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Abstract 

The world’s data sets are growing exponentially every day due to the large number of devices 

generating data residue across the multitude of global data centers.  What to do with the massive 

data stores, how to manage them and defining who are performing these tasks has not been 

adequately defined and agreed upon by academics and practitioners.   Data science is a cross 

disciplinary, amalgam of skills, techniques and tools which allow business organizations to 

identify trends and build assumptions which lead to key decisions.  It is in an evolutionary state 

as new technologies with capabilities are still being developed and deployed.  The data science 

tasks and the data scientist skills needed in order to be successful with the analytics across the 

data stores are defined in this document.  The research conducted across twenty-two academic 

articles, one book, eleven interviews and seventy-eight surveys are combined to articulate the 

convergence on the terms data science.  In addition, the research identified that there are five key 

skill categories (themes) which have fifty-five competencies that are used globally by data 

scientists to successfully perform the art and science activities of data science.   

Unspecified portions of statistics, technology programming, development of models and 

calculations are combined to determine outcomes which lead global organizations to make 

strategic decisions every day.   

This research is intended to provide a constructive summary about the topics data science and 

data scientist in order to spark the dialogue for us to formally finalize the definitions and 

ultimately change the world by establishing set guidelines on how data science is performed and 

measured.   
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Summary 
 

The world will make decisions by either guessing or using their gut.  

They will be lucky or wrong.   - Suhail Doshi (CEO Mixpanel) 

 

Massive data centers and data stores are used to securely archive today’s data and digital 

footprint that every computer, cell phone, laptop or tablet user leaves behind as they perform 

daily functions on devices.  The science and management disciplines required to develop data 

analytics capabilities within an organization is a developing field.  Developing an organization’s 

cultural mindset to be a productive functioning unit capable of leveraging data requires a 

fundamental understanding of data science - what it is and what it is not.   

The terms data science and data scientist are not formally defined and adopted by academics and 

practitioners.  There are misconceptions and misunderstandings about what constitutes data 

science and data scientist.  Some industries have incorporated a basic level of data science into 

their practice.  In other fields, it is a completely new topic with neither integration nor adoption 

into the business.   

Data science is a methodology by which a data scientist takes unspecified portions of statistics, 

scientific rigor and systemic capabilities to ensure that an answer to a data question is accurate. 

During one of the greatest periods in the information age, the challenge is to define roles for data 

experts and develop strategies for spreading strong data solutions across the business industry.   

Maytal Saar-Tsechansky (2015) frames the relevance of data science as existing “at the core of a 

host of ongoing business transformations, and disruptive technologies.  The application of data 
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science methods to new and old business problems presents a wealth of research opportunities 

that the information systems (IS) data science community is uniquely positioned to focus their 

efforts.”  

The goal of this document is to build on the baseline definition and cornerstone foundations of 

data science and the role of the data scientist.  Both practitioners and scholars work to build 

theory, implementations, and to develop a data focused culture as a business organization 

matures.   

The results gathered from a literary review, interviews, and surveys are utilized to define the 

terms data science and data scientist in order to establish a foundation that will chronicle the 

skills, tasks, and types of systems needed in order to capitalize on data science.   Per Thomas 

Davenport in Big Data @ Work, “big data refers to data that is too big to fit on a single server, 

too unstructured to fit in a row/column database or too continuously flowing to fit into a static 

data warehouse.”  Data science deals both with big data and small datasets.   

This document is organized in the following manner: 

 Foundation of Research -  describes the approach taken with the research 

 Literature Review - summarizes of articles used to develop the baseline 
of data science and data scientist 

 Interviews - summarizes the demographics of interviewees 

 Surveys - summarizes the demographics of the respondents to the 
surveys 

 Key Findings Summary - provides a short synopsis of the results of the research 
performed across the literature review, interviews and surveys. 

 includes a table of skills and competencies collected directly from the 
analysis 
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 Defining Data Science - provides supporting evidence from the literature review, 
interviews and surveys (in that order) 

  documents the similarities and differences between business and the 
academic community 

 Defining Data Scientist - provides supporting evidence from the literature review, 
interviews and surveys (in that order) 

 documents the similarities and differences between business and the 
academic community 

 Related Skills & Topics - documents specific details on 

 Machine Learning 

 Data Management 

 Strategic Decisions 

 Data Challenges 

 Conclusion - summarizes the findings and discusses next steps
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Foundation of Research 

 
Summary of Literature Review 

 
A detailed review of the published literature on big data, data science and the data scientist has 

been performed.  There is very little written on the topics as they relate to the business industry.  

This Google NGRAM result visually displays the progression across the past 50 years of where 

data science, data trends, big data, data tools and data strategy terms have been used in books 

written in the English language.  Note that the term data scientist has not appeared in English 



 

2 

language texts ever between 1800 - 2008.  (Full view is in Appendix A).   

The literature research for this dissertation was performed by leveraging Google Scholar and the 

University of South Florida online libraries to provide a baseline understanding and definition 

for the terms data science and data scientist.  It is difficult to research these two topics without 

touching on the data driven decision making culture and the ways that organizations are adopting 

data science and their master technicians who are called data analysts, business analysts, 

statisticians, or data scientists.  

As a result, twenty-two articles and one book by academic authors were identified that could be 

leveraged to begin the aggregation of consensus and opposing views on the actual terms.  What 

appears to be lacking is a definition or agreement across academics on what data science means, 

how to perform the tasks, the skills the technicians need, the systems architecture, and tools 

required for the job.  The table on the next page shows the publications and year of each article.   
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ROW 
# YEAR JOURNAL / SOURCE TOTAL OF 

ARTICLES 

1 2014 ASA DATA SCIENCE JOURNAL 2 

2 2001 CALIFORNIA MANAGEMENT REVIEW 1 

3 2015 COMMUNICATIONS OF THE ACM 1 

4 2012 HARVARD BUSINESS REVIEW 1 

5 2015 INTERNAL AUDITOR 1 

6 2015 JOURNAL OF ACADEMIC LIBRARIANSHIP 1 

7 2016 JOURNAL OF CHAOS, SOLITONS & FRACTALS 1 

8 2016 JOURNAL OF INFORMATION SYSTEMS  1 

9 2015 JOURNAL OF INFORMATION SYSTEMS EDUCATION 1 

10 2012 JOURNAL OF MANAGEMENT DECISION 1 

11 2015 JOURNAL OF SOCIAL AND BEHAVIORAL SCIENCES 1 

12 2016 MCKINSEY & COMPANY 1 

13 2013 MCKINSEY QUARTERLY 1 

14 2015 MIS QUARTERLY 1 

15 2014 NOTICES OF AMERICAN MATHEMATICAL SOCIETY 1 

16 2016 PEOPLE STRATEGY JOURNAL 1 

17 2013 PHYSICIAN EDUCATION JOURNAL 1 

18 2015 ROYAL STATISTICAL SOCIETY 1 

19 2014 UDACITY 1 

20 2013 US DEPARTMENT OF LABOR 1 

21 2014 WILEY PUBLICATIONS, INC 1 

YEAR PUBLISHED BOOK TITLE AUTHOR 

2014 BIG DATA @ WORK THOMAS DAVENPORT 
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Methodology 
 

Summary of Interview Technique 
 
A total of eleven individuals were interviewed. Their interviews were recorded and transcribed 

verbatim, then coded to identify the key phrases and terminology used to describe data science.  

This allowed for qualitative analysis to identify repeat phrases, unique phrases, or terms used to 

describe the functions.  In addition, the skills, tools, and system capabilities needed to perform 

the work were captured and summarized.  The individuals interviewed are across different 

domains but each person has multiple years of experience working with data.  Interviewees are 

from the following fields: data analyst, data architect, data scientist, chief financial officer, 

academic professor using data, or business executive leveraging data for daily decisions.   The 

interviewees span a wide range of tenure typically found in the workplace; less than 5 years, 6 to 

20 years and greater than 20 years. 

INTERVIEWEE ROLE INDUSTRY TENURE 

1 Chief Financial Officer Healthcare 20+ 

2 Academic Professor / Board of 
Directors 

Education  20+ 

3 Senior Operations Executive Financial Services 20+ 

4 Senior Operations Executive  Financial Services 20+ 

5 Senior Consultant on Data Analytics Consulting 20+ 

6 Data Architect Technology 20+ 

7 Senior Data Analyst Marketing 5 

8 Senior Business Analyst Financial Services 5 

9 Data Scientist Consulting 5 
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INTERVIEWEE ROLE INDUSTRY TENURE 

10 Senior Business Analyst Financial Services 4 

11 Data Analyst Marketing 4 
 

Summary of Surveys - Free Form Text & Multiple Choice (s) Approach 
 

Working individuals and students were requested to complete a survey of eighteen questions.  

Seventy-eight people responded and provided answers.   Seven of the eighteen questions are 

open-ended; eleven questions are multiple choice (s) and allow for users to select “other” in 

order to enter anything that they use for data science that was not listed.   The open-ended 

questions allow for the individuals to contribute their free-form text of what data science and 

data scientist means to them, their organization and who are the people performing the work. In 

addition, several questions were asked about the functions, programming and systems used to do 

the work by selecting multiple options.  The surveys were sent to people in the researchers’ 

professional network while others were randomly selected and included data scientists from 

companies across the world.   Questions on data management, data hygiene, machine learning, 

frameworks, and methods were included to assess an individual’s knowledge of other data 

related topics.  

The survey respondents are from the following fields: college student, business executive, 

technologist, marketing, data analyst, data scientist, academic professor, real estate, government, 

healthcare, education and construction.  Both qualitative and quantitative analysis is used to 

describe the results.  The respondents span a wide range of tenures typically found in the 

workplace. 
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INDUSTRY RESPONSES 

Financial Services / Banking 22 

Technology 18 

Education 8 

Healthcare 8 

Real Estate 5 

Marketing 5 

Consulting 4 

Communications 2 

Human Resources 2 

Other - Non-Profit, Government, Religion, Writer, Construction, etc 12 

Total 86 

*12 Respondents Checked multiple industries 
**6 Respondents Checked Other but did not indicate an industry  

TENURE # OF RESPONSES 

0 - 5 Years 26 

5 - 20 Years 25 

Greater than 20 Years 29 

Total 80 
*2 Respondents had multiple responses selected  
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Introduction 
 

What is Data Science and who are Data Scientists? 
 
According to the US Department of Labor publication by Royster (2013):  
 

Today’s datasets are so big, they are measured in exabytes—one quintillion (1 followed 

by 18 zeroes) bytes. By comparison, an mp3 song is typically less than 10 megabytes (1 

followed by 6 zeroes). 

The algorithms and commands data scientist are creating to enable machines to sort through huge 

stores of data can be complex. An approach that supports technical advancements while allowing 

business executives the freedom to compete for business contracts is strongly encouraged.  

Although it was not intentional, all academic sources used are less than five years old, with the 

exception of one source.  This is a direct result of the relative new usage of the terms 

investigated.  

Professors and scientists describe big data and the techniques for managing, analyzing and 

systematically generating results that allows multiple industries to consider these techniques in 

their own the decision making process.    Brown, Court and Willmott (2013) writes: 

Without sufficient senior leadership, it is difficult to catalyze the widespread 

organizational change needed to capture data analytics opportunities.  Capturing data 

related opportunities to improve revenue, boost productivity, and create new businesses 

puts demand on companies requiring not only new talent and investments in information 

infrastructure, but also significant changes in mind-sets and frontline training.   
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Data analysts, statisticians, mathematicians, technologists and data scientists, together with top 

senior business executives, are working to formalize the definitions, techniques, labels and 

systemic configurations for this relatively new field in order to improve revenue and increase 

productivity while providing opportunities for data scientists to advance the field of data science.
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Key Findings 

There is a commonality between the academic resources and practitioner’s perspective shared in 

the interview and survey.  Looking across all findings, trends develop that allow for the ability to 

group the attributes required for successful data science execution.   

Regarding data science, many sources summarized the terms similarly.  Key phrases included a 

combination of statistics, math, and programming in order to draw meaningful insights from the 

data. In addition, the authors offered perspectives related primarily to science, structures, 

controls and processes used to perform the functions.  

An example of this is provided by the Cleveland and Hafer (2014) commentary to respond to 

concerns raised by the Kary Myers and Scott Vander Wiel (2014) document.  Myers and Vander 

Wiel compliments Cleveland’s Action Plan (2014) and “how much of it has been integrated into 

the fabric of the statistics community and especially as it relates to multidisciplinary projects and 

computing with data.”  They state that “just as Cleveland said, our involvement blurs exactly 

who is a statistical and who is not.  In addition, it blurs who is and is not an astronomer, physicist 

or chemist.”  Myers and Vander Wiel close their document by declaring that Cleveland’s action 

plan has been used to determine who should be hired.  A person with the ability to solve 

problems across disciplines and analyzes data that crosses outside of the boundaries of a 

statistician is a valuable asset for a business.   

For data scientists, the skills can be grouped into five key areas:   

• Data Analysis Functions:  These capabilities are the types of math and analytical methods 

and modeling skills needed to solve data problems.    
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• Programming & Tools: These are the technical abilities that are required for data scientists 

to take data and either use a tool or write code to customize a tool.   

• Machine Learning Techniques and Solutions:  These are methods used to review data and 

build supervised and unsupervised machine learning proficiency.   

• Interdisciplinary Knowledge:  These represent the functions that must exist across academic 

disciplines such as accounting, economics and information systems. 

• Critical Abilities:  The capabilities listed here are the softer skills that are required for data 

results to be summarized and communicated.   

 

Overlap across the three populations, literature, surveys and interviews, determined that Data 

Analysis Functions include statistics, basic math, algebra, calculus, programming and 

interdisciplinary knowledge that are important to be successful.  There is notable division seen in 

the Programming and Tools that are in the practitioner’s mainstream focus.  Tools such as Spark, 

Radiant, Tensorflow, Tableau, Qlikview and SAS are not documented in the academic literature.   

It is possible that these tools are new to the workplace and have not been fully embedded into the 

academic culture.  These tools 

are highlighted in the 

interviews, and even more by 

the surveys.  Ability to write 

code using Java, C, C++ and 

HTML are common among 

practitioners. The academic 

community did not consider 

this skill as necessary for data 

scientists.   
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Regarding Machine Learning Techniques and Solutions, minimal capabilities are highlighted by 

academics.  Practitioner’s use of decision trees, neurals, vectors, and others listed in the table 

below as important for a data scientist.  When machine learning was brought up during the 

interviews, the respondents were quick to opine that we are in a pioneering stage in the business 

world.   

The Interdisciplinary Knowledge category results emphasize that the field of data science and 

skills required are across many academic disciplines in order to develop solutions and answer 

data problems.   

What was unexpected is the lack of commentary in the academic literature on the capabilities 

captured under the Critical Abilities category. These skills are often called soft skills; 

communication, data visualization and subject matter expertise mentioned by the academic 

experts.  None of them mentions key attributes such as the ability to ask intelligent questions 

when defining a data problem, interpersonal skills, critical thinking or curiosity.  These specific 

capabilities are mentioned numerous times in the interviews.   

One area that evoked conversation during the interviews is data intuition.  Respondents would 

either ask for clarification on the topic or begin to explain how this is important.  This capability 

is not considered as a sixth sense, but it distinguishes data scientists who have the ability to 

quickly make sense of data and determine the important aspects while dispelling the irrelevant 

information.  

The table below captures the results from the three research methods supporting this dissertation. 

It can be used as a reference when reading the literature review results and qualitative results 

from the surveys and interviews.  It can also be used as a hiring guide for managers looking to 

develop a data science team in their own organizations.   
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5 Key Skill Categories / 55 Competencies 

Skill Competencies Literature 
Review Interviews Surveys 

Data Analysis Function 9 9 5 9 
Programming & Tools 13 6 9 13 
Machine Learning Techniques Solutions 10 0 0 10 
Interdisciplinary Knowledge 5 3 3 3 
Critical Abilities 18 9 13 3 
Total 55 27 30 38 

  

Table of all Competencies 
Row # Skill Categories Competencies Literature 

Review Interviews Surveys 

1 Data Analysis Function Statistics YES YES YES 

2 Data Analysis Function Basic Math YES YES YES 

3 Data Analysis Function Calculus YES YES YES 

4 Data Analysis Function Multi-variate YES   YES 

5 Data Analysis Function Algebra, Linear and 
Quadratic models YES YES YES 

6 Data Analysis Function Integer Programming YES   YES 

7 Data Analysis Function 
PearsonR, MLIB, 
Lambda Functions or 
Chi-Square 

YES   YES 

8 Data Analysis Function Tests for Significance YES   YES 

9 Data Analysis Function Standard Deviation YES YES YES 

10 Programming  & Tools R Programming YES YES YES 

11 Programming  & Tools Python Programming YES YES YES 

12 Programming  & Tools Excel YES YES YES 

13 Programming  & Tools VBA   YES YES 

14 Programming  & Tools Java, C, C++ and HTML     YES 

15 Programming  & Tools SQL   YES YES 

16 Programming  & Tools Spark     YES 
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Table of all Competencies 

Row 
# Skill Categories Competencies Literature 

Review Interviews Surveys 

17 Programming  & Tools Tensorflow     YES 

18 Programming  & Tools Radiant     YES 

19 Programming  & Tools Tableau / Qlikview YES YES YES 

20 Programming  & Tools SAS   YES YES 

21 Programming  & Tools Data Wrangling YES YES YES 

22 Programming  & Tools Hadoop / Tessera YES YES YES 

23 Machine Learning 
Techniques Decision Trees     YES 

24 Machine Learning 
Techniques Ordinary     YES 

25 Machine Learning 
Techniques Neural     YES 

26 Machine Learning 
Techniques Vectors     YES 

27 Machine Learning 
Techniques Clustering     YES 

28 Machine Learning 
Techniques 

Independent Component 
Analysis     YES 

29 Machine Learning 
Techniques 

Natural Language 
Processing     YES 

30 Machine Learning 
Techniques Apache     YES 

31 Machine Learning 
Techniques 

Amazon Machine 
Learning     YES 

32 Machine Learning 
Techniques 

Azure ML, Caffe, H2O, 
Massive, MLIB mlPack, 
Pattern, Shogun, Torch, 
Tensorflow 

    YES 

 
 
 
 



 

14 

Table of all Competencies 
Row 

# Skill Categories Competencies Literature 
Review Interviews Surveys 

33 Interdisciplinary 
Knowledge  Accounting  YES YES YES 

34 Interdisciplinary 
Knowledge  Economics YES YES YES 

35 Interdisciplinary 
Knowledge  

Computer Programming / 
Information Systems YES YES YES 

36 Interdisciplinary 
Knowledge  Marketing YES YES YES 

37 Interdisciplinary 
Knowledge  Decision Science YES     

38 Critical Abilities Data Management / 
Governance YES YES YES 

39 Critical Abilities Database Management 
(technical) YES YES YES 

40 Critical Abilities Strategic Thinking    YES   

41 Critical Abilities Ability to ask intelligent 
questions   YES   

42 Critical Abilities Organization (of data, of 
concepts, of priorities) YES YES   

43 Critical Abilities Data Visualization YES YES YES 

44 Critical Abilities Communication - Written   YES YES 

45 Critical Abilities Communication - Verbal   YES YES 

46 Critical Abilities Interpersonal 
Relationships   YES   

47 Critical Abilities Data Intuition YES YES   

48 Critical Abilities Critical Thinking / Logic   YES   

49 Critical Abilities Curiosity   YES YES 

50 Critical Abilities Hacking Skills YES   YES 

51 Critical Abilities Scientist Skills YES     

52 Critical Abilities Quantitative Analysis 
Skills YES YES   

53 Critical Abilities Trusted Advisor YES     

54 Critical Abilities Business Expert / Subject 
Matter Expert YES YES   

55 Critical Abilities Focus On Precision YES YES YES 
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Defining Data Science 
 

Several articles cite that data science is a multidisciplinary field;  Cleveland (2014), Myers and 

Vander Wiel (2014), Aasheim, et al. (2015), Coderre (2015), Davenport (2001) to name a few.  

The academics and scientists have determined that the tasks performed in data science require a 

combination of statistics, programming, math, special tools, technical architecture understanding 

and business expertise.   There is agreement and disagreement by academic scholars and 

practitioners on the definition of data science. Consensus documented, through the findings, that 

data science is multidisciplinary requiring portions of information science, statistics and database 

management skills.  The disagreements in the academic and scientific communities emanate 

from the lack of uniformity in the process of taking un-specified portions from each discipline to 

perform data science.  In addition, there is controversy between the data science and statistics 

communities; mostly because data science is not measurable whereas statistics has well-formed 

theories that have been used for generations.  Each data problem is unique and data science is 

part art and part science, requiring both soft skills and technical abilities.  

Literature Review 
 
William S Cleveland’s (2014) Data Science: An Action Plan for Expanding the Areas of the 

Field of Statistics.  This action plan is most cited and points to needed improvements in order to 

drive data science forward.  He is purposeful and clearly states that data science is the altered 

field of statistics (Cleveland, 2014).  Cleveland’s (2014) plan focuses on the data analyst and 

describes six areas of focus: Multidiscipinary Investigations (25%), Models and Methods for 

Data (20%), Computing with Data (15%), Pedagogy (15%), Tool Evaluation (5%), and Theory 
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(20%).  Cleveland (2014) also outlines specific steps in analyzing data by explaining that data 

must be cleaned before it can be utilized for analytical purposes. Data management should be 

strict, with no exceptions, in order to be effective.    

In Cleveland (2014), he states that data science consists of all technical areas that come into play 

in the analysis of data and deep analysis of large complex data challenges.   All of the technical 

areas, from statistical theory to the architecture of clusters designed specifically for data, need to 

be tightly integrated.  He states that statistics should be considered a synonym for data science.  

The plan outlined by Cleveland (2014) claims that a substantial change is required in the major 

areas of technical work and statistics in order to create optimal results for the data analyst (data 

scientist).   

Cleveland (2014) documents his perspective on how the analyst’s time is spent on 

multidiscipinary functions to solve problems, and his comments are not unique.  Data science 

requires mathematics, statistics and programming tools for the data analyst (data scientist) to be 

successful.  However, Cleveland’s commentary on models and methods is distinctive  in that his 

recommendation is to apply two aspects: specification - the building of a model for the data, and 

estimation and distribution - formal, mathematical-probabilistic inferences based on the model.  

He intentionally emphasizes that data science is a process made complete by precision.  

Cleveland (2014) states, “the model must be balanced by information from the data, information 

from sources external to the data and desirability of parsimony.”  His emphasis is on the tools for 

the data scientist and ensuring that their requirements are clearly understood.   

Regarding the importance of computing tools, Cleveland (2014) shares that hardware and 

software available in today’s business world are powerful and statisticians should look to 
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computing for knowledge, just as data science looked to mathematics in the past.  Although 

pedagogy and tool evaluation are part of Cleveland’s formula for the data analyst (data scientist), 

he focuses more commentary on the theory.  He states “another provocative perspective that 

theories on mathematical and non-mathematical are vital for data science.  And the tools of data 

science - models, methods, and computational systems link data and theory.”   

In addition to the previous reference on precision, Cleveland and Hafen’s (2014) commentary on 

Divide and Recombine, state that that data must be divided into subsets by a statistical division 

and the subsets are required to be stored in the same data structure, either on disk or in memory.  

Cleveland and Hafen (2014) outline a system design including a detailed profile of Tessera and 

Hadoop solutions.  This optimizes the computational capabilities for data analyst teams 

performing big data mining and data analytics.    Typically data mining refers to smaller datasets.  

They are the only scholars who discreetly describe the controlled process and systems 

requirements in detail in order to educate the proper process and logical divide and recombine 

process.  Although this may seem to be a logical process, it is obviously meant to be emphasized; 

in their own words “as an example to demonstrate work in all the areas and their tight 

integration.”   The details of their architecture design will be shared later in this document.  

Aasheim, Williams, Rutner, Gardiner (2015), outline the specifics of data science as a set of 

fundamental principles that support and guide the extraction of information and knowledge from 

data.  Their document separates data analytics from data science as it relates to undergraduate 

programs.  The information they share is vital to the data science conversation because it 

expresses a sense of urgency to solve the problem and prepare skilled workers for the future due 

to the rapid, exponential growth of data stores.   
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Their perspective also includes the defining characteristics of big data as the three V’s; Volume, 

Velocity and Variety.  Aasheim, et al. uniquely states that “what data scientists do is make 

discoveries while swimming in data.”    This is giving reference to the vast expanse of data 

today’s world generates by the millions of mobile and personal computing devices.    

When summarizing their perspective on the data scientist’s primary skills, Aasheim et al.  write 

data scientists require traditional relational database management systems as well as the ability to 

extract, transform, load, and data mine.  Although their document is primarily focused on 

comparing the education courses for undergraduates on data analytics and data science, it is 

informative to view their perspective and understand the skills required as well as the gap in 

society’s working class who have the skills necessary to perform the data analytics (data science) 

tasks needed by businesses.  Unlike Cleveland, who focuses on systemic process and technical 

solutions, Aasheim et al.  focus on skills, functions and knowledge required by the person 

performing the tasks for data science.   

Maytal Saar-Tsechansky (2015), author of The Business of Business Data Science in IS Journals, 

has written for MIS Quarterly and focuses on the specific business data problem nicely.  His 

writing bridges the gap between old and new business problems. His specific guidance to data 

scientists is to start by outlining what is meaningful and significant information to share about 

the data science findings.  He states explicitly that “data science is a design science field of 

research and a broad, interdisciplinary field but it has uncertainty on how to apply the guidelines 

of data science to information science problems.  He fully admits that data science has important 

contributions and can impact science in novel and meaningful ways.”   
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What is interesting is that Saar-Tsechansky (2015) focuses on clear articulation of findings from 

his data science colleagues.   For instance, Brown, Court, Willmott (2013) state in their article, 

Mobilizing the C Suite for Data Analytics, the power of data and analytics is profoundly altering 

the business landscape.   Companies need to clearly articulate data related opportunities to 

improve revenue, boost productivity, and new business opportunities.  Establishing new mindset 

is an imperative to successfully articulate a data analytics strategy.  Key partnerships are required 

by the business unit leader and the data analytics expert in order to pioneer the needed frontline 

changes.  

Saar-Tsechansky (2015) writes that data science is the extraction of informative patterns from 

data, and that it differs from that of other streams of IS research and thus calls for different 

assessment guidelines.  Since data science is a design science field of research, the guidelines 

outlined can be applied to produce and assess data science contributions.  Data contributions are 

fairly recent in IS (Information Systems) and there remains uncertainty on how to apply the 

guidelines to data science.   

Kate Matsudaira (2015) highlights the significant communication gap and strategic planning 

challenges she faced when she took a role to manage a data science team.  It was clear the team 

was proposing ideas, investigating hunches and testing hypotheses, but it was difficult to 

estimate the work effort and guarantee the results would provide significant business value.  To 

overcome this challenge she develops a new process that would account for the uncertainty and 

keep stakeholders in the loop on the progression of the team’s work.  Developing a 

communication plan to bring transparency was step one.  The team develops a process to answer 

stakeholder questions.  The challenge is to answer the question, but use the right vocabulary.  

Her team develops a model that would allow stakeholders to understand the definition of “done”.  
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The data science team measuring the results and completing an experiment need to determine 

that the model was strong enough to be integrated into a product.   

In order to close this gap, the team develops a precision measure for each algorithm and 

communicated the results.  The team began using terms that would explain the customer 

experience and business metrics in language that stakeholders could relate to easily.  In addition 

to these changes, the team develops ways to show improvements, clearly express the level of 

complexity surrounding a specific question, add deadlines to the research, and develop agile 

demonstrations in order to showcase the work.  The best practices she develops are adopted and 

results replicated across data science teams.  This adds valuable adjustments to the overall 

communication strategy and data visualization effectiveness of data science solutions.   

Mellin (2013) details the stages of an organization and adoption of analytical capabilities and 

progress towards full maturity.  Mellin specifically highlights five key questions that all 

executives should be asking to press adoption of data practices and decision making into their 

organizations.  Mellin’s summary document is heavily centered on Davenport’s (2001 and 2014) 

work but adds data governance and data reliability topics into the conversation that are not 

present in all of the prior works discussed in this dissertation.  Data governance must be 

important at all times.  A NO EXCEPTIONS mandate is essential for data quality and effective 

data governance.  Data reliability assessment is vital to the success of an organization's data 

adoption and oversight of the accuracy of the data.  

Brian Hayes (2014) is helpful in visualization of defining the complexity of data science.  Hayes 

(2014) not only describes data science as the sexiest job of the 21st century, but he also includes 

the controversial aspects that underlie the overlap between statistics and data science.   Hayes 
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(2014) describes the role of data scientist as someone who knows how to extract meaning from 

and interpret data using tools and methods from statistics and machine learning.    

Peter Diggle’s (2015) answer to the “what is data science” question is not new.   Diggle (2015) 

shares that data science is “the extraction of knowledge from data….it employs techniques and 

theories drawn from many fields within the broad areas of mathematics, statistics, and 

information technology.   Information science is an interdisciplinary field primarily concerned 

with the analysis, collection, classification, manipulation, storage, retrieval, movement, 

dissemination, and protection of information.  Statistics is the study of the collection, analysis, 

interpretation, presentation and organization of data.”   Diggle (2015) admits that the definitions 

show considerable overlap and states clearly that the definition of data science and statistics are 

close.  Data science in itself is not just another name for statistics as data science includes 

informatics (hardware and software engineering).  In summary, Diggle (2015) writes that data 

science, information science and statistics has considerable overlap and he has argued in the past 

that data science was just a new name for statistics.  

The Hayes (2014) and Diggle (2015) summaries are versions of the same explanation Cleveland 

(2014), Saar-Tsechansky (2015) and Aasheim (2015) describe.  They all also acknowledge this 

seems to still be a field that is in an evolutionary state to have full consensus by scholars on what 

data science is and who data scientists are.  They admit this is multidisciplinary and requires 

algorithms, systems and applications to solve problems effectively.   

One area where the authors diverge is the level of comfort that is interpreted from their writings 

on the topics of model, methods and measures.  Because statistics has a foundation that has been 

baselined for generations and leveraged by all scholars to some degree as they performs their 
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research, it is uncomfortable for the statisticians to agree that the looseness with data science 

measures needs to be evolved.  The “king of the hill” measure described by Hayes (2014) is not 

empirically accepted and anyone would be hard pressed to use it as the foundational cornerstone 

to data science.  Hayes writes that what is empirical with data science is that we still need a 

central limit theorem that we can all feel comfortable in measuring the success of a model and 

results.   

King of the Hill Measure:  the primary measure used today to say we are performing data science 

activities well.   

Examples of our inability to actually measure the success or failure of data science are presented 

below.  The data stores are massive and results have never been delivered to the consumer before 

so there is nothing to compare against.   

- Google search and how quickly responses for any topic are returned within milliseconds on 
any browser. 

- Netflix business model conceiving videos as data and the video store as a data library.  
They deliver movies to subscribers via internet streaming and suggest similar movies to 
those previously viewed before.   

 

Two additional articles provide unique perspective are by Bayrak (2015) and Mayhew, Saleh and 

Williams (2016).  In the article A Review of Business Analytics, Bayrak writes many of the same 

summary comments of previous authors.  What is different about his findings are the terms used 

to describe analytics.   Specifically, he defines what businesses are doing today when they use 

metrics to measure productivity, accuracy and forecast staffing.  In addition, he describes the 

type of analytics that can be used for prediction and heavy computations.    
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Types of analytics described by Bayrak (2015):   

• Descriptive Analytics:  Data mining to provide trending information on past and current 
events. 

• Predictive Analytics:  Models and techniques to predict future outcomes based on historical 
and current data.   

• Prescriptive Analytics:  Set of mathematical techniques that computationally determine a 
set of high-value alternative actions or decisions given a complex set of objectives, 
requirements and constraints.   

All three types are used to improve the overall performance of a business, but are not 

interchangeable and must be performed sequentially for an organization to advance in their 

adoption of a data driven decision making culture.   This breakdown of analytics is referenced in 

two interviews specifically and not included in any of the surveys.   

In Making Data Analytics Work for You,  Mayhew, Salem and Williams (2016) write about the 

data science revolution is here and transforming organizations.  The primary purpose of their 

document focuses on making improvements in the data science processes used in organizations 

today.  What is unique about their document, is that they focus on communication in a section 

titled “Make your Output Usable - and Beautiful”.  They recommend that the appearance of 

interfaces which must have elegance and intuitive usability.  Further, they state that the 

quantitative calculations driving the facts must be easily interpreted and understood in order for 

them to be effective and people to take action or respond to the facts.   

In a short article on Challenges in Data Science, Carbone, Jensen and Sato (2016) write about 

the four V’s of data science.  This work compliments the work of Aasheim, et al (2015)  in their 

three V’s perspective.  Carbone and team list the four V’s as Velocity, Volume, Variety and 

Veracity.  Veracity calls out the uncertainty tied to data science and to highlight that analytics are 

only as good as the accuracy and validity of the factors used to assess the data.  They want to 
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ensure that this measure is controlled and focused in order to ensure data science success.  The 

rest of their document substantiates other definitions of data science with the standard science, 

math, and computing background that we have seen from Cleveland (2014), Hayes (2014), 

Diggle (2015) and others.   

 This review exposes data science as a term used to define multiple methods used across 

businesses in order to determine an answer to a business problem by using data.  The definitions 

are often vague and lack specificity which can cause conflict with scholars and business teams 

trying to develop the tools to allow organizations to solve data challenges.  
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Practitioner’s Perspective  
 
In summary, the practitioners say that in today’s business world, there is a limited amount of 

knowledge on how to manage today’s massive amounts of data.  Simply labeling the data stores 

as big data is not enough.  The science driving a data strategy to implement the optimal 

methodology for data management, data mining, data analytics, data governance and data 

decisioning is not widely known nor understood by today’s business experts.  Large corporations 

are developing data strategies in order to gain key insights, optimize revenue, hire and retain top 

talent, effectively market, place products, reduce expenses.…the list is endless. In addition, both 

academics and practitioners are exploring automation and machine learning capabilities that will 

result in evolving today’s human manual processing tasks.  

In laymen’s terms, data science is the scientific approach used to perform technical analysis with 

surgical, robot-like precision on data.  The data is large, has complex relationships, and has a 

variety of orders and structures.   

In reality, companies are using established tools, and a fixed mindset to solve gigantic business 

problems.  What they are missing by staying in the same mental confines and by using historical 

methods are the potential opportunities that may offer new insights.  Some practitioners cannot 

conceive what it means to have unsupervised machine learning providing results for critical 

business decisions.  Since they cannot conceive the concepts, they mistrust the results, and stay 

chained to the old regimens. 
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In some organizations, data science is separate from statistics, algorithms or the technical 

approach to analysis.  Their versions of data science revolves around answering the question of 

the moment using a methodology that is easy to follow and explain.  It can seem that being able 

to explain the results is more important than allowing people to explore the data and determine 

what hidden gems can be found.  Often today’s data are too complex, too large and too 

unstructured to effectively analyze using old tools.  In addition, the skills needed to be effective 

have not been fostered or developed by the organizations.     

Booz Allen Hamilton (2015) summarizes data science as the “catalyzing force behind our next 

evolutionary lead.  Our own evolution is now inextricably linked to that of computers. Data is 

our new currency and data science is the mechanism utilized to tap into it. Data science is the art 

of turning data into actions.”  

 
Interviews 

 
The interviewees responded with a definition that data science is not just one thing; it is a 

combination of techniques, knowledge and skills that are applied to data in order to identify 

insights that can be used to guide teams to make key decisions.  The phrases most used include 

gain insight, reveal business trends, and make sense of data that requires multidisciplinary 

techniques across science, math, and computer programming. A small number of comments refer 

to the cloud as a prerequisite for big data or that managing data can only be done in excel, access 

or on mainframes.  With comments like this, it is evident that there are misconceptions about 

data science and how it is applicable in the business workplace.  In some cases, terms like data 

mining, data analysis, data research are used to explain data science.  This is likely driven by the 

fact that no formal definitions are in place to explain data science.  
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Key words that are used include statistics, organizing, analyzing and researching to describe the 

activities, complexity of the topic and the methodical approach that is required in order to truly 

garner benefits from the huge volumes of data that are generated each day.  To perform the tasks, 

an understanding of multiple concepts including statistics, math, and data management 

techniques are necessary to scrub data. 

 

Summary of Responses Identified from the Transcripts: 
 

• the meeting of statistics, math and science to use raw data to make decisions; using 

analytics, studying it and extrapolating the most useful pieces 

• the ability to harvest the data, organize it, analyze it and draw meaningful insights 

• taking information from various sources, research and making connections from the data 

• ability to understand the data with statistical analysis; performing the analysis and higher 

level methodologies to gain insights 

• to glean some sort of insight or knowledge out of data; get new insight and knowledge from 

data 

• an empirically driven approach with a scientific method towards solving business problems 

drive strictly off of data items; using multiple approaches and coming to a conclusion that 

best fits the stated question 

• interdisciplinary field that combines several other fields of business and social science, 

particularly mathematics, statistics and management of information systems to get data 

from systems, and organize it in a meaningful way using a scientific method; to reveal 

business insights that would not normally be revealed through elementary business practice  
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• data mining is discovering information that may never even be thought about; there is 

rationale for picking those questions out  

• ability to make sense or logic of undefined information  

• to understand patterns for example prices of aluminum parts coming from Asia tend to be 

more expensive between October and December when it is raining and it is an odd year 

• DS is a new interdisciplinary field that is combining different techniques and skills 

 
 

Surveys - Free Form Text 
 

A survey with eighteen questions was sent; seven open ended / free form text questions and 

eleven multiple choice questions are included in the survey.  A total of seventy-eight responses 

were received with 100 percent completion on all questions. The respondents are diverse and 

come from a variety of backgrounds, industries, roles, tenure and income.  The responses provide 

a colorful array of comments that demonstrate what is known and unknown about the terms data 

science and data scientists.  There are a lot of people who have a good perspective on data 

science, data scientists and their role in modern day business, and there are several who have no 

idea how to describe data science and the role data scientists perform.  Qualitative and 

quantitative results are derived based on the answers to seventeen of the eighteen questions.  One 

question is removed due to ambiguity and feedback from several participants. 

 

The survey results, answering the question in free-form text “What is data science?”, indicate 

similar trends as the interviews. Twenty-six of the seventy-eight respondent’s comments are 

vague or uninformed that they are excluded for this particular question.  Comments such as 
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“science based on data” or “science that has been studied”.  The remaining fifty-two respondents 

are consistent with the interviews.  The comments provide additional supporting evidence that 

data science is not just one thing, it is an aggregation of multiple disciplines.  

 
Examples of Free-form Text answers are listed below: 
 
• using existing data sets to test hypothesis, employing sophisticated statistical methods to 

identify relationships and understand trends 

• the art and science of extracting valuable information from existing data for the decision 

making process 

• data science is a field focused on understanding data through tools, models and analysis, 

presumably to use that data to make informed and better decisions 

• data science is another word for applied statistics 

• software engineering is data science if a project that is mostly software programming has some 

type of statistical application embedded in its code 

• data science is the art of combining mathematics, programming and visualization to discover 

knowledge 

• field of study where math, statistics, information technology and analysis is used on large 

volumes of data to gain knowledge and insight   

• it can include data mining, pattern recognition, and data clustering analysis 

• data science is the ability to extract information algorithmically from large volumes of 

structured and unstructured data 

• data science is the use of statistics, economics, and programming languages to extrapolate and 

visualize data 
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The terms used the most to describe data scientists are listed below: 

• statistics / models occurred in twelve responses 

• math / algorithms and methods occurred in six responses 

• trends  / programming occurred in five responses 

 

As explained, there is significant consensus that highlights the various scholastic disciplines 

required for data science to be performed.  Overall, it is clear that data science requires variable 

amounts of mathematics, statistics, programming, methods, economics, and accounting to have 

output that is usable in the business world.  The use of data science can translate into bottom line 

impacts for businesses that are service providers, buyers / sellers, marketing, government, health 

and education professionals.   
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Defining Data Scientist 

 

In 2012, the United States Department of Labor wrote an article titled Working with Big Data.  

An excerpt is captured below: 

Most workers who deal with big data are known as data scientists, although they may be 

called data analysts or have some other designation.  The term data scientist is so new, 

we do not yet have it in our job descriptions at Fermilab, says physicist Robert Roser 

head of the Scientific Computing Division at this national laboratory in Batavia, Illinois.  

The US Bureau of Labor and Statistics classifies these workers as statisticians, computer 

programmers, or in other occupations depending on their tasks.  Whatever their title, 

these workers study big data using conventional and newly developed statistical 

methods.   

Although the article was written five years ago, when a recent search was performed on the US 

Dept of Labor website, the job of data scientist is not found.  The only other reference that was 

any way relatable to big data was a second article discussing the STEM crisis or surplus 

question.  Nonetheless, the role of a data scientist has made its way into corporate America and 

even into government, marketing agencies, service providers such as Price Waterhouse-Cooper, 

Accenture, and Cognizant.   
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Literature Review 

 

Cleveland and Hafen (2014), in Divide and Recombine: Data Science for Large Complex Data, 

articulate a systemic solution and process that divides the data into subsets by a statistical 

division method where the subsets are stored in memory, computations are performed and then 

the results are recombined via a statistical method.  This output requires that deep analysis goes 

to the most granular level.  The output, should not only be summary statistics, an automated data 

reduction algorithm, or random samples of data as the outcome will likely be missing large 

chunks of critical information.   

In addition, Cleveland and Hafen (2014) outline a system that has a Hadoop back end running on 

a Linux server cluster, Tessera middle software layer and R front end.  This solution allows for 

the parallel processing capability, computing power and optimizes the statistical analysis 

required for large data sets.   Hadoop has the ability to manage the subsets described in the D&R 

function and manage the processing capability with speed.  In addition, Cleveland states the 

applicability of D&R with Tessera is wide and allows for deep analysis and performing the 

complex computations for massively large datasets.  Cleveland and Hafen (2014) recommend 

that departments of data science should contain faculty members, who devote their careers to 

advances in computing with data and who form partnerships with computer scientists. 

In Cleveland’s (2014) article Data Science: An Action Plan for Expanding the Technical Areas 

of the Field of Statistics, the people performing the tasks of data science are called data analysts.  

As mentioned in the data science definition, Cleveland outlined the data scientist functions 

containing various percentages of time for multidisciplinary, models and methods, computing 

with data, pedagogy, tool evaluation, and theory.  What he is not explicit in stating, but one could 
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infer from the article, is that data scientists require the ability to perform computer programming, 

database skills, modeling, tool assessment, and statistics.  He focuses on the fact that analysts 

(data scientists) will need optimized tools and systems in order to develop precise and 

functioning models to solve business problems.   

David Coderre (2015) wrote Gauge Your Analytics and mentions that the solution should include 

an audit solution that will log repeatable tests and document the test design so that the analytics 

are tracking  as an integral part of the audit process.  This may seem pedantic, but this idea is not 

specified in the other solutions. He specifically highlights that the audit team should include a 

data analytics function in order to ensure the audit functions can move along the analytics 

maturity curve to be better aligned when the analytics function becomes complex.  Per Coderre’s 

guidance, the audit data analysts’ function should be able to perform some level of programming 

and have the technical skills needed to ensure the models are verifiable and reproducible.   This 

perspective is important since this topic has not been addressed by other authors.  Specifically, 

he writes the audit data analyst should have: 

•   understanding of data concepts 

•   understanding of database structures (both logical and physical) 

•   ability to communicate with IT and related functions to achieve optimal results 

•   ability to perform ad hoc data analysis 

•  ability to design, build and maintain well documented, ongoing automated data analysis 
routines 

• ability to provide consultative assistance to others who are involved in applying analytics 
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In the Mondore, Spell and Douthitt (2016) article, From the Boardroom to the Front Line, the 

authors write that many leaders will agree that correlation does not equal causation and then 

accept research that is based on correlations and group comparisons.  Correlation and simple 

regression identify the strength and direction of relationship between two items.  In addition, 

they state that statistical modeling methods called structural equations modeling (SEM) allow for 

various factors or causes to be assessed in relation to multiple outcomes concurrently.  This is 

important because events do not occur in a vacuum, but rather with multiple influencers.  

Specifically, they cite four advantages to SEM:   

• multiple inputs or causes can be tested along with multiple outcomes concurrently 

• an accurate assessment of ROI can be calculated 

• it provides the ability to correct for measurement error  

• causation can be inferred 

 

Mondore, et al. have outlined a handbook type article that provides specific guidance to leaders 

for ensuring that statistical rigor, correlation, regression, and advanced analytics can be 

leveraged to achieve the SEM output.  Data analytics can have a positive impact on the bottom-

line and ultimately increase dividends. 

 

Davenport, Harris, DeLong and Jacobson wrote Data to Knowledge to Results:  Building an 

Analytical Capability in 2001 and describe the competencies needed for a data driven culture.  

What is important to include here is their description of the data team members needed to 

develop strong analytical capabilities; database administrator, business analyst, data modeler, 
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decision maker, and outcome manager.  The team members will need strong technology skills to 

leverage software for manipulating and analyzing data. In addition, Davenport et al. state that 

statistical modeling and analytic skills are required to run models and assess results.  They also 

include, knowledge of the data fields, business, and strong communication skills as necessary to 

apply the right models to the business problems that are relevant to today’s business leaders. In 

Data Scientist: The Sexiest Job of the 21st Century, Davenport and Patel (2012) writes data 

scientist is a high ranking professional with the training and curiosity to make discoveries in the 

world of big data.   

 

In The General Theory of Decisions, Aliev, Pedrycz, Keinovich, Huseynov (2015), summarize a 

new theory for decision models.  Although their article is focused on the existing theories, 

practices, and approaches, there are concepts that are relevant to the topic of data scientists.  

They recommend a shift in the foundation of analysis to fuzzy logic versus the traditional binary 

logic.  In addition, they focus heavily on the topics of models and the constructs required to have 

effective, accurate models for decision making.  What this implies is that for data science to be 

accurate, the resources performing the tasks must have significant technical capabilities with 

tools, calculus and statistical models.  Specifically, a mental state of a decision model is a 

complex system of  factors; evolution of modeling decision-relevant information based on 

numerical information, interval-valued information, fuzzy information, and information with 

uncertainty.   

In Davenport’s (2014) book entitled  Big Data @ Work, there is a full chapter titled, “The 

Human Side of Big Data”.  In this chapter, he describes the data scientist having five key traits: 
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• hacker - able to code and understand big data architecture 

• scientist -  can support evidence based decision making, improvise, and action orientation 

• quantitative analyst - performs statistical analysis, visual analytics, machine learning and 

analysis of unstructured data 

• trusted adviser - strong communication and relationship skills, able to frame decisions and 

decision processes 

• business expert - know how business works to make money and has a good sense of where to 

apply big data analytics 

What is unique about Davenport’s perspective is that he focuses attention on the questions being 

asked to the data scientist rather than the data.  He specifically highlights that between 70 - 80% 

of business intelligence projects fail in corporations because of poor communications between IT 

and the business managers.  He is aware of the importance of solution communication skills. 

Davenport (2015) draws the difference between two types of data scientist; vertical (having deep 

knowledge on a narrow topic) and horizontal (having a combination of skills).  He includes his 

perspective on hiring and retaining top data scientists by using the typical factors; salary and 

solid relationships with peers and the business manager.   

Interviews 
 

The interviewees ten out of eleven responded to the question “Who is doing this today in your 

organization” with a consistent answer — business analysts / data analysts perform these tasks 

today. In addition, it was alluded to that the analysts are junior members of the organizations and 

not responsible for driving strategy or innovation in this space.  In reality, the questions today’s 
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business executives are asking require a true data scientist to review large volumes of big data 

and provide a scientific approach to performing an assessment on the data.  The answers 

executives are looking for are not always lying on the surface, but require a multilayered 

approach in order to make sense of the vast data stores.    

The best summary is a “pure data scientist is the one in possession of the best theoretical or 

practical applications of math or other sciences to leveraging statistics, use of advanced math, 

leveraging machine learning, or greater statistical functions to be more accurate.”  In simple 

terms, they are the “person uncovering relationships in the data that were not known or possible 

to perceive with current tooling.” 

 
Definition of Data Scientists - Summary of Responses from the transcripts  
 

• team of data analysts who perform reporting focus on cutting edge options and look to 

industry trends on a larger scale rather than looking at data after an event has already passed 

• data analysts use tableau  and micro strategy and run reports \ 

• informatics and data analyst perform the analytics; informatics have subject matter 

knowledge about a particular area  (clinical knowledge) and can perform the data analytic 

whereas a data analyst is pulling data and running reports  

• the data analyst has accounting or finance degrees with minor statistics background but not 

engineering or higher math 

• informatics are looking for trends in populations to improve care across certain populations 

of patients 

• the quantitative analyst is usually a PHD, advanced math level trained in order to get the 

knowledge or insights from data 
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• pure data scientist is in possession of the best theoretical or practical application of math or 

other sciences to data 

• must be good at understanding technology infrastructure to get access to large amount of 

data 

• teams consist of data engineers who understand the business context and data analysts who 
use tools to interpret the data 

• person uncovering relationships in data that were not possible to perceive with current 
tooling 
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Data Scientist Skills 
 

Interviews 
 
According to the interviewees, ten out of eleven responded that data scientists need are 

multidisciplinary knowledge and capabilities across math, statistics, accounting, economics, and 

programming.  In addition, the data scientist must have the ability to perform critical thinking, 

apply logical reasoning, and have a curious nature, good personal skills and the ability to develop 

summaries that articulate their findings. 

 

A constant theme is that a person performing data science must be able to perform calculations 

leveraging multiple techniques.   Because advanced analytical approaches are required when 

looking for trends and significant relevance of particular components within the data, the 

consensus is that a typical data analyst is not going to provide the same level of insight because 

they have not been taught these techniques.  A senior marketing analyst reflects the importance 

of data science results to their client’s bottom line; “math, statistics, economics and accounting 

are all required for a data scientist to be effective as it helps companies understand their impacts 

to revenue, market share, margins, taxes, etc.”   

 

Math - Summary of Responses from the transcripts: 

•  deal with more statistics and high level thinking the typical analyst 

•  pulling larger information across customers to make decisions 

•  scientific qualifications in science and math 



 

40 

•  must use statistical, math tools and code to apply to data sets 

•  ability to leverage well known modules and apply statistics techniques and math  

• math, statistics, economics and accounting  

• basic math skills 

• engineering and higher math skills  

• statistics deep diving more into regressive models and any kind of algorithms that may be 

more math or coding 

• advanced statistical analytics  

• a PhD in math 

• ability to look at data in multiple ways 

• there are traditional pillars of analytics that are part predictive and part prescriptive 

• statistics, calculus, logic and critical thinking 

• math training and high analytical training 

 

The comments to the question “What programming capabilities does a data scientist need to 

perform their job?” ranged from the standard VBA, Excel Macros, and Sequel (SQL) to more 

complex statistics programs. Most respondents agreed that data scientists do not need to know 

how to write all of the code they use, however, they need to know about tools such as R, SAS, or 

Python in order to get the needed results.  One respondent who works with data scientists on a 

daily basis commented “they know one to three programming languages, half a dozen statistical 

packages and modeling techniques such as R or Python.  They typically know mathematical 

modeling and they know the business….they know what they are looking for.”  The example 
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shared was related to a team of data scientists working at General Motors.  This team 

understands patterns for prices of aluminum parts coming from Asia —they tend to be more 

expensive between October and December when it is raining and it is an odd year.   

Two interesting misnomers called out by the respondents are that you must know Mainframe 

programming to be a data scientist and to use Hadoop.  It seems logical that experienced data 

scientists would have the ability to write code for these two technology platforms, but it is 

definitely not a requirement.   

 

Programming - Summary of Responses from the transcripts: 
 

•  some technical coding abilities  

•  ability to use a suite of problem solving tools through pre-built modules such as python and 

Hadoop   

• know one to three programming languages, half a dozen statistical packages modeling 

techniques, mathematical modeling and business too 

• specifically python, R and if the information is coming from a database of some kind, they 

will need SQL  

•  SQL - grab a bunch of data and a lot of excel.   

• VBA or excel macros  

•  ability  to code the applications (programmer from another team would do the coding) 

•  statistical evaluations  

• able to code or know what is capable of being code and ability to write computational 

algorithm using theoretical quantum mechanics 
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• python because it allows you to import what others create 

•  ability to use R and python; should be involved in developing software and provide 

requirement and test at completion 

• leveraging off the shelf tools and should be able to code 

• R is a very popular statistical purpose language 

• Macro ability and mainframe writing, excel, access to and ability to know computers, logic, 

and combine that into business sense 

 

Surveys - Free Form Text 
 

When reviewing the summary data as it relates to “Who are data scientists?”, the respondents are 

not widely different than the literature review and interviews.  Nine responses were too vague 

and unusable out of seventy-eight.  The remaining sixty-nine responses agree that data scientists 

can apply a variety of statistical, mathematical methods and tools to raw data in order to gain 

insights from the data for decision making.  One respondent describes a data scientist as 

“someone who sits between the business and IT with the task of proposing and executing 

analytical strategies to identify hidden but actionable insights from business data for key 

business initiatives.”  What is unique about the surveys versus the interviews is the concise 

descriptions used to describe a data scientist.  In the interviews, the respondents would expand 

on their definition and add commentary and justification for their definition or share how the 

data analysis is performed inside their organization.  The survey respondents just focused on the 

specific question without adding background context. Their strength is their knowledge about the 

topic and ability to discern the relevant facts related to answering the specific question at hand.   
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In the Free-form text answers, terms used the most to describe data scientists are listed below: 

• analyzes / evaluates occur in twenty responses 

• statistics / mathematics occur in sixteen responses 

• programming / uses tools occur eight times 

• studies data occur six times 

• categorizes and compiles occur six times 

• methods and models occur three times 

 

When compared to the responses the same participants submitted for the multiple-choice (s) 

question asking what data functions are used to perform data analytics, the answers had a lot 

more contrast.  Fifty-two of seventy-eight (or 67 percent) responsed for statistics.  Basic math 

has sixty-four out of seventy-eight (or 82 percent) while algebra has twenty-seven responses, 

multivariate functions receive twenty-two responses.  Seven  respondents choose Other and list 

lambda functions, predictive models, linear and quadratic models, PearsonR, Grubbs (outliers), 

integer programming and text analytics.   

 

Free-form text sample responses are listed below: 

• someone who tries to solve various problems via computer model 

• data scientist uses different techniques to acquire,  cleanse, curate, and standardize data to 

derive intelligence from the data 

• data scientist is someone who applies methods to raw data to extract knowledge and insights 
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• data scientists are individuals with mathematical, statistical and programming acumen who 

extract information, insight and trends from structured as well as unstructured data 

• data scientist uses statistics, economics, and programming tools to analyze raw data and 

create interpretations that can be used in a variety of ways for different audiences 

• person who analyzes data using new and existing scientific qualitative and quantitative 

methods 

• half tech, half business person who fully understands the collected data and its implications 

to business performance 

• an individual who applies analytics to diverse data and obtain insights 

• person trained/or has knowledge about extracting /evaluating information received by 

analyzing data (i.e.:  google searches, metadata, client behavior, etc.) 

• data scientist is an individual trained in advanced statistics but also has a specific domain 

expertise 

 

Surveys - Multiple Choice (s) 
 

When the same survey respondents were asked to describe in their own words the skills that a 

data scientist must have, the responses are consistent. The descriptions from nine respondents 

were removed due to vague or not applicable responses.  The remaining sixty-nine responses 

provide a good aggregate of the overall skills a data scientist needs; math, statistics, computer 

knowledge, research techniques, ability to perform analysis, gather data, and perform quant 

skills. What was unexpectedly included are the terms used to describe soft skills, specifically that 

data scientists must have curiosity, executive communication, presentation skills, data 
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visualization capabilities, and  critical thinking to the data problem.   Some responses contained 

reference to different concepts such as econometrics, data curation, and stochastic modeling.   

Some comments state that a data scientist needs to be able to perform linear and non-linear 

regressions, program in R, Python and SAS, and univariate or multivariate advanced math skills.  

This is great news because it shows that the respondents have a deeper awareness of specific 

techniques used by statisticians, mathematicians and technologists to perform data analytics and 

that the respondents understand statistics and math at a more granular level than the two terms 

that have been used times in the interviews, surveys and literature review.  What is surprising is 

the consistent themes from literature to interviews to surveys.   

Math Skills - Multiple Choice (s) # of Responses % of Responses 

Statistics 52 66.7% 

Algebra 27 34.6% 

Calculus 9 11.5% 

Multivariate Functions 22 28.2% 

Basic Math 64 82.1% 

Other - Lambda Functions, Predictive models, linear and 
quadratic models, PearsonR, MLIB, Grubbs (outliers) 

7 9.0% 

 

Programming Skills - Multiple Choice (s) # of Responses % of Responses 

R Programming 17 21.8% 

Python Programming 19 24.4% 

Excel 63 80.8% 

VBA 16 20.5% 

Java 14 17.9% 

SQL 30 38.5% 

Other - Spark, Databricks, MsR, Tensorflow, Decision 
Insight, Businessbridge, CPLEX, Stata, SAS, Radiant, JASP, 
Tableau 

8 10.3% 
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Related Skills & Topics 
 
 
Without much influence, the interviews always led to comments about the additional skills that 

data scientists must know how to do.  Critical thinking was a top skill that eight out of eleven 

respondents made reference to and for the scientist to be able to use their knowledge, curiosity, 

critical thinking, and intuition in order to approach a big data problem with scientific focus.  The 

ability to communicate well, have good interpersonal skills, and most importantly, data 

visualization abilities were other favorite skills mentioned.  Most respondents brought up 

Tableau or Qlik/Qlikview since these are two favorite software dash-boarding packages used 

across the business industry.  Consistently, the interviewees felt that having the ability to ask 

intelligent questions is a requirement for a data scientist to be effective.  Mixed comments are 

made when asked about data visualization as the respondents are split on if the data scientist 

should be the one performing the presentation and dashboard materials or if they need a 

colleague to partner with to perform these tasks.   

 
When asked about their preferred technique to handling a big data problem, the respondents have 

a variety of answers but the common themes are the ability to take the problem and break it into 

manageable pieces.  “Do not recreate the wheel by writing code, instead fetch code from a 

community - then drop and drag it into your tool….do not start from scratch,” one expert 

commented.  Another respondent shares that they consider trend analysis immediately while 

others comment that a data scientist must understand the data canonical and be able to know the 

meaning of the data in question.  As a standard part of analysis, reviewing the process and results 
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with a business expert is a prerequisite in order to fully understand the problem, cut the data and 

determine the best way to present the results.   
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Machine Learning  
 

Interviews 
 
When asked about machine learning, the interviewees took a variety of approaches to explain 

what they thought it was and the stage of their organization relative to the use of machine 

learning.  A full consensus is that we are in the pioneer phase of this capability.   A couple of 

firms are using “bots” to perform scripted, repeatable tasks, but are quick to add that these 

capabilities are in the pilot phases and that there is so much more to understand about the 

concept of machine learning.  The simplest, most concise comment made is that “machine 

learning is the ability to create models that allows machine learning software to discover things." 

 

Surveys - Multiple Choice (s) 
 

The survey results for the multiple choice (s) question asking what machine learning capabilities 

the respondents have used are varied.  Decision trees (twenty-two), logistics regression (twenty-

one), least squares regression (fifteen) and Clustering (fourteen) are the four leading techniques 

in use by the seventy-eight total responders.    The second question on machine learning is about 

the framework currently used by the organizations.  For this question there are clear leaders with 

Apache receiving sixteen responses, MLIB/ Spark receiving nine and Amazon Machine Learning 

receiving eight.  All other responses were four or less that falls in line with the interview 

responses that this evolution of computer programming / data science is still in the pioneering 

phase.     
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Data Management 
 

Interviews 
 

When asked what does data management mean or how does it fit into data science and the tasks 

of the data scientist, the responses were from both sides of the spectrum.  Some respondents 

immediately talk about their organization’s data requirements for data ingestion from their 

clients and the stringent mapping used to ensure the client data can be modeled.   They were 

quick to share that the data quality is not the focus and they have to trust the client to send good 

data.  Several respondents comment on the architecture, logical and physical data structures 

where data management is the practice of defining a standard, unifying model and language in 

order for the data to be defined, controlled and quality maintained.  When asked; what is the role 

of data scientist as it relates to data management, it was consistent that it should not be their 

primary concern.  They can influence, be a stakeholder, and offer opinions on the practice, but 

that it is a separate group responsible for administering the data management function in an 

organization.  When asked about the maturity of their organization in the practice of data 

management, most folks replied that their organization is in the very early stages of defining this 

construct inside their business.    

 
Surveys - Free Form Text 

 
Regarding data management and what it means to the respondents and their organization, the 

simplest answers are “no idea, we don’t, not very salient, new program, not relevant, a bunch of 

buzzwords, overlooked and underused, and voodoo.”   
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Comments include:   

• data management is tracing and managing the data used for different initiatives to help 

determine decisions  

• prerequisite for survival and success in our competitive world; having information available 

for decision making stored in a secure but quickly accessible, proper format 

• data management is key to good decisions on a tactical and strategic basis 

• data management is the strategic and high quality way to move forward and it will evolve in 

the next three years across the organization…we are already exploring blockchain technology 

and hope to take more in the years to come about digital leader within the banking industry 

• it is an untapped opportunity for better customer experience, enhanced operational efficiency, 

better product decisions, risk and regulatory compliance  

• data management is the process of gathering, storing and retrieving information in timely, 

secured, precise and accurate manner to efficiently operate and cater to business needs 

• data management is the process of taking care of data 

• data management includes the security, safeguarding, and quality of the data 

• making sure that information is captured in a way that is always stored consistently (fields 

always contain the same context/normalized); ensuring that the data is quickly 

available/extractable; right tools are available to consume/analyze the data 

• while most data is free and openly available, knowledge of when it is acquired, if it has been 

ETL'd, and its location on the network is vital to future projects 

• data that is acquired through subscription has an additional layer of work to stay aware of cost 

and when the subscription expires and whether it should be renewed 
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Out of the seventy-eight responses, the one that is most clear and concise is “managing the whole 

life cycle of data from the point of data creation until the data is purged, along with data 

governance, and data security.”  What is interesting is that the phrase data governance is only 

mentioned four times in the surveys but is highlighted and sometimes used synonymously with 

data management in the interviews.   

The last open ended, free form text question is to ask about the role of data management and data 

hygiene in their organizations. Twenty-three out of seventy-eight responses are  

“we don’t, no idea, unknown, nonexistent - we only have dirty data and not much of a strategy.”  

Out of the remaining fifty-five other responses there is clear evidence that data management and 

data hygiene are concepts recognized in multiple industries.   

Sample responses: 

• we have a multilevel complex system of checks & balances to ensure data integrity 

• data is being moved from various sites to a centralized warehouse for quick access to data to 

facilitate decision making process 

• we are moving toward a golden source model but it is challenging given legacy systems 

• our organization is actively planning or creating strategies / plans for handing the data created, 

stored, managed, and processed by our systems 

• the data management strategy at my company manages terabytes of data and involves many 

data integration processes enabling business insights 

• there is increased attention being given to more expansive data quality and data governance 

processes 

• data hygiene is a critical component of a data management platform and strategy and  must be 

adopted on load and post load 
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Strategic Decisions 
 

Interviews 
 
When asked about strategic decisions being made based on data results, the interviewees are able 

to proudly share that their organization in some capacity does rely on data for some key 

decisions.  One interviewee commented that the firm they work at still has a population of people 

using their gut to make decisions.  When asked why, the response is that they have not been 

exposed to data science or the decision being made does not have the data readily available, so 

the senior manager uses their expertise when making strategic decisions.  Some types of 

decisions made by the firms represented are related to product improvements, sales, social 

demographics, risk reduction, major deals or purchases, and member surveys.  Both qualitative 

and quantitative analysis techniques are referenced by the interviewee when describing their 

approach for the data analysis.   

Surveys - Free Form Text 
 
When asked how their organizations uses data as part of the decision making process, the 

respondents are very forthright.  Five responses stated “not much, we don’t, don’t know or I 

heard that we use it but not exactly for what or how.”  The other respondents are able to 

articulate their uses that range from determining output goals, to see if we are doing a good job, 

to benchmarking, budgets, sales reports and quantity of clients served.  This indicates that an 

organization is likely to be new or a novice with data science practices.  Other responses include 

uses such as evidenced based medicine (assuming medical decisions), detect fraud, and improve 

products and services, technology adoption rates, predictive return on investment, marketing 
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information, student test scores, and sales projections.  This is done in order to improve and 

focus attention on specific topics ranging from educating on concepts and skills, improving sales 

and services, effectiveness, and overall output goals.    

 

Some of the key decisions made by the organizations represented by the respondents are related 

to new equipment purchases, staffing and hiring projections, recruiting students, budgets, 

bonuses, responding to customer surveys and investing or divesting products and services.  Some 

respondents state that risk based decisions are made as it relates to fraud reducing risk and 

prevention of issues by identifying manual processes to improve.   

 

Surveys - Multiple Choice (s) 
 
In addition to the free form text survey questions, we ask; what types of decisions has your 

organization made using data?   The responses to this question are exciting to see as there are so 

many ways which organizations are actively using data for decisions.  Marketing, promotion, 

risk/controls, and fraud prevention are the top areas organizations are making data driven 

decisions.  Other answers are strategy, budgets, education/instructional decisions, and product 

enhancements.  These responses are encouraging because it means we are moving in the right 

direction and using data for providing a foundation for logic versus instinct and intuition.   
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Data Challenges 
 

Literature Review 
 
The experts have a different position on the topic of pain-points in data science.  Mellin (2013) 

states that embracing analytics is the key to excellence.  He is a huge supporter of analysis and 

documents that unlock the knowledge from the data, depends on many factors; analytical tools 

and technologies are at the heart of this.  The leader must both understand the current state of the 

organization and serve as a champion to advance internal analytical capabilities as simply 

demanding advanced analytics in an organization that is at an early stage of maturity will only 

lead to frustration.  In addition, he states that methods to ensure consistent approach to applying 

models and repeating analysis across multiple locations requires strict governance.   

Thomas Davenport’s (2014) summary includes significant evidence exists that shows that 

companies have difficulties turning data into knowledge.  Both systematic study and casual 

observation shows lack of data-derived knowledge and action across a number of different 

situations and environments.  Many companies have enterprise resource planning systems, 

customer relationship management tools, point of sale scanner data, and web / e-commerce 

transaction data.   Analytical capabilities are not used or, in many cases, available for use.   

Another perspective is Saar-Tsechansky (2015) who states that what is needed from the Data 

Science IS community is two components:   
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• The review teams’ assessment of contribution needs to explicitly state with clarity allowing 

the review team to focus on establishing whether the claimed contributions are significant 

and on how convincingly the research establishes these contributions. 

• In addition, the authors of data science contributions discuss the rationale for the choice of 

prior work against either empirical or analytical evaluations.   

 

Booth and Hendrix (2015) wrote Libraries and Institutional Data Analytics: Challenges and 

Opportunities.  In their article, they eloquently state the issues with devising a data driven 

culture.  Their extensive thoughts have been synthesized here to focus on the relevant aspects as 

it relates to data science. 

The authors list eight key challenge areas: 

• culture - data driven cultures are not prevalent and are often full of mistrust of data, measures, 

analysis, and reporting 

• talent - data scientists are lacking because skills and knowledge to be contained in one person 

is hard to find and the need for this type of talent is not recognized 

• cost - data tools and capabilities are not cost savings but should be strategic investment 

• data ownership - recommendation is for the data to be centralized versus remaining in the 

individual silos 

• data quality - requirements to ensure data accuracy should be mandated; without this there are 

significant barriers to successful data analytics projects 
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• data standardization -   organizations should be creating data dictionaries in order to make the 

analysis process more easily understood and performed 

• data access - recommendation is that this is centralized and silos are removed 

 
The last key topic related to challenges is that measures are not standardized.  Cleveland (2014) 

does not empirically state anything specific to measure, however he is emphatic that we need a 

solution that will be based on statistics methods and models.   

Matsudaira (2015) writes that there is a science to managing data science.  She writes that as a 

VP of Engineering for a startup firm her job is to make sure the analytics are focused on the right 

things and that they are performing valuable work.  What she has to do is make sure that they 

define simple concepts like the definition of done.  In addition, the perception was that the data 

analytics team was busy but not communicating results effectively.  Matsudaira put in place an 

approach to document findings in a consistent format.  The teams receiving the work must shift 

their expectations and understand that done is not always elegant.  Deadlines are applied to 

research, a backlog has been created track any uncompleted work.   

Mondore, Spell and Douthitt (2016) document a heat map to deliver manager results and 

organize the business results among key drivers.  They claim this allows managers to 

strategically focus on only the categories that they have areas for improvement and utilize 

resources in an effective manner in order to see return on investment from their actions.   

Four quadrants verbatim from their document are: 
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• focus – any category that falls into this quadrant is scoring below the organizational average 

and is a significant driver of business outcomes 

• promote – any category the leader is scoring well on and they are important drivers of 

business outcomes; this can be used to identify areas to congratulate teams, promote people, 

and celebrate wins 

• monitor – any category the leader is scoring low on and is not a significant driver for the 

business. 

• maintain – any category the leader is doing a great job and not impactful on business 

outcomes 

What is evident are the limitations today’s business executives face are too numerous to count.   

Since data access, data tools and data techniques are deficient for today’s executive, they are 

forced to accept answers that are partly correct and leverage their instincts and intuition to 

answer critical questions that will have global implications.   

Interviews 

The big data challenges most prevalent are access to the data, manual  processes required at this 

stage of maturity in an organization, age of the data, and senior buy-in on the findings.  A 

bureaucracy that limits access to data is the biggest hurdle mentioned by the respondents to 

preventing forward movement.  One candidate gave an excellent descriptive example - “consider 

if you are building a model or software solution that requires data from twelve data stores.  The 

data is silo’d and if you want to develop machine learning capabilities, you need the data to be 1) 

accessible and 2) consistent across those data stores.  Very few times will data experts find the 
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data to be consistent and normalized so that a machine can be trained to leverage the data it is 

given.”  One respondent phrased it nicely; “what is lacking is precision in definition of the 

problem, definition of the data - there is no precision in data right now.”  

Oddly, what was not highlighted but is a well-known constraint, is that today’s tools used in 

business are not set up for data analyst to perform data science tasks easily.    

 

Surveys - Multiple Choice (s) 
 

The responses to the same question in multiple choice (s) format are outlined in the table below.  

Because these issues are so prevalent and represent true pain points in organizations that we need 

to resolve.  What this shows us is the same symptoms with an additional factor that highlights the 

number of responses across the seventy-eight responders. Unorganized data, too much data, and 

inaccessible data are crippling exploration and future innovation across global businesses.  It is 

unfortunate that these pain points are not easily remedied and will require specific strategies, 

dedication, discipline and time in order to resolve.  

Multiple Choice (s) Option # of Responses % of Responses 

Too Much Data 29 37.2% 

Unorganized / Not Normalized 42 53.8% 

Not accessible 31 39.7% 

Tools are not robust enough 23 29.5% 

System crashes often 8 10.3% 

Takes too much time to extract the data 27 34.6% 

Other - Examples are Insufficient staff, too many databases, 
too normalized, limited applications  

9 21.8% 
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Conclusion 
 

Data Science is a multidisciplinary amalgam of techniques and tools that allow business 

organizations to work with data with robot-like precision, identify hidden patterns and build 

assumptions which lead to key decisions. It is in an evolutionary state with daily shifts as new 

technologies with inconceivable capabilities are developed and deployed.  The exciting news is 

that it is being adopted and has a cohort of scientific-minded people with veracity who are 

dedicated to uncovering the hidden gems of knowledge captured in the massive data stores in 

data centers across the globe.    

Ask any practitioner in the data field and they will wholeheartedly agree….likely they will say it 

is like pushing a boulder up a vertical mountain.   From a practitioner’s perspective, the measure 

of success for a data system and data science organization is that teams are able to effectively 

reply to data questions with speed and agility.  They are able to translate complex results into 

actionable information and generate information that allows for critical business decisions to be 

made with accuracy and effectiveness.  They are judged on their accuracy, reliability, and for 

having consistent results that strategic decisions are built upon….decisions that can in fact 

change the world on a daily basis.   

The next research topic will be related to adoption of data science and data scientists into 

business organizations; primarily focusing on organization science and cultural adoption of data 

driven decision making and what it takes to deploy machine learning solutions.   
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The key information learned is that data science is both art and science.  It is an aggregate of 

skills, techniques, and capabilities that are surprisingly agreed upon by academics and 

practitioners alike.  The science, programming, and math components of data science are 

unanimously agreed upon as required by all respondents and research results.  The art 

components are mentioned sparingly by the scientific community, but well understood and 

documented by the practitioners in the interviews and survey results.    

Ultimately, what is easily determined by the findings, is that there are a consortium of people 

who are able to traverse the rough data landscape in today’s business world.  They execute their 

projects and solve complex data problems with finesse even without a formal definition for the 

terms, data science and data scientists.   

These are the people we should herald as modern-day explorers.  They are reaching beyond 

common confines and pushing the boundaries of technical solutions and data constructs in order 

to transform the data science world. They are today’s pioneers and are taking data science 

forward to build a better tomorrow. 
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to, research on perception, cognition, motivation, identity, language, communication, 
cultural beliefs or practices, and social behavior) or research employing survey, interview, 
oral history, focus group, program evaluation, human factors evaluation, or quality 
assurance methodologies. 

 
 

As the principal investigator of this study, it is your responsibility to conduct this study 
in accordance with IRB policies and procedures and as approved by the IRB. Any 
changes to the approved research must be submitted to the IRB for review and approval 
via an amendment. Additionally, all unanticipated problems must be reported to the USF 
IRB within five (5) calendar days. 

 
 

We appreciate your dedication to the ethical conduct of human subject research at the 
University of South Florida and your continued commitment to human research 
protections. If you have any questions regarding this matter, please call 813-974-5638. 

 
Sincerely, 

John Schinka, Ph.D., 
Chairperson USF 
Institutional Review Board 
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6/16/2017 

Dana Parks 
College of Business Administration 
5405 Coral Shell Way 
Apollo Beach, FL 33572 

 
 

RE: Exempt Certification 
IRB#: Pro00030537 
Title: SURVEY Data Driven Decisions - Data Scientist Skills, Taxonomy and Competencies 

 

Dear Ms. Parks: 
 

On 6/14/2017, the Institutional Review Board (IRB) determined that your research meets 
criteria for exemption from the federal regulations as outlined by 45CFR46.101(b): 

 
(2) Research involving the use of educational tests (cognitive, diagnostic, aptitude, 
achievement), survey procedures, interview procedures or observation of public behavior, 
unless: 
(i) information obtained is recorded in such a manner that human subjects can be 
identified, directly or through identifiers linked to the subjects; and (ii) any disclosure of 
the human subjects' responses outside the research could reasonably place the subjects at 
risk of criminal or civil liability or be damaging to the subjects' financial standing, 
employability, or reputation. 

 
As the principal investigator for this study, it is your responsibility to ensure that this 
research is conducted as outlined in your application and consistent with the ethical 
principles outlined in the Belmont Report and with USF HRPP policies and procedures. 

 
Please note, as per USF HRPP Policy, once the Exempt determination is made, the 
application is closed in ARC. Any proposed or anticipated changes to the study design that 
was previously declared exempt from IRB review must be submitted to the IRB as a new 
study prior to initiation of the change. However, administrative changes, including changes 
in research personnel, do not warrant an amendment or new application. 

 
Given the determination of exemption, this application is being closed in ARC. This 
does not limit your ability to conduct your research project. 
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We appreciate your dedication to the ethical conduct of human subject research at the 
University of South Florida and your continued commitment to human research 
protections. If you have any questions regarding this matter, please call 813-974-5638.  
 
Sincerely, 
 
 
 
 

 
John Schinka, Ph.D., 
Chairperson USF Institutional 
Review Board 
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Vita 
 

Dana Parks is a full time employee at a global corporate bank leading strategic programs.  She 

also works on developing data solutions and leading a team of analysts to perform analytics on 

large datasets.  She is working closely with Information Architects to build a cutting edge 

platform to deliver full analysis and analytics capabilities to a large population of users.   

 These efforts include reducing user tools in existence today and develop new, specific tools for 

big data analytics focused on fraud controls, risk controls and detecting anomalies in client 

behaviors.   In her career, Dana has performed a variety of roles in financial services from retail 

banking to banking operations and technology.   

 

Most recently, Dana has led multiple technology organizations building sets of user tools and 

manages large portfolios of projects and maintaining large applications.  She is a graduate of 

Saint Leo University where she obtained her Bachelor of Science degree in Computer 

Information Systems with a minor in Business Management in 2004 and her Master’s in 

Business Administration in 2009.     

 

Her passion is driving positive change that will improve global operations and technology teams 

with new processes in order to optimize controls and develop solutions to streamline functions.   
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