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Ai miei genitori,
che mi hanno cresciuto come meglio non potevano

e il cui amore non sapró mai come ricambiare.





But this long run is a misleading guide to current affairs.
In the long run we are all dead.

J. M. Keynes





Abstract
Fission plays a crucial role for the r-process nucleosynthesis in neutron star mergers. Due to the high

neutron densities achieved in this astrophysical scenario the sequence of neutron captures and beta
decays that constitutes the r process produces superheavy neutron rich nuclei that become unstable
against fission. Fission determines thus the heaviest nuclei that can be produced by the r process
and the fission yields shape the abundances of lighter nuclei. But despite the key role of fission the
sensitivity of the r-process nucleosynthesis to uncertainties in fission predictions has not been explored.
Nowadays there are only few set of fission rates suited for r-process calculations and most of them rely
on a simplified treatment of the fission process.

In this thesis we go beyond these approximations and compute the fission properties of r-process
nuclei using the energy density functional approach. Fission is described as a tunneling process where
the nucleus “moves” in a collective space characterized by coordinates describing the nuclear shape.
Thus fission depends on the evolution of the energy with the deformation but also on the inertia due to
the motion in the collective space. This is analogous to the quantum mechanical tunneling of a particle
inside a potential well. In our study the relevant quantities for the description of the fission process are
consistently computed for 3642 nuclei following the Hartree-Fock-Bogolyubov theory with constraining
operators. We perform an extensive benchmark against the available experimental data and explore the
variations of the fission properties along the superheavy landscape. We find that while collective inertias
have a strong impact in the fission probabilities of light nuclei their role becomes less relevant in r-process
nuclei. Within the statistical model we compute the neutron induced stellar reaction rates relevant for
the r-process nucleosynthesis. These sets of stellar reaction rates are used in r-process calculations for
matter dynamically ejected in neutron star mergers and we compare our results with those obtained
from a more conventional set of reaction rates. We find that all the models predict the onset of fission
above the shell closure N = 184 and Z = 100 due to the sudden decrease in fission barriers. However,
the amount of material accumulated at N = 184 turns out to be very sensitive to the height of the fission
barriers and the shell gap.

Finally, we have also explored the impact of recent advances in fission calculations on the theoretical
estimation of spontaneous fission lifetimes. We find that performing dynamical approaches based on
the minimization of the integral action with nontraditional collective degrees of freedom has a strong
impact in the fission barriers and the spontaneous fission lifetimes. The possible consequences of this
new approach for the calculation of neutron induced fission rates has to be addressed.
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Zusammenfassung
Kernspaltung spielt eine wesentliche Rolle bei der sogenannten r-Prozess Nukleosynthese im Rah-

men von Neutronenstern-Verschmelzungen. Aufgrund der hohen Neutronendichte, welche in diesen
astrophysikalischen Ereignissen erreicht wird, erzeugt der r-Prozess, eine Abfolge von Neutronene-
infängen und Beta-Zerfällen, superschwere neutronenreiche Kerne, die wiederum instabil in Bezug
auf Kernspaltung sind. Folglich bestimmt Kernspaltung welches die schwersten Elemente sind, die
durch den r-Prozess erzeugt werden können. Zudem beeinflusst die Verteilung der Spaltprodukte
die Häufigkeitsverteilung vieler leichterer Kerne. Trotz dieser Schlüsselrolle wurde die Sensititvität
der r-Prozess Nukleosynthese bezüglich Unsicherheiten in der Beschreibung der Kernspaltung bisher
noch nicht untersucht. So gibt es bis heute nur wenige Sätze von Kernspaltungsraten die für R-Prozess
Berechnungen geeignet sind, und die meisten von diesen basieren auf einer vereinfachten Behandlung
des Spaltungsprozesses.

In dieser Arbeit gehen wir über solch eine Vereinfachung hinaus und berechnen die Spalt-
Eigenschaften von r-Prozess-Kernen mittels Energiedichtefunktionalen. Kernspaltung wird dabei
als quantenmechanischer Tunnel-Prozess beschrieben, bei dem sich der Kern in einem kollektiven
Raum “bewegt”. Dieser Raum ist charakterisiert durch Koordinaten, die die Verformung des Kerns
beschreiben. Folglich hängt die Kernspaltung sowohl vom Verhalten der Energie als Funktion der
nuklearen Verformung als auch von der Trägheit der Bewegung im kollektiven Raum ab. Dies stellt eine
Analogie zum Tunneleffekt eines Teilchen in einem Potentialtopf dar. In unserer Arbeit berechnen wir
die relevanten Größen zur Beschreibung der Kernspaltung konsistent für 3462 Kerne im Rahmen der
Hartree-Fock-Bogolyubov Theorie mit einschränkenden Operatoren. Wir führen einen umfassenden
Vergleich mit experimentellen Daten durch und untersuchen, wie sich die Spalteigenschaften für die
unterschiedlichen superschweren Elemente verändern. Dabei stellen wir fest, dass die kollektiven
Trägheitsmomente, die einen starken Einfluss auf die Spaltwahrscheinlichkeiten leichterer Kerne haben,
bei r-Prozess Kernen weniger relevant sind. Weiter berechnen wir die durch Neutronen induzierten,
stellaren Reaktionsraten, die für den r-Prozess wichtig sind, mit dem statistischen Modell. Diese
Reaktionsraten nutzen wir schließlich in r-Prozess Berechnungen für Materie, die bei Neutronenstern-
Verschmelzungen dynamischen ausgestoßen wird. Unsere Ergebnisse vergleichen wir mit anderen, die
über einen konventionelleren Satz von Reaktionsraten berechnet wurden. Es zeigt sich, dass alle von
uns betrachteten Modelle das Einsetzen von Kernspaltung jenseits des Schalenabschlusses N = 184
aufgrund einer plötzlichen Reduktion der Spaltbarrieren vorhersagen. Die Menge des akkumulierten
Materials bei N = 184 zeigt jedoch eine deutliche Abhängigkeit von der Höhe der Spaltbarrieren und
der Schalenlücke.

Abschließend haben wir auch den Einfluss jüngster Fortschritte bei der Berechnung von Kernspaltung
auf die theoretische Bestimmung Halbwertszeit spontaner Spaltung untersucht. Dabei haben wir
herausgefunden, dass die Verwendung dynamischer Ansätze basierend auf der Minimierung des
Wirkungsintegrals mit unkonventionellen kollektiven Freiheitsgraden große Auswirkungen auf die
Spaltbarrieren und die Halbwertszeiten von spontanen Zerfällen hat. Mögliche Konsequenzen dieses
neuen Ansatzes für die Berechnung der Raten für neutroneninduzierte Spaltung müssen noch untersucht
werden.
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1 Introduction
The main goal of nuclear astrophysics is to describe how the chemical elements that we observe in

the Universe are produced in astrophysical objects and how nuclear reactions influence the evolution
of these environments. The possibility that the stellar origin was a promising method to describe the
synthesis of elements (nucleosynthesis) was contemporaneously introduced in 1957 by Burbidge et
al. [1] and Cameron [2]. These pioneering works exploited the idea that the changing structure of stars
provide a large variety of conditions where nuclear reactions can take place. Nowadays we know that
several astrophysical processes contributed and contribute to the nucleosynthesis of elements, from the
production of hydrogen and helium during the bing-bang nucleosynthesis up to the long-lived thorium
and uranium isotopes synthesized in the r process.

Despite the long time that passed from the first studies exploring the nuclear generation in stars [3]
until nowadays, there are still several and important questions that nuclear astrophysics has to address [4].
One of those is the identification of the astrophysical site for the rapid neutron capture process, or r
process. The r process is invoked in order to explain the existence of around half of the nuclei heavier
than iron that are observed in stars of different metallicities as well as in the solar system. In the r-process
nucleosynthesis the neutron captures are faster than β decays, allowing for the synthesis of extremely
neutron rich nuclei. When this r-process flow reaches nuclei with a neutron magic number the material
moves closer to stability, where the half-lives are longer. The halt of the r process at these “waiting points”
produces then an accumulation of material resulting in the observed peak structure of the r-process
abundances, as it is shown in Fig. 1.1.

The search of the r-process astrophysical scenario started sixty years ago and it is still going on.
Historically, the proposed scenarios have been divided in two main categories: the high and low entropy
scenario [6]. The former one include the neutrino-driven wind, that during several years has been
considered the favored site [7]. This scenario occurs in core-collapse supernova, where the freshly born
protoneutron star cools by emitting a large amount of neutrinos. These neutrinos heat the material in the
surface of the neutron star and create an outflow of baryonic matter. For long time it was speculated that
ejected matter in this scenario will allow for an r process. However, recent simulations show that the
material ejected in this in neutrino-driven winds does not fulfill the conditions for producing a successful
r process [8].

As an alternative to the high entropy conditions in supernovae, a low entropy scenario was proposed in
1974 [9]. It is based on the idea that at high neutron densities the material is neutronised due to continuous
electron capture. When this material undergoes a sudden decompression, the existing nuclei will start to
capture neutrons producing neutron-rich elements. If the ratio of neutron to seed nuclei is large enough,
the seed nuclei are converted by successive neutron captures and beta decays to heavier and heavier
elements until the point when they become unstable against fission. The astrophysical plausibility of this
process remained unanswered for several years, until the first studies of the decompression of material
during the merger of two neutron stars (NSM) and a NS with a black hole (BH) predicted the ejecta of
r-process material [9–11].

Mergers of compact objects involving a NS not only produce gravitational waves that are detectable by
ground-state interferometers [12] but also a large variety of electromagnetic signals [13–15]. One of these
electromagnetic transients is produced by the radioactive decay of r-process elements, triggering a signal
in the optical and infrared band that peaks at times from days to weeks after the ejecta [14, 16]. Since
these electromagnetic signatures known as “macronova” or “kilonova” derive their energy directly from
the radioactive decay of r-process nuclei, they can be used as a constraint to determine the astrophysical
origin of the r-process elements. A possible recent observation of this event associated to the short γ-ray
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Figure 1.1: A variety of r-process paths defined by their waiting-point nuclei. The r-process path proceeds
through neutron rich nuclei, where masses and half-lives are unknown. After decaying to stabil-
ity the abundances reproduce the observed solar r-process abundance distribution. Adapted
from [5].

burst GRB130603B [17, 18] raised a lot of excitement and if confirmed it will represent the first detection
of r-process material in situ.

Focusing on NSM, another important aspect is that recent simulations show that a large amount of
neutron-rich material is ejected during the dynamical phase of the merger [19–21]. The final abundances
produced in these events have a distribution that closely follows the solar one. This “robustness” of the r
process in NSM is a very appealing feature, since it may explain the solar-like distribution of r-process
elements found in metal-poor stars [22].

As we already touched before, fission is unavoidable if the r-process occurs in high entropy scenarios
with large enough neutron-to-seed ratio and plays a key role during the evolution. Foremost, fission
determines the heaviest nuclei than can be synthesized during the r process. The fragments emitted
by the fissioning nuclei populate the region of lighter elements shaping the distribution of abundances
of r-process nuclei that we observe nowadays. For high neutron-to-seed ratios the fission fragments
can capture neutrons giving raise to a fission cycling. Moreover, fission is an important source of
radioactive energy and therefore it may contribute to the heating of the material during the r-process
nucleosynthesis.

These aspects justify the argument that a proper description of the fission process is required to
perform realistic r-process calculations. Actually, in order to understand and quantify the impact of
fission, we should be able to answer three different, yet related, questions:

• Where does fission occur?

• How much material accumulates in the fissioning region?

• What are the yields of these fissioning nuclei?

Nowadays fission models predict very different fission properties for superheavy neutron-rich nuclei,
and therefore answering these questions is not a straightforward task. It is therefore important to address
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the sensitivity of the r-process calculations to different sets of fission rates. However, while doing this
one has to ensure that the calculation of all the reaction rates is as consistent as possible. This implies
that ideally we would like to compute neutron-induced, photo-induced, spontaneous, β-delayed and
neutrino-induced fission using always the same model. However, keeping this consistency can become
very cumbersome due to the large number of nuclei that one has to cover and the different types of decay
that are involved.

The additional problem is that the theoretical description of the fission process is already challenging
per se. The evolution of the nucleus from its initial compact configuration to the scission point is driven
by the competition between the long-range Coulomb repulsion of protons inside the nucleus and the
short-range strong interaction binding the nucleons together. This competition produces quantum
mechanical shell effects giving raise to the stability of the superheavy elements. But since the probability
of such an event to occur cannot be computed using pure quantum mechanical rules, we are forced to
introduce some approximations. By assuming that the time-scales at which fission occurs are longer than
the average velocity of nucleons inside the neutrons [23], we can assume that the fission process can be
described using a reduced set of collective coordinates. We can therefore compute the evolution of the
energy as a function of these collective coordinates, that usually describe the shape of the nucleus, and
the corresponding collective inertia associated to the “motion” inside this collective space. Within this
picture fission is analogous to the quantum tunneling of a particle inside a potential, and this potential is
the so-called fission barrier.

Nowadays exist two main nuclear structure models to describe the fission process: microscopic-
macroscopic (mic-mac) model and the energy density functional approach (EDF). The mic-mac models
pioneered the description of the fission process already in the late seventies [24, 25]. Within this model
the energy of the nucleus is essentially given by the sum of three different terms: a deformed liquid
drop describing the bulk properties of the nucleus, the shell corrections accounting for the role of single
particle levels and a pairing contribution reproducing the two-body effects. This nuclear model has been
applied to several calculations exploring the systematic binding energies and fission properties along the
nuclear chart, and nowadays fission calculations can be performed in multidimensional space using up
to 5 collective degrees of freedom [26, 27].

The main problem of mic-mac methods is that they require a large number of independent parameters
that have to be fitted independently for each energy contribution. The energy density functional theory
emerged as an alternative scheme based on more microscopic assumptions. Within this model the energy
is expressed as a function of intrinsic densities of the nucleus and the ground state is obtained by seeking
for the minimum of this energy. This method allows the description of nuclei along the whole chart
using a single effective interaction modeling the energy density functional. As in the case of the mic-mac
models, the evolution of the energy in obtained by constraining the nucleus to a particular configuration.
The typical and most basic example is the sampling of the energy while constraining the nucleus to
higher and higher quadrupole deformations. This will give a one dimensional fission path where each
point is obtained by minimizing the energy to a particular quadrupole deformation. Since 1974 [28]
fission has been used as a test to verify the microscopic description of collectivity obtained within
the EDF approach. Nowadays the fission properties of superheavy nuclei are commonly used in the
benchmark of the functionals against experimental data [29–33] and several models have been adjusted
in order to reproduce the fission barriers and isomer excitation energies of superheavy nuclei [34, 35],
converting the EDF in a solid scheme for the microscopic description of fission [36].
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1.1 Thesis outline

This thesis is organized as follows. In Chapter 2 we revise the energy density functional formalism
(EDF) based on the Hartree-Fock-Bogoliubov (HFB) theory. We will start from the independent particle
model at the basis of the mean-field approach, and we will then introduce the HFB theory. The second
part of this Chapter is dedicated to explain the different EDF’s used in this thesis for the calculation of
the fission properties of superheavy nuclei and the approach used in the calculation of odd nuclei.

Chapter 3 is devoted to the theoretical description of fission within the energy density functional
formalism. In this Chapter we describe the approaches used for the calculations of the spontaneous
fission lifetimes, collective inertias and potential energy surfaces. The last part is devoted to the results
obtained for the spontaneous fission using a recent development in the theoretical calculation of the
fission path.

In Chapter 4 we will introduce the Hauser-Feshbach statistical model used for the calculation of the
stellar reaction rates. The different ingredients required by the statistical calculation are revised, with a
special emphasis to the description of the neutron induced fission. Chapter 5 belongs to the description
of the basics features of the nuclear network employed in the r-process calculations and the general
considerations regarding the evolution of the r process.

In Chapter 6 we present the benchmark of our results against the experimental data. We will show
the comparison for binding energies, fission barriers and spontaneous fission lifetimes. Afterwards we
will discuss the results for the neutron induced fission and neutron capture cross sections and study the
sensitivity of our predictions to variations in nuclear level densities, γ-ray strengths, fission barriers and
collective inertias. Finally, we will introduce our α-decay calculations and study the competition with
the spontaneous fission process.

Chapter 7 is devoted to study the fission properties of nuclei along the whole superheavy landscape.
The predictions of fission barriers and spontaneous fission lifetimes obtained from the different models
are discussed. We will also present the first calculations of stellar reaction rates obtained from a
microscopic evaluation of the collective inertias.

In Chapter 8 we will present the r-process calculations obtained from trajectories simulating the
dynamical ejecta in neutron star mergers. We will compare our results with those predicted by other
models employing a traditional calculation of the fission process, and we will discuss the sensitivity of
the abundances to different collective inertias. The last part of this Chapter is dedicated to the study of
the radioactive energy emitted at timescales relevant for macronova observations.

Finally, Chapter 9 summarizes the main results obtained in this work, highlights the consequences for
our findings and suggests the relevant questions that should be addressed in the future.
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2 The energy density functional formalism
Energy density functionals (EDF’s) allow the calculation of nuclear properties throughout the whole

nuclear chart. This possibility of performing systematic nuclear structure calculations using a unique
model is an appealing feature for studies exploring the impact of nuclear inputs on the r-process
nucleosynthesis. This Chapter is thus devoted to a general introduction to the EDF formalism that we
used for the calculation of binding energies and fission properties of superheavy nuclei. We will start
from the independent particle model at the basis of any mean field theory and afterwards we will present
the Hartree-Fock-Bogolyubov theory. The second part is dedicated to the description of the two models
used in our calculations (the Barcelona-Catania-Paris-Madrid and the Gogny EDF) and the treatment of
odd nuclei employed in this thesis.

2.1 Many-body systems and the independent particle model

In a system of N non-interacting and indistinguishable particles the total Hamiltonian is given by
the sum of the N single particle Hamiltonians that, by definition, are identical. The time-independent
Schrödinger equation can be written then as:

Ĥ0|Φ〉 =
N

∑
i=1

ĥ(ri)|Φ〉 . (2.1)

where the single-particle Hamiltonian ĥ defines the eigenvalue equation for the single-particle energies ε
and the single-particle states ϕi:

ĥ(r)ϕi(r) = ε i ϕi(r) . (2.2)

The wave function |Φ〉 representing the N-particle system has to fulfill the requirement of its particles
being indistinguishable. This condition can be imposed by requiring the many-body wave function to be
an eigenstate of the unitary and Hermithian exchange operator P̂ij:

P̂ij|Φ(r1, . . . , ri, . . . , rj, . . . , rN)〉 = ±|Φ(r1, . . . , rj, . . . , ri, . . . , rN)〉 . (2.3)

The Hilbert spaceH of the N indistinguishable particles system can then be divided in two subspaces
each of them formed by eigenfunctions with either a positive or negative eigenvalue pij. Experimental
evidences and the spin statistic theory tell us that particles living in the symmetric subspaceH + have
an integer spin (and they are called bosons), while particles living in the antisymmetric spaceH − have
a half-integer spin (and they are called fermions).

If the N-particles system is a representation of a nucleus formed by N nucleons, we have to construct
our basis from theH − space in order to deal only with antisymmetric states. The wave function of the
system |Φ〉 is then given by a Slater determinant of single particle states:

Φα1,...,αN =
1√
N!

∣∣∣∣∣∣∣∣∣
ϕα1(r1) ϕα1(r2) · · · ϕα1(rN)
ϕα2(r1) ϕα2(r2) · · · ϕα2(rN)

...
...

. . .
...

ϕαN (r1) ϕαN (r2) · · · ϕαN (rN)

∣∣∣∣∣∣∣∣∣ . (2.4)

This Chapter is based on Ref. [36], [37] and [38].

5



The energy of the ground state |Φ0〉 is the sum of the N lowest single particle energies EGS = ∑N
i ε i.

Furthermore, theH − subspace is fully spanned by the set of all Slater determinants. It is important to
recall that the symmetry of the system is a constant of motion, which implies that the reduced eigenspace
H − can be treated as the actual Hilbert space since its eigenvectors are not allow to range over theH +

space (and vice versa).
We can then restrict our discussion to theH − space defined by antisymmetric eigenfunctions. Consid-

ering the antisymmetric Fock space:

F− = C⊕H −1 ⊕H −2 ⊕ · · · ⊕H −N ⊕ · · · , (2.5)

the creator (annhilitation) a†
µ (aµ) operator is defined as the operator creating (destroying) a particle in

the single particle state µ. The creation and annihilation operators must obey the anticommutation rules:

{âµ, âν} = 0 , {â†
µ, â†

ν} = 0 , {â†
µ, âν} = δµν , (2.6)

from which one can obtain the Pauli exclusion principle by showing that a†
µa†

µ = 0. Using the creation
and annihilation operators we can now define the particle (Fock) vacuum as:

〈0|0〉 = 1; âµ|0〉 = 0 ∀ µ , (2.7)

corresponding to a state without particles, and an arbitrary N-particle state as:

|Φα1,...,αN 〉 =
N

∏
i=1

â†
i |0〉 . (2.8)

Since the anticommutation rules enforce the wave function to be antisymmetric, the expression above
defines an orthonormal set of states and is equivalent to the Slater determinant expression of Eq. (2.4).
The antisymmetrization of a many-body wave function via creation and annihilation operators is a direct
application of the so-called “second quantization” formalism.

2.1.1 Second quantization formalism

The second quantization formalism allows to describe a many-body state without requiring an
explicitly (anti)symmetrization of the wave function. Within the second quantization the many-body
state is represented in the occupation number basis and any A-body operator F̂ can be written in terms
of its antysimmetrized matrix elements and the creation and annihilation operators:

F̂ =
1

(A!)2 ∑
µ1 ...µA
ν1 ...νA

Fµ1 ...µAν1 ...νA â†
µ1
· · · â†

µA
âνA · · · âν1 . (2.9)

Using the expression above, the one-body operator in coordinate space representation:

F̂ =
N

∑
i=1

f̂ (ri) , (2.10)

can be written as:

F̂ = ∑
µν

fµν â†
µ âν , (2.11)

where fµν = (µ| f̂ |ν) is the one-body matrix element obtained from the single particle states |µ) =
â†

µ |0〉 ≡ ϕµ , which general expression in the coordinate space representation will be derived in the next
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section. A typical example of one-body operator is the particle number operator N̂ counting the total
number of fermions in the system:

N̂ =
∞

∑
ν=1

â†
ν âν with N̂|Φα1,...,αN 〉 = N|Φα1,...,αN 〉 , (2.12)

where |Φα1,...,αN 〉 is a N-particle state of the form (2.8).
Similarly to the one-body case, the second quantization formalism can be applied to a two-body

operator (and so-on):

Ĝ =
1
2

N

∑
i 6=j

ĝ(ri, rj) =
1
4 ∑

µ1µ2
ν1ν2

gµ1µ2ν1ν2 â†
µ1

â†
µ2

âν1 âν2 , (2.13)

where now Gαβγδ is the two-body matrix element between normalized antisymmetric two-particle states
|αβ) = â†

α â†
β |0〉:

gαβγδ = (αβ|ĝ|δγ) . (2.14)

In nuclear physics we want to describe a system of N-interacting particles, whose most general Hamilto-
nian has the form:

Ĥ = ∑
i

ĥi + ∑
i≤j

v̂ij + ∑
i≤j≤k

V̂ijk + · · · , (2.15)

where the sum can continue up to the N-nucleon interaction. Within the second quantization the
Hamiltonian can be written in the elegant expression:

Ĥ = ∑
µ

εµ â†
µ âµ +

1
4 ∑

µ1µ2
ν2ν1

vµ1µ2ν1ν2 â†
µ1

â†
µ2

âν2 âν1 +
1

36 ∑
µ1µ2µ3
ν1ν2ν3

Vµ1µ2µ3ν1ν2ν3 â†
µ1

â†
µ2

â†
µ3

âν3 âν2 âν1 + · · · , (2.16)

being ε i the energy of the single particle state |i):
Ĥ0|i) = ∑

µ

εµ â†
µ âµ â†

i |0〉 = ε i|i) . (2.17)

2.1.2 Matrix elements in second quantization

The second quantization requires the definition of single particle states ϕi. Given a complete basis
of orthonormal wave functions the connection between single particle wavefunctions and operators in
second quantization is given by the field operators:

φ̂†(r) = ∑
µ

ϕ∗µ(r)â†
µ ; φ̂(r) = ∑

µ

ϕµ(r)âµ , (2.18)

that satisfy the anticommutation rules:{
φ̂(r), φ̂(r′)

}
=
{

φ̂†(r), φ̂†(r′)
}
= 0 ,

{
φ̂†(r), φ̂(r′)

}
= δ(r− r′) . (2.19)

Equations (2.18) allow to get an expression of the creation and annihilation in the coordinate space
representation as:

â†
µ =

∫
d3r φ̂†(r)ϕµ(r) ; â =

∫
d3r φ̂(r)ϕ∗µ(r) . (2.20)

Any one-body operator given in first-quantized form can then be written in second-quantized form by
replacing Eqs. (2.18) in the expression of the one-body operator Eq. (2.11):

F̂ =
N

∑
i=1

f̂ (ri) = ∑
µν

f̂µν â†
µ âν =

∫
d3r φ̂†(r) f̂ (r)φ̂(r) , (2.21)

where the matrix element of the operator F̂ in coordinate representation reads:

f̂µν = (µ| f̂ |ν) = 〈0| âµ f̂ â†
ν |0〉 =

∫
d3rϕ∗µ(r) f̂ (r)ϕν(r) . (2.22)
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2.1.3 The particle density operator

In the nuclear mean-field model a central role is played by the particle density operator, that in the
N-body Hilbert space is defined as:

ρ̂(r) =
N

∑
i=1

δ(r− r̂i) . (2.23)

This operator counts the particle density at a given position r. Using Eq. (2.11) and Eq. (2.21) one can
rewrite it in second quantization form as:

ρ̂(r) = ∑
µν

〈µ| δ(r− r̂) |ν〉 â†
µ âν = ∑

µν

∫
d3r′ ϕ∗µ(r

′)δ(r− r′)ϕν(r′)â†
µ âν

=
∫

d3r′φ̂†(r′)δ(r− r′)φ̂(r) = φ̂†(r)φ̂(r) ,
(2.24)

where the sum in the first equality run over all the single particle spectrum. Since ρ̂(r) only involves
combinations of particle creators and annihilators operators is usually referred as a particle-hole (ph)
operator. Using the equation above together with Eq. (2.9) and (2.12) one has that:∫

ρ(r) d3r =
∫

φ̂†(r)φ̂(r) d3r = ∑
µν

∫
ϕ∗µ(r)ϕν(r)â†

µ âν d3r = ∑
µ

â†
µ âµ = N̂ , (2.25)

showing the relation between particle number density and total particle number operators.

2.2 The Hartree-Fock-Bogoliubov theory (HFB)

The aim of any mean fields model is to find the ground-state wavefunction |Φ〉 of the many-body
system that minimizes the expectation value of the total energy:

δE = δ 〈Φ| Ĥ |Φ〉 = 0 . (2.26)

In the Hartree-Fock formalism one restricts the variational Hilbert space to the subspace given by Slater
determinants obtained from a complete set of orthonormal single-particle states {ϕ}. As we have seen
in the previous section a Slater determinant defined in the Fock space can be written as a product of
creation operators:

|Φ〉 =
N

∏
i=1

â†
i |0〉 . (2.27)

The goal of the HF formalism is then to find a single particle basis {χ(r)} related to the original
orthonormal basis {ϕ(r)} by a unitary transformation

χi(r) = ∑
µν

Uµν ϕν(r) , (2.28)

defining the Slater determinant |Φ0〉 that minimizes the expected value of the energy:

δE = δ 〈Φ0| Ĥ |Φ0〉 = 0 . (2.29)

The many-body ground-state wavefunction is then defined as a product of the new creation operators ĉ†:

|Φ0〉 =
N

∏
i=1

ĉ†
i |0〉 , (2.30)
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that are related to the original creation operators by the same unitary trasformation of the single-particle
wave functions:

ĉ†
µ = ∑

µν

Uµν â†
ν . (2.31)

In the Hartree-Fock method the nuclear potential is truncated at the level of the two-body term and
reduced to a single-particle potential [39]:

V(i, . . . , A) =
A

∑
i≤j

V(i, j) ≈
A

∑
i

V(i) , (2.32)

which implicitly reduces the many-body problem of the nucleus to single nucleons moving independently
in an average potential. In principle this approach is only justified if the gap between the last occupied
level and the first empty one is large enough to forbid any particle-hole excitation. Therefore we can
expect that in absence of shell closures the HF method is not valid anymore, and an explicitly treatment
of the short-range correlations (also known as particle-particle or pairing correlations) has to be carried
out. This is achieved by means of the Hartree-Fock-Bogoliubov theory which accounts for the most
general product of wave functions describing independently moving “quasiparticles“.

2.2.1 The Hartree-Fock-Bogolyubov equation

The Hartree-Fock-Bogoliubov theory is based on a generalization of the Hartree-Fock equations,
where pairing correlations are included via a Bogoliubov trasformation of the particle operators (â, â†)
introducing the concept of independent quasiparticle:

β̂µ =
N

∑
i

U∗iµ âi +
N

∑
i

V∗iµ â†
i , (2.33)

β̂†
µ =

N

∑
i

Uiµ â†
i +

N

∑
i

Viµ âi , (2.34)

being N the dimension of the Hilbert space of the single-particle wave functions and U and V the
Bogoliubov wave functions. Defining the Bogoliubov trasformation matrix W as

W =

(
U V∗

V U∗

)
, (2.35)

Eq. (2.33) can be written in the compact matrix form:(
β̂

β̂†

)
=

(
U+ V+

VT UT

)(
â
â†

)
= W+

(
â
â†

)
. (2.36)

with W+ the hermitian conjugated of the W matrix. The orthonomalization of the quasiparticle states
impose W to be a unitary matrix:

WW+ = W+W = I . (2.37)

In the HFB theory, the ground state wave function of the nucleus |Φ〉 is assumed to be a state of
independent quasiparticles:

|Φ〉 = ∏
µ

β̂µ|0〉 , (2.38)
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where |0〉 is the particle vacuum in the Fock space (2.7). When the ground state of the nucleus is
described as a quasiparticle vacuum, the Wick theorem ensures that the degrees of freedom are the
one-body density matrix ρij and the pairing tensor κij [39] defined as:

ρij = 〈Φ| â†
j âi |Φ〉 = (V∗VT)ij = ρ∗ji , (2.39)

κij = 〈Φ| âi âj |Φ〉 = (V∗UT)ij = −κji . (2.40)

A generalised quasiparticle density matrix can be defined from ρ and κ as:

R =

(
ρ κ
−κ∗ 1− ρ∗

)
, (2.41)

with eigenvalues equal to either 1 or 0. This matrix allows to compact the notation by encapsulating
the relevant degrees of freedom of the quasiparticle picture. For instance, the wave function of the HFB
ground state |Φ〉 is obtained by minimizing the total energy:

E = 〈Φ|Ĥ|Φ〉 = E[ρ, ρ∗, κ, κ∗] = E[R] , (2.42)

under the constraints on proton and neutron number (〈Φ|N̂|Φ〉 = N = ρii) and that the solution
remains a quasiparticle vacuum (R2 = R). This conditions are imposed by performing a minimization
of the Routhian:

δ
{
〈Φ|Ĥ − λN̂|Φ〉 − tr[Λ(R2 −R)]

}
= 0 , (2.43)

where Λ is the hermitian matrix of undetermined constraints whose elements are Lagrange multipliers
λ. The variation must be performed in terms of δR and we have that:

∑
ab

(∂〈Φ|Ĥ − λN̂|Φ〉)
∂Rab

δRab −∑
ab

∂

∂Rab
tr
[
Λ(R2 −R)

]
δRab =

1
2
H− (RΛ + ΛR−Λ) = 0 ,

(2.44)

where on the LHS the first term was replaced by 1
2Hba =

∂〈Φ|Ĥ−λN̂|Φ〉
∂Rab

and the second term was obtained
using ∂Rab/∂Rcd = δacδbd. The equation above leads to the HFB equation [39]:

[H,R] = 0 . (2.45)

From the definition of the generalised density matrix in Eq. (2.41) the HFB matrixH can be written in
terms of the one-body density matrix and the pairing tensor as:

H =

(
h ∆
−∆∗ −h∗

)
, (2.46)

being hij and ∆ij the mean and pairing field, respectively:

hij =
∂〈Φ|Ĥ − λN̂|Φ〉

∂ρji
, ∆ij = 2

∂〈Φ|Ĥ|Φ〉
∂κ∗ij

,

∆∗ij = 2
∂〈Φ|Ĥ|Φ〉

∂κij
, h∗ij =

∂〈Φ|Ĥ − λN̂|Φ〉
∂ρ∗ji

.
(2.47)

Eq. (2.45) implies that exists a Bogolyubov transformation that diagonalizes bothR andH, which allows
the formulation of the HFB equation in its standard form:

HW = WE with E = δiiEi , (2.48)

where E is the quasiparticle energy matrix formed by the quasiparticle energies Ei. The equation above
is ensured by the fact that the generalised density matrixR is diagonalized by the matrix of Bogolyubov
transformation W.
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2.2.2 Representation in the quasiparticle basis

The trasformation of Eq. (2.33) can be inverted in order to express any operator in terms of the
quasiparticle basis, that is, in terms of the Bogolyubov wavefunctions U and V. Given an Hermitian
one-particle operator:

F̂ = ∑
µν

fµν +
1
2
(gµν ĉ†

µ ĉ†
ν + h.c.) , (2.49)

its quasiparticle representation is given by the expression [39]:

F̂ = F0 + ∑
µν

F11
µν β̂†

µ β̂ν +
1
2 ∑

µν

(β̂†
µ β̂†

ν + h.c.) , (2.50)

with

F0 = tr( f ρ) + tr(gκ∗ + g∗κ) , (2.51a)

F11
µν = (U† f U −V† f TV + U†gV −V†g∗U)µν , (2.51b)

F20
µν = (U† f V∗ −V† f TU∗ + U†gU∗ −V†g∗V∗)µν . (2.51c)

In Chapter 3 we will use this notation to express the collective inertias in terms of the quasiparticle
matrix elements of the collective variables.

2.2.3 The effective Hamiltonian

The solution of the non-linear system described by the HFB equation (2.45) or (2.48) requires an ansatz
of the energy functional E. In nuclear physics this functional is usually obtained as the expectation value
of an effective two-body Hamiltonian:

E = 〈Φ|Ĥ|Φ〉 with Ĥ = ∑
ij

tij â†
i âj +

1
4 ∑

ijkl
v̄ijkl â†

i â†
j âl âk, (2.52)

being tij the one-body kinetic operator and v̄ijkl the two-body potential. Making use of the Wick’s
theorem the energy functional can be written in terms of the one-body density matrix and pairing tensor
density as [39]:

E = tr(tρ) +
1
2

tr(Γρ)− 1
2

tr(∆κ∗) . (2.53)

where the mean field and pairing potentials are defined as:

Γij = ∑
kl

v ijklρlk , ∆ij =
1
2 ∑

kl
v ijklκkl . (2.54)

and the Hartree-Fock Hamiltonian is obtained by replacing Eq. (2.53) in Eq. (2.47):

h = t− λδij + Γ . (2.55)

In nuclear structure calculations is very common to introduce density-dependent two-nucleon inter-
actions v̂ DD(r1 − r2, ρ(R)) with R = (r1 + r2)/2. The energy functional E[R] is then obtained by
computing the expected value of the potential v̂ DD on the quasiparticle vacuum |Φ〉. The presence of a
density-dependent interaction modifies the mean-field potential by introducing a term depending on the
derivative ∂v̂ DD/∂ρ:

Γij = ∑
kl

v̂ DD
ij ρlk +

1
4 ∑

klmn
〈mn|∂v̂ DD

∂ρij
|kl〉

(
ρlnρkm +

1
2

κlkκ∗nm

)
ρij . (2.56)

The second term on the right hand side is the so-called rearrengement term.
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2.2.4 Constraints

Self-Consistent Mean-Field calculations usually rely on a solution of the HFB equation subject to
constraints. The fundamental ones are the proton and neutron number already introduced in Eq. (2.43),
that are made necessary by the fact that the HFB vacuum is not an eigenstate of the particle number
operator. In fission calculations constraints are particularly important because allow the computation of
the energy as a function of the collective coordinates caracterizing the multidimensional phase space of
the fission process. The energy as a function of these collective coordinates is usually referred as potential
energy surface and will be described in more detail in Sec. 3.4. In the HFB equation (2.45) constraints are
introduced via Lagrange multipliers λ and the HFB matrix is replaced by the Routhian containing the
matrix elements of the constraining operator Ô. The HFB equation becomes then:

(H−
n

∑
i

λiÔi − E)|Φ〉 = 0 , (2.57)

and the solution of this equation yields a HFB state |Φ(λ1 . . . λn)〉 that depends on the multipliers λi.
The expectation value of the operator Ô is then defined as

〈Ôi〉 ≡ 〈Φ(λ1 . . . λn)|Ôi|Φ(λ1 . . . λn)〉 = tr[Ôiρ] with i = 1, . . . , N , (2.58)

where the last equality only holds for any one-body operator. If we assume that exists a unique
relationship mapping the Lagrange multipliers with the expectation value of the constraining operators
〈Ôi(λ1 . . . λn)〉 → λi

(
〈Ô1〉 . . . 〈Ôn〉

)
it is possible to obtain the expectation value of the energy as a

function of the expectation value of the constraining operators E(〈Ô1〉 . . . 〈Ôn〉), that for a fixed proton
and neutron number is the potential energy surface of the nucleus.

2.3 The nuclear energy density functional formalism

The nuclear energy density functional formalism (EDF) is the application to atomic nuclei of the
density functional theory (DFT) describing the electronic structure of many-body systems. The DFT
roots in the Hohenberg-Kohn theorems relating a system of electrons moving under an external field.
Given an external potential v (r) governing the movement of an arbitrary number of electrons, and the
electronic density n(r) of the ground-state as a function of v (r) the Hohenberg-Kohn theorem states
that [40]:

Theorem 1 The potential v (r) is a unique functional of the electron density n(r).

Theorem 2 If (and only if) n(r) corresponds to the true ground-state density distribution of electrons, the
resulting energy E(n(r)) corresponds to the true ground state energy of the system EGS.

In practical formulations the electronic density n(r) is determined by solving the Kohn-Sham equations
that are formally equivalent to solving the Hartree-Fock equations using variational methods, where
the many-body wavefunction is a Slater determinant built from an orthonormal basis of single particle
states.

Despite the practical framework provided by the DFT theory one should be aware of the differences in
the description of a system of interacting electrons and a system of interacting nucleons [36]. A nucleus
is a self-bounded system made of compound particles (protons and neutrons), whose Hamiltonian is
not known. In nucleons the internal charge distribution created by the constituent quarks results in a
mismatch between and the charge distribution (that can be measured in scattering experiments) and the
probability distribution. Finally correlations effects are weaker in electronic system than in nuclei, where
the spontaneous symmetry breaking mechanism is required in order to include long-range correlations.
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Despite all the difficulties expressed above, the EDF formalism resulted in a very powerful framework
for computing the nuclear properties throughout the whole nuclear chart. The most common approach
in nuclear calculations is to derive an energy density functional from the expectation value of an effective
two-body density-dependent nuclear potential. The free parameters of such potential are adjusted in
order to reproduce the bulk properties of several nuclei and once fixed the functional is uniquely defined
for all the nuclei. Of this type are functionals based on Skyrme and Gogny potentials, which constitute
the most popular choice in EDF calculations. But in principle the energy functional could be directly
obtained as a parametrization of the density, without the definition of a nuclear potential. The Barcelona
Catania Paris Madrid (BCPM) EDF used in this thesis is an example of such alternative approach, and it
will be discussed in Sec. 2.3.2.

Within the EDF framework the total binding energy is thus obtained summing the contributions
from the density functional (including spin-orbit and pairing terms), the Coulomb repulsion of protons
in nuclei, the kinetic energy of nucleons and zero-point energy corrections stemming from spurious
collectives modes:

E = Eedf + EC + Ek + Ezpe , (2.59)

where in our thesis Eedf will be computed using the BCPM (EBCPM) or the Gogny (EGogny) EDF. The next
sections of this thesis are devoted to a brief explanation of how the terms in Eq. (2.59) are derived.

2.3.1 Gogny energy functional

The Gogny force is an effective non-relativistic finite-range potential whose central part simulating the
short and intermediate interaction is formed by a linear combination of two Gaussians. The original
formulation of the potential reads [41]:

V̂12(r1, r2) = ∑
i=1,2

(Wi + BiP̂σ − HiP̂τ −MiP̂σP̂τ)e
− (r1−r2)

2

µ2
i

+ iWLS(σ1 + σ2) ·
[←−
∇12δ(r1 − r2)×

−→
∇12

]
+ t0(1 + x0P̂σ)ρ

α

(
r1 + r2

2

)
δ(r1 − r2) ,

(2.60)

where Wi, Bi, Hi, Mi, µi, WLS, t0, x0 and α form a set of 14 parameters that can be adjusted to reproduce
properties of nuclear matter and finite nuclei. The first term on the right-hand side is the central part of
the nuclear interaction including the spin-exchange P̂σ and isospin-exchange P̂σ operators combined in
the Wigner, Majorana, Bartlett and Heisenberg terms of the bare nucleon-nucleon force. The second term
is the spin-orbit coupling, being (σ1 + σ2) the total spin and

−→
∇12 =

−→
∇1 −

−→
∇2 the relative momentum

operator (by convention
←−
∇12 =

←−
∇1 −

←−
∇2 acts on the left). The last term is the phenomenological

density-dependent term simulating the effect of three-body forces.
The spin-orbit and density-dependent terms of the Gogny potential are also found in the traditional

formulation of the zero-range two-body Skyrme interaction [42, 43]. The main advantage of the Gogny
potential is that due to its finite-range term the matrix elements of the pairing fields are free from
ultraviolet divergences, allowing to treat on the same footing the particle-hole and the particle-particle
channel without introducing an arbitrary truncation in the single particle space /citeBender2006. The
energy density functional is obtained by taking the expectation value of the potential (2.60) on a Slater
determinant:

EGogny = 〈Φ|V̂12|Φ〉 =
∫

d3r ∑
t=0,1

[
Heven

t (r) +Hodd
t (r)

]
, (2.61)
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i Wi Bi Hi Mi µi t0 WLS
MeV MeV MeV MeV fm MeV fm4 MeV fm5

D1S
1 −1720.30 1300.00 −1813.53 1397.60 0.7

1390.60 -1302 103.64 −163.48 162.81 −223.93 1.2
1 −2047.61 1700.00 −2414.93 1519.35 0.8

D1N 2 293.02 −300.78 414.59 −316.84 1.2 1609.46 115

D1M
1 −12 797.57 14 048.85 −15 144.43 11 963.89 0.5

1562.22 115.362 490.95 −752.27 675.12 −693.57 1.0

Table 2.1: Values of the D1S, D1N and D1M interactions for the Gogny potential (2.60). In all the interac-
tions x0 = 1 and α = 1/3.

where the sum runs over the isoscalar (t = 0) and isovector (t = 1) energies. The energy densities
Heven

t (r) andHodd
t (r) collect the contributions from time-even and time-odd densities respectively, even

though both terms have a positive time-parity, and they are expressed as integrals of the non-local
density ρ(r, r′) over r′. In stationary calculations of even-even nuclei the time-odd densities vanish, and
therefore onlyHeven

t (r) contributes.
In this thesis we will explore the fission properties of the D1S [44], D1N [45] and D1M [46] parametriza-

tions of the Gogny interaction. The D1S EDF is nowadays the most popular Gogny interaction in
fission calculations. It was derived from the former D1 interaction in order to properly describe the
fission barriers in actinides by reducing the surface energy, whose coefficient as was found to be too
high in the D1 functional. Despite of the great improvement in describing the fission barriers, the D1S
functional suffers from a “drift” in the difference between experimental and theoretical binding energies,
which means that it underbinds the heavier nuclei compared to the lighter ones. The D1N and D1M
interactions were then proposed in order to improve the prediction of the binding energies and remove
this drift. Firstly, the D1N EDF was adjusted to reproduce the Equation of State (EoS) of neutron matter
obtained from the Argonne bare nucleon-nucleon potential [47], with a fair agreement up to 1.5 times
the saturation density ρ0 = 0.16 fm−3. Afterwards, the D1M functional was fitted in order to reproduce
all the experimental masses of the AME2013 mass table evaluation [48] with a total rms deviation of
0.8 MeV.

Table 2.1 shows the values of the 14 parameters used in the D1S, D1N and D1M parametrizations of
the Gogny potential. It is important to recall that all the functionals were fitted to experimental data
using mean-field calculations. On one hand this procedure should limit the selection of the possible
observables used in the fit to those that are not strongly affected by beyond mean-fields correlations.
At the same time, one should be aware of possible variations in the agreement between theoretical
calculations and experimental data when beyond mean-field calculations are applied.

2.3.2 Barcelona Catania Paris Madrid energy functional

As we explained at the beginning of this section the traditional approach in NEDF is to derive the
energy functional from the expectation value of an effective two-body potential. However nothing
forbids to derive an expression of E[R] by directly parametrizing it as a function of the density. This
alternative approach, closer to the spirit of the Kohn-Sham density functional theory (KS-DFT) [49], is at
the heart of the Barcelona Catania Paris Madrid (BCPM) EDF [50] used in this thesis.

As it was introduced at the beginning of this section, in the KSDFT the density of a system of interacting
particles is obtained from a configuration of non-interacting particles moving under an external local
effective potential (the Kohn potential). The energy functional is then split in the uncorrelated kinetic
energy of the nucleons EK[ρ] and the potential energy plus the correlated kinetic energy W[ρ]. In
nuclear calculations the latter term is given by the sum of the spin-orbit contribution Eso, the Coulomb
interaction between charges in the nucleus EC and the nuclear contribution Eint. In order to properly
describe the nuclear properties of open shell nuclei, pairing correlations are included using a zero-range
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density-dependent term. The forms of the kinetic and Coulomb contributions are the same as those used
in the Gogny density functional and they will be treated explicitly in Sec. (2.3.3) and Sec. (2.3.4), where
in this section we will restrict our discussion to the functional:

EBCPM = Eint + Eso + Epp . (2.62)

The nuclear energy density functional

The nuclear energy density functional Eint[ρp, ρn] contains the nuclear potential energy contribution
and additional correlations of the potential energy. It is divided in a bulk term E∞

int[ρp, ρn] given by a
polynomial fit to realistic equations of state in both symmetric and nuclear matter and a surface term
EFR

int [ρp, ρn] describing the finite size effect in nuclei

Eint[ρp, ρn] = Eint[ρp, ρn] + EFR
int [ρp, ρn] . (2.63)

The explicit expression of the EDF bulk part is:

E∞
int[ρp, ρn] =

∫
d3r
[
Ps(ρ(r))(1− β2) + Pn(ρ(r))β2]ρ(r) (2.64)

where ρ(r) = ρn(r) + ρp(r) is the total density and β(r) = (ρn(r) − ρp(r))/ρ(r) the asymmetry
parameter. The interpolating polynomials to symmetric nuclear matter Ps (β = 0) and neutron matter Pn
(β = 1) read:

Ps(ρ) =
5

∑
n=1

an

(
ρ(r)
ρ0

)n

; Pn(ρ) =
5

∑
n=1

bn

(
ρ(r)
ρ0n

)n

, (2.65)

being the nuclear saturation density ρ0 = 2/(3π2)k3
F = 0.16 fm−3 and ρ0n = 0.155 fm−3. The coefficients

an and bn are adjusted in order to reproduce state-of-the-art microscopic Equation of State (EoS) in pure
neutron and symmetric nuclear matter (see [51] and references therein).

The other term of the nuclear potential is a phenomenological finite-range Gaussian interaction that is
included to account for finite-size effects:

EFR
int [ρn, ρp] =

1
2 ∑

t,t′

∫∫
d3r d3r′ ρt(r)vt,t′(r− r′)ρt′(r′) , (2.66)

where t, t′ = n, p run over the isospin channels and the form factor

vt,t′(r) = Vt,t′e
−r2/r2

t,t′ (2.67)

only distinguishes between like and unlike particles:

Vn,n = Vp,p = VL =
2b̃1

π3/2r3
Lρ0

; Vn,p = Vp,n = VU =
4a1 − 2b̃1

π3/2r3
Uρ0

, (2.68)

where a1 and b̃1 = b1ρ0/ρ0n are the first coefficients in Eq. (2.65). From the expressions above it turns
out that the only free parameters in the BCPM EDF are the rL and rU ranges of the Gaussian interaction
and the additional WLS term of the spin-orbit term taken as in Eq. (2.60). However in [51] it was argued
that WLS is not a parameter that has to be adjusted since the spin-orbit strength depends on the major
energy shells energy separation, that is inversely proportional to the inverse of the effective mass m∗.
The value of WLS can then be fixed from the beginning, and the effective free parameters in the BCPM
interaction are then reduced to rL and rU .
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rL (fm) rU (fm) WLS (MeV fm5)
0.659 0.659 90.58

Table 2.2: Values of the parameters of the BCPM energy density functional.

Pairing interaction

The term of the nuclear energy functional contributing to the particle-particle (pp) channel Epp[ρ, κ, κ∗]
is usually obtained as the expectation value of an effective two-body potential. While functionals based
in the Gogny potential are free from ultraviolet divergences in the pp channel and can use the same
expression of the potential in both the pp and particle-hole (ph) channels, for BCPM as well as Skyrme
models an explicit ansatz of this interaction describing the short-range correlations has to be guessed.
The pairing functional used in the BCPM EDF is the widely used density-dependent zero-range force
given by the potential [52]:

V̂pp(ρ(r, r′)) =
v0

2
(1− P̂σ)

[
1− γ

(
ρ
(
(r + r′)/2

)
ρ0

)α]
δ(r− r′) , (2.69)

being v0 = 481 MeV fm3, γ = 0.70 and α = 0.45 the adjustable parameters used to reproduce the
T = 1 pairing gap in nuclear matter computed with the Gogny D1 force [53]. The saturation density
ρ0 = 0.16 fm3 correspond to the average density distribution inside the nucleus, and therefore the γ
parameter controls whether the pairing force is more active in the surface (γ→ 0 and therefore V̂pp ≈ 0
if ρ = ρ0) or in the volume (γ→ 1 with V̂pp ≈ v0δ(r− r′)) of the nucleus [37].

The free parameters rL, rU and VLS of the BCPM EDF were fitted in order to reproduce the experimental
binding energies of the even-even nuclei of the Atomic Mass table Evaluation (AME2003) of Audi and
Wapstra [48]. Table 2.2 shows the value of the BCPM parameters leading to a root mean square deviation
of 1.58 MeV for the masses and 0.027 fm for the radius of 579 nuclei. It is remarkable that this deviations
are similar to those obtained by several Gogny and Skyrme models where several parameters (usually
more than ten) where used in the fitting protocol of the interactions.

2.3.3 Kinetic energy

The uncorrelated kinetic energy functional reads:

Ek =
h̄2

2m ∑
i

∫
d3r|∇ϕi(r)|2 , (2.70)

where ϕi are the single particle wave functions defining the local density:

ρ(r) = ∑
i
|ϕi(r)|2 . (2.71)

We are implicitly considering one type of nucleon, and therefore the total kinetic energy is obtained from
the contribution of both protons and neutrons ρ = ρp + ρn and Ek = Ek,p + Ek,n. This contribution is
equivalent to the term tr(tρ) in Eq. (2.53), being t the one-body kinetic operator.

2.3.4 Coulomb energy

In nuclear structure calculations the modeling of the strong interaction has to be supplemented by the
electrostatic interaction between protons in the nucleus:

EC =
e2

2

∫
d3r d3r′

|ρch(r, r′)|2
|r− r′| , (2.72)
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being ρch the charge density distribution. In nuclear structure calculations there are two main approxima-
tions that are commonly used in the evaluation of the Coulomb energy. The first approximation is to split
the Coulomb interaction in a direct and an exchange term and compute the latter one in a local-density
approximation using a Slater approximation. The reason for such approximation is that the calculation
of the full exchange term is cumbersome, and it was argued that the contribution to the total energy is
negligible at the precision of mean field calculations even though this argument is debatable [54].

The second approximation is to consider the protons as point-like particles, which allows to replace
the charge density distribution for the proton density distribution ρch ≈ ρp. As we alread mentioned at
the beginning of this section this approximation does not allow for a proper calculation of the charge
form factor that is experimentally measured.

Taking these two approximations into account, the final expression of the Coulomb energy functional
reads:

EC = Edir
C + Eexc

C =
e2

2

∫
d3r d3r′

ρp(r)ρp(r′)
|r− r′| +

3e2

4

(
3
π

)1/3 ∫
d3r ρ4/3

p (r). (2.73)

It is important to recall that depending on the energy density functional the fitting of the free parameters
can be done using either any of the approximations above described or the exact calculation of the
Coulomb energy, and that the agreement with experimental data would change if calculations are not
performed with the same prescription.

2.3.5 Restoration of broken symmetries and zero-point energy corrections

At the mean-field level long-range correlations are included in the many-body wavefunction by an
explicit breaking of many nuclear symmetries. These broken symmetries should then be restored in
beyond mean-field calculations by projecting the wave function on good quantum numbers |ΦP〉 =
∏s P̂s |Φ〉, and the expectation value of any operator is then obtained using the projected wave functions.
For example, the expectation value of energy now reads:

EPAV =
〈Φ0| P̂†ĤP̂ |Φ0〉
〈Φ0| P̂†P̂ |Φ0〉

, (2.74)

where |Φ0〉 is the many-body wavefunction obtained from the HFB equations minimizing the total
energy. This method is known as Projection After Variation (PAV) since the variational space is formed by
the wavefunctions obtained at the mean-field level. The PAV has the main drawback that the minimized
HFB state Φ0 may not correspond to the true ground-state if restoration of symmetries is taken into
account before the projection. A more complete approach is then the Variation after Projection (VAP),
where the projected wavefunctions are used as a variational space for the minimization of the energy:

δ(EVAP) = δ

( 〈Φ| P̂†ĤP̂ |Φ〉
〈Φ| P̂†P̂ |Φ〉

)
= 0 . (2.75)

Obviously the variational space used in VAP is larger than in PAV, and therefore the VAP ground-state
energy should be closer to the exact one than the PAV.

The restoration of symmetries is a daunting task in systematic calculations of nuclear properties.
Moreover the projected states are a linear combination of HFB states which brings further complications
like for instance the assignment of a density to those states. A less expensive approach is then to compute
the demanded observable using the HFB wavefunctions as a variational space and afterwards subtract
the contribution from the spurious modes related with the broken symmetries. In this thesis we will
mainly deal with spurious modes contributing to the total energy stemming from the rotational and
translational symmetries.
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Translational symmetry restoration

The translational symmetry is broken because the mean field is localized in space, and in order to
restore it one has to subtract the kinetic energy of the center-of-mass from the total energy. It is important
to notice that this symmetry must be restored in all the nuclei obtained at the mean-field level. Its
contribution is often computed using the expression

Ecm =
〈Φ0| P̂2 |Φ0〉

2mA
with P̂ =

N

∑
i

p̂i , (2.76)

where P̂ is the total momentum operator given as the sum of the single-particle momentum operators
and m is the averaged nucleon mass. This expression is an approximation obtained from the real
projection within the Gaussian Overloap Approximation that improves with increasing mass number, at
the same time that the total energy correction decreases. Both Gogny and the BCPM EDF where fitted
taking into account this approximation of the translational symmetry restoration.

Rotational symmetry restoration

The energy correction stemming from projecting the many-body state onto a good angular momentum
can be computed using the expression [55]:

Erot = −
〈Φ0| Ĵ2 |Φ0〉

2J (2.77)

where J is the Yoccoz moment of inertia [56]. As we will see in the next chapter, this correction plays
an important in fission calculations since it increases with the quadrupole deformation up to several
MeV modifiyng the final shape of the barrier. The problem of the approximation Eq. (2.77) is that it can
produce some artifacts in the binding energies of spherical nuclei close to the shell closures (see Sec. 6.2).

2.4 Description of odd nuclei

The estimation of nuclear properties of systems with an odd number of protons and/or neutrons is
one of the most critical issues in self-consistent mean-field models. In such systems the HFB theory
has to be extended in order to properly describe both bosonic degrees of freedom of nucleons pairing
in Cooper pairs as well as fermionic degrees of freedom related to the unpaired nucleon. Blocking
techniques are then required in order to properly compute the HFB wavefunction for the odd system
|Φodd〉α = β†

α |Φeven〉 with an explicit breaking of the time reversal invariance [57]. Due to this, a
self-consistent solution for odd-even and odd-odd nuclei obtained on the same footing of even-even
nuclei becomes rather expensive from the computational point of view and therefore difficult to be
implemented in systematic calculations.

For this reason, a good compromise in systematic calculations is to use a phenomenological approach
aimed to reproduce the experimental bulk nuclear properties of odd-even and odd-odd nuclei. In this
thesis, we computed the bulk nuclear properties of odd nuclei using the Perturbative Nucleon Addition
Method (PNAM) [58]. Within this phenomenological scheme, the self-consistent energy of the nucleus
is obtained by constraining the many-body wave function to have the desired particles number. After
that, the overbinded energy is corrected by adding the lowest proton(neutron) quasiparticle excitation if
the nucleus has an odd number of protons(neutrons). For odd-odd nuclei, both the proton and neutron
lowest quasiparticle energies are added.

As it will be shown in Sec. 6.2, by adopting the PNAM method BCPM maintains the same level
of accuracy achieved for even-even nuclei in the calculation of nuclear binding energies and fission
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properties when odd-even and odd-odd nuclei are included. However, this method has some severe
limitations. The most important one in the framework of this thesis regards the calculation of the
collective inertias extensively discussed in Chapter 3. Since the PNAM neglects the enhancement of
collective inertias due to the quenching of pairing correlations in systems with unpaired nucleons [59], it
may lead to a possible underestimation of spontaneous fission lifetimes of nuclei with an odd number of
neutrons and/or protons.

2.4 Description of odd nuclei 19





3 Fission within the energy density functional
formalism

Two of the main goals of this thesis were the study of the fission properties of superheavy nuclei and the
improvement of the theoretical description of the fission process. The energy density functional provides
nowadays the most microscopic framework for describing this process, and its wide applicability allows
systematic calculations in a broad region of the nuclear chart. This Chapter is thus devoted to the current
theoretical description of the fission process within the energy density functional model. We will start
introducing the Wentzel–Kramers–Brillouin (WKB) approximation employed for the derivation of the
action integral and the calculation of fission probabilities. Then we will present the derivation of the
collective inertias within the different schemes employed in this thesis and the approximations used in
their numerical calculations. Finally, the last part of the Chapter is devoted to the potential energy and
the most common collective degrees of freedom used in fission calculations.

3.1 A semiclassical picture for fission

Despite its discovery dates almost 80 years ago, nowadays fission is one of the least understood nuclear
processes. Defined as the process where a nucleus splits in two or more fragments with a comparable
mass, fission is the consequence of the competition between the Coulomb repulsion of protons in the
nucleus and the strong interaction acting against the increase of the mean distance between nucleons. It
is a dynamical process, where the probability P of a nucleus in a state |Φi〉 to evolve in time towards a
two fragments configuration |Φ f 〉 can be formally written as [36]:

P = |〈Ψ f | Û(t f , ti) |Ψi〉|2 , (3.1)

being Û(ti, t f ) the time evolution operator. As already introduced in the previous chapter, solving this
kind of problems in nuclear physics using pure quantum mechanical rules is prohibitive due to the
difficulties in describing a many-body system formed by a large number of interacting nucleons. Thus
fission must be simplified to a more manageable problem and connected to the nuclear structure picture
given by the self-consistent mean-field model.

The work presented in this thesis is grounded in two main approximations that are widely used
in fission calculations. The most important one is the assumption that the huge number of internal
degrees of freedom of the system can be reduced to a small set of collective variables. This simplification,
known as “adiabatic approximation”, is based on the separation of scales between the fast movement of
nucleons inside the nucleus and the relative slow collective motion characterizing the fission process. The
second main approximation is to assume that the fission probability can be obtained as the probability
of the nucleus to penetrate a classically-forbidden potential barrier (the so-called “fission barrier”) and
this probability can be computed using the Wentzel–Kramers–Brillouin (WKB) approximation. This
semiclassical approach allows to maximize the event probability by minimizing the action integral.

These two approximations are based on very strong assumptions and they basically forbid the
description of fission from a pure microscopic ground. Some alternative approaches like the time
dependent density functions theory are making inroads, but nowadays their application to systematic
calculations is unworkable (see [36] for a general review of these methods). While waiting for the
development of models based on a more microscopic ground, we shall rely on the WKB method to
compute the probability of a nucleus to fission.

This Chapter is based on Ref. [38] and [36]
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3.2 Action integral and fission transmission coefficient

3.2.1 The Wentzel–Kramers–Brillouin (WKB) approximation

The Wentzel–Kramers–Brillouin (WKB) approximation is a mathematical method allowing the cal-
culation of an approximate solution to linear differential equation with spatially varying coefficients.
For the problem of quantum tunneling in one dimension the starting point is the non-relativistic
time-independent Schrödinger equation written in the form:(

− h̄
2m

∂2

∂x2 + V(x)
)

Ψ(x) = EΨ(x) , (3.2)

being p =
√

2m[E−V(x)] the classical momentum of a particle with energy E moving in a one-
dimensional potential V(x). Assuming that the wave function can be written in the exponential form

Ψ(x) = A(x)eiϕ(x) , (3.3)

the WKB approximation allows to find an approximate solution by assuming that V(x) varies slowly
compared to the wavelength λ = 2πh̄/p(x) (or, equivantely, to the decay length l = h̄/

√
2m[V(x)− E]

if E < V(x)). The transmission coefficient T of a particle tunneling under the potential V(x) is thus
given by [60]:

T = |Ψ(b)|2/|Ψ(a)|2 = exp
(
−2

h̄

∫ b

a
dx
√

2m[V(x)− E]
)
≡ exp(−2S), (3.4)

where a and b are the classical turning points (E = V(a) = V(b)) and according to the initial definition
the momentum p =

√
2m[E−V(x)] = i

√
2m[V(x)− E] is now complex.

3.2.2 Extension of the WKB approach to spontaneous fission

The extension of the WKB approximation to fission is only possible when one considers a scale separa-
tion between the internal degrees of freedom of the nucleus and the collective variables determining
the fission process. This hypothesis of adiabaticity allows to determine the fission path by minimizing
the action integral S in the reduced multidimensional space given by the collective degrees of freedom.
Within this semiclassical framework the least action principle is then invoked in order to maximize
the tunneling probability of the nucleus. Another important aspect is the conversion of the quantities
entering in Eq. (3.4) to their equivalent in the context of nuclear fission. In Sections 3.3 and 3.4 we will
see that the role of the mass m is played by the collective inertiaM which naturally arises in the context
of the Generator Coordinate Method (GCM) and the Adiabatic Time Dependent HFB (ATDHFB) theory.
The potential V(x) is the HFB energy V of the nucleus computed along the fission path corrected by
quantum effects stemming from symmetry restorations. Finally, the energy E is the ground-state energy
of the nucleus EGS plus an energy correction E0 associated to the dynamics of the collective degrees of
freedom.

Once all the quantities of the action integral S are established, the spontaneous fission lifetime can be
computed as the inverse of the penetration probability P multiplied by the number of assaults n on the
fission barrier per unit time [61, 62]:

tsf[s] =
ln 2
nP

= 2.86× 10−21(1 + exp(2S)) , (3.5)
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and the action integral S reads:

S(L) =
∫ b

a
ds
√

2M(s)[V(s)− (E0 + EGS)] . (3.6)

The number of assaults n is given by the frequency of vibration in the fission degrees of freedom
n = ω/2π and it is customary to assume h̄ω = 1 MeV [61]. The action integral Eq. (3.6) is computed
along the fission path L(s) obtained by the least action principle and ds is the element length along L.
As we will see in Sec. 3.5, the choice of the collective degrees of freedom as well as the approximations
involving collective inertias and potential energy have a strong impact in determining the fission path L.
Since the action integral enters in the exponential of the spontaneous fission lifetimes these variations
may have a tremendous impact in the final value of tsf, specially in nuclei that are stable against
the spontaneous fission process and the value of S(L) is large. Finally, when comparing theoretical
calculations with experimental data, one should always keep in mind that the WKB formula (3.5) allows
to compute the spontaneous fission lifetimes only with a logarithmic precision.

3.2.3 Fission from excited states

The neutron-, β- and photo- induced fission occurring during the r-process nucleosynthesis, the
synthesis of superheavy nuclei in the laboratories and the experimental determination of the fission
barriers are just some examples of nuclei undergoing fission from excited states. While there are several
studies exploring the change of shape of the fission barriers at finite temperature, only few attempts
investigated the dependence of the barriers with the excitation energy. Configuration-constrained
calculations of the potential energy exploring multi-quasiparticle states [63] or the Time Dependent
Density Functional Theory (TDDFT) methods [64] can consistently tackle the problem from a microscopic
description, but their extension to systematic calculations is still not feasible. The alternative is then to
use a simpler treatment and assume that the shape of the barrier does not change with the excitation
energy of the nucleus. This approximation allows to obtain the probability of a nucleus to fission from an
excited state with energy E∗ by computing the fission barrier from the ground state and then replacing E0
with E∗ in Eq. (3.6). Besides the very strong assumption of a static barrier, one should keep in mind that
the WKB is only valid for energies sufficiently below the potential barrier, and therefore its application
to excited states close to the top of the barrier is rather uncertain [38].

3.3 Collective inertias

Collective inertiasM are a key ingredient in the calculation of fission probabilities and in the case
of spontaneous fission constitute one of the major source of uncertainties in the estimation of the
lifetimes. They represent the resistance of the nucleus against deformations in the collective space
and are associated to the momentum of the collective degrees of freedom mapping the fission path.
Nowadays there exist two microscopic schemes devoted to the calculation of this quantity: the Generator
Coordinate Method and the Adiabatic Time-Dependent Hartree-Fock-Bogolyubov approximation. In
this section we will show how collective inertias can be derived from these two approaches, and the
different approximations used for their numerical estimation. For the sake of comparison, we will also
introduce the semiempirical mass formula employed in all the previous calculations of fission cross
sections.

3.3.1 The Generator Coordinate Method (GCM)

In the Generator Coordinate Method (GCM) the correlated many-body states are constructed as a
coherent superposition of independent particle states that are continuous functions of a finite set of
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coordinates. For this purpose the many body wavefunction is expanded in terms of known many-body
states as:

|Ψ〉 =
∫

dq f (q)|Φ(q)〉, (3.7)

where |Φ(q)〉 can be HFB states constrained by a finite set of collective variables such that:

〈Φ(q)| Q̂α |Φ(q)〉 = qα with {q} = {q1, . . . , qN} . (3.8)

The expansion coefficients f (q) are obtained by means of the variational principle leading to the
well-known Hill-Wheeler integral equation [65]:∫

dq′ h(q, q′)n(q, q′) f (q′) = E
∫

dq′ n(q, q′) f (q′) , (3.9)

where the norm and energy kernels are given by:

n(q, q′) = 〈Φ(q)|Φ(q′)〉 , h(q, q′) =
〈Φ(q)|Ĥ|Φ(q′)〉
〈Φ(q)|Φ(q′)〉 . (3.10)

The GOA scheme and the collective Schrödinger equation

For the following discussion it will be useful to introduce the variables q̄ = (q + q′)/2 and s = q− q′.
The Gaussian Overlap Approximation consists in assuming that the norm kernel has the Gaussian form:

n(q, q′) = n(q̄ + s/2, q̄− s/2) = 〈Φ(q̄)| exp

(
−1

2 ∑
ij

Gij(q̄)sisj

)
|Φ(q̄)〉 , (3.11)

where Gij is the overlap width that can be expressed in terms of the momentum operator Pi = ∂/∂qi:

Gij(q) = 〈Φ(q)|
←−
∂

∂qi

−→
∂

∂qj
|Φ(q)〉 with i, j = 1, . . . , N. (3.12)

The GOA assumption is justified by the fact that the norm overlap n(q, q′) is a sharply peaked function
at s = 0 and that smoothly depends on q̄. This approximation allows to get an expression for the
collective inertias from the GCM theory by reducing the Hill-Wheeler equation to a collective Schrödinger
equation [65]: (

− h̄2

2
∂

∂q
BGCM(q)

∂

∂q
+ V(q)− εzpe(q)

)
gσ(q) = εσgσ(q) , (3.13)

being εσ the collective mode energies and gσ(q) the collective wavefunctions given by the amplitudes
f (q):

fσ(q) =
∫

dq′n(q, q′)−1/2gσ(q′) . (3.14)

The collective inertia BGCM in Eq. (3.13) is a rank two tensor whose terms are given by the second
derivative of the energy kernel [38]:

Bij
GCM(q) =

1
2h̄2 Gij(q)

(
∂2h(q, q′)

∂qk∂q′l
− ∂2h(q, q′)

∂qk∂ql

)
q=q′

Gl j(q) , (3.15)

24 3 Fission within the energy density functional formalism



where we have assumed a constant value of the Gaussian width Gij and defined its inverse as ∑i GjiGik =
δk

j . The term εzpe is an energy correction related to quantal fluctuations in the collective degrees of
freedom q:

εzpe(q) =
1
2

Gij(q)
∂2h(q, q′)

∂qi∂q′j

∣∣∣∣
q=q′

. (3.16)

This energy is subtracted from the total HFB energy V(q) and therefore can be interpreted similarly to
the spurious contributions arising from the symmetry breaking described in Sec. 2.3.5.

The interesting analogy emerging from the comparison of Eqs. (3.2) and (3.13) is that if the degrees of
freedom driving the evolution of the nucleus collective are the collective variables describing the fission
process, then the probability to penetrate the potential barrier is given by the WKB formula where the
mass of the system is the collective massM≡ B−1

GCM and the potential barrier is the HFB energy with
the zero-point energy correction εzpe, and the action integral can be written as Eq. (3.6).

Perturbative (local) cranking approximation

In order to evaluate the collective inertia BGCM (3.15) one has to compute the derivatives defining the
Gaussian width and those of the energy kernel. In the perturbative approximation, instead of performing
a numerical differentiation the collective inertias (3.15) are reduced to a local expression in the coordinate
space that only depends on q (for this reason the perturbative approximation is also known as local
approximation). This is done by introducing the “momentum” operator of the collective variable qα as:

P̂α |Φ〉 = −ih̄
∂

∂qα
|Φ〉 . (3.17)

The action of the momentum operator on the HFB state is obtained by using the Ring and Schuck theo-
rem [39] and expanding the HFB equation around q + δq up to first order in δq. Using the perturbative
approximation we can thus reformulate the Gaussian width in terms of the quasiparticle matrix elements
of the collective variables q20

α defined in Eq. (2.51c):

Gαβ(q) = ∑
κλ

1
2

[
M(−1)(q)

]−1

ακ
M(−2)

κλ (q)
[

M(−1)(q)
]−1

λβ
, (3.18)

where the moments M−n are defined as:

M(−n)
αβ =

(
q20 †

α , q20 T
α

)
M−n

(
q20

β

q20 ∗
β

)
. (3.19)

In the equation above we have introduced the linear response matrixM :

M =

(
Aµνµ′ν′ Bµνµ′ν′

B∗µνµ′ν′ A∗µνµ′ν′

)
, (3.20)

whose elements are the quasiparticle energies Ei and the residual quasiparticle interaction:

Aµνµ′ν′ = (Eµ − Eν)δµµ′δνν′ + 2
∂2E

∂ρµνρµ′ν′
, (3.21a)

Bµνµ′ν′ = 2
∂2E

∂ρµνρµ′ν′
. (3.21b)
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The computation of the GCM collective inertia requires the inversion of the linear response matrix
M . Since the inversion of the full matrix is extremely expensive from a numerical point of view it
is customary to alleviate this operation by neglecting the off-diagonal terms related to the residual
interaction in Eq. (3.21):

∂2E
∂ρµνρµ′ν′

= 0 . (3.22)

This cranking approximation reduces the QRPA matrix (3.20) to a diagonal matrix whose elements are
the single quasiparticle excitation energies:

M =

(
Eµ − Eν 0

0 Eµ − Eν

)
. (3.23)

Within this approximation one can write the moments (3.19) as:

M(−n)
αβ = ∑

µ<ν

〈Φ|q̂†
α|µν〉〈µν|q̂β|Φ〉
(Eµ + Eν)n , (3.24)

where |µν〉 = β†
µβ†

ν |Φ〉 is a two quasiparticle excitation with energy Eµ + Eν built on top of the
quasiparticle vacuum |Φ〉.

Finally, by using the perturbative approximation in addition to the cranking one the expressions of the
derivatives of the energy kernels reduces to:

∂2h(q, q′)
∂qk∂q′l

=
1
2

[
M(−1)(q)

]−1

kl
;

∂2h(q, q′)
∂qk∂ql

= 0 . (3.25)

Replacing the equation above in Eq. (3.15) and (3.16) we finaly get the GCM collective inertias and
zero-point energy correction in the perturbative cranking approximation:(

Mpc
GCM(q)

)
αβ

=
(

Bpc
GCM(q)

)−1
αβ

= 4 ∑
κ,λ

Gακ(q)M(−1)
κλ (q)Gλβ(q) , (3.26)

ε(q) =
1
2 ∑

α

Gαβ(q)
(

BGCM(q)
)

βα
. (3.27)

In the systematic calculation of the fission properties of superheavy nuclei of Chapter 7 the only collective
degree of freedom was the quadrupole deformation. In this case Eq. (3.26) and (3.27) simplify to:

Mpc
GCM(Q20) =

(
M−2(Q20)

)2

2
(

M−1(Q20)
)3 , (3.28)

εGCM
vib (Q20) =

G(Q20)

Mpc
GCM(Q20)

. (3.29)

3.3.2 The Adiabatic Time Dependent Hartree Fock Bogolyubov theory (ATDHFB)

In the Time Dependent Hartree-Fock-Bogolyubov Approximation (TDHFB), the many-body wave
function describing the nuclear system is supposed to remain an HFB state at all times. This means that
the dynamical evolution of the density can be written as [66]:

Ṙ(t) = − i
h̄
[H,R(t)] , (3.30)
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where the HFB matrixH (2.46) and the generalised density matrixR (2.41) are now time-dependent. The
latter one is neither time-even nor time-odd, and therefore cannot play the role of a generalised collective
coordinate or collective momentum [67]. In order to identify the matrix elements ofR corresponding to
the collective coordinates and momenta, we can decompose the density matrix in the following way:

R(t) = eiχ(t)/h̄R0(t)e−iχ(t)/h̄ , (3.31)

where both χ(t) andR0 are time-even operators. From the properties of the generalised density matrix
it follows that [67]:

R2
0 = R; trR0 = N , (3.32)

being N the number of nucleons. In the adiabatic approximation, the one-body densityR(t) is supposed
to stay close toR0(t) at all times. This means that χ and χ̇ are small, and we can expand the expression
of the density matrix up to second order in χ:

R ∼=
(

1 +
iχ(t)

h̄
− χ2(t)

h̄2 +O(χ3)

)
R0

(
1− iχ(t)

h̄
− χ2(t)

h̄2 +O(χ3)

)
= R0(t) +

i
h̄
[χ(t),R0(t)] +

1
2h̄2 [χ(t), [χ(t),R0(t)]] = R0(t) +R1(t) +R2(t) .

(3.33)

By inserting the expression above in Eq. (3.30) we get the second-order expansion of the HFB matrix:

Hab
∼= H0 +H1 +H2 +O(χ3) , (3.34)

and by replacing both expansions (3.33) and (3.34) in the Time Dependent HFB equation (3.30) one gets
the so-called ATDHFB equations:

ih̄Ṙ0 = [H0,R1] + [H1,R0] , (3.35a)

ih̄Ṙ0 = [H0,R0] + [H0,R2] + [H1,R1] + [H2,R0] . (3.35b)

In the ATDHFB basis the generalised density matrix R0 is diagonal and the parameter χ(t) can be
written in the form:

χ =

(
χ11 χ12

χ21 χ22

)
, (3.36)

where only the χ12 and χ21 blocks are relevant for the dynamics. In the ATDHFB basis the Eq. (3.35a)
can thus be written as:

h̄
( Ṙ12

0
Ṙ12∗

0

)
=

(
A B
B∗ A∗

)(
χ12

χ12∗

)
=M−1

(
χ12

χ12∗

)
, (3.37)

beingM the QRPA linear response matrix of Eq. (3.20). Using the classical analogy of the velocity-
momentum expression p = mvvv one can associate the time-even densityR(t) to the collective variable
of the system and χ(t) to the associated collective momentum, being the inverse of the response matrix
R the collective mass. Making use of the Wick’s theorem we can now expand the energy in terms ofR
and χ [67]. By separating the terms depending on second order to χ to those depending onM we get an
expression resembling the collective kinetic energy:

E(t) = E(0)(t) + E(1)(t) + E(2)(t)

= EHFB +
1
4
(
χ12† χ12T

)
M
(

χ12

χ12∗

)
= EHFB +

1
4
(
Ṙ12†

0 Ṙ12T
0

)
M−1

( Ṙ12
0

Ṙ12∗
0

)
≡ EHFB +K .

(3.38)
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As it was already mention before, we are supposing that fission can be described using a finite set of
collective variablesR0(t) = R0(q(t)) = R0(q1(t), . . . , qN(t)). Within this assumption we can rewrite
the time derivative of the density matrix in terms of the derivative respect to the collective coordinate qα:

Ṙ0 =
N

∑
α=1

q̇α
∂R0

∂qα
, (3.39)

and from the standard definition of the kinetic energy we can write the expression of the ATDHFB
collective mass as:

K =
∂R0

∂qα
M−1 ∂R0

∂qβ
q̇β ≡∑

αβ

q̇αMATDHFB
αβ q̇β ∑

αβ

q̇α . (3.40)

Perturbative cranking approximation

As in the GCM theory, the collective inertia obtained within the ATDHFB theory requires the inversion
of the linear response matrixM . The same approximations introduced in Sec. 3.3.1 can then be applied
to the ATDHFB inertias in order to alleviate the computational effort in calculating such quantities. In
the cranking approximation, the inversion of the linear response matrix can be simplified by neglecting
the off-diagonal terms related to the residual interaction. In the perturbative approximation, the partial
derivatives of the density R0 respect to the collective coordinate qα are obtained applying the linear
response theory, which result in an expression involving the momenta (3.19):

(
Mpc

ATDHFB

)
αβ

= h̄ ∑
κλ

[
M(−1)

]−1

ακ
M(−3)

κλ

[
M(−1)

]−1

λβ
. (3.41)

Since one part of this thesis will be devoted to study the one-dimensional case where the fission barrier
is described as a function of the quadrupole operator, it is useful to write the explicit expression of the
collective inertia for this particular case:

Mpc
ATDHFB(Q20) =

M−3(Q20)

2
(

M−1(Q20)
)2 . (3.42)

One should notice that in the derivation of the collective inertia within the ATDHFB theory there is
not a term similar to the zero-point energy correction εzpe obtained in the GCM scheme (3.13). Since
in the ATDHFB scheme the collective inertia is obtained from a classical picture involving generalised
coordinates and momenta, a pure quantual correction like the Gaussian wave-packet energy cannot
be extracted. However, in calculations involving the ATDHFB inertias it is customary to introduce a
zero-point energy correction analogue to the term term of Eq. (3.29) obtained by replacing the GCM
collective inertia with the ATDHFB one [36]:

εATDHFB
vib (Q20) =

G(Q20)

Mpc
ATDHFB(Q20)

. (3.43)

3.3.3 Semiempirical mass formula and reduced mass

In several calculations of fission cross sections the collective inertias are obtained from the semiem-
pirical formula µ = 0.054A5/3 MeV−1, being β20 the collective variable of the action integral (3.6). This
semiempirical expression was obtained in order to reproduce experimental data in the actinide region
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using a simplified prescription for the fission barriers [68]. The validity of µ for heavier nuclei and/or
when different barriers to those of Moretto and Swiatecki are used, is rather uncertain and not fully
tested. It is therefore interesting to compare the spontaneous fission lifetimes of this semiempirical
expression with the results obtained using the ATDHFB and GOA-GCM approaches. Since the action
integral is invariant under uniforming scaling, and β20 =

√
20π
5A

Q20
r2 with r = 1.2A1/3 fm, we have that:

MSEMP = µ

(
dβ20

dQ20

)2

=
0.065
A5/3 MeV−1fm−4 . (3.44)

The collective inertia of two separated fragments is given by the reduced mass µ = m1m2/(m1 + m2).
As a reference for the absolute magnitude of the collective inertia one can thus compare the results
obtained from the microscopic and semiempirical schemes with the reduced mass. In the approximation
of point-particles and expressing the distance between fragments in terms of the quadrupole deformation
one gets the following expression for the reduced inertia:

M̃ =
mn

4h̄2Q20
, (3.45)

being mn = 938.919 MeV the averaged nucleon mass.

3.4 Potential energy surface

As it was already mentioned at the beginning of this chapter, the adiabatic approximation allows to
study the fission process within a reduced set of collective variables. In order to determine the fission
path is therefore necessary to compute the potential energy of the nucleus in the space given by the
collective variables, and the evolution of the energy in this multidimensional space is usually referred as
potential energy surface.

In fission calculations the choice of the collective variables is somehow arbitrary, but the traditional
approach is to compute the evolution of the energy as a function of the deformation of the nucleus. The
most important quantity is the quadrupole deformation Q20 related to the stretching of the nucleus,
but the exploration of higher deformations is necessary to properly describe phenomena that are
experimentally observed, like for instance the asymmetry of fission fragments.

Obviously the choice of the collective variables has an impact in the determination of the fission path.
This is specially true when the fission path is determined by minimizing the action integral S(L) instead
of the potential energy V . As we will see in the next section, the variation of quantities like pairing
correlations may strongly modify the collective inertias and consequently the path followed by nucleus.

Usually fission calculations performed within the EDF framework employ between one and three
collective degrees of freedom. One should notice that these numbers are lower than those commonly
employed in macroscopic-microscopic (Mic-Mac) calculations, which nowadays explore up to seven
collective variables. However, it is important to keep in mind that this higher dimensionality is somehow
required in Mic-Mac calculations because all the deformations that are not explicitly explored are by
construction equal to zero. This restriction does not apply to self-consistent mean field calculations,
where all the parameters that are not constrained by the system symmetries are set in order to minimize
the total (HFB) energy. This means that considering the full variational space, the potential energy
surface is always given by the local minimum energy.

3.4.1 Shape parametrization of the nucleus

In EDF calculations the shape parametrization of the nucleus is done via the mass multipole moments
defined as:

Qµν = rµYµν(θ, ϕ) , (3.46)
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where Yµν are the standard spherical harmonics [69]. One should keep in mind that usually an arbitrary
coefficient Cµν is added to this definition for convenience and therefore the expected value of the
multipole moments may have different definitions. The multiple operators are one-body operators, and
therefore their expected valued can be written in terms of the density matrix (see Sec. 2.1.3):

〈Φ|Q̂µν|Φ〉 = tr(Q̂µνρ) =
∫

d3rρ(r)rµYµν(θ, ϕ) . (3.47)

Quadrupole deformations

The quadrupole mass moment given by the quadrupole moment operator:

Q̂20 =
N

∑
i=1

ẑ2
i −

1
2
(x̂2

i + ŷ2
i ) , (3.48)

represents the stretching of the nucleus and is the most important constraint in fission calculations. In
the simplest EDF studies this is the only constraint used to study the evolution of the energy. Nuclei with
a positive value of Q20 are defined prolate nuclei, while those with a negative Q20 are referred as oblate
nuclei. The fission barrier solely obtained from the constraint of the quadrupole moment is actually a
one-dimensional projection of the fission path in the multidimensional space of the collective variables.
Since the configuration with the lowest energy is always chosen, one has that in the one-dimensional
study the path connecting different configurations is neglected like for instance in the transition between
one and two fragments. For a more realistic determination of the fission path is therefore necessary to
increase the number of variational constraints including, for instance, higher multipole moments and/or
pairing correlations.

Octupole deformations and hexadecapole deformations

The axial mass octupole moment Q30 describes the asymmetry of the nucleus under mirror reflection
and is responsible for the appearance of asymmetric fission fragments. It is usually argued that the
breaking of reflection symmetry is important to properly describe the region around the outer fission
barrier, since this can be reduced by a couple of MeV. The hexadecapole moment Q40 is related to the
scission mode of the nucleus and is widely used in neutron induced fission studies. Calculations using
this multipole moment as a variational constraint showed that depending on the Q40 value the nucleus
can follow either a compact fission path (Q40 ≈ 0) or an elongated fission path (Q40 6= 0), and the
competition between these two fission modes determines the shape of the fission fragments distribution.

Neck operator

If the nucleus is in a very elongated configuration, the quadrupole moment operator may not capture
the right shape evolution and therefore the neck operator Q̂N is used instead. This is defined as [38]:

Q̂N =
N

∑
i=1

e
− (r̂i−rN )2

C2
0 , (3.49)

and represents a Gaussian distribution of nucleons centered at rN (usually taken as the “neck” of the
nucleus, i.e. the coordinate with the lowest nucleon density) with an arbitrary width C0. Constraining
the QN value is therefore equivalent to a variation in the number of nucleons placed around the
neck of the nucleus, where obviously QN → 0 correspond to a two-fragment configuration. In some
studies [32, 33, 70, 71] this constraint is used in order to determine the lowest energy given by a
two-fragment configuration of the system, which is also known as “quasi-fusion” path.
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Triaxiality

Triaxial deformations can play a relevant role in determining the fission path by lowering the inner
fission barrier by 2-3 MeV (see for example the discussion in Ref. [31, 33, 72]). This is particularly true
for nuclei with an oblate ground-state, where the most favourable path towards scission is given by
configurations breaking axial symmetry. However, it is important to point out that the collective inertia
of triaxial configurations is usually higher than the axial ones. This means that in calculations where the
fission path is determined by minimizing the action integral (3.6), triaxial paths may be less favourable
than axial ones if the gain in energy is not high enough to compensate the higher collective inertia. This
competitions was explored in some recent studies, showing that axial symmetry can be fully restored in
dynamic calculations of the fission process [73, 74].

In this thesis, axial symmetry has been preserved in all the calculations in order to reduce the computa-
tional cost of solving the HFB equation. The imposition of axial symmetry allows to write the Bogoliubov
wavefunctions, density matrix and pairing tensor in a block structure. This can be easily understood by
the fact that any additional symmetry imposes an additional selection rule in calculation of the matrix
elements matrix elements. We have therefore that to the preservation of this symmetry, the mean-value
of the multipole operators, 〈Q̂µν〉 = 0 for all ν 6= 0.

3.4.2 Pairing correlations

In the last years several studies showed the extreme relevance of pairing correlations in fission. This
renascence after the pioneering study of Moretto and Babinet [75] is strictly connected to the diffusion
of dynamic studies, meaning calculations where the fission path is obtained by minimizing the action
integral (3.6). As we will see in Sec. (3.5) the increase of pairing correlations lower the collective inertias
separating the dynamic fission path from the one obtained by minimizing the total energy (static fission
path).

In [76] the amount of pairing correlations was controlled by means of the particle number fluctua-
tion mean value 〈∆N2〉 = N2 − 〈N̂2〉, being N the total number of nucleons. For schematic pairing
interactions one has that [39]:

(
〈∆N2〉

)2
= 4 ∑

µ>0
U2

µV2
µ = ∆2 ∑

µ>0

1
Eµ

, (3.50)

where Eµ is the quasiparticle energy and ∆ the pairing gap measuring the amount of pairing correlations
in the wavefunction [77]. When the particle number fluctuation is used as a variational parameter, one
has to ensure that the self-consistent solution is a wave-function with the right number of proton (Np)
and neutrons (Nn). This is achieved by constraining the average particle number 〈N̂τ〉 = Nτ, with
τ = p, n.

3.4.3 Energy corrections

There are two different types of energy corrections that enter in the calculation of the potential energy
V(s) in Eq. (3.6). Corrections belonging to the first type were described in Sec. (2.3.5) and are related to
the restoration of the broken symmetries at the mean-field level. These kind of corrections stem from
the HFB calculation of the minimum energy for a given configuration and therefore are also considered
in the estimation of the binding energies. The second kind of energy corrections are those stemming
from the derivation of the collective Schrödinger equation (3.13) in the GCM framework. This are
pure quantal corrections taking into account for fluctuations in the collective degrees of freedom, and
therefore they are inherent to the description of the fission process within the adiabatic approximation.
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Energy corrections belonging to this second type are the so-called zero-point energy corrections (εZPE)
that for the one-dimensional case with Q20 as a collective degree of freedom are denoted as vibrational
zero-point energy correction (εvib). It is important to recall once again that the ZPE are only defined for
the GCM approach, even though for the perturbative it is customary to reformulate an equation for the
ATDHFB scheme by replacing the expression of the GCM collective inertias in Eq. (3.16) (see discussion
in Sec. 3.3.2).

3.4.4 The effective potential energy

Taking into account the parametrization of the potential energy in terms of the reduced set of collective
variables {q} together with the proper energy corrections, the effective potential energy V(s) in Eq. (3.6)
can be written as:

V(s) = EHFB(s)− εZPE(s)− εrot(s) , (3.51)

being s(q) the length in the space of the collective coordinates and EHFB the HFB energy of Eq. (2.53).
The term εrot(s) is the energy correction related to the restoration of the rotational symmetry described
in Sec. 2.3.5 and εZPE(s) the ZPE correction discussed before in Sec. 3.4.3. In Chapter 7 we will present
the results for the one-dimensional case using the quadrupole moment as a collective degree of freedom:

V(Q20) = EHFB(Q20)− εvib(Q20)− εrot(Q20) . (3.52)

In this case the Routhian giving the minimum value of the HFB energy reads:

Ĥ = ĤHFB + ∑
ν=1,2

λνQ̂ν0 + ∑
τ=p,n

λτ N̂τ . (3.53)

where ĤHFB is the effective HFB Hamiltonian of Eq. (2.52), N̂p(N̂n) the proton (neutron) number operator,
λi the Lagrange multipliers and Q̂10 the center-of-mass constraint preventing spurious solutions arising
from center-of-mass motion (see discussion in Sec. 2.3.5). The zero-point (vibrational) energy corrections
εvib are computed in the perturbative cranking approximation (Eqs. (3.29) and (3.42)).

A typical outcome of the collective properties obtained in this kind of calculations is showed in
Fig. 3.1 for the nucleus 244U. The triple humped barrier of this nucleus is represented in the lower
panel where each barrier height Bi is defined as the energy difference between the ground-state and the
barrier peak. The different lines represents show the contributions of the energy corrections entering
in Eq. (3.52). Clearly the major reduction to V(Q20) comes from the rotational correction εrot(Q20),
while the vibrational correction εvib(Q20) produces a smaller, yet not constant, shift. From this plot it is
clear that both the rotational and zero-point energy corrections introduced in Eq. (3.52) can modify the
final height of the fission barriers Bi the isomer excitation energies Ei. The octupole and hexadecapole
deformations plotted in the upper panel show that in self-consistent mean-field calculations all the
deformations that are not restricted by the imposition of symmetries can be broken in order to minimize
the HFB energy.

3.5 Dynamic vs static fission paths

As it was already mentioned before in this chapter, the expression dynamic calculations refers to
fission calculations where the fission path is determined by minimizing the action integral 3.6. The
alternative method is the so-called static approach, where the fission path is given by the minimization
of the self-consistent energy. It is important to recall that the dynamic approach is formally the correct
procedure to determine the fission path when the potential energy surface has a dimension larger than
one, i.e. more than one collective degree of freedom is used as a variational parameter, by reason of
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Figure 3.1: Collective properties of the 244U as a function of the quadrupole moment Q20. Panel a) shows
the different contributions to the potential energy surface V(Q20) of Eq. (3.52), and the
nuclear shape for different values of Q20. Panel b) shows the inertias M(Q20) computed
with the ATDHFB (dashed blue line, Eq. (3.42)), GCM (dash-dotted red line, Eq. (3.28)) and
semiempirical inertia formula (solid green line, Eq. (3.44)) whithin the perturbative cranking
approximation. The octupole (Q30) and hexadecapole (Q40) deformations are given in panel
c).
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the fact that the trajectory minimizing the action has the larger contribution to the path integral and it
maximizes the fission probability. On the other hand, when only one collective variable is employed, the
phase space is one-dimensional and obviously the least action and minimum energy paths line up.

The differences between static and dynamic calculations reside in the dependence of the collective
inertias with the collective coordinates forming the potential energy surface. Looking at the Eq. (3.6)
it is easy to understand that ifM depends weakly on the collective variable qi, then the dynamic and
static fission paths will be very close to each other. Conversely, if the collective inertias have a strong
dependence on the collective variable the minimization of the collective action can move the fission path
towards configurations that do not correspond to the minimum energy configuration. This aspect stands
out the extreme importance that the choice of the collective variables has in the description of the fission
process.

3.5.1 The role of pairing correlations

Recent studies [32, 33] showed the large impact that pairing correlations have in spontaneous fission
lifetimes. The large sensitivity of tsf on this quantity lies on the fact that changes in pairing correlations
modify the pairing gap and consequently the quasiparticle energies entering in the denominator of the
collective inertias (see Eqs. (3.28) and (3.42)). This strong dependence of collective inertias on pairing
correlations suggested that a measure of the amount of pairing correlations should be used as a collective
variable in the minimization of the action integral. This idea was firstly introduced in 1974 by Moretto
and Babinet [75], where the pairing gap ∆ was used as a collective degree of freedom to compute the
fission path. In this seminal paper the authors showed that the minimization of the action respect to the
gap parameter is given by the competition between the decreasing of collective inertias (M ∝ 1/∆2)
and the increasing of the potential energy (V ∝ ∆2).

3.5.2 Study of the 234U

In [76] we explored the impact of pairing correlations in the minimization of the action using realistic
interactions and we compared the results to those obtained when other collective degrees of freedom are
considered in the minimization. In this section we will present the outcome of our study obtained for the
sample nucleus 234U that was extensively benchmarked in several fission studies.

As it was already explained in Sec. 3.4.2, the amount of pairing correlations in a nucleus can be
characterized by employing the particle number fluctuation mean value 〈∆N2〉. To find the 〈∆N2〉
value minimizing the action, we carry out constrained HFB calculations starting at the 〈∆N2〉 value
minimizing the energy for each Q20 value of the fission path. In this way we obtain curves for the
relevant physical quantities as a function of 〈∆N2〉 for each value of Q20. An example of such curves is
shown in Fig. 3.2, where the collective inertia, potential energy and action are depicted as a function
of 〈∆N2〉 for Q20 = 100 b. From this plot one can observe an almost parabolic behavior of the energy
with the minimum located at the self-consistent solution, while the inertia decreases with the inverse of(
〈∆N2〉

)2
, in accordance to the relationM ∝ 1/∆2 [25, 75, 78]. After computing the action one finds that

the corresponding minimum Smin is located at larger values of 〈∆N2〉 than the minimum energy solution
Emin, and this displacement is obtained in all the values of the quadrupole moment operator [76].

This dynamical approach using pairing correlations as a collective degree of freedom resulted in
a fission path that strongly differs from the one obtained by minimizing the energy, causing several
changes in the fission properties of the nucleus:

• The tsf in the dynamic description are strongly reduced when pairing correlations are included as
a collective variable. This result is not straightforward since other dynamic calculations including
only quadrupole-octupole and quadrupole-hexadecapole deformations do not show a significant
difference with the corresponding static result (see Table 3.1). Obviously, the quenching of tsf
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Figure 3.2: Variation of the potential energy V (blue dashed line), collective inertiaM (red dashed line)
and action (green solid line) as function of the particle number fluctuation for a fixed value of
the quadrupole deformation Q20 = 100 b of the 234U computed with the BCPM EDF.

depends on the absolute value of the action, where for lower S(L) one can expect a smaller impact
of the dynamic approach.

• The displacement of the dynamic path toward larger 〈∆N2〉 values produces an increase of the
fission barrier compared to the static result. The absolute change can be very large, as it is depicted
in Fig. 3.3. Quoting a sentence of Shadukan et. al. in the context of a similar study, this result shows
“how limited the notion of fission barrier is” [73].

• Within the perturbative cranking approximation, the ATDHFB collective inertias (3.42) are roughly
two times larger than the one obtained with the GCM scheme (3.28). This difference enters in the
exponential of the WKB formula, leading to a large variation of the SFL. However, Table 3.1 shows
that the dynamical approach is less sensitive to the inertia scheme since the underlying differences
are compensated by the searching of a minimum of the integral action.

Similar results tho those presented in this thesis were obtained by [73, 74], with the additional outcome
that when traxiality is included as a collective variable some nuclei show a fission path restoring the
axial symmetry, i.e., the nucleus prefers to penetrate a region with higher barrier as long as the triaxial
region, where the collective inertias are higher, is avoided. The large variety of interactions used in these
dynamic studies (BCPM, Gogny, Skyrme and relativisitic mean-field models [73, 74, 76]) showed that the
impact of pairing correlations is not an artifact related to a particular interaction but a consequence of
the fission description within the EDF formalism. These dynamic studies using pairing correlations as
collective degrees of freedom gave new insights in the theoretical description of the fission process but
they also opened new questions. The most important one is probably the role of symmetry restoration
in fission calculations. As it was already mentioned in Chapter 2 the breaking of symmetries at the
mean-field level is crucial to include long-range correlations and properly describe bulk properties of the
nucleus. However a more realistic and precise results can be obtained only by including correlations
from beyond mean-field calculations and these restorations can strongly modify pairing correlations in
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Method tsf ATD (s) tsf GCM (s)
Emin 0.81× 1043 0.70× 1030

Smin(Q20, Q30) 0.44× 1042 0.64× 1029

Smin(Q20, Q40) 0.12× 1043 0.10× 1029

Smin(Q20, ∆N2) 0.18× 1023 0.21× 1019

Table 3.1: Spontaneous fission lifetimes (in seconds) of the 234U obtained with the BCPM EDF for different
fission paths and different choices of the collective variables. The second row shows the results
obtained with the minimization of the potential energy. The remaining rows show the lifetimes
obtained from the minimization of the action, using as a collective degree of freedom the
quadrupole-octupole deformation (third row), the quadrupole-hexadecapole deformation
(fourth row) and the quadrupole-particle number fluctuation (last row). The second and third
column show the results obtained with the perturbative cranking collective inertias in the
GCM (3.28) and the ATDHFB (3.42) scheme.

0 20 40 60 80 100 120 140
Q20

0

5

10

15

E
−

E
G

S
 (M

eV
)

$^{234}\mathrm{\mathsf{U}}

Static
Dynamic

Figure 3.3: Fission barrier in MeV of 234U as a function of the quadrupole moment Q20 obtained from
dynamic calculations (solid black line) and static calculations (dashed blue line) of the fission
path.
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the nucleus. Fission calculations using a linear combinations of HFB states are challenging from both
the theoretical and the computational point of view, but this effort has to be made in order to progress
towards a more realistic description of the fission process.

3.5 Dynamic vs static fission paths 37





4 Reaction rates within the Hauser-Feshbach
theory

One of the goals of this thesis is the computation of fission and neutron-induced reaction rates relevant
for r-process nucleosynthesis using the microscopic nuclear input obtained from our energy density
functional (EDF) calculations. Since we are interested in nuclei with a large mass number, where the
density of excited states is expected to be high, most of the reaction rates can be properly computed using
Hauser-Feshbach statistical theory. This Chapter is thus devoted to the basics features of this model
and its application to stellar reaction rates. We will start introducing the idea of compound nucleus
being at the basis of the statistical theory and we will derive an expression for the nuclear reaction cross
section. The next sections are devoted to the stellar reaction rates and the different ingredients required
for their calculation. Finally, the last part of this Chapter is dedicated to the limits in the applicability of
the statistical theory.

4.1 Statistical nuclear reactions

Nuclear reactions are commonly classified in terms of their timescales [81]. Fast reactions involving
few intranuclear collisions, are called direct reactions, while reactions occurring at larger timescales,
where several intranuclear collisions can take place, are known as compound reactions. Reactions whose
timescales are in between of these two regimes are generally referred as pre-equilibrium reactions.

The work of this thesis is focused on r-process nucleosynthesis occurring in neutron star mergers,
where the most important reactions are neutron captures, photo-dissociations, beta decays and fission
decays. Except for beta-decays, all the other reactions can be treated within the statistical model
describing compound nuclear reactions [82]. The main assumption of the statistical model is that the
nuclear reaction between the projectile and the nucleus occurs via the formation of a compound system
in an excited state. The excitation energy carried by the projectile is then shared among all the individual
components of the compound nucleus, which has the time to fully equilibrate before decaying. This
assumption, known as “Bohr independence hypothesis“ [83], implies that the decay of the compound
nucleus is completely independent of its formation dynamics and it only depends on the energy, angular
momentum and parity of the compound system. In the next sections we will see how the statistical
hypothesis allows to derive an expression of the reactions cross sections of a general compound nuclear
reaction.

4.1.1 Reaction channels

The main application of the statistical model is devoted to the description of binary reactions:

A + a→ CN → B + b , (4.1)

being A the target nucleus, a the projectile, CN the (excited) compound system, B the residual nucleus
and b the ejectile. Instead of solving the Schrödinger equation of all the interacting particles one can
assume that the interaction between the projectile and the target can be modeled by means of an effective
potential called “optical potential”. The incident channel is then characterized by the coupling between

This Chapter is based on Ref. [79] and [80]
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the angular momentum~la and intrinsic spin~sa of the nucleus with the spin of the target~IA. Reaction (4.1)
has then to fulfill the conservation laws considering also the parity and total energy of the system:

EA + Ea = ECN = EB + Eb Total energy conservation, (4.2a)

~pA + ~pa = ~pB + ~pb Total momentum conservation, (4.2b)
~la +~sa +~IA = ~JCN =~lb +~sb +~IB Total angular momentum conservation, (4.2c)

(−)la πAπa = (−)lb πbπB Total parity conservation. (4.2d)

being Ei the energy, ~pi the linear momentum,~Ii and~Ji the total angular momentum and πi the parity of
the particles involved in the reaction and the compound nucleus.

Another important quantity in all nuclear reactions is the so-called Q-value given as the difference in
the rest masses (or, equivalently, in the kinetic energies) after and before the reaction:

Q = (mA + ma)c2 − (mB + mb)c2 . (4.3)

Nuclear reactions with a positive Q-value release energy and are called exothermic, while those with a
negative Q-value consumes energy and are referred as endothermic. All reactions, with the exception of
elastic scattering, have a Q-value different from zero.

4.1.2 Hauser-Feshbach theory for cross sections

The cross section of a reaction can be generally defined as:

σ =
number of interactions per time

flux of incoming particles
. (4.4)

σ measures the probability of a certain reaction to occur, since all the particles passing through the area σ
will undergo a reaction. In the case of spinless particles, the cross section of a reaction from an initial
channel α decaying to the outgoing channel β can be written in terms of the scattering matrix element
Sαβ using the diffusion theory [84]:

σαβ =
π

k2
α

〈|δαβ − Sαβ|2〉 , (4.5)

being kα the wave number of relative motion. The matrix element Sα is obtained from the optical
potential effectively modeling the interaction between projectile and target nucleus. Using the Bohr’s
independence hypothesis one can rewrite Eq. (4.5) in terms of the compound nucleus formation cross
section and the probability to decay into channel β:

σαβ = σCN
α Pβ =

π

k2
α

TαTβ

∑
γ

Tγ
, (4.6)

being Ti = 1− |Si|2 the transmission coefficient of the channel i and γ all the possible decay channels
that are energetically allowed (including the entry channel α). Eq. (4.6) is the Hauser-Feshbach formula
for spinless particles also known as statistical formula since considers the decay in the outgoing channel
in terms of a statistical probabilities. This equation can be generalized to the case of several incident and
outgoing channels taking place in the reaction by summing over all the possible channels contributing to
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the reaction. The final cross section will then result from the contribution of all the partial cross sections
related to the compound levels JπCN

CN [81]:

σab =
π

k2

1 + δAa

(2IA + 1)(2Ia + 1) ∑
JCN

∑
πCN=±

(2JCN + 1)

JCN+IA

∑
ja=|JCN−IA|

ja+sa

∑
la=|ja−sa|

JCN+IB

∑
jb=|JCN−IB|

jb+sb

∑
lb=|jb−sb|

δ(a, πCN)δ(b, πCN)
T JCN

αla ja T JCN
βlb jb

∑
γ

Tγ

.
(4.7)

In the expression above the indices a and b contain all the relevant information regarding the conserved
quantities of the system described in Eqs. (4.2). The first fraction on the LHS arises from the fact that we
are interested on an averaged cross section over all the possible spin states of the compound nucleus
and δAa accounts for the case when the projectile and the target are the same particle (A = a). The
summation over JC is usually restricted up to JCN = IA + sa + lmax

a since contributions from angular
momenta higher than a certain value are negligible. For the case when the target nucleus and ejectile are
in a particular state µ and ν Aµ(a, b)Bν, we can rewrite Eq. (4.7) as:

σ
µν
ab (E) =

πh̄2

2mE
1 + δAa

(2Iµ
A + 1)(2Ia + 1)

∑
JCN ,πCN

(2JCN + 1)
Tµ

a (ECN, JCN, πCN; Eµ
A, Iµ

A, π
µ
A)T

ν
b (ECN, JCN, πCN; Eν

B, Iν
B, πν

B)

Ttot(ECN, JCN, πCN)
,

(4.8)

where E and m are the total energy and reduced mass of the initial system in the center-of-mass frame
(and therefore k =

√
2mE/h̄) and ∑γ Tγ ≡ Ttot.

4.2 Ingredients of the statistical theory

In the previous section it was shown that the calculation of reaction cross section within the statistical
model depends on the transmission coefficients. Later we will see that another crucial quantity for the
computation of reaction rates is the nuclear level density. For the sake of completeness this section is
devoted to a brief description of these two ingredients and the different approximations used in this
thesis to compute them.

4.2.1 Transmission coefficients

Depending on the reaction it is possible to distinguish between three different transmission coefficients:
particle transmission coefficients, describing the capture or emission of light particles; the gamma
transmission coefficients, related to the emission of gamma rays; and the fission transmission coefficients
for fissile nuclei.

Gamma transmission coefficients

The gamma transmission coefficients are obtained from the gamma-ray strength functions f (x, λ):

Txλ(εγ) = 2π f (x, λ)ε2λ+1
γ , (4.9)

being εγ the energy of the emitted gamma-ray, Jπ the angular momentum of the compound nucleus and
x the type of transition (either electric or magnetic) with a multipolarity λ. It exists different models
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describing the form of the gamma-ray strength. In this thesis we adopted the generalized Lorentzian
form of Kopecky and Uhl for the E1 radiation [85]. Since the compound nucleus may decay to several
final states it is necessary to introduce an effective gamma transmission coefficient summing over all the
accessible states:

T Jπ

γ (E) = ∑
x,λ

J+λ

∑
J f =|J−λ|

∑
π f

∫ E

0
dεγ Tx,λ(εγ)ρ(E− εγ, J f , π f )Θ(x, λ, π, π f ) , (4.10)

where Jπ is the initial level decaying to the final levels J
π f
f and a level density ρ(E− εγ, J f , π f ). The

function Θ(x, λ, π, π f ) is equal to 1 if π f = (−1)λπ for Eλ transitions or π f = (−1)λ+1π for Mλ
transitions and 0 otherwise.

Particle transmission coefficients

The transmission coefficients for light particles is obtained within the optical model assuming that
the interaction between projectile and target can be modeled using a complex potential. As we already
touched before, the optical potential allows the calculation of the scattering matrix Sαβ and consequently
the transmission coefficient for the entering channel α as:

Tα = 1− |Sαα| . (4.11)

Once again, due to the large number of possible final states it is necessary to define an global transmission
coefficient by summing over all the possible final states available within an arbitrary energy bin:〈

T Jπ

b,lb,jb

〉
=
∫

dE ρ(E, IB, πB)δ(b, πCN)T
Jπ

b,lb,jb
. (4.12)

The expression above, where ρ(E, IB, πB) is the level density of the residual nucleus with an excitation
energy E, implicitly assumes that all the decay channels contribute equally to the decay process, which a
reasonable approximation if the size of the energy bins is small enough. In this thesis we used local and
global parametrizations of the optical potential from Koning and Delaroche [86].

Fission transmission coefficients

The main difference in the calculation of the fission transmission coefficients and the gamma and light
particle case is that for fission we cannot establish a connection to a particular residual nucleus, but
rather we have to calculate a total fission probability given by a unique transmission coefficient. Due
to this, the concept of nuclear level density of the residual nucleus is not applicable anymore and one
should sum the probability of the nucleus to penetrate all the possible fission barriers. Obviously one
cannot compute such probability because the number of fission barriers is extremely large and we do not
know how to properly compute them, except (hopefully. . . ) for the ground-state configuration. For this
reason one introduces on top of each saddle point the so-called transition states miming all the possible
fission barriers that might be tunneled through. Each transition state is then associated with one fission
barrier, and if one assumes that the shape of the fission barrier does not change with excitation energy
the probability of penetrating the transition state at energy ε above the (ground-state) fission barrier V
from a compound energy E is equivalent to penetrate the fission barrier V from a compound energy
E− ε:

P(E,V + ε) = P(E− ε,V) . (4.13)
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The fission probability can then be computed using the WKB approximation described in Sec. 3.2:

P(E,V) = 1
1 + exp(2S(E,V)) with S(E,V) =

∫ a

b
dQ20

√
2M(Q20)[V(Q20)− E] , (4.14)

where we assumed that the quadrupole deformation is the only relevant collective degree of freedom.
Using Eq. (4.13) the fission transmission coefficient of a compound nucleus with energy E, spin J and
parity π can be written as1:

T(E, J, π) =
∫ ∞

0
dε P(E− ε)ρsad(B f − ε, J, π) , (4.15)

where ρsad(B f + ε, J, π) is the so-called saddle-point level density describing the density of levels on
top of the fission barriers B f . This level density is assumed to be the level density of the ground state
ρ(ε, J, π) with a slightly different calculation of collective effects [87].

The expressions introduced so far are in principle valid for any possible shape of the barrier, but they
do not take into account for the so-called resonant class states effects [88]. The class states effects are
sharp peaks observed in the fission probability which are associated to resonances induced by compound
nuclei located in the deformed minima (see Fig. 4.1). The simplest method to account for these effects
is assuming that the penetration through all the barriers can be factorized in terms of the penetration
of the single barriers. In the case of a double humped barrier like the one sketched in Fig. 4.1, the total
fission probability is given by the probability of crossing the first fission barrier (TA) multiplied by the
probability of fission from the second minimum (TI I). Since after tunneling the first barrier the nucleus
can either penetrate the second barrier and fission (TB) or cross back the first barrier (with a probability
TA), we have that the total fission cross section can be written as [89]:

TAB =
TA × TB

TA + TB
× FAB(E) , (4.16)

where Ti is given by Eq. (4.15). The term FAB(E) is an empirical parameter depending on Ti, the depths
of the wells and the compound nucleus energy E and it is introduced in order to enhance the fission
probability according to the excited levels of the fission isomer (the resonant class II effects) [87, 90].
The previous approach can be easily extended to a triple humped fission barrier, that is the maximum
amount of saddle points considered in most of the calculations:

TABC =
TAB × TC

TAB + TC
× FABC(E) , (4.17)

where TC is the transition coefficient of the third barrier and FABC the empirical parameter taking into
account class III states effects. In this thesis we computed the transmission coefficients using a slightly
different approach developed by [91], where the resonant class effects are included by adding a complex
potential to the unidimensional multihumped barrier localized in the deformation range corresponding
to the second minima. The fission probability is then decomposed in a direct part (Td), where the class
effects are mimicked by the complex potential, and an indirect term similar to Eq. (4.16) or (4.17) taking
into account the possibility of fissioning from the isomer (Tabs).

4.2.2 Level densities

For excitation energies above 1-2 MeV, the mean spacing of the discrete nuclear excitation energies
is so small that a description of the individual levels is not possible anymore and one has to rely upon

1 For simplicity, in this equation as well as in (4.10) and (4.12) we have omitted the summation over the discrete levels
that should replace the integral at low energies.
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Figure 4.1: Illustration of effects of the class II states in the fission penetrability for a double humped
barrier. The green dashed line on the left show the penetrability without class II effects.
Modified from [91] and [79].

a global representation based on the nuclear level density function (NLD). The level densities can be
computed either using phenomenological models (mostly based in the independent particle model)
or more microscopic approaches within the self-consistent mean-field theory (see [92] for a recent
comparison between both approaches). In this section we will briefly present the two main schemes
used in this thesis, the back-shifted Fermi gas and the constant temperature models, both based on the
Fermi Gas Model (FGM).

The Fermi Gas Model (FGM)

Generally we can define the level density function as the derivative of the total number of nuclear
excited levels N(E) below a certain excitation energy E:

ρ(E) =
dN(E)

dE
. (4.18)

The FGM is derived from the independent particle model introduced in Chapter 2 with the additional
assumption that the single-particle states are equally distributed. Using this model the level density
function of a nucleus AZ for an excitation energy U reads [93]:

ρF(U) =

√
π

12

exp
(

2
√

aU
)
)

a1/4U5/4 , (4.19)

where a is the so-called level density parameter depending on the density of single-particle states g:

a =
π2

6
g =

π2

4
A
ε f

with ε f =

(
9π

8

)2/3 h̄2

2Mr2
0

, (4.20)

being M and r0 the rest mass and radius of the nucleon, respectively. Eq. (4.19) can be extended to
include a spin and parity distribution of the level densities. Analytically it is possible to show that in the
FGM the dependence of the level density with the angular momentum projection follows a gaussian
law [93]. On the other hand, the FGM does not contain any information regarding the parity of the states,
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and therefore it is often assumed that states with positive and negative parity are equally distributed.
Thus the expression of the NLD (4.19) for a nucleus with spin J becomes:

ρF(U, J) =
1
2

√
π

12

exp
(

2
√

aU
)
)

a1/4U5/4

2J + 1
2σ3
√

2π
exp

[
− (J + 1/2)2

2σ2

]
, (4.21)

where σ ∝
√

U/a is the spin-cut off parameter.
The main drawback of the FGM is that effects beyond the independent particle picture are not taken

into account. Experiments showed that level densities exhibit odd-even effects arising from pairing
correlation as well as collective enhancements (due to vibrations and rotations) and structural effects
near the magic numbers. The odd-even effects can be partially reproduced by introducing in Eq. (4.21)
an empirical correction ∆ to the excitation energy U. This energy correction ∆ is inspired by the pairing
term in the semiempirical mass formula miming the spin-coupling effect and improves the agreement
with experimental data. Unfortunately the other deficiencies described before cannot be cured with a
similar simple prescription and semiempirical models (like the back-shifted Fermi gas or the constant
temperature models) are in order to properly describe experimental data.

Semiempirical models

The most simple semiempirical models are the Back-Shifted Fermi-Gas (BSFGM) and the Constant
Temperature (CTM) models, aiming to properly describe the density of nuclear levels at low excitation
energies. The main idea behind both approaches it to use the level density parameter a and the spin cut-
off parameter σ as free parameters that can be adjusted to reproduce experimental data. The difference
between the two models lies in the ansatz adopted for the NLD at low energies.

In the CTM the level density at low energies is described by the constant temperature law [94]:

ρT(U, J) =
1
T

exp
(

U − E0

T

)
2J + 1

2σ2 exp
[
− (J + 1/2)2

2σ2

]
, (4.22)

where the nuclear temperature T and energy E0 are additional parameters that can be adjusted to
reproduce the available experimental data. The reader shall notice that for the spin dependence the same
prescription of the Fermi gas spin distribution of Eq. (4.21) has been adopted. The ansatz in Eq. (4.22) is
used until an excitation energy UM, above which the FGM applied:

ρ(U) =

{
ρT(U, J) if U ≤ UM,
ρF(U, J) if U ≥ UM;

(4.23)

where ρF(U, J) is is the NLD for the FGM given by Eq. (4.21) including the pairing correction U → U−∆.
The unknowns E0, EM and T can be determined by imposing the continuity of the density and its
derivative in Eq. (4.23) and the reproduction of the experimental discrete levels observed at low energies.
When experimental data is not available the nuclear temperature can be obtained using a generic
empirical prescription [87].

In the Back-Shifted Fermi Gas Model (BSFGM) [95] the Fermi-Gas expression Eq. (4.21) is used down to
zero energy and the pairing correction ∆ is treated as an additional adjustable parameter. The divergence
of the equation when U = 0 can be cured writing the level densities as [96, 97]

ρB(U, J) =
1
2

[
1

ρF(U)
+

1
ρ0(U)

]−1 2J + 1
2σ2 exp

[
− (J + 1/2)2

2σ2

]
(4.24)

being ρ0(U) = a exp(1 + aU)/(48σ) and ρF(U) the level density from the Fermi gas model (4.19).
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4.3 Stellar reaction rates

4.3.1 Stellar cross sections

For reactions occurring in stellar environments one has to consider that due to the finite temperature
of the astrophysical plasma nuclei are thermally populated, i.e., they are present not only in their ground-
state but also in excited states µ. The stellar cross section is then obtained by weighting Eq. (4.8) by the
Boltzmann excitation probability:

σ∗ab =

∑
µ

(2Iµ
A + 1)e−Eµ

A/kT∗ ∑
ν

σ
µν
ab

∑
µ

(2Iµ
A + 1)e−Eµ

A/kT∗
, (4.25)

being k the Boltzmann constant. The summation over the final states ν is added because now we are
considering the probability of the compound nucleus to decay to any bound state. This requires the
replacement of the partial transmission coefficient Tν

b for the total transmission coefficients Tb:

Tb(ECN, JCN, πCN) =
λ

∑
ν=0

Tν
b (ECN, JCN, πCN; Eν

B, Iν
B, πν

B)

+
∫ E−Sb

Eλ

dEB ∑
IB,πB

Tν
b (ECN, JCN, πCN; Eν

B, Iν
B, πν

B)ρ(EB, JB, πB) .
(4.26)

The summation over all the possible states is replaced above the highest experimentally known state λ
by an integration over the nuclear level density ρ(EB, JB, πB), that is nothing else than the number of
nuclear levels per energy interval. The limits of the integrations are given by the energy of the state λ
and the difference between the total energy E and the channel separation energy Sb.

4.3.2 Stellar rates

The nuclear reaction rate, defined as the number of reactions occurring per volume and unit time, is
given by the expression:

rAa =
∫

σ(v )vAanA(pA)na(pa) dpA dpa , (4.27)

being ni(pi) the particle distribution and vAa = |~vA − ~va| the relative velocity between reactants. As
we already introduced in Sec. 4.3.1 nuclei in typical astrophysical plasma follow a Maxwell-Boltzmann
distribution:

n =
G(T)
(2πh̄)3

∫
dp exp

(
E− µ

kT

)
4πp2 , (4.28)

with E the energy of the particle, µ its chemical potential and G(T) the partition function measuring the
internal degrees of freedom of nuclei considering all the excited state i:

G(T) = ∑
i
(2Ji + 1)e−Ei/(kT) . (4.29)

Since nuclei are non-relativistic particles one has that

E = mc2 − p2/(2m) , µ = mc2 + kTη , (4.30)
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where η is the degeneracy factor. This allows to integrate the Maxwell-Boltzmann distributions in
Eq. (4.28) obtaining:

n =
G(T)eη

Λ3 with Λ =

√
2πh̄2

mkT
, (4.31)

where Λ is the so-called de Broglie wavelength.

Particles with similar mass

If the particles involved in the reaction have a similar mass one can use Eqs. (4.29) and (4.31) to express
the reaction rate (4.27) as:

raA = 〈σv 〉A,ananA , (4.32)

being 〈σv 〉 the velocity integrated cross section:

〈σv 〉A,a =

(
8

πµAa

)1/2 1
(kT)3/2

∫ ∞

0
dE σ∗A,a(E)E exp

(
E

kT

)
. (4.33)

In the expression above µAa is the reduced mass, T the temperature of the astrophysical plasma and σA,a
the stellar cross section (4.25). In charged-particle reactions the cross sections strongly depend on the
Coulomb barrier and for low energies the reactions occur via tunnel effect. In this case it is customary to
extract out the penetration factor:

P(E) = exp
(
−2πZAZae2

h̄v

)
≡ exp(2πη(E)) , (4.34)

from the cross section:

σ(E) =
S(E)

E
exp(2πη(E)) , (4.35)

and rewrite the velocity integrated cross section in terms of the S-factor S(E) and the Sommerfeld
paremeter η(E) = b/

√
E:

〈σv 〉A,a =

(
8

πµAa

)1/2 1
(kT)3/2

∫ ∞

0
dE S(E) exp

(
− E

kT
− b

E1/2

)
. (4.36)

The energy where the product of the two exponential peaks is the so-called Gamow energy and its width,
the Gamow-window, determines the region where the process is more likely to take place.

Photodissociation and reverse rates

For reactions where one of the reactant is massless (e.g. photons) or much more lighter than the other
(e.g. electrons reacting with a nucleus) the relative velocity v in Eq. (4.27) can be approximated by the
speed of light, leading to an expression of the reaction rate that depends on the density and the effective
decay rate of the target nucleus:

rAa = λA(T, ρ, µA)na with λA =
∫

dpa σvan(pa) . (4.37)
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The projectiles distribution depends on the type of particles. In case of photons it is the Bose-Einstein
distribution and the disintegration rate reads:

λγ(T) =
1

π2h̄3c2

∫ ∞

0
dE

σ(E)E2

exp(E/kT)− 1
. (4.38)

In practice calculations the photodisintegration rate is determined by detailed balance. If one assumes
that the photodisintegration and its inverse reaction capture are in equilibrium:

A + a� B + γ , (4.39)

the photodisintegration rate can be written in terms of the capture rate as [80]:
nAna

1 + δAa
〈σv 〉A,a = λγnB . (4.40)

Using the equality of chemical potentials (µA + µa = µB) together with Eqs. (4.30) and (4.31) one gets
the following expression of the photodissociation rate:

λγ =

(
mukT
2πh̄2

)3/2 GAGa

GB

(
AB

AA + Aa

)3/2

exp(−Q/kT)
〈σv 〉Aa

1 + δAa
, (4.41)

being Q the reaction Q-value, Ai the atomic weight and mu the unified atomic mass unit.

4.4 Limits of the statistical theory

The statistical Hauser-Feshbach theory is applicable whenever the number of nuclear levels per energy
unit at the compound excitation energy is large enough (≥ 5− 10 per MeV) to describe the cross section
as an average over resonances [98]. Whenever this condition is fulfilled one has that ∆E · ρ(E) � 1
for an energy interval ∆E with a nuclear level density ρ(E). Therefore the statistical theory can be
applied regardless of the mass of the involved nuclei, as far as the level density is high enough to ensure
that the compound nucleus can fully equilibrate before decaying. Thus what is extremely relevant for
establishing whether a reaction can be described using the Hauser-Feshbach theory is the excitation
energy of the compound nucleus ECN that is given by the Q-value of the reaction (4.3) plus the kinetic
energy of the projectile Ep:

ECN = Q + Ep . (4.42)

Since compound reactions dominate in the low regime of the projectile energy (≤ 20 MeV), we have
that a crucial role in determining the validity of the statistical model is played by the Q-value of the
reaction. Reactions with large Q-value imply large excitation energies of the compound nucleus, where
one may expect to have enough nuclear levels justifying the usage of the statistical theory. Also deformed
and heavy nuclei have usually high level densities also at low excitation energies, allowing to properly
describe reaction even if the Q-values are small.

For the particular case of the r-process nucleosynthesis, one of the most representative reactions is
the neutron capture on heavy nuclei. At typical temperatures around 1 GK the kinetic energy of the
neutrons is approximately 100 keV, which means that in this case the neutron separation energy has to
be large enough to excite the compound nucleus at energies with a suitable number of levels for the
statistical model. This restriction pose some doubts regarding the application of the statistical model to
neutron captures on nuclei close to the dripline, where neutron separation energies are small. In [98] it
was shown that for the neutron capture on neutron rich nuclei the statistical model can only be applied
if the temperature of the stellar plasma is ≤ 2.5 GK even though this value may change depending on
the nuclear mass model employed in the calculations. Another critical region are nuclei nearby close
shell gaps, where the density of levels is lower than in deformed nuclei. In all these cases the reaction
cross sections are dominated by direct capture and single resonances, and therefore a specific treatment
beyond the statistical model should be applied.
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5 Reaction network for r-process calculations
Stellar nucleosynthesis calculations are carried out by means of nuclear reaction networks. In these

networks the system of differential equations determining the temporal evolution of nuclear abundances
is solved for a given trajectory describing the change of the density and temperature of the stellar
plasma with time. Since the final goal of this thesis is to study the impact of our fission calculations on
the r-process abundances, this Chapter is devoted to explain the basic features of a reaction network,
with a special emphasis in the application to the r-process nucleosynthesis. We will start introducing
the system of equations for the abundance change rate and the computational schemes used for their
solution. The second part of this Chapter is devoted to the definition of the most important quantities
characterizing the evolution of the r process, while the final section is dedicated to a short description of
the thermodynamical trajectories used in our calculations.

5.1 Basics of reaction networks

Reaction networks simulate the heating due to nuclear reactions and nucleosynthesis occurring
in astrophysical scenarios. These phenomena can be related to a change in the number density of
the different nuclear species ni that in turn also depend on possible changes in the volume of the
astrophysical plasma. Since in nucleosynthesis calculations we are mainly interested in studying changes
due to nuclear reactions, we can decouple the dependence of nuclear changes on hydrodynamics effects
by studying the variations of the ratio between the individual number densities ni and the total nucleon
density:

Yi =
ni

n
, (5.1)

that is the definition of nuclear abundance of the nuclear specie i. The total nucleon density can be
written in terms of the mass number Ai (number of nucleons of the specie i) as n = ni/∑ Aini and is
approximated by the expression n ≈ ρ/mu, being mu the unified atomic mass unit. Defining the charge
number (number of protons present in the specie i) as Zi one can rewrite the conservation of the baryon
number and charge as:

∑
i

AiYi = 1 , ∑
i

ZiYi = Ye , (5.2)

where Ye = ne/n is the electron fraction representing the number of electrons per nucleon.

5.1.1 The nuclear statistical equilibrium (NSE)

In several cases of interest for nuclear astrophysics, the temperature of the stellar plasma is high
enough for reactions mediated by the electromagnetic and strong interaction to be in competition with
their inverse reaction. If a certain critical temperature is exceeded all reactions mediated by these forces
will be in equilibrium with their inverse and the matter will reach the state denoted as nuclear statistical
equilibrium (NSE). In these conditions the nuclear composition is independent of the individual reaction
rates and the nuclear abundances evolution is uniquely defined by the thermodynamic conditions and
nuclear properties of the system taking into account the restrictions imposed by the mass conservation

This Chapter is based on Ref. [79] and [80]
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and charge neutrality of Eqs. (5.2). We explicitly mentioned the electromagnetic and strong forces because
weak interactions occur at longer timescales and therefore do usually not reach an equilibrium. Besides
the thermodynamic quantities (ρ, T) it is therefore necessary to keep track of the weak interaction history
determining the evolution of the electron abundance Ẏe.

Using the conservation of mass and charge neutrality in NSE, we can express the chemical potential of
any nucleus AZ with Z protons and A− Z neutrons in equilibrium with free neutrons in terms of the
proton and neutron chemical potentials

µ(A, Z) = Zµp + (A− Z)µn . (5.3)

Since nuclei obey the Maxwell-Boltzmann statistics, we can use Eqs. (4.30) and (4.31) to rewrite the
chemical potential in terms of the abundances:

µi = mic2 + kT ln

 ρ

mu

Yi

Gi

(
2πh̄2

mikT

)3/2
 , (5.4)

and by substituting the equation above in Eq. (5.3) we can express any nuclear abundance in terms of
the proton (Yp) and neutron (Yn) ones:

Y(Z, A) =
G(AZ)A3/2

2A

(
ρ

mu

)A−1

YZ
p YA−Z

n

(
2πh̄2

mukT

)3(A−1)/2

exp
[

Be(Z, A)

kT

]
, (5.5)

where Be(Z, A) = Zmp + (A− Z)mn −M(Z, A)c2 is the nuclear binding energy. Eq. (5.5), known as
Saha equation, tells that depending on the range of temperature where the NSE takes place the system
will favour the presence of free nucleons (high temperatures), α particles (intermediate regime) or nuclei
with Z/A ∼ Ye (low temperatures).

The NSE can be applied whenever the nuclear reaction timescales are short compared to the evolution
timescale of the system. The NSE is then a good approximation for many scenario with high temperatures
(e.g. matter ejected during the initial phases of neutron stars merger) or in slowly evolving systems
(like for instance cold neutrons stars). As soon as we start to explore different astrophysical conditions
nuclear abundances become sensitive to reaction rates and individual species get connected. This
interdependence between nuclear species results in a system of equations describing the variation of
abundances, that has to be solved by means of network calculations.

5.1.2 Abundances evolution

Nuclear reactions occurring in network calculations are usually divided in three different categories
depending in the number of nuclei involved as reactants:

• Reactions involving only one nucleus, like for instance spontaneous decays, photoabsortions,
electron capture and neutrino induced reactions only depend in the density of the target nucleus
ni and the characteristic decay rate λi. As we have seen in Sec. 4.3.2, their reaction rate can be
generally written as:

ri = λini =
ρ

mu
λiYi . (5.6)

• Reactions involving two nuclei or one nucleus and one nucleon depend on the densities of both
reactants. In this case the reaction rate is given by the expression:

rij = ninj〈σv 〉ij =
(

ρ

mu

)2

〈σv 〉ijYiYj . (5.7)
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• Finally, in triple reactions like the triple-α process the rates depend on the densities of the three
species:

rijk = ninjnk〈ijk〉 =
(

ρ

mu

)3

〈ijk〉YiYjYk . (5.8)

Considering these three types of reactions we can write the time derivative of the densities as:

ṅi ≡
∂ni

∂t

∣∣∣∣
ρ=const

= ∑
j
Njrj + ∑

jk
Njkrjk + ∑

jkl
Njklrjkl , (5.9)

or to the equivalent expression for the nuclear abundances:

Ẏi ≡
∂Yi

∂t

∣∣∣∣
ρ=const

= ṅi
mu

ρ
=

∑
j
N i

j λjYj + ∑
jk
N i

jk
ρ

mu
〈σv 〉jkYjYk + ∑

jkl
N i

jkl

(
ρ

mu

)2

〈σv 〉jklYjYkYl .
(5.10)

The coefficients N i are added in order to account for the proper number of nuclei involved in the
reactions and they are given by the expressions:

N i
j = ±Ni , (5.11a)

N i
jk =

±Ni

|Nj|!|Nk|!
, (5.11b)

N i
jkl =

±Ni

|Nj|!|Nk|!|Nl|!
. (5.11c)

The numerator represents the number of nuclei destroyed (−) or created (+) in the reaction, while the
denominator avoids double counting in reactions involving identical particles.

5.2 Network calculations for r-process nucleosynthesis

In astrophysical scenarios allowing for r-process nucleosynthesis, the set of differential equations (5.10)
has to be solved for all the (thousands) nuclei involved taking into account all the possible reactions
between them. As a first, realistic approximation one shall consider that only neutron captures, photo-
disintegrations, beta decays and fission are relevant for the nuclear transformations. For simplification
we will not consider fission at this stage of the discussion, which allows to write Eq. (5.10) as:

dY(Z, A)

dt
= nn〈σv (Z, A− 1)〉n,γY(Z, A− 1) + λγ(Z, A + 1)Y(Z, A + 1)

+
J

∑
j=0

λβjn(Z− 1, A + j)Y(Z− 1, A + j)

−
(

nn〈σv (Z, A)〉n,γ + λγ(Z, A) +
J

∑
j=0

λβjn(Z, A)

)
Y(Z, A) .

(5.12)

In the equation above nn = Ynρ/mu is the neutron density, 〈σv 〉n,γ the stellar neutron-capture rate,
λγ the photodisintegration rate and λβjn the β-decay rate with the emission of j neutrons (up to a
maximum of J neutrons). If the neutron density varies slowly enough that we can consider it constant
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over the integration time-step, the system of equations in (5.12) can be solved sequentially starting from
species with lower Z. We want to recall here that the principle of detailed balance allows to relate the
photodisintegration rate with the inverse neutron capture rate [99]:

λγ(Z, A + 1) =
2G(Z, A)

G(Z, A + 1)

(
A

A + 1

)3/2 (mukT
2πh̄2

)3/2

〈σv (Z, A)〉n,γ exp
[
−Sn(Z, A + 1)

kT

]
, (5.13)

being G(Z, A) the partition function and Sn(Z, A) = Be(Z, A)− Be(Z, A− 1) the neutron separation
of the AZ nucleus.

For some particular conditions Eq. (5.12) can be further simplified. The most relevant situations are
the nucleosynthesis occurring in a (n, γ) � (γ, n) equilibrium and the steady flow approximation
that we will explain in the next sections. These approximations correspond to particular situations of
the r process and they can give some relevant insights about its general properties. However, realistic
r-process calculations must be carried using dynamic calculations in order to deal with a larger variety
of thermodynamical conditions.

5.2.1 The (n, γ)� (γ, n) equilibrium

If both the neutron density and temperature are high enough to provide enough reaction partners, we
may expect that photodissociations and neutron captures occur on shorter timescales than the β decays
that are mediated by the weak interaction. This assumption implies that we can neglect the contribution
from β decay in Eq. (5.12):

Ẏ(Z, A) = λγ(Z, A + 1)Y(Z, A + 1)− 〈σv (Z, A)〉Y(Z, A)nn . (5.14)

Since the high rates ensure the reaching of an equilibrium (Ẏ = 0) we can obtain an expression for the
ratio of the abundances between neighbouring nuclei:

Y(Z, A)

Y(Z, A + 1)
=

nn〈σv (Z, A)〉
λγ(Z, A + 1)

=

nn
G(Z, A + 1)

2G(Z, A)

(
A + 1

A

)3/2
(

2πh̄2

mukT

)3/2

exp
[

Sn(Z, A + 1)
kT

]
,

(5.15)

where the last equality was obtained using Eq. (5.13). Eq. (5.15) provides a very interesting result
regarding the abundances distribution during the r-process. For each proton number Z, the abundance
maxima can be found by approximating Y(Z, A + 1)/Y(Z, A) to one. Neglecting differences in the
ratio of the partition functions and the mass number we get that the abundance maxima only depend on
the neutron densities nn, the temperature T and the neutron separation energy Sn. This means that for
fixed thermodynamic conditions there is only one abundance maximum for each isotopic chain, and
its neutron separation energy has to be the same for all the isotopic chains. The nucleus corresponding
to the maximum is also known as waiting point (and the (n, γ)� (γ, n) equilibrium as waiting point
approximation), since the material flow has to wait for this nucleus to β decay before proceeding towards
heavier regions. The set of all the waiting points forms the so-called r-process path. Furthermore, by
replacing T and ρ in Eq. (5.15) with typical conditions of r-process one gets that the r-process path
proceeds along nuclei with constant neutron separation energy Sn ≈ 2− 3 MeV [80].

So far we have neglected β decays and consequently the connection between different isotopic chains.
This can be easily taken into account by defining the total abundance for each isotopic chain Y(Z):

Y(Z) = ∑
A

Y(Z, A), Y(A, Z) = P(Z, A)Y(Z) , (5.16)
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where P(Z, A) are the individual population coefficients given by Eq. (5.15). Considering β-decays we
can then express the (isotopic) abundance evolution as [100]:

dY(Z)
dt

= Y(Z− 1)∑
A

P(Z− 1, A)λβ(Z− 1, A)−Y(Z)∑
A

P(Z, A)λβ(Z, A)

= Y(Z− 1)λeff
β (Z− 1)−Y(Z)λeff

β (Z) ,
(5.17)

being λeff
β (Z) an effective isotopic β-decay rate. One has that Eq. (5.17) solely allows to keep track of

changes in nuclear abundances, since the abundances of the individual isotopes can be obtained using
Eq. (5.15).

5.2.2 The steady flow approximation

If the r process occurring in (n, γ)� (γ, n) equilibrium lasts longer than the β-decay lifetimes of the
involved nuclei, the abundances will reach a steady state known as β flow [101]:

Y(Z− 1)λeff
β (Z− 1, A) = Y(Z)λeff

β (Z, A) . (5.18)

This equilibrium between nuclei with charge number Z and Z + 1 is always reached if the variations
on neutron densities are much slower than the β-decay lifetimes and even without (n, γ) � (γ, n)
equilibrium. The peaks around A = 130 and 195 observed in the solar r-process abundances are an
example of accumulation of material due to the long β-decay lifetimes of nuclei with magic neutron
numbers N = 82 and 126 [80].

5.2.3 Dynamic calculations

In realistic scenarios one finds large variations of neutron densities during the r-process nucleosynthe-
sis, that do not allow the application of the waiting point approximation. Also neutron captures and beta
decays may have an impact in r-process dynamics, which cannot be taken into account in the steady
flow approximation. More sophisticated network calculations spanning a larger range of astrophysical
conditions can be carried out by means of dynamic calculations. In dynamical models the r-process path
is given by the competition between neutron captures and beta decay rates calculated for each nucleus
as a function of the baryon density, temperature and neutron density of the system. This means that in
order to perform dynamic calculations we need a detailed knowledge of the nuclear cross sections for
the whole range of astrophysical conditions where the r process takes place.

In dynamic calculations one has to solve the discretized version of the network equations (5.12):

d~Y
dt

= F(~Y) , (5.19)

where ~Y = {Yi} is the abundances vector at a given time t:

t0 −→ ~Y0 ,

t0 + ∆t −→ ~Y0 + δ~Y .
(5.20)

The main problem in solving Eq. (5.19) is that the large variety of timescales spanned by the elec-
tromagnetic, strong and weak interactions makes the network system of equations extremely stiff.

5.2 Network calculations for r-process nucleosynthesis 53



Therefore one has to use an implicit scheme in order to solve the system of equations like for instance
the Euler-backward-differentiation, where the evolution of the abundances is expressed as:

δ~Y
∆t

= F(~Y + δ~Y) . (5.21)

Since we do not know the quantity δ~Y we have to solve this set of non-linear equations by finding the
zeros of the function

G(δ~Y) = F(~Y + δ~Y)− δ~Y
∆t

= 0 . (5.22)

In practice purposes this is done by making a linear approximation at each single step:

F(~Y) +
∂F(~Y)

∂~Y
δ~Y− δ~Y

∆t
= 0 , (5.23)

and this system of linear equations is solved until the solutions convergence within the required precision
|δY| < ε. This method is equivalent to the Newton-Raphson method where the change in the abundances
is found iteratively:

δYn+1 = δYn −
G(δYn)

G′(δYn)
, (5.24)

but the verbatim usage of the equation above is avoided since it requires the inversion of the G matrix
which is not efficient. Obviously, the larger the network is the bigger the matrix equation to be solved
becomes. In most of the cases the Jacobian matrix ∂Fi/∂Yk used in the Newton-Raphson method is rather
sparse even though fission jeopardizes this sparseness by connecting species with different mass and
charge number.

5.3 Energy generation

The energy liberated by a nuclear reaction is the difference in the rest mass energy between reactants
and products inducing a change in the total kinetic energy. Thus we can compute the total nuclear energy
released in the astrophysical plasma by computing the change in the abundances of all the single species,
which in turn allows to write the thermonuclear energy rate as:

q̇ = −∑
i

mic2

mu

dYi

dt
, (5.25)

with mic2 being the rest mass energy of the i-th species. The first law of thermodynamics allows to
rewrite the equation above in terms of the change of the energy per nucleon ε and the nucleon density
n = ρ/mu:

q̇ =
dε

dt
− P

n2

dn
dt

= cV
dT
dt

+

(
dε

dn
− P

n2

)
dn
dt

, (5.26)

where cV = dε/dT is the specific heat per nucleon at constant temperature. From this last equation we
get that the evolution of the temperature with time is given by the expression:

dT
dt

=
1
cV

[
q̇− 1

τn

(
P
n
− n

dε

dn

)]
, (5.27)

where τn = 1/λd = ndt/dn is the expansion timescale. One see therefore that the change of the
energy balance induced by nuclear reactions can affect the dynamics of the r process by changing
the temperature of the system, and this should be consistently taken into account at each step of the
evolution.
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5.4 Characteristic quantities in r-process nucleosynthesis

In r-process calculations we track the evolution of the abundances from the initial nuclear statistical
equilibrium until most of the material has decayed back to stability (∼ Gy). As time evolves we want to
keep track of variations in the thermodynamic and nuclear properties of the material, which poses the
problem of identifying the most relevant quantities describing our system besides the neutron density
nn and the electron fraction Ye already introduced before.

We will start defining the averaged proton and neutron number as:

〈Z〉 =
∑
Z,A

ZY(A, Z)

∑
Z,A

Y(A, Z)
, 〈A〉 =

∑
Z,A

AY(A, Z)

∑
Z,A

Y(A, Z)
, (5.28)

where the sum is restricted to “heavy” nuclei with Z > 2 and A > 4 (i.e., all nuclei heavier then 4He).
Both quantities determine the most representative nucleus at a certain stage of the evolution. Besides
that, one can determine the number of times that the material reaches the fissioning region and decay
back to lighter nuclei (fission cycles) by studying the evolution of 〈Z〉 with time. From the previous
definition of heavy nuclei one defines the abundance of heavy (or “seed”) nuclei as:

Yh = ∑
A>4
Z>2

Y(A, Z) , (5.29)

which leads to another crucial quantity in r-process calculations, the so-called neutron-to-seed ratio:

Rn/s =
Yn

Yh
. (5.30)

This quantity indicates how many free neutrons can be captured in averaged by a seed nucleus, and
together with the neutron densities determines whether the r process can successfully proceed to heavy
nuclei. For example, if we want to produce 238U starting from 52Fe we will need a neutron-to-seed ratio
of the order of Rn/s = 186. At the time when Rn/s is equal to one we say that the r-process freezes out,
since seed nuclei on average cannot capture more than neutron each.

Other important quantities are the averaged rates, that are helpful for establishing which decay is
dominating at each stage of the evolution. The average rate for a reaction of type i can be defined as:

〈λi〉 ≡
〈

1
τi

〉
=

∑
Z,A

λi(Z, A)Y(Z, A)

∑
Z,A

Y(Z, A)
, (5.31)

being λi(Z, A) the rate of the nucleus AZ (where for the case of neutron captures one has that λn,γ =
nn〈σv (Z, A)〉n,γ). Obviously we can trivially defined an averaged timescale for a certain type of reaction
τi as the inverse of its averaged rate λi. The averaged reaction timescales allow to define the end of the r
process as the time when the beta decay rate equals the averaged neutron capture rate τλ,n = τβ. After
this moment the beta decay becomes the dominating decay channel and the material starts to decay
towards the valley of stability.

5.5 Hydrodynamical trajectories

In standard r-process calculations the evolution of ∼ 6000 nuclei is obtained by solving the system
of equations described in Sec. 5.2.3 assuming a variation in temperature and density with time. These
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can be obtained from simple analytical expressions, steady state approximation or full hydrodynamical
simulations. In this thesis we followed the last approach and performed r-process calculations based on
fluid trajectories extracted from three-dimensional relativistic hydrodynamical simulations of neutron
star (NS) mergers.

We studied the case of two neutron stars with gravitational masses of 1.35M�. In this configuration
most of the unbound material is ejected from the contact interface, being the extremely neutron-rich
ejecta originating from the inner NS crust. The evolution of the ejecta could be followed only up to a
time t0 (of the order of tens of milliseconds) due to the time-step limitations of the simulations. Thus,
after t0 we assumed an homologous expansion of the form:

ρ(t) = ρ0

(
t0

t

)3

, (5.32)

with ρ0 = ρ(t = t0).
The NS mergers (NSM) trajectories obtained from these simulations were extensively studied in [102]

for a wide range of initial densities. In this work the authors found that the trajectories can be classified
depending on the resulting competition between the depletion rate (λn) due to neutron captures on seed
nuclei and the hydrodynamical expansion rate (λd):

λn =
d(ln Yn)

dt
≈ ρYn

muRn/s
〈σv 〉n,γ , λd = −

d(ln ρ)

dt
=

3
t

, (5.33)

where 〈σv 〉n,γ is the neutron-capture rate averaged over the seed nuclei and Rn/s the neutron to seed
ratio. For trajectories with λn ¦ λd during the whole duration of the r-process (“slow trajectories”), all
the initial neutrons can be captured resulting in rather robust final abundances. Conversely, trajectories
where the material expands extremely fast (and therefore called “fast trajectories”) result in λd ¦ λn,
leaving free neutrons at the end of the r process and producing a large spread in the final abundances
distribution. In this thesis we will present results obtained using slow trajectories, since they are the
most relevant for r-process calculations.
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6 Benchmark against experimental data
One of the main aims of this thesis was to study the fission properties of superheavy nuclei, with

a particular focus to those that play a relevant role during the r-process nucleosynthesis. But before
exploring the superheavy landscape in the region far from stability where the r process takes place, we
want to estimate the quality of our results in comparison to the available experimental data. An important
point to address is the sensitivity of our calculations to variations in the fission barriers, collective inertias
and the rest of ingredients entering in the estimation of the reaction rates within the Hauser-Feshbach
statistical model. The study of these variations can help to determine which models better reproduce the
experimental data but also to understand the nuclear inputs that may have a larger impact during the
r-process nucleosynthesis. Thus in this Chapter we will perform an exhausting benchmarking of our
results against the available experimental data and we will assess the level of accuracy achieved in our
calculations using different energy density functionals, collective inertia schemes, nuclear level densities
and gamma-ray strengths. The first part of this Chapter is dedicated to the binding energies and neutron
separation energies. Later we will discuss the agreement of fission barriers and spontaneous fission
lifetimes. Finally, in the last sections we will present the results for the calculation of the neutron induced
cross sections and the alpha decay properties of superheavy nuclei.

6.1 General considerations on fission observables

It is important to notice that there are only two observables related to fission: the spontaneous fission
lifetimes and the induced fission cross sections. The former describe the fissioning of a nucleus in its
ground state while the cross sections characterize the probability to penetrate the fission barrier from an
excited state. Since fission is a tunnelling process its probability depends exponentially on the fission
barrier height and the collective inertia. In general when the fission probabilities are small one has that
the lifetimes and induced fission cross sections are very sensitive to variations in the different quantities
used for the calculation of the fission probability. As we will see during this chapter, this is the case for
the spontaneous fission lifetimes of light actinides, where the high stability of the nucleus leads to a large
span in the theoretical predictions. But in r-process calculations we are interested in nuclei where fission
is a competing decay with neutron captures, which means that the fission probabilities are large because
nuclei are excited close to the fission barrier. The theoretical description of systems fissioning close to the
fission barrier is much simpler, because the number of degrees of freedom that have a relevant impact in
the fission probability is rather small compared to nuclei that are stable against fission.

It is important to explicitly state that the fission barrier, a crucial quantity in all fission theoretical
calculations, is not an observable. This is because the experimental value of the fission barrier is
extracted from induced fission cross sections (mainly photo-induced, neutron-induced and electron
capture delayed fission) assuming a particular level density and shape of the fission barrier (see [104] for
a recent review on experimental techniques). This means that the experimental fission barrier is a model
dependent quantity and therefore not an observable.

6.2 Binding energies

We computed the binding energies of nuclei with 84 ≤ Z ≤ 120 and 118 ≤ N ≤ 250 using the
BCPM EDF and the D1S, D1N and D1M Gogny parametrizations within the Perturbative Nucleon

Some of the results presented in this Chapter are extracted from Ref. [103].
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Figure 6.1: Region of the nuclear landscape explored in this thesis. Nuclei present in the AME2012 mass
table evaluation [105] are depicted with orange squares. Nuclei with experimentally measured
fission barriers [89, 106] and spontaneous fission lifetimes [107, 108] are marked with open
circles and crosses, respectively. Nuclei for which the BCPM interaction predicts an oblate-
deformed ground state are depicted with solid circles. Dashed and dot-dashed lines represent
the heaviest isotope of each element with Sn ¦ 2 and Sn ¦ 0 MeV, respectively. Contour lines
show the highest predicted fission barrier predicted by the BCPM EDF in MeV. Figure taken
from Ref. [103].

Addition Method (PNAM) described in Sec. 2.4. Fig. 6.2 shows the differences between theoretical and
experimental [105] binding energies obtained for the four functionals as a function of mass number
(upper panels) and neutron excess N − Z (lower panels). In these plots the D1S EDF shows a drift of the
binding energies with increasing mass number and neutron excess. This trend is cured in the D1N and
D1M EDF’s by fitting the functionals to very-neutron rich systems that in turn fixes the symmetry energy.
The final result is a flatter pattern, where the deviations are less sensitive to increasing mass number and
neutron excess. Thus, one interesting consequence of computing fission barriers using different EDF’s is
that we can study possible correlations between the shape of fission barriers and the symmetry energy.
This aspect will be addressed in Sec. 6.3 exploring the variations in the fission barriers predicted by the
different EDF’s.

It is important to recall that r-process calculations are more sensitive to changes in neutron separation
energies (Sn) rather than absolute binding energies, since the former ones enter in the calculation of the
reaction cross sections. It is therefore useful to look at the differences in the predictions of Sn. For this
purpose, Fig. 6.3 shows the two-neutron separation energies as a function of the neutron number and
Fig. 6.4 shows the same quantity but as a function of the proton number. In Fig. 6.4 the lines connecting
nuclei in the same isotopic chain show some disconnections between 186 ≤ N ≤ 200, representing
unstable nuclei in the corresponding model. An example of such nuclei is given in Fig. 6.5, where the
binding energy as a function of the deformation predicted by the BCPM EDF is plotted for four different
nuclei. These nuclei have a vanishing or very small fission barrier and can be considered unstable against
fission. They are placed in a region of transition between spherical and superdeformed prolate nuclei,
where the spherical minimum has disappeared and the prolate minimum is still not developed.

Fig. 6.3 and 6.4 show that all the models predict jumps in the neutron separation energies at the
shell closures N = 126 and 184 and, in smaller magnitude, around neutron numbers N = 152 and
N = 162 (see dashed vertical lines in Fig. 6.3). These jumps in the neutron separation energies can be
very important for the accumulation of material during the r-process nucleosynthesis. This is because
the neutron capture cross sections of these nuclei decrease dramatically due to the sudden decrease in the
neutron separation energies. Due to this, nuclei in these regions suffer multiple beta decays moving the
neutron captures and the r-process path closer to stability where the half-lives are longer and material
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Figure 6.2: Binding energies differences Bthe − Bexp in MeV for the four energy density functionals as a
function of the mass number A (upper plots) and the neutron excess N − Z (lower plots).
Lines connect nuclei in the same isotopic chain.

Functional σ(Be)ee (MeV) σ(Be) (MeV) σ(Sn)ee (MeV) σ(Sn) (MeV)
BCPM 1.207 1.288 0.304 0.280
D1M 2.787 2.846 0.391 0.432
D1S 4.152 4.237 0.542 0.610
D1N 3.147 3.149 0.431 0.431

Table 6.1: Root mean square deviations in MeV between the atomic mass evaluation AME2012 [105]
and predictions for BCPM, D1M, D1S and D1N models for nuclei with 84 ≤ Z ≤ 120 and
118 ≤ N ≤ 250. The first pair of columns refer to the binding energies (Be), the second pair to
the neutron separation energies (Sn). The first and the third column refer only to even-even
nuclei.

accumulates. In order to get an estimation of the magnitude of the jump in the two-neutron separation
energy one can compute the shell gap, defined as the difference in the two-neutron separation energies
of two neighbouring nuclei ∆2n(Z, N) = S2n(Z, N)− S2n(Z, N + 2). In Fig. 6.6 we compare the energy
shell gap predicted by the four functionals as a function of proton number for neutron numbers 152, 162
and 184. We conclude that the four functionals predict very similar trends of the two-neutron separation
energies, with comparable values of the energy shell gaps and a rather smooth behaviour of S2n. It is
worth to mention that all the models predict the disappearance of the shell closure N = 184 around
Z = 102, that is reflected in the reduction of the gap at N = 184 in Fig. 6.4.

For a more quantitative comparison Table 6.1 shows the rms deviations for binding energies and
neutron separation energies between the four functionals and the atomic mass table evaluation
AME2012 [105]. From this table and Fig. 6.2 one can conclude that BCPM gives the best agreement with
experimental data and that the D1N and D1M EDF’s provide very similar results of binding energies. As
we already mentioned before, it will be interesting to see if this agreement is somehow reflected also in
the fission properties predicted by these functionals.

For some nuclei around the shell closure N = 184 the models predict a strange behaviour of the
neutron separation energies visible in Fig. 6.4. The two-neutron separation energies show an irregular
staggering that is reflected in sudden changes of the energy gap plotted in the right panel of Fig. 6.6.
Looking in detail to our calculations we traceback these irregularities to the rotational energy correction
computed using the approximation described in Sec. 2.3.5. In turn this approximation overestimates
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number predicted by the different energy density functionals for nuclei with N = 152 (left
panel), N = 162 (middle panel) and N = 184 (right panel).

the rotational correction at small deformations (Q20 = 0− 200 fm2) by 1 MeV or more in nuclei above
N = 184. This overestimation is induced by octupole deformations in the ground state of the nucleus
that increase the rotational energy correction producing a staggering in the neutron separation energies
and the shell gaps. These irregularities disappear when the nucleus is constraint to a spherical shape or
when the binding energies are computed without rotational correction. This is shown in Fig. 6.7, where
the shell gaps predicted by BCPM and D1M with the rotational energy correction are compared to those
obtained without including the correction. It is interesting to notice that the rotational correction does
not have any relevant impact in the energy gap of deformed nuclei (N = 152 and 162), while it strongly
reduces ∆2n in spherical ones with N = 184. From this study we conclude that the staggering observed
in the neutron separation energies and shell gaps around the shell closure is an artifact induced by our
approximate treatment of the rotational correction.

This spurious contribution of the rotational energy opens the more general discussion regarding
the limits of HFB theory in describing nuclei close to shell closures. The HFB model is known for its
capability to describe deformed nuclei, where the large level densities around the Fermi level allow for
pairing correlations. For nuclei with protons and/or neutrons close to magic numbers the HFB picture
reduces to HF and calculations become very sensitive to the predictions of single-particle energies, that
in general are rather poor described in energy density functionals. In Chapter 8 we will see that these
nuclei play an important role during the r-process nucleosynthesis. For example the magic neutron
number N = 184 is responsible for the accumulation of material in the fissioning region at A ∼ 280.
Our models predict that this shell closure disappears for nuclei with Z ¦ 96, that is the region where
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Figure 6.7: Energy gap in MeV as a function of the proton number predicted by BCPM and D1M for nuclei
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show the results obtained without rotational correction.

Functional σ(Be) (MeV) σ(Be)WR (MeV) σ(Sn) (MeV) σ(Sn)WR (MeV)
BCPM 1.288 2.372 0.280 0.365
D1M 2.846 5.489 0.432 0.579
D1S 4.237 6.468 0.610 0.715
D1N 3.149 5.826 0.431 0.581

Table 6.2: Root mean square deviations in MeV between the atomic mass evaluation AME2012 [105]
and predictions for BCPM, D1M, D1S and D1N models for nuclei with 84 ≤ Z ≤ 120 and
118 ≤ N ≤ 250. The first pair of columns refer to the binding energies (Be), the second pair
to the neutron separation energies (Sn). The second and the fourth column are the results
obtained without rotational corrections (WR).

we predict the r-process path to be terminated by the neutron-induced fission. Thus in order to avoid
a propagation of the artifacts in the neutron separation energies into the r-process abundances it is
necessary to remove them. A possibility would be to go beyond the mean-field prescription and make
a projection into good angular momentum. These type of calculations are beyond the scope of this
work, but they should deserve further efforts if we want to improve the quality of the nuclear input in
r-process calculations. Concerning the results of this thesis, we opted for computing the neutron induced
reaction rates using the neutron separation energies obtained without the rotational correction. For a
quantitative estimation of the impact of removing the rotational correction Table 6.2 summarizes the
deviations between experimental data and theoretical calculations of binding and neutron separation
energies. The removal of the rotational correction worsen the quality of the results, but we notice that
the impact in the neutron separation energies is relatively small which in turn gives a certain confidence
in the use of these masses for the computation of neutron induced reaction rates.

6.3 Fission barriers and isomer excitation energies

We move now to the comparison between theoretical fission barriers and experimental data. Even
though the fission barriers are not observable but model dependent quantities, the comparison can still
provide a rough evaluation of the agreement between theory and experiment regarding the shape of the
fission barrier. The fission barrier height is defined as the energy difference between the saddle point and
the ground state. For a double humped barrier, the barrier closer to the ground state is defined as inner
fission barrier while the farer is the outer fission barrier. The minimum between these two saddle points
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Figure 6.8: Left panels: inner fission barrier height (upper panels), outer fission barrier (middle panel)
and isomer excitation energies (lower panel) of six experimental known isotopic chains. The
results from BCPM (horizontal lines) are compared with experimental data of Bjørnholm [89]
(open squares) and Capote [106] (bullets). Right panels: same as left panels but comparing
predictions from the different functionals with experimental data of Bjørnholm [89] for the
Plutonium and Thorium isotopic chains.

is referred as isomer excitation energy. Fig. 6.8 shows the comparison between the theoretical predictions
of barriers heights and isomer excitation energies with the available experimental data of Bjørnholm and
Lynn [89] and Capote et al. [106]. The left panels of Fig. 6.8 show the comparison between the BCPM and
experimental data for the inner (BI) and outer (BII) fission barrier height and the isomer excitation energy
(EII). We find that BCPM reproduces the BI, BII and EII experimental values of Bjørnholm and Lynn
[89] with a rms deviation of 1.29, 0.81 and 1.22 MeV respectively. The discrepancies with the data set of
Capote et al. [106] are slightly larger: 1.51 MeV for BI and 0.97 MeV for BII, while no data is available for
EII. The differences in these values and in the experimental data plotted in Fig. 6.8 reiterate the model
dependency in the value of the experimental fission barriers.

In all the models the largest differences are found in the uranium, plutonium and americium isotopes.
For these nuclei the EDF’s tend to describe a marked increase of the three parameters with increasing
neutron number, while experimental data show a flatter trend. In general we find that all the models
predict very similar trends of the fission barriers heights and with a spread around 3 MeV. This is
shown in the right panels of Fig. 6.8, where the fission barrier heights and isomer excitation energies
of two isotopic chains are plotted as a function of the neutron number. In the picture of a nucleus as a
liquid drop the evolution of the energy with deformation is governed by the competition between the
Coulomb repulsion of protons in the nucleus and the increasing surface energy, the latter one given by
the surface energy coefficient in semi-infinite nuclear matter as [109]. Functionals with a larger value
of as are then expected to predict higher fission barriers heights due to their larger surface energy [44].
Regarding the models employed in this thesis, the functional with the largest as is D1S (20 MeV [110])
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followed by D1N (19.3 MeV [45]) and BCPM (17.7 MeV [50]). We notice that the Gogny values meet the
empirical data as = 21± 2 MeV[111] extracted from the parametrization of the experimental binding
energies using the semiempirical mass formula [112]. For the D1M model there is no available as because
semi-infinite nuclear matter calculations using this interaction have not been performed yet. Looking
at inner fission barrier heights in Fig. 6.8 we notice that indeed the differences between the functionals
reflect the hierarchy of as: D1S predict the highest barrier, BCPM the lowest ones and D1N is somewhat
in between. However, this is not the case for the outer barrier, where D1N predict larger barriers than
D1S for the heaviest Plutonium isotopes. A possible explanation for this failure of the surface argument
is that since the outer fission barriers are placed at high deformations, the quantum shell effects play an
important role and therefore the classical argument of Coulomb repulsion versus surface energy does not
apply anymore. Indeed, it would be very interesting to perform semi-infinite nuclear matter calculations
as those presented in [109] using the D1M EDF and extract its as value. D1M predicts BI very similar
to D1N and lower than D1S but its BII are the highest ones. Therefore a value of as similar to the D1N
functional will confirm this decoupling between the semiclassical regime of the inner fission barrier and
the quantum effects governing the height of the outer fission barrier.

The symmetry energies of the models are rather different: 32.0 MeV for D1S [110], 31.9 MeV for
BCPM [50], 29.3 for D1N [45] and 28.554 MeV for D1M [46]. With the exception of D1M the other
functionals predict a value of the symmetry energy in agreement with the empirical range of 29.0−
32.7 MeV obtained in Ref. [113]. Comparing these values with the plot of the fission barriers 6.8 we
cannot conclude that there is a clear correlation between these two quantities. For example, neither
the D1S and BCPM nor D1M and D1N predict similar fission barriers despite the fact that they have
similar symmetry energies. Also all the functionals predict exactly the same trend with neutron number,
despite the fact that some of them have a very different symmetry energy. It seems therefore that
there is not a correlation between the symmetry energy and the fission barrier that goes beyond the
correlation between the symmetry energy and the surface coefficient (see [114] for a discussion regarding
the correlation between these two quantities in the context of EDF). We have to mention that the range of
nuclei taken in this study is rather small and one should explore a larger set of nuclei in order to extract
more solid conclusion. Therefore in Sec. 7.1 and 7.2 we will come back to this discussion of the surface
and symmetry energy while studying the fission properties of nuclei in the superheavy landscape .

It is important to notice that none of the models used in this work is able to reproduce the experimental
trend of the EII. The magnitude and location of these superderfomed minima depend on details of single
particle states, the strength of pairing energy and spin-orbit interaction as well as Coulomb and the
surface energy [115]. Moreover some recent studies show that the fission isomer is also sensitive to the
surface symmetry energy [35, 116]. It is therefore difficult to understand which part of the functional
is responsible for the wrong trend of the isomer (and if there is only one. . . ), as it is testified by the
difficulties in reproducing this observable even when experimental data is explicitly included in the
parametrization of the functional [35].

Regarding the agreement between experimental fission barriers heights and theoretical predictions,
we notice that the PNAM method produces a staggering in the fission barrier heights that is present also
in the experimental results. We also notice that the inner fission barriers are systematically overestimated
in our calculations. This is probably due to the fact that we are imposing axial symmetry in all the
calculations, since several studies showed that triaxiality can reduce the inner fission barrier height up to
2 MeV [31, 33, 72], that in our case will improve the agreement with the experimental data.

6.4 Spontaneous fission lifetimes

After discussing the binding energies and fission barriers we will compare the spontaneous fission
lifetimes predicted by our models with the experimental data. Before starting the discussion we briefly
recall how spontaneous fission lifetimes are computed within the WKB method. All the equations
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presented here were detailed described in Chapter 3. The spontaneous fission lifetimes tsf are given by
the expression (3.5):

tsf[s] = 2.86× 10−21(1 + exp(2S)) , (6.1)

being S the integral action computed along the fission path L(Q20) between the classical turning points
a and b:

S(L) =
∫ b

a
dQ20

√
2M(Q20)[V(Q20)− (E0 + EGS)] . (6.2)

In the equation above V(Q20)− EGS is the fission barrier, E0 = 0.5 MeV [117] the energy of the collective
ground state and M(Q20) the collective inertia. The latter one can be computed using either the
ATDHFB or the GOAGCM schemes. Within the perturbative cranking approximation the expression of
the collective inertias for the different schemes is given by Eqs. (3.28) and (3.42):

MATDHFB(Q20) =
M−3

2(M−1)2 , (6.3)

MGOAGCM(Q20) =
(M−2)2

2(M−1)3 . (6.4)

M(−n)(Q20) is the energy-weighted momentum of the quadrupole generating field that can be expressed
in terms of the two-quasiparticle excitations |αβ〉:

M(−n)(Q20) = ∑
α>β

|〈αβ|Q20|0〉|2
(Eα + Eβ)n , (6.5)

being Eα and Eβ the one quasiparticle energies. The collective inertias can be also computed using the
semiempirical formula [68]:

MSEMP = µ

(
dβ20

dQ20

)2

=
0.065
A5/3 MeV−1fm−4 , (6.6)

which so far has been the only scheme used for the calculation of cross sections for r process. These
equations show that there are two types of model dependencies in the spontaneous fission lifetimes, one
that is related to the choice of the collective inertia scheme and the other to the choice of the functional.
Actually not only the fission barrier depends on the energy density functional but also the microscopic
collective inertias, since the quasiparticle energies are very sensitive to pairing correlations. In this section
we want to study the level of agreement between theory and experiment when different functionals and
collective inertias schemes are used for the calculation of the spontaneous fission lifetimes.

The spontaneous fission is a tunneling problem and the decay probability depends exponentially on
the barrier height and the collective inertia. One has therefore that variations in these two quantities can
modify the spontaneous fission lifetimes by several orders of magnitude which in turn complicates the
comparison between different theoretical predictions. During this thesis we will follow the prescription
of Ref. [118] and compare the logarithm of the ratio of theory to experiment:

Rτ = log

(
tmodel
sf

texp
sf

)
. (6.7)

The target performance R̄τ and variance στ are then obtained as:

R̄τ =
1
N

N

∑
i=1

Rτ,i , (6.8)

στ =
1
N

(
N

∑
i=1

(Rτ,i − R̄τ)
2

)1/2

, (6.9)
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R̄τ στ

ATDHFB GCM SEM ATDHFB GCM SEM
BCPM 11.583 4.691 2.036 6.447 4.236 6.126
D1M 10.030 4.728 22.779 4.405 3.177 11.448
D1S 3.622 -0.748 8.423 3.585 4.050 6.325
D1N 5.460 0.771 12.480 3.388 3.249 6.993
BCPM-r -0.007 -0.006 0.004 3.403 3.339 5.231

Table 6.3: Target performances (R̄τ) and variances (στ) of the spontaneous fission lifetimes obtained
with ATDHFB, GCM and semiempirical collective inertias described in Sec. 3.2 for the different
models. The last row shows the results obtained by multiplying the BCPM collective inertias by
a renormalization factor (0.497 for ATDHFB, 0.731 for GCM and 0.868 for SEMP, see Sec. 6.4 for
more details.) Experimental values extracted from Ref. [107, 108].

being N the number of nuclei used in the benchmark. Table 6.3 compares the experimental spontaneous
fission half-lives and theoretical calculations employing different functionals and collective inertias
schemes. The best results considering all the interactions employing microscopic collective inertias
are obtained with the D1S functional. This is because the D1S interaction predict the lowest collective
inertias, which compensates the overestimation of the fission barriers described in Sec. 6.3 and improves
the agreement with the experimental data. The lower inertias predicted by D1S are due to the its higher
pairing correlations, which in turn decrease the collective inertiasM by increasing the quasiparticle
energies in the denominator of Eq. (6.5). The opposite argument applies to the BCPM EDF predicting the
lowest pairing correlations. Due to this, its microscopic collective inertias as well as the spontaneous
fission lifetimes are very high, even though the fission barriers are smaller compared to the other energy
density functionals. On the other hand, when comparing the lifetimes predicted by the semiempirical
formula we are only sensitive to the shape of the fission barrier, and therefore BCPM has the smallest
tsf since its barriers are the smallest ones (see Fig. 6.8). This explains why BCPM predicts the highest
tsf with the GCM and ATDHFB inertias and the smallest ones for the semiempirical formula, as it is
also shown in Fig. 6.9 where the spontaneous fission lifetimes are plotted as a function of the fissibility
parameter Z2/A.

We find that the spread among different collective inertias schemes within the same interaction is
similar to the spread obtained using different interactions with the same collective inertias scheme.
This is shown in Table 6.3, Fig. 6.9 and 6.10, where the latter shows the lifetimes as function of Z2/A
obtained with the BCPM EDF for different collective inertias. From this plot we notice that the spread
among theoretical lifetimes and the discrepancy with experimental data are larger for light actinides,
while for heavier nuclei predictions become more accurate and precise. This convergence of theoretical
calculations can be understood by looking at the fission barriers plotted in Fig. 6.11. The left panel
shows the fission path of the nucleus 232Th giving the largest half-live difference between theory and
experiment. This nucleus presents a broad fission barrier together with a large collective inertia, resulting
in a large action integral S(L) where variations in the collective inertias have a strong impact in the
spontaneous fission lifetimes. On the other hand, the nucleus 262No has a much shorter barrier with
relatively small inertia between the classical turning points. This configuration reduces the value of the
action integral and the impact of different collective inertias schemes in the absolute magnitude of tsf, all
converging towards the experimental value. This decreasing relevance of the collective inertias with
increasing fission probability brings two interesting conclusions:

• during the r-process we are interested in nuclei were fission is a competitive channel (mainly via
neutron induced fission), like the 290No and 316Ds plotted in Fig. 6.11. These nuclei must have a
narrow and/or low fission barrier and small collective inertias, bringing to a level of precision in
the estimation of the fission probability closer to the one obtained for the 262No rather than the
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Figure 6.9: Comparison between experimental spontaneous fission lifetimes [107, 108] (black markers) and
theoretical predictions from BCPM, D1M, D1S and D1N functionals employing the GOAGCM
collective inertias (Eq. (6.4)). Nuclei are plotted as a function of the fissibility parameter Z2/A,
isotopic chains are connected by lines.
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Figure 6.10: Comparison between experimental spontaneous fission lifetimes [107, 108] (black markers)
and BCPM predictions employing different collective inertia schemes: ATDHFB (Eq. (6.3)),
GOAGCM (Eq. (6.4)) and semiempirical formula (Eq. (6.6)). Solid symbols are the results
obtained with the renormalized collective inertias. Nuclei are plotted as a function of the
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232Th. This means that r-process nuclei will be weakly affected by the collective inertias.

• Since nuclei with small tsf are rather insensitive to the collective inertias, we can globally renor-
malize them in order to improve the agreement of the tsf for the light nuclei without worsening
the comparison in the heavier isotopes. This normalization will be further discussed in the next
section.

Before discussing the renormalization of the collective inertias we want to make the last considerations
regarding the comparison between theoretical results and experimental data of tsf. In Fig. 6.9 and 6.10
we notice that the odd-even staggering of the fission barriers is reflected in the lifetimes in a rather
good agreement with experimental data. However it is important to notice that this staggering is
more pronounced in the experimental tsf, suggesting for a missing mechanism enhancing the collective
inertias in odd nuclei as discussed in Sec. 2.4. Also considering the differences in the functionals is quite
surprising the level of precision achieved in the prediction of the lifetimes. For nuclei beyond Nobelium
the level of agreement among models and experimental data is very high, bringing a certain optimism in
the calculation of fission probabilities in nuclei far from stability. Comparing our results with previous
studies of the spontaneous fission lifetimes, we find that the variations in tsf obtained in our models
are similar to the variations obtained with different Skyrme energy density functionals [30, 31] and the
ATDHFB collective inertia scheme. Ref. [30] shows that Skyrme functionals with higher effective mass
(m∗ ≈ 0.9) reproduce better the experimental data of fission barriers and spontaneous fission lifetimes.
The authors relate this result to the fact that a low effective mass lead to low density of single particle
states, yielding higher shell corrections and in turn higher fission barriers. Therefore, Skyrme interactions
with low effective masses (m∗/m ∼ 0.6) tend to overestimate the fission barriers and consequently the
spontaneous fission lifetimes. In our models, the functional with the highest effective mass is BCPM
(m∗/m = 1) while D1S has the lowest one (m∗/m = 0.7). We see therefore that this criteria does not
apply in our study of the spontaneous fission lifetimes, since for the ATDHFB inertias we have that D1S
is the functional giving the best result for the spontaneous fission lifetimes.

Renormalization of collective inertias

For simplicity in this study we will restrict our discussion to the BCPM EDF, but the considerations
made here also apply to the other functionals. In the previous sections we concluded that the overesti-
mation of the spontaneous fission lifetimes can be related to an overestimation of both the fission barrier
heights (Fig. 6.8) and the collective inertias (Table 6.3, Fig. 6.9 and Fig. 6.10). While the discussion of the
fission barriers has already been approached and can be related with the imposition of axial symmetry,
the discussion regarding the collective inertias is more complicated.

When discussing the absolute value of the collective inertias along the fission path one has to consider
three different aspects: the dependence of the collective inertias on the functional, the approximations
used in the computation of the collective inertias and the approach employed to compute the fission
path. We will now explain how these three aspects impact the collective inertias and their interplay in
the fission process. We already mentioned before that the overestimation of the spontaneous fission
lifetimes can be related to low pairing correlations that increase the collective inertias by reducing the
quasiparticle energies. As already suggested in [32], one could try to improve the agreement with
experimental data by including the tsf data in the fitting protocol of the pairing interaction. This could
be done for example by modifying the pairing strength in Eq. (2.69) in order to match the experimental
data. On the other hand, one should also consider the approximations employed in the derivation of
Eqs. (6.3) and (6.4). In principle the perturbative cranking approximation employed in our calculations
(see discussion in Sec. 3.3.1 and 3.3.2) is expected to underestimate the collective inertias. A recent
study [119] showed that a more “exact” calculation of the mass tensor involving the exact numerical
differentiation of the energy kernels leads to larger collective inertias. In our case such kind of calculation
will clearly worsen the agreement with experimental data. This apparent contradiction arises from
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the fact that in our model we are exploring only one degree of freedom, namely the quadrupole mass
operator Q20 as it is sketched in Fig. 6.11, and this bring us to the last point mentioned before: the
calculation of the fission path. The overestimation of the spontaneous fission lifetimes can be cured
by computing the fission path by means of the minimum action principle in a multidimensional space
including pairing as a collective degree of freedom. As it was shown in several recent papers [73, 74, 76]
and in Sec. 3.5 of this thesis the dynamic approach has a strong impact in the penetration probability and
it can drastically reduce the tsf improving the agreement with experimental data. However such method
requires multidimensional calculations exploring multiple collective variables, that unfortunately is too
demanding for being applied in systematic calculations like those presented in this paper.

For this reason we propose a renormalization of the collective inertias aimed to take into account
for all those effects neglected in the static one-dimensional picture and improve the agreement with
experimental data. The renormalization of the collective inertias shall be considered as an alternative
to other approaches like, for instance, the renormalization of the fission barriers proposed in Ref. [29].
The advantage of renormalizing the inertias is that we do not sensibly modify the fission probabilities
in nuclei that are relevant for the r-process nucleosynthesis while renormalizing the barriers will do
it. Having a renormalization method that is less “invasive” allows to maintain the predictability of
our functionals when study regions far from stability. Of course, if there is an intrinsic problem with
the functional prediction one will need to readjust the functional. The last row of Table 6.3 shows
that by multiplying the ATDHFB, GCM and SEMP collective inertias by a factor 0.497, 0.731 and 0.868
respectively we can drastically improve the agreement of the predicted tsf with experimental data and
achieve the minimum possible deviation within these models. The main impact of the normalization is
the reduction of the spontaneous fission lifetimes of light actinides (thorium, uranium and plutonium),
where the high stability against fission produced by the large values of the action integral leads to large
discrepancies with the experimental data. On the other hand, as we move towards heavier nuclei there
is a general decrease of the fission stability and therefore a smaller impact of the renormalization in the
absolute value of the fission lifetimes.

6.5 Neutron induced cross sections

Since the r-process is driven by the neutron captures one has to describe the competition between the
different decays of the compound nucleus. Thus the comparison between experimental data and our
theoretical predictions of cross sections is an important test to verify the quality of our calculations. In
this section we will discuss the results of neutron capture and neutron-induced fission cross sections
obtained employing the statistical model and the nuclear input of the BCPM EDF. We will analyze the
sensitive to the different ingredients entering in the calculation of the cross sections in order to estimate
which quantities could bring the largest uncertainties in our calculations.

Using the Hauser-Feshbach statistical theory discussed in Chapter 4 the cross section of a neutron
induced reaction can be computed using Eq. (4.8). As we discussed in Chapter 4 the theoretical estimation
of cross sections depend on several parameters (optical potentials, nuclear level densities, gamma-ray
strengths. . . ) that can be computed using multiple approaches. We decided thus to focus our discussion
to those quantities that could be more relevant for neutron capture and neutron induced fission, namely
the fission barriers, collective inertias, nuclear level densities and gamma-ray strengths. The calculations
were performed using the TALYS 1.8 reaction code1, which provides different schemes to compute the
ingredients required by the statistical model [87]. The code was explicitly modified in order to compute
the neutron induced cross sections using the microscopic collective inertias obtained with the BCPM
EDF. By varying the model used in the calculation of the quantities described before, we will quantify
the sensitivity of the cross sections to the main ingredients entering in the statistical calculation and get a
qualitative estimation of the goodness of our results.

1 http://www.talys.eu/
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Figure 6.12: Neutron-induced fission (upper panels) and radioactive capture (lower panels) cross sections
as a function of the incident neutron energy for four different nuclei. The lines show different
combinations of level densities (Back-Shifted Fermi Gas Model and Constant Temperature)
and gamma ray-strength (Kopecky-Uhl generalized Lorentzian and Brink-Axel Lorentzian)
described in Sec. 4.2.

6.5.1 Sensitivity to level densities and gamma-ray strengths

Fig. 6.12 shows the comparison between experimental data from the EXFOR library [120] and our
calculations of the neutron induced cross sections for four different nuclei as a function of the incident
neutron energy. These nuclei are chosen in order to show the different level of accuracy achieved in our
calculations respect to experimental data and they are commonly used in theoretical studies of neutron-
induced fission cross sections [29, 121]. Upper panels display the cross sections for neutron-induced
fission and lower panels for radioactive capture. The results were obtained using the GCM collective
inertias and different combinations of nuclear level densities and gamma-ray strengths. The typical
temperatures at which the r-process takes place is in the range of 0.8− 1.0 GK [102], which correspond
to an energy of the incident neutrons below 100 keV.

From this plot one can already see that there are different levels of agreement depending on the nucleus
and the type of reaction. For example, the neutron-induced fission cross sections are well reproduced
for the 235U but they are overestimated for the lower energy range of the 238U and underestimated
in the 238Pu and 242Pu. We conclude from this result that a general improvement in the description
of the cross sections cannot be obtained by a global renormalization of the fission barriers and/or
collective inertias: enhancing(reducing) the neutron-induced fission cross sections on one nucleus will
also increase(decrease) those of the other nuclei, without any sensitive betterment. On the other hand, the
relative magnitude between both reactions seems to be well reproduced, at least for the region around
100 keV. Radioactive captures are in very good agreement with experimental data (except for a slight
underestimation in the case of the 235U) which gives a certain confidence regarding the quality of our
calculations. It seems that for the 242Pu there is a decrease of the (n, γ) cross section at 80 keV that is not
reproduced in our calculations. Unfortunately the experimental information for (n, γ) at high energies
is extremely scarce and (for this nucleus) contradictory, and therefore it is not possible to extract more
solid conclusions.
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Figure 6.13: Neutron-induced fission (upper panels) and radioactive capture (lower panels) cross sections
as a function of the incident neutron energy for four different nuclei. The lines show the
results for different collective inertias schemes: ATDHFB (Eq. (6.3)), GOAGCM (Eq. (6.4)) and
semiempirical formula (Eq. (6.6)). All the calculations were performed using the BSFGM level
densities and the KUGL gamma-ray strengths.

From Fig. 6.12 we can also study the sensitivity of the cross sections to the level densities and gamma-
ray strengths. From the upper panels one can see that using the constant temperature level densities
increases the prediction of the neutron-induced cross sections compared to the BSFGM, and vice versa
for the radioactive capture. Conversely, both type of cross sections seem to be rather insensitive to the
gamma-ray strengths. The average spread in this case is around a factor two, even though variations in
the cross section increase around the saddle points of the fission barrier, specially at energies around the
outer fission barrier.

6.5.2 Sensitivity to collective inertias

The ATDHFB, GCM and semiempirical collective masses were used for the calculation of fission
probabilities (Eq. (4.14)) entering in the transmission coefficients (Eq. (4.15)). To our knowledge, this is
the first time that microscopic schemes of the collective inertias are used for the calculation of reaction
cross sections. Fig. 6.13 shows the variations of the neutron induced fission and radioactive cross sections
when these different schemes are applied. It is clear that collective inertias have a large impact in the
region where the neutron induced fission cross section are small, which means small values of the fission
transmission coefficients. This result is not surprising and actually can be related to the discussion of
the spontaneous fission lifetimes addressed in Chapter 7: if the fission transmission coefficient (i.e. the
fission probability) is small the integral action has to be large and therefore any variation in the collective
inertia will have a large impact in the fission probability (see Eq. (4.15) and (4.14)). This is consistent
with the decreasing variations at higher incident neutron energies, since as we increase the excitation
energy of the compound nucleus the probability of fissioning will increase and therefore the collective
inertias will have a smaller impact. This variation on the spread has two main consequences for the
neutron induced cross section:

• for nuclei where the neutron induced fission is the dominating channel, we do not expect any
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Figure 6.14: Neutron-induced fission (upper panels) and radioactive capture (lower panels) cross sections
as a function of the incident neutron energy for four different nuclei. Lines show the results
obtained using four different sets of fission barriers: BCPM EDF (with GCM collective inertias),
the HFB14 EDF [29], the Extended Thomas-Fermi plus Strutinsky Integral model [122] and
experimental fission barriers [106]. All the calculations were performed using the BSFGM
level densities and the KUGL gamma-ray strengths.

dependence on the collective inertias. This can be seen in the case of the 235U, where the neutron
separation energy of 236U is already larger than the maximum height of the fission barrier. Since the
nucleus after capturing the neutron is excited close (or even above) the fission barrier the collective
inertia cannot impact the cross sections.

• The collective inertias barely change the neutron capture cross sections. This is because only small
fission transmission coefficients are modified, and therefore there is almost no impact in the total
transmission coefficient Ttot entering in σ(n,γ).

Finally, looking at the low energy spectra of the 238U, 238Pu and 242Pu one can see that GCM and the
semiempirical inertias predict very similar neutron-induced fission cross sections while ATDHFB returns
much smaller values, in agreement with what observed in Sec. 6.4 for the spontaneous fission lifetimes.

6.5.3 Sensitivity to fission barriers

The last part of this section is devoted to a comparison of the cross sections obtained using different
set of fission barriers. This study has the double purpose of assessing the sensitivity to barrier shapes as
well as benchmarking the results obtained from BCPM against other theoretical models. Fig. 6.14 shows
the cross sections that we calculated using the fission barriers from BCPM, the Skyrme HFB14 EDF [29]
and the Extended Thomas-Fermi plus Strutinsky Integral model [122] (ETSFI), together with the results
obtained using experimental fission barriers [106]. The spread on the predictions obtained from different
barriers is by far the largest among all the quantities studied in this section, with variations up to two
order of magnitudes. This is also due to the fact that the transmission coefficients are computed in
different ways: BCPM and HFB14 use the full integral action in Eq. (4.14), while for the ETFSI and the
experimental sets the barriers are approximated by a double inverted parabola, leading to the analytical
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Hill-Wheeler expression PHW(E) = 1/(1 + exp[2π(V0 − E)/h̄ω]) where V0 and ω are the height and
curvature of the parabolic barrier. Respect to the other models BCPM tends to predict lower neutron
induced fission cross sections, mainly related to its higher barriers. Fig. 6.14 also shows that modifying
the fission barriers can have a huge impact in the r-process nucleosynthesis, since it not only modifies
the region where fission operates but also affects the neutron capture cross sections.

Finally, it is important to notice that the experimental barriers better reproduce the neutron induced
fission cross sections, but the agreement is in many cases around a factor two compared to the experimen-
tal cross sections (or even higher in the case of the 238Pu). This is because the values of the experimental
fission barriers are extracted from the neutron-induced fission cross sections, and therefore a particular
level density and shape of the barrier has to be assumed. This result agrees with the previous discussion
regarding the nature of the experimental fission barriers, confirming that they are model dependent and
should not be regarded as pure observables.

6.6 α decay of superheavy nuclei

So far we have restricted our discussion to neutron captures and neutron-induced fission, but in
r-process calculations also β and α decays play a relevant role. β decays lifetimes determine the speed
along the r-process path and consequently the regions where the material accumulates during the r-
process nucleosynthesis. α decay plays a relevant role at later stages of the evolution by determining the
abundances of nuclei with A ∼ 200 [102]. Moreover, both decays are an important source of readioactive
energies at timescales relevant for macronova observations (see Ref. [123] and discussion in Sec. 8.4).
Both decays require a specific microscopic description that we did not use in this thesis due to our focus
on describing the fission process. But if for β-decay rates we have to rely in experimental data and the
theoretical calculations available in the literature, in the case of α decay we can compute the half-lives
using the phenomenological Viola-Seaborg formula [124]:

log10(tα[s]) =
aZ + b√
Qα[MeV]

+ cZ + d + hlog , (6.10)

where Z is the proton number of the parent nucleus. The Qα value is obtained from the binding energies
of the alpha particle, parent and daughter nuclei as:

Qα(Z, N) = Be(Z, N)− Be(Z− 2, N − 2)− Be(4He) , (6.11)

with Be(4He) = −28.296 MeV. In this thesis we will employ the coefficients of the recent parametrization
of Ref. [125], that were obtained through a least-square fit to α-decay experimental data [48]:

a = 1.64062, b = −8.54399, (6.12)

c = −0.19430, d = −33.9054, (6.13)

with the hindrance factor

hlog =


0, for Z even and N even;
0.8937, for Z even and N odd;
0.5720, for Z odd and N even;
0.9380, for Z odd and N odd .

(6.14)
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Functional σ(Qα) (MeV)
√

σ2 〈σ〉 R̄τ στ

BCPM 0.573 2.201 1.682 0.433 1.590
D1M 1.077 3.005 1.991 1.419 1.794
D1S 0.653 2.175 1.667 -0.127 1.649
D1N 0.697 2.268 1.722 1.766 1.612

Table 6.4: Deviations between predicted alpha decay properties and experimental data for nuclei with
84 ≤ Z ≤ 120 and 118 ≤ N ≤ 250. The second column shows the Qα mean square deviations
between the atomic mass evaluation AME2012 [105] and theoretical predictions. The next four
columns show show the standard

√
σ2 deviations, mean 〈σ〉 deviations, target performances

R̄τ and variances στ of the alpha decay half-lives.

In order to determine the agreement between theoretical half-lives and experimental data we follow the
prescription of [125] and define the mean and standard deviation as:

〈σ〉 =

N
∑

i=1

∣∣∣log10(T
i
exp/Ti

the)
∣∣∣

N
, (6.15)

√
σ2 =

√√√√√ N
∑

i=1

[
log10(Ti

exp/Ti
the)
]2

N
. (6.16)

The main advantage of the Viola-Seaborg formula is that it only requires the Qα value of the parental
nucleus to compute the α-decay half-lives, which implicitly means that models giving the smallest devia-
tions of the alpha-decay half-lives are those reproducing better the experimental Qα. This correlation
can be observed in Table 6.4 summarizing the deviations between theoretical estimations of Qα and tα

and experimental data [105]. Surprisingly enough the smallest deviations are obtained with the D1S
functional while D1M returns the worst description. This is a result that goes in the opposite direction
of what suggested by the binding energies and neutron separation energies and collected in Tables 6.1
and 6.2. The problem is that D1M overbinds the astatine isotopes and underbinds the francium ones,
which in turn results in a overestimation of the Qα for the 207 – 214

87Fr isotopes between 3.5 and 6 MeV.
For a better comparison Fig. 6.15 shows the Qα predicted by the different models together with the
available experimental [105] data for three isotopic chains. From this plot we see that around the neutron
number N = 127 there is a transition in the theoretical predictions: the Qα of nuclei with N < 127 are
systematically underestimated, while those above N > 127 are overestimated. The large discrepancies
in the vicinity of N = 126 points out once again the difficulties of mean field models to describe the
region around shell closures. However one has to say that the experimental trend of Qα is quite well
reproduced by most of the models, and that the agreement in nuclei above and below the N = 126 shell
closure is certainly satisfactory.

For the alpha-decay half-lives of nuclei with Z ≥ 84, the logarithm of the mean and standard
deviations are between 1.67 and 3.00, corresponding to deviations between theoretical half-lives and
experimental data of factors 47 and 1000. These large deviations in the tα reflect the difficulties of reaching
accuracies beyond the logarithmic precision in lifetimes calculations involving tunneling processes, as it
was already mentioned before in this Chapter. Actually the Viola-Seaborg formula itself reproduces the
half-lives within a factor 6 [125], and by comparing the target performances and variances one can notice
that the deviations obtained in the tα are smaller than those obtained in the tsf without renormalization
of the collective inertias (see Table 6.3). In order to get a general overview of the competition between
spontaneous fission (SF) and alpha decay Fig. 6.16 shows the dominating channel predicted by BCPM.
The lower panels are the results obtained using the different collective inertias scheme of Sec. 6.3 and the
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Figure 6.15: Experimental [105] and theoretical Qα as a function of neutron number for three isotopic
chains: francium (left panel), protactinium (middle panel) and fermium (right panel).

upper panel shows the experimental data extracted from Ref. [105]. All the inertia schemes predict α
decay to be the dominating channel in the region 84 ≤ Z ≤ 98 and 118 ≤ N ≤ 156, in good agreement
with experimental data. However, only the ATDHFB and GCM schemes succeed in reproducing the
α-decay path that starting from the lighter region proceeds towards Z/N = 110/172. This path form
the peninsula of stability that will be discussed in Sec. 7.1. In this region the semiempirical formula
seems to underestimate the stability against the SF process, and the α decay path is interrupted by the
SF already at A = 254. One should also notice that the increasing stability around the predicted magic
neutron number N = 184 produces an island of nuclei dominated by α decay around Z = 94. Finally,
the ATDHFB is the only scheme predicting the α decay to be the dominating channel of most of the
nuclei in the island of stability placed around 300

120Uub.
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nuclei experimentally observed [105].

6.6 α decay of superheavy nuclei 77





7 Fission properties of r-process nuclei
In the previous Chpater we benchmarked our theoretical calculations of binding energies, fission

barriers, spontaneous fission lifetimes and neutron induced cross sections against experimental data. In
these Chapter we provide the fission properties of nuclei throughout the whole superheavy landscape.
The aim of this work is to quantify the variations in the fission properties of superheavy nuclei far from
stability and use the calculations obtained from the energy density functionals (EDF) as a nuclear input
in the estimation of neutron induced stellar reaction rates relevant for the r-process nucleosynthesis. The
first section of this Chapter is devoted to the discussion of the fission barriers predicted by BCPM and
the Gogny EDF’s for nuclei in the region 84 ≤ Z ≤ 120 and 118 ≤ N ≤ 250. Later we will explore the
sensitivity of the spontaneous fission lifetimes of these superheavy nuclei to variations in the quantities
determining the fission probability. We will conclude this Chapter discussing the calculation of the
neutron induced reaction rates and their sensitivity to the collective inertias and we will compare our
results with previous theoretical calculations.

7.1 Fission barriers

By looking at the general trend of the fission barriers heights it is possible to get a crude estimation of
the stability of nuclei against the fission process and the impact of shell closures in fission. It is therefore
interesting to study the evolution of the fission barriers predicted by the models for nuclei far from
stability and analyze the common features and differences in the results. Fig. 7.1 shows the maximum
fission barrier height B f as a function of proton and neutron number predicted by BCPM and the D1M,
D1S and D1N parametrizations of the Gogny EDF. We notice that all the models predict a similar trend of
the barrier height, with large variations related to the fluctuations in the shell structure. Actually, in the
four models we find four different islands of local maximum placed around nuclei 210

84Po, 268
84Po, 250

100Fm,
320
102No and 300

120Ubn. The increase of fission barriers around 210
84Po and 268

84Po are related to the presence of
the neutron magic numbers N = 126 and N = 184, leading to spherical nuclei with fission barriers up
to 30 MeV in the case of the D1S interaction. These two islands are separated by prolate nuclei and a
group of slightly oblate nuclei around Z/N = 86/176. Regions around 250

100Fm and 300
120Ubn are usually

referred as “peninsula of known nuclei” and “island of stability”, respectively [126]. The peninsula is
formed by prolate-deformed nuclei and it extends up to Z/N ≈ 110/166. On the other hand, nuclei
in the island of stability are either oblate (for lower N) or spherical (higher N). The peninsula and the
island are separated by a rather narrow region of prolate nuclei with A ∼ 280 where the fission barriers
usually decrease. Finally, the region around 320

102No is formed by strongly-deformed nuclei (β20 ∼ 0.25).
It is interesting to notice that all the models predict a region of vanishing fission barriers around 316

102Lv in
correspondence of a transition between spherical and strongly deformed nuclei (β20 ∼ 0.4). Nuclei in
this region are the unstable nuclei described in Sec. 6.2 (see Fig. 6.5) that appear above the shell closure
N = 184 when Z ≥ 100. Since during the r-process nucleosynthesis the material is accumulated around
this magic neutron number the presence of these unstable nuclei suggests a possible hindering in the
production of nuclei with N > 184.

When comparing the results obtained from the different functionals we find that BCPM predict the
lowest barriers throughout the whole superheavy landscape. This can be related to an higher value of the
effective mass m∗ compared to the Gogny functionals (see Table 7.1): higher m∗ leads to higher density
of single particle states and therefore smaller shell corrections, resulting in an reduction of the fission

Some of the results presented in this Chapter are extracted from Ref. [103].
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Figure 7.1: Maximum fission barrier height in MeV as a function of proton and neutron number predicted
by the different energy density functionals. The drip line predicted by each model is represented
by a dashed black line. The solid black lines show the heaviest isotope of each specie with
Sn ≤ 2 MeV.

BCPM D1S D1N D1M
m∗/m 1 0.7 0.75 0.746
as [MeV] 17.7 20 19.3
Esym [MeV] 31.9 32.0 29.3 28.554

Table 7.1: Effective mass m∗/m, surface energy and symmetry energy of BCPM, D1S, D1M and D1N energy
density functionals.

barriers [72]. As already mentioned in Sec. 6.3 another possible explanation is the different competition
between the surface energy and Coulomb repulsion predicted by BCPM, that has a smaller surface
energy coefficient as compared to D1S and D1N. The smaller surface energy favours the deformation
induced by the Coulomb repulsion of protons in the nucleus reducing the fission barriers [33]. Regarding
the Gogny models we notice that they all predict very similar barriers for nuclei above Z = 92. Fig. 7.2
shows the spread in the prediction of B f , defined as the maximum difference in the predictions of the
fission barrier height of each nucleus. The left panel of Fig. 7.2 shows that the spread in the prediction of
B f between D1M, D1S and D1N is below 2 MeV, and actually except for the region around the peninsula
and island of stability the differences are below 1 MeV. This result is in agreement with the fact that
the value of m∗ is very similar in the three functionals as well as the surface energy coefficient of D1N
and D1S. However one has to notice that the differences in the fission barrier heights among Gogny
functionals is rather large in nuclei below Z = 92, specially when comparing D1M with D1S. For all
nuclei below Z = 92 D1M predicts the largest fission barriers, and the differences with D1S increase
as we approach the neutron drip line at N = 184. These variations in the barriers cannot be explained
by the effective mass, that is slightly larger in D1M. We conclude therefore that these differences in the
predictions of the fission barriers arise from the treatment of loosely bound nuclei.

Concerning the implications for the r-process we notice that for the Gogny interactions the largest
spread in B f is obtained in the region of high fission barriers (Fig. 7.1 and left panel of Fig. 7.2), where
we do not expect fission to play a relevant role. However, when comparing the spread in the predictions
considering also the BCPM EDF we find that the differences are rather large for all the nuclei close to
the r-process path (right panel of Fig. 7.2). It would be very interesting therefore to study the different
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Figure 7.3: Energy window for the neutron induced fission of even-even nuclei in MeV as a function of
proton and neutron number predicted by the different energy density functionals.

abundances predicted by BCPM and the Gogny functionals and quantify the impact of these variations
of the fission barriers the r-process nucleosynthesis.

Energy window for neutron-induced fission

An important quantity for astrophysical calculations is the neutron induced fission energy window
defined as the difference between the maximum fission barrier height and the neutron separation energy
B f − Sn. In the neutron capture during the r process the compound nucleus is excited with an energy
roughly given by the neutron separation energy Sn. For a value of the neutron separation energy similar
to the fission barrier height (B f − Sn ® 2 MeV) the compound nucleus will be excited close to the top of
the fission barrier and fission. The neutron induced fission energy window gives then a first hint of the
competition between (n, γ) and neutron-induced fission.

Fig. 7.3 shows the energy window for neutron induced fission predicted by BCPM and the three Gogny
energy density functionals in even-even nuclei. Similarly to the study of the fission barrier, the neutron
induced energy window shows the same general trends in all the models. For example, there is a clear
increase of B f − Sn as we move from Sn = 2 MeV to the neutron drip line, due to the fact that the fission
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Figure 7.4: Maximum variation in the prediction of the energy window for the neutron induced fission
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drip-line (black) and nuclei with a neutron separation energy of 2 MeV (blue).

barriers tend to increase and the neutron separation energies decrease as we approach the neutron drip
line. As it was already pointed out in [127], this trend tells us that if the r-process path proceeds close to
the neutron drip line the neutron induced fission will be less dominant compared to the case when the
r-process path proceeds closer to the valley of stability. This plot also shows that the predicted neutron
magic number N = 184 plays an important role in determining the nucleosynthesis of superheavy
elements, since the decrease in the neutron separation energies after N = 184 pushes the material
towards nuclei with smaller B f − Sn. Taking the nuclei with Sn ≈ 2 MeV as rough approximation of
the r-process path, we notice that all the models predict that after overcoming N = 184 the r-process
path has to cross a region with negative B f − Sn values. This is shown in the right panel of Fig. 7.4
representing the spread in the predictions of the B f − Sn considering all the models. The r-process path,
depicted as a blue region to include all the nuclei with Sn ∼ 2 MeV predicted by the different models,
crosses a grey region where all functionals predict low values of B f − Sn. From this we conclude that
the nucleosynthesis of nuclei beyond N = 184 will be highly hindered by the neutron-induced fission,
in agreement with what already deduced from the trend of the fission barriers. Finally, it interesting
to notice that the spread in the predictions for B f − Sn (Fig. 7.4) is not very different from the spread
obtained for B f (Fig. 7.2). This result confirms the similar neutron separation energies predicted by the
different models and discussed in Sec. 6.2.

7.2 Spontaneous fission lifetimes

The trend of the fission barriers gives only a rough hint of the stability of the nucleus against the
fission process. As it was already explained in Sec. 3.2, the probability of the system to penetrate the
fission barrier is determined by a complex process where several ingredients must be taken into account
and it can not be solely determined by the height of the barrier. A more complete picture can be obtained
studying the trend of the spontaneous fission lifetimes

tsf [s] = 2.86× 10−21(1 + exp(2S)) (7.1)

and the contribution of the different terms entering in the action integral S(L) computed along the
fission path L:

S(L) =
∫ b

a
dQ20

√
2M(Q20)[V(Q20)− (E0 + EGS)] . (7.2)

We recall thatM(Q20) are the collective inertias obtained from either the ATDHFB, GOAGCM or the
semiempirical schemes, E0 = 0.5 MeV is the energy of the collective ground state and V(Q20) is the
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Figure 7.5: Decimal logarithm of the spontaneous fission lifetimes as a function of proton and neutron
number predicted by the BCPM, D1M, D1S and D1M models using the GCM collective inertias.
Dotted regions represent nuclei with tsf ® 3 s.

effective potential energy obtained by subtracting the vibrational and rotational zero-point energies from
the total HFB energy:

V(Q20) = EHFB(Q20)− εvib(Q20)− εrot(Q20) . (7.3)

As we have already discussed in Sec. 6.4 there are two different types of model dependencies in the
calculation of spontaneous fission lifetimes, one that is related to the choice of the collective inertia
scheme and the other to the choice of the functional. After assessing the variations in the predictions of
tsf for nuclei with available experimental data we want to study how these differences propagates to
nuclei far from stability. In order to do that we will perform a systematic calculation of tsf using different
energy density functionals and collective inertias schemes and study the sensitivity of the results to
variations in these quantities. For completeness we will also explore the sensitivity of tsf to variations in
E0, that mimics the effects of a renormalization of the fission barriers in the spontaneous fission lifetimes.

7.2.1 Sensitivity to different energy density functionals

We will start showing the sensitivity of the tsf to different energy density functionals. It is important to
keep in mind that the choice of the functional affects both the estimation of V as well as the collective
inertiasM. Fig. 7.5 shows the tsf predicted by the different models using the GCM collective inertias.
The spread in the results is large, specially in nuclei with large values of tsf like actinides below Z ® 98.
This is a consequence of the exponential dependence of the spontaneous fission lifetimes to the action
integral in Eqs. (7.1) and (7.2) already discussed before in this thesis (see Sec. 6.4): large values of the
action integral make the half-lives very sensitive to variations in any of the ingredients entering in the
expression of the WKB formula. We notice that the spontaneous fission lifetimes plotted in Fig. 7.5
resembles to some extent the trend of the highest fission barriers in Fig. 7.1, indicating that the maximum
height of the fission barrier is a reasonable first order estimator of the fission probability of a nucleus.

Fig. 7.6 shows the model predicting the shortest (left panels) and the longest ones (right panels)
spontaneous fission lifetime of each nucleus for different collective inertia schemes. From this plot we
could not identify a particular dominance of any model along the whole chart. For example, within the
microscopic inertias BCPM predicts the largest spontaneous fission lifetimes for nuclei below Z = 94 and
along the peninsula of stability, but its tsf for r-process nuclei are the smallest among all the functionals.
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Figure 7.6: Map of the functional predicting the shortest (left panels) and longest (right panels) sponta-
neous fission lifetimes for each nucleus. The tsf are obtained using the ATDHFB (upper panels),
GCM (middle panels) and semiempirical (lower panels) collective inertias scheme.

On the other hand, D1M predicts the longest tsf for neutron rich nuclei and the shortest ones for neutron-
deficient superheavy nuclei. The reason of these variations in the dominance is related to the evolution
of the fission barriers predicted by the models when we move towards larger proton and/or neutron
number. When the fission barriers are high and/or large enough, the differences in the tsf predicted by
the models are mainly driven by the collective inertias. Therefore, for these nuclei BCPM predicts the
longest half-lives because its collective inertias are the largest among all the functionals, as we already
discussed in Sec. 6.4. For instance, this is the case of nuclei with a rather low Z and/or N. But as we
move towards more neutron rich or heavier nuclei, the fission barriers become smaller and the impact of
the collective inertias diminishes while the relevance of the barrier increases. Therefore for these nuclei
BCPM predicts the smallest tsf because all the Gogny interactions predict larger and wider barriers than
BCPM. We have therefore that the superheavy landscape is decoupled in two regions: one where the
fission barriers are high enough and the lifetimes are dominated by the collective inertias; and another
one where the fission barriers are small and collective inertias play a minor role. In our calculations we
find that the transition can be quite well identified around the mass number A ∼ 280, above which
BCPM predicts the smallest tsf for the vast majority of nuclei.

Since the semiempirical inertiasMSEMP = 0.065A−5/3 MeV−1fm−4 only depend on the mass number
A the lifetimes obtained from the different models withMSEMP reflect the differences in the barrier
shape. We can therefore combine the lower panels in Fig. 7.6 together with the fission barriers plots of
the previous section to extract more information about the shape of the fission barrier predicted by the
different models. For example, in Sec. 7.1 we noticed that the Gogny interactions predict very similar
fission barrier heights in nuclei above Z = 92, with an average spread below 1 MeV. But looking at the
maximum spontaneous fission lifetimes predicted with the semiempirical formula (lower right panel
in Fig. 7.6) it is evident that D1M has the longest tsf for all the nuclei between S2n = 2 MeV and the
neutron dripline. This is because D1M predicts wider barriers than D1N and D1S as we increase the
neutron number N. Larger fission barriers are classically related to higher values of the surface energy
coefficient as, because when the surface energy is larger the nucleus is more stable against deformations
and the decline of the barrier becomes. This result contradicts the smaller inner barrier height observed
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Figure 7.7: Left panels: decimal logarithm of the spontaneous fission lifetimes predicted by BCPM using
different collective inertia schemes: ATDHFB (upper panel), GCM (middle panel) and semiem-
pirical formula (lower panel). Right panels: logarithm of the ratio of the spontaneous fission
lifetimes of nuclei with tsf ® 3 s for different combinations of collective inertias: RATDHFB

GCM
(upper panel); RGCM

SEMP (middle panel) and RATDHFB
SEMP (lower panel). Figure taken from Ref. [103].

in Sec. 6.3 but agrees with the larger barriers predicted by D1M in nuclei below N = 92. Once again,
it will be very interesting to determine the as of D1M, but we may affirm that the classical picture of
describing the fission process as a competition between Coulomb and surface energy is too limited to
properly describe the evolution of the fission barrier.

7.2.2 Sensitivity to collective inertias

After discussing the sensitivity of tsf to different energy density functionals, we want to focus our
attention to the variations induced by the choice in the collective inertias scheme. In order to do that
we pick the BCPM EDF as a reference functional, but the conclusions obtained in this section can be
generalized to the other models. Fig. 7.7 shows the tsf predicted by BCPM using the ATDHFB, GCM and
semiempirical collective inertias schemes described in Sec. 3.2. The vibrational energy corrections εvib
are computed accordingly to inertia scheme, except for the semiempirical inertias where we arbitrarily
choose the εATDHFB

vib (Q20) scheme. Regarding the collective ground state energy, all the lifetimes are
obtained with E0 = 0.5 MeV. Due to a certain arbitrariness in the choice of these last two parameters, the
next section will be devoted to study the sensitivity of the lifetimes on εvib and E0.

We notice that independently of the collective inertias scheme the tsf trend in Fig. 7.7 resembles the
general trend of the maximum fission barrier height plotted in the upper left panel of Fig. 7.1, as we
already pointed out with the GCM collective inertias employed in the previous section. This result
confirms that quantities like collective inertias and the shape of the barrier are responsible for local
variations in the stability of the nucleus against the fission process. Nevertheless, the choice of the
collective inertias scheme has a clear impact on the absolute value of the spontaneous fission lifetimes.
For example, the semiempirical inertias predict a substantial larger amount of nuclei with tsf ® 3 s, that
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is the timescale at which the r-process operates from the onset of neutron captures till the exhaustion
of all neutrons. Due to the inclusion of the time-odd response of the nucleus to small perturbations of
the deformation, the tsf predicted by the ATDHFB scheme are systematically larger than the GCM ones.
We also notice that the ATDHFB inertias are larger than those obtained with the semiempirical scheme
for the vast majority of the nuclei. There is only a small set of nuclei where the lifetimes predicted by
GCM are larger than the ATDHFB ones. These nuclei correspond to the most extreme case of instability,
with almost vanishing fission barrier and tsf ∼ 10−21 s, where the rotational energy correction εrot(Q20)
plays a leading role in determining the SF lifetimes. For nuclei with Z ≤ 96 semiempirical lifetimes
lie in between of the ATDHFB and the GCM lifetimes, while for nuclei with Z > 96 the semiempirical
lifetimes become smaller than the GCM ones.

The larger discrepancies among the different schemes are found in the region where the fission
lifetimes are extremely high (Z ® 96). Due to the stability of these nuclei against the fission process
their fission decay will not play a relevant role during the r-process nucleosynthesis. Since we are
interested in nuclei relevant for r-process calculations, in the following we will restrict the discussion to
nuclei with tsf ≤ 3 s. For a more detailed comparison the right panels of Fig. 7.7 show the ratio of the
lifetimes computed with different collective inertia schemes: ATDHFB to GCM (upper panel), ATDHFB
to semiempirical inertias (middle panel) and GCM to semiempirical inertias (lower panel). The values
shown in this plot correspond to the quantity

RM1
M2 = log

(
tsf(M1)

tsf(M2)

)
, (7.4)

being tsf(Mi) the spontaneous fission lifetimes computed using the collective inertiaMi. For these
nuclei the average difference in the SF lifetimes using different inertias schemes is between one and three
orders of magnitude, which in principle may be related to the logarithmic precision of the half-lives
obtained for tunneling decays. The largest differences are found between the ATDHFB and semiempirical
schemes in nuclei lying between the r-process path and the neutron drip-line and around the shell closure
N = 184. Since the former is a relevant region for r-process nucleosynthesis, one could expect that such
variations in the penetrability may have an impact in the final r-process abundances. This hypothesis will
be further explored in Chapter 8 while studying the sensitivity of the r-process abundances to different
collective inertias.

7.2.3 Sensitivity to the collective ground state energy and zero-point energy correction

The collective ground state energy E0 represents the true ground-state energy obtained after consider-
ing quantal fluctuations in the collective degrees of freedom. It plays an analog role to the zero-point
energy h̄ω/2 of the harmonic oscillator and in principle could be computed as half of the square root of
the potential energy curvature around the minimum divided by the collective inertia. However in several
applications it is choose as a free parameter or kept fixed at some reasonable value. In this thesis we
follow the last approach and set E0 = 0.5 MeV. It is interesting to study the sensitivity of the spontaneous
fission lifetimes to E0 because we can explore with more detail the impact of variations in the fission
barriers and mimic the effect of a renormalization the fission barriers. Fig. 7.8 shows the logarithm of the
lifetimes ratio of 0.5 to 1.5 MeV computed with the ATDHFB, GCM and the semiempirical inertias. We
notice that for many nuclei the sensitivity of tsf to E0 is comparable or even larger than the sensitivity
to the collective inertias. This is because nuclei plotted in Fig. 7.8 have relatively short barriers and
usually with a complex shape presenting multiple humps, like in the case of the 290No plotted in Fig. 6.11.
As it was already extensively studied in Ref. [128], the presence of a second fission isomer increases
the spontaneous fission lifetimes by several orders of magnitude. By increasing the E0 to 1.5 MeV
the isomer can be shifted below the ground-state energy of the nucleus, and therefore the lifetimes
are strongly reduced since the third hump does not contribute anymore to the penetration probability.
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Figure 7.8: Sensitivity of the spontaneous fission lifetimes to different values of the collective ground-state
energy log10 [tsf(E0 = 0.5 MeV)/tsf(E0 = 1.5 MeV)] computed with BCPM and different col-
lective inertias: ATDHFB (upper panel), GCM (lower panel) and semiempirical inertia formula
(lower panel). Figure taken from Ref. [103].
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Figure 7.9: Logarithm of the ratio of the spontaneous fission lifetimes of ATDHFB to GCM vibrational
energy correction εvib computed using the semiempirical collective inertias and the BCPM
functional. Figure taken from Ref. [103].

More in general this result agrees with the study of Sec. 7.2 where we concluded that the spontaneous
fission lifetimes of nuclei with small barriers are more sensitive to the topology of the barrier than to the
collective inertias. It also suggests that the renormalization of the barriers may strongly influence the
location of the region where the r-process path is terminated by the neutron-induced fission.

We conclude this discussion showing the impact of the vibrational zero-point energy correction εvib
on the spontaneous fission lifetimes. Fig. 7.9 shows the logarithm of the ratio of tsf computed with the
same semiempirical inertias and two different εvib calculations, the ATDHFB and GCM scheme:

εATDHFB
vib (Q20) =

G(Q20)

MATDHFB(Q20)
, (7.5)

εGOAGCM
vib (Q20) =

G(Q20)

MGOAGCM(Q20)
, (7.6)

where G(Q20) is the overlap width between two configurations with similar quadrupole deformations:

G(Q20) =
M−2

2(M−1)2 . (7.7)

M(−n)(Q20) is the energy-weighted momentum of the quadrupole generating field that can be expressed
in terms of the two-quasiparticle excitations |αβ〉:

M(−n)(Q20) = ∑
α>β

|〈αβ|Q20|0〉|2
(Eα + Eβ)n . (7.8)

We find that the tsf computed with the ATDHFB εvib are usually between 1 and 2 orders of magnitude
larger than the GCM ones, but these variations induced by the zero-point energy correction are small
compared to the sensitivity of the lifetimes to different collective inertia schemes and collective ground-
state energies. This is because the vibrational zero-point energy corrections depend weakly on Q20 and
therefore the contribution of this quantity in Eq. (7.3) does not substantially modify the fission barrier.
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7.3 Reaction rates

In order to study the impact of our results on the r-process nucleosynthesis we use the binding
energies, fission barriers and collective inertias presented in this Chapter as a nuclear input for the
calculation of stellar reaction rates. In this thesis the reaction rates are computed following the Hauser-
Feshbach statistical model described in Chapter 4. We briefly recall that in astrophysical plasma nuclei
exist in both their ground and excited states, where relative populations of the excited levels obey a
Maxwell-Boltzmann distribution. For a neutron induced reaction, the stellar reaction rate is obtained
by folding the (stellar) reaction cross section σ∗ of Eq. (4.25) with a Maxwell-Boltzmann distribution of
the relatives velocities between targets and neutrons [129]. In this thesis we want to derive a complete
set of neutron induced reaction rates relevant for r-process calculations employing the nuclear input
consistently computed from the same energy density functional. Ideally we would like to perform these
calculations using all the functionals described along this thesis, and study the variations in the r-process
nucleosynthesis obtained from the different sets of reaction rates. As a first step towards this systematic
study of the role of superheavy nuclei in the r process, we computed the reaction rates using the nuclear
outcome of the BCPM EDF. This section is thus devoted to explore the sensitivity of neutron induced
reaction rates to different collective inertias schemes, employing for the first time microscopic collective
inertias in the calculation of the fission transmission coefficients.

Fig. 7.10 shows the dominating decay channel, defined as the channel with the biggest decay rate,
as a function of proton and neutron number for nuclei in the superheavy landscape. Panels a), b) and
c) are the results obtained using the BCPM EDF and the ATDHFB, GCM and semiempirical collective
inertias schemes, respectively. All the calculations are obtained employing the back shifted Fermi gas
model [95] for the level densities and the Kopecky-Uhl generalized Lorentzian gamma-ray strengths [85].
For comparison, the results obtained using the HFB14 EDF [29, 130] are shown in panel d)1. The rates
are obtained for typical conditions of r-process nucleosynthesis in neutron star mergers with T = 0.9 GK
and nn = 1.0× 1028 cm−3 [102]. As it was already expected all the models predict that in the relevant
region for the r-process nucleosynthesis, where the neutron separation energies are Sn ∼ 2 MeV, the two
competing channels are the neutron induced fission (n, f ) and the radioactive capture (n, γ). Neutron
captures dominate below Z = 100 but for higher proton numbers fission is the dominating decay. As
already deduced from the neutron induced energy window (see the discussion in Sec. 7.1), the critical
region for the termination of the r-process path is above the N = 184 shell closure, where the r-process
path enters in a region with low fission barriers where all the models predict the neutron induced fission
to be the dominating channel.

It is interesting to study the differences in the predictions obtained from the collective inertias schemes.
In Sec. 6.4 and 7.2 we showed that the ATDHFB predict the largest collective inertias among all the
models. The increase of the collective inertias reduces the fission probability yielding to lower fission
cross sections and reaction rates. Thus, the reaction rates computed with the ATDHFB should reflected a
larger dominance of the neutron capture over the neutron induced fission. However, along this thesis
we discussed several times that the collective inertias have a relevant impact only in nuclei with relative
small fission probabilities and that the sensitivity of the cross sections decrease as we increase the
excitation energy of the compound nucleus. We deduce therefore that collective inertias will have a
relevant impact only in those nuclei where the barriers are small enough allowing the fission decay to
be a competing channel, but at the same they are large enough to reflect the impact of the collective
inertias. One can check this hypothesis by looking at Fig. 7.10, where we notice that the difference in the
BCPM predictions are mainly localized in the region between Sn = 2 MeV and the neutron drip-line,
where B f − Sn = 2− 4 MeV, while the rest of the landscape does not show any relevant difference. The
results obtained with both the GCM and the semiempirical inertias suggest the possibility that above

1 Results in panel d) of Fig. 7.10 are available at the url http://www.astro.ulb.ac.be/pmwiki/Brusslib/Talys, except
for the spontaneous fission rates. These are obtained using the fission barriers present in the TALYS 1.8 code [87] together
with the semiempirical inertias [29]. Alpha-decays for this model are not considered in this plot.
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nuclei with ∼ 280 the fission path will be terminated by neutron induced fission. On the other hand, the
ATDHFB masses allow for a corridor between the Sn = 2 MeV and the neutron dripline where neutron
captures are dominating. However, the material may never reach this narrow corridor in which (n, γ)
dominates over (n, f ) due to the even larger (n, 2n) rates predicted by the models. We can conclude
then that independently of the computational scheme the production of nuclei heavier than N > 184
will be strongly hindered due to the dominance of neutron induced fission. Comparing our results with
the HFB14 calculations, we notice that the latter are closer to the ATDHFB predictions since they predict
a larger dominance of (n, γ) over (n, f ). However, also in these results the production of superheavy
nuclei above N = 184 may be limited by the presence of neutron induced fission and (n, 2n).

Regarding the other decay channels we find that only spontaneous fission may play a relevant role for
nuclei where the fission barriers are below 1 MeV. This conclusion however does not take into account the
possible role played by beta-delayed fission decays, which in principle should overcome the spontaneous
fission process when the material will start to move towards stability by means of beta decays. We also
computed the rates for the photo-induced fission process (γ, f ) but we find that it does not play any
significant role. We will come back to this point during the discussion of the r-process calculations in the
next Chapter.
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8 Impact of fission on r-process nucleosynthesis
in neutron star mergers

The final goal of this thesis was to study the impact of fission on the r-process nucleosynthesis
occurring in neutron star mergers. As we will discuss during this Chapter, estimating the region in the
nuclear chart where fission occurs and the amount of material accumulated in the fissioning region are
two crucial ingredients in the prediction of r-process abundances. Ideally we would like to estimate
how the uncertainties for the predicted fission properties affect the r-process nucleosynthesis by using
several sets of fission and neutron-induced rates, each of them consistently computed from the same
model. We are currently working towards this major goal, and in this Chapter we will present the
nucleosynthesis calculations obtained using two different calculations of reaction rates, one of which
is the BCPM set introduced in the previous Chapter. We will start giving a general overview of the
role played by fission during the r-process and discussing those features that are commonly observed
in recent network calculations. Afterwards we will present the r-process nucleosynthesis calculations
predicted with the BCPM rates and compare our results with those obtained using a different set of
reaction rates. Finally the last part of this Chapter is devoted to analyze the impact of our calculations in
the production of radioactive energy at timescales relevant for macronova observations. Since several
of the results presented in this Chapter are still preliminary, we will also discuss which aspects of this
study should be further explored.

8.1 The role of fission in r-process nucleosynthesis

The rapid neutron capture process, or r-process, is responsible for the production of roughly half of
the nuclei heavier than iron that are observed in the Universe [1]. Despite the fact that its astrophysical
site is still unknown, recent simulations suggest the merger of two neutron stars (NSM) as a likely
candidate for the occurrence of this process [131]. In NSM a large amount of material, between 10−3 and
10−2M� [20, 21, 132], can be ejected during the dynamical (prompt) phase from the contact interface of
the neutron stars and the surface regions close to the orbital plane. This material is extremely neutron
rich and the largest part of it (∼ 90% − 95%) is converted in r-process nuclei with a distribution
resembling the pattern observed in the solar system [102, 133]. The radioactive decay of this r-process
nuclei is expected to trigger electromagnetic transients in the optical and infrared bands, also known as
“macronova” or “kilonova”, that if observed would represent the first detection of r-process material in
situ [14, 16, 134].

In the last years there have been several studies exploring the sensitivity of the r-process abundances
in NSM to different astrophysical scenarios [19–21] and variations in the nuclear input [102, 135–137]. All
these calculations show that if NSM is the actual site for the r-process nucleosynthesis, the appearance of
fission is unavoidable. This is a natural consequence of the large neutron-to-seed ratio required during
the r-process that allows the seed nuclei to become heavier and heavier until they become unstable
against fission. Once the r-process path reaches this fissioning region the material decay back to lighter
nuclei, where the fission fragments can capture neutrons giving rise to the so-called fission cycling. The
number of fission cycles occurring during the r-process can be estimated by looking at the temporal
evolution of the average mass number 〈A〉 as it is shown in Fig. 8.1. From this plot we can see that
during the first second after the ejecta the material reaches the fissioning region and is cycled back to
lighter nuclei a total of three times. Over time the neutron density (nn) decreases yielding to a fall in
the neutron-to-seed ratio (nn/s). When nn/s = 1, seed nuclei can not capture on average more than
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Figure 8.1: Time evolution of the averaged mass number 〈A〉 (red line, left axis) and neutron densities
(black line, right axis) in cm−3, for a representative trajectory of the merger of two NS with
1.35M�.

one neutron each, and one says that the r-process freezes out. After this moment the cycling is halted
and the material starts to β decay to stability and fission to light nuclei. Even though these results
correspond to a particular trajectory based on a three dimensional relativistic simulation of the merger
of two NS with 1.35M�, the evolution described before is a common feature in all the simulations of
r-process nucleosynthesis occurring in the dynamical ejecta of NSM. The typical number of fission cycles
is estimated to be around two and three, depending on the initial neutron-to-seed ratio.

Considering the scenario presented before it is clear that fission plays a crucial role during the evolution
of the r-process nucleosynthesis in NSM. In Ref. [102] it was shown that when the amount of material
accumulated in the fissioning region at the freeze-out is much larger than the amount of material
accumulated around the second peak, the final abundances below the third peak are insensitive to
the initial astrophysical conditions. The reason for this is that fission yields are virtually insensitive to
particular thermodynamic conditions, and therefore the spread in the abundances pattern produced by
fissioning nuclei is very small. This robustness of the r-process abundances is a very appealing feature
since it could explain the presence of nuclei with Z ≥ 40 in proportions similar to solar observed in
metal poor stars [22]. In Chapter 7 we showed that the fissioning region relevant for the r-process is
located above the neutron shell closure N = 184, in agreement with other recent studies [102, 136]. The
amount of material accumulated in this region depends on the shell gap and the beta decay half-lives of
nuclei with N = 184. Once the r-process path overcomes this waiting point it enters in a region where
nuclei are predicted to decay by fission populating the region around mass number 120 ≤ A ≤ 140.
The distribution of fission fragments is therefore a crucial ingredient in the shaping of the r-process
abundances, also because it provides a non-negligible source of free neutrons that can be captured by
seed nuclei at the latest times of the evolution shifting the position of the peak at A ∼ 195 [135]. These
neutrons are emitted by the fission yields having a Z/A ratio similar to the one of the parental nucleus.
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Figure 8.2: Fraction of the total radioactive energy emitted by fission (orange line, left axis) and neutron-
to-seed ratio (black line, right axis) as a function of time for a representative trajectory of the
merger of two NS with 1.35M�.

Finally, fission can be an important source of energy generation during the neutron irradiation and when
the material starts to β decay to stability [136]. Fig. 8.2 shows the contribution of fission to the total
radioactive energy during the first tens of seconds after the ejecta. Before reaching the freeze-out fission
contributes up to a 20% to the total radioactive energy, and this contributions increases up to a 50% after
the freeze-out when the material starts to β decay triggering β-delayed fission. As the material moves
closer to the stability the fission contribution diminishes, and it does not seem to sensibly contribute at
timescales relevant for macronova observation (∼ days to weeks). This aspect will be further studied in
Sec. 8.4 of this Chapter.

Fig. 8.3 shows the density and temperature profile of the trajectory used in this Chapter. As discussed
in Ref. [102], the evolution of the temperature is driven by the fact that at high densities the equation
of state (EoS) is dominated by the ideal gas component of nuclei. At early times the temperature
decreases due to the fast expansion timescale, which in turn determines when the temperature reaches
its minimum. After that, the temperature starts to increase until the point when the EoS becomes
dominated by radiation. The dominance of the radiation implies a large specific heat, that reduces the
efficiency at which the energy generation contributes to the temperature increase flattering the maximum
in temperature [102].

8.2 r-process abundances from BCPM rates

We will now present the results of our r-process nucleosynthesis calculations for matter dynamically
ejected in NSM. Before analyzing the outcome obtained from our simulations we briefly introduce
the nuclear physics inputs of the reaction network used in this thesis (for further details regarding
the reaction network we refer to the discussion in Chapter 5). We employ the reaction network of
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Figure 8.3: Evolution of the density (upper plot, purple line, left axis) and temperature (lower plots,
orange line, left axis) for the trajectory used in this study. The black line in both plots shows
the evolution of the neutron-to-seed ratio.
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Ref. [102] covering the nuclear chart up to 270
120Uub. For nuclei above Z ≥ 84 we use the neutron captures,

photo-induced fission, spontaneous fission and alpha-decay rates obtained from the BCPM EDF and
presented in Chapter 7. The photodissociation rates are obtained from the neutron-captures rates using
the detailed balance discussed in Sec. 4.3.2. Nuclei below polonium are not expected to contribute
via fission decay [136], and we use the neutron-induced reaction rates from Ref. [121], that are based
on the Finite Range Droplet Model (FRDM) nuclear masses [138] and the Thomas-Fermi (TF) fission
barriers [139]. From now on we will refer to this set of neutron-induced rates as FRDM+TF. We use the
compilation of beta-decay and beta-delayed neutron emission rates of Ref. [140] derived from QRPA
calculations on top of the FRDM nuclear mass model. These beta-decay rates were used in Ref. [127] to
compute the beta-delayed fission rates employed in our calculations. In the first part of this study we
will focus the discussion on the BCPM results obtained using the ATDHFB collective inertias and the
comparison with the predictions obtained using the FRDM+TF rates, and we keep the analysis of the
sensitivity to different collective inertias schemes for the last section.

8.2.1 BCPM vs FRDM+TF

We have performed nucleosynthesis calculations based on a smoothed-particle trajectory extracted
from a three-dimensional relativistic simulation of a binary system of two neutron stars with 1.35M�
(see discussion in Sec. 5.5). The initial composition of the material is determined by nuclear statistical
equilibrium with an initial temperature of 6 GK, ρ = 1.2× 1012 g cm−3 and electron fraction Ye =
4.73× 10−2, and we follow the evolution of the system until all nuclei decay to stability. Fig. 8.4 shows
the r-process abundances as a function of the mass number A obtained from the BCPM reaction rates
at three different times: when the r-process freezes out (left panel), defined as the moment when the
neutron-to-seed ratio becomes one and seed nuclei cannot capture in average more than one neutron
each; the time when the averaged beta-decay rate equals the neutron capture rate (middle panel) and
the material starts to decay back to stability; and finally at 1 Gyr (right panel), when the nuclei that are
left can be considered to be stable. The BCPM abundances are compared with those obtained using the
FRDM+TF neutron capture rates, and the solar r-process abundances are plotted to guide the eye. We
stress once again that for nuclei below Z = 84 the nuclear input is the same in both calculations, which
allows to study the role that nuclei above bismuth play in the r-process nucleosynthesis.
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Before analyzing the differences between both calculations we will discuss the general features in the
evolution of the r-process abundances and introduce some of the nomenclature used in the following
sections. Distributions at freeze out show one sharp peak at A ∼ 195 (the so-called third peak) produced
by nuclei with a magic neutron number N = 126. These nuclei have beta-decay half-lives that are long
enough to allow the accumulation of material already at this stage of the evolution. On the other hand,
the second peak (A ∼ 130) produced by nuclei at shell closure N = 82 is only shaped at later times,
when the material coming from fission yields starts to populate this region. The main contribution from
fission is given by nuclei with N = 184 at A ∼ 280, as testified by the peak in the abundances present
at the freeze-out and when τ(n,γ) = τβ. Finally, the rare-earth peak at A ∼ 160 and the lead peak at
A ∼ 208 produced by the α-decay of heavier nuclei are also visible in the final abundances.

Regarding the differences in the abundances predicted by BCPM and FRDM+TF in Fig. 8.4 we notice
the following aspects. At the freeze-out the predictions start to differ at A = 256, where the dominant
contribution comes from the 256

84Po. The neutron number of this nucleus reflects the extreme neutron
rich conditions achieved by the material at this early stage of the evolution. After this point the BCPM
abundances show a strong odd-even staggering, specially at the time when τ(n,γ) = τβ. The reason of
this staggering is related to an odd-even effect in the neutron-capture rates arising from the opening
of the (n, 2n) channel. The neglection of this channel in the network calculations produce a pile up
of the odd-even effect in the abundances as a function of the mass number, that is reflected in the
strong odd-even staggering visible in Fig. 8.4. We are currently working to include this channel in our
calculations, but this study was not finished by the time of writing this thesis.

The two calculations also differ in the region where the material accumulates. Looking at the time
when τ(n,γ) = τβ we notice that FRDM+TF shows a peak around A = 257 related to the larger shell gap
predicted by the FRDM mass model at N = 172 (see left panel of Fig. 8.5). The decay of this material
produces an enhancement of the abundances below the second peak (A ∼ 120) visible in the pattern
at 1 Gyr. Conversely, at the freeze-out the abundances predicted by BCPM show a larger peak around
A = 280 corresponding to nuclei around the neutron magic number N = 184. We notice that around
this shell closure BCPM predicts fission barriers that are in average 2 MeV higher than those predicted
by TF. The higher fission barriers combined with a larger shell gap (see right panel of Fig. 8.5) allow for a
larger accumulation of material in this heavy region. Later these nuclei decay by fission increasing the
abundances above the second peak A ∼ 130. In Fig. 8.6 we can see in more detail how the abundances
predicted by BCPM reach heavier nuclei compared to FRDM+TF at the time when the neutron-to-seed
ratio is equal to one. These nuclei correspond to the corridor described in Sec. 7.3 where neutron captures
dominate over the neutron induced fission. However, a larger accumulation of material in this region is
inhibited by the rather narrow neck at Z/N = 100/190 that the r-process path has to pass in order to
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Figure 8.6: r-process abundances at the freeze-out predicted by BCPM (upper plots) and FRDM+TF models
(lower plots). Contour plots show the abundances as a function of the neutron and proton
number, where empty boxes represent stable nuclei.

reach the (n, γ) corridor (see upper panel of Fig. 7.10).
From the previous results we conclude that the evolution of the r-process abundances is more sensitive

to local variations in the neutron separation energies rather than in the global trend of the binding
energies. This is an important point that one has to keep in mind while exploring the sensitivity of
the r-process abundances to different theoretical predictions of nuclear masses. The critical issue in
the usage of energy density functionals is the fact that the most relevant regions for the r-process
nucleosynthesis are around the shell closures, that is where sudden changes in the neutron separation
energy manifest more prominently. As we already extensively discussed in Sec. 6.2, EDF’s calculations at
mean-field level have severe difficulties to properly describe the nuclear properties around these regions.
Therefore, systematic evaluations of binding energies using beyond mean-field approaches would be a
very valuable nuclear input for r-process nucleosynthesis calculations.

It is interesting to notice that the ratio of 232Th and 238U at 1 Gyr is very similar in both calculations.
These nuclides have half lives that are comparable to the cosmic age (t1/2(

232Th) = 14.0 Gyr and
t1/2(

238U) = 4.47 Gyr) and have been used as a cosmochronometers. However, in order to perform
realistic estimations of the galactic age it is necessary to understand the production of these nuclei and
quantify the variations related to uncertainties in the nuclear physics inputs [141, 142]. The predicted
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Figure 8.7: r-process abundances as a function of the mass number at different phases of the evolution
(see Fig. 8.4 and text for more details) predicted by BCPM for different collective inertias
schemes: ATDHFB (Eq. (3.42)), GOAGCM (Eq. (3.28)) and semiempirical formula (Eq. (3.44)).

238U/232Th ratio is 0.873 for BCPM and 0.866 for FRDM. The similar values obtained in both calculations
show that the production of 232Th and 238U is mainly determined by the nuclear physics below Z = 84.
The slight variation in the absolute value of the 232Th and 238U abundances can be traced-back to the
alpha decay of nuclei surviving to fission after the freeze out. In Sec. 8.4 we will see that the insensitivity
of the abundances to the nuclear physics above Z = 84 can be extended to all the actinides produced
during the r-process nucleosynthesis, which may have interesting consequences for the electromagnetic
counterparts of compact object mergers.

8.2.2 Sensitivity to collective inertias

So far we have restricted our discussion to the r-process abundances obtained using the ATDHFB
collective inertias. Fig. 8.7 shows sensitivity of our results to different collective inertias schemes, and
clearly the variations are rather small during all the phases. This result was already expected from the
analysis of the fission cross sections in Sec. 6.5.2, where it was shown that variations in the collective
inertias only have relevant impact when the fission probabilities are small, which means in nuclei stable
against the fission process. However, some interesting conclusions can be drawn from this comparison.
First of all, the ATDHFB are the only collective inertia scheme predicting a r-process path proceeding
beyond A = 290 and reaching the (n, γ) corridor discussed before. From the analysis of the experimental
fission lifetimes in Chapter 7 we concluded that the ATDHFB masses are probably too high, coming
out against a real possibility of reaching such heavy nuclei. On the other hand, for lower masses the
semiempirical and ATDHFB schemes predict very similar abundances, justifying to some extent the
usage of the phenomenological formula in the calculation of the fission cross sections for r-process
nuclei. Finally, the results in Fig. 8.7 were obtained using the binding energies including the rotational
energy correction. The staggering in the shell gaps caused by this corrections (see the discussion in
Sec. 6.2) produces a depletion in the abundances at A = 278, that disappears when the binding energies
are calculated without rotational correction. This result highlight once again the crucial role that local
variations in the neutron separation energy play for the r-process nucleosynthesis.

8.3 Competition between fission channels

To further explore the dependence to nuclear input Fig. 8.8 shows the temporal evolution of the
averaged rates (5.31) for different fission channels obtained with the BCPM and FRDM+TF models of
Sec. 8.2.1. In this plot there are several aspects that are worth mentioning. At the earliest stages of the
evolution the dominating channel is the neutron-induced fission. The prediction from both models
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Figure 8.8: Evolution of different fission channels predicted by BCPM (solid lines) and FRDM+TF (dotted
lines). The black solid line shows the evolution of the neutron-to-seed ratio (n/s).

is practically identical until the time when the neutron-to-seed ratio becomes one and the r-process
freezes out. At this point, nuclei start to beta-decay towards stability emitting beta-delayed neutrons
and giving rise to beta-delayed fission. We can see that in the FRDM calculations the neutron-induced
fission remains the dominating channel after the freeze-out and it is maintained by the free neutrons
emitted by the fission fragments until the density becomes too low to sustain this process. Conversely,
after the freeze-out the BCPM neutron-induced fission rates strongly decrease and the beta-delayed
fission becomes the dominant decay channel. Shortly after the freeze-out there is a revival of the neutron
induced fission feed by the beta-delayed neutrons, but the increase is not large enough to recover the
dominance. This drastic decrease of the neutron-induced fission is due to the fact that the beta-delayed
fission rates are not consistently computed from the BCPM barriers, and therefore we are overestimating
the amount of nuclei decaying via this channel. This is reflected in a large bump of the beta-delayed
fission rates after the freeze-out. From this result we conclude that a consistent calculation of all the
fission channels is crucial to obtain reliable r-process nucleosynthesis calculations.

Another interesting result is the emerging role of the photo-induced fission, that was not considered
in the calculation of the FRDM+TF rates [121]. At early times the contribution of this channel is lower
than the neutron-induced fission but larger than the beta-delayed fission. For times after freeze-out
is difficult to make reliable conclusions because the outcome may be affected by the artificially low
beta-delayed fission rates, but what seems to be certain is that the contribution of this channel is larger
than the spontaneous fission. This result was somehow expected, since the fission from the excited state
produced after a photon capture should always be more favourable than fissioning from the ground
state. What is more subtle is the reason why the photo-induced fission is subdominant compared to
the neutron-induced fission. Actually, what is preventing the photo-induced fission to be competitive
is the fact that in order to excite a nucleus above the fission barrier the neutron-separation energy has
to be higher than the fission barrier, otherwise the neutron emission will dominate. However, the
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Figure 8.9: Fraction of the total radioactive energy emitted by β-decays, α-decays and fission predicted in
BCPM (solid lines) and FRDM+TF (dashed lines) models.

presence of nuclei with fission barriers lower than neutron separation energies is strongly hindered by
the neutron-induced fission, which in turn decreases the average photo-induced rates.

8.4 Production of radioactive energy

We will now explore the impact of our calculations in the production of radioactive energy, that
is a crucial aspect in macronova modeling. Macronovae are electromagnetic transients powered by
the radioactive decay of r-process elements in compact object mergers peaking days to week after the
merger [14, 16]. The energy emitted by the radioactive decay products is transfered to the thermal
background and re-radiated as thermal energy powering the light curve. A possible recent observation
of this transient associated to a short γ-ray burst GRB130603B [17, 18] triggered several studies aiming
to improve the macronova light curve modeling. In this section we will focus on the radioactive decay
dominating at each stage of the evolution, which is a relevant piece of information for the modeling of
kilonova light curves since the efficiency in the thermalization of the radioactive energy depends on the
decay producing it [123].

Fig. 8.9 shows the fraction of the total radioactive energy emitted by β-decays, α-decays and fission
predicted by BCPM and the FRDM+TF model. There are some interesting conclusions that can be
deduced from this plot. The most important one is that both models predict substantially the same
features during the whole evolution. For most of the time β-decay is the dominating channel while
fission only contributes at early times that are not relevant for macronova observations. While the
contribution from fission decreases with time, the fraction of radioactive energy produced by α-decays
increases. In a recent paper [123] the contribution of single decay channels to the total radioactive energy
and their thermalization efficiencies were extensively studied. The authors show that the choice in the
nuclear mass model modifies the estimation of the energy release by α-decays, affecting the total energy
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generated by the decay of r-process isotopes at times relevant for macronova observation. Our results
show that the radioactive energy is rather insensitive to the nuclear physics of isotopes above Z = 83,
which is related to the fact that the released radioactive energy is mainly determined by the amount of
actinides decaying in the ejecta. As we already pointed out in Sec. 8.2.1, these isotopes are produced by
the beta-decay of nuclei below Z = 84, and for these reason the outcome of BCPM and FRDM+TF is
very similar.

8.5 Further work to be addressed

This Chapter contains several results that are preliminary. Here we want to collect the work that
remains to be done.

• The r-process calculations obtained from the BCPM rates do not include the (n, 2n) decay channel.
This is an important issue to address due to the large rates predicted for this channels in our
calculations.

• The impact of collective inertias in the r-process abundances (Sec. 8.2.2 and Fig. 8.7) was obtained
using the binding energies including the rotational correction (see Sec. 6.2). The study should be
repeated removing this correction in order to ensure the validity of our conclusions.

• The β-delayed fission rates are obtained from [140], but this is not consistent with the rest of fission
reaction rates. In order to proceed further in this study, the β-delayed fission rates should be
calculated using the fission barriers and collective inertias presented in this thesis.
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9 Conclusions & Outlook
In this thesis we studied the fission properties of superheavy nuclei and the impact of fission in

the r-process nucleosynthesis in neutron star mergers (NSM). Fission can be described as a tunneling
process where the decay probability depends on the evolution of the energy with deformation and the
inertia produced by the “movement” of the nucleus in the collective coordinates. Despite its key role the
sensitivity of the r-process to different fission predictions has not been explored. One of the reasons is
that only few sets of fission rates suited for r-process calculations are nowadays available. Furthermore
these stellar reaction rates are based on an approximated description of fission, assuming parabolic
shapes of the fission barriers and/or simple formulas for the estimation of the collective inertias.

In this thesis we go beyond these approximations and compute the fission properties of 3642 nuclei in
the super heavy landscape using four different energy density functionals (EDF): BCPM, D1S, D1N and
D1M. The binding energy, fission barrier and collective inertia of each nucleus are consistently obtained
from microscopic calculations by minimizing the potential energy as a function of the quadrupole
deformation. The spontaneous fission lifetimes are obtained following the WKB method employing three
different schemes for the calculation of the collective inertias. By performing an extensive benchmark
against the available experimental data we find that our accuracy is comparable to Skyrme EDF’s
commonly used in fission calculations. The theoretical predictions tend to overestimate the fission
barriers and this effect can be related to the imposition of axial symmetry in our calculations. Since the
models have very different effective masses, symmetry and surface energies the estimated height of the
fission barrier along the landscape can differ up to 6 MeV but the general trend is very similar for all the
functionals.

Looking at the variations of spontaneous fission lifetimes across the superheavy landscape we find
that those nuclei that are stable against spontaneous fission are very sensitive to changes in the collective
inertias. The comparison between different EDF’s shows that the longest half-lives are obtained for
the models predicting the highest collective inertias and not from those predicting the highest fission
barriers. This sensitivity of the spontaneous fission lifetime to the collective inertia diminishes as the
fission barrier decreases, until the point when the fission probability is mainly driven by the height of
the fission barrier. In our calculations we find that the transition between these two regimes occurs
around the mass number A ≈ 280. Following this trend of the spontaneous fission lifetimes we propose
a renormalization of the collective inertias aimed to improve the agreement with experimental data.
Compared to a renormalization of the fission barriers, this method has the advantage that it does not
modify the fission properties of r-process nuclei. Using the collective inertia as an adjustable parameter
we are able to sensibly improve the agreement of spontaneous fission lifetimes in light actinides keeping
the good accuracy achieved in heavier nuclei.

We find that our calculations of neutron capture and neutron-induced fission cross sections obtained
from the statistical Hauser-Feshbach model fairly agree with the experimental data in the energy window
relevant for r-process calculations. Using the BCPM functional and three different collective inertia
schemes we compute the neutron induced stellar reaction rates and study the competition between
different decays, including α and photo-induced fission. We find that above Z = 100 all the rates predict
fission to be the dominating decay channel for typical thermodynamic conditions in NSM. The rates
turn out to be rather insensitive to collective inertias, mainly due to the fact that they impact the fission
probability of nuclei that are stable against fission. However, some differences are appreciable in the
region above the nuclear shell closure at Z ≈ 95. One collective inertia scheme predicts a region where
the neutron capture dominates over the neutron induced fission, opening the possibility for the r-process
to reach nuclei with mass number A ≈ 330. However, the r-path may never reach this region due to the
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large (n, 2n) rates. We conclude therefore that independently of the model the production of superheavy
nuclei above A = 280 is hindered due to neutron induced fission.

We use these stellar reaction rates to perform r-process nucleosynthesis calculations for matter dy-
namically ejected in neutron star mergers, and we compare our results with those obtained from a set of
neutron induced reaction rates based on a traditional description of fission. We notice modest differences
in the final abundance distributions around the second peak produced by the fission decay of nuclei with
A ≈ 260− 280. The amount of material accumulated in this region is mainly determined by the shell
gaps and fission barriers of nuclei with N ≈ 170− 190. We find that the impact of collective inertias for
the evolution of the r-process is small and therefore we conclude that our calculations are not sensitive to
the collective inertias. Within our model, we notice that the progenitors of the actinides produced at the
latest stages of the evolution are mainly nuclei with Z ≤ 84. This is an important result for estimating
the uncertainties in the production of cosmochronometers in metal poor stars and for the radioactive
energy emitted by the r-process nuclei at timescales relevant for macronova observations.

Finally, we have also explored the impact on spontaneous fission lifetimes of recent advances in the
theoretical description of the fission process. Using the dynamical approach where the fission path is
determined by minimizing the action integral, we find that the inclusion of collective degrees of freedom
that modify the amount of pairing correlations in the nucleus strongly reduces the spontaneous fission
lifetimes of light actinides. The possible impact of this approach for the neutron-induced fission is not
clear and should be addressed in future studies.

Suggestions for future work

• An important aspect to address is the consistent calculation of β-delayed fission rates using our
fission barriers. In this thesis we have adopted the β-delayed fission rates from [140], but in Sec. 8.3
we found that a consistent calculation of all the fission decay channels is required in order to
properly study the impact of fission in the r-process nucleosynthesis. Since in the r process we
are dealing with neutron-rich nuclei, the relevant β-delayed processes to consider are fission and
neutron emission. The β-delayed rates of these two reactions can be computed using a compilation
of β-strengths distributions covering the relevant nuclei for the r-process, like for instance the one
presented in Ref. [143]. It would be advisable therefore to start a collaboration with a group that
could provide the β-strength distributions of r-process nuclei.

• A rather simple but extremely interesting continuation of this work will be the extension of the
calculation of the stellar reaction rates to the Gogny EDF’s. In Chapter 7 it was shown that the
Gogny functionals predict larger fission barriers than BCPM, and this may allow for the production
of heavier nuclei than those obtained in this work. Therefore this study could be very helpful
to understand if the uncertainties in fission predictions allow the r-process to proceed beyond
the neutron number N = 184. Of course the extension of this calculations to a set of trajectories
exploring larger astrophysical conditions would be useful to extract more definitive conclusion.

• In this work we only changed the neutron-induced rates of nuclei with Z ≥ 84, that is the relevant
region for studying fission. However, it would be interesting to extend the calculation of the rates
to nuclei below polonium and explore the impact on the production of actinides after the freeze-out.
The results could be an important piece of information for the modeling of macronova light curves
as explored in Ref. [123], and may help to understand if fission can be a relevant decay channel in
the production of radioactive energy at timescales relevant for macronova observations.

• From the point of view of the nuclear input, it would be important to study the impact of calcu-
lations beyond the mean-field level. In Sec. 6.2 we found that the approximated treatment of the
rotational correction led to artifacts in the shell gap of nuclei around the shell closure N = 184. We
avoided this problem by removing the rotational correction from the calculation of the binding
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energies, but it would be better to perform a projection of the wavefunction onto good angular mo-
mentum. More in general, it would be interesting to study if beyond-mean field effects may have
an impact on the r-process nucleosynthesis. These techniques can lead to substantial differences in
the predictions of binding energies [144] that in turn may modify the location of the r-process path.

• Finally, it would interesting to continue the development of theoretical description of the fission
process. We showed in Sec. 3.5 the large impact that dynamic calculation can have for the spon-
taneous fission. This study underlines the important role of collective inertias in light actinides,
and therefore an important aspect would be the improvement of the theoretical calculation of
the collective masses. Following the lines of Ref. [119] one could try to numerically compute the
derivatives of the density respect to the collective degrees of freedom in both the GCM and the
ATDHFB scheme and see how they compare. These calculations would be helpful to understand
the role that collective degrees of freedom like triaxiality play in the fission process and to check
the validity of the adiabatic hypothesis at the ground of the theoretical description of the fission
process. However, we do not expect a large impact on r-process nucleosynthesis, since nuclei in
this scenario fission from energies close to the top of the fission barriers where collective inertias
are less relevant.
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