cells	with	decimals	map	studies	 to	corresponding	

averages	found.	For	example,	the	first	row	shows	Sim	et	al.	found	the	motivations	to	search	

for	code	are	to	find	code	to	support	cognitive	processes	of	the	programmer	or	to	use	as-is.		

Further,	 these	 authors	 found	 that	 some	 of	 these	 cognitive	 processes	 involve	 learning,	

remembering,	or	getting	clarification.			As	another	example,	Holmes	found	that	the	average	

number	of	queries	submitted	during	search	is	2.5.		

	

Of	importance	to	this	dissertation	are	the	following	four	observations.			

 First,	it	is	clear	that	programmers	search	for	code	iteratively.	That	is,	they	submit	an	

initial	query,	receive	results,	submit	a	modified	query,	receive	a	new	set	of	results,	and	

so	on.			

o This	behavior	suggests	the	opportunity	to	better	support	search	by	designing	

features	that	explicitly	support	the	programmer	to	iteratively	search	for	code.	

 Second,	creating	a	new	query	often	means	modifying	the	current	query	by	generalizing	

it,	 specializing	 it,	 or	 some	 combination	 of	 both.	 Further,	 the	 terms	 added/removed	

to/from	a	query	are	either	natural	language	terms	and/or	code	specific	terms.			
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o This	 behavior	 suggests	 that	 how	 iteration	 is	 supported	 is	 important	 and	

suggests	 the	 opportunity	 to	 better	 support	 iteration	 with	 features	 that	

specialize	and	generalize	the	query	with	code	specific	and/or	natural	language	

terms.	
Table	1.	Empirical	Studies.	
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Sim	et	al.	[107]	 Survey	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 ✓	 	 ✓	

Hucka	et	al.	[53]	 Survey	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 ✓	 	 ✓	

K.	Stolee	[116]	 Survey	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 ✓	 	
R.	Gallardo-	
Valencia	et	al.	[37]	 Field	Study	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 	 ✓	

Sim	et	al.	[106]	 User	Study	 3.8-4.7	 2.38	✓	 ✓	 ✓	 ✓	 	 	 	 	 	 	 	 	 	 	

S.	Henninger	[48]	 User	Study	 	 7.25	✓	 	 	 	 	 	 	 	 	 	 	 	 	 	

Joel	Brandt	et	al.	
[13]	

User	Study		
and	Log	
Analysis	

	 1.45	✓	 ✓	 ✓	 ✓	 ✓	 ✓	 	 	 	 	 ✓	 ✓	 	 ✓	

Sadowski	et	al.	[97]	 Survey	and		
Log	Analysis	 1.85	 2.69	✓	 	 	 	 	 	 ✓	 ✓	 ✓	 	 ✓	 	 	 ✓	

Holmes	[50]	 Log	Analysis	 	 2.5	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bajracharya	et	al.	[7]	 Log	Analysis	 1.31	 2.16	✓	 ✓	 ✓	 ✓	 ✓	 ✓	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 Sadowski	et	al.	studied	Google	repository	search	

	 	 	 	 	 	 	 	 ✓	=	phenomenon	found	

	 	 	 	 	 	 	 	 empty	=	Not	studied	
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 Third,	 the	 goal	 of	 code	 search	 is	 often	 not	 predetermined.	 	 Code	 search	 frequently	

serves	to	support	cognitive	processes,	such	as	learning,	remembering,	clarifying,	and	

generating	 ideas,	 as	 they	 pertain	 to	 programming	 –	 a	 problem	 solving	 driven	 task	

[109].	Problem	solving	and	cognitive	processes	often	do	not	have	clear	goals	initially,	

but	become	clearer	over	time,	which	implies	the	goal	driving	the	search	can	be	initially	

unclear	and	changing	[24],	[27],	[120].	

o Unclear	and	changing	goals	driving	search	has	implications	on	how	code	search	

engines	 are	 evaluated.	 	 In	 particular,	 it	 implies	 that	 classical	 approaches	 to	

measuring	performance	in	information	retrieval	that	use	predetermined	results	

that	a	ranking	algorithm	should	return	or	a	user	should	find	may	not	measure	

success	or	performance,	because	programmers	often	are	changing	their	goals	

for	their	search.	 	This	implication	suggests	a	more	programmer	centric	study	

might	be	more	appropriate,	where	the	study	lets	the	programmer	discover	or	

decide	what	code	they	are	looking	for	and	collects	and	analyzes	user	reported	

measures	about	the	search	process.	

 Lastly,	 because	 Sadowski	 et	 al.	 studied	 search	 in	 a	 company	 repository,	 some	

motivations	to	find	code	are	to	understand	the	impact	of	making	a	change,	what	code	

has	been	changed,	or	who	changed	code	and	when.	 	These	motivations	are	found	in	

local	code	search	[97],	where	code	is	found	to	then	change	for	debugging,	refactoring,	

or	other	maintenance	 tasks	 [34],	 [61],	 [112].	 In	 contrast,	 searching	on	 the	 Internet,	

code	 is	 found	 to	 support	 different	 cognitive	 processes	 (sometimes	 referred	 to	 as	

discovering	requirements	 [36])	 	or	sometimes	used	as-is.	These	difference	between	

local	 search	 and	 Internet	 search	 also	 lead	 to	 very	 different	 behaviors	 in	 empirical	
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studies	 of	 local	 search	 (e.g.,	 navigation	 in	 file	 hierarchies	 and	 editor	 windows	 or	

navigation	for	bug	fixes	and	line	changes)	[92]	as	compared	to	the	behavior	of	Internet-

scale	code	search	discussed	above.	

o The	difference	between	the	goals	and	behavior	between	local	code	search	and	

Internet-scale	code	search	has	implications	on	experiment	design.		In	particular,	it	

suggests	 that	 the	design	of	 studies	 of	 searching	 for	 code	on	 the	 Internet	 should	

mimic	and	remain	as	true	as	possible	to	the	setting	and	goals	of	Internet-scale	code	

search.	

	

2.2	Tool	Support	for	Code	Search	

Research	has	explored	a	wide	range	of	tools	and	techniques	to	support	code	search.		These	

tools	 can	 be	 organized	 into	 six	 categories	 of	 support:	 more	 expressive	 queries,	 better	

matching	algorithms,	query	creation	support,	result	usability,	result	navigation,	and	iteration	

support.	In	the	below,	we	discuss	relevant	work	in	each	of	these	categories.	

	

2.2.1	More	Expressive	Queries	
	
	
Recognizing	 that	keywords	are	somewhat	 limiting,	and	do	not	allow	developers	 to	easily	

target	their	search	to	the	content	of	code,	several	search	tools	have	been	developed	to	match	

structural	 queries,	 usually	 submitted	 with	 an	 advanced	 query	 form.	 These	 approaches	

support	search	by	the	code’s	method	signature	[105],	packages	[49],	framework	[126],	and	

language	constructs	(e.g.,	 if	statements)	and	relationships	(e.g.,	one	method	calls	another)	
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[67].	The	insight	behind	these	approaches	is	that	queries	on	structural	parts	of	the	code	can	

be	 used	 to	 find	 functionality,	 because	 of	 developer	 naming	 conventions.	 	 For	 example,	 a	

query	quicksort	on	class	names	can	 find	classes	 that	 implement	 the	algorithm	quick	sort.	

Figure	7	presents	one	of	the	first	search	engines,	AGORA,	supporting	search	over	structural	

properties	 of	 code.	 The	 user	 can	 search	 for	 Java	 classes	 (specifically	 Java	 Beans)	 by	

specifying,	 in	 an	 advanced	 syntax,	 what	 method	 names	 the	 class	 should	 have.	 	 Once	

submitted,	 links	 to	 results	are	presented	below	 the	 form.	Such	search	engines	have	been	

shown	to	increase	the	solution	quality	of	search	results	[49]	and	increase	the	recall	of	results	

[126].	

	

2.2.2	Functional	Semantic	Queries	

Rather	 than	 searching	 for	 functionality	 based	 on	 the	 structure	 of	 the	 code,	 several	

approaches	have	investigated	how	to	support	developers	 in	more	meaningfully	searching	

Figure 7 AGORA screenshot. 
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for	specific	functionality	by	supplying	semantic	queries.		A	common	approach	is	to	use	test	

cases	 as	 queries	 to	 find	 code	 passing	 them.	 	 One	 approach	 transforms	 test	 cases	 into	

structural	queries	to	match	code	that	could	pass	the	test	cases	with	some	modification	[65].		

Other	approaches	take	test	cases	and	transform	the	code	indexed	to	run	on	these	test	cases,	

where	passing	 code	 is	 returned	 [54],	 [91].	 	 	 For	 example,	 Figure	8	presents	 S6,	 a	 search	

engine	that	accepts	a	method	signature	(in	this	example	a	method	called	convert)	and	a	series	

of	test	cases,	as	assertions,	that	the	implementation	of	convert	should	satisfy	(in	this	case,	

given	input	17,	convert	should	output	“XVII”).			Once	the	user	selects	the	“Find	it!”	button,	the	

search	engine	will	transform	the	signature	of	methods	indexed	to	match	convert’s	method	

signature	and	then	test	if	the	transformed	code	passes	the	test	case.	If	so,	S6	returns	links	to	

the	transformed	code	below	the	submission	form.	A	study	on	13	test	cases	submitted	to	S6	

showed	 that	 it	 is	possible	 to	 find	results	 [91].	At	 the	same	 time,	due	 to	 the	experimental	

Figure 8 S6. 
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nature	of	the	tool,	it	could	take	several	minutes	to	respond	to	a	query.	A	study	on	a	similar	

kind	of	search	engine,	Code	Conjurer,	showed	it	can	take	hours	for	results	to	be	returned	

[54].	

	

A	less	common	approach	to	semantic	search	is	to	use	a	satisfiability	modulo	theory	(SMT)	

solver	that	takes	well-defined	constraints	on	the	input/output	of	the	code,	and	the	search	

engine	then	uses	an	SMT	solver	to	find	code	satisfying	those	constraints	[116].		There	is	also	

research	 focusing	 on	 locating	 more	 specific	 kinds	 of	 functionality,	 such	 as	 code	 that	

transforms	a	variable	of	one	type	into	another.		In	this	case,	the	programmer	issues	a	type	

mapping	 (A	®	 B)	 and	 the	 search	 engine	 then	 attempts	 to	 find	 a	 sequence	 of	 code	 that	

transforms	a	variable	of	type	A	into	a	variable	of	type	B	[71],	[122],	[134].		In	[71],	the	authors	

show	that,	given	the	query	 type	mapping	 IEditorPart	®	 IDocumentProvider,	 their	search	

engine	can	find	code	results	such	as		

	

	

	

	

transforming	variable	inp	of	type	IEditorPart	into	variable	dp	of	type	IDocumentProvider.	
	

IEditorPart inp = ep.getEditorInput(); 

DocumentProviderRegistry dpreg;// free variable 

IDocumentProvider dp = dpreg.getDocumentProvider(inp);	
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2.2.3	Task	Description	Queries	
One	approach	explored	a	different	use	of	structure	 in	constructing	queries.	Specifically,	 it	

supports	a	form	of	code	search	in	which	the	query	is	composed	of	a	sequence	of	commands	

specifying	what	structures	need	to	be	implemented.	This	approach	was	designed	to	support	

building	plugins	in	the	Eclipse	development	environment,	which	entails	creating	a	plug-in	

project,	 configuring	 XML	 files,	 implementing	 interfaces,	 overwriting	 methods,	 and	 other	

activities	that	amount	to	creating	different	program	structures	using	Eclipse	libraries.		The	

user	can	issue	these	kinds	of	steps,	each	step	naming	the	structure	to	be	created,	as	a	query	

to	the	search	engine	to	get	sets	of	results	that	have	implemented	these	steps.		Figure	8	shows	

the	interface	to	XFinder	[23]	that	implements	this	approach.	In	this	example,	the	user	has	

issued	 a	 query	 to	 create	 a	 text	 editor	 plugin	 to	 the	 Eclipse	 environment.	 	 The	 steps	 are	

displayed	 in	 the	 root	 nodes	 of	 the	 tree	 viewer	 (e.g.,	 the	 last	 step	 is	 Implement	

IContentOutlinePage)	and	under	each	step	are	results	implementing	it.	Examples	are	found	

Figure 9 XFinder. 
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by	mapping	each	step	onto	matching	structural	properties	of	source	code	in	the	repository.	

For	 example,	 Implement	 IContentOutlinePage	 can	 be	 mapped	 onto	 any	 class	 using	 the	

language	 construct	 implements	 followed	 by	 the	 class	 name	 IContentOutlinePage.	 	 The	

authors	of	XFinder	 ran	a	 small	 case	 study	 testing	 the	precision	of	 their	 tool.	 	Within	 two	

different	code	bases	for	different	queries,	they	mapped	the	examples	XFinder	found	to	the	

examples	the	authors	found,	and	measured	the	precision	to	range	from	88.5%	to	97.8%.	

	

2.2.4	Incomplete	Code	Queries	
	

Several	approaches	support	the	user	to	write	part	of	the	code	they	need	(at	the	method	or	

statement	granularity)	and	submit	it	as	a	query	to	get	results	that	complete	it.		This	approach	

is	 intended	 to	 more	 seamlessly	 go	 from	 code	 to	 results,	 rather	 than	 requiring	 the	

programmer	to	translate	the	immediate	source	code	completion	needs	into	a	keyword	query.		

These	approaches	rely	heavily	on	pattern	matching	abstractions	of	the	code	being	written	

with	abstractions	of	code	indexed.		Abstract	syntax	trees	[82]	and	binary	vectors	that	encode	



38	
	

properties	 of	 the	 code	 [14],	 [15]	 have	 been	 used	 to	 retrieve	 statements	 completing	 a	

programmer’s	function	they	are	writing	at	the	time.		Figure	10	shows	a	screen	shot	of	one	

such	system,	Grapacc	[82].		It	shows	the	user	declaring	a	StringTokenizer	variable	and	then	

hitting	the	keys	CTRL+Space	to	issue	it	as	a	query	to	the	Grapacc	search	engine.		Returned	

are	results,	displayed	 in	a	dialog	box,	of	possible	ways	of	completing	the	code	the	user	 is	

writing.	To	evaluate	Grapacc,	methods	from	24	different	open	source	projects	were	selected	

and	each	had	their	bottom	half	of	code	removed.	Grapacc	was	then	run	on	these	methods	to	

autocomplete	them	using	a	result	in	the	top	five.		The	resulting	autocompleted	methods	were	

mapped	to	the	actual	methods	and	it	was	found	Grapacc	scored	a	precision	of	71%	and	recall	

of	77%.	

	

Figure 10 Grapacc. 
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More	 niche	 approaches	 have	 focused	 on	 supporting	 the	 developer	 in	 completing	 their	

instantiation	 of	 an	 object	 (this	 can	 be	 complicated	 in	 large	 frameworks)	 using	 context	

patterns	(e.g.,	the	parent	class	of	the	current	code	and	the	type	being	instantiated)	[80],	[98].	

2.2.5	Improving	Ranking	Algorithms	

While	some	research	has	focused	on	approaches	for	matching	code	with	different	kinds	of	

queries,	 other	 research	 has	 investigated	 how	 to	 improve	 the	 ranking	 of	 the	 code	 that	 is	

returned.		Next,	we	discuss	the	variety	of	approaches	that	have	been	explored.	

	

	2.2.5.1	Improving	Ranking	Algorithms	with	Automatic	
Query	Modification		
	
To	return	more	on	topic	results,	one	approach	is	to	automatically	add	synonyms	and	other	

related	words	to	the	current	keywords	to	match	topically	related	code	that	would	be	missed	

by	matching	only	against	the	programmer’s	keywords.	The	terms	added	can	come	from	a	

variety	of	thesauruses	[66],	rule	systems	mapping	keywords	to	related	terms	[28],	related	

Java	 documentation	 [41],	 or	 from	 the	 code	 the	 developer	 is	 currently	 writing	 [12].	 For	

example,	 Lemos	 et	 al.	 [66]	 found	 that,	 when	 queries	 were	 automatically	 expanded	with	

synonyms	from	the	WordNet		[135]	thesaurus,	it	increased	recall	of	CodeGenie	[65]	by	30%	

(i.e.,	 query	 expansion	 allowed	 CodeGenie	 to	 return	more	 on	 topic	 results	 that	 otherwise	

would	not	have	been	returned).	
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2.2.5.2	 Improving	Ranking	Algorithms	with	an	Enriched	

Index	

An	 alternative	 approach	 to	matching	more	 topically	 related	 code	 is	 to	 index	 code	 in	 the	

search	engine	not	only	with	terms	occurring	in	it,	but	also	with	descriptive	terms	elsewhere	

(e.g.,	descriptive	terms	found	in	the	code’s	documentation).		This	method	supports	matching	

of	topically	related	code	that	would	be	missed	by	matching	only	against	the	terms	inside	the	

code.	Related	terms	are	often	taken	from	documentation	[18],	[49],	descriptive	tags	from	the	

community	[126],	[133],	and,	if	the	code	is	on	a	web	page,	surrounding	natural	language	on	

the	web	page	[133].		For	example,	in	the	search	engine	Maracatu,	they	were	able	to	increase	

the	precision	of	the	search	engine	by	about	23%	by	using	descriptive	tags	to	expand	keyword	

queries.	However	they	also	found	that	it	had	an	inverse	effect	of	lowering	the	recall	by	about	

37%.	

	

2.2.5.3	Improving	Ranking	with	Weighted	Matching	
	
	
Traditionally,	 ranking	 algorithms	 optimize	 on	matches	 between	 keywords	 and	 all	 terms	

(save	 stop	 words)	 in	 documents	 and	 other	 document	 relationship	 heuristics	 [152].		

However,	Linstead	et	al.,	found	that	it	is	possible	to	improve	ranking	performance	(measured	

by	 the	area	under	 the	ROC	curve	metric	 [45])	 for	 code	 compared	 to	Google	by	matching	

keywords	 against	different	parts	 of	 fully	qualify	names	 in	 code	 (e.g.,	 class	name,	method	

names)	in	an	algorithm	called	Specificity	[67].	The	general	procedure	is	to	give	equal	weight	

to	matches	with	terms	in	the	least	qualified	part	of	the	fully	qualified	names	(FQN),	but	give	
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higher	weight	to	matches	in	the	most	qualified	name	in	the	FQN	(often	referred	to	as	the	

simple	name).		This	algorithm	was	implemented	in	the	Sourcerer	search	engine,	as	shown	in	

Figure	 11.	 	 In	 the	 figure,	 the	 query	 http	 server	 (logically	 AND’ed)	was	 issued,	 for	which	

Sourcerer	returned	many	classes	named	HttpServer	in	the	top	results	because	it	weighted	

matches	with	the	simple	names	of	types	(in	this	case	class	names)	more	heavily.		
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Figure 11. Sourcerer. 
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2.2.6	Query	Formation	Support	

Rather	than	seeking	to	support	improvement	in	matching	the	user’s	query,	some	approaches	

attempt	to	automatically	create	or	recommend	queries	that	may	lead	to	better	matching.		

	

2.2.6.1	Automatic	Query	Creation	

Several	approaches	attempt	to	eliminate	the	effort	of	formulating	queries,	as	well	as	when	to	

formulate	 them,	 by	 automatically	 constructing	 queries	 on	 behalf	 of	 the	 user	 and	

continuously	pushing	results	to	the	user.	 	The	insight	behind	these	approaches	is	that	the	

context	of	the	developer	(e.g.,	the	project	they	are	working	on)	can	determine,	in	part,	some	

initial	queries.	The	typical	approach	 is	 to	use	names	 from	the	user’s	opened	project	 (e.g.,	

method	names	and	class	names)	[3],	[40],	[131]	as	well	as	certain	structural	properties	in	

the	project	(e.g.,	method	signatures	and	supertypes)	[51]	to	automatically	construct	a	query.		

Further,	while	some	approaches	rely	on	the	programmer	to	select	code	in	their	project	to	

initiate	a	query	[51],	some	approaches	will	automatically	push	results	to	the	programmer	as	

the	programmer	is	writing	[3],	[40],	[131].			

	

Using	 the	 code	 context	 to	 automatically	 create	 a	 query	 is	 different	 than	 issuing	 the	

incomplete	code	queries	in	Section	2.2.4,	because	those	methods	rely	on	the	user	to	manually	

create	the	query	out	of	code,	whereas	the	approaches	in	this	section	automatically	create	a	

query	leveraging	the	code	context	to	do	so.	Figure	12	shows	a	screen	shot	of	CodeBroker,	a	

system	that	takes	the	code	currently	being	written,	transforms	it	into	a	query,	and	pushes	

the	results	back	to	the	programmer	in	the	editor.		In	the	figure,	CodeBroker	has	taken	the	
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method	 getRandomNumber	 and	 surrounding	 context,	 transformed	 it	 into	 a	 query,	 and	

returned	links	to	different	random	number	generator	methods	at	the	bottom	of	the	Emacs	

code	editor.			

	

The	 authors	 of	 CodeBroker	 ran	 a	 user	 study	 among	 five	 participants	whose	 task	was	 to	

implement	a	program	with	the	option	to	use	CodeBroker.		The	authors	found	that,	among	

the	50	components	reused	by	participants,	20	came	from	CodeBroker.	For	nine	of	 the	20	

components	taken	from	CodeBroker,	the	participants	reported	not	anticipating	using	them	

beforehand.	Participants	reported	CodeBroker	made	it	faster	to	reuse	11/20	components.	

Further,	participants	stated	that		the	results	themselves	helped	shape	and	guide	the	creation	

of	the	code	by	giving	the	participants	ideas	they	would	not	have	had	otherwise.	

	

	

Figure 12. CodeBroker. 
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2.2.6.2	Query	Replacement	in	Local	Code	Search	

While	not	Internet-scale	approaches	to	code	search,	some	local	code	search	approaches,	for	

various	 maintenance	 tasks,	 support	 the	 programmer	 in	 replacing	 or	 completing	 their	

keyword	queries.	For	example,	rather	than	improving	ranking	algorithms,	Refoqus	[44],	as	

shown	in	Figure	13,	assumes	the	user’s	query	is	what	needs	improving	and	will	recommend	

ways	of	replacing	a	user’s	query	based	on	the	output	of	a	machine	learning	model.		Before	

Refoqus	can	be	used,	it	must	be	trained	by	suppling	it	with	training	data	as	a	list	of	queries	

and	 corresponding	 code	 that	 should	 be	 returned	 from	 a	 TF-IDF	 ranking	 algorithm	 (as	

implemented	in	Lucene	[137]).		During	training,	all	queries	in	the	training	data	are	issued	to	

Refoqus	 and	 if	 they	 do	 not	 return	what	 is	 expected,	 they	 are	 classified	 as	 “low	 quality”.		

Refoqus	uses	 the	 trained	classifier	 to	match	 future	queries	 to	 low	quality	or	high	quality	

queries,	and,	if	low	quality	is	matched,	will	offer	recommendations	for	replacing	the	query.	

The	 authors	 of	 Refoqus	 ran	 a	 simulation	 test	 to	 see	 if	 their	 query	 replacement	

recommendations	would	rank	methods	that	needed	to	be	changed	for	known	bugs	reported	

in	an	issue	tracker,	higher	than	other	approaches	found	in	the	literature.	They	found	that	

Refoqus	 could	 improve	 ranking	 over	 TF-IDF	 in	 52%	 of	 queries,	 do	 no	worse	 in	 32%	 of	

Figure 13. Refoqus. 
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queries,	and	do	worse	in	16%.		Further,	when	comparing	against	other	ranking	algorithms,	

they	found	Refoqus	improved	on	what’s	called	the	effectiveness	score	(a	unit	of	measure	of	

effort	to	view	all	methods	returned).	

	

Similar	to	the	assumption	behind	Refoqus	—	that	the	user’s	query	needs	improving	rather	

than	the	ranking	algorithm	—	another	approach	offers	ways	of	modifying	keyword	queries	

if	they	lead	to	zero	results	[38].		Lastly,	some	methods	will	recommend	terms	for	completing	

a	query	if	they	occur	more	often	in	the	search	engine’s	index	[88].		

	

2.2.7	Code	Result	Usability	

While	returning	topically	related	code	to	a	query	is	crucial,	other	research	has	noted	that	the	

usability	of	the	results	in	terms	of	their	quality,	understandability,	and	ease	of	integration	

are	also	important	for	search.		Poor	quality	results,	difficult	to	understand	results,	or	results	

that	are	hard	to	reuse	(if	looking	for	code	to	reuse	as-is)	can	all	increase	the	programmer’s	

effort	using	the	code	they	find	and	impact	the	value	of	searching	for	code	in	the	first	place.	

	

2.2.7.1	Code	Result	Quality	
	

Quality	 can	mean	many	 things	 for	 source	 code	 (e.g.,	 few	 bugs,	well	 documented,	 or	 low	

cohesion).	However,	techniques	in	code	search	most	commonly	use	an	indirect	measure	to	

find	 code	 of	 higher	 quality,	 for	 instance	 through	popularity	metrics.	 Popularity	 itself	 has	

many	meanings,	but	it	has	been	measured	by	counting	the	number	of	times	code	is	used	by	

other	code	(similar	to	PageRank	[85]	once	used	by	Google)	[67],	[76],	[123],	and	it	has	also	

been	measured	by	extracting	high	level	patterns	from	the	code	indexed	and	counting	how	
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often	those	patterns	occur	in	the	search	engine	[31],	[60],	[77].	Another	approach	proposes	

to	use	votes	from	other	developers	[43].	These	popularity	scores	are	then	used	in	the	final	

ranking	algorithm	to	organize	results	differently	than	just	in	order	of	being	on	topic.		

	

One	of	the	first	search	engines	to	use	patterns	to	rank	code	was	CodeWeb	[77],	as	shown	in	

Figure	13.	It	ranks	code	by	the	popularity	of	the	patterns	they	implement.		CodeWeb	extracts	

implementation	 patterns	 from	 code	 as	 implementation	 rules	 and	 scores	 how	 confident	

(using	the	frequency)	it	is	in	the	rule.		For	example,	a	rule	might	be	“if	class	instantiates	object	

X	then	call	method	Y	in	next	statement”	with	a	confidence	of	70%	in	the	rule.	 	Once	these	

patterns	are	extracted,	CodeWeb	ranks	code	results	by	the	confidence	value	of	the	rule	they	

Figure 14. CodeWeb. 
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implement.	For	example,	in	Figure	13	the	rules	are	listed	at	the	top	of	the	window,	where	the	

first	rule	has	a	confidence	of	72.3%	and	the	code	implementing	this	rule	is	displayed	in	the	

bottom	right	window.	While	no	empirical	study	or	user	evaluation	was	done	on	CodeWeb,	

the	tool	was	among	the	first	to	demonstrate	how	to	rank	code	by	popularity,	or	one	notion	

of	popularity,	showing	the	possibility	of	including	quality	into	the	search	process.	

	

2.2.7.2	Code	Result	Understanding	
	

Another	critical	part	of	code	search	is	the	ability	of	the	user	to	understand	the	code	results,	

as	otherwise	it	may	be	too	difficult	for	the	user	to	know	when	they	have	found	code	they	

want.		For	example,	in	[99]	they	report	that	comprehending	source	code	can	be	very	hard	on	

Stack	Overflow,	as	75%	of	results	have	less	than	19	lines	of	code.	Most	code	snippets,	too,	do	

not	compile	and	are	typically	part	of	short	and	poorly	structured	posts.		

	

One	very	early	approach,	shown	in	Figure 15,	supported	the	user	to	select	parts	of	the	code	

to	issue	“why”	questions	to	retrieve	manually	created	documentation	explaining	the	selected	

part	 [33].	 A	 more	 automatic	 approach	 collapses	 code	 results	 intro	 groups	 by	 different	

functionalities	 in	 the	 code.	 	 Collapsing	 code	 into	 groups	 supports	 the	 developer	 to	 get	 a	

higher	level	understanding	of	a	code	result	and	can	be	uncollapsed,	when	the	user	is	ready,	

to	obtain	a	more	detailed	understanding	of	the	code	[99],	[100].	Some	other	methods	include	

documentation	and	comments	from	the	web	with	the	results	[87],	[132]	or	support	finding	

an	expert	that	can	explain	code	to	the	user	[132].	Generally,	users	of	these	systems	report	

being	able	gain	a	higher	understanding	of	the	code	compared	to	other	systems.	
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2.2.7.3	Code	Result	Integration	

If	code	is	reused	as-is,	then	the	programmer	needs	to	integrate	it	into	their	project.		This	can	

be	difficult	and	time	consuming,	because	it	entails	resolving	all	the	dependencies	of	the	code	

and	 then	 integrating	 those	 dependences.	 This	 can	mean	 renaming/creating	 variables	 or	

locating	libraries	and	other	dependencies	(e.g.,	configuration	files)	to	also	integrate	into	the	

project.	To	support	integration,	two	kinds	of	approaches	havalphae	been	researched.		One	

approach	is	to	support	developers	to	write	integration	templates	and	documentation	that	

can	later	be	used	by	other	developers	to	help	integrate	a	code	result	into	their	project	[83],	

[128].		For	example,		Figure 16		shows	a	screen	shot	of	a	programmer	reusing	some	CSS	code	

and	using	a	template	in	the	Codelets	[83]	tool	to	integrate	it	into	their	local	code.	Codelets	

Figure 15 Explainer 
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was	evaluated	in	a	user	study	and	was	found	to	decrease	the	time	it	takes	programmers	to	

implement	web	applications.		

	

The	other	approach	is	to	support	the	developer	in	locating	dependencies.	One	method	for	

doing	 so	automatically	 tries	 to	 resolve	all	 dependencies	needed	 to	use	a	 code	 result	 in	 a	

search	 engine	 [84].	 Another	method	 supports	 the	programmer	 in	 the	 activity	 of	 locating	

dependencies	by	giving	them	an	interactive	visualization	to	navigate	dependences	from	the	

code	they	want	to	integrate	and	ignore	dependences	from	code	they	do	not	want	[52].	Lastly,	

there	 are	methods	 that	 index	 libraries	 and	 source	 code	 and	 return	 both	when	matching	

keyword	queries	 [49].	 	 In	general,	 these	approaches	 intend	and	sometimes	are	shown	 to	

reduce	the	time	it	takes	to	implement	code.		

	

	

Figure 16 Codelets. 
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2.2.8	Result	Navigation	

Traditionally,	navigation	of	code	search	engine	results	is	done	by	paging	through	10	ranked	

results	at	a	time.	However,	some	code	search	engines,	many	commercial,	support	navigating	

the	 results	 by	 scoping	 them	 with	 descriptive	 fields	 called	 filters.	 	 For	 example,	 the	

commercial	search	engine	Krugle	supports	scoping	results,	as	shown	in	Figure	17,	by	known	

projects,	file	types,	and	authors	of	the	code	indexed.		Not	much	evaluation	has	been	done	on	

filters,	since	most	commercial	code	search	engines	do	not	publish	research	on	themselves.	

However,	in	Sim	et	al.’s	user	study	[106],	they	evaluated	code	search	engines	that	have	filters	

(Krugle,	Koders,	and	Source	Forge)	and	found	that	42.2%	of	all	queries	issued	included	the	

use	of	a	filter,	suggesting	they	have	much	utility	in	finding	code.	

	

	

	

Figure 17 Krugle. 
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2.2.12	Iteration	Support	
	
While	there	has	been	positive	and	impactful	research	in	tools	supporting	more	expressive	

queries,	better	matching	and	ranking	of	results,	and	result	usability,	each	of	these	areas	of	

research	focus	on	queries	and	results	in	isolation	of	the	next	query	and	results.		However,	as	

discussed	in	Section	2.1,	we	find	search	consisting	of	multiple	queries,	where	the	next	query	

is	often	a	modification	of	the	previous	–	making	each	query	a	step	in	a	connected	process	

rather	than	as	isolated	events.		

	

An	early	small-scale	approach	to	code	search	(searching	1800	Lisp	function)	recognized	the	

need	 to	assume	a	next	query	and	designed	some	support	 for	 it	 [47].	This	early	approach	

supported	the	programmer	with	iterative	refinement,	where,	after	submitting	a	query,	the	

search	engine	would	present	related	keywords	that	could	be	selected	to	refine	the	query.	

Figure	18	is	a	screen	shot	of	the	implementation	of	this	approach	in	a	tool	called	CodeFinder.		

In	Figure	18	(1),	points	to	related	keywords	that	can	be	added	to	the	query,	(2)	points	to	

where	a	summary	of	a	single	result	is	returned,	and	(3)	points	to	the	programmer’s	current	

query.	The	author	of	this	approach	showed	through	user	evaluations	among	nine	students,	

each	with	programming	experience,	that	explicit	support	for	iteration	helped	find	code	for	

ill-defined	code	search	tasks	compared	to	other	non-iterative	approaches.	

	

Much	 later,	 support	 for	 refinement	 recommendations	 in	 web	 search	 engines	 was	

investigated	 by	 extracting	 words	 from	 Java	 documentation	 in	 results	 from	 Google	 and	

presenting	these	words	to	the	user	as	refinement	recommendations	[119].		The	authors	of	
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this	approach	conducted	a	field	study	and	found	about	half	of	all	searched	involved	taking	a	

keyword	refinement	recommendation.				

	

Lastly,	while	 iteration	has	not	been	the	primary	aim	of	many	approaches	and	even	when	

supported	 often	 not	 evaluated,	 some	 tool	 research	 has	 acknowledged	 the	 importance	 of	

features	 supporting	 iteration,	 albeit	 tangential	 to	 their	main	 design.	 This	 includes	 future	

work	 discussions	 illustrating	 the	 possibility	 of	 offering	 refinement	 recommendations	 by	

frequent	method	calls	 in	 the	results	 [5],	 [8]	or	by	the	package	 in	which	a	 function	occurs	

[132].		

	

Figure 18. CodeFinder.	

1 2 

3 
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2.2.14	Tool	Support	Discussion	

Clearly,	tool	support	research	for	code	search	has	investigated	many	different	approaches	to	

improve	queries	and	results.	Emphasizing	this	point,	we	present	in	Table	2	and	Table	3	a	

high-level	summary	of	all	50	tools	and	methods	discussed	in	this	section.		The	headers	of	the	

table	organize	the	kinds	of	tool	support	for	code	search	discussed	and	each	row	references	

specific	tools	or	methods	by	name.	Cells	with	a	value	of	“✓”	map	tools	and	methods	to	their	

corresponding	 support.	 For	 example,	 the	 first	 row	 shows	 that	 the	 Agora	 search	 engine	

supports	structural	queries	and	paging	of	results.	As	another	example,	the	table	shows	that	

CodeFinder	has	an	iterative	refinement	feature	that	was	also	evaluated.	

	

Of	importance	to	this	dissertation	are	the	following	two	observations:	

 There	is	much	more	research	to	be	done	in	the	design	and	evaluation	of	 iterative	

support	for	code	search	engines.	Among	the	50	tools	and	methods,	only	two	have	

developed	a	feature	to	support	iteration	that	was	also	evaluated.	However,	in	100%	

of	the	empirical	studies	on	code	search	that	look	at	the	number	of	queries	issued,	

search	is	shown	to	be	iterative.	

 There	are	many	kinds	of	features	supporting	iteration	left	to	investigate.	The	two	

iterative	 features	 designed	 and	 evaluated	 (in	 CodeFinder	 and	 Mica)	 are	 both	

refinement	recommendation	features	that	only	support	iteratively	refining	a	query	

with	keywords.	While	clearly	important,	other	support	such	as	refining	the	query	by	

characteristics	of	a	result	deserve	equal	exploration.	
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Based	on	the	two	observations	immediately	above,	this	dissertation	designs	and	evaluates	

diverse	approaches	to	iteratively	search	for	code.	
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Table	2.	Code	Search	Engines	and	Techniques,	Part	1.	
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Agora	[105]			 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	
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Assieme	[49]			 	 ✓	 ✓	 	 	 	 	 ✓	 	 	 	 	 	 	 ✓	 ✓	 	 	
B.A.R.T	[28]		 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	
BluePrint	[12]		 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	
Calcite	[80]			 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	
Code	Conjurer	[54]			 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	
CodeBroker	[131]			 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	
CodeGenie	[65]			 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	
CodeRecommenders	
[142]		 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	

Codetrail	[40]		 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	
CodeFinder	[47]		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	
CodeWeb	[77]		 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	
Codelets	[83]		 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	
CodeX	[31]		 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	
Explainer	[33]		 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	
Exemplar	[41]		 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	
Example	
Overflow[133]		 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 ✓	 	 	 	

FrUiT	[15]		 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	
Gilligan	[52]		 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
GraPacc	[82]		 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	
Jbender	[43]		 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	
JIRISS	[88]		 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	
MAPO	[134]		 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Maracatu	[126]		 	 	 ✓	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	
Mica	[119]		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 ✓	 ✓	
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Table	3.	Code	Search	Engines	and	Techniques,	Part	2.	
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PARSEWeb	[122]	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Co
de

	S
ea

rc
h	
To

ol
	

Portfolio	[76]	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	
Prospector	[71]	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
S6	[91]	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	
SeaHawk	[87]	 	 	 	 	 	 	 	 	 ✓	 	 	 	 ✓	 	 	 	 	 	
SNIFF	[18]	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	
SnipMatch	[128]	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	
Sourcerer	[67]	 	 ✓	 ✓	 	 	 	 	 ✓	 	 	 	 	 	 	 ✓	 	 	 	
Sourcerer	API	Search	[8]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 ✓	 	
Spotting	Working	Code	
Examples	[60]	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	

SpotWeb	[123]	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	
STEP_IN_JAVA	[132]	 	 	 	 	 	 	 ✓	 ✓	 	 	 	 	 	 	 	 	 ✓	 	
Sythesizing	API		
usage	Examples	[16]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Strathecona	[51]	 	 	 ✓	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	
Vesperin	[99]	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	
Xfinder	[23]	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Xsnippet	[98]	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	
Coronado	[38]	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 	 	 	 	 	 	 	 Local	Code	

Search	Tool	Refoqus	[44]	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	
AQE	[66]	 	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	

Technique	MTU	[100]	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	 	 	
SMT	[117]	 	 	 	 	 	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	
Koders	/	Ohloh	/	
OpenHub	[140]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 	 	

Commercial	
Tool	Google	Code	Search	[146]	 ✓	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 	 	 	

GitHub	Code	Search	[144]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ✓	 ✓	 	 	
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2.3	Iterative	Search	in	Information	Retrieval	

	
While	people	search	for	natural	 language	documents	 for	different	reasons	than	code,	and	

while	 code	 and	 documents	 are	 very	 different	mediums,	 some	 of	 the	work	 in	 the	 field	 of	

information	retrieval	can	inspire	new	directions	of	research	in	code	search.	Relevant	to	this	

dissertation	 are	 the	 approaches	 investigated	 that	 support	 iteratively	 searching	 for	

unstructured	natural	language	documents.		

	

John	 Tukey	 et	 al.’s	 Scatter-Gather	 [22]	method	was	 among	 the	 first	 to	 support	 iterative	

search	 for	 news	 articles.	 	 Their	 search	 engine	 presents	 a	 high-level	 clustering	 of	 all	 the	

articles	 indexed	with	 summaries	 for	 each	 cluster.	 	 The	 user	 selects	 several	 clusters	 that	

appear	on	topic	and	the	search	engine	will	take	the	subpopulation	of	articles	in	the	selected	

clusters	 and	 return	 finer	 grained	 clusters	 on	 the	 subpopulation.	 This	 gradual	 iterative	

refinement	continues	until	there	are	few	enough	documents	in	the	selected	clusters	to	stop	

clustering	and	to	just	return	the	documents	for	the	user’s	inspection.		Figure	19	shows	the	

implementation	of	this	method	as	a	command	line	tool.	 	The	user	 is	presented	with	eight	

clusters	(0-7),	each	with	terms	to	describe	the	clustered	documents.		

	

A	more	recent	version	of	the	Scatter-Gather	approach	accepts	a	keyword	query	first	and	then	

build	clusters	dynamically	on	the	returned	results	[46].		This	approach	supports	the	user	to	

start	their	search	with	clusters	topically	related	to	a	description	of	what	they	want,	rather	
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than	starting	with	very	generic	clusters	that	may	have	no	obvious	meaning	to	the	user	or	

their	 search,	 making	 selecting	 clusters	 hard.	 The	 user	 study	 of	 the	 new	 Scatter-Gather	

approach	showed	that	people	could	 find	more	on	topic	articles	with	the	updated	Scatter-

Gather	approach	compared	to	search	engines	returning	results	ranking	articles	with	TF-IDF.	

	

Rather	than	iteratively	selecting	clusters	to	search	for	documents,	Smucker	and	Allan’s	work	

[114]	presents	a	way	to	iteratively	search	for	medical	journal	articles	on	the	PubMed	web	

site	[89]	by	selecting	articles	of	interest	to	get	more	articles	on	a	similar	topic.		After	selecting	

an	article	and	getting	results,	the	user	can	again	select	an	article	to	find	articles	on	a	similar	

topic,	and	so	on.	This	approach	is	implemented	by	transforming	the	selected	article	into	a	

keyword	 query	 to	 find	 other	 journal	 articles	 containing	 similar	 terms.	 A	 similar,	 but	 not	

iterative,	 approach	 supports	 search	 for	 similar	 documents	 by	 	 calculating	 the	 Hamming	

Figure 19. Scatter-Gather. 
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distance	 (number	 of	 edits	 required	 to	 go	 from	 one	 document	 to	 another)	 between	 an	

uploaded	 document	 and	 other	 documents	 indexed	 [129].	 However,	 documents	 must	 be	

uploaded	from	the	local	drive	to	search	with,	so	this	approach	does	not	support	iteratively	

searching	with	the	results.		

	

Lastly,	another	approach,	called	Rocchio	[152],	is	similar	to	Smucker	and	Allan’s,	but	adds	

terms	(logically	OR’ing	them	together)	to	the	keyword	query	from	all	user	selected	results	

that	appear	on	topic.	 	In	this	way,	the	query	expands	with	each	selection	and	will	contain	

terms	from	all	results	ever	selected	during	the	search.	The	idea	behind	this	approach	is	that	

eventually	 the	 expanded	 query	 will	 grow	 with	 all	 terms	 describing	 a	 topic	 so	 that	 all	

documents	on	the	topic	of	interest	are	returned.		A	possible	issue	with	this	approach	is	that	

the	query	can	grow	so	large	that	the	precision	of	the	results	begins	to	decrease	with	each	

selection	of	additional	results.	

	

Like	Sucker	and	Allan’s	work,	this	dissertation	too	investigates	iteratively	searching	by	result	

similarity,	 but	where	 similarity	 is	 defined	 for	 source	 code	 results	 and	defined	 at	 various	

degrees	to	get	different	and	similar	code	through	the	search.	
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Chapter	3	

Research	Question	

In	the	previous	chapter,	we	discussed	various	empirical	studies	on	code	search	that	found	

code	search	to	be	an	iterative	process,	where	the	programmer	submits	a	query,	examines	

and	sometimes	learns	from	the	results,	submits	a	new	query,	examines	the	next	results,	and	

so	on.	 In	contrast,	most	 tool	 support	 for	 code	search	has	 taken	a	non-iterative	approach,	

which	optimizes	on	simply	returning	the	best	results	for	whatever	the	query	is.		In	a	sense,	

this	is	reasonable,	because	success	in	doing	so	would	mean	giving	the	developer	exactly	what	

they	queried	for.	Yet,	only	returning	the	top	ranked	results	for	a	query	is	insufficient,	because	

it	 offers	 no	 support	 for	 the	 developer	 in	 creating	 a	 next	 query,	which	 the	 studies	 in	 the	

previous	chapter	show	programmers	do	and	often	when	they	are	not	exactly	sure	what	they	

are	 looking	 for.	 	 In	 such	 cases,	 search	 is	more	 of	 an	 exploratory	process	where	multiple	
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queries	are	issued	by	the	programmer	so	that	they	can	discover	results	to	 learn	and	gain	

ideas	from	or	to	learn	more	about	what	code	they	might	want	in	the	search	engine.	

Our	 work	 distinguishes	 itself	 by	 focusing	 on	 leveraging	 the	 results	 from	 the	 first	 or	 a	

subsequent	query	as	the	primary	vehicle	for	assisting	the	developer	in	formulating	a	next	

query.	Our	motivation	to	do	so	it	is	based	on	a	two-fold	observation:	

(1) When	programmers	are	working	on	formulating	a	next	query,	they	frequently	are	in	

the	process	of	also	formulating	what	they	are	searching	for,	which	makes	the	next	

query	less	about	finding	the	right	words	for	a	specific	and	known	need	but	more	about	

figuring	out	what	to	search	for.		Some	of	the	empirical	work	described	in	Section	2	

suggests	that	search	is	more	exploratory	when	programmers	do	not	quite	know	what	

they	are	looking	for,	which	often	involves	learning	and	getting	ideas	about	what	to	

search	for	as	they	look	at	the	results.	This	dissertation	focuses	on	this	process,	and	

particularly	explores	novel	approaches	to	support	developers	in	searching	for	code	

in	an	iterative	manner	when	they	may	not	initially	know	exactly	what	they	are	looking	

for.	

(2) Programmers	 tend	 to	 create	 a	 next	 query	 relative	 to	 the	 results	 they	 receive.	 For	

example,	they	might	decide	there	is	some	aspect	of	one	or	more	of	the	results	that	

they	want	to	see	more	of	in	the	next	set	of	results,	and	attempt	to	encode	that	aspect	

as	keywords	to	get	to	those	examples.	 	 In	contrast,	a	programmer	might	not	 like	a	

certain	aspect	of	the	results	and	attempt	different	keywords	to	prevent	those	aspects	

from	occurring	in	the	next	set	of	results.	This	behavior	is	not	unlike	Polya’s	problem	

solving	model	(shown	in	Figure	20)	[159][81],	which	observes	that,	 in	the	iterative	

process	 involved	 in	 solving	 some	 problems,	 iterating	 tends	 to	 either	 generalize	
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(triangle	to	polygon	Figure	20),	specialize	(triangle	to	equilateral	triangle	in	Figure	

20),	or	move	to	an	analogous	solution	(triangle	to	pyramid	in	Figure	20).	In	traditional	

search	 for	 source	 code,	 this	 would	 translate	 into	 “fewer	 keywords”,	 “additional	

keywords”,	and	changing	some	keywords	while	keeping	others	the	same.		Regardless,	

it	still	requires	the	developer	to	come	up	with	the	new	choice	of	keywords	given	the	

results.	 This	 dissertation	 seeks	 to	 aid	 this	 process,	 in	 general,	 through	 new	 code	

search	approaches	that	alleviate	the	programmer	how	to	do	so.	

	

In	 this	 dissertation,	 we	 specifcally	 explore	 two	 different	 approaches	 that	 help	 the	

programmer	 in	using	 the	 results	of	 a	previous	query	 to	 construct	 a	next	query.	The	 first	

approach	 is	 inspired	 by	 the	 cognitive	 science	 literature	 showing	 that,	 often,	 people	 can	

recognize	something	as	partially	similar	(or	not)	to	something	else	[113]	and	that	people	try	

to	get	closer	to	other	solutions	by	partially	adjusting	a	solution	they	have	to	get	to	a	solution	

Figure	20.	Polya's	model	of	problem	solving.	
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more	 similar	 to	what	 they	 are	 looking	 for	 [81].	 Implemented	 in	 CodeExchange,	 our	 first	

experimental	 code	 search	 engine,	 we	 support	 this	 practice	with	 four	 features	 that	 were	

designed	to	let	the	programmer	use	an	aspect	of	a	result	(e.g.,	its	complexity,	a	method	call,	

or	a	library	used)	to	adjust	a	query	incrementally.	

The	second	approach,	implemented	in	CodeLikeThis,	our	second	experimental	code	search	

engine,	is	inspired	by	the	concept	of	whole	similarity	in	the	cognitive	science	literature	[113],	

which	is	about	when	people	can	recognize	something	holistically	(rather	than	any	specific	

part)	as	similar	(or	not)	to	something	else	[27],	[113].	As	such,	the	second	approach	presents	

the	programmer	intentionally	with	a	diverse	set	of	results	after	the	first	keyword	query,	and	

then	expects	the	programmer	to	choose	one	result	together	with	one	of	three	directions	to	

“steer”	the	search:	“more	like	this”,	“somewhat	like	this”,	or	“less	like	this”.	The	search	engine	

responds	correspondingly,	allowing	 the	programmer	 to	search	simply	by	choosing	whole	

results,	one	after	the	other.		

	

Both	 CodeExchange	 and	 CodeLikeThis	 are	 explictly	 designed	 to	 improve	 support	 for	

iterative	code	search.	Improvement,	of	course,	can	be	along	many	different	dimensions.	In	

this	dissertation,	we	specially	examine	three:		

• success,	 as	 measured	 by	 the	 programmer’s	 ability	 to	 find	 code	 they	 deem	

appropriate	for	their	need;	

• experience,	 as	 measured	 by	 the	 programmer’s	 ratings	 of	 their	 experience	 in	

finding	suitable	code;	and	

• 	time,	as	measured	by	how	long	it	takes	the	programmer	to	find	suitable	code.	
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Overall,	 then,	 the	 research	 question	 underlying	 the	 remainder	 of	 this	 dissertation	 is	 as	

follows:	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

What	is	the	impact	of	explicitly	supporting	software	developers	in	searching	
iteratively	on	the	experience,	time,	and	success	of	the	code	search	process? 
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Chapter	4	

CodeExchange	

When	a	programmer	is	searching	for	code	and	is	not	quite	sure	what	they	are	looking	for	

initially,	 different	 aspects	 of	 the	 results	 returned	 for	 a	 first	 query	 might	 trigger	 the	

programmer	to	modify	their	query	to	attempt	to	incorporate	one	or	more	of	those	aspects.	

For	example,	suppose	a	programmer,	Suzie,	is	looking	to	build	a	new	adventure	game,	but	

she	 is	 not	 certain	 about	 how	 to	 get	 started.	 	 She	wants	 to	 see	 some	 examples	 of	 how	 to	

implement	characters	and	how	to	handle	updating	game	state,	but	also	wants	to	discover	

what	other	people	are	doing	to	get	ideas	for	her	own	game.	To	do	so,	she	opens	her	favorite	

search	 engine	 and	 issues	 the	 keywords	 adventure	 game.	 The	 first	 code	 result	 she	 sees	

implements	an	Adventurer	character	that	extends	a	Character	parent.		Recognizing	she	will	

probably	have	many	characters	in	her	game,	she	thinks	extending	a	Character	parent	is	a	

good	 idea	and	wants	 to	 see	 some	more	examples	of	how	 this	 is	done,	 so	 she	 refines	her	

keywords	to	adventure	game	extends	Character.		Among	the	results	returned,	she	notices	that	
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there	 are	 some	 classes	 that	 extend	 the	 Character	 parent	 and	 they	 all	 tend	 to	 override	

methods	 with	 names	 starting	 with	 “draw”.	 	 Upon	 inspection,	 she	 sees	 each	 class	 is	

responsible	for	rendering	its	character	graphically	on	the	screen.		She	thinks	this	is	a	good	

idea,	because	it	makes	use	of	polymorphism,	so	she	could	write	an	update	loop	that	simply	

iterates	over	all	the	characters,	regardless	of	subtype,	and	call	their	draw	method.		To	get	a	

better	idea	of	how	to	render	graphics	on	the	screen,	she	tries	a	next	query	adventure	game	

extends	 Character	 draw	 graphics	 2D	 to	 get	 to	 more	 examples	 of	 rendering	 graphics	 for	

adventure	games.			

	

After	searching	deeply	into	code	related	to	characters,	Suzie	still	wants	to	look	around	and	

get	some	other	ideas	on	how	to	build	adventure	games,	so	she	hits	the	back	button	several	

times	to	return	to	the	original	results	from	the	query	adventure	game.		As	she	scrolls	through	

these	results,	she	discovers	code	for	a	text	adventure	game.		She	immediately	stops	and	has	

to	think	about	this,	because	she	had	assumed	before	searching	that	her	adventure	game	had	

to	be	graphical,	but	upon	seeing	a	text	adventure	game	result,	she	discovers	a	new	possible	

direction	 for	 the	 design	 of	 her	 game.	 	 To	 learn	more	 about	 text	 adventure	 games,	 Suzie	

refines	her	keywords	 to	 text	adventure	game,	 and	once	again	begins	 to	 learn,	modify	her	

query,	learn	some	more,	and	so	on,	until	she	is	done.	

	

The	 example	 of	 Suzie	 is	 not	 unusual	 and	 represents	 a	 case	 where,	 as	 the	 programmer	

examines	the	results,	certain	aspects	of	 the	results	 trigger	 the	programmer	to	reflect	and	

issue	modified	queries	that	attempt	to	encode	those	aspects	as	keywords.	For	instance,	as	

with	Suzie,	 a	programmer	must	add	 some	keywords	 to	 focus	on	 code	 containing	desired	
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structures,	 methods,	 or	 on	 a	 library	 they	 may	 want	 to	 explore	 further.	 They	 may	 also,	

however,	 choose	 to	 remove	 some	 keywords	 to	 backtrack	 or	 modify	 some	 keyword	 to	

somewhat	 shift	 the	 focus	 of	 the	 search.	 Regardless,	 programmers	 frequently	 create	 next	

queries	in	response	to	the	results	of	a	previous	query.	

	

CodeExchange,	our	first	experimental	code	search	engine,	was	specifically	designed	to	aid	

the	developer	when,	initially,	the	programmer	is	uncertain	of	exactly	what	they	are	searching	

for	and	is	engaged	in	a	more	exploratory	search	involving	the	submission	of	multiple	queries	

through	which	to	explore	what	examples	may	be	available.	 In	such	a	search	scenario,	 the	

insight	behind	CodeExchange	is	that	the	next	query	tends	to	be	relative	to	the	results,	and	

often	 to	 specific	 aspects	 of	 the	 results	 of	 the	 previous	 query.	 	 As	 such,	 CodeExchange	

supports	the	developer	in	forming	the	next	query	by	letting	them	construct	it	out	of	aspects	

of	a	result	(e.g.,	method	calls,	parent	class,	or	complexity),	rather	than	trying	to	encode	it	as	

keywords.	 	 In	 this	 way,	 CodeExchange	 changes	 how	 a	 query	 is	 constructed	 by	 the	

programmer,	from	entering	just	keywords,	to	one	that	is	created	incrementally	out	of	aspects	

of	the	results	from	each	query.	

	

CodeExchange	supports	the	user	with	four	specific	features	for	creating	a	next	query.	Two	of	

the	 features	 support	 refining	 the	 query	 by	 aspects	 of	 one	 of	 any	 of	 the	 results	 returned.	

Specifically,	 language	 constructs	 support	 the	 developer	 in	 selecting	 structural	

characteristics	of	a	result	(e.g.,	method	calls,	interfaces	implemented,	or	code	imported)	to	

bring	those	characteristics	into	the	query.	Using	a	language	construct	yields	a	query	that	is	a	

mix	between	keywords,	if	they	were	a	part	of	the	query	before	selecting	a	language	construct,	
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and	characteristics	of	results.		Unlike	keywords,	that	may	or	may	not	retrieve	code	matching	

a	topic	described	by	the	keywords,	a	language	construct	constrains	the	query	to	retrieve	code	

exactly	matching	the	characteristics	specified	by	that	language	construct.	For	example,	if	the	

programmer	notices	a	method	call	of	which	they	want	to	see	more	examples	(e.g.,	different	

ways	of	parsing	parameters	from	an	HTTP	request	using	a	method)	or	wants	to	see	more	

examples	of	using	a	particular	library,	then	they	can	click	on	that	method	call	or	an	import	

statement	to	add	it	to	their	query.	All	code	returned	will	have	the	selected	method	call	or	

import	statement.		

	

The	 second	 feature,	 critiques,	 supports	 the	 developer	 in	 selecting	 the	 value	 of	 different	

technical	 qualities	 (complexity,	 size,	 number	 of	 imports)	 of	 a	 result	 as	 a	 lower	 or	 upper	

bound	to	bring	that	bound	into	the	query	to	constrain	the	next	set	of	results.	In	this	way,	if	

the	developer	feels	a	code	result	is	lacking	(e.g.,	too	long	or	not	complex	enough),	they	can	

bound	the	next	set	of	code	results	to	attempt	to	avoid	that	quality.		

			

In	 contrast	 to	 modifying	 the	 query	 relative	 to	 a	 specific	 result,	 query	 refinement	

recommendations	(the	third	feature	of	CodeExchange	supporting	iteration)	presents	the	

user	with	common	aspects	(imports,	parent	classes,	or	interfaces)	or	domain	related	terms	

across	all	 the	 results	 to	add	 to	 the	query.	The	 recommendations	help	make	visible	 to	 the	

programmer	common	aspects	of	results	that	are	difficult	to	infer	just	from	the	top	results	

that	are	actually	visible.	For	instance,	if	the	third	result	uses	a	particular	library	and	is	the	

only	result	among	the	top	ten	to	do	so,	yet	hundreds	of	other	results	not	visible	also	use	that	

library,	 then	 a	 query	 refinement	 recommendation	 is	 likely	 to	 present	 that	 library	 to	 the	
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programmer,	making	its	common	appearance	visible.	After	adding	a	recommendation	to	the	

query	 and	 getting	 the	 results,	 the	 recommendations	 are	 updated	 again	 using	 the	 newly	

returned	results.		In	this	way,	the	programmer	can	iteratively	search	by	continually	selecting	

recommendations.	For	example,	if	the	developer	issues	the	keyword	query	chess,	they	may	

receive	 refinement	 recommendations	 for	 keywords	 pieces	 and	 move	 and	 parent	 class	

ChessPiece.	 When	 the	 recommendation	 for	 parent	 class	 ChessPiece	 is	 chosen	 by	 the	

programmer	 to	 add	 to	 the	 query,	 further	 recommendations	 are	 returned,	 one	 being	 the	

keyword	piececolor.		

	

The	 final	 feature,	 query	 parts,	 modularizes	 the	 programmer’s	 query	 each	 time	 a	

programmer	adds	to	a	query.	Whether	by	providing	one	or	more	new	keywords	or	using	one	

of	the	new	features	of	CodeExchange,	the	addition	is	separately	identified	by	CodeExchange	

in	its	interface.	Each	query,	then,	consists	of	a	set	of	separate	parts	that,	together	(logically	

AND’ed),	 form	 the	 actual	 query	 issued,	 but	 to	 the	 programmer	 remain	 individual	

components.	Query	parts	leverage	this	by	enabling	a	programmer	to	turn	off	/	turn	back	on	

each	of	these	parts	separately.	In	this	way,	after	a	programmer	gets	new	results,	they	can	

respond	 by	 trying	 different	 combinations	 of	 their	 query	 parts	 to	 search	 in	 different	

“directions”.		For	example,	if	the	programmer	issued	a	query	comprised	of	three	query	parts,	

“adventure	game”	(initial	keywords),	“import	java.awt.Graphics2D”	(a	characteristic	added	

with	 a	 recommendation),	 	 and	 “method	 call	 playSound()”	 (a	 characteristic	 added	with	 a	

language	 construct),	 but	 has	 decided	 they	 want	 sound	 in	 their	 adventure	 game,	 but	 2D	

graphics	 are	 not	 required,	 then	 they	 can	 toggle	 off	 the	 query	 part	 “import	

java.awt.Graphics2D”	from	their	query	to	search	for	code	that	is	about	adventure	games	and	
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plays	sound.		At	any	moment	thereafter	they	can	return	to	previous	results	by	toggling	the	

query	part	“import	java.awt.Graphics2D”	back		on.		Alternately,	if	they	decide	to	want	to	learn	

more	about	graphics	and	sound,	they	could	toggle	off	the	query	part	“adventure	game”	to	find	

more	code	about	rendering	graphics	and	playing	sound	that	may	or	may	not	be	related	to	

adventure	games.		

	

In	the	remainder	of	this	chapter	we	detail	how	the	iterative	features	work	in	the	architecture	

of	 CodeExchange	 and	 how	 the	 user	 interacts	 with	 them	 through	 the	 interface	 of	

CodeExchange.	We	then	describe	our	preliminary	evaluations	of	CodeExchange’s	 features	

and	present	our	analysis	of	the	results	and	what	we	learned.	

	

4.1	Architecture	

The	architecture	of	CodeExchange	 is	presented	 in	Figure	21.	as	a	data	 flow	diagram.	The	

features	the	programmer	interacts	with	and	other	important	functional	components	of	the	

system	are	represented	as	rounded	rectangles.	Further,	the	features	are	grouped	together	in	

the	dotted	box	named	Features	 to	 show	 they	 are	 the	main	 components	 the	programmer	

interacts	with.	When	the	programmer	modifies	a	query	with	a	language	construct,	critique,	

recommendation,	query	part,	or	a	keyword,	then	a	Query	Modification	(representing	either	

a	refinement	or	a	generalization	on	the	current	query)	is	sent	to	the	Query	Manager,	which	

forms	a	new	query	that	the	Search	Engine	Server	can	parse	(our	implementation	uses	the	

Apache	Solr	query	syntax	and	server).		Once	the	server	parses	the	query,	it	will	match	and	

rank	 code	 indexed	 and	 return	 those	 results	 to	 the	Result	 Processor.	 The	 results	 are	 not	
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source	code,	but	rather	a	summary	(described	by	the	blue	columns	of	Table	4	and	Table	5)	

of	all	the	information	needed	by	the	CodeExchange	features,	as	well	as	a	URL	to	the	source	

code	on	GitHub.	For	each	of	the	results,	the	Result	Processor	fetches	the	source	code	from	

GitHub	 and	 returns	 the	 results	 and	 their	 source	 code	 to	 be	 further	 processed	 by	

CodeExchange.		

	

The	features	of	CodeExchange	know	the	schema	of	the	results	and	use	the	results	in	different	

ways	that	are	detailed	in	the	green	columns	of	Table	4	and	Table	5.		At	a	high	level:		

• The	source	code	display	presents	the	results’	source	code	

• Language	constructs	use	 the	 locations	 in	 the	source	code	of	each	result’s	package,	

parent	class,	interfaces,	method	calls,	and	method	declarations	to	highlight	them	in	

the	source	code	presented	to	the	user	and	use	them	to,	when	one	is	selected,	create	a	

query	requiring	the	corresponding	characteristic	in	the	next	results	

Figure 21. CodeExchange Architecture.	
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• Critiques	use	each	result’s	complexity,	size,	and	number	of	imports	to	present	these	

values	 above	 each	 result’s	 source	 code.	 	 For	 each	 of	 the	 values,	 critiques	 provide	

operations	that,	when	selected,	create	a	query	that	uses	the	value	as	an	upper/lower	

bound	for	the	complexity,	size,	or	number	of	imports	of	the	next	set	of	results.		

• Query	refinement	recommendations	use	all	the	results’	parent	classes,	interfaces,	and	

imports	 to	 count	 some	 top	 occurring	 characteristics	 and	 provide	 them	 to	 the	

programmer.		Further,	terms	are	extracted	from	all	variables	occurring	in	the	results	

to	 recommend	 domain	 related	 keywords.	 Using	 variable	 names	 to	 obtain	 domain	

related	words	relies	on	three	observations	regarding	code	search	and	the	structure	

of	 code.	 First,	 search	 results	 have	 co-occurring	 words	 that	 are	 often	 related	 to	 a	

programmer’s	keyword	query	[95];	this	is	an	essential	assumption	in	the	entire	field	

of	information	retrieval,	and	applies	here	as	well.	Second,	variable	names	usually	have	

domain	 words	 in	 them,	 and	 consist	 often	 of	 concatenations	 of	 such	 words	 [64].	

Finally,	variable	names	are	the	most	abundant	source	of	names	in	the	code,	as	they	

can	make	up	even	70%	of	its	content	[25]	

• Query	 parts	 can	 toggle	 on/off	 any	 query	 composed	 of	 any	 values	 from	 previous	

results.	
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Table 4. Description of how Features use Results, Part 1. 
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Table	5.	Description	of	how	Features	use	Results,	Part	2.	
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All	code	indexed	on	CodeExchange	is	done	by	cloning	classes	on	GitHub	on	a	local	server	and	

extracting	 the	 needed	 information	 from	 the	 classes	 using	 an	 abstract	 syntax	 tree	 (AST)	

walker.	The	overall	architecture	supporting	 this	process	 is	presented	 in	 Figure	22.	A	List	

server	maintains	a	complete	list	of	URLs	to	all	repositories	on	GitHub,	and	provides	a	URL	to	

a	Java	project	that	is	not	yet	mined	to	the	Code	Miner.	The	Code	Miner,	composed	of	a	cluster	

of	computers,	uses	the	URL	to	clone	the	repository	from	GitHub.	For	each	class	in	the	cloned	

repository,	the	CodeMiner	prepares	a	summary	of	the	code	to	index	by	creating	an	instance	

of	 the	schema	in	of	Table	4	and	Table	5.	To	do	so,	 it	provides	values	 for	each	 field	 in	the	

schema	by	walking	 the	 class’s	AST	 (using	 the	Eclipse	AST	walker	 [10])	 and	visiting	 each	

import	statement,	method	declaration,	method	call,	variable	name,	package	name,	parent	

class	name,	 and	 interface	name.	When	 the	CodeMiner	visits	 each	element,	 it	 gathers	 and	

records	the	needed	information	for	the	element	(as	described	in	of	Table	4	and	Table	5)	and	

the	exact	position	the	element	occurs	at	in	the	source	code	file.		Further,	as	the	CodeMiner	is	

walking	the	AST,	it	counts	the	number	of	characters	for	size,	counts	the	number	of	import	

Figure 22. Mining Architecture. 
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statements,	and	calculates	the	cyclomatic	complexity	by	counting	all	possible	branch	points	

in	the	code,	which	we	count	using	the	typical	method	of	counting	all	conditional	expressions	

[155].	Once	all	the	values	for	each	field	have	been	obtained,	the	CodeMiner	sends	the	class	

summary	to	the	Search	Engine	Server,	where	the	class	will	be	indexed	in	the	Source	Code	

Index	under	all	the	terms	occurring	in	the	source	code	and	under	each	of	the	values	for	the	

fields	in	the	schema.		
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4.2	CodeExchange	Interface	

In	this	section,	we	demonstrate	the	features	of	CodeExchange	in	its	interface.		Specifically,	

we	will	demonstrate	the	iterative	features,	and	common	but	 important	features	in	search	

engines,	in	the	context	of	a	scenario	of	a	programmer	looking	to	build	an	HTTP	server.	The	

beginning	of	the	programmer’s	search	starts	at	the	splash	screen	of	CodeExchange	(shown	

in	Figure	23)	that	resembles	the	splash	screen	of	many	search	engines	by	presenting	the	user	

with	 a	 keyword	 text	 box	 and	 an	 optional	 advanced	 search	 form.	 The	 programmer	 has	

entered	 the	 keywords	http	 servlet,	 presumably	 looking	 for	 source	 code	 implementing	 an	

HTTP	server,	and	clicked	the	submit	button	to	issue	the	query.	If	the	programmer	had	clicked	

the	“Advanced	Search”	button,	then	they	would	be	presented	with	the	advanced	search	form	

as	shown	in	Figure	24.	The	advanced	search	form	allows	users	to	specify	queries	that	involve	

imports	of	certain	classes,	interface	properties	(extends,	implements),	location	(package	or	

project),	method	calls	(class,	method,	parameters),	and	method	declarations.	Additionally,	it	

allows	 developers	 to	 specify,	 where	 appropriate,	 whether	 a	 class	 or	 method	 should	 be	

generic	or	have	variable	arguments.		

Figure 23. CodeExchange splash screen. 
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The	programmer	decides	to	click	the	submit	button	on	the	splash	page	and	is	then	presented	

with	 CodeExchange’s	 main	 page,	 shown	 in	 Figure	 25,	 which	 implements	 the	 four	 new	

features	supporting	iteratively	searching	for	code.		Query	parts	appear	toward	the	upper	left	

Figure 24. Advanced Search. 

Figure 25. Main Page. 
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(A),	query	refinement	recommendations	appear	toward	the	middle	left	(B),	critiques	appear	

above	each	result	(C	marking	where	they	appear	above	first	result),	and	language	constructs	

highlight	structural	properties	of	 the	results	(D	marking	where	some	occur	 in	the	second	

result).	In	the	following	sections,	we	walk-through	each	of	these	four	features.	 	The	other	

features	on	the	main	page	are	the	keyword	text	box	at	the	top	(E),	where	new	keywords	can	

be	entered	to	refine	the	current	query	rather	than	replace	it.	Buttons	to	download	the	result	

or	result’s	project	appear	at	the	bottom	left	of	each	result	(F),	page	navigation	appears	at	the	

bottom	right	(G),	and,	finally,	at	the	top	right	of	each	result	appears	its	project	(H),	which,	

when	selected,	will	refine	the	query	by	that	project.	

	

	

Figure 26. Query Refinement Recommendations. 
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4.3	Query	Refinement	Recommendations	

As	 shown	 in	 Figure	 26,	 after	 the	 programmer	 issues	 the	 keyword	 query	 http	 servlet,	

CodeExchange	recommends	the	keywords	request,	response,	id,	name,	user,	session.		Most	of	

these	recommendations	have	obvious	meanings	in	the	domain	of	HTTP	servers,	where	URL	

requests	 are	accepted,	responses	 are	 returned,	 and	often	 requests	and	 responses	are	 sent	

between	a	client	and	server	during	a	session.	Further,	the	words	name	and	user	are	common	

URL	parameters	in	a	HTTP	request	regarding	user	accounts.		

	

The	other	 three	 types	of	 refinement	recommendations	are	 the	most	 frequently	occurring	

code	imported,	parent	classes	extended,	and	interfaces	implemented	among	all	the	results.	

In	 this	 case,	 the	 recommendations	 show	 that	 many	 results	 import	 the	 classes	

HttpServletRequest	 and	HttpServletResponse	 in	 the	 JavaX	 library.	 By	 clicking	 either,	 the	

programmer	 could	 issue	 a	 query	 for	 code	 using	HTTP	 requests	 or	 responses,	which	 the	

programmer’s	server	would	mostly	likely	need	to	do.		However,	the	programmer	also	sees	

the	recommendation	“[extends	class]	httpservlet”	that,	when	added,	would	refine	the	query	

for	code	extending	the	parent	class	HttpServlet.	Since	the	programmer	needs	to	implement	

an	HTTP	server	and	using	the	recommendation	would	return	results	implementing	HTTP	

servers,	of	different	sorts,	the	programmer	decides	to	click	on	that	recommendation.	Doing	

so	updates	the	query	parts	(shown	in	Figure	27)	and	issues	the	next	query.	
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4.4	Critiques	

One	of	the	top	results	that	is	returned	is	presented	in	Figure	28.		The	critiques	present	the	

size	(491),	complexity	(3),	and	number	of	imports	(1)	of	the	result	and	clicking	the	up/down	

arrow	above/below	one	of	the	values	will	dial	the	value	up/down	in	the	next	set	of	results.		

Figure 28. Increase Complexity. 

Figure 27. Query parts after using recommendations. 
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While	the	programmer	sees	that	the	first	result	is	an	implementation	of	an	HttpServlet,	they	

find	the	code	lacking,	because	the	only	function	it	performs	is	to	return	a	String	containing	

some	HTML	code.		In	an	attempt	to	retrieve	code	doing	more,	the	programmer	decides	that	

the	complexity	 should	be	greater	 than	 the	unsatisfactory	 result’s	 complexity	 (i.e.,	 greater	

than	a	complexity	of	3)	and	clicks	the	up	arrow	in	the	complexity	critique	to	do	so.	After	

getting	the	next	set	of	results,	the	programmer	finds	the	results	to	be	too	complicated,	with	

one	particular	result	shown	in	Figure	29.	The	programmer	issues	another	query	to	dial	down	

the	complexity	to	be	less	than	57	and	finds	the	next	results	to	be	more	appealing.	The	current	

query	now	is	displayed	in	Figure	30.	

Figure 29. Decrease Complexity. 
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4.5	Language	Constructs	

In	the	current	set	of	results,	the	programmer	finds	a	code	result,	shown	in	Figure	31,	that	

calls	the	method	getParameter	on	an	HttpServletRequest	object,	req,	that	appears	to	get	the	

value	of	 the	name	parameter	 included	 in	a	URL	 request	 to	 the	 server.	 	On	 reflection,	 the	

programmer	also	wants	to	create	an	HTTP	server	that	handles	user	accounts,	so	they	decide	

to	find	more	code	examples	getting	parameters	from	the	URL	by	clicking	on	the	language	

construct	 highlighting	 the	method	 call	 getParameter.	As	 shown	 in	 Figure	32,	 the	 current	

query	now	specifies	 to	 find	all	 code	 that	 is	 topically	 related	 to	 the	keywords	http	 servlet,	

extends	the	parent	class	HttpServlet,	has	a	complexity	greater	than	3	and	less	than	57,	and	

calls	the	method	call	getParameter	taking	a	String	parameter.	The	next	results	now	all	call	

the	method	getParameter	passing	it	different	String	values.	

	

Figure 30. Query parts after using critiques. 
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4.6	Query	Parts	

The	query	parts	 feature	 takes	 the	 current	query,	 as	 illustrated	 in	Figure	32,	 and	visually	

separates	the	parts	by	rounded	rectangles	that	can	be	clicked	to	toggle	off	a	part	to	generalize	

the	query	or	can	be	clicked	to	toggle	on	a	part	to	refine	the	query.	Further,	by	clicking	on	

multiple	parts	the	programmer	can	issue	different	combinations	of	the	parts	to	quickly	try	

different	queries.	Visually,	a	query	part	is	toggled	on	if	it	appears	yellow	and	toggled	off	if	it	

appears	white.	In	Figure	32,	all	parts	of	the	query	are	active.			

Figure 31. Refine by getParameter Method Call. 
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Continuing	the	walk-through,	the	programmer	thinks	they	have	a	better	idea	of	what	they	

are	looking	for	and	decides	that	they	are	looking	for	code	that	extends	the	HttpServlet	class	

rather	than	code	being	about	HTTP	servers	in	general	(as	specified	by	the	keywords).		So,	

they	toggle	off	the	keywords	query	part	by	clicking	on	it	as	shown	in	Figure	33	(A).		Further,	

after	looking	at	examples	of	servers,	the	programmer	decides	they	are	ready	to	learn	from	

more	complicated	examples	and	deactivates	the	query	part	specifying	all	code	should	have	

a	complexity	less	than	57,	as	shown	in	Figure	33	(B).	Now	the	programmer’s	query	is	to	find	

all	code	that	extends	the	parent	class	HttpServlet,	has	a	complexity	greater	than	3,	and	calls	

the	method	call	getParameter	taking	a	String	parameter.	

	

	

	

	

Figure 32. Query Parts.	
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4.7	Walkthrough	Discussion	

The	 query	 created	 by	 our	 hypothetical	 programmer	 is	 a	much	more	 heterogeneous	 and	

specific	query	than	keywords	and	was	created	by	iteratively	selecting	aspects	of	the	results.		

While	 it	 is	possible	to	issue	such	a	query	upfront	with	an	advanced	query	form,	 it	 is	very	

difficult	to	do	so	because	programmers	often	do	not	know,	as	discussed	in	previous	sections,	

exactly	what	code	they	want	at	the	start	of	a	search,	which	is	further	evident	by	how	scarcely	

advanced	search	is	used	in	general	[7].	In	our	example,	it	was	not	until	the	programmer	saw	

the	aspects,	such	as	complexity	of	57	in	the	context	of	an	HTTP	servlet	example,	did	they	

know	they	wanted	results	with	less	complexity.		Further,	it	was	not	until	the	programmer	

saw	the	method	call	 to	retrieve	and	parse	parameters	 for	user	data	that	the	programmer	

knew	they	wanted	results	with	the	getParameter	method	call.	The	features	of	CodeExchange	

are	explicitly	designed	to	support	such	moments,	that	is,	when	the	programmer	learns	more	

about	what	 they	want	 from	aspects	 of	 the	 results	 and	 can	 explicitly	bring	 some	of	 those	

Figure 33. Deactivating Query Parts. 
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aspects	into	a	new	query	with	CodeExchange’s	features,	without	trying	to	encode	them	as	

keywords.	

	

4.7	Preliminary	Evaluation	of	CodeExchange	

As	a	preliminary	evaluation	of	the	effects	of	supporting	iteration,	we	wanted	to	see	what,	if	

any,	effect	CodeExchange	may	have	on	the	search	process.	We	took	a	two-pronged	approach	

to	do	so.		First,	to	evaluate	if	programmers	would	use	the	iterative	features	in	a	real-world	

setting	 at	 all,	 we	 conducted	 a	 field	 study	 by	 releasing	 CodeExchange	 to	 the	 public	 and	

recording	all	activity	over	approximately	a	20	day	time	span.	Second,	given	that	field	studies	

can	generate	much	noise,	due	to	a	lack	of	control	on	why	people	are	searching,	we	conducted	

a	 lab	 study	 among	 6	 developers	 evaluating	 the	 performance	 of	 CodeExchange	 versus	

GitHub’s	code	search	engine	(which	does	not	explicitly	support	iteration).	In	this	way,	the	

control	 of	 the	 lab	 study	 compensates	 for	 the	noise	of	 the	 field	 study,	 and	 the	 field	 study	

compensates	for	the	less	realistic	setting	in	the	lab	study.		If	both	the	lab	study	and	field	study	

tell	a	similar	story,	then	we	can	be	more	confident	in	that	story	(a	common	technique	used	

in	social	sciences	referred	to	as	triangulating	data	from	more	than	once	source	[166]).		

	

4.6.1	Instantiating	the	Index	for	Experiment	

To	populate	CodeExchange’s	index	for	our	preliminary	experiments,	we	identified	the	URLs	

of	 602,244	 repositories	 that	 included	 only	 Java	 code,	 between	 February	 4,	 2014	 and	

February	 12,	 2014	 using	 GitHub’s	 API.	 From	 the	 602,244	 repositories,	 we	 mined	
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approximately	the	first	300,000	projects,	with	the	resulting	index	consisting	of	about	10M	

classes,	150M	methods,	and	253M	method	calls.		We	stopped	mining	a	little	over	10M	classes	

because	of	a	noticeable	delay	in	processing	queries	on	our	servers	(unacceptable	when	users	

expect	queries	 to	be	processed	 in	a	 few	seconds).	However,	we	also	 thought	10M	classes	

allowed	 us	 to	 closely	 approximate	 an	 Internet	 scale	 code	 search	 engine	when	 compared	

against	 the	 sizes	 of	 the	 Internet	 code	 search	 engines	 Koders	 (600K),	 Krugle	 (3.5M),	 and	

Google	Code	Search	(2.5M)	[108].		

	

While	 10M	 classes	 gives	 us	 a	 reasonable	 quantity	 of	 code	 for	 applying	 our	 code	 search	

techniques	 at	 Internet-scale,	we	wanted	 to	 get	 an	 indication	 of	 how	 the	 10M	 classes	 are	

spread	out	over	kinds	of	examples.	 	The	“shape”	of	the	code	indexed	will	give	us	a	better	

understanding	of	the	range	and	variety	of	code	on	the	internet,	but	also	serves	to	frame	our	

findings	so	that	others	may	reproduce	the	results	on	similar	looking	repositories.	To	get	an	

indication	of	the	distribution	of	the	kinds	of	code	we	indexed,	we	graphed	the	code	indexed	

across	size,	complexity,	number	of	imports,	and	kinds	of	imports.		

	

Figure 34. Top of Size to Number of Classes Graph. 



90	
	

We	found	that	that	the	classes	we	indexed	cover	a	wide	range	of	sizes	(min	of	9	characters,	

max	 of	 17,000,075	 characters,	 mean	 of	 3865.8	 characters,	 and	 a	 standard	 deviation	 of	

14,093.8	characters).		Shown	in	Figure	34	is	the	top	portion	of	a	graph	mapping	size	to	the	

number	of	classes	of	that	size.		In	general,	we	find	that	as	size	increases	there	is	a	slow	linear	

decline	in	the	number	of	classes	having	that	size,	where	this	slow	decline	extends	off	Figure	

34	all	the	way	out	to	a	class	with	17,000,075	characters.	

	

We	found	that	the	classes	we	indexed	cover	a	wide	range	of	complexities	(min	of	0,	max	of	

108,393,	mean	 of	 8.2,	 and	 a	 standard	 deviation	 of	 69.1).	 The	 top	 of	 the	 graph	mapping	

complexity	 to	 the	 number	 of	 classes	with	 that	 complexity	 is	 presented	 in	 Figure	 35.	 	 As	

complexity	 increases	 the	 number	 of	 classes	 with	 that	 complexity	 decreases	 sharply	 and	

appears	 to	 follow	 an	 inverse	 log	 curve	 with	 a	 long	 tail.	 	 However,	 we	 find	 that	 the	 tail	

decreases	slowly	and	that	there	are	still	thousands	of	classes	mapped	to	many	of	its	points	

(e.g.,	7,406	classes	have	a	complexity	of	64).			

Figure 35. Top of Complexity to Number of Classes Graph. 
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We	found	that	the	classes	we	indexed	cover	a	wide	range	of	number	of	imports	used	(min	of	

0,	max	of	981,	mean	of	9,	and	a	standard	deviation	of	11.9).		The	top	of	the	graph	mapping	

number	of	 imports	to	the	number	of	classes	with	that	quantity	of	 imports	is	presented	in	

Figure	36.	As	the	number	of	imports	increases	the	number	of	classes	having	that	quantity	

drops	sharply	and,	like	complexity,	follows	an	inverse	log	curve	with	a	long	tail.		However,	

the	long	tail	decreases	gradually	and	there	are	still	thousands	of	classes	on	many	of	its	points	

(e.g.,	2,154	classes	have	71	imports).	The	tail	continues	off	 the	figure	and	stops	at	a	class	

containing	981	imports.		

	

Lastly,	we	looked	at	the	distribution	of	the	kinds	of	imports	in	classes,	which,	to	some	extent,	

would	 give	 us	 an	 idea	 of	 the	 variety	 of	 functionality	 of	 the	 code	 indexed	 (given	 that	 the	

functionality	of	the	different	 libraries	imported	represent	some	of	the	functionality	of	the	

class	importing	those	libraries).		To	conduct	this	analysis,	we	created	a	tree	map	(as	shown	

Figure 36. Top of Number of Imports to Number of Classes Graph. 
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in	Figure	37),	where	each	rectangle	represents	an	import	statement	and	the	rectangle’s	size	

represents	 the	 number	 of	 classes	 that	 have	 that	 import	 statement.	 Altogether,	 there	 are	

2,737,959	rectangles	on	the	tree	map,	which	means	that	the	10M	classes	indexed	serve	as	an	

example,	 of	 some	 kind,	 of	 using	 one	 or	 more	 of	 the	 classes	 from	 the	 ≈3M	 imports.	 We	

annotate	some	rectangles	to	show	the	trend	of	how	the	number	of	classes	decreases	with	the	

size	of	the	rectangles.	The	tree	map’s	rectangles	steadily	decrease	in	size	from	left	to	right	

and	top	down,	which	indicates	some	imports	are	more	common	than	others	(Java	standard	

libraries	being	among	the	most	common),	but	the	imports	represented	by	pixel	sized	boxes	

(toward	the	bottom	right)	still	have	hundreds	of	classes	using	them	and	even	the	imports	

that	cannot	be	rendered	(white	area)	have	10s	to	100s	of	classes	using	them	as	well.	

	

Figure 37. Tree map of Number of Imports Used by a Class. 
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From	the	above	graphs,	we	make	two	observations	about	the	code	indexed.		First,	the	code	

indexed	has	a	wide	range	of	values	for	size,	complexity,	and	number	of	imports	as	well	as	

wide	 range	 of	 kinds	 of	 imports.	 	 Second,	 while	 there	 are	more	 common	 values	 for	 size,	

complexity,	number	of	imports,	and	kinds	of	imports,	the	relatively	less	common	values	still	

range	in	the	hundreds	to	thousands.		This	suggests	that	when	the	programmer	is	looking	for	

less	common	kinds	of	code,	they	often	will	still	have	hundreds	to	thousands	of	results	that	

could	 be	 candidates	 for	 what	 they	might	 be	 looking	 for,	 which	 in	 part	 might	 be	 due	 to	

indexing	10M	classes.	With	additional	code	indexed,	the	overall	variety	might	increase	yet	

more.	

	

4.6.2	Field	Study	

To	obtain	an	early	impression	as	to	whether	supporting	developers	in	iteratively	searching	

for	code	may	help	in	a	real	setting,	we	released	CodeExchange	to	the	public	and	analyzed	

how	 it	 was	 used.	 On	 July	 31,	 2014,	 we	 posted	 a	 pre-announcement	 to	 a	 small	 group	 of	

developers	 that	 our	 research	group	 interacts	with	on	a	 regular	basis.	We	made	 this	pre-

announcement	to	vet	possible	problems	before	we	made	the	more	public	announcements.	

As	we	did	not	experience	any	serious	issues,	we	moved	on	quickly	and	posted	several	brief	

announcements	of	CodeExchange’s	availability	on	forums	(Java	specific	when	possible)	for	

programmers	such	as	those	on	Reddit	[154],	JavaRanch	[156],	and	Hacker	News	[148].	Our	

post	on	a	Java	forum	on	Reddit,	for	instance,	read	as	follows:	

CodeExchange	–	a	new	Java	code	search	engine	

(codeexchange.ics.uci.edu)	
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We	 received	 the	most	 activity	 in	 the	week	we	posted	 on	Hacker	News	 (August	 4th)	 and	

Reddit	(August	6th).	Other	forums	were	less	effective	in	drawing	attention.	CodeExchange	

logged	all	visitor	behavior	by	assigning	each	first-time	visitor	a	unique	anonymous	id	that	is	

stored	 as	 a	 cookie	 in	 their	 browser.	 This	 is	 especially	 important	 to	 track	 their	 return	

behavior.	 Every	 time	 a	 CodeExchange	 feature	was	 used,	 an	 entry	was	made	 in	 the	 logs,	

detailing	which	feature	was	invoked,	any	input	the	user	provided,	and	the	date	and	time	of	

feature	use.	

	

From	July	31	to	August	19,	2014,	we	observed	more	than	4,000	visitors	to	CodeExchange.	

Approximately	2,000	of	the	visitors	were	robots,	which	we	discarded	immediately.	About	

1,000	 visitors	 just	 typed	 in	 keywords	 on	 the	 splash	 screen,	 and	 subsequently	 never	 did	

anything	else.	We	discarded	these	from	our	analysis	as	well,	leaving	roughly	1,000	unique	

visitors	to	CodeExchange.	Figure	38	plots	these	users’	visits	(a	visit	is	defined	as	the	sequence	

of	user	events	starting	from	the	splash	screen)	on	a	graph,	where	the	y-axis	is	the	identifier	

of	each	visitor	and	the	x-axis	is	the	date	and	time	the	visit	began.	As	the	visitors	came	from	

many	different	time	zones,	we	treated	all	their	local	search	times	as	PST	time	(this	is	why	

there	is	a	search	on	August	20,	even	though	we	stopped	collecting	data	on	August	19	PST).	

Black	dots	denote	visitors	who	visited	once.	Blue	squares	count	“return	visitors”	who	are	

visitors	that	after	at	least	one	hour	had	elapsed	visit	CodeExchange	again	(blue	lines	connect	

searches	by	the	same	visitor).	Red	circles	around	a	blue	square	or	a	black	dot	indicate	that	a	

copy	or	a	download	occurred	during	that	visit.	For	example,	visitor	2747	visited	on	August	

6th,	11th,	and	12th,	with	the	latter	two	visits	involving	copies	or	downloads	of	actual	code.	
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Overall,	 there	 were	 242	 return	 visitors	 and	 895	 visitors	 used	 the	 advanced	 features	 of	

CodeExchange.	

	

For	purposes	of	understanding	the	search	behavior	of	the	users	to	find	code	during	the	field	

study,	we	attempted	to	focus	our	attention	on	users	who	were	genuinely	searching	for	code	

rather	 than	 simply	playing	with	CodeExchange	 itself.	 	To	do	 so,	we	 identified	visits	 from	

Figure 38. Visitors Over Time to CodeExchange. 
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users	who	copied	or	download	one	or	more	results,	since	copying	or	downloading	 is	one	

indication	the	user	is	genuinely	looking	for	code	[7].	However,	given	that	many	of	the	reasons	

programmers	search	are	purely	to	learn	or	remember	(as	discussed	in	Section	2),	which	does	

not	require	coping/downloading,	this	choice	is	conservative.		

	

Out	of	about	1000	visitors,	44	users	copied	or	downloaded	63	classes/projects	(40	copies,	

20	project	downloads,	and	3	file	downloads)	 in	45	visits.	The	queries	across	the	45	visits	

cover	 a	 broad	 range	 of	 topics	 (e.g.,	 travel	 agency	 code,	 Twitter	 API	 usage,	 convex	 hull	

algorithms).	To	analyze	the	visits	for	search	patterns,	we	hand	coded	all	the	queries	during	

a	visit	as	a	sequence	of	query	modifications	to	represent	the	user’s	search.	Shown	in	Figure	

39	and	Figure	40	are	the	encoding	of	each	user’s	search,	where	the	UID	column	(first	column)	

is	the	user’s	identifier,	SID	is	the	visit	identifier,	and	the	third	column	is	an	encoding	of	the	

search.	 	 The	 encoding	 of	 the	 search	 is	 a	 sequence	 of	 columns	 (each	 column	 has	 a	 black	

background	and	white	text),	where	each	block	in	a	column	represents	a	query	refinement,	

each	column	represents	a	query,	and	all	columns	represent	the	set	of	queries	that	constitute	

the	search.		The	block	encoding	is	K	for	keywords,	R	for	recommendations,	Q	for	critiques,	C	

for	language	constructs,	P	for	project	refinement,	“*”	annotations	for	toggling	a	query	part	

on,	H	annotations	when	using	CodeExchange’s	history	feature	to	create	a	query	(the	history	

feature	 saves	 previous	 queries	 issued	 by	 the	 programmer	 and	 can	 be	 reissued	 later	 if	

selected),	A	for	a	query	using	the	advanced	query	form,	and	empty	for	times	when	all	query	

parts	are	deactivated.		Further,	a	column	that	is	one	block	smaller	than	the	preceding	column	

means	 a	 query	 part	 was	 toggled	 off.	 Lastly,	 we	 encode	 some	 important	 events	 between	

columns,	which	are	SP	 for	when	 the	user	 is	 at	 the	 splash	 screen	 (counted	as	a	 start	of	 a	
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search),	NQ	for	when	the	user	hits	the	new	query	button,	copy	for	when	the	user	copies	part	

of	the	results	one	or	more	times,	DP	for	when	the	user	selects	the	download	project	button,	

and	DF	for	when	the	user	clicks	the	download	file	button.		
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Figure 39. Search Patterns from Field Study, Part1. 
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Figure 40. Search Patterns from Field Study, Part 2. 



100	
	

We	found	that	people	searched	in	a	variety	of	ways,	often	using	the	features	we	designed	for	

iterative	search,	but	also	sometimes	just	using	a	keyword	search	to	find	code.	For	example,	

Figure	41	presents	 a	more	detailed	 view	of	 search	10.	 In	 this	 search,	 it	 appears	 that	 the	

programmer	is	looking	for	code	using	the	JBoss	SwitchYard	framework	that	supports	the	full	

development	process	of	developing	and	releasing	service-oriented	software	[164].	To	search	

for	code,	the	programmer	issues	keywords,	refines	by	a	project,	adds	a	recommendation	to	

find	all	code	extending	a	parent	class,	adds	three	additional	keyword	recommendations	one	

by	 one,	 deactivates	 a	 keyword	 recommendation	 but	 then	 adds	 the	 same	 keywords	 in	

manually,	deactivates	two	recommendations,	and	then	copies	code	which	appears	to	use	the	

JBoss	logging	library	in	the	context	of	the	JBoss	SwitchYard	framework.		

	

We	analyzed	each	of	the	45	searches	and	found	that	41/45	(91%)	of	these	searches	iterated	

(i.e.,	submitted	more	than	one	query)	and	that	CodeExchange’s	iterative	features	were	used	

in	34/45	(75%)	of	searches	and	in	34/41	(82%)	of	the	searches	that	iterated.	Among	all	the	

searches	that	used	CodeExchange	features,	query	parts	were	used	the	most	(28/34	(82%)),	

deactivations	in	28	out	of	34	(82%),	activations	in	16	out	of	34	(47%),	language	constructs	

in	14	out	of	34	(41%),	recommendations	in	12	out	of	34	(35%),	and	critiques	in	3	out	of	34	

(8%).	 Among	 the	 23	 searches	 using	 some	 combination	 of	 language	 constructs,	 query	

refinement	recommendations,	and	critiques,	we	find	language	constructs	used	in	14	out	of	

23	 (60%),	 recommendations	 in	 12	 out	 of	 23	 (52%),	 and	 critiques	 in	 3	 out	 of	 23(13%).	

Figure 41. Content of Search Number 7. 
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Further,	we	also	looked	at	the	frequency	of	use	of	CodeExchange’s	features	as	compared	to	

keywords.		Among	all	queries,	we	found	that	388	(55%)	keywords	were	used	and	315	(44%)	

iterative	features	were	used	(149	query	parts,	89	recommendations,	42	language	constructs,	

and	35	critiques).		The	frequencies	tell	us	that	keywords	were	still	the	most	frequently	used	

feature	in	the	field	study	(p=.005	with	χ2	on	a	2x1	contingency	table).	

	

While	we	hoped	to	see	more	usage	over	the	approximate	20-day	time	span	of	CodeExchange,	

these	early	findings	show	that	CodeExchange’s	iterative	features	were	used	in	a	majority	of	

searches	 in	 a	 real-world	 setting	 and	 composed	 almost	 half	 the	 features	 used	 across	 all	

searches,	suggesting	they	may	 indeed	be	helpful	 for	 the	programmer	 in	creating	the	next	

query	and	are	worth	further	study.1	

	

4.6.3	User	Study	

While	the	field	study	allowed	us	to	collect	data	in	a	realistic	setting,	a	field	study	such	as	ours	

necessarily	leads	to	noise	in	the	data	because	there	is	an	absence	of	the	reasons	driving	the	

programmers’	 searches.	 As	 such,	 we	 were	 left	 to	 guessing	 what	 the	 programmer	 was	

searching	for	by	looking	at	the	code	copied	or	downloaded	and	left	with	a	heuristic	to	define	

when	a	search	is	“genuine”,	but	heuristics	are	approximate	and	necessarily	will	exclude	and	

include	(in)valid	searches.	 	Therefore,	we	additionally	conducted	a	controlled	user	study.		

We	recruited	six	participants	with	professional	development	experience.	Two	were	working	

                                                
1 We note that our numbers vary from those found in [75], but we again reach the same conclusions despite the 
possibility of a minor error, so we are confident in our conclusion here and in [75]. 
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as	developer	interns,	one	was	working	a	full-time	development	job,	and	three	were	graduate	

students	with	two	or	more	years	of	experience	working	as	a	professional	developer.	We	had	

the	 participants	 complete	 code	 search	 tasks	with	 either	 CodeExchange	 or	 GitHub’s	 code	

search	 engine	 to	 determine	 what	 difference,	 if	 any,	 supporting	 iteration	 had	 on	 the	

programmers’	search.	We	chose	to	compare	CodeExchange	with	GitHub’s	code	search	engine	

because	both	index	Java	code	on	GitHub	and	GitHub	supports	a	more	traditional	approach	of	

searching	(i.e.,	keywords	and	results	as	links	to	source	code),	as	shown	in	Figure	42.	

	

We	 constructed	 six	 independent	 search	 tasks,	 each	 inspired	 from	 code	 copied	 or	

downloaded	from	the	field	deployment	to	make	them	more	realistic,	for	each	participant	to	

.complete.	To	create	the	tasks,	we	read	the	code	that	was	copied	or	downloaded	during	the	

field	deployment,	looked	up	documentation	to	further	determine	what	the	code	does,	and	

developed	a	general	task	description	for	finding	similarly	suitable	code.	Table	6	and	Table	7	

presents	the	six	tasks.	During	the	experiment,	each	participant	was	 instructed	to	 find	the	

code	that	they	felt	best	satisfied	the	task	and	to	paste	that	code	into	a	provided	Google	survey	

form.	
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Figure 42. GitHub's Code Search. 
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Table	6.	User	Study	Tasks,	Part	1.	

Task	
Name	

Description	

Minecraft	 Background:	Minecraft	 is	 a	 game	where	people	 build	 virtual	worlds	with	
zero	or	more	people.	These	worlds	are	often	hosted	on	servers.	Bukkit	is	a	
new	platform	for	creating	and	modifying	Minecraft	worlds.	These	worlds	are	
configured	 with	 what	 are	 called	 YAML	 configuration	 files.	 Part	 of	 the	
configuration	 files	specify	 the	permissions	of	users	 in	 the	Minecraft	world.	
These	 users	 can	 be	 assigned	 to	 groups	 where	 each	 group	 has	 a	 set	 of	
permissions.	
	
Task:		Find	Java	code	that	will	return	all	the	groups	that	are	in	the	YAML	file	
for	a	Minecraft	world	created	or	modified	with	the	Bukkit	platform.	

JBoss	 Background:		JBoss	is	an	open	source	Java	application	server	maintained	by	
Red	Hat.	There	is	a	JBoss	API	for	creating	different	kinds	of	references	to	Java	
objects.	References	point	to	objects	in	Java	and	based	on	their	“strength”	the	
Java	garbage	collector	 treats	 them	differently.	They	 types	of	 strengths	are:	
Phantom,	Weak,	Soft,	and	Strong.	
	
Task:	Find	code	to	create	a	Phantom	reference	using	the	JBoss	API.	

Android	 Background:	 Android	 applications	 can	 manage	 phone	 power	 usage	 by	
creating	what	are	called	wake	locks.	There	are	different	kinds	that	will	wake	
the	phone	up	and	make	the	screen	and	keyboard	brightness	at	their	highest	
levels.		While	others	will	wake	the	phone	up	but	dim	the	screen	and	keyboard.	
	
Task:	Find	Android	code	that	will	allow	your	application	to	obtain	a	wake	
lock	 so	 that	 the	 phone	 is	 awake	 and	 sets	 the	 screen	 and	 keyboard	 to	 full	
brightness.	



105	
	

	

	

Table	7.	User	Study	Tasks,	Part	2.	

Task	Name	 Description	
RaspberryPi	 Background:	A	Raspberry	Pi	 is	a	small	computer	that	has	been	used	for	

many	purposes.		It	has	a	general-purpose	input	and	output	port	(GPIO)	that	
can	 be	 used	 to	 hook	 it	up	 to	 external	 devices.	 Illustration	 1	 to	 the	 right	
shows	what	the	GPIO	looks	like	(the	port	with	26	pins	standing	up).	

	
Task:		Find	code	that	listens	for	input	and	output	changes	in	the	Raspberry	
Pi	GPIO.	

ConvexHull	 Background:	In	Illustration	2,	imagine	the	points	of	S	as	being	pegs;	the	
convex	hull	of	S	is	the	shape	of	a	rubber-band	stretched	around	the	pegs	as	
is	shown	by	the	red	polygon	in	Illustration	2.	

	 	
Formal	definition:	The	convex	hull	of	S	is	the	smallest	convex	polygon	that	
contains	all	the	points	of	S.		
		
Task:	Find	code	to	return	the	convex	hull	of	a	given	set	of	points.	

Oracle	 Background:	 A	 Connection	 Pool	 is	 a	 cache	 of	 database	 connections	
maintained	 in	memory	 so	 that	 the	 connections	 can	 be	 reused	when	 the	
database	receives	 future	requests	 for	data.	Connection	pools	are	used	to	
enhance	the	performance	of	executing	commands	on	a	database.	Various	
parameters	 such	 as	 number	 of	 minimum	 connections,	 maximum	
connections	and	idle	connections	can	be	set	to	make	sure	the	connection	
pool	works	well	according	to	the	environment	it	is	deployed	to	work	in.		
The	Oracle	thin	JDBC	driver	makes	it	very	easy	to	use	a	connection	pool.		
		
Task:	Find	code	that	will	allow	you	to	create	a	connection	pool	with	the	
Oracle	thin	JDBC	driver	
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Before	 the	 experiment	 began,	 CodeExchange	 and	 GitHub’s	 code	 search	 engine	 were	

explained	in	detail	to	each	participant.	For	CodeExchange,	we	walked	through	all	the	features	

(discussed	 in	 Section	 4	 above),	 and	 for	 GitHub,	we	 showed	 each	 participant	 how	 to	 use	

keyword	search,	advanced	search,	sorting	functions,	navigation	to	a	project	page	of	a	code	

result,	as	well	as	how	to	filter	results	by	the	Java	language.	

	

The	experiment	started	with	each	participant	given	their	own	room	with	a	computer	setup	

making	either	CodeExchange	or	GitHub	available,	depending	on	the	task.	Each	of	the	six	tasks	

were	completed	by	all	participants	and	completed	sequentially,	with	20	minutes	allotted	for	

each	participant	 to	 complete	 their	 task.	After	 completion	of	 the	 task,	 the	participant	was	

given	a	new	task	and	switched	to	the	other	search	engine.	Half	of	the	participants	started	

with	 CodeExchange	 and	half	with	GitHub	 to	 help	 reduce	 the	 risk	 of	 ordering	 effects.	We	

recorded	the	screen	and	logged	participants’	actions.	From	this,	we	calculated	task	time	from	

Table	8.	Time	(minutes)	to	Complete	Tasks	by	Search	Engine.	

	 Tasks	 Averages	

ID	 Minecraft	 JBoss	 Android	 RaspberryPi	 ConvexHull	 Oracle	 CodeE.		 GitHub	

1	 7.62	 10.87	 4.88	 9.83	 7.58	 7.72	 6.69	 9.47	
2	 12.23	 1.42	 2.80	 17.42	 9.87	 10.27	 9.70	 8.30	
3	 11.00	 8.60	 11.27	 20.00	 2.92	 9.75	 8.39	 12.78	
4	 12.55	 3.33	 4.38	 2.10	 3.08	 1.20	 2.21	 6.67	
5	 3.03	 2.00	 1.95	 6.60	 3.33	 1.60	 2.77	 3.40	
6	 20.00	 11.02	 10.60	 5.25	 4.07	 2.85	 6.37	 11.56	



107	
	

the	moment	they	began	interacting	with	the	search	engine	by	typing	search	terms	until	they	

pasted	the	found	code	into	the	Google	survey	form.	Finally,	at	the	end	of	each	experiment,	

the	 experimenter	 conducted	 a	 semi-structured	 interview	 focusing	 on	 the	 participant’s	

perceptions	and	their	use	of	features	during	the	study.	

	

Table	8	presents	our	main	results,	listing	times	for	each	task.	Grey	cells	indicate	GitHub	times	

and	white	cells	CodeExchange	times.	On	average,	participants	completed	tasks	3	1/2	minutes	

faster	with	CodeExchange	 than	with	GitHub	(7.23	versus	10.44	minutes).	However,	 there	

were	several	outliers	in	the	data.	For	example,	in	two	cases	using	GitHub,	participants	were	

still	 looking	 for	 code	 at	 the	 end	 of	 20	minutes.	 To	 remove	 these	 and	 other	 outliers,	 we	

performed	symmetrical	truncation	[62],	an	accepted	technique	for	trimming	outliers,	and	

removed	 the	 two	 slowest	 and	 two	 fastest	 times	 from	 each	 search	 engine	 (denoted	 by	 a	

double	underline	in	Table	8).	After	removing	outliers,	we	found	participants	were	about	2	

1/2	minutes	faster	on	average	with	CodeExchange	(5.5	minutes	with	CodeExchange	versus	

8	minutes	with	GitHub).	Performing	a	one	tailed	t-test	(chosen	because	CodeExchange	and	

GitHub	task	completion	times	are	separate	groups	having	equal	variance)	on	the	truncated	

results,	we	found	that	the	time	difference	is	significant	(p	=	0.0268).	Further,	with	a	power	

level	of	.99,	we	found	the	effect	size	to	be	large	(d	=	1.67).	This	means	that	CodeExchange	

had	a	large	effect	on	the	user’s	task	times	(Cohen’s	d	greater	than	.8	is	considered	large	[20]).		

	

Next,	 we	 looked	 at	 the	 patterns	 of	 search	 generated	 by	 the	 lab	 participants	 using	

CodeExchange.	The	design	of	the	study	gave	us	three	patterns	per	task,	where	each	of	the	

three	patterns	was	generated	by	a	different	participant.	All	 the	patterns	for	each	task	are	
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presented	in	Figure	43	and	Figure	44.	Each	search	pattern	is	encoded	as	in	the	field	study,	

however	 each	 search	 is	 preceded	 by	 the	 name	 of	 the	 task	 it	 was	 produced	 for	 and	 an	

identifier.		Further,	the	blocks	identifying	a		
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copy	also	include	the	name	of	the	class	that	was	copied	(sometimes	a	number	is	included	to	

distinguish	different	code	with	the	same	class	name).		

	

From	 the	 patterns,	 we	 find	 that	 17	 out	 of	 18	 (94%)	 involve	 the	 participants	 iteratively	

searching	for	code	(only	JBoss	4	did	not).	Further,	 the	iterative	features	of	CodeExchange	

often	helped	participants	in	identifying	the	code	they	copied.	In	15	out	of	18	(83%)	tasks,	

participants	 iterated	with	 CodeExchange	 features.	 Among	 the	 tasks	 using	 CodeExchange	

features,	query	parts	were	used	in	86%,	language	constructs	in	80%,	recommendations	in	

13%,	and	critiques	 in	6%.	 In	3/18	(16%)	 tasks	 the	participants	did	not	use	any	 iterative	

features,	relying	on	keywords	only.	Among	all	queries,	we	found	that	263	(65%)	keywords	

were	used	and	141	(35%)	iterative	features	were	used	(81	query	parts,	6	recommendations,	

46	language	constructs,	and	8	critiques).		The	frequencies	tell	us	that	keywords	were	still	the	

most	frequently	used	feature	in	the	user	study	(p=1x10-9	with	χ2	on	a	2x1	contingency	table),	

but	the	iterative	features	were	still	used	to	find	code	for	the	majority	of	tasks.	We	further	

note	that	the	searches	that	used	the	iterative	features	were	1.23	minutes	faster	than	searches	

using	only	using	keywords.	

	

Somewhat	unexpectedly,	we	observe	that	many	participants	11	out	of	18	(61%)	did	not	stop	

their	search	after	they	found	code	(indicated	by	a	copy)	for	their	task.	This	behavior	might	

be	explained	by	the	participant	not	knowing	exactly	what	they	are	looking	for	and	exploring	

to	be	sure	of	their	copied	code.	For	example,	the	participant	could	simply	be	wanting	to	make	

sure	 that	 there	 is	not	any	 “better”	 code	and	 try	 some	more	queries	 to	 find	other	code	 to	
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compare	against	(e.g.,	Minecraft	1	and	13),	or,	the	participant	might	be	searching	for	code	

candidates,	copy	code	they	think	might	be	better	than	the	previous	copied	code	and	search	

until	they	are	satisfied	(e.g.,	Minecraft	7	and	RaspberryPi	5).		

	

We	also	analyzed	how	the	participants	used	GitHub.	 In	general,	we	 find	 that	participants	

iteratively	search	with	GitHub	(88%)	and	sometimes	issued	more	advanced	queries	(25%)	

using	the	advanced	query	form	to	restrict	a	query	by	repository,	file	extension,	user,	or	the	

kilobytes	of	the	repository.	Further,	we	analyzed	the	average	number	of	queries,	terms,	and	

modifications	of	queries	per	task	and	present	the	results	in	Table	4.	We	find	that	the	average	

number	 of	 queries	 spans	 from	 approximately	 2	 to	 10,	 contains	 about	 2	 to	 4	 terms,	 and	

constructing	the	next	query	often	involves	delete	or	adding	about	1	term	from	the	current	

query.	Lastly,	we	 found	 that	 the	participants	also	continued	 to	search	 for	code	after	 they	

copied	code	in	33%	of	the	tasks.	

	

An	example	of	a	search	on	GitHub	by	participant	3	for	the	Android	task	is:	wake	lock	android,	

newWakeLock	 android,	 newWakeLock,	 newWakeLock	 brightness,	 PowerManager	

Table 9. Average GitHub Search Behavior. 

 Minecraft JBoss Android RaspberryPi ConvexHull Oracle 

Queries 
per User 10.67 4 6.67 9.67 2.33 4.67 

Terms per 
Query 2.97 2.92 2.1 2.45 2.14 4.36 

Terms 
Deleted 

per Query 
1.03 1.27 1 1.25 0.67 0.62 

Terms 
Added per 

Query 
1.19 1.18 0.89 1.21 0.83 0.85 
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newWakeLock,	 PowerManager	 newWakeLock	 user:android,	 and	 PowerManager	

newWakeLock.	 In	this	example,	 the	participant	 is	 incrementally	adjusting	each	new	query	

and	starts	their	search	from	a	general	keyword	query	wake	lock	android	to	a	keyword	query	

that	 contains	 code	 specific	 names	 PowerManager	 newWakeLock	 which	 the	 user	 copied	

directly	from	code	they	saw	in	the	results	(we	identified	8	queries	where	the	participants	

copied	a	portion	of	code	in	a	result	and	tried	to	use	it	as	a	keyword).	

	

We	 now	 switch	 from	 how	 our	 participants	 searched	 to	what	 they	 said	 about	 the	 search	

engines	 during	 our	 unstructured	 interview	 after	 the	 experiment.	 When	 we	 talked	 to	

participants,	 some	 explained	 some	 of	 their	 behaviors	 that	 we	 saw	 in	 the	 patterns.	 One	

participant	reported	that	complexity	critiques	helped	(in	search	15)	when	he	found	code	that	

was	too	“dumb”	and	did	not	know	how	else	to	continue,	enabling	him	to	increase	the	desired	

complexity	and	find	his	desired	search	result.	This	might	explain	the	role	that	critiques	play	

in	search.	While	it	is	used	relatively	infrequently,	as	other	features	seem	to	suffice	most	often,	

critiques	still	serve	an	important	role	when	the	user	is	“stuck”	in	their	search.		

	

Another	participant	said	she	never	used	CodeExchange’s	advanced	search	because	searching	

through	 language	 concepts	 and	 automated	 keyword	 recommendations	 let	 her	 do	 similar	

searches.	Participants	often	expressed	that	they	would	modify	their	queries,	in	either	search	

engine,	to	“back	up	a	level”,	by	removing	a	portion	of	their	query.	However,	to	“back	up”	in	

GitHub,	participants	reported	they	were	forced	to	start	from	scratch,	needing	to	remember	

the	keywords	they	had	used	before.	Participants	reported	that	CodeExchange	made	it	easier	
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to	“back	up”,	as	they	could	simply	activate	and	deactivate	query	parts.	Others	reported	that	

query	parts	helped	them	try	different	combinations	of	queries.	

	

All	the	participants	had	positive	reactions	to	CodeExchange,	such	as	"CodeExchange	is	better	

than	GitHub,	no	doubt.”	But	participants	also	had	several	suggestions	for	improvement.	For	

example,	participants	wished	to	be	able	to	rapidly	scroll	through	results	and	to	click	on	a	

method	call	to	navigate	to	the	defining	class.	One	participant	wished	to	search	for	code	not	

containing	keywords	or	imports	and	another	wanted	to	see	additional	“trustability”	metrics,	

such	 as	 author	 reputation.	 However,	 none	 of	 the	 recommendations	 interfere	 with	 the	

features	of	CodeExchange,	but	rather	might	enhance	the	search	experience	it	provides	even	

further.		

	

4.6.3	Threats	to	Validity	

Several	possible	threats	to	validity	exist	in	how	we	conducted	our	evaluations.	First,	for	the	

field	 deployment,	 using	 copies	 and	downloads	 as	 an	 indicator	 of	whether	 searches	were	

genuine	is	an	approximation.	It	may	be	lower	than	the	real	number,	as	it	is	possible	that	a	

developer	 only	 needed	 to	 read	 the	 results	 to	 support	whatever	 they	 needed	 to	 learn	 or	

remember,	 but	did	not	 copy	or	download	 the	 code.	 It	 also	might	be	higher	 than	 the	 real	

number,	since	some	developers	might	have	been	experimenting	with	the	features	and	simply	

downloaded	 a	 random	 result.	 We	 note,	 however,	 that	 selection	 and	 downloads	 as	 an	

indicator	 of	 genuine	 searches	 has	 been	 used	 in	 previous	 work	 [7],	 and	 that	 copies	 and	

downloads	is	more	conservative	because	copies	requires	more	than	just	selecting	text,	as	it	
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also	requires	actually	issuing	a	copy	command	on	the	selected	text.	We	also	note	that,	for	

most	of	the	searches	involving	copies	and	downloads,	iteration	took	place.	Overall,	then,	we	

believe	our	reported	results	are	more	of	a	lower	bound.	

	

Second,	the	user	study	stopped	short	of	looking	at	the	code	results	that	participants	selected;	

that	is,	we	did	not	examine	any	qualities	of	the	selected	code.	However,	selection	criteria	for	

the	copied	code	are	inherently	tied	to	the	human	performing	the	search	and	what	they	think	

is	 best	 for	 the	 search	 task,	 as	 in	 real	 world	 settings.	We	 believe	 our	 experiment	 design	

mitigated	 the	 possible	 bias	 resulting	 from	 an	 individual’s	 criteria,	 because	 we	

counterbalanced	the	experiment	and	each	participant	was	free	to	apply	their	own	selection	

criteria	across	both	conditions.	Further,	the	fact	that,	twice,	participants	could	not	find	the	

code	they	needed	with	GitHub	suggests	that	they	put	their	best	foot	forward.	

	

Third,	the	user	experiment	used	graduate	students	as	some	of	the	participants.	While	they	

had	industrial	experience,	it	is	possible	they	exhibited	behaviors	that	are	not	representative	

of	 the	 broader	 developer	 population	 and	 how	 it	 searches.	 However,	 because	 our	 overall	

evaluation	 also	 includes	 a	 field	 deployment,	 and	 we	 saw	 similar	 behaviors	 in	 how	 the	

professionals	 searched	 and	 the	 students	 searched,	 we	 believe	 this	 risk	 is	 significantly	

reduced.		
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4.6.4	Early	Evaluation	Discussion	

Our	 early	 evaluations	 of	 CodeExchange	 yielded	 a	 few	 important	 observations	 into	 code	

search.		

1. From	both	the	field	study	and	user	study	we	found	programmers	search	iteratively	

for	code	using	CodeExchange	and	GitHub.		This	confirms	previous	studies	that	search	

is	an	iterative	process.	

2. We	found	that	explicitly	supporting	the	programmer	in	iteratively	searching	for	code	

plays	an	 important	part	 in	the	programmer’s	search.	 In	most	searches,	 in	both	the	

field	 study	 and	 lab	 study,	 programmers	 used	 one	 or	 more	 iterative	 features	 in	

CodeExchange	to	find	code.		Further,	our	lab	participants	where	significantly	faster	in	

finding	code	with	CodeExchange,	could	complete	more	tasks	with	CodeExchange,	and	

reported	 having	 a	 more	 positive	 search	 experience	 with	 CodeExchange	 in	

comparison	to	GitHub.	

3. Our	 data	 suggest	 that	 search	 is	 not	 only	 iterative,	 but	 that	 an	 iteration	 does	 not	

necessarily	stop	at	copying	code.	In	the	lab	experiment,	61%	of	the	searches	using	

CodeExchange	and	33%	using	GitHub	continued	after	copying	code	and	sometimes	

copied	 other	 code	 later	 in	 the	 search.	 This	 data	 suggests	 that	 part	 of	 searching	

iteratively	 for	 code	might	 entail	 attempting	 to	 find	multiple	 options,	 or	 at	 least	 a	

desire	 to	not	be	 satisfied	with	 just	 the	 first	 result	 and	perform	a	more	exhaustive	

search.	

4. In	contrast	to	the	general	patterns	of	iteration	and	searching	beyond	copying	code,	

we	also	found	that	programmers	often	searched	differently	from	each	other	in	both	
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the	 field	study	and	 lab	study.	 	This	suggests	 that	 the	search	process	the	developer	

engages	 in	 is	 both	 similar	 to	 other	 developers	 at	 a	 high	 level	 in	 terms	 of	 being	

iterative,	 but	 also	 unique	 to	 the	 individual	 at	 a	 more	 detailed	 level.	 Code	 search	

engines,	thus,	might	need	to	support	a	more	personalized	iterative	search	process.		
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Chapter	5	

CodeLikeThis	

When	a	programmer	is	searching	for	code	and	is	not	quite	sure	what	they	are	looking	for	

initially,	a	result	returned	for	a	first	query	might	trigger	the	programmer	to	try	to	find	other	

results	that	are	similar	but	in	a	rather	fuzzy	sense.	That	is,	the	programmer	might	want	to	

find	similar	results	but	have	no	specific	part	or	aspect	in	mind.	They	simply	recognize	the	

entire	result	as	an	example	of	code	they	would	like	to	see	more	of.	For	instance,	suppose	a	

programmer,	Bob,	wants	to	build	a	Rubik’s	cube	game,	but	is	uncertain	how	to	get	started.	

He	wants	 to	 see	 some	 examples	 of	 how	 to	maintain	 game	 state,	 interfaces,	 and	 possible	

solving	algorithms,	but	also	just	wants	to	discover	what	other	people	are	doing	to	get	ideas	

for	his	own	game.	To	do	so,	he	opens	his	 favorite	search	engine	and	issues	the	keywords	

rubik	 game.	 The	 first	 result	 he	 sees	 is	 a	 Sudoku-Rubik’s	 cube	 hybrid,	 where	 the	 model	

maintains	 the	 state	of	 a	Rubik’s	 cube	but	 includes	extra	 state	 information	accounting	 for	

where	numbers	on	the	cube	are	and	logic	in	a	function	called	isFinished	to	determine	if	the	
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rows	and	columns	of	numbers	on	each	face	of	the	cube	satisfy	the	rules	of	Sudoku.		Bob	did	

not	 realize	 such	 a	 game	 existed	 or	 had	 been	 programmed	 before	 and	 was	 somewhat	

surprised	by	the	result,	but	he	did	like	how	the	model	was	written	(it	appeared	concise	with	

descriptive	variable	names	and	had	a	function	testing	if	the	model	satisfied	the	end	state	of	

the	game),	so	Bob	thought	that	he	could	perhaps	use	code	similar	to	this,	but	he	was	left	with	

the	 task	 of	 choosing	 keywords	 that	would	 find	 similar	 code	but	 not	 the	 exact	 code	he	 is	

looking	at.	 	Bob	decides	to	try	the	keywords	rubik	game	model	isFinished	color	match,	but	

received	zero	results.		Bob	then	proceeds	to	try	several	different	keyword	queries,	such	as	

rubik	cube,	rubik	cube	color,	and	rubik	cube	color	isFinished.	After	a	great	deal	of	thinking	in	

choosing	 these	 queries	 and	 examining	 the	 results,	 Bob	 does	 find	 some	 examples	 of	

implementing	a	Rubik’s	cube	and	storing	the	color	state	of	each	side	of	the	cube,	but	was	

unable	to	find	one	containing	a	function	checking	for	the	end	state	of	the	game.	Bob	hits	the	

back	 button	 several	 times	 to	 the	 results	 from	 the	 first	 query	 rubik	 game,	 as	 Bob	 still	 is	

interested	 in	 finding	 other	 related	 code	 for	 solving	 the	Rubik’s	 cube	 game.	 	 After	 paging	

 /** 
  *             |*************| 
  *             |*U1**U2**U3*| 
  *             |*************| 
  *             |*U4**U5**U6*| 
  *             |*************| 
  *             |*U7**U8**U9*| 
  *             |*************| 
  * ************|*************|*************|*************| 
  * *L1**L2**L3*|*F1**F2**F3*|*R1**R2**F3*|*B1**B2**B3*| 
  * ************|*************|*************|*************| 
  * *L4**L5**L6*|*F4**F5**F6*|*R4**R5**R6*|*B4**B5**B6*| 
  * ************|*************|*************|*************| 
  * *L7**L8**L9*|*F7**F8**F9*|*R7**R8**R9*|*B7**B8**B9*| 
  * ************|*************|*************|*************| 
  *             |*************| 
  *             |*D1**D2**D3*| 
  *             |*************| 
  *             |*D4**D5**D6*| 
  *             |*************| 
  *             |*D7**D8**D9*| 
  *             |*************| 
  */ 

Figure 45. Rubik's Cube Documentation Example 
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through	these	original	results	some,	he	stumbles	onto	code	that,	apparently,	solves	the	game	

and	has	detailed	documentation	mapping	variable	names	to	faces	and	blocks	on	the	Rubik’s	

cube	 (as	 shown	 in	 Figure	 45).	 Impressed	with	 the	 detail	 in	 the	 author’s	 comments,	 Bob	

decides	to	take	a	closer	look	at	the	code.		However,	upon	inspection,	the	code	is	hard	to	read	

for	Bob,	because	all	the	values	of	the	cube	are	encoded	as	bits	in	an	array	and	turning	the	

cube	is	implemented	as	bit	shifts	at	various	indexes	in	this	array	–	making	it	hard	for	Bob	to	

map	the	code	onto	what	it	does	to	a	Rubik’s	cube.		Bob	wants	something	like	this	code,	but	

hopes	he	can	find	code	without	using	bit	shifting	operations	to	solve	the	puzzle.	Bob	is	now	

tasked	 with	 choosing	 keywords	 to	 find	 such	 code.	 Deciding	 to	 postpone	 choosing	 such	

keywords,	remembering	the	difficulty	he	ran	into	last	time,	Bob	continues	to	look	through	

the	pages	of	results	 from	the	first	query	and	stumbles	over	a	nice	UI	 for	his	Rubik’s	cube	

game.	 	 While	 Bob	 likes	 the	 UI,	 he	 wants	 to	 search	 a	 bit	 further	 to	 see	 if	 he	 might	 find	

something	even	more	appealing.	Bob	is	again	left	with	the	challenge	of	encoding	the	entire	

result	as	keywords	to	find	more	code	like	it.	

	

The	example	of	Bob	is	not	unusual.	It	represents	a	common	case,	 in	which	a	programmer	

sometimes	sees	an	entire	result	as	holistically	similar	to	code	that	could	be	helpful,	without	

explicitly	 knowing	which	 parts	 specifically	 cause	 them	 to	 do	 so.	 In	 the	 cognitive	 science	

literature,	 this	phenomenon	 is	 termed	“whole-similarity”	matching	[113]	or	“recognition”	

[57],	 and	 refers	 to	when	people	quickly	perceive	 something	as	 similar	 to	 something	else	

without	necessarily	understanding	why.	For	example,	humans	very	frequently	recognize	a	

whole	 human	 face	 without	 first	 explicitly	 understanding	 what	 parts	 of	 the	 face	make	 it	

recognizable	[57].	For	a	programmer,	then,	recognizing	some	code	as	broadly	interesting	or	
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helpful	might	trigger	the	programmer	to	reflect	and	issue	a	modified	query	that	attempts	to	

encode	the	result	as	keywords	to	find	similar	code.	In	some	ways,	this	is	an	even	harder	task	

than	our	hypothetical	programmer,	Suzie,	faced	in	Chapter	4,	because	at	least	Suzie	identified	

a	specific	aspect	of	the	result	to	encode,	but	Bob	is	left	with	the	task	of	either	summarizing	a	

whole	 result	 as	 keywords	 or	 choosing	 and	 encoding	 multiple	 aspects	 of	 the	 code	 as	

keywords.	

	

Like	 CodeExchange,	 CodeLikeThis,	 our	 second	 experimental	 code	 search	 engine,	 is	

specifically	designed	 to	aid	 the	developer	when,	 initially,	 the	programmer	 is	uncertain	of	

exactly	what	they	are	searching	for	and	is	engaged	in	a	more	exploratory	search	involving	

the	 submission	 of	 multiple	 queries	 through	 which	 to	 explore	 what	 examples	 may	 be	

available.	In	such	a	scenario,	the	insight	behind	CodeLikeThis	is	that	the	next	query	tends	to	

be	relative	to	the	results	and	sometimes	specific	to	an	entire	result	rather	than	any	specific	

aspect	of	a	result	(unlike	the	scenarios	supported	by	CodeExchange).	As	such,	CodeLikeThis	

supports	the	developer	in	forming	the	next	query	out	of	the	entire	result	simply	by	selecting	

if	they	want	code	that	is	similar	to	that	result.	In	this	way,	CodeLikeThis	changes	how	the	

next	query	is	constructed,	from	choosing	and	entering	keywords,	to	creating	a	query	simply	

by	choosing	a	result	to	see	code	that	is	similar	to	it.	

	

While	the	interaction	of	creating	the	next	query	—	clicking	a	result	—	is	simple,	supporting	

it	 is	not	as	 straightforward.	 	While	 typically	 the	results	after	 the	 first	keyword	query	are	

optimized	 to	 be	 the	most	 topically	 related	 to	 the	 keywords,	 CodeLikeThis	 also	 needs	 to	

address	giving	the	user	results	to	select	from	to	begin	iteratively	searching.			If	CodeLikeThis	
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only	returns	the	most	topically	related	results,	then	the	results	themselves	may	all	be	very	

similar	 to	 each	 other	 and	 hide	 examples	 that	 are	 different,	 but	 still	 on	 topic,	 that	 the	

programmer	could	recognize	as	similar	to	what	they	are	searching	for.	For	example,	suppose	

Bob	was	looking	for	a	Rubik’s	cube	UI	and	saw	only	2-D	examples	implemented	with	the	Java	

AWT	 library	 in	 the	 top	 results,	 then	 3-D	 examples	 implemented	 in	 OpenGL	 or	 textual	

examples,	as	just	two	kinds	of	results	that	may	be	useful	to	Bob,	remain	hidden	from	him.	

CodeLikeThis	addresses	this	issue	with	its	diversity	ranking	algorithm	that	first	gives	the	

user	a	diverse	set	of	code	matching	the	initial	keywords.		Each	code	result,	then,	can	equally	

serve	 as	 a	 point	 of	 comparison	 that	 the	 programmer	 can	 use	 to	 find	 other	 similar	 or	

dissimilar	code.		

	

Once	the	programmer	discovers	a	result	they	might	want	to	use	for	finding	similar	code,	the	

programmer	can	use	like-this	queries.		Specially,	like-this	queries	support	the	programmer	

to	 retrieve	 code	 in	 the	 entire	 search	 engine	 by	 how	 similar	 they	 are	 to	 the	 result	 the	

programmer	has	chosen.	This	is	an	important	nuanced	point:	like-this	queries	do	not	act	as	

modifications	to	previous	queries	(as	was	the	behavior	in	CodeExchange),	but	rather	replace	

the	previous	query	with	a	like-this	query.		

	

Three	types	of	 like-this	queries	are	supported	by	CodeLikeThis.	If	the	programmer	wants	

additional	results	that	are	very	similar	to	the	result	they	have	chosen,	then	they	can	issue	a	

more-like-this	query	to	retrieve	the	code	examples,	from	the	search	engine’s	index,	closest	in	

similarity.	If	the	programmer	wants	code	that	is	less	like	a	result,	they	can	issue	a	less-like-

this	query	to	retrieve	code	that	is	more	different	than	similar,	but	still	having	some	similarity,	
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than	the	chosen	result.		Finally,	if	the	programmer	wants	code	that	is	like	a	result	but	feels	

they	also	are	 looking	 for	different	 code,	 they	can	 issue	a	 somewhat-like-this	query,	which	

returns	 code	 examples	 that	 are	 not	 as	 similar	 as	 those	 returned	 from	 the	more-like-this	

query	but	also	not	as	different	as	those	returned	from	the	less-like-this	query.	

	

To	illustrate	at	a	high	level	what	issuing	like-this	queries	means,	Figure	46	and	Figure	47	

illustrate	how	it	works	with	an	example.	After	the	programmer’s	first	query	using	keywords,	

suppose	they	receive	the	diverse	set	of	classes	A,	F,	H	and	K	(as	shown	at	the	top	of	Figure	

46).		Further,	suppose,	for	the	sake	of	simplicity,	that	the	search	engine	only	has	11	classes	

Figure 46. CodeLikeThis Source Code Space. 
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in	 the	 entire	 search	 index	 (A	 through	K	 as	 shown	 in	 the	 left	most	 column	 in	 Figure	46).	

Conceptually,	for	each	of	the	11	code	snippets,	A	through	K,	the	other	10	are	some	distance	

away	in	terms	of	their	similarity.		Each	row	in	the	index	in	Figure	46	shows	the	particular	

ordering	of	the	other	code	snippets	for	each	of	the	11	code	snippets	in	the	search	engine’s	

index.	For	example,	B	 is	 the	most	similar	 to	A	out	of	all	 the	code	 in	 the	 index.	 	However,	

relative	similarity	does	not	guarantee	a	total	ordering,	so	it	is	possible	that,	in	our	case,	the	

closest	code	to	B	 is	D,	rather	 than	A	(though	A	 is	 the	next	closest	result).	The	green	cells	

Figure 47. Path Through Space. 
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highlight	the	top	similar	classes	in	the	index	to	a	class,	the	blue	cells	represent	the	code	that	

are	about	an	average	similarity	distance	away	from	the	class,	and	the	yellow	cells	highlight	

the	 code	 that	 are	 the	 least	 similar	 to	 the	 class.	 Figure	 47	 illustrates	 an	 example	 of	 a	

programmer	searching	through	this	space	with	 like-this	queries.	To	begin	searching	with	

like-this	queries,	the	programmer	issues	a	more-like-this	query	on	result	A	(highlighted	with	

a	red	circle	at	the	top),	which	will	return	the	top	most	similar	results	(B,	D,	and	C)	back	to	

the	programmer	(indicated	by	an	arrow	labeled	“more-like-this”	going	from	A	to	the	set	{B,	

D,	C}).	The	programmer	then	issues	a	somewhat-like-this	query	on	D	to	return	the	code	that	

is	an	average	distance	away	from	D	(C,	K,	and	H),	then	issues	a	more-like-this	query	on	K	to	

return	the	most	similar	code	to	K	(H,	E,	and	G),	and	ends	with	a	less-like-this	query	on	G	to	

return	the	least	similar	code	to	G	(C,	A,	B,	and	D).		In	this	way,	like-this	queries	support	the	

user	to	continually	“jump”	from	one	result	set	to	the	next	by	how	similar	they	want	the	next	

result	set	to	be	relative	to	the	current	result.	

	

For	a	concrete	example,	suppose	a	programmer	wanted	to	search	for	sorting	algorithms	and	

decided	to	start	their	search	by	entering	the	name	of	a	sorting	algorithm	they	knew	about,	in	

this	case	quick	sort.	CodeLikeThis’	diversity	ranking	algorithm	would	return	a	diverse	set	of	

results	 that	 contain,	 for	 example,	 different	 implementations	 of	 quick	 sort	 (e.g.,	 different	

libraries,	sizes,	complexities),	different	uses	of	quick	sort	(e.g.,	animations	of	quick	sort	or	

quick	sort	used	in	the	context	of	Android),	or	different	API	usage	examples	of	calling	quick	

sort	 functions.	 	 	 If	 the	programmer	 found	a	quick	 sort	 implementation	 they	 thought	was	

broadly	 appealing,	 they	 could	 click	 more-like-this	 to	 retrieve	 implementations	 from	 the	

search	engine	that	share	similar	characteristics	(e.g.,	an	implementation	with	similar	size,	
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imports,	naming	scheme).		However,	if	the	programmer	was	hoping	for	an	implementation	

but	found	the	ones	presented	having	overall	qualities	they	did	not	like	(e.g.,	too	difficult	to	

read	or	the	overall	style	was	not	quite	right),	they	could	issue	a	somewhat-like-this	query	on	

a	 quick	 sort	 implementation	 to	 retrieve	 quick	 sort	 implementations	 that	 remain	 varied	

across	a	number	of	dimensions	(e.g.,	size,	variable	names,	complexity,	author,	and	libraries	

used)	compared	to	the	result.		In	this	way,	the	programmer	can	attempt	to	find	other	quick	

sort	 implementations	 that	 are	 dissimilar	 to	 the	 result	 they	 selected.	 Lastly,	 perhaps	 the	

developer	is	exploring	different	kinds	of	sorting	algorithms	and	wants	to	discover	what	else	

exists.	 	 To	 do	 this,	 the	 developer	 could	 issue	 a	 less-like-this	 query	 on	 a	 quick	 sort	

implementation	in	an	attempt	to	find	sorting	algorithm	implementations,	but	not	necessarily	

quick	sort	(e.g.,	merge	sort	or	heap	sort).		

	

In	the	following	sections,	we	discuss	the	architecture	of	CodeLikeThis,	the	CodeLikeThis	user	

interface,	the	design	and	evaluation	of	the	diversity	ranking	algorithm,	and	the	design	of	the	

ranking	algorithm	for	like-this	queries.		

	

	

	

	

	

	

	



127	
	

5.1	Architecture	

The	 architecture	 of	 CodeLikeThis	 is	 presented	 in	 Figure	 48	 as	 a	 data	 flow	 diagram.	 The	

features	with	which	the	programmer	interacts	and	other	important	functional	components	

of	 the	 system	 are	 represented	 as	 rounded	 rectangles.	 Further,	 the	 features	 are	 grouped	

together	 in	 the	dotted	box	named	Features	 to	 show	 they	 are	 the	main	 components	with	

which	the	programmer	interacts	in	the	user	interface.		

	

The	programmer	starts	their	search	with	CodeLikeThis	by	submitting	a	keyword	query	with	

the	Keyword	Text	Box	that,	in	turn,	sends	a	Query	Event	to	the	Keyword	Query	Manager.		The	

Keyword	Query	Manager	uses	the	event	to	construct	a	query	(using	the	Apache	Solr	syntax)	

to	send	to	the	Diversity	Search	Engine	Server	(implemented	with	Apache	Solr).	 	Once	the	

Diversity	Search	Engine	server	parses	the	query	it	will	match	and	rank	code	in	the	Source	

Figure 48. CodeLikeThis Architecture. 
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Code	Index	using	the	diversity	ranking	algorithm,	which	will	return	a	set	of	10	diverse	results	

to	the	Result	Processor	(the	rationale	behind	10	results	is	explained	in	the	diversity	ranking	

algorithm	section,	Section	5.3.2.2).	The	results	themselves	consist	not	only	of	source	code,	

but	 also	 include	 summaries	 (as	 described	 in	 Table	 10	 in	 the	 blue	 columns)	 of	 all	 the	

information	needed	by	CodeLikeThis’	features,	as	well	as	a	URL	to	the	source	code	on	GitHub.		

For	each	of	the	results,	the	Result	Processor	fetches	the	source	code	from	GitHub	and	returns	

the	summaries	and	their	source	code	to	the	CodeLikeThis	interface.	

	

The	Source	Code	Display	presents	each	of	the	results’	source	code,	and	each	of	the	like-this	

queries	 (more-like-this,	 somewhat-like-this,	 and	 less-like-this)	 appear	 as	 buttons	 below	

each	of	the	results,	so	that	each	result	has	buttons	labeled	“More	Like	This”,	“Somewhat	Like	

This”,	and	“Less	Like	This”.	Once	one	of	the	like-this	buttons	is	selected,	a	Query	Event	is	sent	

to	the	Like-This	Query	Manager	that	uses	the	ID	of	the	result	selected	and	the	kind	of	like-

this	query	(more,	somewhat,	or	less)	chosen	to	construct	a	query	to	submit	to	one	of	three	

Similarity	Search	Engines,	which	is	determined	by	which	result	is	selected	(the	motivation	

behind	having	multiple	similarity	search	engines	will	be	discussed	soon).	If	one	of	results	1	

–	3	 is	selected,	 then	 the	corresponding	 like-this	query	 is	sent	 to	Similarity	Search	Engine	

Server	3,	if	one	of	the	results	4	–	6	is	selected,	then	like-this	queries	are	sent	to	Similarity	

Search	Engine	Server	2,	and	if	one	of	the	results	7	–	10	is	selected,	then	like-this	queries	are	

sent	to	Similarity	Search	Engine	1.	Once	one	of	the	similarity	search	engines	receives	the	like-

this	query,	the	search	engine	performs	a	similarity	matching	algorithm	by	ordering	code	in	

the	Source	Code	Index	relative	to	the	code	snippet	identified	by	the	ID	given	in	the	like-this	

query	 and	 fetching	 results	 at	different	distances	 away	depending	on	 the	 type	of	 like-this	
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query.	The	results	are	then	sent	to	the	Result	Processor,	which	fetches	the	source	code	from	

GitHub	and	sends	the	results	and	source	code	to	the	features	of	CodeLikeThis.		However,	the	

Result	Processor	also	sends	the	Results	to	the	Cache	Warmer	to	support	making	the	next	

results	return	faster.	

	

The	Cache	Warmer	is	responsible	for	prefetching	results	from	all	possible	like-this	queries	

the	 programmer	might	 issue	 on	 the	 current	 results	 in	 order	 to	 support	 getting	 the	 next	

results	faster.		Specifically,	while	the	programmer	is	looking	at	the	current	results,	the	Cache	

Table	10.	Schema	and	Description	of	Code	Indexed.	
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Warmer	submits	all	like-this	queries	on	the	current	results	to	the	Like-This	Query	Manager,	

but	configures	the	events	so	that	no	results	are	actually	returned	to	the	programmer.		The	

Like-This	Query	Manager,	in	turn,	submits	the	queries	to	the	appropriate	Similarity	Search	

Engine,	but	configured	with	HTTP	parameters	understood	by	the	search	engines	to	return	

zero	results.	 	Having	multiple	Similarity	Search	Engines	enhances	the	performance	of	 the	

system,	 because	 the	 queries	 being	 generated	 by	 the	 Cache	Warmer	 can	 be	 processed	 in	

parallel	(three	at	a	time),	making	prefetch	faster.		There	is	no	reason	to	stop	at	having	three	

servers,	however	we	do	so	because	of	limited	resources.	Once	the	Similarity	Search	Engines	

process	 the	 queries	 generated	 by	 the	 Cache	 Warmer,	 they	 keep	 the	 queries	 and	 the	

associated	results	in	memory,	rather	than	sending	them	to	the	Result	Processor.	The	next	

like-this	query	received	by	a	Similarity	Search	engine	is	then	matched	against	the	queries	in	

memory	and,	if	there	is	a	match,	the	associated	results	are	sent	to	the	Result	Processor,	which	

avoids	executing	the	costlier	similarity	matching	algorithm	on	the	Source	Code	Index	at	a	

time	the	user	is	waiting.	

	

All	 code	 mined	 and	 indexed	 by	 CodeLikeThis	 is	 done	 with	 the	 same	 setup	 used	 for	

CodeExchange	and	described	in	detail	in	Chapter	4.1.		A	List	Server	maintaining	all	URLs	to	

Java	 repositories	 on	 GitHub	 distributes	 the	 URLs	 to	 a	 cluster	 of	 computers,	 where	 each	

computer	 in	the	cluster	clones	the	repository,	walks	the	abstract	syntax	tree	of	each	Java	

class	in	the	repository,	creates	an	instance	of	the	schema	described	in	Table	10,	and	uploads	

this	instance	and	the	URL	to	the	source	code	to	CodeLikeThis	to	be	indexed.	
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5.2	Interface	

The	splash	screen	of	CodeLikeThis	is	similar	to	most	code	search	engines	by	presenting	a	

single	keyword	text	box,	as	shown	in	Figure	49.	In	this	case,	the	programmer	has	entered	the	

keywords	quick	sort	and	pressed	the	Enter	key	to	issue	the	keyword	query	to	CodeLikeThis.	

Once	the	results	return,	the	programmer	is	presented	with	the	main	page	of	CodeLikeThis	

as	shown	on	the	bottom	left	in	Figure	50	presenting	the	top	10	results	for	the	query	quick	

sort.	At	the	bottom	of	each	code	result	are	buttons	to	issue	a	query	to	find	other	code	that	is	

less,	somewhat,	or	more	similar	to	that	result.	Shown	above	and	to	the	right	of	the	main	page	

are	 the	 top	 two	 results	 after	 clicking	 on	 each	 of	 the	 like-this	 buttons	 for	 the	 highlighted	

implementation	of	quick	sort	on	the	bottom	left.	When	the	programmer	selects	the	more-

like-this	 button,	 she	 gets	 results	 (A)	 that	 are	 also	 quick	 sort	 implementations	 but	 use	

different	 styles	 and	 methods	 to	 implement	 quick	 sort	 (i.e.,	 similar	 quick	 sort	

implementations	but	not	exact	clones).	When	the	programmer	clicks	somewhat-like-this	on	

the	 quick	 sort	 implementation,	 she	 gets	 results	 (B)	 that	 rely	more	 on	 other	 classes	 (e.g.,	

extending	 parent	 classes	 to	 implement	 quick	 sort)	 or	 include	 comments	 in	 other	 human	

languages.	Lastly,	when	the	programmer	clicks	less-like-this,	she	gets	results	(C)	that	are	no	

longer	quick	sort	implementations,	but	are	examples	of	other	kinds	of	sorting	algorithms	(in	

this	case	merge	sort	and	heap	sort).	

Figure 49. CodeLikeThis Splash Screen. 
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5.3	The	Ranking	Algorithms	of	CodeLikeThis	

Both	 the	diversity	ranking	algorithm,	used	 for	 the	 first	query,	and	 the	similarity	ranking	

algorithm,	used	 for	 subsequent	 like-this	queries,	 center	around	 the	 idea	of	being	able	 to	

measure	similarity	of	source	code.		The	diversity	algorithm	needs	to	be	able	to	return	a	set	

of	code	results	that	are	dissimilar	to	each	other,	while	still	topically	related	to	the	keywords.	

Depending	on	the	like-this	query,	the	like-this	ranking	algorithm	needs	to	be	able	to	match	

code	in	the	index	by	various	distances	of	similarity	to	a	selected	result.	As	such,	both	ranking	

algorithms	need	a	similarity	function	that	can	organize	the	code	by	their	similarity	relative	

to	each	other.	In	our	approach,	we	use	a	single	similarity	function	in	support	of	the	diversity	

ranking	algorithm	and	use	an	approximation	of	the	single	similarity	function	for	the	like-

this	ranking	algorithm.		

	

Figure 50. CodeLikeThis Interface. 
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The	way	the	similarity	function	measures	similarity	needs	to	match	the	user’s	perceptions	

of	similarity	 for	them	to	recognize	and	appreciate	the	differences	 in	the	results	returned	

from	the	first	query	and	the	subsequent	like-this	queries.		As	such,	our	similarity	function	

focuses	on	measuring	similarity	with	well	understood	aspects/qualities	of	Java	classes	that	

can	also	be	mined	in	a	tractable	amount	of	time	and	that	can	be	used	to	produce	a	similarity	

measure	in	a	reasonable	amount	of	time	for	search	engines	(i.e.,	a	few	seconds	at	most).	

	

The	complete	list	of	aspects/qualities	of	code	used	by	the	similarity	function	is	defined	by	

the	schema	 in	Table	10	 in	 the	 like-this	 ranking	algorithm	row.	Many	social	and	 technical	

aspects/qualities	can	be	obtained	(some	more	difficult	than	others)	and	we	could	have	tried	

to	obtain	them	all	(e.g.,	likes	or	number	of	copies).		Our	decision	of	those	chosen	reflects	more	

of	a	middle	ground.	 	We	attempted	to	achieve	a	reasonable	variety	of	aspects/qualities	of	

code	to	be	able	to	evaluate	the	feasibility	of	our	approach	without	a	large	upfront	cost,	such	

that	our	single	similarity	function	could	use	them	to	produce	similarity	measures	that	the	

diversity	ranking	algorithm	could	use	to	produce	diverse	sets	of	results	and	that	the	like-this	

ranking	algorithm	could	use	to	order	code	on	a	spectrum	of	similarity.	We	chose	to	focus	

more	on	the	aspects/qualities	of	Java	classes,	since	we	scoped	CodeLikeThis	to	Java	only.		

	

5.3.1	Similarity	Function	

The	similarity	function	we	designed,	called	𝑆𝑆𝑆𝑆𝑚𝑚$
%& ,	measures	the	similarity	between	two	Java	

classes	 by	 taking	 each	 of	 their	 schema	 instances	 (defined	 in	 Table	 10,	 like-this	 ranking	

algorithm	row)	and	summing	up	how	much	their	corresponding	values	have	in	common.	In	
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this	way,	the	more	they	have	in	common	across	fields	the	higher	their	similarity	score,	and	

the	 less	 they	have	 in	 common	across	 fields	 the	 lower	 their	 similarity	 score.	 	Further,	 the	

commonality	between	corresponding	field	values	are	normalized	so	that	the	commonality	

measurements	between	corresponding	fields	do	not	dominate	other	fields.			

	

Measurements	of	commonality	for	fields	that	are	composed	of	one	or	more	names	is	done	by	

taking	the	intersection	of	the	values.		For	example,	If	Class	A	has	imports	 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑙𝑙𝑗𝑗𝑙𝑙𝑔𝑔. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑔𝑔,

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑎𝑎𝑆𝑆. 𝐺𝐺𝑆𝑆𝑗𝑗𝐺𝐺ℎ𝑆𝑆𝑖𝑖𝑖𝑖 	 and	 Class	 B	 has	 imports	 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑙𝑙𝑗𝑗𝑙𝑙𝑔𝑔. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑔𝑔, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑢𝑢𝑆𝑆𝑆𝑆𝑙𝑙. 𝐴𝐴𝑆𝑆𝑆𝑆𝑗𝑗𝐴𝐴𝑖𝑖,

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑎𝑎𝑆𝑆. 𝐺𝐺𝑆𝑆𝑗𝑗𝐺𝐺ℎ𝑆𝑆𝑖𝑖𝑖𝑖 ,	then	the	commonality	score	between	Class	A	and	B	for	imports	would	

be	2	(the	hat	means	the	2	is	normalized	to	between	0	and	1).	Further,	if	the	author	of	Class	A	

is	Alex	and	the	author	of	Class	B	is	also	Alex	then	the	commonality	score	between	Class	A	and	

Class	B	for	author	name	would	be	1.	

	

Measurements	of	commonality	for	fields	that	are	composed	of	numeric	measures	(e.g.,	size	

and	complexity)	are	done	by	taking	the	inverse	difference	of	those	numbers.		For	example,	if	

Class	A	has	a	 size	of	1000	characters	and	Class	B	has	a	 size	of	1350	characters,	 then	 the	

commonality	score	between	Class	A	and	Class	B	for	size	is	 <
<=>?@<???

= <
=>?

.	If	both	classes	

are	the	same	size,	a	.5	is	used	in	the	denominator	to	avoid	the	undefined	condition	of	zero	in	

the	 denominator	 (final	 score	 is	 normalized	 to	 1).	 For	 another	 example,	 if	 Class	 A	 has	

complexity	10	and	Class	B	has	complexity	1,	then	the	commonality	score	between	Class	A	

and	Class	for	complexity	is	 <
<?@<

= <
B
.	
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The	similarity	function	is	formally	defined	in	Equation	1.	It	takes	in	two	Java	classes	(𝐷𝐷D, 𝐷𝐷E)	

and	sums	up	the	commonality	for	each	of	corresponding	field	values.	Once	the	final	score	

(lower	bound	of	0	and	upper	bound	of	17)	 is	calculated	 from	the	similarity	 function,	 this	

overall	score	is	normalized	resulting	in	a	final	score	between	0	and	1.	
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Equation	1.	Similarity	Function.	

Sim2
ST Di ,Dj( ) =∑

authorName Di( )∩ authorName Dj( ) ,
className Di( )∩ className Dj( ) ,

1
max abs complexity Di( )− complexity Dj( )( ),.5( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

1

max abs fields Di( ) − fields Dj( )( ),.5( )
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
,

hasWildCard Di( )∩ hasWildCard Dj( ) ,
isAbstract Di( )∩ isAbstract Dj( ) ,
isGeneric Di( )∩ isGeneric Dj( ) ,
imports Di( )∩ imports Dj( ) ,

1

max abs imports Di( ) − imports Dj( )( ),.5( )
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
,

methodCallNames Di( )∩methodCallNames Dj( ) ,
methodDecNames Di( )∩methodDecNames Dj( ) ,
ownerName Di( )∩ ownerName Dj( ) ,
package Di( )∩ package Dj( ) ,
parentClass Di( )∩ parentClass Dj( ) ,
projectName Di( )∩ projectName Dj( ) ,

1
max abs size Di( )− size Dj( )( ),.5( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

var iableWords Di( )∩ var iableWords Dj( )
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5.3.2	Diversity	Ranking	Algorithm	Designs	

We	designed	two	different	kinds	of	diversity	ranking	algorithms,	Social-Technical	(ST)	and	

Social-Technical-Hybrid	(MWL-ST	Hybrid),	that	use	our	similarity	function	in	Equation	1.	We	

evaluate	these	two	ranking	algorithms	and	others	(discussed	later)	against	each	other	to	find	

the	one	 that	performs	better.	Both	our	diversity	ranking	algorithms	 leverage	a	 technique	

introduced	in	the	information	retrieval	literature	that	was	created	to	control	the	similarity	

between	 natural	 language	 documents	 matching	 a	 keyword	 query	 [17].	 The	 goal	 of	 the	

technique	 was	 to,	 given	 a	 keyword	 query,	 return	 a	 diverse	 set	 of	 documents,	 with	 each	

document	matching	a	valid	interpretation	of	the	keyword	query.	In	this	way,	the	chance	of	a	

result	matching	the	interpretation	of	the	keywords	by	the	user	is	increased	and	the	diversity	

of	the	results	themselves	helps	the	user	obtain	an	understanding	of	the	kinds	of	documents	

that	are	in	the	search	engine	[19],	thereby	helping	them	in	targeting	their	next	query.	The	

most	 well-known	 algorithm	 for	 controlling	 diversity	 in	 information	 retrieval	 is	 called	

Maximal	Marginal	Relevance	(MMR)	[17].	This	algorithm	specifics	a	procedure	to	re-rank	

results	so	that	they	are	both	on	topic	and	different	from	each	other.		The	flow	chart	specifying	

the	high-level	algorithm	of	MMR	is	presented	in	Figure	51.	
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As	indicated	by	the	green	rounded	rectangle	in	Figure	51,	MMR	starts	with	the	set	of	results	𝑅𝑅	

returned	from	the	topicality	ranking	algorithm	for	query	𝑄𝑄,	an	empty	set	S	(to	populate	with	

diverse	results),	and	a	size	k	specifying	how	large	to	make	S.	Further,	𝑅𝑅 = 𝐷𝐷<,⋯ , 𝐷𝐷D,⋯𝐷𝐷J ,	

where	𝐷𝐷D 	denotes	the	document	with	rank	𝑆𝑆,	𝑙𝑙	is	the	number	of	documents	found,	and	1 ≤

𝑆𝑆 ≤ 𝑙𝑙.		First,	MMR	initializes	𝑆𝑆	by	putting	the	first	result	in	𝑅𝑅	into	𝑆𝑆	[42].	The	next	document	

put	 into	𝑆𝑆	 is	 chosen	 to	 be	 the	 document	𝐷𝐷D 	 in	𝑅𝑅\𝑆𝑆	 (in	𝑅𝑅	 but	 not	𝑆𝑆)	 that	 has	 the	 lowest	

similarity	score	with	any	document	in	𝑆𝑆	and	highest	topicality	score	with	𝑄𝑄.	This	is	achieved	

by	looping	over	each	𝐷𝐷D 	in	𝑅𝑅\𝑆𝑆	and	finding	the	document	with	the	highest	MMRscore,	which	is	

defined	as:		

Figure	51.	MMR	Flow	Chart.	
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𝑀𝑀𝑀𝑀𝑅𝑅NOPQR = 	 𝑎𝑎𝑤𝑤𝑆𝑆𝑔𝑔ℎ𝑆𝑆 × 𝑆𝑆𝑆𝑆𝑚𝑚< 𝐷𝐷D, 𝑄𝑄

− 1 − 𝑎𝑎𝑤𝑤𝑆𝑆𝑔𝑔ℎ𝑆𝑆 max	similarity	score	of	𝐷𝐷Dusing	𝑆𝑆𝑆𝑆𝑚𝑚$ 	

This	MMRscore	(highlighted	with	a	star	in	Figure	51)	adds	the	topicality	ranking	score	defined	

by	 𝑆𝑆𝑆𝑆𝑚𝑚< 	 (this	 function	 could	 be	 TF-IDF,	 for	 example)	 and	 subtracts	 from	 the	 topicality	

ranking	score	the	max	similarity	score	𝐷𝐷D 	has	with	any	document	𝐷𝐷E ∈ 𝑆𝑆,	where	similarity	is	

calculated	with	𝑆𝑆𝑆𝑆𝑚𝑚$	(this	function	can	be	substituted	with	any	similarity	function,	but	in	our	

algorithms	we	use	our	similarity	function	𝑆𝑆𝑆𝑆𝑚𝑚$
%&).		Further,	MMRscore	has	a	weight	variable	

on	the	similarity	score	and	topicality	score	in	order	to	allow	the	MMRscore	to	be	tuned	to	find	

the	best	balance	of	topicality	and	diversity.	For	example,	if	𝑎𝑎𝑤𝑤𝑆𝑆𝑔𝑔ℎ𝑆𝑆 = 1,	then	similarity	is	not	

considered	and	only	documents	with	the	highest	topicality	scores	are	put	into	𝑆𝑆.	If	𝑎𝑎𝑤𝑤𝑆𝑆𝑔𝑔ℎ𝑆𝑆 =

0,	then	topicality	scores	are	ignored	(other	than	working	within	the	set	of	results,	𝑅𝑅,	returned	

from	 the	 topicality	 ranking	 algorithm)	 and	 only	 similarity	 scores	 are	 used	 to	 select	

documents	to	put	into	𝑆𝑆.	

	

The	diversity	ranking	algorithms	we	designed	use	the	MMR	method	to	produce	a	diverse	set	

of	results	and	configure	the	similarity	function,	Sim2,	to	be	our	similarity	function	𝑆𝑆𝑆𝑆𝑚𝑚$
%& ,	and	

Sim1	 to	 be	 TF-IDF	 in	 one	 algorithm	 and	 MoreWithLess	 (our	 new	 ranking	 algorithm	

optimizing	 on	 topicality	 and	 conciseness,	 see	 Section	 5.3.3.4)	 in	 the	 other	 algorithm.	

However,	we	were	concerned	with	the	size	of	𝑅𝑅,	the	result	set	produced	from	Sim1,	because	

the	larger	𝑅𝑅	is,	the	more	time	MMR	takes	to	execute	and	we	are	constrained	to	return	results	

in	seconds	(often	the	expected	time	for	search	engines).	We	were	also	concerned	with	the	

size	for	S,	because	not	only	does	this	influence	the	running	time	of	MMR,	but	it	also	impacts	
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the	number	of	results	the	programmer	needs	to	consider.	The	next	sections	discuss	the	sizes	

we	chose	for	R	and	S.	

	

5.3.2.1	Size	of	R	

MMR	attempting	to	find	the	most	diverse	set	of	results	in	𝑅𝑅	becomes	increasingly	costly	with	

the	size	of	𝑅𝑅,	where	n	can	grow	up	to	10M	in	size	in	our	case.	We	wanted	to	see	if	we	could	

reduce	the	number	of	results	MMR	needs	to	consider	in	𝑅𝑅	by	finding	a	stopping	rank	in	the	

list	of	results,	where	looking	past	that	rank	adds	little	to	the	construction	of	the	diverse	set	

𝑆𝑆.	 In	particular,	we	wanted	 to	 find	a	 rank	after	which	 the	results	are	similar	 to	what	has	

already	been	considered.	For	example,	 if	 the	diversity	of	the	results	 in	R	does	not	change	

much	after	the	top	500	then	anything	after	the	top	500	would	be	similar	to	what	has	already	

been	seen	and	would	do	little	to	make	S	more	diverse.	Finding	such	a	rank	𝑃𝑃	would	allow	us	

to	assume	all	the	top	results	from	1…𝑃𝑃	could	be	used	by	MMR	to	produce	a	diverse	set	of	

results	that	would	be	about	as	diverse	as	the	top	results	from	1…𝑃𝑃 + 𝑆𝑆	(𝑆𝑆 ≥ 1).		

	

Our	approach	to	find	such	a	rank	was	to	look	at	how	diverse	the	top	results	are	up	to	various	

ranks	and	assess	if	there	existed	a	rank	𝑃𝑃	where	the	diversity	of	the	data	“turns”	(often	called	

a	 turning	 point	 in	 data	 analysis	 [86])	 after	 which	 the	 diversity	 of	 the	 results	 no	 longer	

increases	 in	 a	 meaningful	 manner.	 Turning	 points	 are	 often	 found	 by	 looking	 at	 peeks	

(maxima)	and	valleys	(minima),	where	a	peek	is	a	point	where	there	exist	adjacent	points	to	

the	left	and	right	with	lower	values	on	the	y-axis	and	a	valley	is	a	point	where	there	exist	

adjacent	points	to	the	left	and	right	with	higher	values	on	the	y-axis.	In	our	case,	we	wanted	
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to	find	the	deepest	valley	(i.e.,	the	rank	at	which	the	data	turns	from	being	most	diverse	to	

becoming	more	similar).	To	measure	diversity	of	a	group	of	results	up	to	different	ranks,	we	

use	average	group	similarity,	which	is	measured	by	taking	the	similarity	between	all	pairs	of	

code	in	the	results	and	then	dividing	by	the	total	number	of	pairs	[153].	

	

Figure	52	presents	a	hypothetical	graph	showing	the	average	group	similarity	at	increasing	

ranks	of	 the	 top	 results.	 For	example,	 the	value	100	on	 the	x-axis	 identifies	 the	group	of	

results	 from	1	 to	 100;	 its	 corresponding	 y-value	 is	 the	 average	 group	 similarity	 of	 these	

results.	In	this	example,	the	similarity	of	the	results	increases	as	we	increase	the	top	results	

from	1	to	the	200th	rank,	but	increasing	the	results	past	200	decreases	the	similarity	up	until	

Figure 52. Average Group Similarity at Increasing Ranks of Top Results. 
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about	rank	450.	After	that	rank,	the	similarity	of	the	results	increases	to	never	return	to	the	

low	similarity	found	at	450.		In	this	example,	450	is	the	deepest	valley,	the	point	at	which	

adding	 more	 results	 changes	 from	 making	 the	 results	 more	 diverse	 to	 more	 similar.	

However,	we	note	that	the	deepest	valley	does	not	always	contain	the	most	diverse	results,	

sometimes	the	very	first	point	(e.g.,	maybe	first	two	results)	can	be	the	most	diverse	purely	

by	having	a	 few	 results	 that	 are	very	different	 from	each	other.	 	However,	 a	 few	diverse	

results	 is	probably	not	representative	of	all	 the	kinds	of	results	returned	from	the	search	

engine,	so	our	approach	is	to	collect	as	many	results	as	we	can	up	until	collecting	more	means	

that	average	similarity	starts	increasing	again.		

	

To	find	a	turning	point,	we	created	graphs	like	the	example	graph	in	Figure	52	for	21	queries	

and	calculated	the	average	turning	point.	The	set	of	queries	we	used	is	listed	in	Table	11.	To	

obtain	these	queries,	we	selected	them	from	four	different	code	search	engine	logs.	 	 	Five	

were	taken	from	Sourcerer	logs	[4],	five	from	Mica	logs	[119],	Six	from	Koders’	logs	[68],	and	

five	 from	the	 logs	of	CodeExchange	[75].	The	queries	were	categorized	by	three	software	

engineering	 graduate	 students,	 not	 involved	with	 our	 research,	 as	 either	 algorithm/data	

structure	implementation	queries	(I)	or	as	API/library	example	queries	(A).	We	chose	these	

two	categories	because	in	a	study	by	Hoffmann	et	al.	and	in	another	study	by	Umarji	et	al.	

they	show	that	searching	for	API	usage	examples	or	implementations	are	common	among	

programmers	[49],	[125].	For	16/21	(76%)	of	the	queries,	the	graduate	students	had	a	3/3	

level	 of	 agreement	 and	 for	 the	 remainder	 5/21	 (23%)	 they	 had	 an	 agreement	 level	 of	

2/3.This	 yielded	 10	 API/library	 usage	 queries	 and	 11	 algorithm/data	 structure	
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implementation	queries	and	gave	us	a	balanced	set	of	queries	between	 the	 two	category	

types.			

	

The	results	of	the	turning	point	analysis	are	displayed	in	Figure	53	with	all	the	turning	points	

highlighted	with	a	green	square.	Each	graph	plots	the	group	similarity	of	the	results	for	a	

query	(given	in	the	title	of	the	graph)	at	20	evenly	spaced	and	increasing	ranks.		For	example,	

the	first	graph	(top	left)	shows	the	similarity	of	the	results	for	quick	sort	at	20	progressively	

larger	ranks	and	stops	at	the	top	1000.	The	graph	shows	the	similarity	of	the	results	quickly	

peaking	at	the	top	100,	then	the	similarity	dropping	as	the	top	results	grow	to	400,	but	at	

Query	 Category	 Source	
database connection manager A	(3/3)	 Sourcerer	

ftp client I	(2/3)	 Sourcerer	
quick sort I	(3/3)	 Sourcerer	

depth first search I	(3/3)	 Sourcerer	
tic tac toe I	(2/3)	 Sourcerer	

api amazon A	(3/3)	 Koders	
mail sender A	(3/3)	 Koders	

array multiplication I	(2/3)	 Koders	
algorithm for parsing string integer I	(3/3)	 Koders	

binary search tree I	(2/3)	 Koders	
file writer A	(3/3)	 Koders	

regular expressions A	(3/3)	 Mica	
concatenating strings A	(2/3)	 Mica	

awt events A	(3/3)	 Mica	
date arithmetic I	(3/3)	 Mica	

Jspinner A	(3/3)	 Mica	
prime factors I	(3/3)	 CodeExchange	

fibonacci I	(3/3)	 CodeExchange	
combinations n per k I	(3/3)	 CodeExchange	

input stream to byte array A	(3/3)	 CodeExchange	
spring rest template A	(3/3)	 CodeExchange	

 

Table 11. Twenty-One Representative Queries. 
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rank	400	the	results	begin	to	climb	again	in	similarity	and	gradually	steady-out.	In	this	graph,	

400	is	the	“turning	point”	(highlighted	with	a	green	square),	because	it	is	the	deepest	valley	

where	the	results	are	most		
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Figure 53. Average Group Similarities for 21 Queries at Different Ranks. 
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diverse	and	after	which	they	never	return	to	become	more	diverse.	In	the	next	graph	to	the	

right	(showing	result	similarity	for	tic	tac	toe),	we	find	the	deepest	valley	to	be	at	rank	200.			

	

We	found	the	average	turning	point	in	the	results	presented	in	Figure	52	to	be	at	rank	259	

(min=65,	max=450,	standard	deviation=107).		This	means	that,	on	average,	results	with	rank	

lower	than	259	(259 + 𝑆𝑆, 𝑆𝑆 ≥ 1)	would	be	similar	to	results	higher	in	rank	and	suggests	then	

that	considering	results	at	lowers	ranks	than	259	would	do	little	in	creating	a	more	diverse	

set	S.	We	therefore	set	R	to	be	above	259	when	using	MMR.		In	our	evaluation	of	the	ranking	

algorithms	in	Chapter	5.3.4	we	set	R	to	1000.	

	

5.3.2.2	Size	of	S	
	
MMR	takes	as	 input	 the	 results	𝑅𝑅	 from	a	query,	 an	empty	set	𝑆𝑆	 to	populate	with	diverse	

results	from	𝑅𝑅,	and	the	size	𝑘𝑘	to	make	𝑆𝑆.	In	the	previous	section,	we	found	a	result	size	of	𝑅𝑅	

that	would	support	creating	a	diverse	set	𝑆𝑆	without	having	to	consider	all	results	in	𝑅𝑅	and	

thus	saves	time	in	running	MMR.	In	this	section,	we	are	interested	in	determining	how	large	

the	diverse	set,	𝑆𝑆,	should	be	or,	in	other	words,	what	number	to	assign	to	𝑘𝑘.	

	

Our	objective	for	setting	the	size	of	𝑆𝑆	was	to	make	it	small	enough	so	that	the	user	would	

consider	all	the	results	when	choosing	a	like-this	query	to	apply,	but	large	enough	to	give	the	

user	a	sufficient	number	of	options	to	choose	from.	To	address	this,	our	approach	was	simply	

to	 do	 a	 literature	 search	 to	 determine	 how	many	 results	 people,	 in	 general,	 look	 at.	We	

discovered	that,	in	general,	they	do	not	look	past	the	top	ten	results	from	a	query	[21],	[56],	

[117].	As	such,	we	decided	to	set	𝑘𝑘,	the	size	of	𝑆𝑆,	to	be	10.	
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5.3.2.3	ST	Design	

As	stated,	MMR	forms	the	basis	of	both	diversity	ranking	algorithms	that	we	explored.		Both	

designs	are	essentially	different	configurations	of	MMR,	with	important	distinctions.	Social-

Technical	is	our	first	diversity	ranking	algorithm	and	is	presented	in	Figure	54.	Essentially,	

the	algorithm	takes	 the	 top	results,	R,	and	submits	 it	 to	MMR	to	produce	a	diverse	set	of	

results.	 	The	configuration	of	MMR	is	listed	inside	the	MMR	component	in	Figure	54.	 	The	

configuration	specifies	that	MMR	should	try	to	find	the	most	diverse	set	by	setting	weight	to	

0	(i.e.,	only	the	similarity	scores	are	considered	when	constructing	the	set	of	diverse	results	

and	not	topicality	scores),	use	our	similarity	function	by	setting	𝑆𝑆𝑆𝑆𝑚𝑚$ = 𝑆𝑆𝑆𝑆𝑚𝑚$
%& ,	and	produce	

a	set	of	size	10	by	setting	𝑘𝑘 = 10.	The	topicality	function	is	TF-IDF	by	setting	𝑆𝑆𝑆𝑆𝑚𝑚< = 𝑇𝑇𝑇𝑇 −

𝐼𝐼𝐷𝐷𝑇𝑇,	but	since	weight	is	set	to	0,	𝑆𝑆𝑆𝑆𝑚𝑚<	 is	ignored	and	topicality	scores	are	not	considered	

when	constructing	the	diverse	set	of	results.	

	

5.3.2.4	MWL-ST	Hybrid	Design	

While	the	Social-Technical	algorithm	is	configured	to	produce	the	most	diverse	set	of	results,	

we	 were	 concerned	 that	 just	 having	 diverse	 results	 for	 a	 keyword	 query	 may	 not	 be	

sufficient.	 	Specifically,	selecting	the	most	diverse	results	might	include	results	that,	while	

very	different,	might	only	be	different	because	they	are	lower	in	quality.		A	quality	we	were	

Figure 54. ST Algorithm. 
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particularly	 concerned	 about	 was	 conciseness,	 by	 which	 we	 mean	 results	 that	 are	 both	

complete	and	to	the	point.	If	the	results	were	unnecessarily	verbose	and	long	or	incomplete	

it	might	interfere	with	the	programmer	from	recognizing	that	result	as	anything	on	which	

they	 could	 issue	 a	 like-this	 query.	 For	 example,	 we	 submitted	 the	 keywords	 matrix	

multiplication	 to	CodeExchange	when	 configured	only	 to	match	 results	using	TF-IDF	and	

received	the	top	three	results	presented	in	Figure	55	(with	metadata	presented	in	the	top	

right	corner).	The	first	result	is	an	empty	class	that	appears	to	be	the	beginning	of	a	matrix	

multiplication	 implementation.	 While	 brief,	 this	 result	 is	 not	 complete	 and,	 thus,	 not	 a	

concise	example	of	matrix	multiplication.		The	second	result	is	a	class	for	signal	processing	

using	a	signal	matrix,	but	not	doing	any	multiplication	–	 it	has	unneeded	code.	The	 third	

result	models	scalar	matrix	multipliers,	but	does	not	do	any	multiplication	–	it	has	unneeded	

code.		These	top	three	results	have	the	highest	TF-IDF	scores,	yet	none	of	them	demonstrate	

any	sort	of	matrix	multiplication	that	is	brief	and	complete	(i.e.	concise).	While	these	three	

results	would	not	necessarily	be	chosen	by	the	ST	algorithm,	they	illustrate	the	existence	of	

low	quality	results	that	could	be	chosen	if	not	controlled	for.		
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package com.dream.algorithm.dp; 
/** 
 * matrix-chain multiplication problem<br> 

 * 矩阵链乘 
 * @author liushaohui 
 */ 
public class MCMP {} 

package signals.types; 
 
import matrix.MatrixHelper; 
import org.apache.mahout.math.Matrix; 
import signals.processing.Decoder;  
import signals.processing.Encoder; 
 
public class Sound implements SignalProcessing{     
    private Matrix signalMatrix;     
    public Sound(Matrix soundMatrix){ 
        this.signalMatrix = soundMatrix; 
    }     
    public Matrix getMatrix(){ 
        return this.signalMatrix; 
    } 
    @Override 
    public void encode() { 
        Encoder.encode(this); 
    } 
... 
import org.apache.commons.math.linear.RealMatrix; 
/** 
 * This is a domain object for the parameters  
 * needed when performing 
 * scalar mulitiplication. 
 * @author Jonathan Cohen 
 * 
 */ 
public class ScalarMultiplicationParameters { 
    private double scalarMultiplier; 
    private NamedRealMatrix matrix = null; 
    public double getScalarMultiplier() { 
        return scalarMultiplier; 
    } 
    public void setScalarMultiplier(double scalarMultiplier) { 
        this.scalarMultiplier = scalarMultiplier; 
    } 
    public NamedRealMatrix getMatrix() { 
        return matrix; 
    } 
    public void setMatrix(NamedRealMatrix matrix) { 
        this.matrix = matrix; 
    } 
    public void setMatrix(RealMatrix matrix) { 
        this.matrix = new NamedRealMatrix( matrix ); 
    } 
} 

 

Rank number: 1 
Complexity: 0 
Size: 111 
Calls: 0 
TF-IDF score: 2.8090613 
 

Rank Number: 2 
Complexity: 0 
Size: 591 
Calls: 4 
TF-IDF score: 2.5540679 

Rank Number: 3 
Complexity: 0 
Size: 685 
Calls: 0 
TF-IDF score: 2.32024 

Figure 55. Examples of not Concise Matrix Multiplication Results. 
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5.3.2.4.1	ComplexityMC	Density	

To	control	for	conciseness	of	results	we	developed	a	new	metric	called	ComplexityMC	Density	

(M	 stands	 for	method	and	C	 stands	 for	 character)	 that	was	designed	 to	be	 a	heuristic	 to	

measure	conciseness	by	giving	results	 that	do	more	computation	with	 less	code	a	higher	

score	 than	results	doing	 less/equal	computation	with	more	code.	Formally,	ComplexityMC	

Density	is	defined	in	Equation	2.	Cyclomatic	complexity	is	used	to	measure	the	amount	of	

computation	(by	counting	all	possible	branch	points	in	the	result),	where	higher	scores	of	

complexity	help	raise	the	ComplexityMC	Density	score.	The	amount	of	code	in	a	result	that	is	

performing	 the	 computations	 lowers	 the	 ComplexityMC	 Density	 score	 by	 multiplying	

complexity	by	the	inverse	of	the	amount	of	code	used.		The	amount	of	code	used	is	measured	

by	the	size	(number	of	characters)	of	the	result	and	the	number	of	methods	used	that	are	

external	to	the	result	(e.g.,	method	calls	in	libraries	or	in	other	classes).	The	ComplexityMC	

Density	 scores	 for	 the	 results	 in	 Figure	 55	 come	 out	 to	 be	 all	 zero	 because	 each	 has	 a	

complexity	of	zero.	

	

Figure	56	shows	results	returned	in	the	previous	example	for	the	matrix	multiplication	query	

that,	while	lower	in	rank	than	the	examples	in	Figure	55,	have	higher	ComplexityMC	Density	

scores	(0.00986,	0.00479,	and	0.00200)	compared	to	the	examples	in	Figure	55.		In	Figure	

56,	the	first		

ComplexityMCDensity = complexity( ) 1
externalMethodCalls

⎛
⎝⎜

⎞
⎠⎟

1
characters

⎛
⎝⎜

⎞
⎠⎟

Equation 2. Definition of ComplexityMC Density. 
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	 public class MatrixChainMultiplication { 
    public int matrixChainMultiplication(int [] src) { 
 
        int [][] mc=new int[src.length+1][src.length+1]; 
        mc[0][0]=0; 
 
        for(int len=0;len<src.length+1;len++) { 
            for(int i=0;i+len<src.length;i++) { 
                int j=i+len; 
                mc[i][j]=Integer.MAX_VALUE; 
                if(len==1 || len==0) { 
                    mc[i][j]=0; 
                    continue; 
                } 
                for (int k=i+1;k<j;k++) {  
                     mc[i][j]= 
                      Math.min(mc[i][j], 
                                mc[i][k]+mc[k][j]+src[i]*src[k]*src[j]); 
                } 
            } 
        } 
        return mc[0][src.length-1]; 
    } 
} 
public class MatrixMultiplicationNaive { 
 
    private static final String ERRMSG_FORMAT = 
        "Columns [%d] of first argument not equal  
to rows [%d] of second "+"argument"; 
 
    public static int[][] multiply(int[][] f, int[][] s){ 
        if (f[0].length != s.length) { 
            String errMsg = String.format(ERRMSG_FORMAT, f[0].length, s.length); 
            throw new IllegalArgumentException(errMsg); 
        } 
        int rows = f.length; 
        int cols = s[0].length; 
        int common = f[0].length; 
        int[][] result = new int[rows][cols]; 
        for (int i = 0; i < rows; i++) { 
            for (int j = 0; j < cols; j++) { 
                for (int k = 0; k < common; k++) { 
                    result[i][j] += f[i][k] * s[k][j]; 
... 

public class StracensMatrixMultiplication {    
 //add method which adds two matrices 
    public int[][] add(int[][] a,int[][] b){ 
        int[][] sum= new int[a.length][a[0].length]; 
        for(int i=0;i<a.length;i++){ 
            for(int j=0;j<a[0].length;j++){ 
                sum[i][j]=a[i][j]+b[i][j]; 
            } 
        }  return sum; 
    }//considering a, b as a square matrix and multiplication is possible only if both has same 
dimention 
    public int[][] multiply(int[][] a, int[][] b){ 
... 

 

Rank Number: 41 
Complexity: 5 
Size: 507 
Calls: 1 
TF-IDF score: 1.6406572 
 

Rank Number: 254 
Complexity: 4 
Size: 834 
Calls: 1 
TF-IDF score: 0.9363538 
 

Rank Number: 137 
Complexity: 22 
Size: 3651 
Calls: 3 
TF-IDF score: 1.1811008 
 

Figure 56. Examples of More Concise Results for Matrix Multiplication. 
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result	is	an	implementation	of	matrix	chain	multiplication,	which	not	only	performs	matrix	

multiplication,	but	decides	 the	most	optimal	 sequence	 to	perform	 the	multiplication.	The	

second	 result	 is	 an	 implementation	 of	 the	 straight	 forward	 naïve	 approach	 to	 matrix	

multiplication.	 The	 third	 result	 is	 an	 implementation	 of	 matrix	 multiplication	 using	

Strassen’s	algorithm	(a	more	optimal	approach	than	the	naïve	version).		The	results	in	Figure	

56	appear	to	be	examples	of	matrix	multiplication	that	are	shorter	and	more	to	the	point		

than	those	results	in	Figure	55,	which	agrees	with	the	higher	scores	assigned	to	the	results	

by	the	ComplexityMC	Density	metric.	

	

Given	that	the	results	in	Figure	55	had	a	lower	score	than	those	in	Figure	56	(because	they	

had	 a	 complexity	 of	 zero),	 it	 is	 reasonable	 to	 think	 perhaps	 optimizing	 only	 on	 higher	

complexity	might	be	the	only	property	of	a	result	that	ComplexityMC	Density	should	score.		

However,	Figure	57	shows	one	of	the	results,	also	from	the	matrix	multiplication	query,	as	an	

example	of	why	optimizing	only	on	complexity	is	not	sufficient.		While	this	result	contains	

matrix	multiplication	code,	it	also	has	many	other	mathematical	functions	and	user	interface	

code,	which	makes	it	not	a	very	concise	example	of	matrix	multiplication.	The	ComplexityMC	

Density	matches	 this	 intuition	 by	 scoring	 it	 at	 .00000044	 (about	 5	 orders	 of	magnitude	

smaller	than	the	scores	for	the	results	in	Figure	56).		
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package Display; 
 
import Output.OutputFormat; 
import Tree.BuildTree; 
import java.io.IOException; 
import java.net.MalformedURLException; 
import java.text.ParseException; 
import javax.swing.border.*; 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.image.*; 
import javax.imageio.ImageIO; 
import java.util.Stack; 
import java.io.*; 
 
import org.jdom.*; 
import org.jdom.input.*; 
 
/** 
 * Class to display applet and control all GUI interactions 
 * @author Alex Billingsley 
 */ 
public class MainApplet extends javax.swing.JApplet { 
     
    private AddComponent addComponent; 
    private OutputFormat output; 
    private BuildTree buildTree; 
    private StatusBar statusBar; 
     
    private MseSelectListener mouseSelectListener; 
    private MseMotionSelectListener motionSelectListener; 
     
    private boolean dragging; 
    private InputComponent newComponent; 
    private InputComponent[] inputComponents; 
... 
 (); 
     
    /** Initializes the applet MainApplet 
     * Initialises all fields 
     */ 
    public void init() { 
        try { 
            java.awt.EventQueue.invokeAndWait(new Runnable() { 
                public void run() { 
                     
                    // Set output format parameter 
                    outputFormat = getParameter("outputFormat"); 
                     
                    // Open with object parameter 
... 
jButtonMatrix1 = new javax.swing.JButton(); 
        jButton77 = new javax.swing.JButton(); 
        jButtonMatrix = new javax.swing.JButton(); 
        jButtonMatrix2 = new javax.swing.JButton(); 
        jButtonMatrix3 = new javax.swing.JButton(); 
... 

 

Rank Number: 567 
Complexity: 105 
Size: 141129 
Calls: 1686 
TF-IDF score: 0.3379513 
 

Figure 57. Matrix Multiplication Example with High Complexity.	
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5.2.2.4.2	 Using	 ComplexityMC	 Density	 in	 MWL-ST	

Hybrid			

We	use	the	ComplexityMC	Density	to	control	for	conciseness	in	a	new	ranking	algorithm	called	

MoreWithLess	(MWL)	that	we	then	use	 in	 the	MWL-ST	Hybrid	algorithm.	 	MoreWithLess	

simply	takes	the	top	results	produced	from	TF-IDF	and	re-ranks	them	in	ascending	order	by	

their	ComplexityMC	Density	scores.	The	MWL-ST	Hybrid	algorithm,	as	shown	in	Figure	58,	

passes	the	top	most	100	concise	results	to	the	MMR	ranking	algorithm	to	find	the	10	most	

diverse	results	among	the	most	concise.		

	

5.2.2.5	Kullback-Leibler	Diversity	Ranking	Algorithm	

While	 we	 now	 have	 two	 alternative	 diversity	 ranking	 algorithms	 using	 our	 similarity	

function	 (𝑆𝑆𝑆𝑆𝑚𝑚$
%&)	 for	 code,	various	machine	 learning	approaches	 for	measuring	similarity	

between	 natural	 language	 documents	 already	 exist.	 	 While	 these	 approaches	 are	 not	

designed	 for	 code,	we	used	one	 to	 create	 another	 configuration	of	MMR,	 as	presented	 in	

Figure	59,	so	that	we	might	gauge	how	well	an	approach	for	measuring	similarity	between	

natural	language	documents	performs	in	MMR.		The	technique	we	chose	uses	the	Kullback-

Leibler	divergence	[63]	similarity	function	that	measures	the	similarity	between	two	natural	

Figure 58. MWL-ST Hybrid  Algorithm.	
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language	 documents	 by	 measuring	 how	 many	 of	 the	 topics	 are	 in	 common	 in	 both	

documents.			

	

Topics	are	extracted	from	the	documents	using	a	popular	technique	called	latent	Dirichlet	

allocation	(LDA)	[11].	Essentially,	LDA	takes	all	documents,	in	our	case	the	top	results	from	

the	search	engine,	and	creates	topics	that	describe	the	results.		Each	topic	is	a	distribution	of	

words,	where	high	probability	words	are	more	descriptive	than	low	probability	words	for	

that	topic.		For	example,	if	a	topic’s	highest	probability	words	are	chicken,	plow,	cows,	and	

horses,	then	that	topic	can	be	reasonably	interpreted	as	something	about	farming	and	we	

can	conclude	some	portion	of	the	documents	has	something	to	do	with	farming.		LDA	lets	us	

figure	out	which	portion,	because	LDA	models	each	document	as	a	topic	distribution.		In	this	

way,	documents	become	a	distribution	of	topics	and	are	what	LDA,	in	our	case,	sends	to	MMR	

in	the	Kullback-Leibler	algorithm	in	Figure	59.	 	Once	MMR	receives	the	results,	each	as	a	

topic	distribution,	it	will	apply	the	KL-Divergence	function,	which	measures	how	similar	two	

topic	distributions	are,	to	create	a	diverse	set	of	results.	

	
	
	
	
	
	

Figure 59. Kullback-Leibler Diversity Algorithm. 
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5.2.3	 Controls	 Used	 in	 Evaluation	 of	 Diversity	

Algorithms	

To	evaluate	the	diversity	ranking	algorithms,	we	conducted	a	pair-wise	preference	survey	to	

examine	which	of	the	ranking	algorithms	produced	a	first	set	of	results	that	programmers	

preferred.			

However,	 to	 control	 for	 the	 effect	 of	 diversity	 of	 results,	we	 also	 included	 other	 ranking	

algorithms	in	the	evaluation	that	do	not	explicitly	diversify	their	top	results.		In	this	way,	we	

can	also	assess	the	impact	diversity	has	on	programmers’	preferences.	

We	compare	our	diversity	ranking	algorithms	against	a	variety	of	representative	topicality	

ranking	 algorithms	 that	 do	 not	 focus	 on	 diversity.	 We	 chose	 the	 TF-IDF	 algorithm	 as	 a	

baseline	 control,	 because	 it	 is	 a	 very	 basic	 and	 a	 well-known	 approach	 for	 scoring	 a	

document’s	 topicality,	 but	many	 ranking	algorithms	also	build	on	 it.	 In	particular,	 all	 the	

other	 algorithms	 we	 compare	 are	 enhancements	 of	 TF-IDF	 in	 some	 way	 (our	 diversity	

algorithms	 and	 other	 controls).	 	 This	 allows	 us	 to	 understand	 the	 differences	 in	 the	

performance	of	the	algorithms	in	terms	of	the	differences	in	the	enhancements	to	TF-IDF.	

For	the	other	controls,	we	chose	WordNet	[66],	OpenHub,	and	MoreWithLess.		WordNet	was	

recently	shown	to	improve	TF-IDF	with	query	expansion.		We	chose	OpenHub	[140],	because	

it	 is	a	popular	search	engine	that	 improves	TF-IDF	by	boosting	results	 that	have	variable	

names	and	other	code	symbols	matching	with	the	query.	Lastly,	MoreWithLess	is	a	control,	

of	 our	 own	making,	 to	measure	 the	 impact	 of	 optimizing	 on	 conciseness	 in	 the	MWL-ST	

Hybrid	algorithm.	In	the	next	sections,	we	discuss	our	controls	TF-IDF,	WordNet,	OpenHub,	

and	MoreWithLess.	
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5.2.3.1	TF-IDF	

The	TF-IDF	ranking	algorithm	used	is	the	Lucene	variant	of	TF-IDF	[165],	defined	in	Equation	

3,	which	 is	what	many	Apache	 Solr	 implementations	use	 (including	CodeExchange).	At	 a	

high-level,	this	function	takes	in	a	query	𝑞𝑞	and	a	document	𝑑𝑑	(document	is	a	generic	term	to	

refer	to	any	syntactical	artifact)	and	returns	a	numeric	score	measuring	how	descriptive	the	

query	is	of	the	topics	in	the	document.		TF-IDF	does	this	by	measuring	how	often	terms	in	

the	 query	 appear	 in	 the	 document	 and	 how	 common	 those	 terms	 are	 in	 the	 rest	 of	 the	

documents	 indexed.	 Terms	 that	 appear	 frequently	 in	 the	 document,	 but	 also	 appear	

frequently	in	other	documents,	are	not	very	descriptive	and	contribute	less	to	the	score	than	

terms	 that	 appear	 frequently	 in	 the	 document	 and	 more	 rarely	 in	 other	 documents.	

Specifically,	for	each	term	𝑆𝑆	in	𝑞𝑞,	the	function	sums	the	frequency	of	𝑆𝑆	in	𝑑𝑑	(with	function	𝑆𝑆𝑡𝑡),	

multiplies	 this	 frequency	 by	 the	 inverse	 document	 frequency	 (with	 function	 𝑆𝑆𝑑𝑑𝑡𝑡)	 that	

measure	how	common	this	term	is	in	the	other	documents	indexed,	multiplies	𝑆𝑆𝑑𝑑𝑡𝑡	by	any	

boosts	for	a	term	(with	function	𝑔𝑔𝑤𝑤𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑆𝑆)	if	some	terms	are	more	important,	and	finally	

multiplies	this	by	a	normalization	factor	that	weighs	document	fields	with	less	terms	higher	

(with	 function	 𝑙𝑙𝑔𝑔𝑆𝑆𝑚𝑚).	 	 We	 do	 not	 make	 use	 of	 the	𝑔𝑔𝑤𝑤𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑆𝑆	 function,	 so	 all	 terms	 are	

weighted	equally.		The	normalization	function,	however,	impacts	the	final	score,	because	if	a	

document’s	contents	are	all	in	one	field	or	the	query	is	directly	on	the	field	containing	all	the	

document’s	contents,	 then	shorter	documents	will	be	ranked	higher	because	of	 the	𝑙𝑙𝑔𝑔𝑆𝑆𝑚𝑚	

function.		The	assumption	behind	norm	is	that	the	importance	of	a	term	in	a	document	field	

is	inversely	proportional	to	how	many	terms	the	document	field	has	in	total.		

TF − IDFscore q,d( ) = tf t,d( ) i idf t( )2 i t.getBoost ( ) i norm t,d( )( )t∈q∑ i cord q,d( ) i queryNorm q( )

Equation 3. TF-IDF in Apache Solr. 
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The	entire	summation	in	Equation	3	is	weighted	by	the	𝑖𝑖𝑔𝑔𝑔𝑔𝑆𝑆𝑑𝑑	and	𝑞𝑞𝑢𝑢𝑤𝑤𝑆𝑆𝐴𝐴𝑞𝑞𝑔𝑔𝑆𝑆𝑚𝑚	 functions.		

The	𝑖𝑖𝑔𝑔𝑔𝑔𝑆𝑆𝑑𝑑	function	is	used	to	score	documents	higher	that	have	more	of	the	terms	in	query	

𝑞𝑞,	 and	𝑞𝑞𝑢𝑢𝑤𝑤𝑆𝑆𝐴𝐴𝑞𝑞𝑔𝑔𝑆𝑆𝑚𝑚	 is	 used	 to	 normalize	 the	 document	 score	 so	 that	 it	 can	 be	 compared	

across	queries	and	indexes.	

	

5.3.3.2	WordNet	

Query	expansion	is	a	technique	that	attempts	to	match	topically	related	documents	with	a	

keyword	 query,	 but	 where	 these	 documents	 might	 not	 contain	 any	 of	 the	 terms	 in	 the	

keyword	query.	 	A	general	approach	 is	 to	expand	the	query	with	synonyms	so	that	other	

related	documents	have	a	chance	to	be	matched.	 	Often	these	synonyms	are	taken	from	a	

prepared	thesaurus,	such	as	WordNet	[135],	that	are	publically	available	and	can	provide	

synonyms	and	antonyms	to	English	words.			

	

Our	query	expansion	control,	WordNet,	is	from	Lemos’	et	al.	[66]	who	present	a	technique	to	

expand	keyword	queries	for	code	using	WordNet.		For	each	term	in	the	query,	all	synonyms	

for	the	term	are	added	to	the	query	and	all	antonyms	are	added	but	each	are	negated	so	that	

code	 with	 antonyms	 are	 not	 matched.	 Specifically,	 Lemos’	 et	 al.’s	 WordNet	 expansion	

algorithm	is	described	as	follows.	 	Given	a	query	𝑄𝑄 = 𝑆𝑆<, … , 𝑆𝑆j ,	where	𝑆𝑆D 	 is	a	term	in	the	

query,	the	algorithm	automatically	expands	the	query	such	that	𝑄𝑄	becomes:		
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In	the	query	expansion	of	𝑄𝑄,	𝑖𝑖DE 	,	where	1 ≤ 𝑗𝑗 ≤ 𝑚𝑚D ,	is	a	synonym	from	WordNet	for	term	𝑆𝑆D ,	

and	𝑚𝑚D 	is	the	number	of	synonyms	for	term	𝑆𝑆D ,	Further,	𝑗𝑗Dk, where	1 ≤ 𝑔𝑔 ≤ 𝑔𝑔D ,	is	an	antonym	

from	WordNet	for	term	𝑆𝑆D ,	and	𝑔𝑔D 	is	the	number	of	antonyms	for	term	𝑆𝑆D .	To	implement	this	

control	we	used	the	JWI	Java	library	[157]	to	interface	with	WordNet.	

	

5.3.3.3	OpenHub	

Our	other	control,	OpenHub2	[140],	is	a	popular	code	search	engine	for	a	variety	of	different	

languages,	but	supports	search	over	Java	code	(important	since	we	apply	all	these	ranking	

algorithms	on	an	index	of	Java	code).		Since	we	do	not	have	access	to	the	internals	of	Open	

Hub,	we	 cannot	 explain	 exactly	how	 it	works,	 but,	 in	 an	email	 exchange	with	 the	 former	

architect	 of	 OpenHub,	 we	 were	 told	 that	 OpenHub	 extends	 the	 basic	 Lucene	 TF-IDF.	

Specifically,	when	 ranking,	 OpenHub	 boosts	 results	 containing	 identifier	 names	 or	 other	

code	symbols	matching	the	query,	gives	a	smaller	boost	to	results	with	parts	of	its	identifier	

names	or	code	symbols	matching	the	query,	and	then	gives	an	even	smaller	boost	to	results	

containing	lower	case	parts	of	terms	in	the	query.		

	

                                                
2 OpenHub’s code search has, unfortunately, been discontinued at the time of this writing, but was 
available at the time it was used in our experiments. 

t1 ∨ s11 ∨!∨ s1m1( )∧!∧ tk ∨ sk1 ∨!∨ skmk( )
∧

¬ a11 ∨!∨ a1o1( )∧!∧¬ an1 ∨!∨ anon( )
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5.3.3.4	MoreWithLess	

This	 control	 is	 of	 our	 own	 design	 to	 discover	 if	 optimizing	 on	 conciseness	 without	

diversifying	is	preferred	by	our	participants.		Specifically,	this	control	is	the	MWL-ST	Hybrid		

diversity	algorithm	without	the	use	of	MMR	to	diversify	the	results	as	shown	in	Figure	60.		

	

5.3.4	Evaluation	of	Ranking	Algorithms	

Given	the	diversity	ranking	algorithms	(three	in	total)	and	control	algorithms	(four	in	total),	

our	goal	was	to	find	which	diversity	algorithm	performed	best	for	first	keyword	queries	in	

CodeLikeThis.	 	Further,	our	goal	was	to	discover	how	diversity	ranking	algorithms	would	

perform	 compared	 to	 the	 traditional	 ranking	 algorithms	 among	 our	 controls.	 Since	 our	

approach	to	search	is	centered	around	supporting	the	programmer,	we	take	a	user	centric	

point	of	view	in	assessing	the	ranking	algorithms	for	the	first	query.	To	do	so,	we	conducted	

a	pair-wise	preference	survey	by	collecting	preferences	from	programmers	for	the	top	ten	

results	produced	by	the	different	ranking	algorithms.	The	survey	itself	was	taken	through	an	

online	 survey	 system	 and	 was	 approximately	 2.5	 hours	 long	 and	 done	 individually	 and	

remotely.	The	survey	started	by	presenting	the	instructions	in	Figure	61	and,	once	read	by	

the	participant,	presented	different	questions.	Each	question	displayed	a	different	query	and	

the	 top	 ten	 results	 from	 two	different	 ranking	algorithms	 (labeled	as	 “A”	 and	 “B”	 for	 the	
Figure 60. MoreWithLess. 
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participant)	 for	 that	 query.	 Participants	 reviewed	 each	 of	 the	 top	 ten	 for	 the	 query	 and	

selected	either	“A”	or	“B”	with	the	survey	interface.		

	

We	designed	the	study	so	that	each	pair	of	ranking	algorithms	(21	pairs	in	total)	were	judged	

by	each	participant	once	and	evaluated	for	each	query	once,	balancing	the	design.		This	was	

achieved	by	 recruiting	21	participants	 to	 evaluate	 each	pair	of	 ranking	algorithms	on	21	

different	queries	using	the	Latin	square	assignment	shown	in	Table	12.	Each	of	the	queries	

are	identified	in	the	header	of	the	table	(Q1…Q21)	and	each	participant	identifier	is	on	the	

left	most	column	(P1…P21).	Not	shown	in	Table	12	is	the	order	 in	which	the	participants	

received	 their	 queries.	 To	 remove	 ordering	 bias,	 the	 order	 in	 which	 each	 person	 was	

presented	 queries	 was	 randomized;	 further,	 the	 order	 of	 the	 results	 in	 a	 top	 ten	 were	

randomized,	and	their	assignment	as	results	“A”	or	“B”	in	the	survey	was	done	at	random.	

You	will	be	asked	to	complete	21	tasks.		For	each	task,	you	will	be	given	a	keyword	query	

and	the	top	ten	results	from	Java	code	search	engine	A	and	Java	code	search	engine	B.	

The	results	are	presented	in	two	lists	and	each	list	is	labeled	at	the	top	by	the	search	

engine's	 name	 producing	 that	 list.	 The	 lists	 are	 not	 ordered	 by	 ranking	 and	 instead	

should	be	 treated	as	a	 set	of	 results.	 	Carefully	 examine	 the	 result	 sets	 from	search	

engine	A	and	B.	 	Decide	which	 search	engine	 results	 you	would	prefer	getting.	Your	

decision	should	consider	each	of	the	results	in	each	set,	but	judge	the	set	as	a	whole.	

Indicate	 your	 decision	 by	 clicking	 the	 label	 naming	 your	 preferred	 search	 engine's	

results.	After	making	your	selection	you	will	be	asked	to	briefly	explain	why.		Once	done,	

you	can	continue	to	the	next	task.	

Figure 61. Instructions Given to Participants. 
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The	queries	we	used	are	the	21	representative	queries	presented	in	Table	11	that	provide	

us	with	realistic	queries	for	the	ranking	algorithms	to	run	on.			

	

A	screen	shot	of	the	survey	system’s	interface	is	presented	in	Figure	62.	The	question	prompt	

is	displayed	in	the	window	on	the	left	and,	in	this	question,	displays	query	“Fibonacci”	at	the	

top	of	the	screen.		The	top	ten	from	ranking	algorithm	“A”	are	on	the	left	and	the	top	ten	from	

ranking	algorithm	“B”	are	on	the	right.	The	labels	“A”	and	“B”	are	used	to	hide	the	real	names	

of	 the	 ranking	algorithms.	The	users	 can	scroll	down	 to	 see	all	 the	 results	and	can	scroll	

inside	each	of	the	editors	to	see	the	code	entirely.		Each	editor	color	codes	the	syntax	of	the	

code	to	make	it	easier	to	read.	The	editors	also	serve	to	provide	a	uniform	interface	across	

the	top	ten	produced	from	each	of	the	seven	ranking	algorithms.	The	participants	indicate	

their	preference	by	selecting	the	button	labeled	as	“A”	or	“B”	occurring	above	the	top	ten	

they	prefer.		Once	they	make	their	selection,	a	popup	box	appears	asking	them	explain	why	

they	made	their	selection.		In	Figure	62,	the	popup	box	is	presented	on	the	right	and	in	this	

Table 12. Latin Square Assignment Design  
(m = MoreWithLess, h = MWL-ST Hybrid, k = KL, s = ST, t=TF-IDF, o = OpenHub, w = WordNet) 
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example	appeared	after	the	user	selected	button	“A”.		The	popup	box	asks	the	user	to	explain	

why	they	chose	“A”	and	provides	a	text	box	for	them	to	do	write	their	answer	(the	popup	box	

would	have	asked	why	they	chose	“B”	if	it	was	chosen).		Once	they	are	finished	typing	their	

explanation,	they	click	the	button	labeled	“Next	Task”	in	the	popup	box	to	get	the	next	survey	

question	or,	if	they	have	answered	all	questions,	reach	the	end	of	the	survey.	

	

To	recruit	21	participants	with	professional	programming	experience	and	who	were	skilled	

in	Java,	we	sent	out	an	advertisement	on	UCI’s	Institute	for	Software	Research	[150]	mailing	

list.	 Both	 professional	 programmers	 and	 students	 subscribe	 to	 this	 list.	We	 recruited	 21	

Figure 62. Survey System Screen Shot. 

Table 13. Participant Demographics. 

	 All	 Student	 Non-Student	

Avg.	age	 32	 30.3	 34.1	

Avg.	years	worked	 7.8	 4.8	 11.7	

Avg.	Java	skill	(1-10)	 7.5	 7.3	 7.8	

Male	 19	 10	 9	

Female	 2	 2	 0	
Number	of	programmers	 21	 12	 9	
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programmers	who	self-reported	an	average	of	7.8	years	of	work	experience	and	a	high	skill	

level	in	Java	of	7.5	(1	being	novice	and	10	being	expert).		Table	13	presents	the	self-reported	

demographics	of	our	participants.	

	

5.3.4	Results	from	Assessment		

The	experiment	yielded	441	preferences	(21	programmers	times	21	questions)	from	which	

we	 created	 the	 “preference”	 table	 shown	 in	 Table	 14.	 	 	 Each	 row	 identifies	 a	 ranking	

algorithm	and	each	cell	shows	how	many	times	that	ranking	algorithm	was	preferred	against	

the	 ranking	 algorithm	 identified	 by	 its	 column	header.	 	 For	 example,	MoreWithLess	was	

preferred	over	Open	Hub	14	times.		Since	each	ranking	algorithm	competes	against	the	other	

21	 times,	 this	 means	 MoreWithLess	 was	 preferred	 over	 Open	 Hub	 67%	 of	 the	 time	

(percentages	appear	beside	the	preference	totals).		The	total	preferences	for	each	ranking	

algorithm	 appear	 down	 the	 total	 column.	 	 	MoreWithLess	 and	MWL-ST	Hybrid	 have	 the	

highest	preference	percentage	by	far	(67%	and	64%	respectively).		The	others	all	have	below	

a	 50%	 percentage.	 	 The	 totals	 suggest	 that	 our	 participants	 prefer	 the	 results	 from	

MoreWithLess	and	the	MWL-ST	Hybrid	more	than	the	others.		

Table 14. Preference Table. 

 MoreWithLess MWL-ST 
Hybrid 

Open 
Hub WordNet TF-IDF KL ST Total 

MoreWithLess  8(38%) 14(67%) 13(62%) 17(81%) 16(76%) 16(76%) 84(67%) 
MWL-ST 

Hybrid 13(62%)  12(57%) 14(67%) 13(62%) 15(71%) 14(67%) 81(64%) 

Open Hub 7(33%) 9(43%)  10(48%) 10(48%) 12(57%) 13(62%) 61(48%) 
WordNet 8(38%) 7(33%) 11(52%)  12(57%) 9(43%) 12(57%) 59(47%) 

TF-IDF 4(19%) 8(38%) 11(52%) 9(43%)  11(52%) 12(57%) 55(44%) 
KL 5(24%) 6(29%) 9(43%) 12(57%) 10(48%)  10(48%) 52(41%) 
ST 5(24%) 7(33%) 8(38%) 9(43%) 9(43%) 11(52%)  49(39%) 
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To	understand	if	the	difference	in	preference	for	MoreWithLess	and	the	MWL-ST	Hybrid	is	

significant,	 we	 conducted	 a	 chi-squared	 test	 on	 the	win-loss	 table	 of	MoreWithLess	 and	

MWL-ST	Hybrid.		The	win-loss	table	is	constructed	by	assigning	a	ranking	algorithm	a	point	

for	winning	 if	 it	was	 preferred	 over	 another	 algorithm	 and	 assigning	 a	 point	 to	 losing	 if	

another	algorithm	was	preferred	over	it.	Table	15	presents	the	win-loss	tables	with	the	chi-

squared	 results	 below	 each	 table.	 	 Both	 chi-squared	 test	 tables	 show	 the	 effect	 size	 (w),	

population	(N),	degrees	of	 freedom	(df),	significance	 levels,	and	power.	The	population	 is	

126	comparisons	 (each	 ranking	algorithm	 is	 compared	126	 times	 total).	The	 significance	

level	for	both	are	below	.05	and	let	us	conclude	the	preferences	for	MWL	and	MWL-ST	Hybrid	

are	significant.		Further,	both	effect	sizes	are	above	.40.		The	effect	size	is	a	way	of	measuring	

the	strength	of	a	phenomena	and	 typically	a	Cohen’s	w	above	 .3	 is	 considered	a	medium	

effect	and	anything	above	.5	is	considered	large	effect	[9].		As	such,	MoreWithLess	and	MWL-

ST	 Hybrid	 had	 a	 medium	 to	 large	 effect	 on	 the	 programmer’s	 preference.	 While	 both	

Table 15. Win-Loss Table for MWL and MWL-ST Hybrid. 

MoreWithLess           
win-loss table 

 MWL-ST Hybrid       
win-loss table 

  win  loss    win  loss 

observed 84 42  observed 81 45 

expected 63 63  expected 63 63 

           

Chi Squared Test  Chi Squared Test 

w = 0.4349398  w = 0.4000399 

N = 126  N = 126 

df = 1  df = 1 

significance  level = 
0.0106 

 significance  level = 
0.03046 

power = 0.99  power = 0.99 
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MoreWithLess	and	MWL-ST	Hybrid	are	preferred	over	other	ranking	algorithms,	we	note	

that	MWL-ST	Hybrid	is	preferred	to	MoreWithLess	more	often	(13	to	8).		

	

While	our	participants	all	had	professional	programming	experience,	12/21	were	currently	

students.	We	studied	whether	students’	preferences	differed	from	non-students.	 	Further,	

since	the	algorithms	were	evaluated	on	two	types	of	queries	(one	for	API	examples	and	the	

other	for	implementation	examples),	we	examined	if	the	participants’	preferences	differ	for	

a	ranking	algorithm	by	type	of	query.	Table	16	shows	the	results	of	this	analysis.	Each	row	

identifies	a	ranking	algorithm	and	each	column	presents	the	number	of	preferences	for	that	

ranking	algorithm	by	all	participants,	students,	non-students,	API/library	query	type,	and	

implementation	 query	 type.	 For	 example,	 Table	 16	 reports	 that	 MWL-ST	 Hybrid	 was	

preferred	by	everyone	in	64%	of	comparisons,	preferred	by	students	in	65%	of	comparisons,	

preferred	by	non-students	in	63%	of	comparisons,	preferred	in	67%	of	comparisons	when	

the	query	type	was	API/library,	and	preferred	in	62%	of	comparisons	when	the	query	type	

was	implementation.		

Table	16.	Preference	by	Student	Status	and	Query	Type.	

	 Total	 Student	
Total	

Non-Student	
Total	

API/library	
Total	

Implementation	
Total	

MoreWithLess	 84(67%)	 49(68%)	 35(65%)	 42(70%)	 42(64%)	
MWL-ST	Hybrid	 81(64%)	 47(65%)	 34(63%)	 40(67%)	 41(62%)	

Open	Hub	 61(48%)	 34(47%)	 27(50%)	 24(40%)	 37(56%)	
WordNet	 59(47%)	 30(42%)	 29(54%)	 30(50%)	 29(44%)	
TF-IDF	 55(44%)	 34(47%)	 21(39%)	 34(57%)	 21(32%)	
KL	 52(41%)	 30(42%)	 22(41%)	 33(55%)	 19(29%)	
ST	 49(39%)	 28(39%)	 21(39%)	 28(47%)	 21(32%)	
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From	Table	16,	we	find	that	the	preference	for	MoreWithLess	and	MWL-ST	Hybrid	are	fairly	

well	 balanced	 among	 students	 and	 non-students	 (3%	 max	 percentage	 difference	 is	 not	

significant	with	Chi	Squared	test),	and	they	are	fairly	well	balanced	among	query	types	(6%	

max	percentage	difference,	which	also	is	not	significant	with	Chi	Squared	test).	So,	the	overall	

higher	preference	for	MoreWithLess	and	MWL-ST	Hybrid		is	consistent	across	students,	non-

students,	and	the	query	types.	However,	we	do	find	a	significant	preference	difference	for	

TF-IDF	(p=.008	with	Chi	Squared	test)	and	KL	(p=.0045	with	Chi	Squared	test)	among	query	

types.	 Specifically,	 TF-IDF	 and	 KL	 are	 more	 preferred	 for	 API	 type	 queries	 than	

implementation	type	queries.	

	

5.3.4.2	Qualitative	Analysis	

While	we	found	a	preference	difference	among	the	ranking	algorithms,	we	also	needed	to	

know	why	there	was	a	difference.	Specifically,	we	wanted	to	know	if	 the	MWL-ST	Hybrid	

algorithm	was	often	preferred	because	of	the	diversity	it	provided	in	the	results,	because,	if	

so,	this	would	confirm	that	our	design	of	MWL-ST	Hybrid		worked	as	expected	and	could	be	

adopted	as	the	keyword	ranking	algorithm	in	CodeLikeThis.	Further,	it	is	also	important	to	

uncover	additional	or	unexpected	criteria	that	the	programmers	used	for	their	preferences	

as	this	might	indicate	the	ranking	algorithms	where	optimizing	on	qualities	not	predicted	

beforehand;	these	qualities	could	then	serve	as	general	guidelines	to	optimize		for	in	future	

ranking	algorithms.		
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Our	approach	to	answering	why	ranking	algorithms	were	preferred	was	through	a	process	

of	affinity	diagraming	(a	grounded-theory	inspired	approach).		This	process	entailed	taking	

all	441	explanations	from	the	programmers	(the	ones	collected	in	the	popup	boxes	as	shown	

in	 Figure	 62)	 and	 having	 a	 group	 of	 people	 cluster	 them	 into	 groups	 by	 similarity.	 Each	

cluster	that	emerged	was	carefully	examined	by	the	group	to	find	common	criterion	across	

the	explanations	in	the	group.	The	criterion	found	for	a	cluster	is	then	used	to	name	it.		The	

resulting	 criteria	 are	 interpreted	 to	 be	 the	 criteria	 the	 participants	 used	 to	 make	 their	

choices.	 For	 example,	 one	 cluster	 had	 the	 explanations	 “For	 simple	 algorithmic	 queries,	 I	

would	prefer	 to	see	shorter	classes	going	cut	 to	 the	chase,	and	 I	 found	that	 in	set	 [MWL_ST	

Hybrid]”	and	“same	amount	of	good	examples,	but	the	ones	in	set	[MoreWithLess]	were	shorter,	

and	therefore	easier	to	understand	and	use”.	 	These	explanations,	along	with	other	similar	

explanations	in	the	cluster	they	occurred	in,	were	used	to	name	the	cluster	“Smaller	Size”.	

	

The	 affinity	 diagramming	 consisted	 of	 three	 rounds	 and	 started	 with	 nine	 software	

engineering	graduate	students	taking	print	outs	of	each	explanation	(which	did	not	include	

the	names	of	any	ranking	algorithms)	and	forming	clusters	by	taping	the	print	outs	to	a	wall	

(as	 shown	 in	 Figure	 63).	 The	 print	 outs	 that	 the	 students	 thought	 were	 similar	 were	

reorganized	to	be	close	together	over	multiple	rounds	of	iteration,	which	sometimes	led	to	

clusters	being	combined	or	breaking	up.	Eventually,	the	group	of	students	gave	each	cluster	

Figure 63. Affinity Diagram on Lab Walls. 
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a	 descriptive	 name	 based	 on	 the	 criteria	 common	 to	 its	 explanations.	 	 For	 example,	 one	

cluster	name	was	“No	Clones”,	because	all	the	explanations	in	that	cluster	had	something	to	

do	with	preferring	the	results	that	had	no	code	clones.	After	two	and	a	half	hours	the	group	

finished	the	first	round	of	affinity	diagraming.	

The	second	round	entailed	 the	author	and	another	graduate	student	colleague	correcting	

mistakes.		Specifically,	they	only	moved	explanations	to	other	clusters	if	they	were	clearly	

appeared	out	of	place.	 	For	example,	 if	an	explanation	was	only	about	relevancy,	but	was	

taped	too	close	to	a	cluster	called	“Smaller	Size”,	then	they	moved	over	closer	to	the	cluster	

called	“Relevancy”.		About	12%	of	the	explanations	were	adjusted3.	

	

The	third,	final,	round	entailed	the	author	and	another	graduate	student	colleague	merging	

clusters	 if	 the	names	of	both	were	 synonyms	of	 each	other.	 	 	 Individually,	 each	graduate	

student	wrote	down	the	list	of	clusters	that	they	thought	should	be	merged.	 	The	clusters	

that	the	students	both	thought	should	be	merged	were	then	merged.	For	example,	both	lists	

stated	the	cluster	“More	examples”	should	be	merged	with	cluster	“Diverse”	and	so	these	

clusters	were	merged.	Once	the	third	round	was	complete,	14	clusters	remained,	which	gave	

us	14	criteria	used	for	preferring	a	ranking	algorithm.	Using	the	14	criteria,	we	counted	how	

many	times	each	ranking	algorithm	was	preferred	using	one	of	the	14	criteria	which	yielded	

the	results	in	Table	17.	The	columns	list	each	of	the	14	criteria	found	and	the	rows	list	each	

ranking	algorithm.		Each	row	maps	how	many	times	a	ranking	algorithm	was	preferred	using	

                                                
3	 The	 following	 list	 reports	how	many	were	moved	 to	different	 sub-clusters	before	merging:	8	 to	Relevant,	3	 to	
Quality,	2	to	More	Keywords,	2	to	Many	More	Examples,	7	to	No	Category,	3	to	Simple,	3	to	Concise,	2	to	Useful,	1	
to	Specific,	2	to	Cleaner,	5	to	No	Preference,	4	to	Diversity,	2	to	No	Clones,	3	to	Implementation	or	Algorithm,	1	to	
Comprehensive,	1	to	Size,	9	to	More	examples.	
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each	of	the	14	criteria.		For	example,	MoreWithLess	was	chosen	20	times	for	being	diverse,	

29	 times	 for	being	 concise,	 and	11	 times	 for	being	 relevant.	Each	 count	 for	a	 criterion	 is	

accompanied	 by	 what	 percentage	 it	 makes	 up	 of	 the	 total	 count	 of	 all	 criteria	 used	 for	

preferring	that	ranking	algorithm.		For	example,	since	MoreWithLess	is	preferred	29	times	

because	it	is	concise,	then	35%	of	the	explanations	for	preferring	MoreWithLess	are	because	

it	was	concise.		

	

The	Total	row	in	Table	17	shows	that	70%	of	the	reasons	for	preferring	a	top	ten	from	any	

of	the	algorithms	was	because	it	was	either	diverse	(27%),	concise	(24%),	or	relevant	(19%).	

This	suggests	that	these	three	reasons	may	play	a	role	in	the	criteria	for	a	preferred	top	ten	

in	general.		

Table 17. Ranking Algorithm to Cluster. 
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The	cluster	“No	Preference”	indicates	the	number	of	times	a	ranking	algorithm	was	preferred	

when	the	programmer	had	a	hard	time	deciding	between	the	algorithm’s	 top	 ten	set	and	

another.		Usually	the	programmers	explained	a	choice	was	hard	because	they	thought	both	

top	 ten	 sets	 were	 good	 or	 bad.	 The	 category	 “No	 Category”	 counts	 the	 number	 of	

explanations	that	could	not	be	categorized	during	the	affinity	diagramming	process.			

	

In	Table	17,	we	find	the	most	frequent	criteria	used	to	prefer	an	algorithm	match	the	main	

design	decisions	behind	the	algorithms	we	created,	which	implies	the	design	did	have	the	

intended	 effect.	 	 For	 example,	 MWL-ST	 Hybrid,	 KL,	 and	 ST	 were	 all	 chosen	 most	 often	

because	of	the	diverse	set	of	results	produced.	Further,	MoreWithLess,	designed	to	return	

concise	results,	was	most	often	preferred	because	it	produced	concise	results.	

	

We	also	find	in	Table	17		that	all	algorithms	appear	to	the	participants	as	optimizing	on	the	

top	three	criteria,	while	optimizing	on	the	lesser	criteria	more	sporadically.	However,	based	

on	the	frequency	of	a	criteria	used	in	preferring	an	algorithm,	we	find	that	some	algorithms	

are	 better	 at	 optimizing	 on	 some	 criteria	 than	 others.	 Specifically,	 we	 find	 the	MWL-ST	

Hybrid	algorithm	is	preferred	for	diversity	more	than	any	other	algorithm	(8	times	more	

often	than	the	next	highest	scoring	algorithm),	which	suggests	that	it	is	the	most	preferable	

algorithm	 to	 optimize	 on	 diversity.	 Some	 examples	 of	 participants	 preferring	 MWL-ST	

Hybrid	 for	 its	diversity	are	 “I	prefer	getting	 the	 set	of	 [MWL-ST	Hybrid]	because	 the	 set	of	

[Open	Hub]	only	provides	codes	for	DOM/SAX	writers.”		and	“as	a	whole,	set	[MWL-ST	Hybrid]	
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gave	me	more	different	ideas	on	how	to	implement	a	tic	tac	toe	game	including	a	simple	ai	to	

play	against...”	

The	MoreWithLess	algorithm	is	preferred	for	conciseness	more	than	any	other	algorithm	(11	

times	more	often	than	the	next	highest	scoring	algorithm).	When	comparing	MoreWithLess	

with	Open	Hub	one	participant	said	“Set	[MoreWithLess]	contains	more	concise	examples	of	

how	to	convert	an	input	stream	into	a	byte	array.”	and	one	participant	chose	MoreWithLess	

because	it	had	“…more	short	focused	bits	about	prime	factors.”			

	

From	Table	14	we	found	that	MWL-ST	Hybrid	was	preferred	more	often	than	MoreWithLess	

62%	of	 the	 time.	 	To	determine	why,	we	examined	each	of	 the	explanations	 for	choosing	

MWL-ST	Hybrid	over	MoreWithLess.	For	six	of	 the	comparisons,	programmers	explained	

MWL-ST	Hybrid	gave	more	relevant	code.	For	 four	comparisons,	 they	said	 it	was	a	tough	

choice.	 	 For	 the	 other	 three	 comparisons,	 MWL-ST	 Hybrid	 was	 chosen	 because	 of	 its	

diversity.		Some	explained	“The	set	[MWL-ST	Hybrid]	results	seem	to	contain	more	varieties…”	

and	 “Set	 [MWL-ST	 Hybrid]	 seemed	 to	 have	 a	 larger	 variety	 of	 examples	 relevant	 to	 doing	

different	tic	tac	toe	things.”	 	 It	appears	that	a	part	of	the	reason	why	MWL-ST	Hybrid	was	

preferred	to	MoreWithLess	is	because	it	offers	diverse	and	relevant	results.		It	also	appears	

though	it	was	not	always	easy	to	choose	between	the	two.	
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5.3.4.3	Experiment	Discussion	

The	 results	 from	 our	 experiment	 suggest	 that	 the	MWL-ST	Hybrid	 algorithm	 is	 the	 best	

choice	 among	 the	 algorithms	we	 evaluated	 to	 use	 as	 our	 diversity	 ranking	 algorithm	 in	

CodeLikeThis.		It	was	one	of	the	two	significantly	preferred	algorithms	and	it	was	preferred	

more	than	any	other	algorithm	for	the	diversity	of	results	it	gave	the	participants.	As	such,	

we	 use	 MWL-ST	 Hybrid	 ranking	 algorithm	 as	 the	 keyword	 ranking	 algorithm	 in	

CodeLikeThis.	 However,	 we	 do	 not	 view	 this	 as	 the	 only	 outcome	 of	 the	 experiment	

described.	 While	 our	 experiment	 allowed	 us	 to	 find	 a	 keyword	 ranking	 algorithm	 for	

CodeLikeThis,	our	experiment	also	has	a	few	high-level	takeaways.	

	

While	 the	 diversification	 algorithms	 ST	 and	 KL	 diversified	 results,	 they	 were	 not	 often	

preferred.	However,	the	MWL-ST	Hybrid	diversification	algorithm	was	one	of	the	two	most	

preferred	 ranking	 algorithms	 and	was	 preferred	more	 than	 any	 other	 algorithm	 for	 the	

diversity	of	the	results	it	produced.		One	of	the	key	design	differences	between	the	hybrid	

algorithm	and	the	other	two	(ST	and	KL)	is	that	MWL-ST	Hybrid	diversifies	concise	and	on-

topic	results,	but	ST	and	KL	diversify	only	on-topic	results.	This	design	difference	suggests	

that	diversifying	concise	results	rather	than	all	on-topic	results	had	a	role	in	why	MWL-ST	

Hybrid	was	more	often	preferred,	suggesting	that	what	is	diversified	is	important.		That	is,	

the	“quality”	of	the	results	may	need	to	be	improved	first	before	the	top	diverse	set	is	found.	

There	are	a	few	possible	explanations	for	why	this	might	be	the	case.	First,	returning	very	
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different	 but	 low	 quality	 results	 is	 less	 likely	 to	 include	what	 the	 programmer	might	 be	

looking	for.		Second,	even	if	the	set	of	results	is	diverse	and	has	on-topic	results,	if	it	takes	a	

programmer	significant	time	to	read	through	the	set	because	the	results	are	in-concise,	then	

the	 programmer	 may	 just	 give	 up	 on	 examining	 those	 results	 and	 never	 find	 anything	

preferable	in	them.	

	

While	the	preferences	we	collected	indicate	that	programmers	prefer	concise	results,	we	find	

that	size	alone	is	not	a	good	metric	to	optimize	for	it.		Recall	the	MoreWithLess,	preferred	

more	 than	 other	 algorithms	 for	 conciseness,	 used	 the	 ComplexityMC	 Density	 metric	 to	

optimize	on	conciseness.	However,	Lucene’s	TF-IDF	ranking	algorithm,	in	our	case,	scores	

shorter	documents	higher,	yet	is	preferred	less	often	for	concise	results	(12	times)	compared	

to	MoreWithLess	(29	times).	This	suggests	that	a	metric	for	conciseness	needs	to	not	only	

consider	how	long	a	result	is,	but	consider	the	content	of	the	results	and	how	efficiently	it	is	

expressed.	 We	 take	 a	 step	 closer	 to	 a	 general	 measure	 for	 conciseness	 by	 creating	 a	

complexity	density	heuristic	(ComplexityMC	Density)	that	considers	how	much	the	code	does	

(as	measured	by	its	cyclomatic	complexity)	with	how	few	calls	and	characters	it	does	it	with.		

However,	more	research	is	left	to	do	in	understanding	the	construct	of	conciseness.	

	

5.3.4.3	Threats	

While	 our	 participants	 all	 had	 substantial	 work	 experience,	 12	 of	 them	 were	 students.		

However,	the	average	work	experience	among	the	students	was	almost	5	years	–	we	thought	
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this	 acceptable	 experience.	 	 Further,	 the	 analysis	 in	 Table	 16	 revealed	 little	 difference	

between	the	preferences	of	students	and	non-students.	

While	 we	 used	 21	 queries	 from	 four	 different	 sources	 that	 are	 representative	 of	

implementation	and	API	usage	queries,	these	are	by	no	means	all	possible	kinds	of	queries.		

It	is	important,	then,	that	the	results	are	scoped	to	the	kinds	and	actual	queries	used	in	the	

survey.	

	

5.4.3	Like-This	Ranking	Algorithm	Design	

While	our	experiment	helped	us	choose	MWL-ST	Hybrid	as	 the	ranking	algorithm	for	 for	

keywords,	CodeLikeThis	needs	a	completely	different	ranking	algorithm	for	handling	each	

of	the	like-this	queries.	The	like-this	ranking	algorithm	was	conceptually	illustrated	in	Figure	

47,	which	presented	a	view	of	the	index	as	a	similarity	matrix,	relating	each	code	snippet	to	

another	by	its	similarity	score.	The	like-this	queries	were	used	to	act	on	this	sorted	index,	

such	that	a	more-like-this	query	on	a	result	A	returns	the	10	most	similar	code	snippets	to	A,	

a	somewhat-like-this	query	on	result	A	returns	the	10	snippets	that	sit	at	an	average	distance	

away	 from	 result	 A,	 and	 a	 less-like-this	 query	 on	 result	 A	 returns	 the	 least	 similar	 10	

snippets.	However,	implementing	the	like-this	ranking	algorithm	has	several	challenges.		In	

this	 section,	 we	 discuss	 the	 implementation	 of	 the	 like-this	 ranking	 algorithm	 and	 its	

rationale	through	a	series	of	challenges	and	solutions,	and	conclude	with	the	final	solution.	
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Challenge	1	–	10	Million	X	10	Million	Matrix	

The	 first	major	 challenge	 in	 implementing	 the	 like-this	 ranking	 algorithm	 is	 creating	 the	

similarity	 matrix	 on	 which	 to	 apply	 the	 like-this	 queries.	 	 The	 size	 of	 the	 index	 of	

CodeLikeThis	is	approximately	10	million	Java	classes.		This	means	that	the	total	size	of	the	

similarity	matrix	would	be	a	10	million	x	10	million	matrix,	which	further	means	creating	

and	storing	100	million	entries.		Creating	such	a	large	matrix	poses	an	intractable	problem	–	

the	time	to	create	such	a	matrix	exceeds	any	reasonable	time.	Creating	this	similarity	matrix	

has	 a	 𝑂𝑂 𝑙𝑙$ 	 time	 complexity,	 where	 𝑙𝑙,	 in	 our	 case,	 is	 10	 million	 classes.	 In	 our	 early	

prototypes,	to	even	construct	one	row	of	this	similarity	matrix	took	over	an	hour	of	running	

time	 (we	 stopped	before	 completing	 the	 computation),	which	means	 to	 create	 the	 entire	

similarity	matrix	would	take	around	5	million	hours	to	complete	(when	only	computing	the	

diagonal	of	the	matrix),	so	in	about	570	years	the	computation	would	be	complete.	This	time	

is	obviously	unacceptable,	so	we	derived	a	new	approach	described	next.	

	

Solution	1	–	One	Row	of	10	Million	Entries	

Rather	than	precompute	a	10	million	x	10	million	similarity	matrix,	we	recognize	we	only	

need	to	compute	the	similarity	measures	of	code	in	the	index	relative	to	the	result	on	which	

the	user	issues	the	like-this	query,	giving	us	a	maximum	of	10	million	similarity	calculations.	

With	those	similarity	measures,	we	can	order	the	code	in	the	index,	as	shown	in	Figure	64,	

Figure 64. Code Sorted in Index Relative to Result A. 
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relative	 to	 the	 chosen	 result	 and	 then	 select	 10	results	 from	 the	 top,	middle,	 or	 the	 end,	

depending	on	which	like-this	query	was	issued.			

	

Challenge	1.1	–	10	Million	Entries	

While	 computing	 10	million	 similarity	 scores	 does	 reduce	 the	 time	 required	 to	 compute	

similarity	scores,	it	still	costs	much	more	than	a	few	seconds	(on	the	order	of	hours	in	our	

experiments)	to	compute,	which	is	still	unacceptable	for	a	search	engine.		

	

Solution	1.1	–	Top	N	Entries	

We	recognize	that	the	results	returned	from	somewhat-like-this	and	less-like-this	queries	

are	determined	by	the	size	of	the	entire	index	(in	this	case	10	million).		However,	rather	than	

using	the	size	of	the	index	to	determine	what	the	results	should	be,	we	instead	select	a	rank	

N	that	determines	the	results	returned,	as	shown	in	Figure	65.	This	requires	us	to	compute	

only	N	similarity	scores	and	allows	us	to	control	how	many	calculations	are	done	and,	thus,	

gives	us	control	on	the	time	to	execute	a	like-this	query.	

	

Challenge	1.2	–	Finding	Top	N	Entries	Without	Finding	10	Million	First	

Restricting	our	similarity	calculations	only	to	the	top	N	leads	to	yet	another	challenge	that	

resembles	the	classic	“which	came	first:	the	chicken	or	the	egg?”	dilemma.	Specifically,	how	

can	we		compute	the	similarity	scores	for	only	the	top	N	similar	code	snippets	without	first	

computing	all	10	million	similarity	scores	to	determine	what	the	top	N	are?	

Figure 65. Results Limited by Rank N. 
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Solution	1.2	–	Approximating	Sim2ST	with	an	Advanced	Query	

To	calculate	only	the	top	N	similar	code	snippets	to	a	result	A,	we	rely	on	the	insight	that	the	

top	N	 code	 snippets	 have	more	 aspects	 in	 common,	 as	measured	 by	𝑆𝑆𝑆𝑆𝑚𝑚$
%& ,	with	A	 than	

results	at	and	below	ranks	𝑞𝑞 + 𝑆𝑆, 𝑆𝑆 ≥ 1 .	Acting	on	this	fact,	we	use	an	advanced	query	(a	

query	 on	 individual	 fields	 defined	 by	 the	 schema	 of	 the	 documents	 indexed)	 to	 find,	

approximately,	the	top	N	results	with	the	most	aspects	in	common	with	result	A.	Specifically,	

given	a	result	A,	results	having,	approximately,	the	most	aspects	in	common	with	A	can	be	

obtained	by	constructing	an	advanced	query,	where	the	fields	in	the	advanced	query	map	to	

aspects	of	A.	For	example,	for	simplicity,	suppose	only	three	aspects	are	compared	in	𝑆𝑆𝑆𝑆𝑚𝑚$
%&:	

isGeneric,	Class	Name,	and	Complexity.	Figure	66	presents	how	the	similarity	function	would	

score	 code	 in	 the	 index	against	 result	A	 (1),	 and	Figure	66	also	presents	how	 the	 search	

engine	would	score	code	in	the	index	against	the	advanced	query,	“Query	A”	(2),	created	out	

of	the	result	A.	The	two	approaches	produce,	relatively,	similar	scores,	which	suggests	the	

top	N	results	returned	for	the	advanced	query	will	be	approximately	the	top	N	code	snippets	

found	by	applying	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	to	the	index	and	sorting.	The	N	results	returned	from	the	advanced	

query	may	not	be	in	the	order	produced	with	𝑆𝑆𝑆𝑆𝑚𝑚$
%& ,	however,	so	we	can	then	sort	these	N	

using	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	and	use	the	sorted	list	to	apply	the	like-this	query.	
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The	advanced	query	is	created	by	mapping	aspects	of	result	A	onto	fields	in	the	query,	where	

aspects	with	 boolean	 and	 string	 values	 directly	map	 onto	 fields	with	 boolean	 and	 string	

values	 in	the	advanced	query.	Numerical	values	(e.g.,	complexity)	do	not	directly	map	for	

reasons	we	will	discuss	shortly.	Each	match	with	a	field	in	the	advanced	query	adds	points	

to	the	overall	score	assigned	by	the	search	engine,	which	mirrors	how	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	adds	points	for	

each	similar	aspect	between	 two	code	snippets.	For	example,	 the	values	of	 isGeneric	and	

ClassName	of	result	A	(Figure	66,1)	map	directly	onto	fields	isGeneric	and	ClassName	in	an	

advanced	query	(Figure	66,2),	and	for	each	match,	the	search	engine	assigns	points,	yielding	

the	same	relative	order	found	with	𝑆𝑆𝑆𝑆𝑚𝑚$
%& .	However,	using	an	advanced	query	to	find	results	

that	have	similar	numerical	aspects	 (e.g.,	 complexity)	 to	 result	A	 is	 less	 straight	 forward.		

Specifically,	state	of	the	art	search	engines	cannot	score	documents	by	their	distance	from	

values	 specified	 in	 an	 advanced	query.	This	means	 that,	while	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	 can	precisely	 score	

Figure 66. Result to Query and Scores. 
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similarity	 between	 numeric	 aspects	 of	 two	 code	 snippets,	 an	 advanced	 query	 cannot.		

However,	 an	 advanced	 query	 can	 approximate	 this	 somewhat	 by	 specifying	 numerical	

ranges	to	match	against.		For	example,	in	Figure	66,	the	complexity	of	result	A	(1)	is	mapped	

to	the	complexity	field	in	query	A	(2)	as	the	numerical	range:	 4,6 .		Given	query	A,	the	search	

engine	increases	the	rank	score	of	results	that	has	complexity	of	4,5,	or	6,	which	essentially	

means	 that	 code	 that	 is	 very	 similar	 in	 terms	 of	 complexity	 have	 their	 score	 increased.	

However,	if	code	in	the	index	has	a	complexity	below	4	or	above	7,	then	its	similarity	score	

for	complexity	 is	not	counted,	thus	making	the	use	of	an	advanced	query	an	approximate	

means	of	measuring	similarity.	

	

The	 full	advanced	query	we	create	out	of	a	selected	result	 is	presented	 in	Figure	67.	The	

mapping	between	the	selected	result’s	boolean	and	name	aspects	map	in	a	straightforward,	

one-to-one,	manner.	 	For	numerical	aspects	 (i.e.,	 complexity,	number	of	 fields,	number	of	

imports,	 and	 size),	we	decided	 to	map	 the	 selected	 result’s	 values	 to	 the	numeric	 range:	

𝑆𝑆𝑤𝑤𝑖𝑖𝑢𝑢𝑙𝑙𝑆𝑆. 𝑗𝑗𝑖𝑖𝐺𝐺𝑤𝑤𝑖𝑖𝑆𝑆. 𝑗𝑗𝑗𝑗𝑙𝑙𝑢𝑢𝑤𝑤 − 1, 𝑆𝑆𝑤𝑤𝑖𝑖𝑢𝑢𝑙𝑙𝑆𝑆. 𝑗𝑗𝑖𝑖𝐺𝐺𝑤𝑤𝑖𝑖𝑆𝑆. 𝑗𝑗𝑗𝑗𝑙𝑙𝑢𝑢𝑤𝑤 + 1 .	 	Mapping	 to	 this	 range	 ensures	 that	

code	that	is	very	similar	along	numerical	aspects	has	that	similarity	counted	in	their	overall	

score	from	the	search	engine,	which	makes	it	more	likely	to	be	in	the	top	N.	However,	code	

that	 is	 less	 similar	 along	a	numerical	 aspect	will	not	have	 their	 similarity	 for	 that	 aspect	

counted,	which,	while	that	score	would	be	lower	in	𝑆𝑆𝑆𝑆𝑚𝑚$
%& ,	it	is	still	larger	than	zero.		As	such,	

using	 an	 advanced	query	 is	 an	 approximate	 approach,	 however	our	 advanced	query	 still	

scores	results	higher	the	more	they	have	in	common	with	the	selected	result.	How	wide	the	

numeric	ranges	in	the	advanced	query	need	to	be	to	get	the	best	approximation	is	a	matter	

of	tuning	the	algorithm,	as	is	often	needed	in	many	algorithms	[11],	[29],	but	would	benefit	
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from	future	work.	The	risk	of	making	the	range	too	wide	would	be	counting	code	that	is	very	

dissimilar	along	a	numerical	aspect	the	same	as	code	that	 is	very	similar	along	that	same	

aspect.	

	

Now	that	we	have	a	method	to	get	the	top	N	similar	code	snippets		we	need	to	decide	how	

large	N	should	be.	For	the	purposes	of	evaluation,	we	“tuned”	the	N	to	300,	because	this	let	

us	return	results	within	5	to	30	seconds	(using	all	40	cores	on	an	Amazon	server	rented	for	

our	experiment).	 	However,	because	of	 the	Cache	Warmer	(in	Figure	48),	 that	prefetches	

possible	like-this	results	while	the	user	is	 looking	at	their	current	results,	times	to	return	

results	often	appear	to	be	closer	to	1	to	10	seconds	to	the	user.	Further,	we	saw	in	Section	

5.3.2.1	that	the	top	259,	on	average,	contain	a	diverse	set	of	results,	which	means	sorting	the	

Query =OR

authorName :result.authorName
className :result.name
complexity : result.complexity −1,result.complexity +1[ ]
numberOfFields : result.numberOfFields −1,result.numberOfFields +1[ ]
hasWildCard :result.hasWildCard
isAbsract :result.isAbstract
isGeneric :result.isGeneric
imports :OR result.imports( )
numberOf Im ports : result.numberOf Im ports −1,result.numberOf Im ports +1[ ]
methodCallNames :OR result.methodCallNames( )
methodDecNames :OR result.methodDecNames( )
ownerName :resultOwnerName
package :result.package
parentClass :result.parentClass
projectName :result.projectName
size : result.size−1,result.size+1[ ]
var iableWords :OR result.var iableWords( )

⎛

⎝

⎜
⎜
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Figure 67. Advanced Query to Match Code in Top N Similar. 
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top	300	would	give	us	a	distribution	of	different	kinds	of	code	so	that	code	found	at	the	tail	

will	be	less	similar	to	code	at	the	head	and	make	less-like-this	queries	work	closer	to	our	

designed	intention.	

	

Final	Solution	

The	 Like-This	 ranking	 algorithm	 fetches	 the	 top	 300	 code	 results	 similar	 to	 the	 result	

selected	by	the	user	by	transforming	the	selected	result	into	an	advanced	query	(Figure	67).	

Once	the	algorithm	has	the	similar	results,	it	sorts	them	with	the	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	function.		While	these	

results	may	not	be	exactly	the	top	300	that	would	be	found	by	sorting	the	entire	index	with	

𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	 relative	 to	 the	 selected	 result,	 they	 are	 the	 top	 300	 similar	 results	 found	with	 an	

advanced	query	and	sorted	exactly	as	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	would	 sort	 them	and	done	 in	an	acceptable	

amount	of	time	(on	the	order	of	seconds)	for	search	engines.	On	the	sorted	list	of	results,	the	

Like-This	 ranking	algorithm	selects	either	 the	 top	10,	middle	10,	or	 last	10	 from	 the	 list,	

depending	on	the	type	of	like-this	query	issued	by	the	user.	

	

Figure	68	shows	the	dataflow	diagram	of	how	the	advanced	query	gets	created	after	the	user	

issues	a	like-this	query.	The	result	selected,	on	which	to	apply	a	like-this	query,	and	the	like-

this	 query	 type	 (more,	 somewhat,	 or	 less)	 are	 sent	 to	 the	 Advanced	 Query	 Constructor	

(inside	the	Like-This	Query	Manager	in	Figure	48)	that	turns	the	result	selected	into	a	query.	

The	Matching	Algorithm	 (using	Apache	Solr’s	 algorithm)	matches	N	code	 snippets	 in	 the	

index	that	best	match	the	query	and	outputs	the	results	to	the	Sorter.		The	Sorter	takes	the	

results	and	sorts	them	using	the	𝑆𝑆𝑆𝑆𝑚𝑚$
%& 	function	and	uses	the	type	of	like-this	query	to	then	
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select	either	the	top	10,	middle	10,	or	last	10	from	the	list,	depending	on	the	like-this	query	

type,	and	return	them	as	the	results.			

	

	

	

	

	
	

	
	
	

Figure 68. Like-This Ranking Algorithm Architecture. 
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Chapter	6	
	
Evaluation	

In	Chapter	4,	we	introduced	CodeExchange	and	presented	a	preliminary	evaluation	between	

CodeExchange	 and	GitHub,	which	 yielded	data	 suggesting	 that	 providing	developers	 tool	

features	 to	 iteratively	 search	with	aspects	of	 the	 results	of	 a	previous	query	may	help	 in	

searching	for	code	in	terms	of	success	and	time.		In	Chapter	5,	we	introduced	CodeLikeThis	

and	an	evaluation	of	its	diversity	ranking	algorithm	that	supported	the	use	of	the	MWL-ST	

Hybrid	algorithm	as	a	preferable	ranking	algorithm	to	begin	iteratively	searching	with	the	

results.	 	 In	 this	 chapter,	 we	 return	 to	 the	 overarching	 research	 question	motivating	 the	

development	of	both	CodeExchange	and	CodeLikeThis:	

	

	

	

	

What	is	the	impact	of	explicitly	supporting	software	developers	in	searching	
iteratively	on	the	experience,	time,	and	success	of	the	code	search	process? 
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6.1	Experiment	Design	

We	begin	answering	our	research	question	by	evaluating	the	impact	of	the	approaches	of	

both	CodeExchange	(using	an	aspect	or	quality	of	a	result	in	creating	the	next	query)	and	

CodeLikeThis	(using	the	entire	result	in	creating	the	next	query)	in	searching	iteratively.	To	

do	so,	we	conducted	an	empirical	study	measuring	the	experience,	time,	and	success	of	24	

participants	in	searching	for	code	in	eight	different	search	tasks	using	our	two	new	iterative	

approaches	as	well	as	two	non-iterative	approaches	(a	baseline	search	engine	that	mimics	

existing	 code	 search	 tools	 on	 the	 Internet	 and	 Google)[74].	 Both	 the	 baseline	 and	

CodeExchange	use	the	more	state	of	the	art	SpeciÄicity	ranking	algorithm	[6]	(making	this	

version	of	CodeExchange	differ	from	the	one	in	Chapter	4	by	replacing	the	TF-IDF	ranking	

algorithm).	Replacing	the	ranking	algorithm	in	CodeExchange	was	easily	achievable	because	

the	iterative	features	provided	by	CodeExchange	are	orthogonal	to	any	ranking	algorithm.	

We	used	SpeciÄicity	 in	both	the	baseline	and	CodeExchange	so	that	the	baseline’s	ranking	

algorithm	represents	a	modern	ranking	algorithm	for	code	and	so	that	we	can	measure	the	

impact	of	adding	iterative	tool	features	to	a	search	engine	equipped	with	a	state	of	the	art	

ranking	algorithm.	

	

6.1.1	Non-Iterative	Approaches	

Our	baseline	was	a	control	created	to	measure	the	impact	of	a	lack	of	iteration	support	in	a	

traditional	non-iterative	search	engine,	while	maintaining	the	same	code	index	used	in	the	

iterative	approaches.	The	baseline	was	created	by	changing	CodeExchange’s	interface	into	

the	 traditional	 non-iterative	 interface	 presented	 in	 Figure	 69.	 	 The	 process	 resulted	 in	 a	
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traditional	non-iterative	search	engine	that	used	the	same	index	as	the	iterative	approaches	

and	used	a	state	of	the	art	ranking	algorithm,	SpeciÄicity	(same	as	CodeExchange).	The	basic	

features	included	in	the	baseline	are	a	keyword	text	box	with	autocomplete,	a	list	of	code	

results,	 and	 a	 paging	mechanism.	We	 called	 our	 baseline	 search	 engine	 “SearchIt”	when	

introducing	it	to	participants	in	order	to	hide	the	fact	we	were	using	it	as	a	baseline.		

	

Our	other	non-iterative	approach,	Google,	is	not	a	code	search	engine,	but	is	familiar	to	many	

people.	It	indexes	a	vastly	greater	amount	code	on	web	pages	compared	to	the	other	three	

search	 engines	 in	 this	 experiment	 (iterative	 and	 baseline	 search	 engines).	 	 While	 this	

presents	a	signiÄicant	confounding	variable	and	can	make	interpretation	of	our	results	more	

challenging,	we	felt	it	still	 important	to	evaluate	the	most	popular	and	ubiquitous	form	of	

search	today	[79]	to	gain	an	understanding	of	how	developers	iteratively	search	with	it	and	

Figure 69. SearchIt, the Baseline Search Engine. 
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to	be	able	to	place	our	results	in	this	context.	Further,	evaluating	code	search	engines	with	

Google	gives	us	a	unique	opportunity	to	address	a	more	meta-level	question:	are	code	search	

engines	useful	for	Äinding	code,	or	is	Google	simply	sufÄicient?	

	

6.1.2	Participants	

The	 participants	 in	 this	 study	 consisted	 of	 24	 developers	 who	 reported	 to	 have	

approximately	 4	 years	 of	 professional	 development	 experience	 on	 average	 (standard	

deviation	=	2.67),	above	intermediate	Java	skill	level	(median	of	5	skill	level	on	an	ordinal	

scale	of	1	as	beginner	and	7	as	expert	and	with	a	standard	deviation	of	1.03),	an	average	age	

of	 26.2	 (standard	 deviation	 =	 3.61),	 and	 a	 20/4	 male-female	 ratio.	 The	 complete	

demographic	 data	 is	 presented	 in	 Table	 18.	 While	 we	 had	 more	 participants	 that	 are	

currently	students,	they	had	a	somewhat	higher	average	for	age	and	experience	and	a	higher	

median	of	skill	than	the	non-students.	This	might	be	due	to	the	fact	that	many	of	the	student	

participants	were	graduate	students	with	many	years	of	professional	developer	experience	

behind	them	already.		
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6.1.3	Assignments	

The	 laboratory	 experiments	were	held	 in	 a	 closed	 lab	 setting	where	 each	participant	 sat	

alone	in	a	room	completing	eight	different	and	independent	search	tasks,	in	sequence.	Each	

participant	was	assigned	two	search	engines	for	the	entire	experiment	and	completed	each	

Table	18.	Self-Reported	Demographics.	
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search	task	using	only	one.	We	chose	to	set	the	number	of	search	engines	to	two	per	person	

to	reduce	the	learning	curve	effect	that	would	have	been	needed	had	each	participant	used	

all	 four	 search	 engines.	 Using	 two,	 however,	 still	 allowed	 them	 to	 make	 comparisons	

between	the	search	engines	in	their	feedback.		

	

We	designed	the	assignments	as	follows:		

• We	used	the	Latin	Square	[118]	design	for	our	experiment	to	evenly	distribute	the	

tasks	among	the	search	engines	and	participants.	The	assignments	are	presented	in	

Table	19.	 In	 the	 table,	 each	 row	 identiÄies	 a	participant	by	 ID,	 the	 two	 treatments	

(search	engines)	they	used,	and	the	tasks	assigned	to	each	treatment	(indicated	by	

shading).	For	example,	participant	P1	used	CodeExchange	and	Google	and	completed	

tasks	1,3,5,	and	7	with	CodeExchange	(indicated	by	CodeExchange	being	shaded	and	

tasks	 1,3,5,	 and	 7	 being	 shaded)	 and	 completed	 tasks	 2,4,6,	 and	 8	 with	 Google	

(indicated	by	Google	and	tasks	2,4,6	and	8	not	being	shaded).		The	tasks	are	rotated	

left	one	with	each	participant	so	that	each	search	engine	was	used	in	48	tasks	in	total	

and	used	for	each	task	six	times,	which	yielded	a	total	of	192	data	points.		

• To	address	ordering	effects,	the	search	engines	alternated	with	each	task	and	all	the	

tasks	 came	 in	 a	 random	 order	 for	 each	 participant	 (while	 still	 alternating	 among	

search	engines).	This	was	accomplished	by	assigning	each	search	engine	 to	a	 task	

(done	 with	 Latin	 Square	 above)	 creating	 pairs	 𝑆𝑆s, 𝑇𝑇< , 𝑆𝑆t, 𝑇𝑇$ , 𝑆𝑆s, 𝑇𝑇= , ⋯ ,

𝑆𝑆t, 𝑇𝑇u ,	where	𝑆𝑆s	is	one	assigned	search	engine	and	𝑆𝑆t	is	the	other	assigned	search	

engine	and	each	𝑇𝑇E, 1 ≤ 𝑗𝑗 ≤ 8,	is	one	of	the	eight	tasks.	When	a	participant	Äinished	a	
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task,	then	a	pair	with	the	other	search	engine	was	chosen	at	random	and	used	as	the	

next	task	and	search	engine	to	use.	

• Each	participant	received	a	different	task	for	each	search	engine,	so	each	participant	

never	repeated	a	task	on	two	different	treatments	–	making	the	experiment	a	between	

subject	design	to	reduce	carry	over	effects.	In	addition,	each	participant	used	different	

search	engines,	making	it	also	a	within	subject	design.	As	such,	our	experiment	design	

is	called	a	hybrid	or	mixed	design.	

• Lastly,	to	push	participants	to	give	each	task	some	thought	and	effort,	we	asked	them	

to	include	explanations	for	what	the	code	does	and	why	they	chose	it.	This	was	a	tactic	

to	get	the	participants	to	genuinely	attempt	each	task.	

	

Table 19. Task to Search Engine Assignment. 
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6.1.4	Search	Tasks	

In	Section	2.1.4,	we	summarized	the	previous	research	on	why	programmers	search	for	code.	

Previous	research	found	that	programmers	search	for	a	wide	range	of	reasons	that	can	be	

broad	in	focus	(e.g.,	getting	ideas	or	learning)	or	more	narrow	in	focus	(e.g.,	remembering	or	

copying	and	pasting	speciÄic	code).	In	our	experiment,	we	try	to	capture	this	range	of	focus	

in	our	search	tasks.		In	particular,	the	search	tasks	were	designed	to	cover	a	space	of	tasks	

that	are	broad	 to	more	 focused.	 	The	more	 focused	 tasks	were	designed	 to	constrain	 the	

search	 task	by	 limiting	 the	number	of	snippets	 to	 Äind	(mirroring	 Äinding	one	snippet	 for	

remembering	how	to	perform	some	programming	activity)	or	by	specifying	the	kind	of	code	

to	Äind	in	more	detail	(mirroring	occasions	when	the	programmer	has	a	clearer	idea	of	what	

they	 want).	 In	 contrast,	 the	 more	 broadly	 focused	 tasks	 were	 designed	 to	 loosen	 the	

constraints	 of	 the	 search	 tasks	 by	 increasing	 the	 number	 of	 snippets	 to	 Äind	 (mirroring	

occasions	 when	 the	 programmer	 has	 no	 one	 snippet	 to	 Äind,	 such	 as	 when	 learning,	

generating	 ideas,	 or	 Äinding	 alternatives)	 or	 by	 specifying	 a	 higher	 level	 or	 less	 speciÄic	

description	of	the	code	to	Äind	(mirroring	occasions	when	the	programmer	is	not	quite	sure	

what	they	are	looking	for,	such	as	when	learning	or	generating	ideas).	

	

This	space	of	tasks	is	presented	in	a	2x2	matrix	shown	in	Table	20.	The	broader	tasks	are	

found	in	the	“Find	4”	row	and	the	“No	SpeciÄic	Role	for	Code”	column.	The	more	focused	tasks	

are	found	in	the	“Find	1”	row	and	the	“Algorithm/Data	Structure”	column.	We	designed	the	

space	so	that	there	is	some	range	in	the	broadness	and	focus	of	the	tasks.	The	broadest	tasks	

(T3	and	T7)	appear	in	the	upper	left	of	the	matrix,	and	the	most	focused	tasks	appear	in	the	
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bottom	right	(T4	and	T8).		The	bottom	left	tasks	(T2	and	T6)	and	the	upper	right	tasks	(T1	

and	 T5)	 are	 mix	 of	 both	 broader	 and	 more	 focused	 tasks.	 This	 design	 creates	 a	 more	

representative	 sample	 of	 tasks	 by	 covering	 a	 range	 of	 broad	 and	 focused	 tasks,	 but	 also	

allows	us	to	take	different	“perspectives”	by	looking	at	the	experiment	results	in	terms	of	

dimensions	 of	 broadness	 (Find	 4	 and	 No	 SpeciÄic	 Role	 for	 Code)	 and	 focus	 (Find	 1	 and	

Algorithm/Data	Structure).	

	

The	topics	of	the	tasks	were	created	to	mirror	real-world	topics	for	code	search.	The	topics	

were	derived	by	reverse	engineering	scenarios	from	eight	of	the	real	queries	identiÄied	in	

Chapter	5	(tic	tac	toe	–	T1,	mail	sender	–	T2,	AWT	events	–	T3,	combinations	n	per	k	–	T4,	array	

multiplication	–	T5,	database	connection	manager	–	T6,	JSpinner	–	T7,	and	binary	search	tree	

–	T8)	found	across	four	different	code	search	engine	logs	[73].	With	the	topics,	we	created	

the	tasks	in	a	style	similar	to	those	used	in	other	code	search	studies	[48],	[71],	where	the	

Table	20.	Task	Matrix. 
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tasks	do	not	give	the	participant	a	query	or	the	actual	code	snippet	to	Äind,	as	this	would	not	

be	 representative	of	how	programmers	search	 in	 the	 real	world.	Rather,	participants	are	

expected	to	formulate	the	queries	themselves	and	Äigure	out	which	snippets	work	according	

to	them	for	the	given	tasks.	Each	scenario	with	task	is	composed	only	of	one	or	two	sentences	

expressing	a	 the	problem	 for	which	 the	participant	needs	 to	 Äind	code	 to	help	solve.	The	

participants	had	20	minutes	for	the	“Find	4”	tasks	and	10	minutes	for	“Find	1”	tasks.	We	set	

the	 time	 limits	 for	 completing	 tasks	 based	 on	 our	 pilot	 studies	 where	 we	 found	 our	

participants	could	Äinish	tasks	in	the	given	time	limits.	

	

6.1.5	Survey	System	

To	start	the	experiment,	the	participants	watched	a	tutorial	video	on	each	of	their	assigned	

search	engines	that	explained	all	features	(including	the	advanced	search	feature	for	Google).	

After	watching	the	videos,	each	participant	“warmed	up”	by	playing	around	and	interacting	

with	each	of	their	assigned	search	engines,	as	they	pleased,	for	a	few	minutes.	Once	done,	

each	participant	started	the	survey	system	(shown	in	Figure	70),	which	presented	the	time	

the	participant	had	for	a	question	(A),	a	search	engine	hyper-link	(B)	indicating	which	search	

engine	to	use	(when	clicked,	this	would	open	the	search	engine),	the	search	task	(C),	Äive	tabs	

(D)	each	containing	an	editor	to	paste	the	code	found	for	the	search	task,	a	text	box	to	explain	

what	the	code	does	(F),	and	a	text	box	to	explain	why	the	participant	chose	the	code	(G).	We	

gave	the	participants	Äive	tabs	in	case	they	wanted	to	Äind	more	than	the	required	number	of	

snippets.	When	a	participant	hit	the	done	button	(H)	to	indicate	Äinishing,	or	when	time	ran	

out,	the	participant	was	prompted	to	rate	their	experience	(I),	from	1	to	7,	for	using	the		
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Figure 70. Survey Interface. 
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assigned	search	engine	for	the	given	task,	where	1	was	labeled	“bad”,	4	was	labeled	“neutral”,	

and	7	labeled		“great”.	Once	the	participant	was	done	giving	their	experience	rating,	they	hit	

submit	and	received	the	next	task	and	treatment.	Finally,	once	the	participant	Äinished	all	

eight	tasks,	they	Äilled	out	a	questionnaire	about	the	treatments	used	and	then	had	an	open	

and	unstructured	interview	with	the	researcher	about	their	experience.	

	
The	rationale	behind	getting	the	user	to	rate	their	experience	after	each	task	is	grounded	

from	prior	research	demonstrating	that	user	satisfaction	scores	taken	immediately	after	the	

task	are	highly	 correlated	with	 task	performance	 [102].	 	 Further,	 giving	user	 satisfaction	

scores	after	a	task	allows	the	participant	to	make	a	judgment	while	their	experience	is	still	

fresh	 in	their	mind,	making	the	score	more	reliable.	A	survey	about	experiences	after	the	

entire	 experiment	 would	 have	 measured	 overall	 impressions,	 which	 is	 shown	 to	 be	 a	

different	kind	of	measure	[101].	We	limit	the	user	feedback	to	one	seven	point	Likert	scale	

question	on	experience	(called	a	“Single	Question	Likert”),	because	it	limits	interference	with	

the	participant’s	main	objective	of	 finding	code	and	one	answer	has	been	shown	 it	 can	a	

strong	indicator	of	task	performance	[101],	[102].		

	

6.2	Results	

From	 the	 entire	 experiment,	 we	 collected	 a	 total	 of	 192	 experience	 scores,	 192	 time	

durations	to	Äind	one	snippet	(including	times	to	Äind	Äirst	snippet	in	the	“Find	4”	tasks),	96	

time	durations	to	Äind	four	snippets,	and	24	questionnaire	answers	and	interviews.	Further,	

we	logged	the	search	behavior	across	all	the	search	engines,	giving	us	data	for	what	features	

were	used	and	how	often.	Further,	we	collected	463	(out	of	480	possible)	reasons	why	code	
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was	chosen	(each	of	the	24	participants	was	asked	to	Äind	20	snippets	 in	total	and	give	a	

reason	why	they	chose	each	snippet).	We	use	this	data	to	examine	the	impact	of	supporting	

iterative	search	on	the	experience,	time,	and	success	of	searching	for	code.	Further,	we	look	

at	how	the	search	engines	were	used	and	the	reasons	people	reported	for	searching	for	code.	

	

6.2.1	Experience	Scores	

Our	first	analysis	compares	the	experience	scores	(as	rated	by	participants	from	1=bad	to	

7=great)	for	using	each	search	engine	for	each	search	task.	To	compare	experience	scores,	

we	 observed	when	 one	 approach	 had	 a	 higher	median	 score	 than	 others.	 It	 is	 standard	

practice	to	use	the	median	and	not	mean	when	the	data	is	ordinal,	such	as	the	experience	

scores.	We	created	the	box	plot	summary,	shown	in	Figure	71,	of	the	experience	scores	for	

each	search	engine	by	task.	Each	box	is	color	coded	by	search	engine,	shows	the	median	score	

with	a	black	horizontal	bar	through	it	(sometimes	the	bar	is	at	the	top	or	bottom),	and	the	

height	summarizes	the	spread	of	the	scores.	For	each	task,	the	search	engine	with	the	highest	

Figure 71. Experience Scores as Box Plots per Task. 
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median	scores	has	its	plot	annotated	with	its	initials.	If	there	are	ties	between	search	engines,	

then	both	names	appear	above	their	corresponding	plots.		

	

From	our	box	plot,	we	 count	how	many	occasions	 an	 iterative	 approach	 to	 search	had	 a	

higher	median	score	than	the	baseline	and	Google.		With	these	counts,	we	then	perform	χ2	

tests	to	look	for	statistical	significance,	were	p-values	are	obtained	by	comparing	the	number	

of	higher,	equal,	and	lower	median	scores	between	treatments	on	a	2x3	contingency	table	

with	χ2.	We	set	alpha	to	.1	as	it	is	not	an	uncommon	value	in	smaller-scale	experiments	and	

is	done	in	other	studies	in	software	engineering	[66].	The	reason	from	the	statistics	literature	

to	 set	 alpha	 to	 .1	 for	 smaller-scale	 experiments	 is	 that	 the	 standard	 error	 (impacting	

significance)	depends	on	the	variance	and	size	of	 the	sample	and	 is	often	higher	 in	small	

sample	sizes	and	lower	in	larger	sample	sizes	[136].	In	fact,	the	literature	encourages	alpha	

to	be	set	to	lower	and	lower	values	(e.g.,	.01	or	.001)	the	higher	the	sample	size	is,	because	

size	drives	the	standard	error	to	lower	values	[136].		

	

The	first	analysis,	iterative	experience	versus	baseline	experience,	is	presented	in	Table	21.		

The	 first	 row	 labeled	 “Iterative	and	Baseline”	presents	 the	2X3	contingency	 tables	of	 the	

actual	and	expected	wins,	ties,	and	loses	of	the	iterative	approaches	versus	the	baseline.		For	

each	task,	if	an	iterative	approach	has	a	higher	median	than	the	baseline	this	counts	as	a	win,	

an	equal	median	counts	as	a	tie,	and	a	lower	median	counts	as	a	loss.	If	the	baseline	has	a	

higher	median	than	both	iterative	approaches	then	it	counts	as	a	win,	an	equal	median	counts	

as	a	 tie,	and	a	 lower	median	counts	as	a	 loss.	The	 first	row	of	Table	21	 indicates	 there	 is	

always	an	iterative	approach	either	providing	higher	experience	(on	six	occasions)	or	equal	
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experience	(on	two	occasions)	and	never	an	occasion	where	the	baseline	provides	a	better	

experience	than	both	iterative	approaches.	These	results	are	found	significant	(p=.002)	with	

a	χ2	test.	This	suggests	that	an	iterative	design	provided	a	better	user	experience.	Untangling	

the	two	iterative	approaches,	the	second	and	third	row	show	the	contingency	tables	and	χ2	

test	results	per	respective	iterative	approach.	 	These	rows	reveal	that	many	of	the	higher	

scores	 for	 the	 iterative	approach	come	 from	CodeExchange,	significantly	often	(p=0.028),	

however	CodeLikeThis	did	sometimes	provide	a	higher	experience	than	CodeExchange	to	

cover	cases	in	which	CodeExchange	did	not	score	higher	than	the	baseline.		

	

We	next	 compare	 the	median	 experience	 scores	 of	 the	 iterative	 approaches	 to	Google	 in	

Table	22	by	looking	at	contingency	tables	between	the	iterative	approaches	and	Google.	The	

first	row	shows	the	contingency	tables	between	the	iterative	approaches	and	Google,	just	as	

reported	in	Table	21.	We	find	that	there	exists	an	iterative	approach	providing	a	higher	score	

than	 Google	 on	 3	 occasions,	 equal	 on	 2	 occasions,	 and	 on	 3	 occasions	 both	 iterative	

approaches	score	lower	than	Google.	These	results	suggest	that	an	iterative	design	to	search	

can	provide	an	equal	or	better	user	experience	compared	to	Google.	When	we	examine	the	

results	by	each	iterative	approach,	we	see	that	Google	outperforms	each	on	five	occasions,	

significantly	so	for	CodeExchange,	but	interestingly	not	so	for	CodeLikeThis.		

	

In	many	ways,	these	results	are	not	necessarily	surprising,	given	Google’s	much	larger	index	

and	high	performing	ranking	algorithm,	RankBrain.	 	Perhaps	most	 impactful,	however,	 is	

people’s	general	familiarity	with	Google;	it	is	just	something	they	know	how	to	use.	Overall,	

Google	provided	a	good	experience	for	the	participants,	but	our	results	point	to	appears	to	
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be	 occasions	where	 an	 iterative	 approach	would	 have	 provided	 an	 even	 better	 or	 equal	

search	 experience	 for	 the	 user.	 Interestingly,	 the	 results	 between	 the	 baseline	 and	

CodeExchange	suggest	that	adding	iterative	features	to	Google	would	provide	an	even	better	

user	experience	for	using	Google	to	find	code.		That	is,	when	the	ranking	algorithm	and	index	

are	the	same	between	two	search	engines	(as	with	the	baseline	and	CodeExchange)	adding	

iterative	features	to	one	can	significantly	improve	the	user	experience.	
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Table 21. Experience Medians of Iterative Approaches Compared to Base Line. 
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Table 22. Experience Medians of Iterative Approaches Compared to Google. 
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To	 study	 the	 participants’	 experiences	 with	 iterative	 approaches	 in	 more	 detail,	 we	

compared	 experiences	 scores	 for	 CodeExchange	 with	 CodeLikeThis	 by	 	 kinds	 of	 tasks.		

Interestingly,	we	find	that	CodeExchange	and	CodeLikeThis	are	complementary	in	the	kinds	

of	tasks	they	support.	Table	23	presents	the	results,	where	each	cell	shows	which	iterative	

approach	had	a	higher	experience	median	for	each	task.	The	table	shows	that	CodeExchange	

provided	a	better	experience	for	tasks	that	were	broader	(“Find	4”	and	“No	Specific	Role”)	

and	that	CodeLikeThis	provided	a	better	experience	for	tasks	that	were	more	focused	(“Find	

1”	 and	 “Algorithm/Data	 Structure”).	 The	 data	 in	 Table	 23	 suggests	 that	 using	 aspects	 or	

qualities	of	the	results,	supported	by	CodeExchange,	helps	in	finding	code	when	the	search	

task	is	broad,	but,	when	the	search	task	is	more	focused,	then	using	the	entire	result	to	search	

with,	as	supported	by	CodeLikeThis,	provides	a	better	search	experience.	A	complementary	

pattern	of	 support	 for	 the	 two	opposing	kinds	of	 tasks	 (broad	and	 focused),	 as	 shown	 in	

Table	 23,	 only	 has	 a	 16/6561	 (.2%)	 chance	 of	 occurring	 (given	 equal	 probability	 of	

CodeExchange	and	CodeLikeThis	occurring	in	each	cell	as	well	as	both	occurring	in	each	cell	

for	ties).	Illustrating	the	rarity	of	such	an	occurrence,	Figure	72	provides	a	visualization	of	

the	total	space	of	possible	patterns	that	could	have	occurred	between	CodeExchange	and	

CodeLikeThis	(annotated	with	examples).	Each	dot	represents	a	possible	outcome	(6561	in	

total),	where	 the	darker	dots	 (5709	 in	 total)	 represent	non-complementary	patterns,	 the	

Table 23. CodeExchange and CodeLikeThis Median Comparison. 

	 No	Specific	Role	 Algorithm/Data	Structure	

Find	4	 CE(T3)	 CE(T7)	 CE(T1)	 CLT(T5)	

Find	1	 CE(T6)	 CLT(T2)	 CLT(T4)	 CLT(T8)	
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white	 dots	 (836	 in	 total)	 represent	 complementary	 patterns,	 but	 are	 not	 “perfect	

complements”	because	there	exist	ties	in	the	cells,	and	the	red	dots	(16	in	total)	represent	

complementary	patterns	with	no	ties.	Complementary	patterns	with	ties	are	not	“perfect”,	

because	it	means	that	one	of	the	search	engines	will	provide	a	better	experience	than	the	

other	but	not	as	much	as	found	in	a	complementary	pattern	with	no	ties.	For	example,	the	

complementary	 pattern	 illustrated	 in	 Figure	 72	 shows	 one	 possible	 outcome	 where	

CodeLikeThis	provided	a	better	experience	four	times	and	CodeExchange	two	times	for	the	

Algorithm/Data	Structure	category	(4/2	=	2).		However,	in	a	complementary	pattern	with	no	

ties	where	 CodeLikeThis	 provided	 a	 better	 experience	 for	 the	 Algorithm/Data	 Structure	

category,	the	outcome	would	be	3/1,	which	provides	a	higher	experience	more	times	than	

what	 would	 be	 found	 in	 a	 complementary	 pattern	 with	 ties.	 In	 general,	 complementary	

patterns	with	ties	will	always	have	a	search	engine	providing	a	higher	experience	on	a	row	

Figure	72.	Space	of	Possibilities.	
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or	column	that	is	less	than	3/1.	On	the	other	hand,	a	complementary	pattern	with	no	ties	will	

always	have	one	search	engine	providing	a	better	experience	ratio	of	3/1	on	one	row	and	

column	and	the	other	search	engine	providing	a	better	experience	ratio	of	3/1	on	the	other	

row	 and	 column.	 The	 illustration	 in	 Figure	 72	 is	 intended	 to	 show	 how	 rare	 a	 “perfect”	

complementary	pattern	is	and	how	it	makes	the	“perfect”	complementary	pattern	we	found	

between	CodeExchange	and	CodeLikeThis	less	of	a	chance	occurrence.	

	

The	 complementary	 nature	 of	 CodeExchange	 and	 CodeLikeThis	 appears	 to	 be	why	 that,	

when	 combined,	 the	 scores	 for	 the	 iterative	 approaches	 are	more	 balanced	with	Google.	

When	we	compare	CodeExchange	with	Google	by	experience	scores,	as	shown	in	Table	35,	

we	 find	 that	 CodeExchange	 performs	 at	 its	 best	 against	 Google	 in	 the	 Find	 4	 category.	

Similarly,	when	we	compare	CodeLikeThis	with	Google	by	experience	scores,	as	shown	in	

Table	 36,	 we	 find	 CodeLikeThis	 performs	 at	 its	 best	 against	 Google	 in	 the	 Find	 1	 and	

Table	24.	CodeExchange	and	Google	Median	Comparison.	

	 No	Specific	Role	 Algorithm/Data	Structure	

Find	4	 CE	and	G(T3)	 G(T7)	 CE(T1)	 CE	and	G(T5)	

Find	1	 G(T6)	 G(T2)	 G(T4)	 G(T8)	

 

Table	25.	CodeLikeThis	and	Google	Median	Comparison.	

	 No	Specific	Role	 Algorithm/Data	Structure	

Find	4	 G(T3)	 G(T7)	 G(T1)	 CLT(T5)	

Find	1	 G(T6)	 CLT(T2)	 CLT	and	G(T4)	 G(T8)	
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Algorithm/Data	Structure	Category.		When	we	compare	the	Iterative	approaches,	combined,	

with	Google	by	experience	scores,	as	shown	in	Table	38,	we	find	that	the	experience	scores	

are	balanced	across	Google	and	the	Iterative	approaches,	where	Google	had	higher	scores	in	

Find	1	(3	to	2)	and	No	Specific	Role	(3	to	2),	and	where	the	Iterative	approaches	had	higher	

scores	in	Find	4	(3	to	2)	and	Algorithm/Data	structure	(3	to	2).	

	

We	also	look	at	the	Iterative	approaches	and	the	baseline	by	category.	CodeExchange	and	the	

baseline	search	engine	are	compared	by	category	in	Table	27.		We	find	that	CodeExchange	

provided	a	better	search	experience	across	all	categories.	These	results	are	especially	telling	

because	the	major	difference	between	CodeExchange	and	the	baseline	search	engine	are	the	

iterative	features	provided	by	CodeExchange,	suggesting	the	iterative	features	alone	caused	

the	 improvement	 in	experience.	The	 index	and	ranking	algorithm	are	exactly	the	same	in	

both	search	engines.	

	

Table	26.	Iterative	Approaches	Median	Comparison.	

	 No	Specific	Role	 Algorithm/Data	Structure	

Find	4	 I	and	G(T3)	 G(T7)	 I(T1)	 I(T5)	

Find	1	 G(T6)	 I(T2)	 I	and	G(T4)	 G(T8)	

 

Table	27.	CodeExchange	and	BaseLine	Comparison.	

	 No	Specific	Role	 Algorithm/Data	Structure	

Find	4	 CE(T3)	 CE(T7)	 CE(T1)	 BL(T5)	

Find	1	 CE	and	BL(T6)	 CE(T2)	 CE(T4)	 CE(T8)	
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In	contrast	with	CodeExchange,	CodeLikeThis	does	not	provide	a	better	search	experience	

across	all	categories	against	the	baseline,	as	shown	in	Table	28.	In	particular,	the	baseline	

appears	 to	have	provided	a	better	experience	 in	 the	Find	4	 (4	 to	3)	and	No	Specific	Role	

categories	 (3	 to	 2).	 	 However,	 CodeLikeThis	 again	 excels	 in	 the	 Find	 1	 (3	 to	 1)	 and	

Algorithm/Data	Structure	(4	to	2)	categories.	This	is	consistent	with	the	other	findings	above	

that	CodeLikeThis	appears	to	be	better	on	more	focused	tasks.		

	

6.2.2	Task	Times	

Time	differences	for	finding	code	by	search	engines	were	examined	by	measuring	how	long	

it	took	before	code	was	pasted	for	each	of	the	tasks	by	search	engine	(time	writing	why/what	

explanations	was	not	counted).	If	the	task	was	not	completed,	the	maximum	time	allotted	

was	used.	We	used	ANOVA	to	find	significant	differences	among	the	groups	of	search	engines	

for	each	task,	and	if	we	did	find	a	significant	difference,	we	conducted	a	post	hoc	pair-wise	

analysis	on	the	corresponding	group	using	Tukey's	honest	significant	difference	[45]	to	see	

what	might	be	causing	the	difference.		

	

Table	28.	CodeLikeThis	and	Baseline	Comparison.	

	 No	Specific	Role	 Algorithm/Data	Structure	

Find	4	 BL(T3)	 CLT	and	BL(T7)	 CLT	and	BL(T1)	 CLT	and	BL(T5)	

Find	1	 BL	(T6)	 CLT(T2)	 CLT(T4)	 CLT(T8)	
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Our	time	analysis	is	presented	in	Table	42	for	finding	the	first	snippet	(standard	deviation	

abbreviated	as	“s”).	In	most	cases,	we	did	not	find	significant	differences.	However,	we	did	

find	that	Google	was	significantly	faster	than	CodeLikeThis	for	finding	the	first	code	snippet	

on	task	three	and	CodeLikeThis	was	significantly	faster	than	Google	for	finding	the	first	code	

snippet	on	task	seven.	The	lack	of	many	significant	differences	in	time	might	be	due	to	the	

large	 variance	 we	 find	 in	 the	 data	 (which	 affects	 finding	 statistical	 significance	 [136]),	

making	the	mean	time	less	representative	of	the	times	collected.	Figure	73	shows	the	spread	

of	the	times	for	each	task	by	search	engine.	We	find	that,	for	many	of	the	tasks,	several	of	the	

search	 engines	 have	 a	wide	 spread	 of	 data	 around	 their	mean,	making	 it	 harder	 to	 find	

statically	significant	differences	of	the	means.	One	possible	explanation	for	the	spread	in	the	

data	is	that	the	tasks	were	more	exploratory	in	nature	and	that	we	gave	the	participants	no	

incentive	 to	 finish	 before	 the	 allotted	 time.	 However,	 we	 found	 time	 differences	 that,	

perhaps,	are	worth	noting,	for	example,	the	time	difference	found	between	the	baseline	and	

Table	29.	Mean	Seconds	Until	First	Paste.	

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	

CE	 219	
(s=105)		

294	
(s=188)	

167	
(s=152)	

392	
(s=147)	

488	
(s=386)	

263	
(s=150)	

301		
(s=207)	

372	
(s=223)	

CLT	 185	
(s=109)	

302	
(s=167)	

359	
(s=253)	

357	
(s=153)	

373	
(s=273)	

285	
(s=159)	

103	
(CLT>G	
p=0.083)	
(s=21)	

189	
(s=204)	

BL	 163	
(s=96)	

178	
(s=60)	

174	
(s=95)	

446	
(s=182)	

154	
(s=54)	

278	
(s=122)	

158		
(s=99)	

301	
(s=176)	

G	 176	
(s=97)	

244	
(s=175)	

85	(G>CLT	
p=0.03)	
(s=43)	

393	
(s=216)	

410	
(s=283)	

182	
(s=109)	

349	
(s=243)	

169	
(s=102)	

ANOVA	 p=.8	 p=.5	 p=0.04	 p=.8	 p=.2	 p=.5	 p=0.06	 p=.2	
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the	other	search	engines	for	task	5.	We	found	the	baseline	had	a	mean	time	for	task	5	twice	

as	 fast	 as	 any	 of	 the	 other	 search	 engines.	 In	 the	 upcoming	 section,	 we	 explore	 the	

significance	of	time	in	search.			

	

Similarly,	we	find	no	statistical	significant	differences	in	time	for	the	Find	4	tasks.	In	Table	

30	we	present	the	time	analysis	for	the	Find	4	tasks	(standard	deviation	abbreviated	as	“s”).		

The	spread	of	the	data	(as	shown	in	Figure	74),	again,	might	explain	why	we	did	not	find	any	

Figure	73.	Spread	of	Time	till	First	Paste	by	Search	Engine	and	Question.	
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statistical	significant	differences.	There	are	 times,	again,	 that	some	search	engines	have	a	

mean	time	that	is	faster	by	a	few	minutes	than	others.	For	example,	baseline	appears	a	few	

minutes	faster	than	Google	and	the	other	search	engines	for	task	5.	However,	the	baseline	

often	led	to	a	worse	search	experience	in	comparison	to	the	other	search	engines.	 	These	

differences	 prompt	 us	 to	 take	 a	 closer	 look	 at	 the	 role	 of	 speed	 on	 code	 search	 in	 the	

upcoming	section.	

	

A	similar	story	of	finding	no	statistical	significance	holds	true	by	task	type	as	well.		The	large	

spread	of	data	we	saw	in	 individual	tasks	holds	when	clustered	by	type	as	well.	Table	31	

reports	the	mean	time	to	find	the	first	snippet	of	code	for	all	task	types	and	Figure	75	shows	

the	spread	of	the	data.	Figure	76	shows	the	spread	of	the	data	to	finish	the	Find	4	tasks	and,	

	 T1	 T3	 T5	 T7	

CE	 618	
(s=349)	

536		
(s=259)	

925		
(s=378)	

865	
(s=366)	

CLT	 675	
(s=182)	

750		
(s=251)	

808	
(s=237)	

852	
(s=390)	

BL	 567	
(s=184)	

572		
(s=376)	

676	
(s=421)	

840	
(s=347)	

G	 611	
(s=249)	

528		
(s=397)	

943	
(s=283)	

902	
(s=334)	

ANOVA	 p=.9	 p=.62	 p=.51	 P=.99	
 

Table	30.	Mean	Seconds	Until	Fourth	Paste.	
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again,	we	find	a	spread	of	times	with	no	statically	significant	difference,	as	shown	in	Table	

32.	

	

Figure	74.	Spread	of	Time	till	Fourth	Paste	by	Search	Engine	and	Question.	

Table	31.	Mean	Time	till	First	Paste	by	Task	Type.	

	 Find	4	 Find	1	 No	Specific	
Role	

Algorithm/Data	
Structure	

CE	 294	
(s=254)	

330	
(s=176)	

256	
(s=173)	

368	
(s=245)	

CLT	 255	
(s=216)	

283	
(s=172)	

262	
(s=187)	

276	
(s=203)	

BL	 162	
(s=83)	

301	
(s=166)	

197	
(s=102)	

266	
(s=177)	

G	 255	
(s=224)	

247	
(s=173)	

215	
(s=179)	

287	
(s=213)	

ANOVA	 p=0.157	 p=0.447	 p=0.446	 p=0.329	
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We	briefly	considered	if	removing	outliers	would	help	narrow	down	the	variance	in	our	data,	

however	it	raises	several	difficulties.		The	main	challenge	of	removing	outliers	when	the	data	

is	categorized	is	that	removing	points	with	methods	like	symmetrical	truncation	(as	we	did	

in	Chapter	4)	 leads	 to	uneven	amounts	of	data	 in	categories	and	biases	 the	comparisons.		

Further,	because	the	data	is	generally	spread	out,	removing	points	toward	the	extremes	are	

Figure	75.	Spread	of	Time	till	First	Paste	by	Search	Engine	and	Task	Type.	
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unlikely	to	impact	the	mean	very	much.		For	these	reasons,	we	consider	all	the	data	in	our	

analysis	and	take	a	closer	look	at	the	role	of	time	in	searching	for	code.		

	

6.2.2.1	Experience	and	Task	Times	

Experience,	in	many	ways,	is	a	critical	metric	for	a	tool,	and,	thus,	for	search	engines.	If	the	

user	is	frustrated,	confused,	exhausted,	or	otherwise	left	not	satisfied	with	a	search	engine,	

then	they	will	be	quick	to	find	a	replacement.		Time,	at	face	value,	would	also	seem	critical,	

because	the	user	will	certainly	not	want	to	waste	their	time.	However,	more	time	to	search	

with	a	search	engine	may	not	always	mean	a	worse	search	engine	if	it	is	supporting	the	user	

to	 do	 what	 they	 need	 to	 do.	 	 Consider	 the	 baseline	 search	 engine.	 	 We	 found	 that	

CodeExchange	 provided	 a	 better	 experience	 significantly	 more	 often	 than	 the	 baseline.		

Figure	76.	Spread	of	Time	till	Fourth	Paste	by	Search	Engine	and	Find	4	Task	Type.	

Table	32.	Mean	Time	till	Fourth	Paste.	

	 CE	 CLT	 BL	 G	
Find	4	 736		

(s=359)	
771	

(s=266)	
664	

(s=340)	
746	

(s=351)	
ANOVA	 p=.709	
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However,	 the	baseline	does	appear	 faster	 than	CodeExchange	sometimes,	not	necessarily	

significantly,	 but	 still	 faster.	 	 Perhaps	 the	 participants	 settled,	 unsatisfactorily,	 for	 code	

sooner	with	the	baseline,	or	perhaps	the	features	of	CodeExchange	encouraged	the	user	to	

explore	more.	In	this	section,	we	look	at	when	time	might	play	a	role	for	the	user	in	terms	of	

the	impact	it	has	on	the	user	experience.	
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In	 Figure	 77,	 we	 present	 a	 correlation	 analysis	 (using	 Pearson’s	 method)	 between	

experience	and	time	to	paste	first	snippet	by	task	type.	The	correlation	scores	appear	at	the	

bottom	left	with	the	correlation	strength	beside	it.	 	The	red	line	through	the	graphs	is	the	

regression	line	showing	the	slope	of	the	correlation.	The	top	row	shows	the	results	for	the	

broader	 tasks	 and	 the	 bottom	 row	 shows	 the	 results	 for	 the	 more	 focused	 tasks.		

Interestingly,	 we	 find	 no	 correlation	 between	 experience	 and	 time	 when	 the	 tasks	 are	

Figure	77.	Experience	and	Time	to	First	Paste	Correlation	by	Task	Type.	
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broader,	but	when	they	are	more	focused	we	do	indeed	find	a	correlation.	The	results	suggest	

that	time	may	be	less	of	a	factor	or	other	factors	might	be	at	play	for	impacting	the	user’s	

search	 experience	 when	 they	 have	 less	 of	 an	 idea	 of	 what	 they	 are	 looking	 for	 and	 are	

engaged	in	a	more	exploratory	search.	However,	when	the	user	has	a	clearer	idea	of	what	it	

is	 they	want,	 then	 finding	 it	 faster	makes	 it	 a	 better	 experience	 for	 them.	 For	 the	more	

focused	 tasks,	 the	 regression	 line	 crosses	 the	 neutral	 experience	 line	 and	 into	 the	 bad	

experience	region	at	around	500	seconds	(≈ 8.3	minutes),	which	suggests	that	when	the	user	

has	 a	more	 focused	 search	 task,	 their	 search	 experience	will	 turn	negative	 after	 about	 8	

minutes	of	searching.	

	

Figure	78	presents	the	correlation	analysis	between	experience	and	time	to	paste	the	fourth	

snippet.	We	 find	 a	weak	 correlation	 between	 time	 and	 experience	 for	 finding	 four	 code	

Figure	78.	Experience	and	Time	to	Fourth	Paste	Correlation.	
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snippets.	This	is	consistent	with	the	little	correlation	we	found	between	time	and	experience	

for	finding	the	first	code	snippet	for	broader	tasks,	and	further	suggests	time	may	be	less	of	

a	factor	or	other	factors	might	be	at	play	that	impact	the	user’s	search	experience	when	the	

tasks	are	broader.	

	

Figure	79,	Figure	80	and	Figure	81	present	the	experience	and	time	correlations	by	task.	Not	

surprisingly,	we	find	tasks	with	both	negative	correlations	and	no	correlations,	as	one	would	

expect	given	our	previous	results.	However,	Task	7	yielded	a	positive	correlation	between	

experience	 and	 time.	 That	 is,	 for	 Task	 7,	 it	 appears	 that	 the	more	 time	 the	 participants	

searched,	 the	 better	 their	 experience	 was.	 Task	 7	 is	 in	 the	 No	 Specific	 Role	 and	 Find	 4	

categories,	so	it	is	one	of	the	broadest	search	tasks	we	designed.		This	positive	correlation	

result	suggests	 that	sometimes	when	the	search	 tasks	are	more	exploratory,	 taking	more	

time	might	yield	a	better	search	experience.			

	

While	we	have	looked	at	correlations	between	experience	and	time	by	task	type	and	have	

found	little	to	no	correlation	with	time	on	broader	tasks	and	a	negative	correlation	for	more	

focused	tasks,	we	next	look	to	see	if	the	same	is	true	for	each	search	engine.	Figure	82,	Figure	

83,	and	Figure	84	present	correlation	results	between	experience	and	time	by	broader	tasks	

and	search	engine.	CodeLikeThis,	Google,	and	the	baseline	all	have	no	or	weak	correlations	

between	search	experience	and	time,	which	agrees	with	our	previous	findings	that	there	is	

little	to	no	correlation	between	the	experience	in	searching	and	time	when	the	search	task	is	

broader.		However,	we	do	find	there	is	a	strong	and	moderate	correlation	for	CodeExchange.	

Upon	closer	inspection,	we	find	that	the	majority	or	many	of	the	scores	tend	to	cluster	in	the	
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top	 left	 in	 the	 positive	 experience	 area	 (relatively	 shorter	 times	 and	 more	 positive	

experience	scores).	This	correlation	suggests	that,	while	participants	still	appreciated	saving	

time	 when	 searching	 with	 CodeExchange,	 the	 time	 they	 did	 spend	 searching	 with	

CodeExchange	did	not	usually	make	them	have	a	negative	experience.		

	

Figure	79.	Experience	and	Time	to	First	Paste	Correlation	Tasks	1	to	4.	
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Next	 we	 look	 at	 the	 experience	 and	 time	 correlations	 for	more	 focused	 tasks	 by	 search	

engine.	Figure	85	and	Figure	86	present	the	correlation	results	between	experience	and	time	

for	more	focused	tasks	by	search	engine.	 In	all	cases,	we	find	that	search	engines	tend	to	

provide	a	better	 search	experience	when	 the	users	 can	 complete	 the	more	 focused	 tasks	

more	quickly.	This	agrees	with	our	results	above	that	time	may	impact	the	search	experience	

when	the	search	tasks	are	more	focused.	

Figure	80.	Experience	and	Time	to	First	Paste	Correlation	Tasks	5	to	8.	
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Figure	81.	Experience	and	Time	to	Fourth	Paste	Correlation	by	Task.	
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Figure	82.	Find	4	and	Time	to	First	Paste	Correlation	by	Search	Engine.	
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Figure	83.	Find	4	and	Time	Fourth	Paste	Correlation	by	Search	Engine.	
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Figure	84.	No	Specific	Role	and	Time	to	First	Paste	Correlation	by	Search	Engine.	
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Figure	85.	Experience	and	Time	to	First	Paste	Correlation	by	Find	1	and	Search	Engine.	
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Figure	86.	Experience	and	Time	to	First	Paste	Correlation	by	Algorithm/Data	Structure	and	
Search	Engine.	
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The	upshot	of	the	time	and	experience	analysis	above	is	that	time	is	indeed	important,	but	

other	factors	are	at	play	that	impact	the	participant’s	search	experiences.	The	results	showed	

that	there	is	a	negative	linear	relationship	between	how	much	time	is	spent	searching	and	

the	search	experience.		However,	spending	more	time	to	search	for	code	does	not	necessary	

mean	a	negative	experience,	but	 it	 could	mean	 just	a	 lower	positive	experience.	 	We	saw	

CodeExchange	 tended	 to	 always	 provide	 a	 positive	 experience,	 just	 lower	 positive	

experience	 with	 time.	 	 Likewise,	 the	 baseline	 tended	 to	 provide	 neutral	 or	 negative	

experiences	 and	 with	 more	 time	 an	 even	 more	 negative	 experience.	 As	 such,	 on	 some	

occasions	 when	 participants	 finished	 faster	 with	 the	 baseline	 than	 CodeExchange,	 the	

participants	still	had	a	worse	experience	with	the	baseline.	This	means	something	else	was	

creating	 a	 better	 search	 experience	 for	 participants	 using	 CodeExchange,	 even	when	 the	

search	took	longer.	We	explore	this	more	in	the	next	section.	

	

6.2.2.2	Number	of	Queries	and	Task	Times	CE	versus	

BL	

The	 difference	 between	 the	 baseline	 and	 CodeExchange	 are	 the	 iterative	 features	

CodeExchange	provides,	 since	 the	 index	 and	 ranking	 algorithm	are	 the	 same.	 In	 fact,	 the	

participants	can	use	CodeExchange	and	the	baseline	in	exactly	the	same	way	if	they	choose	

to	ignore	the	iterative	features	and	get	exactly	the	same	results.	As	such,	the	cause	for	the	

experience	and	time	difference	between	CodeExchange	and	the	baseline	likely	resides	with	

the	participants	using	the	iterative	features	of	CodeExchange.		One	possible	explanation	is	

that	the	iterative	features	supported	the	user	in	more	easily	issuing	the	next	query,	and,	as	
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such,	made	it	easier	to	issue	more	queries	than	the	baseline	when	the	participant	wanted	to	

issue	multiple	queries	to	search	for	code.	However,	enabling	the	participants	to	issue	more	

queries	means	they	will	look	at	more	results,	which	takes	more	time.	

	

To	 evaluate	 the	 plausibility	 that	 the	 participants	 were	 simply	 searching	 more	 with	

CodeExchange	and	therefore	taking	longer	to	search,	we	examined	the	average	number	of	

queries	issued	per	task	and	kind	of	task	for	each	search	engine	and	present	those	results	in	

Table	33	and	Table	34.	We	find	that,	on	average,	participants	issued	3	to	10	more	queries	per	

task	with	CodeExchange	(more	than	any	other	search	engine)	than	the	baseline.	In	fact,	for	

tasks	T2,	T3,	T4,	T5,	T6,	and	T7	the	participants	issued	2	to	3	times	as	many	queries	with	

CodeExchange	compared	to	the	baseline,	which	means	they	had	2	to	3	times	more	results	to	

look	 through.	 Further,	 we	 find	 issuing	 more	 queries	 with	 CodeExchange	 is	 moderately	

correlated	with	 spending	more	 time	 in	 searching	 (as	 shown	 in	 Figure	 87).	 Based	 on	 the	

average	number	of	queries	issued	and	the	positive	correlation	with	number	of	queries	issued	

Table	33.	Average	Number	of	Queries	per	Task.	

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	
CE	 10	 7.6	 13.6	 9.1	 17.83	 9.1	 15.3	 6.3	
CLT	 8.83	 4.33	 8.17	 5.00	 9.83	 2.50	 10.17	 4.67	
G	 6.33	 3	 5.83	 5.67	 11.3	 3	 5.83	 1.67	
BL	 7.17	 3.83	 4.67	 3.5	 9	 3.17	 7.17	 6	

 

Table	34.	Average	Number	of	Queries	per	Task	Type.	

	 Find	4	 Find	1	 No	
Specific	

Algorithm/Data	
Structure	

CE	 14.21	 8.08	 11.46	 10.83	
CLT	 9.25	 4.13	 6.29	 7.08	
G	 7.33	 3.33	 4.42	 6.25	
BL	 7.00	 4.13	 4.71	 6.42	
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and	time	spent,	the	time	difference	between	CodeExchange	and	the	baseline	appears	to	be	

because	the	participants	searched	more	with	CodeExchange.	Further,	since	the	participants	

did	not	have	an	issue	more	queries	than	the	baseline	with	CodeExchange	(based	on	their	

experience	scores),	them	doing	so	suggests	they	wanted	to	spend	more	time	searching	and	

had	a	better	experience	doing	so	with	CodeExchange.	In	later	sections,	we	will	dive	deeper	

into	how	often	features	were	used	for	all	the	search	engines.	
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Figure	87.	CodeExchange	Time	to	Query	Correlation.	
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6.2.3	Task	Completion	as	a	Success	Measure	

We	next	look	at	the	number	of	task	incompletions	(not	all	code	found)	by	search	engine	as	a	

measure	of	unsuccessful	searches	and	present	 the	results	 in	Table	35.	We	 found	that	 the	

iterative	search	approaches	had	less	incomplete	tasks	than	the	others,	with	CodeLikeThis	

having	the	least	number	of	incomplete	tasks	(4),	baseline	having	6,	and	CodeExchange	and	

Google	each	with	7.	However,	we	did	not	find	these	results	statistically	significant	using	χ2.	

Further,	we	found	that	the	“Find	4”	tasks	had	higher	incompletion	rates	(19/96)	than	the	

“Find	 1”	 tasks	 (5/96),	 and	 that	 the	 “Algorithms/Data	 Structure”	 tasks	 had	 a	 higher	

incompletion	rate	(16/96)	than	the	“No	Specific	Role”	tasks	(8/96).	As	such,	both	broader	

tasks	(Find	4)	and	more	focused	tasks	(Algorithms	/Data	Structure)	can	prove	more	difficult	

to	complete.	

	

Similar	to	our	previous	analysis	examining	the	correlation	of	experience	and	time,	we	now	

examine	 experience	by	 task	 completion.	 	 In	 particular,	we	 are	 interested	 in	 how	 success	

impacts	experience	because,	in	some	sense,	if	not	finishing	a	task	does	not	lead	to	a	worse	

Table	35.	Task	Completion	by	Task	and	Search	Engine.	

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	 Total	

CE	 2	 0	 0	 1	 2	 0	 2	 0	 7	

CLT	 1	 0	 0	 1	 0	 0	 1	 1	 4	

BL	 0	 0	 1	 1	 1	 0	 2	 1	 6	

G	 2	 0	 1	 0	 3	 0	 1	 0	 7	

Total	 5	 0	 2	 3	 6	 0	 6	 2	 24	
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experience	then	there	is	cause	to	question	using	user	experience	as	a	criterion	for	measuring	

search	 engine	 performance.	 Figure	 89	 presents	 the	 experience	 scores	 as	 points	 (some	

overlap)	for	each	of	the	incomplete	tasks	and	labels	each	point	with	the	search	engine	that	

was	used	 for	 the	task.	We	find	the	median	of	all	 the	experience	scores	to	be	3	which	 is	a	

negative	experience	score,	which	suggests	not	completing	a	search	task	maps	to	a	negative	

Figure	88.	Experience	by	Incomplete	Tasks.	
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search	experience.	We	do	find	6	out	of	23	scores	are	positive.	These	scores	come	from	the	

Find	4	tasks.	In	these	instances,	all	the	participants	were	able	to	find	multiple	snippets	(one	

single	snippet,	three	two	snippets,	and	two	three	snippets)	of	code,	but	not	all	four	snippets.		

One	possible	explanation	for	more	positive	experiences	in	these	cases	is	that	the	participants	

may	have	had	a	positive	experience	finding	the	code	they	did	find,	which	influenced	their	

experience	scores.	 	Regardless,	though,	we	find	the	central	tendency	is	to	have	a	negative	

experience	when	the	task	is	not	complete,	which	suggests	negative	user	experience	reflects	

unsuccessful	searches,	amongst	other	negative	issues	(e.g.,	taking	too	long	to	search	in	more	

focused	tasks,	as	we	saw	in	previous	analyses).		

	

6.2.4	Feature	Usage	

We	next	 look	at	how	 the	 features	of	 the	 search	engines	were	used	and	 some	participant	

explanations	on	the	usefulness	of	the	features	in	order	to	“dive	a	level	deeper”	and	explain	

some	of	the	performance	differences	we	saw	above.	We	report	what	we	found	from	the	usage	

logs	that	were	recorded	during	the	experiments	with	CodeExchange,	CodeLikeThis,	Google,	

and	the	baseline.	

	

6.2.4.1	CodeExchange	Feature	Usage	

To	understand	what	features	of	CodeExchange	helped	and	may	have	caused	the	participants	

to	search	more	(as	we	saw	above),	we	looked	at	how	often	features	were	used,	when	feature	

usages	were	used	to	find	code	that	was	copied,	when	feature	usage	lead	to	positive/negative	

user	experience,	and	looked	at	what	the	participants	had	to	say	during	our	interview.	Table	
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36	presents	the	usage	frequency	counts	of	 features	 in	CodeExchange	by	task.	The	key	for	

Table	36	is	R	for	recommendations,	C	for	critiques,	LC	for	language	constructs,	QP	for	query	

parts,	Iterative	for	all	iterative	features,	K	for	keywords,	AS	for	advanced	search,	and	H	for	

history.	We	 find	 that	 the	 features	 that	 support	 iteration	were	 used	most	 often	 (50.6%),	

followed	by	keyword	text	box	(41.0%),	advanced	search	(6.0%),	and	history	(2.2%).	Further,	

we	 found	 that	 the	 iterative	 features	 were	 used	 significantly	 more	 often	 than	 keywords	

(p<0.1,	where	p=0.01	with	χ2	on	a	2x1	contingency	table	on	frequencies).	This	suggests	that	

the	iterative	features	of	CodeExchange	had	a	positive	impact	in	completing	search	tasks	and	

a	reason	for	issuing	more	queries	than	the	baseline.	

Table	36.	CodeExchange	Search	Behavior.	

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	 T	

R	Frequency	 9	 2	 10	 2	 4	 7	 9	 3	 46	

C	Frequency	 3	 0	 1	 1	 4	 1	 4	 2	 16	

LC	Frequency	 6	 5	 5	 0	 14	 8	 17	 6	 61	

QP	Frequency	 13	 18	 25	 14	 41	 19	 36	 10	 176	

Iterative	Frequency	 31	 25	 41	 17	 63	 35	 66	 21	 299	

K	Frequency	 26	 22	 31	 42	 54	 22	 32	 13	 242	

AS	Frequency	 1	 1	 23	 0	 7	 1	 2	 1	 36	

H	Frequency	 3	 6	 0	 0	 0	 0	 2	 2	 13	

Copies	some	time	
after	only	
Keywords	

10	
(.38)	

5	
(.22)	

16	
(.51)	

5	
(.11)	

17	
(.31)	

6	
(.27)	

8	
(.25)	

3	
(.23)	

70	
(.28)	

Copies	some	time	
after	R/C/LC	

14	
(.77)	

2	
(.28)	

15	
(.93)	

1	
(.33)	

8	
(.36)	

5	
(.31)	

15	
(.5)	

3	
(.27)	

63	
(.51)	

Copies	some	time	
after	QP	

3	
(.23)	

1	
(.05)	

6	
(.24)	

4	
(.28)	

7	
(.17)	

5	
(.26)	

11	
(.30)	

5	
(.5)	

42	
(.23)	

Copies	some	time	
after	AS	

0	
(0)	

0	
(0)	

4	
(.17)	

0	
(0)	

0	
(0)	

0	
(0)	

0	
(0)	

0	
(0)	

4	
(.1)	
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To	take	another	perspective	on	the	iterative	features’	impact	on	completing	a	task,	we	looked	

at	 how	 many	 copies	 happened	 after	 only	 keywords	 versus	 after	 queries	 that	 include	 a	

recommendation,	critique,	or	a	 language	construct.	We	separate	counting	queries	created	

using	 query	 parts	 from	 the	 other	 iterative	 features	 in	 this	 part	 of	 the	 analysis	 because	

counting	query	part	usages	would	count	copies	after	a	deactivation	even	if	the	query	leading	

to	a	copy	is	composed	only	of	keywords,	which	we	are	trying	to	separate	out	in	this	analysis.	

Further,	 we	 look	 at	 the	 copy/keyword	 and	 copy/iterative-feature	 ratios	 (these	 ratios	

measure	how	many	copies	happen	per	keyword	query	and	how	many	copies	happen	per	

query	 created	with	 an	 iterative	 feature).	 The	 ratios	 appear	 in	 parenthesis	 after	 the	 copy	

counts	in	the	table.	We	found	that	when	the	iterative	features	(R/C/LC)	were	used	to	refine	

a	query,	they	lead	to	higher	number	of	copies	on	average	(.51)	than	when	only	keywords	

were	 used	 (.28).	 This	 data	 further	 suggests	 that	 the	 iterative	 features	 of	 CodeExchange	

played	a	substantial	role	in	completing	the	search	tasks.	

	

Next	we	look	at	the	relationship	between	using	CodeExchange’s	iterative	features	and	the	

participants’	experience	score.	Figure	89	maps	completed	tasks	to	experience	scores	by	the	

frequency	 iterative	 features	 were	 used.	 Each	 point	 represents	 a	 task	 completed	 by	 a	

participant	and	maps	the	frequency	the	participant	used	iterative	features	to	complete	the	

task	to	their	experience	score.	Since	there	is	sometimes	overlap	at	points,	we	use	size	to	show	

how	many	points	occupy	a	location.	For	example,	the	one	task	that	was	completed	with	18	

usages	of	the	iterative	features	and	experience	score	of	six	is	represented	as	a	small	circle.	

The	 four	 tasks	with	 two	 usages	 and	 an	 experience	 score	 of	 four,	 on	 the	 other	 hand,	 are	

represented	as	 a	 larger	 circle.	We	outline	 the	 task	 completions	occurring	 in	 the	positive,	
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neutral,	and	negative	experience	regions	and	annotate	the	outline	with	the	total	usage	counts	

and	 total	 tasks	 completed.	 For	 example,	 we	 find	 that	 there	 are	 12	 tasks	 completed	 that	

received	a	neutral	experience	score,	where	the	iterative	features	were	used	71	times	in	total.	

	

Our	results	show	that	in	27	tasks	completed	using	an	iterative	feature	one	or	more	times	

(156	times	in	total),	the	participants	reported	a	positive	experience	(the	top	outline).	In	5	

tasks	 completed	 that	 used	 an	 iterative	 feature	 one	 or	 more	 times	 (72	 times	 total),	 the	

participants	reported	a	negative	experience	in	completing	them	(the	bottom	outline).	 	We	

found	more	tasks	completed	with	iterative	features	are	associated	with	positive	experiences	

than	negative	(27	to	5),	and	find	more	instances	of	using	iterative	features	are	associated	

Figure	89.	Mapping	of	Iterative	Feature	Usage	Frequency	to	Experience.	
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with	positive	experience	scores	than	negative	(156	to	72).	Further,	we	find	the	differences	

in	both	cases	significant	(shown	in	Table	37).	In	four	task	completions,	we	find	zero	instances	

of	 using	 an	 iterative	 feature.	 	 These	 results	 suggest	 that	 the	 positive	 experience	 scores	

assigned	 to	 CodeExchange	 are	 associated	 with	 using	 the	 iterative	 features.	 This	 goes	 to	

explain	why	CodeExchange	had	a	higher	experience	than	the	baseline.	The	high	frequency	of	

using	 iterative	 features,	 as	 shown	above,	 explains	why	participants	 searched	 longer	with	

CodeExchange	 (given	 the	 correlation	 we	 found	 between	 number	 of	 queries	 and	 time	 in	

Figure	87)	and	also	explains	the	fact	that	they	searched	longer	than	the	baseline	and	still	had	

a	higher	experience.	This	means	that	searching	more	with	the	iterative	features	outweighed	

the	spending	of	some	extra	time.		

	

Table	37.	Chi	Squared	Tests	of	Iterative	Features	and	Experience.	
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Thus	far,	we	have	seen	results	suggesting	that	CodeExchange’s	iterative	features	were	used	

often,	led	to	a	higher	rate	of	copies	when	used,	and	are	used	frequently	and	used	in	most	

tasks	when	 the	participants	had	a	positive	experience.	Now	we	 look	at	 the	 impact	of	 the	

frequency	of	using	iterative	features	on	the	time	to	complete	the	task.		Figure	90	plots	time	

to	 complete	 a	 task	 to	 usage	 frequency	 of	 iterative	 features	 for	 each	 user	 (some	 points	

overlap).	We	find	a	moderate	correlation	between	using	iterative	features	and	the	impact	it	

has	on	time	to	complete	a	task.	This	suggest	that	using	iterative	features	do	somewhat	impact	

the	 time	 to	 complete	a	 task,	which	we	expected	 since	 they	were	used	 frequently	and	we	

found	previously	more	queries	is	correlated	to	spending	more	time	searching.		We	look	next	

to	see	if	this	holds	true	by	task	type.	Figure	91	shows	the	correlation	analysis	by	task	type,	

where	 the	 first	 row	 shows	 the	 correlations	 by	 broader	 tasks	 and	 the	 second	 row	 shows	

correlations	by	more	 focused	tasks.	For	 the	Find	4,	No	Specific	Role,	and	Algorithm/Data	

Figure	90.	Uses	of	Iterative	Features	to	Time	Correlation	Across	All	Tasks.	
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Structure	tasks,	we	find	significant	positive	correlations.	While	for	Find	4	tasks,	using	more	

iterative	 features	 correlates	 with	 spending	 more	 time,	 which	 tends	 to	 decrease	 the	

experience	(as	shown	in	Figure	82),	we	also	found	the	experience	does	not	become	negative	

until	after	600	seconds	(shown	in	Figure	82).	Since,	 the	majority	of	tasks	completed	with	

CodeExchange	are	finished	in	less	than	600	seconds,	CodeExchange	tended	to	have	a	positive	

experiences	for	Find	4	tasks	(also	higher	than	other	approaches).		However,	it	does	raise	the	

Figure	91.	Uses	of	Iterative	Features	to	Time	Correlation	by	Task	Type.	
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question,	how	much	usage	of	iterative	features	is	too	much	and	too	little?	We	answer	that	in	

our	next	 analysis.	 Similarly,	we	 find	 that,	while	 increasing	 the	usage	of	 iterative	 features	

increases	the	time	to	complete	Algorithm/Data	Structure	and	No	Specific	Role	tasks,	which	

tends	 to	 decrease	 the	 experience	 (as	 shown	 in	 Figure	 84	 and	 Figure	 86),	 we	 found	 the	

experience	does	not	become	negative	until	after	around	500	seconds	(as	shown	in	Figure	84	

and	Figure	86).	 	Since	the	majority	of	 tasks	completed	 in	this	task	type	are	completed	by	

CodeExchange	in	less	than	that	time,	CodeExchange	tended	to	have	a	positive	experience	for	

No	Specific	Role	and	Algorithm/Data	Structure	tasks.	

	

We	 now	 look	 at	 relationship	 between	 the	 average	 usage	 of	 iterative	 features	 and	 the	

participants’	median	experience.	Figure	92	presents	the	relationship	between	the	average	

number	of	 iterative	 features	used	 for	a	 task	and	 the	median	experience	 for	 that	 task.	We	

found	that	the	relationship	is	very	close	to	a	cubic	curve	using	linear	regression	(adjusted	R-

squared	 value	 of	 .95	 and	 a	 p	 value	 of	 0.001	 suggest	 a	 very	 close	 fit),	 and	with	 no	 linear	

correlation	using	Pearson’s	test.		The	curve	suggests	that	lower	amounts	of	usage	(close	to	

3)	and	higher	amounts	of	usage	(close	to	11)	are	related	to	lower	experience	scores	(lower	

but	still	positive),	but	moderate	amounts	of	usage	(around	5	to	7)	are	related	to	the	highest	

experience	scores.	This	relationship	suggests	that,	while	using	iterative	features	are	related	

to	 higher	 and	 positive	 experience	 scores,	 there	might	 exist	 an	 ideal	 amount	 of	 usage	 to	

achieve	the	best	search	experience	when	searching	with	aspects/qualities	of	the	results	(as	

implemented	 in	 CodeExchange).	 We	 discuss	 more	 of	 the	 possible	 explanations	 in	 the	

Discussion	chapter.		
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To	get	some	idea	of	 the	kind	of	roles	supported	by	CodeExchange’s	 iterative	 features,	we	

gathered	 what	 our	 participants	 had	 to	 say	 after	 their	 experiment	 as	 it	 related	 to	

CodeExchange’s	 features.	 	 There	 was	 no	 structure	 to	 this	 interview,	 rather	 we	 just	

encouraged	 them	 to	 talk	 about	 the	 experiment	 and	 search	 engines	 they	 used.	 Our	

participants	 told	 us	 that,	 at	 a	 high	 level,	 CodeExchange	 was	 better	 for	 drilling	

down…CodeExchange	helped	me	go	in	a	particular	direction,	where	CodeLikeThis	did	not	tell	

me.	They	 found	 language	constructs	useful,	 saying	 I	 liked	clicking	 the	 import…If	 I	 found	a	

project	that	seemed	to	do	what	I	needed...	 I	could	just	click...and	my	search	is	 in	the	project.	

They	 felt	 query	 parts	 helped,	 saying	 query	 parts	 helped	 explore.	 They	 reported	 that	

refinement	recommendations	gave	them	ideas	and	helped	them	remember,	saying	initially	I	

typed	in	SMTP	and	got	suggestion	for	a	mail	validator,	then	I	added	import	and	it	guided	me	to	

think	of	ideas	and	I	typed	just	“draw”	in	here,	and	it	recommended	AWT...	I	was	like	“Oh	yeah,	

Figure	92.	Average	Number	of	Iterative	Features	Used	to	Median	Experience	for	CodeExchange.	
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it	 was	 AWT”.	 Of	 course,	 not	 all	 that	 was	 said	 during	 the	 interview	 was	 positive	 about	

CodeExchange,	which	we	discuss	in	the	interviews	about	the	other	search	engines.	

	

6.2.4.2	CodeLikeThis	Feature	Usage	

Feature	usage	of	CodeLikeThis	was	examined	by	looking	at	how	often	features	were	used	

and	when	using	a	feature	was	used	to	copy	code.	This	data	was	derived	from	the	logs	for	

CodeLikeThis,	 which	 recorded	 like-this	 queries	 issued,	 keywords	 issued,	 back/forward	

buttons	pressed,	and	copies	that	came	after	keywords	or	after	a	 like-this	query.	Table	38	

shows	the	usage	and	copy	analysis	by	task.		

	

We	 found	 that	 keywords	were	 used	 twice	 as	much	 as	 the	 like-this	 queries	 (p<.1,	where	

p=.0000001	with	χ2	on	a	2x1	contingency	table),	which	suggests	that	keywords	played	more	

of	a	role	during	search	than	the	like-this	queries.	However,	we	looked	at	how	many	copies	

happened	 after	 keywords	 versus	 after	 like-this	 queries	 and	 the	 copy/keyword	 and	

copy/like-this	ratios.	These	ratios	appear	in	parenthesis	after	the	copy	counts.	We	found	that	

keywords	and	like-this	queries	lead	to	an	equal	number	of	copies	on	average	when	they	were	

used	 (.42).	 This	 suggests	 that	 keywords	 and	 like-this	 queries	 both	may	 have	 an	 equally	

important	impact	in	searching	for	code.		
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Next	we	 look	 at	 the	 relationship	 between	 using	 CodeLikeThis’	 iterative	 features	 and	 the	

participants’	experience	score.	Figure	93	maps	completed	tasks	to	experience	scores	by	the	

number	of	times	iterative	features	were	used.	Each	point	represents	a	task	completed	by	a	

participant	and	maps	the	frequency	the	participant	used	iterative	features	to	complete	the	

task	to	their	experience	score.	Since	there	is	sometimes	overlap	at	points,	we	use	size	to	show	

how	 many	 points	 occupy	 a	 location.	 	 For	 example,	 there	 is	 one	 task	 completed	 where	

iterative	features	were	used	seven	times	to	complete	it	and	received	an	experience	score	of	

five;	it	is	shown	as	a	small	circle.		As	another	example,	seven	tasks	involved	one	usage	of	an	

iterative	feature	and	received	an	experience	score	of	six;	these	are	shown	with	a	larger	circle.	

Table	38.	CodeLikeThis	Feature	Usage.	

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	 T	

Back	Frequency	 25	 6	 12	 5	 11	 1	 21	 12	 93	

Forward	Frequency	 0	 0	 2	 0	 0	 0	 0	 0	 2	

More	Frequency	 14	 5	 15	 4	 14	 4	 10	 8	 74	

Somewhat	Frequency	 5	 1	 3	 3	 3	 1	 12	 2	 30	

Less	Frequency	 1	 0	 2	 1	 2	 0	 3	 0	 9	

Iterative	Frequency	 20	 6	 19	 8	 19	 5	 25	 10	 113	

Keywords	Frequency	 33	 20	 29	 22	 40	 10	 36	 18	 208	

Copies	after	Keywords	 17	
(.51)	

11	
(.55)	

15	
(0.5)	

3	
(.13)	

13	
(.32)	

6	
(0.6)	

15	
(.41)	

8	
(.44)	

88	
(.42)	

Copies	after	a	Like-This	 5	
(.25)	

2	
(.33)	

12	
(0.6)	

3	
(.37)	

12	
(.63)	

3	
(0.6)	

9	
(.36)	

2	
(0.2)	

48	
(.42)	
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We	outline	the	tasks	completed	occurring	in	the	positive,	neutral,	and	negative	experience	

regions	and	annotate	the	outline	with	the	total	usage	counts	and	total	tasks	completed.	For	

example,	we	find	that	there	are	13	tasks	completed	that	received	a	neutral	experience	score,	

where	the	iterative	features	were	used	31	times	in	total.	

	

Our	results	show	that,	in	23	tasks	completed	using	an	iterative	feature	one	or	more	times	

(49	times	in	total),	the	participants	reported	a	positive	experience.	In	7	tasks	completed	that	

used	 an	 iterative	 feature	one	or	more	 times	 (31	 times	 total),	 the	participants	 reported	 a	

Figure	93.	Mapping	of	Iterative	Feature	Usage	to	Experience.	
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negative	 experience	 in	 completing	 them.	 	 We	 find	 more	 tasks	 completed	 with	 iterative	

features	 are	 associated	with	positive	 experiences	 than	negative	 (23	 to	7),	 and	 find	more	

instances	 of	 using	 iterative	 features	 are	 associated	with	 positive	 experience	 scores	 than	

negative	(49	to	31).	Further,	we	find	the	differences	in	both	cases	significant	(shown	in	Table	

39).	 In	 five	 task	 completions,	we	 find	 zero	 instances	of	using	an	 iterative	 feature.	 	These	

results	suggest	that	the	positive	experience	scores	assigned	to	CodeLikeThis	are	associated	

with	using	the	iterative	features.	

	

Table	39.	Iterative	Feature	Usage	by	Experience	Contingency	Tables.	
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Thus	 far,	we	have	seen	results	 suggesting	 that	CodeLikeThis	 iterative	 features	 lead	 to	an	

equal	rate	of	copies	compared	to	keywords,		are	used	frequently,	and	are	used	in	most	tasks	

when	the	participants	had	a	positive	experience.	Now	we	look	at	what	impact	using	iterative	

features	has	on	the	time	to	complete	the	task.	Figure	94	plots	time	to	complete	a	task	to	usage	

frequency	 of	 iterative	 features	 for	 each	 user	 (some	 points	 overlap).	 We	 find	 a	 weak	

correlation	between	using	iterative	features	and	the	impact	it	has	on	time	to	complete	a	task.	

This	 suggests	 that	 using	 CodeLikeThis’	 iterative	 features	 may	 not	 impact	 the	 time	 to	

complete	a	task	much.		We	look	next	to	see	if	this	holds	true	by	task	type.	Figure	95	shows	

Figure	94.	Time	to	Uses	of	Iterative	Features	Correlation	Across	All	Tasks.	
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the	correlation	analysis	by	task	type,	where	the	first	row	shows	the	correlations	by	broader	

tasks	 and	 the	 second	 row	 shows	 correlations	 by	more	 focused	 tasks.	We	 find	 only	 two	

significant	correlations.	 	For	 the	Find	4	and	the	No	Specific	Role	 tasks	we	 find	significant	

positive	correlations,	while	for	the	other	tasks	we	find	no	correlations.	However,	as	shown	

in	Figure	82,	Figure	83,	and	Figure	84,	we	found	that	time	is	not	correlated	with	experience	

for	the	border	tasks	(Find	4	and	No	Specific	Role)	and	so	taking	more	time	to	use	iterative	

Figure	95.	Uses	of	Iterative	Features	to	Time	Correlation	by	Task	Type.	
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features	may	not	impact	experience	much.	However,	it	does	raise	the	question,	how	much	

usage	of	like-this	queries	is	too	much	and	too	little?	We	answer	that	in	our	next	analysis.	

	

Figure	96	presents	the	relationship	between	the	average	number	of	iterative	features	used	

for	a	task	and	the	median	experience	for	that	task.	We	found	that	the	relationship	is	best	

fitted	by	a	linear	curve,	yet	weakly	fitted	(adjusted	R-squared	value	of	.46	and	a	p	value	of	

0.03	suggest	a	weak	fit),	but	find	a	strong	negative	linear	correlation	with	Pearson’s	test.		The	

curve	 suggests	 that	 lower	 amounts	 of	 usage	 (close	 to	 1	 or	 2)	 are	 related	 to	 the	 highest	

experience	scores	and	higher	amounts	(close	to	4)	are	related	to	relatively	lower	experience	

scores.	This	relationship	suggests	that,	while	using	iterative	features	are	related	to	higher	

and	positive	 experience	 scores,	 that	 like-this	 queries	might	 be	 best	 used	1	 or	 2	 times	 to	

achieve	higher	experience	scores.	This	contrasts	with	CodeExchange,	where	we	found	that	

Figure	96.	Average	Iterative	Features	Used	to	Median	Experience	for	CodeLikeThis.	
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the	highest	experience	scores	are	associated	to	more	moderate	levels	of	usage	of	the	iterative	

features	(around	5	to	7	times).	We	discuss	possible	explanations	in	the	next	chapter.	

	

At	a	high	level,	participants	explained	like-this	queries	helped	them	get	a	new	perspective.	

They	said	with	CodeLikeThis	you	get	to	see	different	codes	and	different	ideas…and	it	gave	me	

a	new	perspective…	and	it	was	sort	of	a	way	of	exploring.	They	explained	the	like-this	queries	

were	helpful	because	I	wasn’t	sure	exactly	what	I	was	looking	for…	and	that	it	works	well	for	

queries	that	are	common	and	precise:	quicksort,	hash	table,	game	loop	or	game	examples	for	

instance.	 However,	 it	 is	 clear	 that	 like-this	 queries	 do	 not	 always	 work,	 one	 participant	

explained	more	like	this,	is	pretty	much	what	you	expect,	but	the	other	two	doesn’t	really	follow	

the	semantics	in	my	mind	and	another	saying	I	felt	a	little	lost.		

	

6.2.4.3	Google	Feature	Usage	

For	 Google,	 we	 recorded	 keyword	 queries,	 advanced	 keyword	 queries	 (e.g.,	 restricting	

search	to	a	site	with	the	“site”	qualification	or	using	Google’s	advanced	search	form),	and	

domains	visited	by	clicking	hyperlinks.	Our	first	analysis	is	presented	in	Table	40	where	we	

compared	the	frequency	in	which	participants	used	keywords	versus	advanced	queries	by	

task.	We	found	that	keyword	queries	were	used	about	five	times	as	much	advanced	queries	

(84.7%	to	15.2%)	with	p<0.1	(p=1.4x10-28)	with	χ2	on	a	2x1	contingency	table.	This	suggests	

either	 keywords	 sufficed	 or	 advanced	 search	 was	 less	 helpful	 or	 harder	 to	 use	 for	 the	

participants.		



248	
	

To	get	an	idea	of	the	impact	of	Google’s	index	of	web	pages	on	code	search,	we	next	looked	

at	the	number	of	domains	that	were	visited	by	clicking	a	hyperlink	and	how	often	domains	

were	visited	by	clicking	a	hyperlink	across	participants	(we	do	not	double	count	a	visit	when	

one	participant	clicks	the	same	link	multiple	times).	We	present	the	results	of	our	analysis	

in	Table	41	and	Table	42	.In	these	tables,	all	domains	visited	occur	under	the	column	called	

“Domain”	and	are	listed	in	descending	order	by	the	total	number	of	times	they	were	visited	

by	participants,	which	 is	 listed	under	the	“Total”	column.	 	The	frequency	of	visits	by	task	

number	are	labeled	under	the	columns	1	though	8.		

	

We	 found	 that	 there	were	126	different	domains	visited	529	 times,	 but	 the	 frequency	at	

which	they	are	visited	followed	a	long	tail	distribution	with	github.com	(131/529	visits)	and	

stackoverflow.com	(105/529	visits)	visited	most	often	and	then	a	sharp	drop	in	number	of	

visits	to	other	domains	afterward.	However,	while	individually	the	other	124	domains	are	

visited	much	

Table	40.	Google	Keywords	and	Advanced	Query	Usage.	

	 Keywords	 Advanced	 Total	
Task	1	 33	 5	 38	
Task	2	 16	 3	 19	
Task	3	 27	 7	 34	
Task	4	 24	 10	 34	
Task	5	 59	 9	 68	
Task	6	 13	 4	 17	
Task	7	 34	 1	 35	
Task	8	 10	 0	 10	
Total	 216	 39	 255	
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Table 41. Domains Visited by Task - Part 1. 

	Domain 1 2 3 4 5 6 7 8 Total Domain 1 2 3 4 5 6 7 8 Total
github.com 21 5 1 0 34 14 56 0 131 math.nist.gov 0 0 0 0 2 0 0 0 2
stackoverflow.com 5 8 17 26 28 3 14 4 105 planet-source-code.com 1 1 0 0 0 0 0 0 2
docs.oracle.com 1 0 16 0 1 3 4 0 25 processingjs.nihongoresources.com 2 0 0 0 0 0 0 0 2
java.net 0 0 0 0 19 0 0 0 19 programmers.stackexchange.com 0 0 0 0 2 0 0 0 2
commons.apache.org 0 0 0 0 9 0 0 0 9 raw.githubusercontent.com 0 0 0 0 1 1 0 0 2
codereview.stackexchange.com 1 0 0 3 1 0 3 0 8 statr.me 0 0 0 0 2 0 0 0 2
jcaif.sourceforge.net 0 0 0 0 0 0 8 0 8 abeautifulsite.net 1 0 0 0 0 0 0 0 1
jdesurvey.codeplex.com 0 0 0 0 0 0 8 0 8 android.googlesource.com 0 0 1 0 0 0 0 0 1
math.hws.edu 1 0 3 0 0 0 0 3 7 baeldung.com 0 0 0 1 0 0 0 0 1
tutorialspoint.com 0 0 1 0 0 2 2 2 7 bluej.org 0 0 1 0 0 0 0 0 1
alvinalexander.com 1 1 0 0 0 1 2 1 6 careerbless.com 0 0 0 0 1 0 0 0 1
introcs.cs.princeton.edu 0 0 0 1 5 0 0 0 6 code.arc.cmu.edu 0 0 1 0 0 0 0 0 1
coderanch.com 0 0 0 0 1 0 4 0 5 code.google.com 0 0 0 0 1 0 0 0 1
dreamincode.net 2 0 1 0 1 0 0 1 5 code.org 0 0 0 0 1 0 0 0 1
java2s.com 0 3 2 0 0 0 0 0 5 codereview.com 0 0 0 0 0 0 1 0 1
sanfoundry.com 0 0 0 1 4 0 0 0 5 codereview.stackexchagne.com 0 0 0 1 0 0 0 0 1
services.brics.dk 0 0 0 0 5 0 0 0 5 cs.cmu.edu 0 0 0 0 1 0 0 0 1
google.com 1 0 1 1 0 1 0 0 4 cs.elte.hu 0 0 0 0 1 0 0 0 1
quora.com 2 0 0 0 0 1 0 1 4 cs.ucf.edu 0 0 0 0 0 0 0 1 1
sourceforge.net 1 0 0 0 0 0 3 0 4 cs.umd.edu 0 0 1 0 0 0 0 0 1
zetcode.com 4 0 0 0 0 0 0 0 4 csee.umbc.edu 0 0 0 0 1 0 0 0 1
avc.com 0 0 0 0 3 0 0 0 3 dba.stackexchange.com 0 0 0 0 0 0 1 0 1
beginwithjava.blogspot.com 1 0 2 0 0 0 0 0 3 developers.google.com 0 1 0 0 0 0 0 0 1
codejava.net 0 0 0 0 0 2 1 0 3 developers.slashdot.org 1 0 0 0 0 0 0 0 1
cs.lmu.edu 0 0 3 0 0 0 0 0 3 docjar.com 0 0 0 1 0 0 0 0 1
gamedev.stackexchange.com 2 0 0 0 1 0 0 0 3 eclipse.org 0 0 0 0 0 0 1 0 1
java-gaming.org 3 0 0 0 0 0 0 0 3 example-code.com 0 1 0 0 0 0 0 0 1
javaprogrammingforums.com 1 0 0 0 0 1 1 0 3 forum.codecall.net 1 0 0 0 0 0 0 0 1
neiljohan.com 3 0 0 0 0 0 0 0 3 freecode.com 0 0 0 0 1 0 0 0 1
oracle.com 0 1 2 0 0 0 0 0 3 functionx.com 0 0 0 0 1 0 0 0 1
singularsys.com 0 0 0 0 3 0 0 0 3 gamedevelopment.tutsplus.com 1 0 0 0 0 0 0 0 1
bootstrapworld.org 0 0 0 0 2 0 0 0 2 ibm.com 0 0 0 0 0 0 1 0 1
codeproject.com 1 0 0 0 0 0 0 1 2 imhasib.wordpress.com 1 0 0 0 0 0 0 0 1
coderance.com 1 0 0 0 0 0 1 0 2 inmath.com 0 0 0 0 1 0 0 0 1
developer.com 0 2 0 0 0 0 0 0 2 instructables.com 1 0 0 0 0 0 0 0 1
dynamicgeometry.com 0 0 2 0 0 0 0 0 2 intelligentjava.wordpress.com 0 0 0 1 0 0 0 0 1
dzone.com 0 0 0 0 0 0 2 0 2 intmath.com 0 0 0 0 1 0 0 0 1
en.wikipedia.org 0 0 0 0 2 0 0 0 2 java-source.net 0 1 0 0 0 0 0 0 1
examples.javacodegeeks.com 0 0 1 0 0 0 1 0 2 javacooperation.gmxhome.de 1 0 0 0 0 0 0 0 1
freesourcecode.net 0 2 0 0 0 0 0 0 2 javaguicodexample.com 0 0 0 0 0 0 1 0 1
gamedev.net 2 0 0 0 0 0 0 0 2 javamarioplatformer.codeplex.com 1 0 0 0 0 0 0 0 1
gist.github.com 0 0 0 0 1 0 1 0 2 jdsoft.com 0 0 0 0 0 0 1 0 1
ihsn.org 0 0 0 0 0 0 2 0 2 jspsurveylib.sourceforge.net 0 0 0 0 0 0 1 0 1
java-forums.org 0 0 0 0 0 0 1 1 2 kaviddiss.com 0 0 0 0 0 0 1 0 1
java-tips.org 0 2 0 0 0 0 0 0 2 la4j.org 0 0 0 0 1 0 0 0 1
javagraphics.java.net 0 0 0 0 2 0 0 0 2 martin-thoma.com 1 0 0 0 0 0 0 0 1
javamail.java.net 0 2 0 0 0 0 0 0 2 mathandcoding.org 0 0 0 0 1 0 0 0 1
javaworld.com 1 0 0 0 0 0 1 0 2 mathematik.uni-kl.de 0 0 0 0 1 0 0 0 1
journaldev.com 0 0 0 0 0 0 1 1 2 mkyong.com 0 0 0 0 0 1 0 0 1
krum.rz.uni-mannheim.de 0 0 0 0 2 0 0 0 2 msdn.microsoft.com 0 0 0 0 0 1 0 0 1

Task Task
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less	compared	to	github.com	or	stackoverflow.com,	collectively	they	are	visited	(293/529)	

more	 frequently	 than	 github.com	and	 stackoverflow.com.	This	 suggests	 that	 the	 size	 and	

variety	of	Google’s	index	was	helpful	for	participants	in	their	search.		

	

	

	

	

Table 42. Domains Visited by Task - Part 2. 

Domain 1 2 3 4 5 6 7 8 Total
mychess.com 1 0 0 0 0 0 0 0 1
ncbi.nim.nih.gov 0 0 0 0 0 1 0 0 1
netbeans.org 0 0 0 0 0 1 0 0 1
news.ycombinator.com 0 0 0 0 1 0 0 0 1
ntu.edu.sg 0 0 1 0 0 0 0 0 1
playsudoku.sourceforge.net 1 0 0 0 0 0 0 0 1
popkade.ir 0 0 0 0 0 0 1 0 1
programcreek.com 0 1 0 0 0 0 0 0 1
programmingsimplified.com 0 0 0 0 1 0 0 0 1
progressivejava.net 1 0 0 0 0 0 0 0 1
projects.congrace.de 0 0 0 0 1 0 0 0 1
raywenderlich.com 1 0 0 0 0 0 0 0 1
scicomp.stackexchange.com 0 0 0 0 1 0 0 0 1
smallbusiness.chron.com 0 0 0 0 0 1 0 0 1
sourcecodesworld.com 0 0 1 0 0 0 0 0 1
suberic.net 0 1 0 0 0 0 0 0 1
surjey.cvs.sourceforge.net 0 0 0 0 0 0 1 0 1
survey.codeplex.com 0 0 0 0 0 0 1 0 1
surveymonkey.com 0 0 0 0 0 0 1 0 1
surveysystem.com 0 0 0 0 0 0 1 0 1
techoverflow.net 1 0 0 0 0 0 0 0 1
twili.com 0 0 0 0 0 0 1 0 1
twillio.com 0 0 0 0 0 0 1 0 1
vertabelo.com 0 0 0 0 0 0 1 0 1
wphooper.com 0 0 1 0 0 0 0 0 1

Task
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We	looked	at	the	query	behavior	of	search	with	Google	and	present	the	results	in	Table	43.	

Each	row	presents	on	average	how	many	queries	were	issued	per	user,	the	average	number	

of	terms	in	the	keyword	queries,	and	the	average	number	of	terms	deleted	and	added	when	

modifying	a	query.	The	results	support	the	hypothesis	that	code	search	on	the	Internet,	even	

with	a	large-scale	web	search	engine,	is	iterative	and	can	have	a	vast	range	of	queries	(1.67	

to	11.3).	These	 results	 suggest	Google	 could	benefit	 from	 features	 that	 explicitly	 support	

iterative	code	search.	Further,	analyzing	queries	by	task	type	supports	the	same	conclusion	

that	Google	could	benefit	from	features	that	explicitly	support	iterative	code	search,	where	

the	typical	range	of	queries	span	from	3.33	to	7.33	as	shown	in	Table	44.			

	

Interestingly,	 an	 even	deeper	 analysis	 suggests	 that	Google	 could	 especially	 benefit	 from	

features	that	explicitly	support	using	the	results	from	the	previous	query	in	creating	the	next	

query.	Out	of	198	queries,	105	(53%)	queries	contained	words	occurring	in	the	text	on	web	

pages	visited	from	the	previous	query	in	the	same	task.	Among	the	198	queries	considered,	

Table 43. Google Search Behavior. 

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	
Queries	per	User	 6.33	 3	 5.83	 5.67	 11.3	 3	 5.83	 1.67	
Terms	per	Query	 5.92	 5.52	 4.23	 5.24	 4.07	 5.93	 4.8	 4.5	
Terms	Deleted	per	Query	 2.43	 1	 1.47	 1.61	 1.42	 1.57	 2.03	 0.67	
Terms	Added	per	Query	 2.57	 1.05	 1.53	 1.88	 1.45	 1.79	 1.94	 1	

 

Table	44.	Google	Search	Behavior	by	Task	Type.	

	 Find	4	 Find	1	 No	Specific	
Role	

Algorithm/Data	
Structure	

Queries	per	User	 7.33	 3.33	 4.42	 6.25	
Terms	per	Query	 4.65	 5.35	 4.92	 4.83	
Terms	Deleted	per	Query	 1.73	 1.26	 1.52	 1.63	
Terms	Added	per	Query	 1.76	 1.46	 1.55	 1.75	
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we	do	not	include	first	queries	for	a	task	because	no	previous	websites	can	be	visited.	When	

counting	 words,	 we	 exclude	 stop	 words	 that	 are	 not	 in	 the	 Java	 language	 and	 words	

occurring	in	the	first	query	that	came	directly	from	the	participant	and	not	a	web	page.	These	

results	suggest	the	participants	were	“borrowing”	content	from	a	web	page	in	creating	their	

next	keywords.	Further,	we	counted	words	from	many	web	pages.	Specifically,	we	counted	

words	from	StackOverflow	27%	of	the	time,	GitHub	14%	of	the	time,	and	other	pages	that	

included	 tutorial	 and	 documentation	 pages	 47%	 of	 the	 time	 (note,	 if	 a	 word	 in	 a	 query	

occurred	in	more	than	one	web	page	visited	in	the	previous	results,	they	both	counted	as	the	

source).	We	note	that	GitHub	might	have	a	somewhat	lower	percentage,	because	some	of	the	

visits	appear	to	be	only	for	navigational	purposes	(e.g.,	walking	a	file	hierarchy)	only.	

	

We	find	that	the	number	of	terms	removed	from	a	query	is	about	equal	to	the	number	that	

is	added.		Further,	the	number	of	terms	added,	deleted,	and	added	and	deleted	are	on	average	

less	than	the	number	of	terms	per	query.	This	suggests	that	the	participants	often	kept	terms	

from	 the	 previous	 query	 in	 their	 next	 query,	 making	 their	 query	modifications	more	 as	

incremental	 adjustments.	 This	 suggests	 support	 for	 incrementally	 modifying	 a	 query	 to	

iteratively	search	needs	to	be	supported.		

	

While	users	iteratively	searched	with	Google	using	keyword	queries,	we	wanted	to	see	if	the	

number	of	keyword	queries	issued	correlated	with	the	user’s	experience.	Figure	97	presents	

the	relationship	between	the	average	number	of	keyword	queries	used	for	a	task	and	the	

median	experience	 for	 that	 task.	We	 found	 that	 the	 relationship	 is	best	 fitted	by	a	 linear	

curve,	yet	moderately	fitted	(adjusted	R-squared	value	of	.63	and	a	p	value	of	0.01	suggest	a	
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moderate	fit),	but	we	find	a	strong	negative	linear	correlation	with	Pearson’s	test.		The	curve	

suggests	 that	 lower	amounts	of	keyword	query	usage	 (close	 to	2	or	3)	are	 related	 to	 the	

highest	experience	scores	and	higher	amounts	(closer	to	11)	are	related	to,	relatively,	lower	

experience	scores.	This	relationship	suggests	that	there	seems	to	be	a	relationship	between	

higher	numbers	of	iterations	with	keywords	and	a,	relatively,	lower	user	experience.	

	

Participants	told	us	they	appreciated	Google	for	the	context	and	comments	they	would	find	

on	web	pages.	Some	said	sometimes	I	was	like,	oh	man	I	wish	I	could	use	Google	at	this	point,	

just	to	get	some	context	so	I	can	understand	what	I	need	to	search	in	CodeExchange…	and	I	use	

Google	 to	 find	 best	 practices	 and	 Google	 had	 comments.	 However,	 there	 are	 times	 when	

Google	did	not	help.	Our	participants	told	us	sometimes	they	asked	Why	am	I	getting	this?	

and	Google	 is	 lacking	 in	 digging	 down…	 and	 for	 simple	 straight	 forward	 [questions]	 I	 felt	

CodeLikeThis	was	better.	

Figure	97.	Average	Iterative	Features	Used	to	Median	Experience	for	Google.	
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6.2.4.4	Baseline	Feature	Usage	

While	the	baseline	is	limited	in	features,	we	were	able	to	log	some	statistics	about	the	queries	

issued	 using	 the	 baseline	 search	 engine	 and	 present	 the	 results	 in	 Table	 45.	 Each	 row	

presents	on	average	how	many	queries	were	issued	per	user,	the	average	number	of	terms	

in	the	keyword	queries,	and	the	average	number	of	terms	deleted	and	added	when	modifying	

a	query.	The	results	are	similar	to	what	we	see	with	Google,	but	with	important	differences.	

Similar	to	Google,	we	find	that	code	search	on	the	Internet	is	iterative	with	a	vast	range	of	

number	of	queries	on	average	(3.17	to	9).	Also	similar	to	Google,	Table	46	shows	that	the	

average	queries	by	task	type	is	somewhere	between	4	and	7.		However,	unlike	Google,	the	

baseline	had	fewer	terms	per	query	and	fewer	terms	added/deleted.		This	difference	cannot	

easily	be	explained.		It	could	be	that	Google	searches	require	more	terms	to	effectively	search	

with	them,	Google’s	autocomplete	recommends	more	useful	keywords,	or	web	pages	give	

the	participants	more	ideas	for	keywords,	to	just	name	a	few.		

	

Figure	98	presents	the	relationship	between	the	average	number	of	keyword	queries	used	

for	a	task	and	the	median	experience	for	that	task.	We	found	that	the	relationship	is	best	

fitted	by	a	polynomial	to	the	4th	degree,	yet	moderately	fitted	(adjusted	R-squared	value	of	

Table 45. Baseline Search Behavior. 

	 T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	
Queries	per	User	 7.17	 3.83	 4.67	 3.5	 9	 3.17	 7.17	 6	

Terms	per	Query	 2.05	 2.7	 1.39	 2.57	 1.37	 2.95	 1.44	 2.22	

Terms	Deleted	per	Query	 1.05	 0.86	 0.89	 1.4	 1.02	 0.78	 0.9	 1	

Terms	Added	per	Query	 1.05	 0.82	 1	 1.2	 1.04	 1.17	 0.98	 1.17	
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.81	and	a	p	value	of	0.051	suggest	a	moderate	fit),	and	we	find	a	no	correlation	with	Pearson’s	

test.	 	From	the	graph	and	correlation	test,	we	find	no	clear	pattern	of	number	of	keyword	

queries	issued	with	the	baseline	on	experience.		That	is,	sometimes	more	queries	are	better	

and	sometimes	it	is	worse.	This	contrasts	with	what	we	found	in	Google,	where	fewer	queries	

lead	to	better	experiences	than	more.	A	possible	explanation	is	that	sometimes	seeing	more	

results	 in	 the	 baseline	 lead	 to	 an	 improved	 experience,	 whereas	 seeing	more	 results	 in	

Google	 did	 not.	 However,	 an	 improved	 experience	 for	 the	 baseline	 might	 still	 be,	

categorically	speaking,	negative	or	neutral.	

	

6.2.5	Why	Code	Was	Chosen	for	Tasks	

Now	we	 turn	 our	 attention	 to	why	 code	was	 selected	 for	 the	 tasks.	We	 are	 particularly	

interested	in	the	motivations	behind	selecting	code	and	how	they	might	explain,	in	part,	the	

iterative	search	behavior	observed	in	our	experiments.	To	understand	why	code	was	chosen,	

we	examined	the	463	explanations	given	by	our	participants	that	reported	why	they	chose	

code	(one	explanation	for	each	snippet	they	found)	and	used	them	to	create	categories	of	

reasons	for	selecting	code.	To	create	these	categories,	three	graduate	students	(the	author	

and	 two	 other	 software	 engineering	 graduate	 students)	 participated	 in	 an	 affinity	

Table	46.	Baseline	Search	Behavior	by	Task	Type.	

	 Find	4	 Find	1	 No	Specific	
Role	

Algorithm/Data	
Structure	

Queries	per	User	 7.00	 4.13	 4.71	 6.42	

Terms	per	Query	 1.57	 2.55	 1.94	 1.92	
Terms	Deleted	per	Query	 0.95	 0.97	 0.84	 1.05	
Terms	Added	per	Query	 	0.99	 1.05	 0.95	 1.06	
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diagramming	 session	 to	 cluster	 the	 “why”	 explanations.	 	 Each	 graduate	 student	 took	 an	

explanation	and	either	assigned	it	a	category	(if	one	had	already	been	created	by	the	group)	

or	created	a	new	category	to	assign	it	to.	The	group	of	students	were	free	to	discuss	names	

of	 categories	 and	 move	 explanations	 if	 needed.	 From	 the	 463	 “why”	 explanations,	 28	

categories	emerged.	Most	reasons	fell	into	five	clusters;	we	show	the	top	17	clusters	in	Figure	

99	(the	other	11	clusters	had	only	1	to	3	explanations	in	them).		

	

We	found	that	our	participants	often	selected	code	because	it:	

• helped	implement	a	feature	the	participant	had	in	mind	(e.g.,	A	user	would	want	to	

save	their	sketch,	so	we	need…save	and	load…)	

• supported	a	design	decision	the	programmer	made	about	what	the	code	should	do	

(e.g.,	I	want	to	support	3D	too.)	

• met	the	problem	specification	(e.g.,	…performs	the	job	really	well	and	hence	I	choose	

it)	

Figure	98.	Average	Iterative	Features	Used	to	Median	Experience	for	Baseline.	
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• served	as	a	starting	point	to	solve	the	programming	problem	(e.g.,	…an	ideal	starting	

point	for	building	connect	four…contains	the	correct	sequence	of	gameplay…)	

• served	as	an	example	or	a	reference	for	how	to	solve	the	programming	problem	(e.g.,	

…demonstrates	how	calculators	work…)	

	

The	top	two	reasons	for	selecting	code	suggest	that	when	the	code	being	searched	for	is	not	

completely	specified	(as	in	our	tasks),	that	the	programmer	will	make	decisions	on	what	to	

search	for	as	they	search.	Often,	they	make	decisions	related	to	design	(features	they	think	

are	needed	or	other	design	decisions).	These	 reasons	might,	 in	part,	 explain	 some	of	 the	

Figure 99. Reasons Why Participants Selected Code. 
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iterative	search	behavior	we	observed	in	our	experiments	and	that	were	observed	by	others	

as	well	[7],	[13],	[48],	[50],	[97],	[106],	because	making	design	decisions	is	often	argued	to	

be	an	iterative	process	[2,46].	However,	often	programmers	found	code	simply	because	they	

felt	 it	 satisfied	 requirements.	 	 Interestingly,	 we	 also	 observed	 that	 many	 participants	

reported	that	 the	code	they	selected	would	serve	as	a	useful	starting	place	to	write	code,	

which	contrasts	with	selecting	code	that	will	simply	complete	their	task	(as	with	strict	copy-

paste	coding).		This	suggest	that	programmers	sometimes	are	looking	for	a	starting	place	to	

begin	transforming	for	their	own	needs	rather	than	the	final	solution.	

	

6.2.6	Within	Subjects	Sub-Analysis	

Our	 previous	 analyses	 have	 been	 between-subjects	 analysis,	 in	 which	 we	measured	 the	

differences	of	experience,	time,	and	success	of	iterative	approaches	across	participants	for	

each	task.	This	allowed	us	to	examine	the	 impact	of	 iterative	approaches	separately	 from	

who	is	searching	and	measure	impact	on	participants	in	general	rather	than	any	particular	

participant.	However,	analyzing	the	differences	 in	performance	by	 individual	participants	

lets	us	control	for	individual	differences	in	our	analysis	and	see	if	the	effects	we	saw	above	

also	hold	when	the	participant	makes	or	is	responsible	for	the	comparison.	Such	an	analysis	

is	a	within-subjects	analysis.	There	are	risks	associated	with	such	an	analysis	(e.g.,	learning	

effects,	ordering	effects,	carry	over	effects	 from	previous	tasks),	but	we	present	a	within-

subjects	analysis	to	see	if	the	high-level	story	above	is	reflected	here	as	well.			
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Typically,	a	within-subjects	analysis	might	take	two	treatments	and	measure	a	dependent	

variable	after	each	treatment	 for	each	participant.	 	For	example,	a	 typical	within-subjects	

analysis	in	our	case	would	be	to	measure	the	time	difference	between	completing	task	one	

with	 Google	 and	 then	 completing	 task	 one	 with	 CodeExchange	 for	 each	 participant.		

However,	recall	our	experiment	design	is	a	mixed	design	and	no	participants	repeats	a	task	

or	uses	all	treatments,	so	we	cannot	conduct	the	typical	within-subjects	analysis.		However,	

given	 our	 even	 task	 distribution	 among	 search	 engines,	 we	 can	 compare	 participant	

performance	between	two	search	engines	on	tasks	that	belong	to	the	same	sub-category	(i.e.,	

Find	4-No	Specific	Role,	Find	4-Algorithm/Data	Structure,	Find	1-	No	Specific	Role,	and	Find	

1-Algorithm/Data	Structure).	For	example,	participants	1,7,13,	and	19,	used	CodeExchange	

and	Google	 to	 complete	 their	 tasks.	 Since	 task	one	 and	 task	 five	both	 are	Find	4	 and	No	

Specific	Role	tasks,	we	can	compare	how	each	of	those	participants	performed	when	trying	

to	complete	a	Find	4-No	Specific	Role	task	with	CodeExchange	and	with	Google.	For	example,	

participant	1	gave	an	experience	score	of	6	for	completing	task	1	with	CodeExchange	and	an	

experience	score	of	5	completing	task	5	with	Google.	Since	both	task	1	and	5	belong	to	the	

same	sub-category,	our	within-subject	analysis	says	participant	1	had	a	better	experience	

completing	Find	4-No	Specific	Role	tasks	with	CodeExchange	than	Google.	We	acknowledge	

there	 is	 a	 huge	 threat	 in	 doing	 this,	 because	 the	 tasks	 being	 different	 could	 cause	 the	

observed	difference	and	likely	to	have	an	impact.	Further,	our	within	analysis	is	limited	by	

the	 number	 of	 participants	 comparing	 any	 pair	 of	 treatments.	 	 In	 our	 case,	 only	 four	

participants	compare	a	pair	of	treatments	for	each	sub-category,	giving	us	16	data	points	to	

work	with	 to	 conduct	 a	within	 analysis	 for	 each	 pair	 of	 search	 engines.	However,	 in	 the	
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interest	of	examining	our	result	from	a	different	perspective,	we	present	the	limited	within-

subject	analysis	here.	

	

Table	 47	 presents	 our	 within	 analysis	 between	 each	 iterative	 approach	 and	 each	 non-

iterative	approach	for	experience.		The	header	identifies	how	often	an	individual	participant	

thought	that	CodeExchange	or	CodeLikeThis	provided	a	better,	equal,	or	worse	experience	

in	 a	 sub-category.	 	 We	 found	 CodeExchange	 exchange	 was	 thought	 to	 provide	 a	 better	

experience	than	the	base	line	and	an	equal	experience	to	Google.	CodeLikeThis	fared	worse,	

with	being	about	equal	to	the	base	line	and	providing	a	worse	experience	than	Google.	The	

statistical	significance	was	computed	with	a	χ2	test	on	a	2X3	contingency	table.	These	results	

mirror,	 to	 some	 extent,	 our	 high	 level	 story	 that	 Iterative	 approaches	 can	 significantly	

provide	 a	 better	 user	 experience	 than	 non-iterative	 approaches	 or	 an	 experience	

comparable	 to	 Google.	 However,	 the	 results	 also	 appear	 to	 “flip”	 somewhat	 from	 the	

between-subject	analysis.	CodeExchange	performs	comparably	with	Google	 in	the	within-

subject	analysis,	but,	in	the	between-subject	analysis,	Google	performed	significantly	better.	

Further,	Google	performs	significantly	better	than	CodeLikeThis	in	the	with-subject	analysis,	

Table	47.	Within-Subjects	CodeExchange	Analysis.	

CE	>	BL	 CE	==	BL	 CE	<	BL	 CE	>	G	 CE	==	G	 CE	<	G	

8	 5	 3	 7	 1	 8	

p=0.10*	 p=0.93	

CLT	>	BL	 CLT	==	BL	 CLT	<	BL	 CLT	>	G	 CLT	==	G	 CLT	<	G	

6	 5	 5	 2	 6	 8	

p=0.91	 p=0.02*	
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but,	 in	the	between-subject	analysis,	Google	performed	better	but	not	significantly.	These	

results	suggest	that	when	the	participant	is	responsible	for	the	experience	comparison,	thus	

controlling	for	individual	differences,	the	experience	results	are	different,	but,	overall,	they	

tell	a	similar	high	level	story.	

	

We	also	performed	a	similar	analysis	as	above,	but	focusing	on	comparing	the	times	to	paste	

all	the	required	snippets.	 	To	do	this	analysis,	we	conducted	a	repeated	measures	ANOVA	

statistical	 test	 to	 see	 if	 there	were	 any	 significant	 differences	 by	 sub-category.	 Table	 48	

presents	the	significance	results	from	the	ANOVA	test	for	repeated	measures,	were	we	also	

present	the	mean	times	per	treatment	pairs.	For	example,	CodeExchange	under	the	Find	4	–	

No	Specific	Role	sub-category,	had	a	mean	time	of	596.5	seconds	against	Google,	and	a	mean	

time	of	397	seconds	against	the	baseline.	Similar	to	the	results	above,	we	find	not	statistical	

difference	in	time	in	a	within-subject	analysis.		

	

	

Table	48.	ANOVA	Within	Results	on	Time.	

	 Find	4	-	
No	Specific	Role	

Find	4	-	
Algorithm/Data	

Structure	

Find	1	-	
No	Specific	

Role	

Find	1	-	
Algorithm/Data	

Structure	
CE	 596.5	–	G	

397	–	BL		
1009.5	–	G	
690	–	BL		

256.25	–	G	
296	–	BL		

436.25	–	G	
323.5	–	BL		

CLT	 802.25	–	G	
705.25	–	BL	

499.75	–	G	
877.75	–	BL		

274.25	–	G	
313.75	–	BL		

376	–	G		
246.5	–	BL		

G	 810	–	CE	
	585.75	–	CLT	

713.5	–	CE	
567.75	–	CLT	

239.25	–	CE	
223.25	–	CLT	

389.75	–	CE	
220.75	–	CLT		

BL	 543.25	–	CE	
726.5	–	CLT		

356	–	CE	
875.5	–	CLT				

148.5	–	CE		
244.75	–	CLT	

415.25	–	CE		
301	–	CLT		

ANOVA	 p=0.677	 p=0.715	 p=0.329	 p=0.922	
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6.2.7	End	of	Experiment	Survey	

Each	participant	ended	their	experiment	by	filling	out	a	survey	composed	of	eight	questions	

about	the	two	search	engines	they	used	to	complete	all	their	tasks.	The	goal	of	the	survey	

was	to	capture	some	overall	impressions	of	the	search	engines	they	used	as	a	tool	they	might	

be	able	to	use	today	in	their	current	development	practice.	Each	participant	answered	four	

questions	 about	 each	 of	 their	 search	 engines	 (making	 eight	 total	 questions)	 and	 the	

questions	are	presented	in	Table	494.	The	questions	themselves	were	taken	from	another	

user	experiment	comparing	code	search	engines	by	Henninger	[48],	and	were	designed	to	

evaluate	if	the	search	engines	used	during	the	experiment	would	help	the	participant	in	their	

current	development	practice.	

	

                                                
4 Note, the survey presented “strongly disagree” as “bad” and “strongly agree” as “great”, but the participants were 
told to treat them as how much they agree with the presented statements. 

Table	49.	End	of	Experiment	Survey.	

ID	 Statement	
Agreement	Score	

(1=strongly	disagree,	4=neutral,	
7=strongly	agree)	

1	
Using	 <search	 engine	 name>	 would	
improve	my	performance	 in	developing	
software.	

1,	2,	3,	4,	5,	6,	7	

2	 I	would	find	<search	engine	name>	easy	
to	use.	 1,	2,	3,	4,	5,	6,	7	

3	
Using	 <search	 engine	 name>	 would	
enhance	my	effectiveness	in	developing	
software.	

1,	2,	3,	4,	5,	6,	7	

4	
I	 would	 find	 <search	 engine	 name>	 a	
useful	 support	 tool	 for	 developing	
software.	

1,	2,	3,	4,	5,	6,	7	
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Figure	100	presents	the	box	plot	summary	of	the	scores	from	all	the	participants	answering	

each	of	the	four	questions.		Each	graph	is	titled	with	the	question	answered,	where	each	box	

plot	presents	the	spread	of	the	scores	for	each	search	engine	(identified	by	color	and	by	the	

y-axis)	and	is	labeled	with	the	median	score.	We	find	that	the	iterative	approaches	always	

have	a	median	positive	response,	with	CodeExchange	achieving	a	higher	median	than	the	

baseline	 in	 all	 questions	 and	 CodeLikeThis	 achieving	 a	 higher	 median	 in	 three	 of	 four	

questions	 and	 equal	 in	 one.	 These	 responses	 suggest	 that	 the	 participants	 think	 that	

integrating	 iterative	 features	 into	 traditional	 code	 search	 engines	 would	 improve	 the	

performance	 of	 developing	 software,	 make	 the	 search	 engine	 easier	 to	 use,	 make	

programmers	more	effective	in	developing	software,	and	make	code	search	engines	a	more	

useful	support	tool.		

	

Figure	100.	Box	Plot	Summary	of	End	of	Experiment	Survey.	
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Not	surprisingly,	Google	scores	high	in	many	questions	(highest	median	in	three	questions	

and	 tying	 for	 the	 highest	 median	 in	 one	 question).	 Google	 is	 heavily	 used	 today	 by	

programmers	 in	 their	day	 to	day	work	and	can	be	used	 to	 search	a	vast	 amount	of	 code	

indexed	on	the	Internet	(as	we	showed	in	Table	44	and	Table	42).		As	such,	our	participants’	

answers	to	our	survey	questions	about	if	Google	would	improve	performance,	is	easy	to	use,	

would	make	the	programmer	more	effective,	and	would	be	a	useful	support	tool	is	more	of	a	

response	to	the	reality	of	today	rather	than	a	hypothetical	future.	However,	what	we	do	find	

surprising	is	CodeExchange	tying	Google	as	a	useful	support	tool	for	developing	software.	

Recall,	the	major	difference	between	CodeExchange	and	the	baseline	search	engine	are	the	

iterative	features	(the	index	and	the	ranking	algorithm	are	the	same).	This	means	the	major	

difference,	the	design	of	the	iterative	features,	made	the	participants	score	CodeExchange	

and	Google	equally	as	would	be	support	tools	for	developing	software.			

	

The	survey	results	also	address	the	question	of	if	code	search	engines	could	be	useful	at	all.		

The	participants’	responses	suggest	that	indeed	they	can	be.	While	the	non-iterative	code	

search	engine	received	overall	neutral	responses,	the	iterative	approaches	received	positive	

responses.	Further,	the	participants	felt	CodeExchange	would	serve	as	a	useful	support	tool	

as	 strongly	 as	 they	 felt	 Google	 would	 serve	 as	 a	 useful	 support	 tool.	 This	 suggests	 that	

CodeExchange	might	be	closer	to	something	a	programmer	can	use	today	in	their	day	to	day	

practice	and	that	the	performance	of	CodeExchange	in	our	lab	study	might	extend	out	into	

real	world	environments.	
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6.3	Threats	to	Validity	

Several	possible	threats	to	validity	exist	with	our	study.	First,	while	we	put	in	our	best	effort	

to	make	this	laboratory	study	realistic,	it	still	lacks	the	realism	one	would	find	in	a	field	study	

with	each	of	the	search	engines.	As	such,	further	studies	need	to	be	performed	to	examine	

whether	our	results	hold	in	real-world	environments.		

	

Second,	as	all	of	our	participants	have	used	Google	for	years,	and	Google	indexes	more	code	

and	different	 information	 than	our	prototypes,	 our	 experiment	 inherently	 is	 unbalanced.	

However,	we	felt	it	was	important	to	tolerate	this	imbalance,	since	Google	is	so	ubiquitous	

and	represents	a	 ‘gold	standard’	for	how	developers	search.	It	 is	not	surprising	to	us	that	

Google	 performed	 “better”	 on	 a	 number	 of	 cases,	 even	 though	 CodeExchange	 and	

CodeLikeThis	offer	the	same	ability	to	search	with	keywords	only.	What	is	more	important,	

however,	 is	 that	CodeExchange	and	CodeLikeThis	did	outperform	Google	on	a	number	of	

cases	to	show	the	promise	of	dedicated	support	for	iteration	in	search.		

	

Third,	 the	search	tasks	we	used	by	no	means	cover	all	possible	types	of	search	tasks.	We	

intentionally	focused	on	broader	search	tasks,	given	the	goal	of	this	thesis	of	addressing	code	

search	 when	 developers	 do	 not	 know	 exactly	 what	 they	 want	 and	 search	 around	more	

exploratorily.	However,	even	within	this	narrower	focus,	we	could	have	chosen	to	use	other	

search	 tasks.	While	we	attempted	 to	 ameliorate	 this	 issue	by	modeling	our	 tasks	on	 real	

searches	 in	 real	 code	 search	 engines,	 a	 longitudinal	 study	 with	 CodeExchange	 and	
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CodeLikeThis	in	practice	is	needed	to	examine	if	their	features	apply	beyond	the	eight	search	

tasks	we	used.	

	

Fourth,	it	is	possible	that	participants	did	not	seriously	attempt	the	tasks.	The	author	and	

two	graduate	students	each	individually	inspected	all	snippets	and	explanations,	assessing	

if	they	represented	genuine	attempts.	In	97.3%	of	the	cases,	unanimous	agreement	was	that	

they	were	genuine	attempts	(1	result	was	ranked	not	genuine	by	all	3	people,	6	results	by	2,	

and	6	results	by	1;	these	were	spread	across	search	engines	and	participants).	This	gives	us	

confidence	that	most	of	our	results	represent	genuine	attempts	by	our	participants.	
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Chapter	7	
	
Discussion	

In	this	chapter,	we	take	a	step	back	and	look	at	the	broad	implications	and	“big	picture”	of	

the	results	in	Chapter	6.	We	first	return	to	the	research	question	and	discuss,	at	a	higher	level	

than	Chapter	6,	what	the	results	mean	for	the	design	of	code	search	engines.	We	then	return	

to	our	 initial	perspective	taken	on	code	search	and	reflect	what	the	results	suggest	 is	 the	

bigger	picture.	

	

7.1	Answer	to	Research	Question	

Our	research	question	concerned	the	impact	on	the	experience,	time,	and	success	of	the	code	

search	process	of	explicitly	supporting	software	developers	in	searching	iteratively.	In	the	

following	 subsections,	we	discuss	what	 our	 results	 suggest	might	 be	 the	 answers	 to	 this	

question	through	the	articulation	of	eight	lessons	learned.	Further,	we	examine	some	of	the	
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answers	by	the	components	that	largely	define	each	of	the	search	engines	as	shown	in	Table	

50,	where	each	search	engine	 is	mapped	 to	 its	defining	components	by	 the	cells	 that	are	

shaded.	For	example,	CodeExchange	is	defined	by	the	Specificity	ranking	algorithm,	the	code	

index	 it	searches	over,	and	the	 iterative	features	to	use	aspects/qualities	of	 the	results	 in	

creating	the	next	query.	

	

	

We	 found	 that	 support	 for	 using	 the	 results	 from	 one	 query	 in	 creating	 the	 next	 can	

significantly	improve	the	user	experience	compared	to	a	traditional	code	search	engine	(as	

exemplified	 by	 our	 baseline).	 	 Specifically,	 when	 we	 kept	 major	 components	 the	 same	

between	our	baseline	and	CodeExchange	(i.e.,	index	and	ranking	algorithm)	except	for	the	

iterative	 features	 in	CodeExchange,	we	 saw	a	 statistically	 significant	 improvement	 in	 the	

participants’	experience	 in	completing	code	search	tasks	with	CodeExchange	(both	 in	 the	

between	 and	 within	 analysis).	 These	 findings	 suggest	 that	 adding	 iterative	 features	

Lesson 1: All major components being equal, adding support to iteratively search with 

aspects/qualities of the results can significantly increase the user’s experience compared to 

a traditional code search engine. 

Table	50.	Search	Engines	by	Components.	

	 Specificity	
Ranking	

Algorithm	

RankBrain	
Ranking	

Algorithm	

ST-Hybrid	
Ranking	

Algorithm	

Code	
Index	

Google	
Web	
Index	

Iterative	
Support	

on	
Aspects	

Iterative	
Support	
on	Entire	

Result	
CodeExchange	 	 	 	 	 	 	 	

Baseline	 	 	 	 	 	 	 	
CodeLikeThis	 	 	 	 	 	 	 	

Google	 	 	 	 	 	 	 	
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supporting	using	 aspects/qualities	 to	 a	 code	 search	engine	will	 significantly	 improve	 the	

user’s	 experience.	 However,	 contrasting	 with	 the	 comparison	 between	 the	 baseline	 and	

CodeExchange,	are	our	results	when	comparing	the	baseline	with	CodeLikeThis.		Specifically,	

when	we	altered	the	ranking	algorithm	to	the	ST-Hybrid	ranking	algorithm	and	offered	only	

the	like-this	query	method	to	iteratively	search,	we	found	that	CodeLikeThis	only	performed	

marginally	better	than	the	baseline	search	engine	(both	in	the	between	and	within	analysis).		

	

	

When	we	compared	experience	scores	between	CodeExchange	and	CodeLikeThis,	we	found	

that	 they	 exactly	 complemented	 each	 other	 in	 the	 kinds	 of	 search	 tasks	 they	 support.	 In	

particular,	we	found	that	CodeExchange	provided	a	better	experience	than	CodeLikeThis	for	

the	broader	tasks	and	CodeLikeThis	provided	a	better	experience	for	the	more	focused	tasks.	

Since	 the	 iterative	 features	 provided	 by	 both	 search	 engines	 were	 often	 used	 by	 the	

participants,	 these	 results	 suggest	 that	 the	best	way	 to	 iteratively	 search	depends	on	 the	

search	task.	Specifically,	how	much	the	user	knows	about	what	they	are	looking	for	might	

determine	 if	 they	 should	 use	 like-this	 queries	 (for	more	 focused	 tasks)	 or	 queries	 using	

aspects/qualities	of	the	results	(for	broader	tasks).	However,	in	order	to	use	like-this	queries	

effectively	for	more	focused	tasks,	the	ST-Hybrid	ranking	algorithm	has	to	be	used,	as	we	do	

Lesson 2: Supporting using aspects/qualities of the results in creating the next query 

provides a better experience for broader search tasks and supporting using an entire result 

in creating the next query provides a better experience for more focused tasks. 
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not	know	 from	our	experiments	whether	other	 ranking	algorithms	would	 lead	 to	 similar	

outcomes.	Such	a	comparison	will	need	to	be	performed	as	part	of	future	research.	

	

When	we	compared	CodeExchange	and	CodeLikeThis	with	Google,	we	found	less	impact	of	

the	iterative	approaches.	The	between	analysis	found	Google	performed	significantly	better	

than	CodeExchange	(Google	higher	five	times,	equal	two	times,	and	lower	once)	and	better	

than	CodeLikeThis	(Google	higher	five	times,	equal	once	times,	and	lower	twice),	though	in	

this	case	not	significantly.	In	the	within	analysis,	Google	and	CodeExchange	performed	about	

equally	(Google	higher	eight	times,	equal	once,	and	lower	seven	times),	but	Google	provided	

a	 significantly	 better	 experience	 than	CodeLikeThis	 (Google	 higher	 eight	 times,	 equal	 six	

times,	and	lower	two	times).		

	

The	results	suggest	that	using	Google’s	RankBrain	algorithm	and	very	large	web	index	can	

provide	a	better	experience	than	code	search	engines	that	have	a	different	ranking	algorithm	

and	 a	 much	 smaller	 code	 index,	 even	 though	 the	 latter	 provides	 support	 for	 iteratively	

searching	for	code.	Given	the	participants’	past	experiences	with	Google	and	the	bias	that	

might	cause,	the	results	are	somewhat	hard	to	interpret.	However,	the	results	do	suggest	that	

just	adding	iterative	features	to	any	ranking	algorithm	and/or	index	is	not	sufficient	to	create	

the	best	search	experience.	

	

Lesson 3: All major components being unequal, adding iterative features may not improve 

the search experience compared to Google. 
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Given	that	CodeLikeThis	and	CodeExchange	complement	each	other,	we	looked	again	at	our	

results	and	asked	if	either	iterative	approach	can	provide	a	higher	experience	score	than	the	

baseline	 and	Google.	 	 Combined,	we	 found	 that	 the	 two	 iterative	 approaches	 provided	 a	

significantly	better	experience	compared	to	the	baseline	(six	higher	and	two	ties),	but	only	

slightly	better	than	just	CodeExchange	alone	(six	higher,	one	tie,	and	one	lower).		We	also	

found	 that	 the	 iterative	 approaches	 provided	 a	 comparable	 experience	 to	 Google	 (three	

higher,	two	ties,	and	three	lower).	These	results	suggest	that,	combined,	either	as	one	or	used	

together,	our	iterative	approaches	could	potentially	outperform	the	baseline	and	perform	

comparably	 to	 Google.	 Yet,	 the	 differences	 in	 Google’s	 index	 and	 the	 index	 used	 by	 the	

iterative	approaches	is	a	confounding	factor	and	means	that	Google’s	performance	is,	in	part,	

a	 consequence	 of	 the	 difference	 in	 indexes.	 We,	 of	 course,	 do	 note	 that	 combining	

CodeExchange	and	CodeLikeThis	into	one	tool	(since	this	is	a	hypothetical	at	this	point)	may	

not	do	as	well,	since	adding	more	features	to	a	search	engine	may	confuse	users.	Nonetheless,	

if	both	methods	of	iterative	search	can	be	elegantly	combined,	we	believe	that	the	potential	

is	 to	be	as	good	as	Google,	even	with	a	smaller	 index.	This	clearly	 is	an	experiment	 to	be	

performed,	as	is	running	the	combination	on	the	same	index	used	by	Google.	

	

	

	

	

Lesson 4: CodeExchange and CodeLikeThis, together, are comparable to the state of the art 

in search engines used for code search. 
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In	general,	we	find	very	few	correlations	(by	task,	category,	or	search	engine)	between	time	

spent	searching	and	experience	for	the	broader	search	tasks.	Interestingly,	we	did	find	time	

was	 negatively	 correlated	 with	 experience	 for	 broader	 tasks	 with	 CodeExchange,	 yet	 it	

appears	to	not	have	impacted	the	overall	positive	experience	the	participants	had	with	it.		

While	 CodeExchange	 had	 two	 to	 three	 times	more	 queries	 issued	with	 it	 than	 the	 other	

search	engines,	requiring	more	time	to	search,	CodeExchange’s	iterative	features	were	found	

to	significantly	 improve	the	user’s	search	experience.	This	suggests	that	 the	positive	user	

experience	gained	by	using	iterative	features	may	have	made	the	extra	time	worth	the	cost.	

We	 illustrate	what	 this	means	 in	Figure	101	 ,	which	mirrors	ours	 results	 in	 the	previous	

chapter.	The	y-axis	is	experience	and	the	x-axis	is	time,	and	the	line	represents	the	negative	

correlation	 between	 time	 and	 experience	 for	 CodeExchange.	 While	 more	 time	 using	

CodeExchange	 appeared	 to	 degrade	 the	 user	 experience,	 the	 support	 offered	 by	

CodeExchange	kept	the	regression	line	mostly	in	the	positive	experience	region.		

	

	

	

	

	

	

	

Lesson 5: Time spent searching is often not correlated to the user’s experience for broader 

search tasks. 
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In	 contrast	 with	 broader	 tasks,	 we	 found	 several	 negative	 linear	 correlations	 (by	 task,	

category,	 and	 search	engine)	between	 time	and	experience	 for	more	 focused	 tasks.	 	This	

suggests	that	the	time	spent	searching	for	more	focused	tasks	is	more	critical	for	the	user’s	

experience.	In	fact,	regardless	of	search	engine,	our	linear	regression	models	predicted	that	

after	about	eight	minutes	of	searching,	the	search	experience	becomes	negative	for	the	user.	

While	using	iterative	features	was	associated	with	higher	experience	scores,	using	them	too	

much	(beyond	eight	minutes)	for	more	focused	tasks	is	a	sign	the	search	did	not	go	as	well.	

	

	

Lesson 6: Time spent searching is often negatively correlated to the user’s experience for 

more focused tasks. 

Figure	101.	Illustration	of	Negative	Correlation	but	Positive	Experience.	
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We	saw	that	our	participants	used	the	iterative	features	of	CodeExchange	and	CodeLikeThis,	

and	we	asked	what	is	the	ideal	amount	of	usage?	To	answer	this	question,	we	examined	the	

relationship	between	the	number	of	usages	of	the	iterative	features	and	experience.	While	

we	found	answers	for	an	ideal	number	of	times	to	use	iterative	features,	the	possible	reasons	

for	these	numbers	are	not	necessarily	obvious	and	appear	to	be	context	dependent.	

	

We	found	that	with	CodeExchange	and	using	the	iterative	features	a	moderate	amount	(5	to	

7	times	on	average)	was	associated	with	the	best	experience	scores	of	CodeExchange.	Lower	

(3	on	average)	or	higher	(10	on	average)	usage	was	associated	with	lower	experience	scores.	

In	 contrast,	 we	 found	 that	 CodeLikeThis	 provided	 the	 best	 experiences	 when	 the	 users	

issued	1	or	2	queries,	on	average,	with	the	iterative	features	and	provided	worse	experiences	

when	issuing	more	queries	(3	or	4	queries	on	average)	with	the	iterative	features.	

	

A	better	amount	of	usage	being	a	moderate	amount	for	CodeExchange	might	be	a	result	of	

the	interplay	between	the	kinds	of	tasks	best	supported	by	CodeExchange	and	the	degrading	

effect	time	can	have	on	the	user’s	experience.	The	relatively	lower	number	of	queries	issued	

with	iterative	features	happened	for	the	more	focused	tasks,	when	less	queries	were	issued	

on	 average	 and	 CodeExchange	 appeared	 to	 offer	 a	 less	 positive	 user	 experience	 in	

comparison	to	the	broader	tasks.	The	moderate	and	higher	usage	happened	mostly	for	the	

Lesson 7: The ideal number of times to use iterative features looks different for 

CodeExchange and CodeLikeThis. 
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broader	tasks,	where	a	higher	number	of	queries	were	issued	on	average	and	CodeExchange	

appeared	to	offer	a	more	positive	user	experience	in	comparison	to	the	more	focused	tasks.	

This	explains	why	more	usage	was	associated	with	higher	experience	scores.	However,	given	

that	 there	 is	a	negative	 linear	correlation	between	time	and	experience	for	boarder	tasks	

with	CodeExchange,	the	highest	usages	are	not	associated	with	the	highest	experience	scores	

because	of	the	cost	of	spending	more	time	issuing	more	queries.	

	

The	better	amount	of	usage	being	a	lower	amount	for	CodeLikeThis	might	be	a	result	of	the	

kinds	of	tasks	CodeLikeThis	best	supports.	 	Specifically,	we	found	the	lower	usages	of	the	

iterative	features	happened	for	the	more	focused	tasks	where	fewer	queries	were	issued	on	

average	and	CodeLikeThis	appeared	to	offer	a	more	positive	user	experience	in	comparison	

to	the	broader	tasks.	The	higher	usage	of	 the	 iterative	features	happened	for	the	broader	

tasks	were	more	queries	were	issued	on	average	and	CodeLikeThis	appeared	to	offer	a	less	

positive	 user	 experience.	 However,	 because	 there	 was	 no	 correlation	 between	 time	 and	

experience	 for	 broader	 tasks	with	 CodeLikeThis,	 the	worse	 experience	 found	 for	 higher	

usages	is	not	because	of	more	time	spent	issuing	queries,	but	because	the	like-this	queries	

were	less	effective	for	broader	search	tasks.	
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Our	 results	 suggest	 that	 providing	 explicit	 support	 in	 iteratively	 searching	 for	 code	 can	

improve	success,	but	not	 significantly.	Specifically,	we	measured	success	as	being	able	 to	

complete	 a	 task	 or	 not,	 and	we	 found	 that	 participants	 could	 complete	more	 tasks	with	

CodeLikeThis,	but	not	significantly	more.	However,	completing	tasks	is	very	import	to	our	

participants.			

	

We	found	that	the	median	experience	participants	had	when	they	did	not	finish	a	task	was	

negative.	Interestingly,	this	means	that	the	impact	of	not	completing	a	task	on	experience	

acts	 a	 category	 changer.	 Regardless	whether	 the	 experience	 begins	 positive	 for	 the	 user	

while	 searching,	 not	 finishing	 a	 search	 tasks	 changes	 the	 experience	 to	 negative.	 This	

contrasts	with	the	negative	linear	correlation	we	found	between	time	and	experience,	which	

showed	time	acts	more	as	a	gradually	degrader	of	experience.	That	is,	the	time	taken	to	finish	

a	task	does	not	necessary	make	the	experience	negative,	but	rather	can	make	the	experience	

less	positive.	

	

We	also	found	that	certain	kinds	of	search	tasks	are	more	difficult	than	others.	We	found	

higher	 occurrences	 of	 incompletion	 in	 the	 Find	 4	 tasks	 (a	 broader	 task	 type)	 and	 the	

Algorithms/Data	Structure	tasks	(a	more	focused	task	type).	This	suggests	that	both	broader	

and	more	focused	tasks	can	be	difficult	to	complete.	

Lesson 8: Inability to complete a search task often results in a negative search experience.  
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7.2	A	New	Perspective	on	Code	Search	

We	take	yet	another	step	back	and	re-examine	the	perspective	of	code	search	taken	in	this	

thesis	by	reflecting	on	what	the	results	suggest	is	the	bigger	picture	and	what	it	might	mean	

for	new	 code	 search	 engine	designs.	As	we	discussed	 in	Chapters	1	 and	2,	 the	dominant	

perspective	of	code	search	reduces	search	to	a	query	and	returning	the	“best”	results	for	that	

query.	With	 this	 picture	 of	 search,	 it	might	 not	 be	 surprising	 that	 the	main	 advances	 in	

previous	research	have	been	on	the	central	entities	involved	in	this	picture	–	the	query	and	

the	ranking	algorithm.	Much	of	the	previous	research	made	advances	in	expressive	queries,	

ranking	algorithms,	query	formation	support,	and	code	result	quality.	Further,	evaluation	of	

these	advances	is	often	done	by	a	group	of	researchers	that	predetermine	what	code	should	

or	should	not	be	returned	for	a	query	and	evaluate	a	ranking	algorithm’s	ability	to	match	

that	set	of	predetermined	code.	However,	this	picture	of	search	is	incomplete	—	the	user	is	

missing	—	which	is	particularly	crucial	since	the	original	intention	behind	all	information	

retrieval	tools	is	to	satisfy	the	user’s	“information	needs”	[153].	

	

In	 this	 thesis,	 we	 investigated	 a	 new	 perspective	 that	 includes	 the	 user	 by	 seeing	 what	

happens	to	the	design	of	a	code	search	engine	when	the	user’s	needs	shape	the	requirements.	

By	needs	we	do	not	necessarily	mean	the	user’s	opinion	of	what	the	design	should	be,	but	we	

go	deeper	and	mean	the	cognitive	processes	of	the	user	that	shape	what	the	search	engine	

should	be	like.	Cognitive	processes	of	the	user	(e.g.,	learning,	remembering,	idea	generation,	

pattern	recognition)	are	natural	processes	long	evolved	over	millions	of	years	that	shape	the	

user’s	behavior.		
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In	Chapter	2,	we	discussed	some	of	the	reasons	developers	have	for	searching	for	code	(e.g.,	

remembering,	idea	generation,	and	learning)	and	that,	when	searching,	they	do	so	iteratively.	

Based	on	this,	we	took	the	perspective	that	the	search	process	might	be	inherently	iterative	

because	many	the	reasons	why	the	developers	were	searching	are	cognitive	in	nature	and	

might	require	iteration.	With	this	perspective,	we	evaluated	what	happens	when	searching	

iteratively	is	explicitly	supported.	

	

Our	results	paint	a	picture	of	code	search	that	in	some	ways	match	our	original	guess	that	

search	is	 iterative	and	needs	support,	but	 in	other	ways	offer	a	much	richer	and	nuanced	

reality.	Our	results	suggest	that	the	iterative	behavior	observed	in	developers	is	due	to	their	

needs	rather	than	a	fault	of	the	search	engine.	Specifically,	our	finding	that	iterative	features	

can	significantly	improve	the	user	experience	over	a	traditional	code	search	engine	and	it	

appeared	that	users,	when	using	Google,	were	often	taking	words	from	web	pages	and	using	

them	 in	 their	 next	 queries	 implies	 that	 iteratively	 searching	 is	 what	 users	 need	 to	 do	

(perhaps	unknowingly).		Additionally,	our	finding	that	it	appeared	participants,	when	using	

Google,	often	took	words	from	web	pages	and	used	them	as	a	keyword	in	their	next	query,	

also	supports	the	idea	that	iteratively	searching	with	the	results	is	what	users	want	to	do.	

Further,	our	results	suggest	that	this	iterative	behavior	is	nuanced	and	a	reflection	of	a	more	

complex	 search	 process	 than	 previously	 thought.	 Specifically,	 how	developers	 iteratively	

search	might	reflect	how	much	they	know	and	require	different	support.	We	found	that	when	

developers	have	 a	more	 complete	 idea	of	what	 they	 are	 searching	 for,	 they	have	 a	more	

positive	 experience	 using	 an	 entire	 result	 as	 the	 next	 query.	 On	 the	 other	 hand,	 when	
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developers	have	a	partial	idea	of	what	they	were	searching	for,	they	have	a	more	positive	

experience	using	aspects/qualities	of	the	results	in	creating	the	next	query.	

	

In	Chapter	5,	we	also	saw	that	the	cognitive	needs	of	developers	can	change	the	traditional	

requirements	of	ranking	algorithms.	Specifically,	we	saw	that	developers	often	prefer	result	

sets	that	are	diverse.	Preferring	diverse	results	is	somewhat	startling	when	looked	at	from	

the	traditional	perspective	of	search,	because	it	means	preferring	a	set	of	results	that	are	not	

the	most	on	topic	results	and,	thus,	preferring	results	that	might	be	at	lower	ranks	because	

they	are	different	from	the	other	results.	However,	diversity	of	results	begins	to	make	sense	

when	the	user’s	needs	are	added	to	the	old	perspective.	When	users	search	for	code,	they	

often	are	not	certain	what	they	want	(e.g.,	when	generating	ideas	or	learning),	so	when	they	

issue	a	query,	that	query	is	not	a	reflection	of	a	well-formed	idea	of	what	is	being	searched	

for,	but	a	reflection	of	a	“fuzzy”	or	broad	sense	of	what	is	needed.	In	this	new	way	of	looking	

at	search,	giving	the	user	results	all	matching	the	query	in	a	variety	of	ways,	rather	than	in	

one	way,	makes	sense,	because	it	informs	the	user	of	what	exists	and,	thus,	informs	their	next	

query.	

	

Our	results	show	that	this	new	picture	does	not	exclude	the	old	way	of	looking	at	code	search,	

but	rather	expands	it.	We	saw	that	Google	performed	very	well	by	providing	many	positive	

experiences	 for	our	participants	while	searching.	Further,	our	results	suggest	 that	simply	

adding	iterative	features	to	a	search	engine	with	a	much	smaller	index	than	Google	is	not	

sufficient	to	create	a	much	better	experience.	Keywords	also	remain	critical	to	search.		We	

saw	they	were	still	heavily	used	 in	all	search	engines	and	serve	as	a	simple	way	to	begin	
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searching.	In	our	new	perspective	on	code	search,	then,	it	appears	as	if	the	best	performing	

search	 engine	 looks	 like	 one	 with	 a	 large	 index	 like	 Google’s,	 with	 a	 high-performance	

ranking	 algorithm	 that	 diversifies	 the	 results	 when	 needed,	 and	 supports	 iteratively	

searching	with	features	that	differ	and	are	tailored	to	different	scenarios	as	to	what	the	user	

may	be	searching	for,	how	much	knowledge	they	already	have,	and	what	kind	of	iterations	

on	the	results	may	be	needed.	
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Chapter	8	
	
Conclusion	

Programmers	frequently	use	search	engines	to	search	for	code	as	part	of	their	practice	[97],	

[108]	and,	as	such,	software	engineering	researchers	are	investigating	how	to	improve	code	

search	 engines.	 While	 many	 different	 approaches	 to	 improving	 code	 search	 exist,	 these	

approaches	are	generally	similar	in	one	very	visible	design	decision:	they	are	non-iterative	

approaches	in	expecting	a	query	and	optimizing	on	returning	the	best	matching	results	for	

that	query.	

	

While	a	search	engine	that	returns	the	results	the	programmer	is	looking	for	after	the	first	

query	appears	ideal,	many	times	the	programmer	is	not	sure	what	they	are	looking	for	and	

does	not	search	for	code	with	a	single	query.	Instead,	they	issue	multiple	queries	[7],	[13],	
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[50],	[106],	[115],	where,	after	receiving	results,	the	programmer	modifies	their	query	by	

removing	 keywords,	 adding	 keywords,	 or	 some	 combination	 of	 both,	 and	 repeats	 this	

process	multiple	times	[7],	[50],	[106].		That	is,	search	looks	like	an	iterative	process	where	

programmers	often	submit	a	query,	get	results,	reflect	on	and	learn	from	the	results,	submit	

a	modified	query	in	response	to	the	results,	get	new	results,	and	so	on,	until	the	programmer	

stops	searching.	

	

This	dissertation	investigated	what	happens	when	programmers	are	explicitly	supported	in	

searching	iteratively	for	code.		It	particularly	answered	the	following	research	question:	

	

	

	

	

We	 addressed	 this	 research	 questions	 by	 developing	 new	 approaches	 for	 explicitly	

supporting	 iteratively	 searching	 for	 code	 and	 evaluating	 them.	 Doing	 so	 resulted	 in	 six	

contributions.	

	

8.1	Contribution	1	—	Using	Aspects	of	Results	

Our	 first	 approach,	 implemented	 in	 CodeExchange,	 to	 support	 iteratively	 searching	 was	

specifically	designed	 to	aid	 the	developer	when,	 initially,	 the	programmer	 is	uncertain	of	

exactly	what	they	are	searching	for	and	is	engaged	in	a	more	exploratory	search	involving	

the	 submission	 of	 multiple	 queries	 through	 which	 to	 explore	 what	 examples	 may	 be	

What	is	the	impact	of	explicitly	supporting	software	developers	in	searching	
iteratively	on	the	experience,	time,	and	success	of	the	code	search	process? 
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available.	In	such	a	search	scenario,	the	insight	behind	CodeExchange	is	that	the	next	query	

tends	to	be	relative	to	the	results,	and	often	to	specific	aspects	of	the	results	of	the	previous	

query.	CodeExchange	supports	the	user	with	four	specific	features	for	creating	a	next	query:	

language	constructs,	critiques,	query	refinement	recommendations,	and	query	parts.	

	

8.1.1	Language	Constructs	

Language	constructs	support	the	developer	in	selecting	structural	characteristics	of	a	result	

(e.g.,	method	calls,	interfaces	implemented,	or	code	imported)	to	bring	those	characteristics	

into	the	query.	Using	a	language	construct	yields	a	query	that	is	a	mix	between	keywords,	if	

they	were	a	part	of	the	query	before	selecting	a	language	construct,	and	characteristics	of	

results.		Unlike	keywords,	that	may	or	may	not	retrieve	code	matching	a	topic	described	by	

the	keywords,	a	language	construct	constrains	the	query	to	retrieve	code	exactly	matching	

the	characteristics	specified	by	that	language	construct.		

	

8.1.2	Critiques	

The	 second	 feature,	 critiques,	 supports	 the	 developer	 in	 selecting	 the	 value	 of	 different	

technical	 qualities	 (complexity,	 size,	 number	 of	 imports)	 of	 a	 result	 as	 a	 lower	 or	 upper	

bound	to	bring	that	bound	into	the	query	to	constrain	the	next	set	of	results.	In	this	way,	if	

the	developer	feels	a	code	result	is	lacking	(e.g.,	too	long	or	not	complex	enough),	they	can	

bound	the	next	set	of	code	results	to	attempt	to	avoid	that	quality.		
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8.1.3	Query	Refinement	Recommendations	

In	 contrast	 to	 modifying	 the	 query	 relative	 to	 a	 specific	 result,	 query	 refinement	

recommendations	 present	 the	 user	 with	 common	 aspects	 (imports,	 parent	 classes,	 or	

interfaces)	 or	 domain	 related	 terms	 across	 all	 the	 results	 to	 add	 to	 the	 query.	 The	

recommendations	help	make	visible	to	the	programmer	common	aspects	of	results	that	are	

difficult	 to	 infer	 just	 from	 the	 top	 results	 that	 are	 actually	 visible.	 After	 adding	 a	

recommendation	 to	 the	query	and	getting	 the	 results,	 the	 recommendations	are	updated	

again	using	the	newly	returned	results.		In	this	way,	the	programmer	can	iteratively	search	

by	continually	selecting	query	refinement	recommendations.		

	

8.1.3	Query	Parts	

Query	parts	modularize	the	programmer’s	query	each	time	a	programmer	adds	to	a	query.	

Whether	 by	 providing	 one	 or	 more	 new	 keywords	 or	 using	 one	 of	 the	 new	 features	 of	

CodeExchange,	the	addition	is	separately	identified	by	CodeExchange	in	its	interface.	Each	

query,	then,	consists	of	a	set	of	separate	parts	that,	together,	form	the	actual	query	issued,	

but	to	the	programmer	remain	individual	components.	Query	parts	leverage	this	by	enabling	

a	programmer	to	turn	off	/	turn	back	on	each	of	these	parts	separately.	In	this	way,	after	a	

programmer	gets	new	results,	 they	can	respond	by	trying	different	combinations	of	 their	

query	parts	to	search	in	different	“directions”.		
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8.2	Contribution	2	—	Using	an	Entire	Result	

Our	second	approach,	implemented	in	CodeLikeThis,	is	also	specifically	designed	to	aid	the	

developer	when,	initially,	the	programmer	is	uncertain	of	exactly	what	they	are	searching	

for	and	is	engaged	in	a	more	exploratory	search	involving	the	submission	of	multiple	queries	

through	which	to	explore	what	examples	may	be	available.	In	such	a	scenario,	the	insight	

behind	CodeLikeThis	is	that	the	next	query	tends	to	be	relative	to	the	results	and	sometimes	

specific	to	an	entire	result	rather	than	any	specific	aspect	of	a	result	(unlike	the	scenarios	

supported	by	CodeExchange).	As	such,	CodeLikeThis	supports	the	developer	in	forming	the	

next	query	out	of	the	entire	result	simply	by	selecting	if	they	want	code	that	is	similar	to	that	

result.	In	this	way,	CodeLikeThis	changes	how	the	next	query	is	constructed,	from	choosing	

and	entering	keywords,	to	creating	a	query	simply	by	choosing	a	result	to	see	code	that	is	

similar	to	it.	CodeLikeThis	supports	the	user	with	two	specific	features	for	creating	a	next	

query:	a	diversity	ranking	algorithm	and	like-this	queries.	

	

8.2.1	Diversity	Ranking	Algorithm	

While,	 typically,	 the	 results	 after	 the	 first	 keyword	 query	 are	 optimized	 to	 be	 the	 most	

topically	related	to	the	keywords,	CodeLikeThis	also	needs	to	address	giving	the	user	results	

to	select	from	to	begin	iteratively	searching.	If	CodeLikeThis	only	returns	the	most	topically	

related	results,	then	the	results	themselves	may	all	be	very	similar	to	each	other	and	hide	

examples	that	are	different,	but	still	on	topic,	that	the	programmer	could	recognize	as	similar	

to	what	they	are	searching	for.	CodeLikeThis	addresses	this	issue	with	its	diversity	ranking	

algorithm	that	first	gives	the	user	a	diverse	set	of	code	matching	the	initial	keywords	but	
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different	from	each	other.		Each	code	result,	then,	can	equally	serve	as	a	point	of	comparison	

that	the	programmer	can	use	to	find	other	similar	or	dissimilar	code.		

	

8.2.1	Like-This	Queries	

Once	the	programmer	discovers	a	result	they	might	want	to	use	for	finding	similar	code,	the	

programmer	can	use	like-this	queries.		Specially,	like-this	queries	support	the	programmer	

in	 retrieving	 code	 in	 the	 entire	 search	 engine	 by	 how	 similar	 they	 are	 to	 the	 result	 the	

programmer	has	chosen.	Like-this	queries	do	not	act	as	modifications	to	previous	queries	

(as	was	the	behavior	in	CodeExchange),	but	rather	replace	the	previous	query	with	a	like-

this	query.	Moreover,	three	types	of	like-this	queries	are	supported	by	CodeLikeThis.	If	the	

programmer	wants	additional	results	that	are	very	similar	to	the	result	they	have	chosen,	

then	they	can	 issue	a	more-like-this	query	to	retrieve	the	code	examples,	 from	the	search	

engine’s	index,	closest	in	similarity.	If	the	programmer	wants	code	that	is	less	like	a	result,	

they	can	issue	a	less-like-this	query	to	retrieve	code	that	is	more	different	than	similar,	but	

still	having	exhibiting	similarity,	to	the	chosen	result.		Finally,	if	the	programmer	wants	code	

that	 is	 like	 a	 result	 but	 feels	 they	 also	 are	 looking	 for	 different	 code,	 they	 can	 issue	 a	

somewhat-like-this	 query,	 which	 returns	 code	 examples	 that	 are	 not	 as	 similar	 as	 those	

returned	from	the	more-like-this	query	but	also	not	as	different	as	those	returned	from	the	

less-like-this	query.	
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8.3	Contribution	3	—	Laboratory	Experiment	

To	 answer	 our	 research	 question,	 we	 conducted	 a	 laboratory	 experiment	 involving	 24	

developers	measuring	the	experience,	time,	and	success	of	each	participant	in	searching	for	

code	with	our	iterative	approaches	as	well	as	two	non-iterative	approaches,	a	baseline	and	

Google.	The	participants	 sat	 alone	 in	 a	 room	completing	 eight	different	 and	 independent	

search	tasks	 that	were	designed	to	cover	a	space	of	 tasks	 that	range	 from	broad	to	more	

focused.		

	

We	found	that	explicitly	supporting	using	the	results	from	one	query	in	creating	the	next	can	

significantly	improve	the	user	experience	compared	to	a	traditional	code	search	engine	(our	

baseline).	 	Specifically,	when	we	kept	major	components	equivalent	between	our	baseline	

and	 CodeExchange	 (i.e.,	 index	 and	 ranking	 algorithm),	 we	 saw	 a	 statistically	 significant	

improvement	 in	 the	 participants’	 experience	 in	 completing	 code	 search	 tasks	 with	

CodeExchange.	 These	 results	 suggest	 that	 adding	 CodeExchange’s	 iterative	 features	 to	 a	

search	 engine	will	 significantly	 increase	 the	 search	 experience.	 However,	we	 saw	 only	 a	

marginal	improvement	in	user	experience	with	CodeLikeThis.		

	

We	found	that	CodeExchange	and	CodeLikeThis	were	complementary	in	the	kinds	of	tasks	

they	supported.	That	 is,	CodeExchange	provided	a	better	user	experience	for	the	broader	

tasks	and	CodeLikeThis	provided	a	better	user	experience	for	the	more	focused	tasks.	Our	

results,	then,	suggest	that,	when	the	search	task	is	broader,	and	the	user	has	less	of	an	idea	

of	what	they	are	looking	for,	then	iteratively	searching	with	aspects	of	the	results	is	better.		
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On	the	other	hand,	when	the	search	task	is	more	focused,	and	the	user	has	more	of	an	idea	

of	what	they	are	looking	for,	then	iteratively	searching	by	similarity	of	a	result	is	better.		

	

We	 found	 that	 adding	 iterative	 features	 is	 insufficient	 to	 provide	 the	 best	 experience,	

however.	When	compared	to	Google,	CodeExchange	only	provided	a	better	experience	once	

and	equal	twice,	and	CodeLikeThis	only	provided	a	better	experience	twice	and	equal	once.		

Google,	then,	provided	a	better	experience	five	times	when	compared	to	both	individually.		

In	 the	 within	 analysis	 we	 found	 CodeExchange	 and	 Google	 were	 comparable	 in	 user	

experience	 even	 though	 Google	 often	 provided	 a	 better	 experience	 than	 CodeLikeThis.	

However,	 given	 that	 CodeExchange	 and	 CodeLikeThis	 are	 complementary,	we	 compared	

when	 either	 iterative	 approach	 provided	 a	 better	 experience	 than	 Google	 (evaluating	

iterative	design	approaches	more	generally	but	also	evaluating	a	hypothetical	search	engine	

when	both	approaches	are	available	in	one	interface).		We	found	that	the	approaches	became	

comparable,	where	an	 iterative	approach	provided	a	better	experience	than	Google	 three	

times,	equal	two	times,	and	both	lower	three	times.	These	results	suggest	that	two	iterative	

approaches	 exist	 that	 together	 (e.g.,	 in	 a	 hypothetical	 search	 engine	with	 access	 to	 both	

approaches)	 are	 comparable	 in	 user	 experience	 to	 Google.	 These	 results,	 however,	 also	

suggest	 iterative	 features	are	not	enough	 to	support	 the	best	experience	 for	code	search.	

Given	 that	 we	 found,	 when	 all	 things	 are	 equal,	 adding	 iterative	 features	 improves	

experience,	then	the	best	performance	might	be	obtained	by	putting	CodeExchange	or	both	

CodeExchange	and	CodeLikeThis	on	Google’s	index	and/or	ranking	algorithm.	
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8.4	Contribution	4	—	New	Findings	

With	 our	 iterative	 approaches	 and	 laboratory	 experiment	 we	 were	 able	 to	 answer	 our	

research	question	and	find	nuances	in	the	answer.	However,	the	data	we	collected	revealed	

additional	 observations.	 	 Specifically,	 we	 found	 that,	 while	 time	 is	 important	 for	 our	

participants,	 it	 is	not	the	deciding	factor	for	their	experience.	 	However,	not	being	able	to	

complete	a	task	usually	always	results	in	a	negative	experience.	We	also	found	new	reasons	

for	why	programmers	select	code	to	use	off	the	Internet.	

	

For	more	focused	tasks,	we	found	that	time	usually	acts	a	gradual	degrader	of	experience	

and	that	usually	about	after	eight	minutes	of	search	the	experience	turns	negative.		On	the	

other	 hand,	 taking	more	 time	 to	 search	by	 issuing	more	queries	 does	not	mean	 a	worse	

experience	than	taking	less	time	to	search	with	fewer	queries.	In	particular,	we	found	that	

users	 issued	two	to	three	times	more	queries	with	CodeExchange,	resulting	 in	more	time	

spent	 searching.	 Yet,	 CodeExchange	 often	 provided	 a	 better	 user	 experience	 than	 the	

baseline.	For	broader	tasks,	we	found	time	was	usually	not	a	factor	for	experience,	so	the	

differences	we	found	in	experience	might	be	more	related	to	the	effectiveness	of	the	features	

of	the	search	engine.	

	

Unlike	time,	a	gradual	degrader	of	experience,	task	success	seems	to	act	more	as	a	categorical	

changer	of	experience.	We	found	that,	when	participants	in	our	laboratory	experiment	were	

unable	to	finish	a	task,	they	typically	had	a	negative	experience.	While	more	time	taken	might	
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mean	a	 lower	positive	experience,	not	 finishing	a	task	often	means	a	negative	experience	

and,	thus,	has	a	more	severe	consequence	on	the	user.	

	

While	previous	research	has	shown	that	programmers	search	to	learn,	get	ideas,	remember,	

or	 simply	 copy	 and	 paste,	 our	 results	 speak	 to	why	 programmers	 select	 code	 they	 Äind.	

SpeciÄically,	when	the	code	being	searched	for	is	not	completely	speciÄied	(as	in	our	tasks),	

the	programmer	will	make	decisions	on	what	to	search	for	as	they	search.	Often,	they	make	

decisions	related	to	design	(features	they	think	are	needed	or	other	design	decisions).	Other	

times,	 programmers	 selected	 code	 simply	 because	 they	 felt	 it	 satisÄied	 requirements	 or	

would	serve	as	a	useful	starting	place	to	write	code	that	would	satisfy	requirements.	

	

8.5	Contribution	5	—	Implementations	

With	this	thesis,	we	also	contributed	working	implementations	of	our	iterative	approaches	

that	are	publicly	available.	Implementing	the	iterative	approaches	was	necessary,	not	only	

to	approximate	Internet-scale	search	engines	for	the	lab	experiment,	but	also	to	determine	

the	 feasibility	 of	 the	 approaches.	 Particularly	 in	 the	 early	 stages	 of	 this	 research,	 it	 was	

necessary	 to	 explore	 whether	 the	 approaches	 could	 be	 reified	 as	 search	 engines	 with	

reasonable	response	times	(on	the	order	of	seconds)	and	with	usable	interfaces.		

	

We	presented	the	architectures	of	each	approach	and	demonstrated	each	implementation	

searching	 over	 indexes	 of	 Java	 classes	 about	 10M	 in	 size.	 Further,	 we	 detailed	 how	 the	

CodeLikeThis	architecture	can	leverage	the	fact	there	are	only	30	possible	next	queries	by	
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prefetching	all	possible	next	results	while	the	user	is	looking	at	the	current	results	–	making	

the	response	time	appear	faster.	

	

8.6	Contribution	6	—	Code	Search	Index	

To	 create	 implementations	 of	 our	 approaches	 that	 approximate	 Internet-scale	 search	

engines,	we	needed	to	create	a	relatively	large	index	of	code	to	search	over.		To	create	such	

an	 index,	 we	 mined	 about	 10M	 classes	 off	 github.com	 from	 about	 300,000	 repositories	

written	in	Java.	The	classes	we	mined	were	indexed	under	a	variety	of	technical	and	social	

properties	extracted	from	the	classes’	abstract	syntax	trees	and	meta	data	extracted	from	

the	downloaded	repository.		While	we	used	this	index	for	code	search,	it	can	be	used	for	a	

variety	of	purposes	 (e.g.,	 running	statistics	on	 the	evolution	of	 code	or	 running	a	natural	

language	analysis	on	commit	messages),	and,	as	such	we	have	made	 it	publicly	available.		

However,	code	often	is	removed	or	changed	on	GitHub,	so	we	also	have	made	available	the	

complete	list	of	repositories	that	we	mined,	as	well	as	the	software	used	to	mine	them,	so	

that	 indexes	 can	 be	 recreated	 or	 created	 at	 various	 sizes	 and	 with	 more	 up-to-date	

code/information	from	GitHub.	

	

8.7	Future	Work	

Our	results	suggest	several	avenues	of	future	investigation.	The	most	immediate	future	work	

is	to	evaluate	what	the	evaluation	results	suggest	is	an	even	better	code	search	engine.	That	

is,	we	wish	to	explore	the	design	and	evaluation	of	a	search	engine	where	both	CodeExchange	

and	CodeLikeThis	are	integrated	and	search	over	Google’s	search	index	and/or	use	Google’s	
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ranking	 algorithm.	 	 This	might	mean	 simply	putting	CodeExchange	 and	CodeLikeThis	 on	

Google’s	 search	 index	 and	 using	 them	 side	 by	 side,	 or	 designing	 a	 new	 interface	 that	

integrates	 CodeExchange	 and	 CodeLikeThis	 functionally.	 Another	 approach	 might	 be	 to	

extend	Google’s	interface	to	support	iterative	features	modeled	after	those	of	CodeExchange	

and	CodeLikeThis.	

	

Our	results	also	suggest	that	a	much	deeper	 investigation	needs	to	be	performed	on	how	

developers	think	and	the	impact	it	has	on	search.		Not	only	did	we	find	that	developers	search	

iteratively,	 but	 that	 different	 ways	 of	 thinking,	 depending	 on	 knowledge,	 might	 imply	

different	requirements	for	tool	support.	We	found	that,	when	tasks	were	more	focused,	using	

like-this	queries	provided	a	better	experience	 than	using	aspects/qualities	of	 the	 results.	

When	the	task	was	broader,	on	the	other	hand,	we	found	that	using	aspects/qualities	of	the	

results	provided	a	better	experience.	This	could	be	a	consequence	of	the	cognitive	process	

involved	in	searching.	That	is,	developers	are	better	able	to	recognize	a	result	as	similar	to	

what	they	are	looking	for	if	they	have	a	more	complete	idea	of	what	they	are	looking	for	(as	

in	more	focused	tasks).	On	the	other	hand,	developers	are	worse	at	recognizing	a	result	as	

similar	to	what	they	are	looking	for	if	they	have	less	of	an	idea	of	what	they	actually	want	(as	

in	broader	tasks.	Still,	it	appears	that	aspects/qualities	of	the	results	can	match	the	partial	

knowledge	they	do	have	in	that	case.	

	

While	 CodeLikeThis	 generalizes	 like-this	 queries	 so	 that	 it	 is	 possible	 to	 issue	 more,	

somewhat,	and	less	 like-this	queries,	 it	must	apply	them	to	an	entire	result.	However,	we	

found	 that	 sometimes	when	our	participants	 issued	 a	 like-this	 query,	 the	 results	 did	not	
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match	what	they	had	in	mind.	As	such,	we	wish	to	explore	alternative	approaches	to	issuing	

like-this	queries	that	more	closely	match	what	the	user	is	thinking.	One	approach	to	explore	

is	supporting	the	user	in	highlighting	a	portion	of	a	code	result	in	which	they	are	interested	

and	to	use	that	highlighted	portion	to	find	other	code	with	contents	similar	to	what	the	user	

highlighted.	In	this	way,	the	search	engine	avoids	matching	against	portions	of	the	code	the	

user	 did	 not	 have	 in	 mind.	 Further,	 it	 might	 be	 possible	 to	 borrow	 query	 parts	 from	

CodeExchange	 and	 to	make	 each	 highlight	 a	 query	 part,	 so	 that	 each	 highlight	 acts	 as	 a	

refinement.	 The	 collective	 set	 of	 highlights,	 then,	 is	 used	 to	 find	 other	 similar	 code	 —	

matching	code	that	is	partially	similar	to	various	past	results.	In	this	way,	we	could	support	

the	user	 in	 issuing	a	 like-this	query	 for	 results	 closer	 to	what	 they	had	 in	mind,	but	also	

support	incrementally	searching	with	aspects	(i.e.,	highlights)	of	the	results	when	the	user	is	

engaged	in	a	broader	search	task.	
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