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List of Symbols and Notation

We use standard notation as much as we can. In some cases ambiguities might
occur and in this case the following list of symbols serves as the reference in our
thesis. Also some of our frequently used self-defined symbols occur here.

R+ = [0,∞)
C+ = {z ∈ C;<z ≥ 0}
Nj = {j, j + 1, . . .} for j an integer
N = N0

expj = exp ◦ . . . ◦ exp, j-times, j ∈ N1

logj = log ◦ . . . ◦ log, j-times, j ∈ N1

Lj(s) = logj(1 + j + s), s ≥ 0, j ∈ N1

ΩM = {z ∈ C; 0 > <z > −1/M(|=z|)}
Br Open ball around 0 with radius r > 0 in Rd or C
R0,Rα See Section A.1
PI,PD,BI,BD See Section A.2
PIN See Section A.3
L2

comp(Ω) = {u ∈ L2(Ω); suppu ⊂ Ω},Ω ⊂ Rd open

Hm
comp(Ω) = {u ∈ Hm(Ω); suppu ⊂ Ω},Ω ⊂ Rd open,m ∈ N1

H0
comp(Ω) = L2

comp(Ω),Ω ⊂ Rd open

∇H1(Ω) = {∇u ∈ L2(Ω)d;u ∈ H1(Ω)},Ω ⊂ Rd open
Bs,pq (Ω) for Ω ⊆ Rd open; Besov space; See Appendix C

Hs(∂Ω) for Ω ⊆ Rd open, Lipschitz; Fractional Sobolev space on closed
set; See Appendix C

L(X,Y ) {T : X → Y ;T bounded linear operator} where X,Y Banach
spaces

L(X) = L(X,X)

Notation

Generic constants c and C. We use two generic constants c > 0 and C > 0.
Generic means that they may change their value from line to line. The difference
between these two constants is that their usage implicitly means that we could
always replace c by a smaller constant and C by a larger constant - if this is
necessary. So one should keep in mind that c is a small number and C a large
number.

Small constants c1, c2, . . .. By cj for j ∈ N we denote strictly positive real
numbers. Usage of these constants implicitly means that all statements in which
they occur remain true if one replaces cj by a smaller number.

Large constants C1, C2, . . .. By Cj for j ∈ N we denote strictly positive real
numbers. Usage of these constants implicitly means that all statements in which
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2 List of Symbols and Notation

they occur remain true if one replaces Cj by a larger number. Small and large
constants are not allowed to change their values - unless it is explicitly stated.

Landau notation. Let us denote by φ, φ1, φ2 (not necessarily strictly) positive
functions and by ψ a complex valued functions defined on R\K or R+\K, where
K is a compact interval. We define

φ1(s) . φ2(s) :⇔ ∃s0 > 0, C > 0∀ |s| ≥ s0 : φ1(s) ≤ Cφ2(s),

φ1(s) ≈ φ2(s) :⇔ φ1(s) . φ2(s) and φ2(s) . φ1(s).

Furthermore we define the following classes (sets) of functions:

O(φ(s)) := {ψ; |ψ(s)| . φ(s)},
o(φ(s)) := {ψ;∀ε > 0∃sε > 0∀ |s| ≥ sε : |ψ(s)| ≤ εφ(s)}.

By abuse of notation we write for example ψ(s) = O(φ(s)) instead of ψ ∈ O(φ(s))
or φ(s) = φ1(s)+O(φ2(s)) instead of |φ(s)− φ1(s)| . φ2(s). By O(s−∞) we denote
the intersection of all O(s−N ) for N ∈ N. We say that a function φ : R→ R decays
rapidly if for any n ∈ N0 there exists a constant C such that |φ(t)| ≤ C(1 + t)−n.

Asymptotic similarity/equivalence. We say that φ1, φ2 : [a,∞) → (0,∞) are
asymptotically similar if φ1(s) ≈ φ2(s) i.e. φ1(s) . φ2(s) and φ2(s) . φ1(s). We say
that φ1, φ2 : [a,∞)→ (0,∞) are asymptotically equivalent and write φ1(s) ∼ φ2(s)
if φ1(s)/φ2(s)→ 1, s→∞.

Inverse functions. Given a ≥ 0 and a continuous non-decreasing function M :
[a,∞)→ (0,∞) such that M(s)→∞ as s→∞, we denote by M−1 : [M(a),∞)→
[a,∞) its (right-continuous) right-inverse, given by M−1(s) = sup{r ≥ a : M(r) ≤
s}, s ≥ M(a). The definition implies that M(M−1(s)) = s, s ≥ M(a), and
M−1(M(s)) ≥ s, s ≥ a.



Introduction

This thesis is devoted to the investigation of (semi-uniform) decay rates for
C0-semigroups and applications to the decay of waves. To give the reader an im-
pression of the main contributions of the thesis, in the following we formulate a
few mathematical questions to which our results give (partial) answers. We remark
that this does not reflect all of our results but certainly the most interesting ones.
We further note at this point that Chapter 2 is joint work with Jan Rozendaal and
David Seifert.

Quantified Tauberian theorems and decay of C0-semigroups

In the last decade there has been much activity in the field of quantified Taube-
rian theorems for C0-semigroups, or more generally for functions of a real variable
[34, 6, 19, 8, 12, 35, 10, 18, 7]. See also [44, 45] and references therein for quantified
Tauberian theorems on sequences and [26] for Dirichlet series. We refer to [31] and
[4, Chapter 4] for a general overview on Tauberian theory.

A milestone in this area of research is without doubt a result of Batty and
Duyckaerts [8]. It reads as follows:

Theorem 0.1 (Batty-Duyckaerts [8]). Let X be a Banach space and let A be
the generator of a bounded C0-semigroup T on X. Suppose that σ(A) ∩ iR = ∅
and that M : R+ → (0,∞) is a continuous non-decreasing function such that
‖(is−A)−1‖ ≤M(|s|), s ∈ R. Then there exists a constant c > 0 such that

‖T (t)A−1‖ = O

(
1

M−1
log (ct)

)
, t→∞,

where Mlog : R+ → (0,∞) is defined by Mlog(s) = M(s) log(2 + s+M(s)), s ≥ 0.
Conversely, suppose that

∥∥T (t)A−1
∥∥ ≤ m(t), t ≥ 0 for a continuous non-increasing

function m : R+ → (0,∞) with m(t)→ 0, t→∞. Then∥∥(is−A)−1
∥∥ ≤ O(m−1

(
1

2 |s|+ 2

))
, |s| → ∞.

The proof of the first part of this result is based on the so called contour
method (using Cauchy’s formula) and was inspired by Newman’s approach to the
prime number theorem [39]. The converse part of the theorem is much simpler to
prove but is nevertheless important, as it shows that the first part is sharp up to
a logarithmic loss. There are generalizations of this theorem allowing for a finite
number of spectral points along the imaginary axis but for the sake of simplicity
we do not consider them in this introduction.

Theorem 0.1 is a consequence of a more general theorem for functions instead of
semigroup orbits [8]. Here, one considers a locally integrable function f : R+ → X
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4 INTRODUCTION

and asks for the rate at which the norm of f(t) decays to zero as t tends to infinity.
The “regularizing” effect of A−1 to the orbit of the semigroup is now replaced by
the additional condition f ′ ∈ L∞(R+;X) on the weak derivative of f . We remark

that under this assumption the Laplace transform f̂ of f is absolutely convergent
in {z ∈ C;<z > 0}. The condition on the resolvent now translates to a condition

on f̂ . That means we assume that f̂ extends analytically across the imaginary axis
to a domain

ΩM =

{
z ∈ C; 0 > <z > − 1

M(|=z|)

}
and ∥∥∥f̂(z)

∥∥∥ ≤ CM(|=z|), z ∈ ΩM .(0.1)

A proof which is almost identical to the proof of Theorem 0.1 shows

Theorem 0.2 (Batty-Duyckaerts [8]). Let f : R+ → X be a locally integrable
function with f ′ ∈ L∞(R+;X) whose Laplace transform extends analytically to ΩM
and satisfies (0.1). Then

‖f(t)‖ = O

(
1

M−1
log (ct)

)
, t→∞.

A result of this type is important for the decay of “perturbed” orbits of semi-
groups, that is, functions of the form P2T (t)P1x, where P1, P2 are bounded opera-
tors. This in turn is a natural approach to answer questions on local decay for wave
equations on exterior domains. We emphasize at this point that a special case of
this theorem, with M(s) ∼ sα for some α > 0 and f(t) = P2T (t)P1x where T is a
unitary group, motivated by the wave equation, was already known several years

earlier by Popov and Vodev [40]. Observe that the domain ΩM to which f̂ extends

analytically is determined by the same function M by which f̂ should be bounded.
In the situation of Theorem 0.1 this is a natural assumption due to the resolvent
equation. However in applications (see e.g. Chapter 3) one sometimes faces the

situation that f̂ extends to a “relatively large” domain - that means M is “small”
- but one only knows a “large” bound on the Laplace transform in the region of
analyticity. In this case the results of [8] are not applicable anymore and it would
be desirable to answer to following

Question 1. Let K : R+ → (0,∞) be non-decreasing. Is a version of Theorem
0.2 still valid if one replaces (0.1) by∥∥∥f̂(z)

∥∥∥ ≤ K(|=z|), z ∈ ΩM ,

while keeping all other assumptions? For what function MlogK is the decay rate
given by

‖f(t)‖ = O

(
1

M−1
logK(ct)

)
, t→∞,(0.2)

if one chooses c > 0 suitably?

After some preliminary work by Borichev and Tomilov [12] a first general answer
to this question was given by Batty, Borichev and Tomilov [7]. There the authors
allow K(s) = ((1 + s)M(s))α, s ∈ R+ for arbitrary α > 0 and deduce a decay rate
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determined by MlogK = Mlog. The proof is a refinement of the proof of Theorem
0.2. Unfortunately some potential applications of such a result are still not covered
by this improved version of Theorem 0.2. In fact, in Chapter 3 we present an
example where M is constant, that is ΩM is a strip, and the best known bound on
the Laplace transform is given by exp(Csα) for some α > 0. In Chapter 1 we give
an answer to Question 1 which covers also this situation. More precisely we allow
all non-decreasing functions K : R+ → (0,∞) which satisfy for some ε ∈ (0, 1).

K(s) = O(exp(exp((sM(s))1−ε))).(0.3)

The decay rate is given by MlogK(s) = M(s) log(2+M(s)+K(s)). The proof of this
result uses refined versions of techniques already applied by Chill and Seifert [18].
The main idea of the proof, going back to Ingham and Karamata, is to introduce a
splitting f = [f −ϕR ∗ f ] +ϕR ∗ f for a suitably chosen approximate unit ϕR. The
first summand can then be estimated in an elementary way and the second one by
going to the Fourier space. Heavily using ideas from [12] we show that the decay
rate given in (0.2) is optimal up to the choice of c. We also give a partial answer
to the therefore natural question on the optimal choice of c.

Other topics of Chapter 1 include the investigation of f̂ having s−1-type or
log-type singularities at zero. We give more details on that in the introduction
of Chapter 1. We only mention that a log-type singularity forces us to give an
alternative proof of our version of Theorem 0.2 now based on a refined version of
the contour method applied in [8]. Surprisingly, the second proof requires K to
satisfy the same constraint (0.3). Based on this observation we conjecture that
(0.3) with ε = 0 is not sufficient for a 1/M−1

logK(ct) decay rate to hold in general.
Unfortunately we have no idea how to prove that.

Another question related to Theorem 0.1 is to ask whether the logarithmic loss
in the upper bound for the decay rate can be avoided. It is not difficult to see
that the answer to this question - in this generality - is no! Consider for example
a semigroup on a Hilbert space with a normal generator which has spectral set
{is − log(s)−1; s ∈ [2,∞)}. Clearly, by the spectral theorem, the resolvent of the
generator is bounded by a function M(s) ∼ log(s). Moreover, it is not difficult to

see that the semiuniform decay rate is given by e−2
√
t ∼ 1/M−1

log (4t). Therefore it
is natural to restrict this question to certain classes of functions M .

A first breakthrough concerning this modified question was achieved in a cel-
ebrated paper of Borichev and Tomilov [12]. The authors consider polynomial
resolvent bounds, that is M(s) = C(1 + sα) for some α > 0. Assuming that M is
up to a constant the best upper bound, Theorem 0.1 yields in this case

c

(
1

t

) 1
α

≤
∥∥T (t)A−1

∥∥ ≤ C ( log(t)

t

) 1
α

for all t ≥ 2. In [12] a semigroup on a non-Hilbertian space is constructed for which
the upper bound is indeed the precise decay rate. This means that even for the
class of functions like 1 + sα the answer is still no! Fortunately the situation is
different in Hilbert spaces:

Theorem 0.3 (Borichev-Tomilov [12]). Let X be a Hilbert space and let A be
the generator of a bounded C0-semigroup T on X. Suppose that σ(A)∩ iR = ∅ and
that

∥∥(is−A)−1
∥∥ ≤ M(|s|) := C(1 + |s|α), s ∈ R, for some α > 0. Then for any
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c > 0

(0.4)
∥∥T (t)A−1

∥∥ = O

(
1

M−1(ct)

)(
= O

(
1

t
1
α

))
, t→∞.

We see that in this situation the decay rate is given by 1/M−1(ct) and that
c > 0 can be chosen arbitrarily since it only influences the growth properties of the
function M−1(ct) up to a constant - we say M−1 and M−1(c·) are asymptotically
similar. This leads us to the next major question to be answered in this thesis.

Question 2. What is the classM of (finally) continuous non-decreasing func-
tions M such that the conclusion (0.4) of Theorem 0.3 still holds? For M being
a function from this class, are M−1 and M−1(c·) asymptotically similar for any
c > 0?

To the best of our knowledge to this date the only paper addressing this question
is [10] (with a preprint on arXiv from 2013). With a heavy use of functional calculus
and the theory of regularly varying functions (see e.g. [11]) the authors (Batty,
Chill and Tomilov) could show that a subclass of the class of regularly varying
functions (see Appendix A for a short introduction to this class of functions) is
contained in M. In particular it follows from that paper that the functions given
by sα/ log(s), s > 2 for some α > 0 are contained in M. However, the very similar
functions given by sα log(s), s > 2 could not be shown to lie in M.

In Chapter 2 we give a complete answer to Question 2. This chapter is based
on the preprint [43] which is a joint work with Jan Rozendaal and David Seifert.
We prove thatM = PI which is the class of functions having positive increase. The
class PI is larger than the class of regularly varying functions but still satisfies the
asymptotic similarity condition asked for in Question 2. Moreover, any function
having positive increase is bounded from below by sε for a suitably chosen ε > 0. In
particular 1/M−1 does not decay at a super-polynomial rate. We refer to Appendix
A for more details on functions having positive increase. We mention at this point
that our proof of the necessity of the positive increase condition does not rely
on certain well constructed semigroups. Indeed the positive increase condition is
necessary for every normal semigroup. Actually we prove the necessity for an even
wider class of semigroups. We refer to the introduction of Chapter 2 for the details.

Our answer to Question 2 makes the question of polynomial- and sub-polynomial
semiuniform decay rates for semigroups on Hilbert spaces a very well studied sub-
ject. It also shows the following: if one is interested in super -polynomial decay rates
and if one has a bounding function M for the resolvent which is sharp (possibly up
to a constant), the decay rate is in general not given by (0.4) - instead the rate is
strictly slower. However it is not plausible to assume that the decay rate is always
not faster than 1/M−1

log (ct). This leads us to

Question 3. Let A be the generator of a bounded C0-semigroup on a Hilbert
space satisfying σ(A) ∩ iR = ∅ and

∥∥(is−A)−1
∥∥ ≤ M(|s|) for some continuous

non-decreasing function M with a sub-polynomial growth. In this situation, what
is the optimal (smallest) continuous non-decreasing function Mopt such that∥∥T (t)A−1

∥∥ ≤ 1

M−1
opt(t)

for all t ∈ R+?
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In this strong formulation we are not able to answer this question. However
we can give partial answers to this question which are already far-reaching. First
of all, if we restrict to normal semigroups we can indeed give a complete answer.
The optimal decay rate in this situation is asymptotically equivalent to 1/M−1

qm(t)
where

Mqm(s) = sup
λ∈[1,s]

M(λ−1s) log(λ), s ≥ 1.

Clearly, the definition of Mopt implies Mopt ≥ Mqm. This raises the question
whether these two functions are equal. Note that equality would mean that normal
semigroups always yield the worst decay rate under all semigroups with a given
growth behaviour of the resolvent.

To approach an answer to this question, in Chapter 2 we define the notion of
quasi-positive increase (with auxiliary function N). The so called auxiliary function
N : R+ → (0,∞) is a non-decreasing function. The definition of quasi-positive
increase (see Section A.3) reveals that it is natural to restrict to auxiliary functions
with N(s) = O(log(s)), s → ∞ and that every non-decreasing function has quasi-
positive increase with auxiliary function N(s) = β log(2 + s) where β > 0 can be
chosen arbitrarily. We prove the following

Theorem 0.4. Let X be a Hilbert space and let A be the generator of a bounded
C0-semigroup T on X with σ(A) ∩ iR = ∅. Let M,N : R+ → (0,∞) be continuous
non-decreasing functions and suppose that M(s) → ∞ as s → ∞, that N(s) =
O(log s) as s→∞, and that M has quasi-positive increase with auxiliary function
N . Suppose further that

∥∥(is−A)−1
∥∥ ≤ M(|s|), s ∈ R. Then there exists a

constant c > 0 such that

(0.5)
∥∥T (t)A−1

∥∥ = O

(
1

M−1
N (ct)

)
, t→∞,

where MN : R+ → (0,∞) is defined by MN (s) = M(s)N(s), s ≥ 0. Moreover, in
(0.5), for any ε > 0 one can choose c = be− ε where b is a constant, depending on
M and N , arising in the definition of quasi-positive increase.

Note that due to the explicit constant c this result is sharper than Theorem
0.1 even if N(s) = β log(2 + s). Even more is true: for a large class of resolvent
bounds M we can prove that for the “optimal” choice of the auxiliary function N
our result can essentially not be improved, i.e. the conclusion would be false in
general (for normal semigroups) if one chooses c > be. This is particularly true for
the very important special case M(s) ∼ C log(s)α for certain constants C,α > 0.

Applications: decay of waves

This part of the thesis is devoted to the study of three different types of wave
equations and their energy decay properties. Two of these wave equations also
serve as examples showing the strength of our theoretical results obtained in part
one.

Waves on exterior domains. In Chapter 3 we consider utt(t, x)−∆u(t, x) = 0 (t ∈ (0,∞), x ∈ Ω),
u(t, x) = 0 (t ∈ (0,∞), x ∈ ∂Ω),
u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω).
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Here Ω $ Rd, d ≥ 2, is a connected open set with bounded complement and non-
empty C∞-boundary. Since this system preserves the (total) energy, energy loss
can only occur in spatially bounded regions due to radiation to infinity. Thus it is
appropriate to study the so called local energy

Eρ(t) =

∫
Ω∩Bρ

|∇u(t, x)|2 + |ut(t, x)|2 dx.

Here the radius ρ > 0 has to be chosen large enough so that the obstacle O is
included in the open ball Bρ around the origin with that radius. In the literature
a famous question is the following:

Question 4. Given m ∈ N, what is the rate

pm(t) = sup
{
Eρ(t); ‖(u0, u1)‖Hm+1

comp×Hmcomp(Ω∩Bρ) ≤ 1
}

at which Eρ(t) decays uniformly with respect to (normalized) initial data from
Hm+1 ×Hm with compact support in Ω ∩Bρ?

The well established approach to this question is to formulate the above wave
equation in the language of C0-semigroups. This leads to a unitary group (T (t))t∈R
with generator A on a suitable Hilbert space H. Question 4 is now essentially
equivalent to the decay of f(t) = PT (t)(1−A)−mP for P being a suitable (bounded)
multiplication operator. For simplicity we restrict to the case of odd dimensions

from now on. In [21] it was shown by Bony and Petkov that whenever f̂ extends to

a strip to the left of the imaginary axis then f̂(z) ≤ C exp(C |=z|d−1
) for z lying in

that strip. By using a Tauberian result due to Popov and Vodev [40] the authors
were able to deduce

pm(t) = O

((
log(t)

t

) m
d−1

)
from that. Our results from Chapter 1 improve their result and even simplify the
argument. That is, in the same situation we can deduce

pm(t) = O

((
1

t

) m
d−1

)
,

thus we get rid of the logarithmic factor. This is a taste of our very small contri-
bution to the rather general Question 4.

Damped waves on partially rectangular domains. Let Ω ⊂ R2 be a
so called partially rectangular domain. That is, there exists a rectangle R ⊆ Ω
such that two opposite sides of R are contained in ∂Ω. Let a ∈ L∞(Ω)\{0} be a
(not necessarily strictly) positive function. An example of a partially rectangular
domain is of course any rectangle and the in the literature on dynamical billiards
well known Bunimovich stadium. We consider the damped wave equation

utt(t, x, y)−∆u(t, x, y) + 2a(x, y)ut(t, x, y) = 0 (t ∈ (0,∞), (x, y) ∈ Ω),

u(t, x, y) = 0 (t ∈ (0,∞), (x, y) ∈ ∂Ω),

u(0, x, y) = u0(x, y), ut(0, x, y) = u1(x, y) ((x, y) ∈ Ω).

Without loss of generality we may assume that R = (0, 1)2 and that {(x, y) ∈
R; y = 0} and {(x, y) ∈ R; y = 1} correspond to two opposite sides of R which are
contained in Ω. Furthermore we assume that a restricted to some neighbourhood of
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Ω\R is bounded from below by a strictly positive constant and that a allows for so
called trapped bouncing rays. That is, there exists a non-empty interval I ⊂ (0, 1)
such that a restricted to I × (0, 1) is zero.

The above wave equation gives rise to a contractive C0-semigroup (T (t))t≥0 on
a Hilbert space H. Its generator A has no spectrum on the imaginary axis. The
square of the norm in H can naturally be interpreted as the energy of the system.
Thus the uniform energy decay rate of (normalized) “classical” solutions is up to
squaring exactly the rate at which

∥∥T (t)A−1
∥∥ decays to zero. Burq and Hitrik

showed in [15] that

c(1 + s) ≤ sup
|ξ|≤s

∥∥(iξ −A)−1
∥∥ ≤ C(1 + s2), s > 0.

Actually the (easier) proof of the left hand inequality, based on the construction
of quasi-modes, was only sketched in [15] and we therefore refer to Anantharaman
and Léautaud [3] for more details in case of a torus. In view of Theorems 0.1 and
0.3 this leads to a decay rate estimate of the form

c

t
≤
∥∥T (t)A−1

∥∥ ≤ C

t
1
2

, t ≥ 1.(0.6)

We remark that an approach via geometric optics using the ideas of Ralston [42]
also yields the lower bound on

∥∥T (t)A−1
∥∥. For simplicity let us now restrict to

Ω = (0, 1)2. Given ε ∈ (0, 1/2] it is known that under smoothness assumptions
on a (depending on ε) it is possible to show that the decay rate is bounded from
above by Ct−1+ε, see e.g. [15, 3]. We also refer to more precise results in a slightly
different situation [33, 16, 13]. We observe that the upper bound in the a priori
estimate (0.6) receives much attention. However, this is not so for the lower bound.
Therefore let us ask

Question 5. Is the lower bound in (0.6) sharp in general?

In the light of the above mentioned results it is natural to assume that discontin-
uous behaviour of a could yield the slowest possible decay rate. In the appendix of
[3] Nonnenmacher considered the situation of a being constant zero on (0, σ)×(0, 1)
and constant non-zero on (σ, 1) × (0, 1) for some σ ∈ (0, 1). He investigated the
spectrum of A and could prove that there exists a sequence of eigenvalues (zn) with

=zn →∞ and −<zn = O((=zn)−
3
2 ). This yields a lower resolvent estimate

sup
|ξ|≤s

∥∥(is−A)−1
∥∥ ≥ c(1 + s

3
2 ) and thus

∥∥T (t)A−1
∥∥ ≥ c

t
2
3

, s, t ≥ 1.(0.7)

It is now an interesting question whether the spectrum reflects the correct behaviour
of the resolvent growth. This motivated us to exactly calculate the resolvent growth
in Chapter 4. Using Theorem 0.3 we confirm that (0.7) remains true if one reverses
the inequality-signs (changing the constants). Our results are published in [48]. Of
course this does not answer Question 5 but it leads us to the conjecture that the
answer is probably no. We furthermore conjecture that the sharp lower bound is
given by ct−2/3.

Waves subject to viscoelastic boundary damping. Let Ω ⊂ Rd be a
bounded domain with Lipschitz boundary. Let us consider a model for the radiation
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and reflection of sound waves{
Utt(t, x)−∆U(t, x) = 0 (t ∈ R, x ∈ Ω),

∂nU(t, x) + k ∗ Ut(t, x) = 0 (t ∈ R, x ∈ ∂Ω).

Here ∗ means the usual convolution with respect to the time variable and k : R→
[0,∞) is an integrable function, depending on the time-variable only, which vanishes
on (−∞, 0). We furthermore assume that k is completely monotone, that is there
exists a (unique) positive Borel-measure ν such that k(t) =

∫
[0,∞)

e−tsdν(s), t > 0.

The Laplace transform k̂ of k can naturally be interpreted as the acoustic impedance
of the boundary. One can interpret Ut and −∇U as (relative) pressure and fluid
velocity. Under these assumptions Desch, Fasangova, Milota and Probst [22] could
rephrase this equation as an abstract Cauchy problem ẋ(t) = Ax(t), t > 0,x(0) =
x0 where A is the generator of a contractive C0-semigroup (T (t))t≥0 on a Hilbert
space H. The natural energy of this system is equal to the square of the norm in
H. It was also shown in [22] that σ(A) ∩ iR ⊆ {0} and that A is injective. Since
we are interested in decay rates for “classical” solutions a natural question arises.
Aiming for results not depending on Ω we ask the following

Question 6. Can one characterize the relation 0 ∈ σ(A) in terms of the acous-
tic impedance only? Can one determine the growth of

∥∥(is−A)−1
∥∥ at infinity in

terms of the acoustic impedance, and in case of 0 ∈ σ(A), what is the growth rate
at zero?

We are not able to answer this question in this generality. However we think
our partial results are already far-reaching. In the particular case Ω = (0, 1) we
actually can answer this question completely. For arbitrary Ω we prove

0 /∈ σ(A)⇔ ∃ε > 0 : ν([0, ε]) = 0⇔ ∃ε > 0 : k(t) = O(e−εt), t→∞.

Observe that the last equivalence of the preceding line is almost trivial. Moreover,
we show

0 ∈ σ(A)⇒
∥∥(is−A)−1

∥∥ ≤ C |s|−1
, |s| ≤ 1.

The only part of Question 6 we did not answer so far is the part concerned with
the growth of the resolvent at infinity. In the 1-dimensional setting we can give a
rather precise answer

c

<k̂(is)
≤
∥∥(is−A)−1

∥∥ ≤ C

<k̂(is)
, |s| ≥ 1.(0.8)

Note that the function <k̂(i·) = Fk : R → (0,∞) is smooth, symmetric and
strictly decaying (to zero) on the interval R+. The proof of this result is based
on a rather explicit representation of the resolvent of A. The multi-dimensional
case needs a completely new strategy. Under mild additional assumptions on the
acoustic impedance and the domain we are able to confirm the upper bound in (0.8).

The condition on k̂ and Ω involves properties of Laplace-Neumann eigenfunctions
recently investigated in [5].

Once we have such a resolvent bound it is desirable to know what kind of
functions can arise from Fk. One can show that for suitable choices of k (or ν) it is
possible to reproduce any regularly varying function with index in (−2, 0), at least
up to asymptotic equivalence. This shows that our results of Chapter 2 are perfectly
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adapted to calculate the decay rate for such a kind of equations. Restricting for
simplicity to Ω = (0, 1) and ν([0, 1]) = 0 our results show that

<Fk ∈ PD⇔
∥∥T (t)A−1

∥∥ = O

(
1

M−1(t)

)
where M(s) = Fk(s), s ≥ 0.

That is, we can precisely determine the decay rate for a large class of possible
acoustic impedances.
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Part 1

Quantified Tauberian theorems
and decay of C0-semigroups





CHAPTER 1

Decay of vector-valued functions

1.1. Introduction

This Chapter is mainly devoted to a generalization of [8, Theorem 4.1 and
Corollary 4.2] which we reproduce here in our terminology.

Theorem 1.1 (Batty-Duyckaerts [8]). Let f : R+ → X be a locally integrable

function with f ′ ∈ L∞(R+;X) with Laplace transform f̂ which extends analytically
to ΩM (defined in (1.2)) and satisfies∥∥∥f̂(z)

∥∥∥ ≤ CM(|=z|) for z ∈ ΩM .(1.1)

Then

‖f(t)‖ = O

(
1

M−1
log (ct)

)
, t→∞

where Mlog(s) = M(s) log(2 + s+M(s)) for s ≥ 0.

Here and in what follows we set

ΩM =

{
z ∈ C; 0 > <z > − 1

M(|=z|)

}
.(1.2)

We present generalizations in two different directions. The first generalization is
Theorem 1.3 below. Our theorem is inspired by a paper of Batty, Borichev and
Tomilov [7]. We have adapted some ideas from this paper, however our main
strategy in the proof follows the “Fourier approach” as in a paper of Chill and
Seifert [18]. Although we also consider Lp-rates of decay as in [7] our main concern
in Theorem 1.3 is to weaken the constraint (1.1) in the sense that we want to
decouple (almost) completely the growth bound from the shape of the domain.
That is we replace this constraint by∥∥∥f̂(z)

∥∥∥ ≤ K(|=z|) for z ∈ ΩM .

For K : R+ → (0,∞) we allow any non-decreasing function which satisfies

K(s) = O(exp(exp((sM(s))1−ε))), s→∞(1.3)

for some ε ∈ (0, 1). This is motivated by applications to the wave equation in
exterior domains (see Chapter 3). Now the decay rate is given by 1/M−1

logK(ct) with

MlogK(s) = M(s) log(2 + s+M(s) +K(s)) for s ≥ 0. In a special case our results
reproduce the results of [7] where K had to be bounded by a polynomial in sM(s).
In Sections 1.2.3 and 1.2.4 we show that the decay rate we obtain are in a sense
optimal in general. To prove that we slightly generalize an argument from a paper
of Borichev and Tomilov [12].

15
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Our second generalization is Theorem 1.31. Our motivation for such a general-
ization is the wave equation on exterior domains in even dimensions. This possible

application shows that there is a need for a theorem which allows f̂ to have a log-
type singularity near zero. This means that in a neighbourhood of 0 ∈ C there
exists an (X-valued) analytic function f̃ such that

z 7→ f̂(z)− f̃(z) log(z) is analytic.

To the best of our knowledge such a theorem is new in this general context. Our
work in this direction was inspired by paper of Vodev [51]. Unfortunately we were
not able to apply the “Fourier approach” due to - for us - unsurmountable difficulties
with the logarithmic singularity at zero. So in contrast to the proof of Theorem 1.3
as in e.g. [8, 7] we now use the contour method for our proof. However our very
weak condition (1.3) forces us to very carefully choose the contour along which we
integrate. Also the so called fudge-factor is heavily influenced by this condition.

Let us finally explain our last main result of this chapter. Before we do so let
us first state the following simplified version of a result due to Martinez [35] (see
also [18, 10]).

Theorem 1.2. Let X be a Banach space and let A be the generator of a bounded
C0-semigroup T on X. Suppose that σ(A) ∩ iR = {0} and that

∥∥(is−A)−1
∥∥ ≤

C(min{|s| , 1})−α, s ∈ R for some α ≥ 1. Then∥∥T (t)A(1−A)−2
∥∥ = O

((
log(t)

t

) 1
α

)
, t→∞.

The assumption on the resolvent to be bounded at infinity is only made to
focus on the essentials in the following. Our results (Theorem 1.26 and 1.38) show
that in the special case α = 1 the logarithmic loss actually does not occur. This
phenomenon seems to be unknown in this context. Analogous results are only
known for semigroups on Hilbert spaces and for analytic semigroups.

1.2. No singularity on iR

Given a continuous and non-decreasing function M : R+ → (0,∞) we denote

wM (t) =

{
M−1(t) if t ≥ 1

1 else.

The main result of this section is the following theorem, which is a generalization
of [10, Theorem 4.1].

Theorem 1.3. Let (X, ‖·‖) be a Banach space, m ∈ N, and f : R+ → X be a
locally integrable function such that its m-th weak derivative f (m) is in Lp(R+;X)
for some 1 < p ≤ ∞. Assume that there exist continuous and non-decreasing
functions M,K : R+ → (0,∞) satisfying

(i) ∀s ≥ 0 : K(s) ≥ max{2, s,M(s)},
(ii) ∃ε ∈ (0, 1) : K(s) = O

(
ee

(sM(s))1−ε
)

as s→∞.

such that the Laplace transform f̂ of f extends analytically to ΩM ∪ C+ and∥∥∥f̂(z)
∥∥∥ ≤ K(|=z|) for all z ∈ ΩM .(1.4)
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Then there exists a constant c1 > 0 such that(
t 7→

∥∥wMlogK
(c1t)

mf(t)
∥∥) ∈ Lp(R+),(1.5)

where MlogK(s) := M(s) log(K(s)).

Remark 1.4. Note that a function f ∈ L1
loc(R+;X) with f (m) ∈ Lp(R+;X) is

polynomially bounded. In fact, ‖f(t)‖ ≤ C(1 + t)m−1/p for all t ≥ 0. In particular
the Laplace transform of f is well-defined in the interior of C+ as an absolutely
convergent integral.

Remark 1.5. One can drop condition (i) on K but then one has to replace
MlogK by the function given by M(s) log(2 + s+M(s) +K(s)).

Remark 1.6. We are not able to prove the theorem for ε = 0 in condition (ii).
In Section 1.13 the reader can find a short discussion on a slightly weaker constraint
on K.

We prove Theorem 1.3 as a corollary to the following variant which is a gener-
alization of [18, Theorem 2.1(b)]:

Theorem 1.7. Let (X, ‖·‖) be a Banach space, m ∈ N, and f : R+ → X be a
locally integrable function such that f (m) ∈ Lp(R+;X) for some 1 < p ≤ ∞. Let
M and K be as in Theorem 1.3. Assume that the Fourier transform F of f is of
class C∞ and its derivatives satisfy∥∥∥F (j)(s)

∥∥∥ ≤ j!K(|s|)M(|s|)j for all j ∈ N0, s ∈ R.(1.6)

Then there exists a constant c1 > 0 such that(
t 7→

∥∥wMlogK
(c1t)

mf(t)
∥∥) ∈ Lp(R+),(1.7)

where MlogK(s) := M(s) log(K(s)).

Remark 1.8. Note that the Fourier transform of f is well-defined in the sense
of tempered distributions since f is polynomially bounded (compare with Remark
1.4).

We show in Lemma 1.14 that the Theorems 1.3 and 1.7 are essentially equiva-
lent. To prove Theorem 1.7 we adapt the proof of [18, Theorem 2.1(b)]. That is -
for m = 1 - we decompose f = [f − φR ∗ f ] + φR ∗ f = J1 + J2 into two terms with
the help of some suitably chosen and scaled convolution kernel φR(t) = Rφ(Rt)
with

∫
R φ(t)dt = 1. Then we estimate the X-norm of J1(t, R) and J2(t, R) in terms

of R and t, solely assuming f ′ ∈ Lp for the former and the bounds on all derivatives
F (j) for the latter. Finally we optimize the sum of these two estimates by choosing
R = M−1

logK(c1t) for a sufficiently small c1.

We improve the techniques of [18] in the following way: we estimate J1(t, R)
from above by a Poisson integral R−1PR−1 ∗ ‖f ′‖ (t) which makes it possible to
apply a fundamental result on Carleson measures. We note that this technique was
already applied in [7]. Compared to the proof in [18] we get a better estimate on
J2(t, R) by choosing a better convolution kernel φ. Also the Fourier transform ψ
of our convolution kernel is a C∞c -function which simplifies the proof slightly. Our
choice of ψ is based on the Denjoy-Carleman theorem on quasi-analytic functions.
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1.2.1. Proof of Theorem 1.7. Without loss of generality we may assume
that f(0) = f ′(0) = . . . = f (m−1)(0) = 0. If this was not satisfied we could replace
f by f − g for some function g ∈ Cmc ([0, t1);X) with g(0) = f(0), . . . , g(m−1)(0) =
f (m−1)(0) and t1 > 0 arbitrary. This neither changes the asymptotics of f at infinity
nor does it change the growth of F and its derivatives at infinity significantly. To
see this note that the Fourier transform G of g satisfies∥∥∥G(j)(s)

∥∥∥ ≤ tj+1
1 ‖g‖∞ for all j ∈ N0, s ∈ R.

Now let us extend f by zero on the negative numbers. By our additional assump-
tions we see that the extended function is (m− 1)-times continuously differentiable
on the whole real line and f (m) ∈ Lp(R;X).

Let ψ ∈ C∞c (R) with suppψ ⊆ [−1, 1] and ψ(0) = 1 be a function to be fixed
later in the proof. Let

φ(t) = F−1ψ(t) =
1

2π

∫ ∞
−∞

eistψ(s)ds

be its inverse Fourier transform. Note that φ is a Schwartz function with
∫
φdt =

ψ(0) = 1. For R > 0 let φR(t) = Rφ(Rt) and ψR(s) = ψ(s/R). Let us decompose

f(t) = (δ − φR)∗m ∗ f(t)− [(δ − φR)∗m − δ] ∗ f(t)

=

 m∑
j=0

(
m

j

)
(−1)jφ∗jR ∗ f

 (t)−

 m∑
j=1

(
m

j

)
(−1)jφ∗jR ∗ f

 (t)

=: J1(t, R) + J2(t, R).

Here by φ∗j we denote the j-times convolution of φ with itself. We also define
φ∗0 = δ (delta function). Note that (φR)∗j = (φ∗j)R.

1.2.1.1. Estimation of J1. Let us define the Poisson kernel by

Py(t) =
1

π
· y

t2 + y2
.

Recall that by Young’s inequality the Poisson kernel acts as a continuous operator
on Lp(R) via convolution.

Lemma 1.9. Let 1 ≤ p ≤ ∞ and m ∈ N1. Let f : R→ X be a locally integrable
function such that f (m) ∈ Lp(R;X). Let φ be as above. Then there exists a constant
C > 0 (only depending on φ and m) such that

‖(δ − φR)∗m ∗ f(t)‖ ≤ C

Rm
P 1
R
∗
∥∥∥f (m)

∥∥∥ (t)(1.8)

holds for all t ≥ 0 and R > 0.

Remark 1.10. It is clear from the proof that in the statement of the lemma one
can replace P = P1 by any positive and integrable kernel bounded from below by
c(1 + t)−α for some α > 1. We then define Py(t) = y−1P (y−1t). Unfortunately this
is not consistent with the definition of φR, but for the Carleson measure argument
below it is more convenient to define Py as above.

Proof. Let us define two antiderivatives of φ

Φ−(t) =

∫ t

−∞
φ(τ)dτ, Φ+(t) = −

∫ ∞
t

φ(τ)dτ.
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Furthermore we define the following auxiliary function

Φ(t) =

{
Φ−(t) if t < 0

Φ+(t) if t ≥ 0
.(1.9)

We observe that the derivative of Φ is φ plus a factor times the delta function at
zero. This observation is the reason why we split the integral from the following
calculation at 0.

First, we consider the case m = 1.

[f − φR ∗ f ](t) =

∫ ∞
−∞

(f(t)− f(t− τ))φR(τ)dτ

=

[∫ 0

−∞
+

∫ ∞
0

]
(f(t)− f(t− τ

R
))φ(τ)dτ

= − 1

R

∫ ∞
−∞

f ′(t− τ

R
)Φ(τ)dτ

= − 1

R
ΦR ∗ f ′(t).(1.10)

We need to explain why the partial integration executed from line two to three
produces no boundary terms at −∞, 0 and ∞. At zero there are no boundary
terms since (f(t) − f(t − τ

R )) vanishes at τ = 0 and the two limits limt→0±Φ(t)
exist. Recall that f is polynomially bounded. Moreover the function Φ decays
rapidly at infinity. Thus there are no boundary terms at plus or minus infinity.
Finally the last equality together with the fact that Φ decays rapidly implies

‖[f − φR ∗ f ](t)‖ ≤ C

R

∫ ∞
−∞

∥∥∥f ′(t− τ

R
)
∥∥∥ 1

τ2 + 1
dτ

≤ C

πR

∫ ∞
−∞
‖f ′(t− τ)‖ R−1

τ2 +R−2
dτ

=
C

R
P 1
R
∗ ‖f ′‖ (t).

Now we consider the case m ∈ N2. Let us define recursively fj+1 = fj − φR ∗
fj , f0 = f for j ∈ {0, 1, . . . ,m − 1}. Clearly fm = (δ − φR)∗m ∗ f . We prove now

fj = (−1/R)jΦ∗jR ∗f (j) via induction on j. Observe that for any j ∈ N1 the function
Φ∗j decays rapidly. For j = 1 the induction hypothesis is precisely (1.10). Assume
that the hypothesis is valid for some j < m. Then by (1.10) for f replaced by fj

fj+1 = fj − φR ∗ fj = − 1

R
ΦR ∗ f ′j =

(
− 1

R

)j+1

Φ
∗(j+1)
R ∗ f (j+1).

From here we can finish the proof as in the case m = 1. �

Since the L1-norm of the Poisson kernel is 1 (for any y > 0) we see from Young’s
inequality that ‖Py ∗ g‖Lp ≤ ‖g‖Lp for any g ∈ Lp(R), y > 0. If p = ∞ and if we
set R = R(t) = wMlogK

(c1t) we deduce from Lemma 1.9 that, for every t ≥ 0

R(t)m
∥∥(δ − φR(t))

∗m ∗ f(t)
∥∥ ≤ Cc1 <∞.(1.11)

If we compare this with (1.7) we see that this already yields the desired estimate
on J1 in the case p = ∞. If p < ∞ we need a slightly more involved argument
based on a property of Carleson measures.
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Let P ∗g(t, y) := Py ∗g(t) and let µ be a Borel measure on the upper half-plane
H = {(t, y) ∈ R2; y > 0}. Now we ask for which measures µ an inequality

‖P ∗ g‖Lp(H,dµ) ≤ Cp ‖g‖Lp(R)(1.12)

holds for all g ∈ Lp(R) with a constant Cp not depending on g? Note that the
inequality ‖Py ∗ g‖Lp ≤ ‖g‖Lp is a special case of (1.12) for Cp = 1 with µ being the
one-dimensional Hausdorff measure of the line {(t, y) ∈ H; t ∈ R} ⊂ H. Actually
for 1 < p <∞ one can characterize the class of all measures µ for which (1.12) holds
for all g. These measures are called Carleson measures (see [24, Theorem I.5.6.]).
Let γ : R → (0,∞) be a bounded continuous function with bounded variation.
Then the one-dimensional Hausdorff measure restricted to

Γ = {(t, γ(t)); t ∈ R} ⊂ H

is a Carleson measure. Now let γ(t) = 1/R(t) = 1/M−1
logK(c1t) for t > 0 and γ(t) =

M−1
logK(0) for t < 0. If we set µMlogK

to be the Carleson measure corresponding to
this particular choice of γ then we deduce that for 1 < p <∞∥∥∥P ∗ ∥∥∥f (m)

∥∥∥∥∥∥
Lp(H,dµMlogK

)
≤ Cp

∥∥∥f (m)
∥∥∥
Lp(R+;X)

<∞.(1.13)

From this together with Lemma 1.9 we deduce

Lemma 1.11. Let c1 > and define R(t) = M−1
logK(c1t). Then (i) for p =∞

sup
0<t<∞

R(t)m
∥∥(δ − φR(t))

∗m ∗ f(t)
∥∥ ≤ C ∥∥∥f (m)

∥∥∥
L∞(R+;X)

,

(ii) and for 1 < p <∞∫ ∞
0

∥∥R(t)m(δ − φR(t))
∗m ∗ f(t)

∥∥p dt ≤ C ∥∥∥f (m)
∥∥∥p
Lp(R+;X)

.

In both cases C does not depend on f .

1.2.1.2. Estimation of J2. The following lemma is only necessary if p 6=∞.

Lemma 1.12. There exists a δ > 0 such that K(M−1
logK(t)) ≥ tδ for all t ≥

MlogK(1).

Proof. Let R = M−1
logK(t). Since M−1

logK is the right-inverse of MlogK we have

t = MlogK(R) = M(R) log(K(R)) ≥M(R) log(M(R)).

The inverse of the function x 7→ x log(x) is asymptotically equivalent to y 7→
y/ log(y) for large y > 0. Hence there exists a δ > 0 such that M(R) ≤ δ−1t/ log(t).
Thus

K(R) = exp(log(K(R))) = exp

(
t

M(R)

)
≥ exp(δ log(t)) = tδ.

�

At this point in the proof we fix a ψ having one additional property. We assume
that the derivatives of ψ satisfy for some C1 > 0

∀j ∈ N0 : sup
s∈[−1,1]

∣∣∣ψ(j)(s)
∣∣∣ ≤ Cj+1

1 Aj with Aj = (j log(2 + j)1+ε)j .(1.14)

Note that (1.14) cannot be satisfied by any ψ if we would replace Aj by j! since then
ψ would be analytic and hence cannot have compact support and ψ(0) = 1 at the
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same time. The Denjoy-Carleman1 theorem (see e.g. [28, Theorem 1.3.8] or [20])
gives a description of those sequences (Aj) which allow for compactly supported
non-zero functions ψ satisfying the inequality in (1.14). In particular, the Denjoy-
Carleman theorem implies that our choice of Aj is admissible for the existence of
such a ψ. Conversely it implies that there is no ψ ∈ C∞c (R)\{0} which satisfies
(1.14) with ε = 0.

Now we proceed with the estimation of J2(t, R). Therefore we have to estimate

J2,j(t, R) = φ∗jR ∗ f(t) for j ∈ {1, . . . ,m}. First let us consider J2,1. Let N ∈ N0.
Integration by parts N -times yields

J2,1(t, R) =
1

2π

∫ ∞
−∞

eistF (s)ψR(s)ds(1.15)

=
1

2π

(
i

t

)N ∫ R

−R
eist

 N∑
j=0

(
N

j

)
F (N−j)R−j(ψ(j))R

 (s)ds.

To verify the following calculations recall (1.6) and (1.14). We estimate the integral
very roughly from above, by the length of the interval of integration times the
supremum of the integrand within this interval. We also use Stirling’s formula
implying for example that (cj)j ≤ j! ≤ (Cj)j for appropriate constants c, C > 0.

‖RmJ2,1(t, R)‖ ≤ Ct−NRm+1
N∑
j=0

(
N

j

)
(N − j)!K(R)M(R)N−j

∥∥ψ(j)
∥∥ 1
j

∞
R

j

≤ C ·Rm+1K(R)

(
C2M(R)N

et

)N
·
N∑
j=0

(
C3 log(2 +N)1+ε

RM(R)

)j
(1.16)

=: C ·A ·B.

The second inequality is valid for sufficiently large C2, C3 > 0. Now let us set
N = bt/(C2M(R))c and R = M−1

logK(c1t). The constant c1 > 0 will be chosen later.

Then the condition (ii) on K implies

B ≤
N∑
j=0

(
C3 log((c1C2)−1 log(K(R)))1+ε

RM(R)

)j
≤

N∑
j=0

(
C4(RM(R))1−ε2

RM(R)

)j
≤ C.

The constant in the last inequality does not depend on t. Moreover,

A ≤ CRm+1K(R)e−N ≤ CRm+1K(R)e−
log(K(R))
c1C2 = CRm+1K(R)1− 1

c1C2 .

If we choose c1 sufficiently small, Lemma 1.12 implies that∥∥∥M−1
logK(c1t)

mJ2,1(t,M−1
logK(c1t))

∥∥∥ ≤ {C if p =∞,
C

(1+t)2/p
if 1 ≤ p <∞.

(1.17)

Clearly (1.15) remains valid if one replaces J2,1 by J2,k and ψ by its k-th power

ψk. It is not difficult to check that ψk also satisfies (1.14) if one replaces Cj+1
1 by

1A special version of the Denjoy-Carleman theorem (sufficient for our considerations) reads
as follows. Let S be the set of C∞-functions on R supported on [−1, 1] such that (1.14) holds for

a sequence (Aj) such that ( j
√

Aj) is non-decreasing. Then S contains a non-zero function if and

only if
∑
j 1/ j

√
Aj <∞.
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Ck1 (kC1)j . Therefore (1.17) remains true after replacing J2,1 by J2. This together
with Lemma 1.11 proves Theorem 1.7.

Remark 1.13. Our proof breaks down if we allow ε to be zero in condition
(ii) in Theorem 1.3 (and 1.7). This is essentially due to the fact that by the
Denjoy-Carleman theorem a function ψ satisfying (1.14) for ε = 0 is necessarily
quasi-analytic. This means that ψ(j)(s0) = 0 for a single s0 ∈ R but all j ∈ N
automatically implies ψ = 0. However, one can weaken (ii) slightly by choosing for
some given ε ∈ (0, 1) and n ∈ N1

Aj = j · L1(j) · L2(j) · . . . · Ln(j) · Ln+1(j)1+ε with

Lk(j) = [log ◦ . . . ◦ log]︸ ︷︷ ︸
k times

(1 + k + j).

This allows us to replace (ii) by the condition

K(s) = O

(
exp

(
exp

(
sM(s)

L1(sM(s)) · . . . · Ln−1(sM(s)) · Ln(sM(s))1+ε

)))
.

Again choosing ε = 0 is forbidden for any n.

1.2.2. Proof of Theorem 1.3. Lemma 1.14 below implies that Theorem 1.3
and Theorem 1.7 are equivalent. To prepare the formulation of this lemma we
introduce some notation. Let M1, M2, K1, K2 : R+ → (0,∞) be continuous
and non-decreasing functions. For f : R+ → X measurable and polynomially
bounded and extended by zero on the negative real numbers we consider two distinct
conditions. The first one is

∀z ∈ ΩM1
:
∥∥∥f̂(z)

∥∥∥ ≤ K1(|=z|).(1.18)

This condition implicitly states that the Laplace transform of f can be extended
to ΩM1

. Let F be the Fourier transform of f . The second condition is

∀j ∈ N0, s ∈ R :
∥∥∥F (j)(s)

∥∥∥ ≤ j!K2(|s|)M2(|s|)j .(1.19)

This condition implicitly states that the Fourier transform is a C∞-function.
The following lemma relates these conditions to each other under a mild con-

dition on f .

Lemma 1.14. Let f : R+ → X be a measurable and polynomially bounded
function with f (m) ∈ Lp(R+;X) for some 1 ≤ p ≤ ∞ and m ∈ N1. We extend f
by zero on the negative real numbers and denote by F its Fourier transform. (a) If
F satisfies (1.19) then f satisfies (1.18) with

M1(s) = (1− ε)−1M2(s) and K1(s) = ε−1K2(s)

for any ε ∈ (0, 1). (b) If f satisfies (1.18) then F satisfies (1.19) with

M2(s) = M1

(
s+M1(s)−1

)
and

K2(s) = K1

(
s+M1(s)−1

)
+ Cf

M1

(
s+M1(s)−1

)2− 1
p

(1 + s)m
+ C ′f .

The constant Cf depends only on
∥∥f (m)

∥∥
Lp

, the constant C ′f depends only on

‖f(0)‖ , . . . ,
∥∥f (m−1)(0)

∥∥.
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Before proving this lemma we finish the proof of Theorem 1.3. Since f satisfies
(1.18) for M1 = M and K1 = K, Lemma 1.14 implies that (1.19) is true for M2

and K2 given as in part (b) of the lemma. In the following we assume s > 0 large
enough to satisfy 1/M1(s) ≤ s. Note that condition (i) in Theorem 1.3 implies the
existence of a (small) constant c > 0 such that (for large s)

cM2(s) log(K2(s)) ≤M(2s) log(K(2s)).

This immediately yields for large t

M−1
logK(ct) ≤ 2(M2)−1

K2
(t).

Therefore (M2)−1
K2

(c1·)mf ∈ Lp for some c1 > 0 implies that M−1
logK(cc1·)mf ∈ Lp.

The proof of Theorem 1.3 is complete.

Proof of Lemma 1.14. Let us begin with the easier part (a). Hadamard’s

formula shows that (1.19) implies that f̂ is analytic in ΩM2
⊃ ΩM1

. Let z ∈ ΩM1

and let s = =z. Then∥∥∥f̂(z)
∥∥∥ =

∥∥∥∥∥∥
∞∑
j=0

1

j!
f̂ (j)(is)(z − is)j

∥∥∥∥∥∥ ≤
∞∑
j=0

K2(s)M2(s)j
(

1− ε
M2(s)

)j
= ε−1K2(s).

Let us now prove part (b). Let us fix s ∈ R, let r = 1/M1(|s|+ 1/M(|s|)) and
let γ be the positively oriented circle of radius r around is in the complex plane.
Note that γ is included in the closure of the union of ΩM1

and C+. Let γ+ and
γ− be the intersection of γ with C+ and C−, respectively. By Cauchy’s formula we
have

f̂ (j)(is) =
j!

2πi

[∫
γ−

+

∫
γ+

]
f̂(z)

(z − is)j+1

(
1 +

(z − is)2

r2

)
dz

=: j! [I− + I+] .

Let us first estimate I−:

‖I−‖ ≤
1

2π
· r−j−1 sup

z∈γ−

∥∥∥f̂(z)
∥∥∥ · πr · 2

≤ K1

(
|s|+M1(|s|)−1

)
M1

(
|s|+M1(|s|)−1

)j
.(1.20)

Let us now estimate I+:

I+ =
1

2πi

∫
γ+

(
1 + (z−is)2

r2

)
(z − is)j+1

(
m−1∑
k=0

z−j−1f (k)(0) + z−m
∫ ∞

0

e−ztf (m)(t)dt

)
dz

=:
m−1∑
k=0

I+,k + I+,m

It is an easy exercise to show that the integral of e−rt cos(θ) cos(θ) over θ ∈ (−π/2, π/2)
can be estimated from above by a constant times ((rt)2 + 1)−1. Therefore by
Hölder’s inequality we get for large |s|

‖I+,m‖ ≤
C

|s|m rj+1

∫ ∞
0

∫ π
2

−π2
e−rt cos(θ) cos(θ)dθ

∥∥∥f (m)(t)
∥∥∥ dt

≤ C

|s|m rj+2−1/p

∥∥∥f (m)
∥∥∥
Lp
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≤
C
∥∥f (m)

∥∥
Lp

|s|m
M1(|s|+M1(|s|)−1)j+2−1/p.

A similar (and easier) estimate is true for the other summands I+,k. This together
with (1.20) yields the claim. �

1.2.3. Optimality of Theorem 1.3. In this section we show that under the
assumptions of Theorem 1.3 and for p = ∞,m = 1 one can - up to improvement
of the constant c1 - not get a faster decay rate than the one already given by
the theorem. To show this we use almost the same method as in [12]. There the
authors showed the optimality in the very particular case that M(s) = C(1 + sα)
and K(s) = C(1 + sβ) for β > α/2 > 0. Theorem 1.15 below contains as a special
case [12, Theorem 3.8]. To compare our result with Borichev’s and Tomilov’s result
take also Remark 3.10 from their paper into account.

Theorem 1.15. Let c1 > 0 and let M,K : R+ → [2,∞) be continuous and non-
decreasing functions satisfying for some non-decreasing function N : R+ → [1,∞)

(i) lims→∞
MlogK(s)
log(2+s) =∞ and ∃ε > 0, s0 > 0∀s ≥ s0 : K(s) ≥ sε,

(ii) ∃s0 > 0∀s ≥ s0, s
′ ≥ 0 : M(s+ s′) ≤ N(s′)M(s).

Then there exists a real number γ ≥ 0, not depending on c1 and a locally integrable
function f : R+ → C with f ′ ∈ L∞(R+) such that∣∣∣f̂(z)

∣∣∣ ≤ C

R
M(|=z|) 1

2K(|=z|)
γ
c1 for all z ∈ ΩM(1.21)

and

lim sup
t→∞

M−1
logK(c1t) |f(t)| ≥ c > 0.(1.22)

If instead of (ii) we have the stronger assumption that there exists a γ0 ≥ 1 such
that

(ii’) ∀s1 > 0∃s0 > 0∀s ≥ s0, s
′ ≤ s1 : M(s+ s′) ≤ γ0M(s)

and if γ > γ0 then it is possible to choose f in such a way that (1.21) holds for this
choice of γ. If in addition M is unbounded then it is possible to choose f in such
a way that (1.21) holds for all γ > γ0.

Remark 1.16. Let K̃ : R+ → (0,∞) be given by K̃(s) = M(|=z|)1/2K(|=z|)γ/c1 ,
s ≥ 0. Assume for simplicity that K(s) ≥ max{2, s,M(s)} for s ≥ 0. Then MlogK

and MlogK̃ are asymptotically equivalent. After possibly redefining K̃ on a compact

interval we can apply Theorem 1.3 to deduce that M−1
logK(c2t) |f(t)| ≤ C, t ≥ 1 for

certain constants c2, C > 0. This is consistent with (1.22).

Remark 1.17. Note that condition (i) is only a very mild restriction. In fact,
a typical situation where (i) is violated is that M is a constant and K grows at
most polynomially. But then Theorem 1.3 implies exponential decay for f . This in

turn implies, that the integral which defines f̂ is absolutely convergent in a small

strip to the left of the imaginary axis. In particular f̂ extends analytically to this
strip and is bounded there. So our results are trivially optimal in that case.

Before we prove the theorem we need a similar lemma as in [12]. Given a
compactly supported measure µ on C\ΩM ∪ C+ we use the following notation for
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z ∈ ΩM ∪ C+ and t ≥ 0

Cµ(z) =

∫
1

z − ζ
dµ(ζ), Lµ(t) =

∫
etζdµ(ζ), L′µ(t) =

∫
ζetζdµ(ζ).

To simplify the notation we extend M and K symmetrically to the negative real
axis.

Lemma 1.18. Let c1,M and K be as in Theorem 1.15. There exists a δ > 0
and a γ > 0, only depending on M and δ, such that for all ε > 0 and k0 ∈ N0 there
exists k ∈ Nk0 and a compactly supported Borel measure µ on C\ΩM ∪ C+ such
that for all z ∈ ΩM and t ≥ 0

|Cµ(z)| ≤ C

R
M

1
2Kγ1[R−2δ,R+2δ](=z) + ε,(1.23)

|L′µ(t)| ≤ C1[ k2δ ,
2k
δ ](t) + ε,(1.24)

|Lµ(t)| ≤ C

R
1[ k2δ ,

2k
δ ](t) +

ε

max{R,M−1
logK(c1t)}

,(1.25) ∣∣∣∣Lµ(
k

δ
)

∣∣∣∣ ≥ c

R
.(1.26)

Here R = M−1
logK(c1k/δ). If instead of (ii) we have the stronger assumption that

there exists a γ0 ≥ 1 such that

(ii’) ∀s1 > 0∃s0 > 0∀s ≥ s0, s
′ ≤ s1 : M(s+ s′) ≤ γ0M(s)

and if γ > γ0 then it is possible to choose f in such a way that (1.23) holds for this
choice of γ. If in addition M is unbounded then it is possible to choose f in such
a way that (1.23) holds for all γ > γ0.

Remark 1.19. For =z = R the inequality (1.23) holds also in the reverse
direction (for a different value of C). This will be indicated in the proof.

Proof. Let δ > 1/M(0) be a real number to be fixed later. Let k ∈ Nk0 to be
fixed later. Let us define

w = iR− δ, q = e2πi/(k+1), δA = kl(k)

where l : R+ → (0,∞) is a strictly increasing function such that l(t) ≥ β log(e+ t)
for some β ≥ 1 to be fixed later. By δz0 we denote the Dirac-measure at z0 ∈ C.
Let us define

µ =
τ

R

k∑
j=0

qjδw+A−1qj .

The constant τ > 0 will be chosen later. Before we go on we state a simple lemma
which will be frequently applied in the following.

Lemma 1.20. Let n > 0 be a real number. The function s 7→ sne−s has a
unique maximum on R+. Before this maximum the function is strictly increasing
and after that maximum it is strictly decreasing.

One can prove the lemma by simply taking the derivative of the function.
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Part 1: estimation of Lµ. We distinguish the two cases t ≤ A and t > A.
Case 1: t ≤ A. We calculate

Lµ(t) =
τ

R

k∑
j=0

qjet(w+A−1qj)

=
τ

R
etw

∞∑
m=0

1

m!

(
t

A

)m k∑
j=0

q(m+1)j

=
τ

R
· etw (k + 1)tk

Akk!
·
∞∑
n=1

k!

(n(k + 1)− 1)!

(
t

A

)(n−1)(k+1)

=:
τ

R
· I · II.

Clearly II is bounded from below by 1 and bounded from above by a constant
which does not depend on k or A. Thus by Stirling’s formula we get

|Lµ(t)| ≥ c τ
R

√
ke−δt

(
eδt

δAk

)k
.

As a function in t we can maximize the right-hand side by setting δt = k. If we
furthermore define

τ =
1√
k

(δA)k(1.27)

we see that (1.26) is proved. Since II is bounded from above we have

|Lµ(t)| ≤ C τ

R

√
ke−δt

(
eδt

δAk

)k
.(1.28)

Again we maximize the right-hand side by setting δt = k and plugging in (1.27).
This leads to

|Lµ(t)| ≤ C τ

R

√
ke−k

( e

δA

)k
≤ C

R

For t ∈ [k/2δ, 2k/δ] this is already what we want to have in (1.25).
Case 1.1: δt ≤ k/2. In this case the maximum in (1.28) with respect to t is

attained for δt = k/2. This yields

|Lµ(t)| ≤ C τ

R

√
ke−

k
2

( e

2δA

)k
=
C

R

(e
4

) k
2 ≤ ε

R

The last inequality holds for sufficiently large k. We proved (1.25) for δt ≤ k/2.
Case 1.2: 2k ≤ δt ≤ δA. Condition (i) from Theorem 1.15 yields M−1

logK(c1t) ≤
eδt/α for any α > 0 as long as t is large enough. Thus, if we multiply (1.28) by
M−1

logK(c1t) we get

M−1
logK(c1t) |Lµ(t)| ≤ C τ

R

√
ke−(1− 1

α )δt

(
eδt

δAk

)k
≤ C

R

(
2

e1− 2
α

)k
≤ ε

for sufficiently large k. From the first to the second line we used that the maximum
of the right-hand side of the first line is attained at δt = 2k if α ≥ 2. In the last



1.2. NO SINGULARITY ON IR 27

estimate we used e1− 2
α > 2 which is true if α is large enough. We proved (1.25) for

2k ≤ δt ≤ δA.
Case 2: t > A. Then we have

|Lµ(t)| ≤ τ

R
(k + 1)e−(δ−A−1)t

≤ C

R

√
k(δA)ke−δAe−(δ−A−1)(t−A)

In the following we assume that δ −A−1 > 0 which is true for large k.
Case 2.1: A < t < 2A. In this case (using again M−1

logK(c1t) ≤ eδt/α for large

t) we get

M−1
logK(2c1A) |Lµ(t)| ≤ C

R

√
k
(
kl(k)e−l(k)

)k
e

2kl(k)
α

=
C

R

√
k
(
kl(k)e−(1− 2

α )l(k)
)k
≤ ε

if we choose β > 1 and let α satisfy (1 − 2
α )−1 < β and if k is large enough. We

proved (1.25) for A < t < 2A.

Case 2.2: t ≥ 2A. If we use
√
k(δA)ke−δA ≤ 1 for large k we can calculate for

an α > 4

M−1
logK(c1t) |Lµ(t)| ≤ C

R
e−(1− 1

kl(k)
)(δt−δA)e

δt
α

≤ C

R
e( 1
α−

1
4 )δt ≤ ε.

This finishes the proof of (1.25).
Part 2: estimation of Cµ. First observe that as long as z is no (k + 1)-th root

of unity we have

k∑
j=0

qj

z − qj
=

k + 1

zk+1 − 1
.

Clearly this equation must hold for some k-th order polynomial p if one replaces the
term k+ 1 on the right-hand side by p(z). Moreover the left-hand side is invariant
under the substitution which replaces z by qz. Thus p(z) = p(qz). But this implies
that p is a constant. By plugging in z = 0 we see that p = k + 1.

The observation yields for z ∈ ΩM

Cµ(z) =
τ

R

(k + 1)A

(A(z − w))k+1 − 1
.(1.29)

Now it is not difficult to prove (1.23) for |=z −R| > 2δ. The latter condition
implies |z − w| > 2δ. Thus, using (1.29) we get for |=z −R| > 2δ and k large:

|Cµ(z)| ≤ C τ

R
kA(2δA)−k−1 ≤ C

√
k

δR
2−k ≤ ε.

If we do not have |=z −R| > 2δ we can merely estimate |z − w| ≥ δ − 1/M(=z).
This yields for z ∈ ΩM with |=z −R| ≤ 2δ and for all γ1 > 1

|Cµ(z)| ≤ C τ

R
kA(δA(1− 1

δM(=z)
))−k−1

≤ C
√
k

δR
eγ1

k
δM(=z)
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≤ C
√
k

δR
eγ1N(2δ) k

δM(R)

≤ C

δR

√
MlogK(R)K(R)

γ1N(2δ)
c1 .

From the first to the second line we use the inequality 1− x ≥ e−γ1x which is valid
for small x ≥ 0. If M is bounded we choose δ large enough to make use of this
inequality. From the second to the third line we used condition (ii) from Theorem
1.15. Choosing γ = γ1N(2δ) we get (1.23). Concerning Remark 1.19 a reverse
inequality for =z = R can be proved analogously but in an even simpler way by
using the inequality 1− x ≤ e−x which is valid for all x ≥ 0.

Part 3: estimation of L′µ. Finally we want to estimate the derivative of Lµ.
Case 1: t ≥ A. In this case we directly get for large k

|L′µ(t)| ≤ τ

R
(k + 1)(R+A−1)e−(δ−A−1)t

≤ C
√
k

R
(δA)kRe−δA ≤ ε.

Case 2: t < A. Let us first get a different representation of Lµ:

L′µ(t) =
τ

R

k∑
j=0

qj(w +A−1qj)e(w+A−1qj)t

=
τ

R
etw

∞∑
m=0

1

m!

(
t

A

)m k∑
j=0

(wq(m+1)j +A−1q(m+2)j)

=
w

R
τetw

(k + 1)tk

Akk!

∞∑
n=1

k!

(n(k + 1)− 1)!

(
t

A

)(n−1)(k+1) [
1 +

n(k + 1)− 1

wt

]
.

Note that if t > t0 > 0, the series at the end of the calculation is bounded by a
constant which only depends on t0.

|L′µ(t)| ≤ Cτ
√
ke−δt

(
eδt

δAk

)k [
1 +

k

Rt

]
≤ Ce−δt

(
eδt

k

)k [
1 +

k

Rt

]
(1.30)

Note that (1.30) as a function in t is increasing for δt < k − 1 and decreasing for
δt > k. Therefore we see that |L′µ(t)| bounded by a constant not depending on t.
This shows (1.24) for k/2δ ≤ t ≤ 2k/δ.

Case 2.1: δt ≤ k/2. The maximum in (1.30) is then attained for δt = k/2.
This yields

|L′µ(t)| ≤ Ce− k2
(e

2

)k
≤ C

(e
4

) k
2 ≤ ε

if k is large enough.
Case 2.2: 2k ≤ δt ≤ A. The maximum in (1.30) is then attained for δt = 2k.

This yields

|L′µ(t)| ≤ Ce−2k (2e)
k ≤ C

(
2

e

) k
2

≤ ε

if k is large enough. This finishes the proof of Lemma 1.18. �
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Proof of Theorem 1.15. For an ε0 > 0 to be chosen later we define a se-
quence (εn) by εn = 2−nε0. There exists a δ > 0, an increasing sequence of natural
numbers (kn) and a sequence of measures (µn) according to Lemma 1.18. We may
assume that ([Rn − 2δ,Rn + 2δ]) and ([kn/2δ, 2kn/δ]) are sequences of pairwise
disjoint intervals. Let us define

f(t) =
∞∑
n=1

Lµn(t) for t ≥ 0.

The series is uniformly convergent because of (1.25). The function f is therefore
continuous and since the sequence of derivatives converges uniformly (by (1.24)) we
see that f has a bounded weak derivative given by

f ′(t) =
∞∑
n=1

L′µn(t) for t ≥ 0.

By a similar argument the Laplace transform has the form

f̂(z) =
∞∑
n=1

Cµn(z) for z ∈ ΩM .

Here the sum converges uniformly on compact subsets of ΩM ∪ C+ (by (1.23)).
We already know that the derivative of f is bounded. The estimate (1.21) follows
immediately from (1.23). It remains to prove (1.22). Let us set tn = kn/δ. Then
we deduce from (1.25) and (1.26) that

|f(tn)| ≥ c

Rn
− ε0

∑
j 6=n

2−j

max{Rj ,M−1
logK(c1tn)}

≥ c

Rn
− ε0

∑
j 6=n

2−j

Rn

≥ c

Rn
=

c

M−1
logK(c1tn)

.

In the last line we chose ε0 small enough. �

Remark 1.21. By the same technique one can also prove the optimality of
Theorem 1.3 for m > 1. To achieve this one just has to define the measure µ in

Lemma 1.18 by µ = τR−m
∑k
j=0 q

jδw+A−1qj .

Remark 1.22. With the help of Remark 1.19 one easily sees that for =z = Rn
the inequality (1.21) holds also in the reverse direction (for a different constant C).

1.2.4. On the optimality of the constant c1 in Theorem 1.3. The litera-
ture does not seem to pay much attention to the constant c1 appearing in Theorem
1.3. If we are interested in polynomial decay the constant does not influence the
decay rate much. However, if for example M−1

logK(t) = exp(tα) for some α ∈ (0, 1]
we immediately see that c1 influences the decay rate in a crucial way. The aim of
this subsection is to give a partial answer concerning the question of the optimality
of c1. Under not too restrictive conditions on M and K we show that Theorem 1.3
is valid for any c1 < 1 and false for c1 > 1. Unfortunately we have to exclude the
important special case of exponential decay from our discussion.
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Theorem 1.23. Let p = ∞. (a) In addition to the assumptions in Theorem
1.3 assume that K increases faster than any polynomial and assume that K(s) ≥
c(1 + s)−mM(2s)2. Then (1.5) holds for all c1 < 1. (b) Let M,K satisfy the
assumptions of Theorem 1.3. Assume in addition that for some γ0 ≥ 1

∀s1 > 0∃s0 > 0∀s ≥ s0, s
′ ≤ s1 : M(s+ s′) ≤ γ0M(s).(1.31)

Assume furthermore that K increases faster than any polynomial in sM(s). Let
c1 > γ0. Then there exists a locally integrable function f : R+ → C, satisfying the
assumptions of Theorem 1.3 such that (1.5) does not hold for this choice of c1.

Remark 1.24. It is not difficult to find functions M which satisfy (1.31) for
any γ0 > 1. Take for example M to be a constant, a logarithm or a polynomial.
It is also possible to take M(s) = exp(sα) for α ∈ (0, 1). On the other hand the
example M(s) = exp(s) does not satisfy this condition for any γ > 1.

Remark 1.25. We think that the condition that K increases faster than a
polynomial in s is natural in both parts of the theorem. On the other hand we
do not know whether the growth condition on K in terms of M(s) or M(2s) is a
necessary assumption for the conclusion of Theorem 1.23 to hold. Concerning (a)
this condition is only necessary in the proof since we do not know whether Lemma
1.14 is valid for Cf = 0. Concerning (b) we need it because of the factor M(|=z|)1/2

appearing in (1.21).

Proof. (a) The claim is proved by having a look into the proof of Theorem
1.3. It is not difficult to see that (1.16) is true for any C2 > 1. To get (1.17) one

has to choose c1 in such a way that K(R)
1

c1C2
−1 ≥ cRm+1. Since K grows super-

polynomially in s this means c1 < 1/C2. Now observe that in the final step of the
proof in Section 1.2.2, before the proof of Lemma 1.14, one can choose any c < 1.
Here we use that K(s) ≥ c(1+s)−mM(2s)2. Since C2 can be chosen arbitrary close
to 1 the first assertion is proved.

(b) Let γ0 < γ < c1. First observe that the assumptions of Theorem 1.15
(including (ii’)) are satisfied (concerning m > 1 see also Remark 1.21). Thus there
exists a locally integrable function f : R+ → C such that the conclusion of Theorem
1.15 is satisfied. SinceK grows faster than any polynomial ofM(s) we can withdraw
the factor M(|=z|)1/2 from (1.21) if we replace γ/c1 by 1 in this inequality. Now
the function satisfies the assumptions of Theorem 1.3 but it fails to satisfy (1.5) for
our choice of c1 by Theorem 1.15. �

1.3. s−1-singularity at zero

Theorem 1.26. Let (X, ‖·‖) be a Banach space, m ∈ N, and f : R+ → X
be a locally integrable function such that its weak derivative f ′ and its primitive

t 7→ f1(t) =
∫ t

0
fds are bounded. Assume that there exist continuous and non-

decreasing functions M,K : R+ → (0,∞) satisfying

(i) ∀s ≥ 0 : K(s) ≥ max{2,M(s)},
(ii) ∃ε ∈ (0, 1) : K(s) = O

(
ee
M(s)1−ε

)
as s→∞.

such that the Laplace transform f̂ of f extends analytically to (ΩI ∩ΩM )∪C+ and∣∣∣f̂(z)
∣∣∣ ≤ K(|=z|) for all z ∈ (ΩI ∩ ΩM ).(1.32)
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Here ΩI = {z ∈ C;−c |=z| < <z < 0} for some c > 0. Then there exists a constant
c1 > 0 such that

|f(t)| ≤ C max

{
1

t
,

1

M−1
logK(c1t)

}
(1.33)

for all t ≥ 1, where MlogK(s) := M(s) log(K(s)) if M is unbounded and else we

interpret M−1
logK(c1t) as ∞.

Remark 1.27. Note that we assume that f̂ is bounded in a neighbourhood of
zero in ΩI. The reason why we call this situation “s−1-singularity at zero” will
become clear in Section 1.5.3.

Remark 1.28. The contribution to the decay rate of the singularity at zero is
the term t−1. No logarithmic loss occurs! It seems to be unknown if one can gener-
alize the above theorem to arbitrary (or at least certain) other types of singularities
at zero. For example, let α > 1 and define Ωα = {z ∈ C;−c |=z|α < <z < 0} for
some c > 0. Then we can pose the following question. If one replaces (1.32) by∥∥∥f̂(z)

∥∥∥ ≤ K(|=z|) ∨ C |z|1−α for all z ∈ Ωα ∩ ΩM ,

and (1.33) by

‖f(t)‖ ≤ C max

{
1

t
1
α

,
1

M−1
logK(c1t)

}
,

is Theorem 1.26 then still true? We think the answer is “no”. However, if one
relaxes the conclusion of the theorem to

‖f(t)‖ ≤ C max

{(
log(2 + t)

t

) 1
α

,
1

M−1
logK(c1t)

}
,

then one can combine the proof of Theorem 1.3 with techniques (for singularity at
zero) from [18] to prove a generalization of the above theorem - with a logarithmic
loss. We think that one can perform a similar construction as in Section 1.2.3 to
show the optimality of this result. Since the above result suffices for our applications
we did no further research in this direction.

1.3.1. Some auxiliary lemmas. First, we prove an analogue of Lemma 1.9.
By P we again denote the Poisson kernel.

Lemma 1.29. Let 1 ≤ p ≤ ∞ and r > 0. Let f : R→ X be a locally integrable

function such that its primitive t 7→ f1(t) =
∫ t

0
fds is in Lp(R+;X). Let φ be a

Schwartz function with integral equal to 1. Then there exists a constant C > 0 (only
depending on φ) such that for all t ∈ R

‖φr ∗ f(t)‖ ≤ CrPr−1 ∗ ‖f1‖ (t).

Proof. Integrating by parts yields

φr ∗ f(t) =

∫ ∞
−∞

f(τ)φ(r(t− τ))rdτ

= r

∫ ∞
−∞

f1(τ)φ′(r(t− τ))rdτ.

If we use the inequality |rφ′(rt)| ≤ CPr−1(t) we derive the desired estimate. �
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Next we prove an analogue of Lemma 1.14. Therefore let F = Ff be the
Fourier transform of f .

Lemma 1.30. Let f : R+ → X be a locally integrable function such that its

primitive t 7→ f1(t) =
∫ t

0
fds is in Lp(R+;X) for some 1 ≤ p ≤ ∞. We extend f by

zero on R−. Let M1, M2, K1, K2 : R+ → (0,∞) be continuous and non-decreasing
functions. Let s0 > 0 and define

ΩM1,0 =

{
z ∈ C;− 1

M1(|=z|−1
)
< <z < 0

}
.

(a) If f satisfies

∀j ∈ N0, |s| ≤ s0 :
∣∣∣F (j)(s)

∣∣∣ ≤ j!K2(|s|−1
)M2(|s|−1

)j ,(1.34)

then it also satisfies∣∣∣f̂(z)
∣∣∣ ≤ K1(|=z|−1

) for all z ∈ ΩM1,0 with |=z| ≤ s0(1.35)

with

M1(s) = (1− ε)−1M2(s) and K1(s) = ε−1K2(s)

for any ε ∈ (0, 1). (b) If f satisfies (1.35) then it also satisfies (1.34) with

M2(s) = M1

(
s+M1(s)−1

)
and

K2(s) = K1

(
s+M1(s)−1

)
+ Cf

M1

(
s+M1(s)−1

)2− 1
p

1 + s
.

The constant Cf depends solely on ‖f1‖Lp .

Sketch of the proof. We omit the easy proof of (a). The proof of (b) is
analogous to the proof of Lemma 1.14 part (b). But now use

r =
1

M

([
|s| −M(|s|−1

)−1
]−1
)

as the radius of the circle to integrate over. To estimate I+ use that for <z > 0

f̂(z) = z

∫ ∞
0

e−ztf1(t)dt

is valid. �

1.3.2. Proof of Theorem 1.26. To emphasize that our proof breaks down
if one tries to generalize the theorem as proposed in Remark 1.28 we let α ≥ 1 be
a real number and relax (as in the remark) condition (1.32) to∥∥∥f̂(z)

∥∥∥ ≤ K(|=z|) ∨ |z|1−α for all z ∈ Ωα ∩ ΩM .

Note that α = 1 is the special case in which we are interested in. Without loss of
generality s0 = 2. From Lemma 1.30 we deduce that the Fourier transform F of f
satisfies ∥∥∥F (j)(s)

∥∥∥ ≤ C1+jj!s1−αs−αj
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for all s ∈ [−2, 2] and j ∈ N, where C is independent of s and j. By Lemma 1.14
we may assume that

∀j ∈ N0, |s| ≥ 1 :
∥∥∥F (j)(s)

∥∥∥ ≤ j!K(|s|)M(|s|)j .

Let us fix now a t ≥ 1. Without loss of generality we may assume that M is
unbounded otherwise we can replace it by, for example, M(s) = log(2 + s). We
define R = M−1

logK(c1t) for a c1 > 0 to be chosen later. Without loss of generality

R ≥ 2. Without loss of generality we assume that M(R) ≥ log(R)ε and K(R) ≥ R.
If this was not the case we simply replace M (resp. K) by the functions given by
M(s) ∨ log(s)ε (resp. K(s) ∨ s).

Let us define ϕ = Fψ where ψ ∈ C∞c (R) satisfies 0 ≤ ψ ≤ 1, ψ|[−1,1] = 1
and suppψ ⊆ [−2, 2]. For R > 0 we define ψR(s) = ψ(s/R) and φR(t) = Rφ(Rt).
Moreover, by the Denjoy-Carleman theorem we may assume that

∀j ∈ N0 : sup
s∈[−2,2]

∣∣∣ψ(j)(s)
∣∣∣ ≤ Cj+1

1 Aj with Aj = (j log(2 + j)1+ε)j .

Let 0 < r < R <∞. We decompose

f = [f − φ2R ∗ f ] + [φ2R ∗ f − φ ∗ f ] + [φ ∗ f − φr ∗ f ] + φr ∗ f.(1.36)

By Lemmas 1.9, 1.29 and ‖Py∗‖L∞→L∞ = 1 for each y > 0 we have

‖[f − φ2R ∗ f ](t)‖ ≤ C

R
, ‖φr ∗ f(t)‖ ≤ Cr.(1.37)

To estimate [φ2R ∗ f − φ ∗ f ](t) we follow the estimation of J2,1 in the proof of
Theorem 1.7. That is, as in (1.15) we integrate

[φ2R ∗ f − φ ∗ f ](t) =
1

2π

∫ R

−R
eist(ψ2R − ψ)F (s)ds

N times by part. Let us define

J(t) =
1

2π

(
i

t

)N ∫
1<|s|<2

eist

 N∑
j=1

(
N

j

)
F (N−j)ψ(j)

 (s)ds.

Note that the summation starts at j = 1. If we choose N = bt/(C1M(R))c for a
large enough C1 the estimation of J2,1 in the proof of Theorem 1.7 shows

‖[φ2R ∗ f − φ ∗ f ](t)− J(t)‖ ≤ C

M−1
logK(c1t)

(1.38)

for an appropriate c1 > 0. An analogous argument shows

‖J(t)‖ ≤ C
(
CN

t

)N N∑
j=1

log(2 + j)(1+ε)j .

Since, by assumption (ii), log(K(R)) ≤ log(M(R))1−ε this yields

‖J(t)‖ ≤ 1

t

(
CN log(2 +N)1+ε

t

)N−1

≤ C

t

(
Cε−1M(R)1−ε2

M(R)

)N−1

≤ 1

t
(1.39)

if t (and therefore also R) is large enough.
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It remains to estimate [φ ∗ f −φr ∗ f ](t). Integrating two times by parts we get

2π(φ− φr) ∗ f(t) =

∫
r<|s|<2

eist(ψ − ψr)F (s)ds

=

(
i

t

) 2∑
j=0

(
2

j

)∫
r<|s|<2

eist(ψ(2−j) − rj−2(ψ(2−j))r)F
(j)(s)ds

=: I(t, r) + II(t, r) + III(t, r).

Using the estimates on the derivatives of F close to zero we get

‖I(t, r)‖ ≤ C
∫
r<|s|<2

(1 + r−21r<|s|<2r(s))s
1−αds ≤ Cr(r−α + r−1−α),

‖II(t, r)‖ ≤ C
∫
r<|s|<2

(1 + r−11r<|s|<2r(s))s
1−2αds ≤ Cr(r−2α + r−2α) and

‖III(t, r)‖ ≤ C
∫
r<|s|<2

s1−3αds ≤ Crr1−αr−2α.

This implies

‖[φ ∗ f − φr ∗ f ](t)‖ ≤ Crr1−α
(
r−α

t

)2

.(1.40)

Let us plug into (1.36) the estimates (1.37), (1.38), (1.39) and (1.40). This yields

‖f(t)‖ ≤ C

t
+

C

M−1
logK(c1t)

+
C

R

[
1 + rR

(
1 + r1−α

(
r−α

t

)2
)]

.

Let us use the fact that actually α = 1. Let r = t−1. Then the preceding estimate
implies

‖f(t)‖ ≤ C

t
+

C

M−1
logK(c1t)

+
C

R

[
1 +

R

t

]
.

Recalling that R = M−1
logK(c1t) we see that this finishes the proof of Theorem 1.26.

1.4. Logarithmic singularity at zero

Theorem 1.31. Let (X, ‖·‖) be a Banach space and f : R+ → X be a locally
integrable function such that its weak derivative f (m) of order m ∈ N1 is bounded.
Assume that there exist continuous and non-decreasing functions M,K : R+ →
(0,∞) satisfying

(i) ∀s ≥ 0 : K(s) ≥ max{2, s,M(s)},
(ii) ∃ε ∈ (0, 1) : K(s) = O

(
ee

(sM(s))1−ε
)

as s→∞.

Assume that for some r > 0 and some analytic function f̃ : Br → X the mapping

z 7→ f̂(z) − f̃(z) log(z) is analytic on Br. Assume furthermore that f̂ extends
analytically to (ΩM ∪ C+)\R− and∥∥∥f̂(z)

∥∥∥ ≤ K(|=z|) for all z ∈ ΩM , |=z| >
r

2
.(1.41)
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Then there exists a constant c1 > 0 such that for any k ∈ N1 there exists another
constant C(k) ≥ 0 such that∥∥∥∥f(t) + f̃k−1

(
d

dt

)
t−1

∥∥∥∥ ≤ max

{
C(k)

tk+1
,

C

M−1
logK(c1t)m

}
(1.42)

for all t ≥ 1, where MlogK(s) := M(s) log(K(s)) and f̃k−1 is the Taylor polynomial

of f̃ up to order k − 1. More precisely the constant C(k) can be estimated from
above by

C(k) ≤ sup
−r<x<0

∥∥∥f̃ (k)(x)
∥∥∥ .(1.43)

In particular one can choose C(k) = 0 if f̃ is a polynomial of degree at most k.

1.4.1. Proof of Theorem 1.31. For simplicity we assume m = 1. At the
very end of the proof we briefly explain the modification of the proof which leads
to the conclusion of the theorem in case m > 1. Let k be a strictly positive natural
number to be fixed later. We define the function ψ : C\{−i,+i} → C by

ψ(z) = ck exp

(
− exp

((
2

1 + z2

)k))
, where ck = ee

2k

.

Let R > 0 be a natural number to be chosen later (depending on t). Depend-
ing on R and an additional parameter δ > 0 we define now various contours for
integration in the complex plane.

γ11 = {R(x− i(1− x
1
k+2 )); x ∈ (0, 1)},

γ12 = {R((1− x) + i(1− (1− x)
1
k+2 )); x ∈ (0, 1)},

γ21 = {−R(x− i(1− x
1
k+2 )); x ∈ (0, 1)},

γ22 = {−R((1− x) + i(1− (1− x)
1
k+2 )); x ∈ (0, 1)},

γ31 = {−R(x− i(1− x
1
k+2 )); x ∈ (0, (2RM(R))−1)},

γ32 = {−(2M(R))−1 + iy; y ∈ (R−R(2RM(R))
−1
k+2 , δ)},

γ33 = {x+ iδ; x ∈ (−(2M(R))−1, 0)} ∪ {(δ cosϕ, δ sinϕ); ϕ ∈ (
π

2
,−π

2
)}

∪ {x− iδ; x ∈ (0,−(2M(R))−1)}

γ34 = {−(2M(R))−1 + iy; y ∈ (−δ,−R+R(2RM(R))
−1
k+2 )},

γ35 = {−R(x+ i(1− |x|
1
k+2 )); x ∈ (−(2RM(R))−1, 0)}.

Since we plan to consider the limit δ ↓ 0 we may assume that none of the contours
intersects another one. If we have to use a parametrization of one of these contours
we do it via x, y or ϕ as indicated in the definitions of the contours. This also
determines an orientation of the paths. Moreover, we define γ1 = γ11 + γ12, γ2 =
γ21 + γ22 and γ3 = γ31 + . . .+ γ35. Note that γ1 + γ2 and γ1 + γ3 are closed paths
encircling each of the points from the interval (δ,R). Also note that the derivative
of the parametrization of any of the above paths approaching +i or −i can be
estimated by a constant times Rx−1.

Now let us define the bounded function g : R→ X via g(t) = −f ′(t) for positive

t and extend it by 0 for negative arguments. Observe that ĝ(z) = −zf̂(z) + f(0).
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Without loss of generality we may assume that f(0) = 0, otherwise we adjust f
appropriately on the interval [0, 1] as in the proof of Theorem 1.7 (Section 1.2.1).
Let us define the function ht on the interior of C+ by

ht(z) = ĝ(z)−
∫ t

0

e−zsg(s)ds.

By assumptions, ĝ and ht extend to analytic functions on (ΩM ∪C+)\R−. Observe
that f(t) = ht(0), if we extend ĝ by continuity as 0 at 0. Therefore

f(t) = lim
λ↓0

ht(λ)ψ(R−1λ)eλt

= lim
λ↓0

lim
δ↓0

1

2πi

∫
γ1+γ3

ψ(R−1z)ht(z)e
zt dz

z − λ

= lim
λ↓0

1

2πi

∫
γ1

ψ(R−1z)

(
ĝ(z)−

∫ t

0

e−zsg(s)ds

)
ezt

dz

z − λ

+ lim
λ↓0

1

2πi

∫
γ2

ψ(R−1z)

(
−
∫ t

0

e−zsg(s)ds

)
ezt

dz

z − λ

+ lim
λ↓0

lim
δ↓0

1

2πi

∫
γ3

ψ(R−1z)ĝ(z)ezt
dz

z − λ
=: I1 + I2 + I3.

Actually at the moment we do not know if the integrals above really exist since ψ
has (essential) singularities at ±i. However, the following lemma fixes this problem.
It implies that ψ(R·) is actually bounded on all the contours and actually decays
fast enough (for our purposes) as z approaches ±iR along γ1, γ2 or γ3. Thus - in
the spirit of Newman [39] - our ψ serves as a fudge factor in our Cauchy integrals.

Lemma 1.32. Let ε ∈ (0, 1) and k ∈ N1 with k > 2ε−1 − 2. Then

|ψ(z)| ≤ C exp(− exp(x−(1−ε)))

holds for all z ∈ C which can be represented as

z = x+ i(1− y) or z = x+ i(−1 + y)

where y ∈ (0, 1) and |x| = yk+2.

Proof. By symmetry of the function ψ it suffices to consider the case where
z can be represented as z = x + i(1 − y) for y ∈ (0, 1) and |x| = yk+2. Clearly
ψ is bounded if z stays away from i. Thus it suffices to consider the asymptotic
behaviour of ψ(z) as y approaches 0. We have x = o(y) as y → 0 and

1

1 + z2
=

a− ib
a2 + b2

with a = y(2− y) + x2 = (2 + o(1))y

and b = 2x(1− y) = (2 + o(1))x.

Therefore a short calculation yields(
2

1 + z2

)k
= (1 + o(1))y−k + io(1)
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as y ↓ 0. Here and in the following o(1) replaces real valued terms converging to
zero as y ↓ 0. The last line in turn implies

< exp

((
2

1 + z2

)k)
= e(1+o(1))y−k .

This yields the claim. �

1.4.1.1. Estimation of I1. By dominated convergence we can perform the limit
λ ↓ 0 by simply setting λ = 0 in the integral. We further split the integral I1 =
I11+I12 according to the decomposition of the path γ1 = γ11+γ12. Using |γ̇11| (x) ≤
CRx−1 we get

‖I11‖ =

∥∥∥∥∥∥∥
∫ 1

0

∫ ∞
t

ψ(R−1γ11(x))︸ ︷︷ ︸
=o(x∞) by Lemma 1.32

e−(s−t)γ11(x)g(s)dsγ̇11(x)
dx

γ11(x)

∥∥∥∥∥∥∥(1.44)

≤ C
∫ ∞
−∞

∫ 1

0

e−sRxx2dx︸ ︷︷ ︸
≤C(1+Rs)−2

‖g(t+ s)‖ ds

≤ C

R
PR−1 ∗ ‖g‖ (t) ≤ C

R
.

Here we again emphasize the occurrence of the Poisson kernel, defined in Section
1.2.1.1, although we do not need it in this proof since we are not interested in
Lp-rates of decay. We have proved that

I1 ≤
C

R
PR−1 ∗ ‖g‖ (t) ≤ C

R
(1.45)

since the estimation of I12 is analogous.
1.4.1.2. Estimation of I2. This is almost the same procedure as in the estima-

tion of I1. Again we can perform the limit λ ↓ 0 by simply setting λ = 0 in the
integral and we split the integral I2 = I21 + I22 according to the decomposition of
the path γ2 = γ21 + γ22.

‖I21‖ ≤
∫ 1

0

∫ t

0

∣∣ψ(R−1γ21(x))
∣∣︸ ︷︷ ︸

=o(x∞) by Lemma 1.32

e−(t−s)Rx ‖g(s)‖ ds |γ̇21(x)| dx

|γ21(x)|

≤ C
∫ ∞
−∞

∫ 1

0

e−sRxx2dx︸ ︷︷ ︸
≤C(1+Rs)−2

‖g(t− s)‖ ds

≤ C

R
PR−1 ∗ ‖g‖ (t) ≤ C

R
.

Again the estimation of I22 is analogous and we have therefore proved

I2 ≤
C

R
PR−1 ∗ ‖g‖ (t) ≤ C

R
.(1.46)

1.4.1.3. Estimation of I3. We split the integral I3 = I31 + . . . + I35 according
to the decomposition of the path γ3 = γ31 + . . . + γ35. It suffices to investigate
I33, I34 and I35 since the estimation of I31 and I32 is similar to the estimation of
I35 and I34. By dominated convergence we can perform the limits δ ↓ 0 and λ ↓ 0
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by simply setting δ = λ = 0 in the integrals I35 and I34. The limits in the integral
I33 are performed later on.

Let us now fix k = d4ε−1 − 2e, where ε is as in condition (ii) on K, and recall
Lemma 1.32. Then we may calculate

‖I35‖ ≤
∫ 0

−(2RM(R))−1

∣∣ψ(R−1γ35(x))
∣∣ eRxt ‖ĝ(γ35(x))‖ |γ̇35(x)| dx

|γ35(x)|

≤ C
∫ 0

−(2RM(R))−1

exp(− exp(x−(1−ε/2)))RK(R)
dx

x

≤ CK(R)

M(R)
exp(− exp((2RM(R))−(1−ε))) ≤ C

R
.(1.47)

In the last inequality we used the condition (ii) on K.

‖I34‖ ≤
∫ R−(2RM(R))

−1
k+2

0

∣∣ψ(R−1γ34(y))
∣∣ ‖ĝ(γ34(y))‖ e−

t
2M(R) |γ̇34(y)| dy

(2M(R))−1

≤ C
∫ R

0

RK(R)e−
t

2M(R)M(R)dy

≤ CR2M(R)K(R)e−
t

2M(R) .

(1.48)

Before we finally consider the integral I33, let us first summarize what we
obtained so far. By (1.45), (1.46), (1.47) and (1.48) we have

‖f(t)− I33‖ ≤
C

R

(
1 +R3M(R)K(R)e−

t
2M(R)

)
.(1.49)

Using condition (i) on K the choice R = M−1
logK(c1t) for a sufficiently small c1 yields

‖f(t)− I33‖ ≤
C

M−1
logK(c1t)

.(1.50)

Now let us turn to the estimation of I33. Observe that f̃ satisfies for −r < x < 0

f̃(x) =
1

2πi
· 1

x
· lim
δ↓0

(ĝ(x− iδ)− ĝ(x+ iδ)).

Note that, by assumptions on f , the terms to the right of the limit are uniformly
bounded. Thus by dominated convergence and a change of variables (we replace x
by −x in the parametrization of γ33) we get

I33 =

∫ (2M(R))−1

0

ψ(−R−1x)e−xtf̃(−x)dx

=
1

t

∫ t
2M(R)

0

e−y
(
1 +O

(
(tR)−1y

)) (
f̃k−1(−t−1y) +O

(
(t−1y)k

))
dy.

We show now that neglecting the O’s and then integrating from 0 to∞ in the above
integral from the last line produces an error of order at most t−k−1 +1/M−1

logK(c1t).

First we observe, using boundedness of f̃ and then replacing the upper limit of the
integral by ∞, that for t ≥ 1∥∥∥∥∥1

t

∫ t
2M(R)

0

( y

tR

)
e−y f̃(−t−1y)dy

∥∥∥∥∥ ≤ C

t2R
≤ C

M−1
logK(c1t)

.(1.51)
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Using the standard integral representation of the Gamma function we get

1

t

∫ t
2M(R)

0

e−y(t−1y)kdy ≤ k!

tk+1
.(1.52)

By making c1 smaller, if necessary, we may assume that K(s) ≥ s4c1 . Thus

t/(2M(R)) = (2c1)−1 log(K(R)) ≥ 2 log(R) and we get using the fact that f̃k−1

is polynomially bounded∥∥∥∥∥1

t

∫ ∞
t

2M(R)

e−y f̃(−t−1y)dy

∥∥∥∥∥ ≤ C

tM−1
logK(c1t)

≤ C

M−1
logK(c1t)

.(1.53)

Let aj for j ∈ N be the j-th Taylor coefficient of f̃ , that is f̃(z) =
∑∞
j=0 ajz

j . Then

1

t

∫ ∞
0

e−y f̃k−1(−t−1y)dy = −
k−1∑
j=0

aj(−t−1)j+1

∫ ∞
0

e−yyjdy

= −
k−1∑
j=0

ajj!(−t−1)j+1 = f̃k−1

(
d

dt

)
1

t

We have proved that∥∥∥∥I33 − f̃k−1

(
d

dt

)
t−1

∥∥∥∥ ≤ Ck!

tk+1
+

C

M−1
logK(c1t)

.(1.54)

If we combine (1.50) and (1.54) we get the desired decay rate. The upper estimate
on C(k) stated in (1.43) follows from∥∥∥f̃(x)− f̃k−1(x)

∥∥∥ ≤ 1

k!
sup
x<ξ<0

∥∥∥f̃ (k)(ξ)
∥∥∥ for all x ∈ (−r, 0)

together with (1.52).
1.4.1.4. The case m > 1. First, in order to improve (1.50) to

‖f(t)− I33‖ ≤
C

M−1
logK(c1t)m

,

it suffices to improve (1.49) to

‖f(t)− I33‖ ≤
C

Rm

(
1 +Rm+1M(R)K(R)e−

t
2M(R)

)
.

We can achieve this if we can replace the final C/R bound in (1.45), (1.46) and
(1.47) by a bound C/Rm. For (1.47) this is easy since the estimation above actually

shows the better bound C/Rm
′

for any m′ ∈ N. To get the better bound in (1.45)
we use that for example γ11(x) is bounded from below by a constant times R.
Observing that

1

γ11(x)m−1

(
− d

ds

)m−1

e−(s−t)γ11(x) = e−(s−t)γ11(x)

we see that an integration by parts argument - using that g(m−1) is bounded -
yields the desired C/Rm bound. Actually, performing the integration by parts
yields boundary terms. However, exactly the same boundary terms with opposite
sign occur if we do the same trick for the estimation of I21. So if we estimate
directly the sum I11 + I21 and use that ψ is symmetric we see that the boundary
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terms cancel out. For I12 + I22 we do the same trick and get the improved estimate
for (1.45) and (1.46).

The proof is complete if we manage to improve (1.51) to∥∥∥∥∥1

t

∫ t
2M(R)

0

(
1− ψ

( y

tR

))
e−y f̃(−t−1y)dy

∥∥∥∥∥ ≤ C

tm+1Rm
≤ C

M−1
logK(c1t)m

and (1.53) to∥∥∥∥∥1

t

∫ ∞
t

2M(R)

e−y f̃(−t−1y)dy

∥∥∥∥∥ ≤ C

tM−1
logK(c1t)m

≤ C

M−1
logK(c1t)m

.

We easily achieve the second goal by choosing c1 so small that K(s) ≥ s4mc1 holds
for all s > 0. We could achieve the first goal if ψ(j)(0) = 0 for all j = 1, . . . ,m. Our
current fudge factor does not satisfy this for m ≥ 2. However, if we replace it by

ψm(z) = ck exp

(
− exp

((
2

1 + z4m+2

)k))
, where ck = ee

2k

,

then this property is satisfied. One only has to check now that this new fudge
factor works as well as the old one in the other parts of the proof. In particular we
mention that ψm also satisfies Lemma 1.32. The proof of Theorem 1.31 is finished.

1.4.2. A minor relaxation of condition (ii) on K. We cannot prove The-
orem 1.31 for ε = 0 in condition (ii) on K. However, as in Remark 1.13 on Theorem
1.3 and 1.7 we can relax (ii) slightly by (ii)’:

K(s) = O

(
exp

(
exp

(
sM(s)

L1(sM(s)) · . . . · Ln−1(sM(s)) · Ln(sM(s))1+ε

)))
for some ε > 0 and n ∈ N1. The proof of Theorem 1.31 changes only in the
choice of the fudge factor ψ and the contours γ1, γ2, γ31 and γ35. What we need
in the proof is that ψ(R·) is bounded in the domain enclosed by γ1 + γ2, we have
ψ(z) = O(|<z|∞) if z → ±i within this domain and that we can control the absolute
value of ψ(R−1z)K(R) for |<z| ≤ 1/(2RM(R)). See for example the estimation of
I35 in (1.47) for the reason why we need the last mentioned control.

To achieve all these things we define (in case m = 1) the fudge factor by

ψ(z) = cnk exp

(
− expn+1

((
2

1 + z2

)k))
for an k ∈ N1 to be chosen. The positive real number cnk is chosen in such a way
that ψ(0) = 1. By expj we denote the composition of j exponential functions.
Moreover we define χ : R+ → R by

χ(y) =
yk+2∏n

j=1 expj(y
−k)

.

Observe that (χ−1)′(x) = o(x−1) as x → 0. In the definition of the contours we
replace all occurrences of x or |x| by χ−1(x) or χ−1(|x|). To get the desired control
on the product of ψ and K above it is crucial to generalize Lemma 1.32 in the
following way.



1.5. APPLICATION: (LOCAL) DECAY OF C0-SEMIGROUPS 41

Lemma 1.33. Let ε ∈ (0, 1) and k ∈ N1 with k > 2ε−1 − 2. Let us denote

L̃n,ε(t) = L1(t) · . . . · Ln−1(t) · Ln(t)1+ε for positive real numbers t. Then

|ψ(z)| ≤ C exp

(
− exp

(
x−1

L̃n,ε(x−1)

))

for all z ∈ C which can be represented as

z = x+ i(1− y) or z = x+ i(−1 + y),

where y ∈ (0, 1) and |x| = χ(y).

Proof. Without loss of generality z = x+ i(1− y). As in the proof of Lemma
1.32 we get (

2

1 + z2

)k
= y−k + iky−k−1O(χ(y))

⇒ exp

((
2

1 + z2

)k)
= exp(y−k) + iky−k−1 exp(y−k)O(χ(y))

...

⇒ expn

((
2

1 + z2

)k)
= expn(y−k) + iky−k−1

 n∏
j=1

expj(y
−k)

O(χ(y)).

This implies

|ψ(z)| ≤ exp(−(1 + o(1)) expn+1(y−n)).

Now let δ = 2/k. From the definition of χ it is not difficult to see that

expn(y−k) ≥ x−1

L̃n,δ(x−1)
.

This finishes the proof. �

We have seen that by the method of two different proofs we arrive at the same
condition (ii) (or (ii)’) for K in Theorem 1.3 and Theorem 1.31. On this basis
we conjecture that both theorems are false if one allows ε to be 0 in any of the
constraints (ii) or (ii)’.

1.5. Application: (local) decay of C0-semigroups

The results of the preceding sections can be applied to calculate local decay
rates for C0-semigroups. To fix some of our notation, let T = (T (t))t≥0 be a C0-
semigroup on a Banach space X with generator A : D(A)→ X. Except for Section
1.5.1 we naturally restrict our considerations to the case p = ∞. A discussion of
Lp-rates for semigroups and an application to the wave equation can be found in
[7, Section 6].
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1.5.1. No singularity on iR. The following is an immediate consequence of
Theorem 1.3.

Corollary 1.34 (to Theorem 1.3). Let T be a bounded C0-semigroup on a
Banach space (X, ‖·‖) with generator A. Let P1 and P2 be two bounded operators
on X, let x ∈ X and let 1 < p ≤ ∞. Let M,K : R+ → (0,∞) be continuous and
non-decreasing functions satisfying

(i) ∀s > 1 : K(s) ≥ max{2, s,M(s)},
(ii) ∃ε ∈ (0, 1) : K(s) = O

(
ee

(sM(s))1−ε
)

as s→∞.

Let G(z) = P2(z−A)−1P1x for <z > 0. Assume that G extends analytically to the
domain ΩM ∪ C+ and satisfies the estimate

‖G(z)‖ ≤ K(|=z|) for z ∈ ΩM .(1.55)

Assume furthermore that (t 7→ ‖P2T (t)P1x‖) ∈ Lp(R+). Then for all m ∈ N1 and
ω > 0 we have

(t 7→ wMlogK
(t)m

∥∥P2T (t)(ω −A)−mP1x
∥∥) ∈ Lp(R+)

where MlogK(s) = M(s) log(K(s)).

Remark 1.35. Observe that the condition (t 7→ ‖P2T (t)P1x‖) ∈ Lp(R+) is
trivially satisfied if T is a bounded C0-semigroup and p = ∞. If in this case A is
invertible then - as is clear from the proof - one can also take ω = 0. In the case
P1 = P2 = 1 we note that if p 6= ∞ and if (t 7→ ‖T (t)x‖) ∈ Lp(R+) is true for
all x ∈ X then by Datko’s theorem (see e.g. [4, Theorem 5.1.2]) the semigroup is
automatically exponentially stable.

Remark 1.36. In the particular case P1 = P2 = 1 one typically assumes that
the resolvent extends continuously to the imaginary axis and satisfies an estimate∥∥(is−A)−1

∥∥ ≤ M(|s|) for s ∈ R. This then implies that the resolvent extends
analytically to ΩM and it satisfies (1.55) with K being a multiple of M in a slightly
smaller domain. So in this situation our corollary does not improve known results.

However, our main interest in applying this theorem is to consider the case
where P1 and P2 are not the identity. We think that a typical situation is that
M is a slowly increasing function (possibly constant) and K is a (possibly much)
faster increasing function. That is, we assume that the perturbed resolvent extends
to a relatively large domain to the left of the imaginary axis, but may grow very
quickly. We illustrate this philosophy in Chapter 3.

Proof of Corollary 1.34. Let us define f(t) = P2T (t)(ω−A)−mP1x. Then
we have for t > 0 and for z ∈ ΩM

f (m)(t) = P2T (t)[ω(ω −A)−1 − 1]mP1x and(1.56)

f̂(z) =
m−1∑
j=0

(ω − z)−(j+1)P2(ω −A)−(m−j)P1x+ (ω − z)−mG(z).(1.57)

The second line immediately implies (1.4) up to a constant factor. The first line
implies

∥∥f (m)
∥∥ ∈ Lp(R+) since∥∥P2T (·)(ω −A)−1P1x

∥∥
Lp

=

∥∥∥∥∫ ∞
0

P2e
−ωτT (·+ τ)P1xdτ

∥∥∥∥
Lp

≤ ω−1 ‖P2T (·)P1x‖Lp .
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Thus the conclusion of the corollary follows from Theorem 1.3. �

1.5.2. Logarithmic singularity at zero.

Corollary 1.37 (to Theorem 1.31). Let T be a bounded C0-semigroup on a
Banach space (X, ‖·‖) with generator A. Let P1 and P2 be two bounded operators
on X and let x ∈ X. Let M,K : R+ → (0,∞) be continuous and non-decreasing
functions satisfying

(i) ∀s > 1 : K(s) ≥ max{2, s,M(s)},
(ii) ∃ε ∈ (0, 1) : K(s) = O

(
ee

(sM(s))1−ε
)

as s→∞.

Let G(z) = P2(z − A)−1P1x for <z > 0. Assume that for some r > 0 and some

analytic function G̃ : Br → X the mapping z 7→ G(z) − G̃(z) log(z) is analytic on

Br. For |z| < r < ω let G̃m,ω(z) = (ω − z)−mG̃(z) and for j ∈ N let G̃m,ω,j be
its j-th order Taylor expansion. Assume furthermore that G extends analytically to
(ΩM ∪ C+)\R− and

‖G(z)‖ ≤ K(|=z|) for z ∈ ΩM , |=z| >
r

2
.(1.58)

Then for all m ∈ N1 and ω > r there is a c1 > 0 such that for all k ∈ N1 there is
another constant C(k) > 0 such that for all t ≥ 1∥∥∥∥P2T (t)(ω −A)−mP1x− G̃m,ω,k−1

(
d

dt

)
t−1

∥∥∥∥ ≤ max

{
C(k)

tk+1
,

C

M−1
logK(c1t)m

}
.

Here MlogK(s) = M(s) log(K(s)). More precisely the constant C(k) can be esti-
mated from above by

C(k) ≤ sup
−r<s<0

∥∥∥G̃(k)
m,ω(s)

∥∥∥ .
Proof. The proof is almost the same as for Corollary 1.34. Note that by

(1.57) the Laplace transform f̂ has the same singularity of logarithmic type at zero

as the function z 7→ (ω − z)−mG(z). This explains the definition of G̃m,ω in the
theorem. �

1.5.3. s−1-singularity at zero.

Theorem 1.38. Let T be a bounded C0-semigroup on a Banach space (X, ‖·‖)
with generator A. Let M : [0,∞)→ (0,∞) be a continuous non-decreasing function.
Assume that the resolvent of A extends analytically across the imaginary axis and
satisfies

∀s ∈ R :
∥∥(is−A)−1

∥∥ ≤M(|s|) ∨ 1

1 ∧ |s|
.

Then there exists a constant c1 > 0 such that for all t ≥ 1∥∥T (t)A(1−A)−2
∥∥ ≤ C max

{
1

t
,

1

M−1
log (c1t)

}
,

where Mlog(s) = M(s) log(2 + s+M(s)).

Proof. Let f(t) = T (t)A(1 − A)−2 for t ≥ 0. We verify all hypotheses of
Theorem 1.26. For z ∈ C with strictly positive real part we have

f̂(z) = (z −A)−1A(1−A)−2 = (z(z −A)−1 − 1)(1−A)−2.
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By the resolvent identity we have for all s ∈ R and 0 ≤ d ≤ D/2 that∥∥(is−A)−1
∥∥ ≤ D ⇒ (is− d−A)−1 exists and

∥∥(is− d−A)−1
∥∥ ≤ 2D.

This implies that f̂ extends to the left of the imaginary axis and satisfies an estimate
there as required in Theorem 1.26 (with M and K replaced by 2M). Without loss
of generality we may assume that M ≥ 1 to satisfy constraint (i) in Theorem 1.26.
Furthermore

f ′(t) = T (t)A2(1−A)−2, f1(t) = (T (t)− 1)(1−A)−2.

Thus also the derivative and the primitive of f are bounded, since T is a bounded
semigroup. The conclusion now follows from Theorem 1.26. �



CHAPTER 2

Optimal decay for C0-semigroups on Hilbert spaces

(Joint work with Jan Rozendaal and David Seifert)

2.1. Introduction

One of the most important results establishing decay rates for operator semi-
groups is the following.

Theorem 2.1 (Borichev-Tomilov [12]). Let X be a Hilbert space and let A be
the generator of a bounded C0-semigroup T on X. Suppose that σ(A)∩ iR = ∅ and
that

∥∥(is−A)−1
∥∥ ≤ M(|s|) := C(1 + |s|α), s ∈ R for some α > 0. Then for any

c > 0

(2.1)
∥∥T (t)A−1

∥∥ = O

(
1

M−1(ct)

)(
= O

(
1

t
1
α

))
, t→∞.

It is well known that for arbitrary M , if M is chosen optimal with respect to the
resolvent estimate, the decay rate can never be essentially faster than 1/M−1(ct)
for some c > 0. This is the converse part of Theorem 0.1. The assumption that
the function M is a “nice” function (a polynomial) is essential for the above “M -
theorem” to be true. In fact considering normal semigroups one can easily see that
Theorem 2.1 becomes false if we consider for example M(s) = log(2 + s) for s ≥ 0.
In this case the “Mlog-theorem” (Theorem 0.1) is optimal in general (up to the
choice of c).

It is natural to ask for the classM of non-decreasing functionsM : R+ → (0,∞)
for which Theorem 2.1 remains true. A pioneering work of Batty, Chill and Tomilov
gives a first answer to this question [10]. The authors could show that a certain
subclass of the class of regularly varying functions belongs to M. The aim of this
chapter is to give a precise characterization of M. Our results show that M = PI
is the class of functions having positive increase. Let M : R+ → (0,∞) be a
measurable function. We say that M has positive increase [11, Chapter 2.1] and
write M ∈ PI if

∃α, s0 > 0, b ∈ (0, 1]∀s0 ≤ s ≤ R :
M(R)

M(s)
≥ b

(
R

s

)α
.(2.2)

We remark here that if M ∈ PI then M−1 and M−1(c·) are asymptotically similar
for any c > 0. We refer the reader to Section A.2 for the required knowledge
on positive increase. The necessity of the positive increase condition for an “M -
theorem” to be true in general is shown by considering normal semigroups, or more
generally by semigroups for which the resolvent growth along the imaginary axis is
up to a constant given by the inverse of the distance to the spectrum. Our results
remain true in an analogous form if we allow σ(A)∩iR = {0}, replacing T (t)A−1 by

45
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T (t)A(1−A)−1 or T (t)A(1−A)−2, depending on whether the resolvent is bounded
near infinity or not.

It is an easy consequence from the definition of positive increase that M ∈ PI
implies M(s) & sε for some ε > 0. Thus a super-polynomial decay cannot be
deduced from an M -theorem. We remark that T (t)A(1−A)−1 or T (t)A(1−A)−2

cannot decay at a rate faster than 1/t if 0 ∈ σ(A). Therefore it is natural to assume
σ(A) ∩ iR = ∅ if one is interested in faster decay rates. Although the decay rate
must now be strictly slower than the one predicted by the conclusion of the M -
theorem it is reasonable to still search for an improvement of the Mlog-theorem.
This search lead us to the notion of quasi-positive increase (with auxiliary function
N). Let N : R+ → (0,∞) (the auxiliary function) be a continuous non-decreasing
function. Given a ≥ 0 for a measurable function M : [a,∞) → (0,∞) we write
M ∈ PIN and say M has quasi-positive increase (with auxiliary function N) if

∃s0 ≥ a, b ∈ (0, 1]∀s0 ≤ s ≤ R :
M(R)

M(s)
≥ b

(
R

s

) 1
N(R)

.(2.3)

The definition of quasi-positive increase implies that that every non-decreasing
function has quasi-positive increase with auxiliary function N(s) = β log(2+s), s ≥
0 where β > 0 can be chosen arbitrary. We prove that Theorem 2.1 remains valid
for M ∈ PIN if (2.1) is replaced by∥∥T (t)A−1

∥∥ = O

(
1

M−1
N (c1t)

)
, t→∞

where MN (s) = M(s)N(s) for s ≥ 0. The constant c1 can be chosen to be equal
to be − ε for any ε > 0. For specific examples for M including M(s) = log(s)α

for any α ∈ (0,∞) and M(s) = exp(log(s)α) for any α ∈ (0, 1) we can show that
the decay rates we obtain are optimal up to the ε-loss in the choice of the constant
c1. The proof of the optimality is interesting on its own since we derive a precise
formula for the decay of normal semigroups knowing the optimal resolvent bound
M (Theorem 2.15). For the required knowledge on quasi-positive increase we refer
the reader to Section A.3.

2.2. Sharp ((sub-)polynomial) decay rates under M ∈ PI

In this section we prove M ⊇ PI in the terminology of the introduction. We
distinguish three cases: σ(A) ∩ iR = ∅ and

∥∥(is−A)−1
∥∥ possibly unbounded as

|s| → ∞ (singularity at infinity), σ(A) ∩ iR = {0} and
∥∥(is−A)−1

∥∥ bounded for

|s| ≥ 1 (singularity at zero), and finally σ(A)∩ iR = {0} and
∥∥(is−A)−1

∥∥ possibly
unbounded as |s| → ∞ (singularity at zero and infinity).

2.2.1. Singularity at infinity.

Theorem 2.2. Let T be a bounded C0-semigroup on a Hilbert space X with
generator A. Suppose that σ(A)∩ iR = ∅ and assume that there exists a continuous
non-decreasing function M : R+ → (0,∞) having positive increase such that

∀s ∈ R :
∥∥(is−A)−1

∥∥ ≤M(|s|).

Then ∥∥T (t)A−1
∥∥ ≤ O( 1

M−1(t)

)
, t→∞.
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Proof. Let ψ : R → C be a Schwartz function such that ψ(0) = ‖ψ‖L∞ = 1
and suppψ ⊆ [−1, 1], and let φ = F−1ψ. For R > 0 let φR(t) = Rφ(Rt), t ∈ R,
and ψR = FφR, so that ψR(s) = ψ(R−1s), s ∈ R. Note also that

∫
RφR(t) dt = 1

for all R > 0. Now temporarily fix t > 0 and, given n ∈ N0, let gn : R → R be
defined by

(2.4) gn(s) =


0, s < 0,

sn, 0 ≤ s ≤ t,
sn − (s− t)n, s > t.

In particular, g0 = χ[0,t]. Let x ∈ X and n ∈ N be fixed for now. We define the map

hn : R → X by hn(s) = gn(s)T (s)A−1x, s ∈ R, where the semigroup is extended
by zero to the whole of R. Then

(2.5) T (t)A−1x =
n+ 1

tn+1

∫ t

0

T (t− s)hn(s) ds.

Our strategy is to split this integral by writing hn = (δ − φR) ∗ hn + φR ∗ hn,
where δ denotes the Dirac mass at zero, and to estimate the resulting two integrals
separately by making suitable choices of R > 0 and of n ∈ N.

We begin by introducing the auxiliary function Φ: R→ R defined by

Φ(s) =

{∫ s
−∞ φ(τ) dτ, s < 0,

−
∫∞
s
φ(τ) dτ, s ≥ 0,

so that Φ′ = φ − δ in the sense of distributions. Using the fact that Φ, being a
primitive of a Schwartz function, decays rapidly at infinity and that

∫
R φR(s) ds = 1,

a simple calculation using integration by parts yields

(2.6) (δ − φR) ∗ hn(s) = − 1

R

∫ ∞
0

Φ(Rs− τ)h′n(R−1τ) dτ, s ∈ R.

Now the distributional derivative h′n of hn is given by

h′n(s) = ngn−1(s)T (s)A−1x+ gn(s)T (s)x, s ∈ R,
and hence

‖h′n(s)‖ ≤ K(nsn−1 + sn)(‖A−1‖+ 1)‖x‖, s ≥ 0,

where K = supt≥0 ‖T (t)‖. It follows from (2.6) that

(2.7) ‖(δ − φR) ∗ hn(s)‖ . ‖x‖
R

∫ ∞
0

|Φ(Rs− τ)|
(
n
( τ
R

)n−1

+
( τ
R

)n)
dτ

for all s ∈ R, where the implicit constant is independent of R, n, t and x. We now
inductively define functions Φk : R→ R, k ∈ N, by setting Φ1 = |Φ| and

(2.8) Φk+1(s) =

{∫ s
−∞Φk(τ) dτ, s < 0,

−
∫∞
s

Φk(τ) dτ, s ≥ 0,

for k ≥ 1. Then, for each k ∈ N, Φk vanishes rapidly at infinity and we have
Φ′k+1 = Φk − 〈Φk〉δ in the sense of distributions, where 〈Φk〉 =

∫
RΦk(s) ds. Hence

by a simple inductive argument using integration by parts we see that, for m ∈ N0

and s ≥ 0,∫ ∞
0

|Φ(s− τ)|τm dτ =
m−1∑
k=0

m!

(m− k)!
〈Φk+1〉sm−k +m!

∫ s

−∞
Φm+1(τ) dτ,
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and therefore∫ ∞
0

|Φ(Rs− τ)|
( τ
R

)m
dτ ≤

m∑
k=0

m!

(m− k)!
‖Φk+1‖L1R−ksm−k.

Applying this with m = n− 1 and m = n in (2.7) we find after a simple calculation
that∥∥∥∥n+ 1

tn+1

∫ t

0

T (t− s)(δ − φR) ∗ hn(s) ds

∥∥∥∥ . ‖x‖R
(
Pn(Rt) +

n+ 1

t
Pn−1(Rt)

)
,

where the implicit constant is still independent of R, n, t and x and where, for
m ∈ N0 and s ≥ 0,

(2.9) Pm(s) =
m∑
k=0

(m+ 1)!

(m+ 1− k)!

‖Φk+1‖L1

sk
.

Note that each of the functions Pm, m ∈ N0, is non-increasing. In particular, if we
assume that R, t ≥ 1, then

(2.10)

∥∥∥∥n+ 1

tn+1

∫ t

0

T (t− s)(δ − φR) ∗ hn(s) ds

∥∥∥∥ . ‖x‖R ,

where the implicit constant depends on n but is independent of R, t and x.
We now turn to the remaining term in the splitting. Note first that by Hölder’s

inequality

(2.11)

∥∥∥∥n+ 1

tn+1

∫ t

0

T (t− s)φR ∗ hn(s) ds

∥∥∥∥ ≤ K n+ 1

tn+1/2
‖φR ∗ hn‖L2(R,X).

We now estimate the L2-norm of φR ∗ hn. Given α > 0, define the function hn,α ∈
L1(R) by hn,α(s) = e−αshn(s), s ∈ R. Then hn,α(s) = n!(T ∗nα ∗ h0,α)(s), where
Tα(s) = e−αsT (s), s ∈ R, again after extending the semigroup by zero to the whole
of R, and therefore

(2.12) (Fhn,α)(s) = n!(is+ α−A)−nĥ0(is+ α), s ∈ R.
Hence by the dominated convergence theorem, given any Schwartz function η : R→
C, we have∫

R
φR ∗ hn(s)η(s) ds = lim

α→0+

∫ ∞
0

hn,α(s)ζR(s) ds

= lim
α→0+

∫
R
φR ∗ hn,α(s)η(s) ds

= lim
α→0+

∫
R
ψR(s)(Fhn,α)(s)(F−1η)(s) ds,

where ζR(s) =
∫
RφR(τ − s)η(τ) dτ , s ∈ R. Note that, since σ(A) ∩ iR = ∅, the

resolvent of A extends holomorphically across the imaginary axis, and in particular,
the resolvent is uniformly bounded in an open neighbourhood of i suppψR. It
follows from (2.12) and another application of the dominated convergence theorem
that

φR ∗ hn = F−1(ψRmn Fh),

where mn(s) = n!(is−A)−nA−1 and h(s) = g0(s)T (s)x, s ∈ R. A straightforward
estimate using Plancherel’s theorem now gives

‖φR ∗ hn‖L2(R,X) ≤ ‖ψRmn‖L∞(R,L(X))‖h‖L2(R,X).
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Note that ‖h‖L2(R,X) ≤ Kt1/2‖x‖. Moreover,

is(is−A)−nA−1x = (is−A)−n+1A−1x+ (is−A)−nx, s ∈ R,

and hence |s|‖(is − A)−nA−1‖ . M(|s|)n−1 + M(|s|)n, s ∈ R. By rescaling M if
necessary we may assume that M(s) ≥ 1 for all s ≥ 0, and then

‖(is−A)−nA−1‖ . M(|s|)n

max{s0, |s|}
, s ∈ R,

where s0 > 0 is fixed but arbitrary. Now since M is non-decreasing and has positive
increase there exist constants α > 0 and c ∈ (0, 1] such that

M(R)

M(|s|)
≥ c

(
R

|s|

)α
, R ≥ |s| ≥ s0.

We now make a specific choice of n by setting n = dα−1e. A simple calculation
then gives

‖ψRmn‖L∞(R,L(X)) . n! sup
|s|≤R

M(|s|)n

max{s0, |s|}
≤ n!

R

(
M(R)

c

)n
.

Combining the above estimates in (2.11) we find that

(2.13)

∥∥∥∥n+ 1

tn+1

∫ t

0

T (t− s)φR ∗ hn(s) ds

∥∥∥∥ . (n+ 1)!
‖x‖
R

(
M(R)

ct

)n
,

where the implicit constant is independent of R, t and x. In fact, the implicit
constant would also be independent of n if it were still free to vary, and this will
become important in Section 2.4 below. Combining (2.13) with (2.10) in (2.5) gives

‖T (t)A−1‖ . 1

R

(
1 +

(
M(R)

ct

)n)
, R, t ≥ 1,

where the implicit constant is independent of both R and t. If we now set R =
M−1(ct) for t ≥ c−1M(1), then the result follows from Lemma A.3. �

2.2.2. Singularity at zero.

Theorem 2.3. Let T be a bounded C0-semigroup on a Hilbert space X with
generator A. Suppose that σ(A)∩ iR = {0} and assume that there exists a continu-
ous non-decreasing function M : [1,∞)→ (0,∞) having positive increase such that
for all s ≥ 1

sup
|ξ|≥s−1

∥∥(iξ −A)−1
∥∥ ≤M(|s|).

Then ∥∥T (t)A(1−A)−1
∥∥ ≤ O( 1

M−1(t)

)
, t→∞.

Remark 2.4. Note that 0 ∈ σ(A) necessarily implies M(s) ≥ s for all s ≥ 1.

Proof of Theorem 2.3. The proof is similar to that of Theorem 2.2. Let
ψ : R → C be a Schwartz function such that ‖ψ‖L∞ = 1 and ψ(s) = 1 for |s| ≤ 1,
and let φ = F−1ψ. Temporarily fix x ∈ X, n ∈ N and t > 0, and define the map
hn : R → X by hn(s) = gn(s)T (s)A(1 − A)−1x, s ∈ R, where the semigroup is
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extended by zero to the whole of R and where gn is as defined in (2.4). Moreover,
let Hn : R→ X be given by Hn(s) = 0, s < 0, and

Hn(s) =

∫ s

0

hn(τ) dτ, s ≥ 0.

A simple calculation shows that

‖Hn(s)‖ ≤ 2Ksn‖(1−A)−1‖‖x‖, s ≥ 0,

where K = supt≥0 ‖T (t)‖. For r ∈ (0, 1] we let φr(t) = rφ(rt), t ∈ R, and ψr =
F(φr), as in the proof of Theorem 2.2. Integration by parts gives

φr ∗ hn(s) = r

∫ ∞
0

φ′(rs− τ)Hn(r−1τ) dτ, s ∈ R,

and hence

‖φr ∗ hn(s)‖ . r‖x‖
∫ ∞

0

|φ′(rs− τ)|
(τ
r

)n
dτ, s ∈ R.

As in the proof of Theorem 2.2 we now introduce functions Φk : R → R, k ∈ N,
defined as in (2.8) but with Φ1 = |φ′|. This leads to the estimate

(2.14)

∥∥∥∥n+ 1

tn+1

∫ t

0

T (t− s)φr ∗ hn(s) ds

∥∥∥∥ . r‖x‖Pn(rt),

where the implicit constant is independent of r, n, t and x, and where Pn is as in
the proof of Theorem 2.2.

Next we observe that by an argument analogous to that in the proof of Theo-
rem 2.2, and using the assumption that sup|s|≥1‖(is−A)−1‖ <∞, we find that

(δ − φr) ∗ hn = F−1
(
(1− ψr)mn Fh

)
,

where mn(s) = n!A(is − A)−n, s ∈ R \ {0}, and h(s) = g0(s)T (s)(1 − A)−1x,
s ∈ R. Using the fact that M(s) ≥ s, s ≥ 1, it is straightforward to show that
‖A(is − A)−n‖ ≤ 2|s|M(|s|−1)n, 0 < |s| ≤ 1. Recall that ‖(is − A)−1‖ ≤ M(1),
|s| ≥ 1. Since M is assumed to have positive increase it follows as before that for
an appropriate choice of n we have

‖(1− ψr)mn‖L∞(R,L(X)) . r

(
M(r−1)

c

)n
,

where c > 0 is a constant. We deduce, upon applying Plancherel’s theorem and
Hölder’s inequality, that∥∥∥∥n+ 1

tn+1

∫ t

0

T (t− s)(δ − φr) ∗ hn(s) ds

∥∥∥∥ . r‖x‖(M(r−1)

ct

)n
,

where the implicit constant is independent of r, t and x. Combining this with (2.14)
as in the proof of Theorem 2.2 gives

‖T (t)A(1−A)−1‖ . r
(
Pn(rt) +

(
M(r−1)

ct

)n)
,

where the implicit constant is independent of both r and t. For t ≥ M(1) we now
set r = M−1(ct)−1. Then in particular rt ≥ c−1, and since Pn is non-increasing
the result follows from Lemma A.3. �
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2.2.3. Singularity at zero and infinity.

Theorem 2.5. Let T be a bounded C0-semigroup on a Hilbert space X with
generator A. Suppose that σ(A)∩ iR = {0} and assume that there exist continuous
non-decreasing functions M0,M∞ : [1,∞)→ (0,∞) such that for all s ≥ 1

sup
1≥|ξ|≥s−1

∥∥(iξ −A)−1
∥∥ ≤M0(s) and sup

1≤|ξ|≤s

∥∥(iξ −A)−1
∥∥ ≤M∞(s).

Let M : [1,∞) → (0,∞),M(s) = max{M0(s),M∞(s)}. Suppose furthermore that
M has positive increase. Then∥∥T (t)A(1−A)−2

∥∥ ≤ O( 1

M−1(t)

)
, t→∞.

Proof. The proof follows the same pattern as those of Theorems 2.2 and 2.3,
and indeed combines ideas from both proofs. This time the splitting arises from
the decomposition

δ = (δ − φR) + (φR − φ) + (φ− ϕr) + ϕr,

where r ∈ (0, 1], R > 0 and the notation is as before, with φ being the same as in the
proof of Theorem 2.2 and ϕ being the function arising in the proof of Theorem 2.3.
The integrals corresponding to the first two terms of the splitting can now be dealt
with as in the proof of Theorem 2.2, the terms arising from the second two as in
the proof of Theorem 2.3. �

2.3. Necessity of M ∈ PI

In some cases one can show that the spectrum determines the resolvent growth
along the imaginary axis. This is for example the case if the generator is normal,
it is the case for the damped wave equation discussed in Chapter 4 and at least for
the 1D case of the wave equation discussed in Chapter 5. We show now that in this
situation M ∈ PI is necessary for an M -inverse theorem to hold. In particular this
shows M⊆ PI in the terminology of the introduction.

2.3.1. Singularity at infinity.

Theorem 2.6. Let T be a bounded C0-semigroup on a Banach space with gen-
erator A and σ(A) ∩ iR = ∅. Let δ ∈ (0, 1] and M : R+ → (0,∞) be an increasing
unbounded function such that for all s > 0

δM(s) ≤ sup
|ξ|≤s

dist(iξ, σ(A))−1 ≤ sup
|ξ|≤s

∥∥(iξ −A)−1
∥∥ ≤M(s).(2.15)

Assume that there exists a constant c > 0 such that∥∥T (t)A−1
∥∥ = O

(
1

M−1(ct)

)
, t→∞.(2.16)

Then M ∈ PI.

Remark 2.7. If A is a normal operator on a Hilbert space, then (2.15) is
satisfied for δ = 1 if M is defined by an equality in the rightmost inequality.

Proof. Consider the function Mspec : R+ → (0,∞) given by

Mspec(s) = sup
|ξ|≤s

dist(iξ, σ(A))−1, s ≥ 0.
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Then δM(s) ≤ Mspec(s) ≤ M(s), s ≥ 0. Recall that the spectral radius of a
bounded linear operator is always dominated by the norm of the operator. Hence
by (2.16) and the spectral inclusion theorem for the Hille-Phillips functional calculus
(see [25, Section 2.7.1] or [27, Theorem 16.3.5]) there exists a constant C > 0 such
that if α+ iβ ∈ σ(A) then

eαt

|α+ iβ|
≤ ‖T (t)A−1‖ ≤ C

M−1(ct)

for all sufficiently large t. It follows that

(2.17) − αt ≥ log

(
M−1

spec(δct)

C|α+ iβ|

)
whenever α + iβ ∈ σ(A) and t > 0 is sufficiently large. Now given s ≥ 0 we may
find ξ ∈ [−s, s] and α+ iβ ∈ σ(A) such that Mspec(s) = |α+ iβ − iξ|−1. Note that
−α ≤ Mspec(s)−1 and that, for s sufficiently large, we have |α + iβ| ≤ 2s. In fact,
one could replace the factor 2 by 1 + ε for any ε > 0 here. Let λ ≥ 1 and, for s
sufficiently large, let t = (δc)−1Mspec(λs). Then (2.17) yields

Mspec(λs)

Mspec(s)
≥ δc log

(
λ

2C

)
,

and replacing δ by δ2 we see that the same estimate holds with Mspec replaced by
M . Hence M has positive increase by Lemma A.1, as required. �

2.3.2. Singularity at zero.

Theorem 2.8. Let T be a bounded C0-semigroup on a Banach space with gen-
erator A and σ(A) ∩ iR = {0}. Let δ ∈ (0, 1] and M : [1,∞) → (0,∞) be an
increasing unbounded function such that for all s ≥ 1

δM(s) ≤ sup
|ξ|≥s−1

dist(iξ, σ(A))−1 ≤ sup
|ξ|≥s−1

∥∥(iξ −A)−1
∥∥ ≤M(s).

Assume that there exists a constant c > 0 such that∥∥T (t)A(1−A)−1
∥∥ = O

(
1

M−1(ct)

)
, t→∞.

Then M ∈ PI.

We omit the proof of this theorem since it is almost identical to the proof of
Theorem 2.6. Essentially the only thing which changes in the proof is that the role
of |α+ iβ|, which is large in the proof of Theorem 2.6, is replaced by |α+ iβ|−1

,
which is large in the proof of Theorem 2.8.

2.3.3. Singularity at zero and infinity.

Theorem 2.9. Let T be a bounded C0-semigroup on a Banach space with gen-
erator A and σ(A) ∩ iR = {0}. Let δ ∈ (0, 1] and M0,M∞ : [1,∞) → (0,∞) be
non-decreasing functions such that for all s ≥ 1

δM0(s) ≤ sup
s−1≤|ξ|≤1

dist(iξ, σ(A))−1 ≤ sup
s−1≤|ξ|≤1

∥∥(iξ −A)−1
∥∥ ≤M0(s),

δM∞(s) ≤ sup
1≤|ξ|≤s

dist(iξ, σ(A))−1 ≤ sup
1≤|ξ|≤s

∥∥(iξ −A)−1
∥∥ ≤M∞(s).
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Let M : [1,∞) → (0,∞),M(s) = max{M0(s),M∞(s)}. Assume that M is un-
bounded and that there exists a constant c > 0 such that∥∥T (t)A(1 +A)−2

∥∥ = O

(
1

M−1(ct)

)
, t→∞.

Then M ∈ PI.

We omit also this proof which is essentially a combination of the arguments
from the proofs of Theorem 2.6 and Theorem 2.8.

2.4. On super-polynomial decay rates

In this last section of Chapter 2 we want to give a first investigation of the
situation when M grows at a sub-polynomial rate. We naturally restrict to the
case of a singularity at infinity, i.e. σ(A) ∩ iR = ∅ since otherwise a singularity
at zero would force M to increase at least like s for large s. When M grows at a
sub-polynomial rate then M /∈ PI and thus our results from the previous sections
tell us that the decay rate is strictly slower than 1/M−1(ct) for any c > 0. It
is known that in some cases, also in Hilbert spaces the Mlog-theorem is optimal
with respect to the “form” of the decay rate. In fact, one can construct a bounded
normal semigroup with σ(A) ∩ iR = ∅ for which one can choose

log(s) ≤M(s) ≤ log(1 + s) for s ≥ 2

and thus M−1(ct) ∼ e−ct but∥∥T (t)A−1
∥∥ = e−2

√
t ∼ 1

M−1
log (4t)

.

See [10, Example 5.2]. This example shows that we need at least some condition
on M to get a faster decay rate than the one given by the Mlog-theorem. Note

that even if the decay rate is given by 1/M−1
log (ct) for some c > 0 the precise rate is

heavily influenced by c > 0 if M grows at a sub-polynomial rate, as is the case for
M = log.

2.4.1. A generalization of Theorem 2.2.

Theorem 2.10. Let X be a Hilbert space and let A be the generator of a
bounded C0-semigroup T on X with σ(A) ∩ iR = ∅. Let M,N : R+ → (0,∞)
be continuous non-decreasing functions and suppose that M(s) → ∞ as s → ∞,
and that M has quasi-positive increase with auxiliary function N . Suppose further
that ‖(is−A)−1‖ ≤M(|s|), s ∈ R. Then

(2.18) ‖T (t)A−1‖ = O

(
1

M−1
K (bet)

)
, t→∞,

where b is as in (2.3) and where K : R+ → (0,∞) is the function defined by
K(s) = N(s) + 3 log(N(s))/2, s ≥ 0. In particular, given any ε ∈ (0, 1) we have

(2.19) ‖T (t)A−1‖ = O

(
1

M−1
N (be(1− ε)t))

)
, t→∞.

Remark 2.11. Note that for a given ε ∈ (0, 1) the fastest rate in (2.19) is
attained by choosing an optimal auxiliary function N (whenever it exists) with
respect to M . The same is true for b-minimal auxiliary functions if b is fixed. See
Section A.3 for the definition of minimality and optimality.
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Remark 2.12. Comparing with Theorem 0.1 one might wonder if it is always
possible to find an auxiliary function satisfying N(s) = O(log(s)), s → ∞. Indeed
this is the case, as shown in Section A.3.

Proof. If N is bounded then M has positive increase and the result follows
from Theorem 2.2, so we may assume that N(s) → ∞ as s → ∞. Moreover, by
Remark 2.12 we may assume that N(s) = O(log(s)), s → ∞. Let us first prove
(2.18). We use the same notation as in the proof of Theorem 2.2 and proceed
in exactly the same way except that we now choose n = dN(R)e. Note that by
Stirling’s formula

(n+ 1)! ≈ e−nnn+ 3
2 ∼

(
1 +

3 log(n)

2n

)n
e−nnn

as n→∞. Hence 2.13 implies that if R is sufficiently large and if t > 0 then

(2.20) ‖T (t)A−1‖ . 1

R

(
Pn(Rt) +

n+ 1

t
Pn−1(Rt) +

(
MK(R)

bet

)n)
,

where the implicit constant is independent of both R and t. We now set R =
M−1
K (bet) for t sufficiently large. Thus 2.18 follows provided the first two terms

inside the brackets remain uniformly bounded as t→∞. By the Denjoy-Carleman
theorem [28, Theorem 1.3.8] we may assume that the function ψ in addition to
the properties already mentioned satisfies ‖ψ(k)‖L∞ ≤ Ck, where Ck = Ckk2k,
k ∈ N0, for some constant C > 0. Integrating by parts we then find that |φ(s)| .
Ck(1 + |s|)−k for all k ∈ N0 and s ∈ R, and hence ‖Φk‖L1 . Ck+2 for all k ∈ N0.
Using (2.9) and estimating crudely we thus find, after adjusting the value of the
constant C, that for t ≥ 1 we have

(2.21) Pn(Rt) . C3 +
∞∑
k=1

R−1
(
C(N(R) + 3)3

)k+3
,

where the implicit constant is independent of t and hence of R. Since N grows
at most logarithmically, we deduce that Pn(Rt) is uniformly bounded as t → ∞.
Moreover, since N(R) . t we see similarly that the second term in (2.20) remains
bounded as t grows large. This completes the proof of (2.18). In order to obtain
(2.19) it suffices to observe that MK(s) ≤ (1− ε)−1MN (s) for all sufficiently large
values of s. �

Example 2.13. Let α ∈ (0,∞) and define M(s) = log(s)α for s ≥ e and
M(s) = 1 for s ∈ [0, e). Let us restrict Theorem 2.10 to this particular choice of M .
In view of Remark 2.11 it is reasonable to search for an optimal auxiliary function.
By Example A.4 an optimal auxiliary function is given by

N(s) =

{
(1 + α)−1 log(s) for s ≥ e,
(1 + α)−1 for s ∈ [0, e).

This function is e−1(1 + α−1)α-minimal. With this optimal choice of N equation
(2.19) says that for any ε ∈ (0, 1)

‖T (t)A−1‖ = O
(

exp
(
− (cα(1− ε)t)

1
α+1
))
, t→∞,(2.22)

where cα = (1 + α)

(
1 + α

α

)α
.
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Example 2.14. Let α ∈ (0, 1) and define M(s) = exp(log(s)α) for s ≥ 1 and
M(s) = 1 for s ∈ [0, 1). By Example A.5 an optimal auxiliary function is given by

N(s) =

{
α−1 log(s)1−α for s ≥ 1,

α−1 for s ∈ [0, 1).

This function is 1-minimal. Clearly MN increases considerably slower than Mlog.
Therefore Theorem 2.10 yields a faster decay rate then Theorem 0.1 (for any choice
of c in the latter theorem).

2.4.2. Sharp decay rates for quasi-multiplication semigroups. Follow-
ing [10] we say that a C0-semigroup T with generator A on a Banach space X is a
quasi-multiplication semigroup if

‖T (t)r(A)‖ = sup
z∈σ(A)

|etzr(z)|, t ≥ 0,

for every rational function r whose poles lie outside σ(A) and which is bounded
at infinity. It follows from the spectral theorem that any C0-semigroup of normal
operators is a quasi-multiplication semigroup, but the class also contains multi-
plication semigroups on non-Hilbertian function spaces. Our next result describes
the exact rate of decay for quasi-multiplication semigroups with arbitrary resolvent
growth. The proof is an extension of the ideas used in Theorem 2.6; see also [10,
Proposition 5.1]. Recall that the spectral bound σ(A) of a semigroup generator A
is defined as s(A) = supz∈σ(A)<z.

Theorem 2.15. Let X be a Banach space and let A be the generator of a quasi-
multiplication semigroup T on X. Suppose that s(A) = 0 but σ(A) ∩ iR = ∅, and
let M : R+ → (0,∞) be defined by M(s) = sup|ξ|≤s‖(iξ −A)−1‖, s ≥ 0. Then

(2.23) ‖T (t)A−1‖ ∼ 1

M−1
qm(t)

, t→∞,

where Mqm : [1,∞)→ R+ is defined by

(2.24) Mqm(s) = max
1≤λ≤s

M(λ−1s) log λ, s ≥ 1.

Proof. Since T is a quasi-multiplication semigroup we have

(2.25) ‖T (t)A−1‖ = sup
z∈σ(A)

et<z

|z|
, t ≥ 0,

and also M(s) = sup|r|≤s dist(ir, σ(A))−1, s ≥ 0. In particular, M(s) → ∞ as
s→∞ since s(A) = 0. Now if z ∈ σ(A) then −<z ≥M(|=z|)−1, so

‖T (t)A−1‖ ≤ sup
z∈σ(A)

1

|z|
exp

(
− t

M(|=z|)

)
, t ≥ 0.

Since M is unbounded one may assume, by choosing t to be sufficiently large,
that the supremum is unaffected by restricting consideration to points z ∈ σ(A)
satisfying |=z| ≥ 1. Thus

‖T (t)A−1‖ ≤ sup
s≥1

1

s
exp

(
− t

M(s)

)
for all sufficiently large t. Given t ≥ Mqm(1) let R = M−1

qm(t). Then for s ≥ R we
have s−1 exp(−tM(s)−1) ≤ R−1, while for 1 ≤ s ≤ R the definition of Mqm implies
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that Mqm(R) ≥ M(s) log(R/s) and hence again s−1 exp(−tM(s)−1) ≤ R−1. Thus
‖T (t)A−1‖ ≤ 1/M−1

qm(t) for all sufficiently large values of t.
Now let ε ∈ (0, 1) and consider the function K : R+ → (0,∞) defined by

K(t) =
1− ε

‖T (t)A−1‖
, t ≥ 0.

Note that, by (2.25), the function K is continuous and strictly increasing. Arguing
as in the proof of Theorem 2.6 we see that for sufficiently large values of s we may
find α+iβ ∈ σ(A) such that −α ≤M(s)−1 and |α+iβ| < s(1−ε)−1. It then follows
as before from (2.17) with N−1 replaced by K, and with the choices c = δ = 1 and
C = 1− ε, that there exists a constant s0 > 0 such that K−1(λs) ≥M(s) log λ for
all λ ≥ 1 and all s ≥ s0. Thus K−1(s) ≥ M(λ−1s) log λ, 1 ≤ λ ≤ s/s0, whenever
s ≥ s0. Using the fact that M is unbounded, it is straightforward to see that

Mqm(s) = max
1≤λ≤s/s0

M(λ−1s) log λ

and hence K−1(s) ≥ Mqm(s) for all sufficiently large values of s ≥ s0. Thus when
t is sufficiently large we have M−1

qm(t) ≥ K(t), and consequently

‖T (t)A−1‖ ≥ 1− ε
M−1

qm(t)
.

This completes the proof. �

Theorem 2.15 becomes false if we drop the assumption that s(A) = 0. For
instance, if we let A be the generator of a quasi-multiplication semigroup with
spectrum s(A) = {i− s : s ≥ 1}, then ‖T (t)A−1‖ = 2−1/2e−t but M−1

qm(t)−1 = e−t,
t ≥ 0. Similarly, if σ(A) = iR − 1/2 then ‖T (t)A−1‖ = 2e−t/2 but M−1

qm(t)−1 =
e−t/2, t ≥ 0.

2.4.3. On optimality of Theorem 2.10. We can use Theorem 2.15 to in-
vestigate the quality of the estimates in (2.18) and (2.19).

Example 2.16. Let M be the function from Example 2.13 and let N be the
optimal auxiliary function given in that example. It is easy to show that

Mqm(s) =
1

α+ 1

(
α

α+ 1

)α
log(s)α+1, s > 1.

This shows that for normal semigroups (2.22) is sharp in terms of cα. In particular
(2.19) is sharp up to the ε-loss - in general. Using the finer estimate (2.18) we can
even show that for all semigroups which satisfy the hypotheses of Theorem 2.10

‖T (t)A−1‖ . t
3

2(1+α)

M−1
qm(t)

.

The question arises if the factor t3/2(1+α) is really necessary here. Unfortunately,
by optimality of N this factor cannot be avoided by the direct use of Theorem 2.10.
We think it is an interesting question if this factor can be avoided in general or if
it is actually necessary.
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Example 2.17. Let M be the function from Example 2.14 and let N be the
optimal auxiliary function given in that example. A tedious but not very difficult
calculation yields for s > 1 with L(s) = log(s)−α

Mqm(s) =
1

αe

(
1−

(
1− α
α

)2

L(s)2 +O
(
L(s)3

))
exp(log(s)α) log(s)1−α

= e−1(1 + o(1))MN (s), s→∞.
Comparing with Example 2.14, we see that Theorems 2.15 and 2.10 yield the same
rate of decay up to the ε-loss in (2.19). Observe that the function L can be replaced
by zero without affecting the asymptotic behaviour of M−1

qm .

In the context of these two examples we observe that Theorem 2.10 is sharp in
the sense that (2.19) becomes false (in general) if be(1 − ε) would be replaced by
any number strictly larger than be. In Example 2.16 we see that at least for normal
semigroups the optimal decay rate is, up to a polynomial factor, given by (2.18) (for
N optimal). A similar observation can be made for the function M from Example
2.14, where the correction factor is now a polynomial in log(t). Unfortunately we
are not able to generalize these observations in a systematic way. But we think
that it is reasonable to say that our Theorem 2.10 is a “seemingly almost” sharp
result. On the other hand we think that there is a need for an improved version
of that theorem with a possibly simplified theory behind possibly not relying on
quasi-positive increase.

To open up an interesting question for future research we want to formulate an
(in our opinion) rather optimistic conjecture. This conjecture can be summarized
informally as: Normal semigroups yield the worst decay rates.

Conjecture 2.18. Let X be a Hilbert space and let A be the generator of
a bounded C0-semigroup T on X with σ(A) ∩ iR = ∅. Let M : R+ → (0,∞) be
a continuous non-decreasing functions such that M(s) → ∞, s → ∞. Suppose
‖(is−A)−1‖ ≤M(|s|), s ∈ R. Then for some C0, t0 > 0

(2.26) ‖T (t)A−1‖ =
C0

M−1
qm(t)

for t > t0.

The constant C0 can be chosen to depend only on supt≥0 ‖T (t)‖.

Note that, restricted to normal semigroups C0 = 1 is the optimal choice of
the constant in (2.26) as the proof of Theorem 2.15 shows. We think it would
be an interesting question to find also optimal constants (if they exist) for other
subclasses of C0-semigroups. In particular, we ask if (2.26) is satisfied with C0 = 1
for contractive semigroups.





Part 2

Applications: decay of waves





CHAPTER 3

Local decay for waves in exterior domains

3.1. Introduction

Let Ω $ Rd be a connected open set with bounded complement and non-empty
C∞-boundary. The dimension d is assumed to be at least 2. We consider the wave
equation on this domain: utt(t, x)−∆u(t, x) = 0 (t ∈ (0,∞), x ∈ Ω),

u(t, x) = 0 (t ∈ (0,∞), x ∈ ∂Ω),
u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω).

(3.1)

Let us fix a radius ρ > 0 such that the obstacle O = Rd\Ω is included in the open
ball Bρ of radius ρ and center 0. We define a state (at time t) of the system by
x(t) := (u, v)(t) := (u(t), ut(t)). We define the local energy of a state by

Eloc(x) =

∫
Ω∩Bρ

|∇u|2 + |v|2 dx.(3.2)

Clearly, equation (3.2) is well defined for all u ∈ C∞c (Ω) and v ∈ L2(Ω). Therefore,
it is also well defined on the energy space

H = H1
D(Ω)× L2(Ω),

whereH1
D(Ω) is the completion of C∞c (Ω) with respect to the norm u 7→ (

∫
Ω
|∇u|2)1/2.

We remark at this point that for any compactly supported C∞-function χ : Rd → C
the corresponding multiplication operator f 7→ χf is continuous from H1

D(Ω) to
H1
D(Ω) and L2(Ω). This is not completely obvious since H1

D(Ω) is not a subspace
of L2(Ω) and actually the statement would be false if ∂Ω = ∅. Fortunately we have
assumed ∂Ω 6= ∅, ∂Ω ∈ C∞ and therefore the statement follows from the Poincaré-
Steklov inequality applied to the open set Ω ∩Br where the radius r > 0 is chosen
so large that Ω ∩Br 6= ∅ is connected and the support of χ is contained in Br.

Let m ∈ N0. We are interested in the uniform decay rate of the local energy
with respect to sufficiently smooth initial data, compactly supported in the ball of
radius ρ:

pm(t) := sup


(

Eloc(x(t))

‖x0‖2Hm+1×Hm

) 1
2

; x0 ∈ Hm+1
comp ×Hm

comp(Ω ∩Bρ)

 .(3.3)

Here, by Hm
comp(Ω ∩Bρ) we denote all square-integrable functions, compactly sup-

ported on Ω∩Bρ for which all weak derivatives up to order m are square-integrable
too. We also write L2

comp = H0
comp. It is well known that p0 either does not decay to

zero, or decays exponentially for d odd and like t−d for d even. Moreover, the decay
can be characterized by boundedness of the local resolvent of A on the imaginary
axis. We refer to [51] and references therein for these facts.

61



62 3. LOCAL DECAY FOR WAVES IN EXTERIOR DOMAINS

3.2. The associated unitary C0-group, its generator and basic
properties of the truncated outgoing resolvent

The wave equation (3.1) on the energy space H can be reformulated in the
language of C0-semigroups. Therefore, as above, we set x(t) = (u(t), ut(t)), x0 =
(u0, u1) and write {

ẋ(t) = Ax(t),

x(0) = x0 ∈ H
where A =

(
0 1
∆ 0

)
(3.4)

with D(A) = D∆ × (H1
D ∩ L2︸ ︷︷ ︸
H1

0

)(Ω).

Here D∆ = {u ∈ H1
D(Ω); ∆u ∈ L2(Ω)}, where ∆ denotes the Laplace operator in

the sense of distributions. It can be proved that the wave operator A is skew-adjoint
(see e.g. [32, Theorem V.1.2]). Therefore the following theorem follows by Stone’s
theorem (see e.g. [32, Appendix 1, Theorem 2]).

Theorem 3.1. The wave operator A generates a unitary C0-group on H.

In the following we investigate the resolvent of A to get decay rates pm for the
local energy. In the literature on local energy decay it is common to investigate the
outgoing resolvent of the stationary wave equation. For <z > 0 and f ∈ L2(Ω) the
outgoing resolvent is defined as the Laplace transform

R(z)f =

∫ ∞
0

e−ztu(t)dt

where u is the first component of the solution to (3.4) for x0 = (0, f) ∈ H. Taking
the Laplace transform of (3.4) it is not difficult to show that w = R(z)f for <z > 0
and f ∈ L2(Ω) is the unique distributional solution in L2(Ω) to the stationary wave
equation {

z2w(x)−∆w(x) = f(x) (x ∈ Ω),
w(x) = 0 (x ∈ ∂Ω).

(3.5)

That is, R(z) = (z2−∆0)−1 where by ∆0 we denote the Dirichlet-Laplace operator
with domain D(∆0) = {u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)}. We emphasize that D(∆0) 6=
D∆. There is an important relation between R and the resolvent of A: For <z > 0
we have

(z −A)−1 =

(
zR(z) R(z)

z2R(z)− 1 zR(z)

)
.(3.6)

Let us fix a cut-off function χ ∈ C∞c (Rd) with 0 ≤ χ ≤ 1 such that χ = 1 on a
neighbourhood of O. We define the truncated resolvent by Rχ(z) = χR(z)χ, where
we consider χ as a multiplication operator on L2(Ω). From the definition we see
that the outgoing truncated resolvent is an analytic function in the interior of C+.
The next proposition illuminates its behaviour on the other half of the complex
plane.

Proposition 3.2. (i)[14, Appendix B] The truncated outgoing resolvent Rχ
extends analytically to a neighbourhood of iR\{0}. Moreover, for any open sector
S ⊇ R− with vertex at 0 the operator Rχ(z) : L2(Ω)→ L2(Ω) is uniformly bounded
for z in a small neighbourhood of 0 outside the sector S. (ii)[32, Corollary V.3.3
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together with Remark V.4.3] If the dimension d ≥ 3 is odd, Rχ extends meromor-
phically to C. (iii)[51, Proposition 3.1] If the dimension d ≥ 2 is even, then Rχ
extends meromorphically to C\R− and there exists a rank one operator R0 such
that

z 7→ Rχ(z)−R0z
d−2 log(z) is analytic

in a neighbourhood of 0.

Since the spectrum of ∆0 is (−∞, 0] the (maximal) domain of analyticity of
the operator R is the interior of C+. In particular, R does not extend across the
imaginary axis if we consider it as an operator on L2(Ω). However, if we consider
it as an operator R(z) : L2

comp(Ω)→ L2
loc(Ω), then the above proposition says that

this operator does extend across the imaginary axis. Moreover, if f ∈ L2
comp(Ω)

and z ∈ C is such that R(z) is defined, the function w = R(z)f ∈ L2
loc(Ω) is a

solution to (3.5). For <z < 0 the function w thus defined is not necessarily in
L2(Ω) and in particular it need not be the unique L2-solution of (3.5). In other
words, Rχ(z) 6= χ(z2 −∆0)−1χ if <z < 0.

Let us define the analytic function Gχ : C+\iR→ L(L2(Ω)) by

Gχ(z) = χ(z −A)−1χ.

Here, we consider χ as an operator on H acting as χ(u0, u1) = (χu0, χu1). In case
d ≥ 3 is odd, by Proposition 3.2 together with (3.6), we immediately see that G
extends to a meromorphic function on C which has no poles on iR. If d ≥ 2 is even,
then Gχ extends to a meromorphic function on C+\R−. Moreover, by Proposition
3.2(iii) together with (3.6) there exists a finite rank operator P0 such that

z 7→ Gχ(z)− P0z
d−1 log(z) is analytic(3.7)

in a small ball around 0. Since the spectrum of A is the entire imaginary axis (this
follows from σ(∆0) = (−∞, 0]) the equality Gχ(z) = χ(z − A)−1χ does not hold
for <z < 0 in general.

The following proposition seems to be well-known. Unfortunately we could not
find a complete proof in the literature. Therefore we give a proof in Section B.2.

Proposition 3.3. Let δ > 0 and let χ̃ be defined as χ but with χ̃ = 1 on a
neighbourhood of the support of χ. Let z with −δ < <z < 0 be no pole of Rχ, then

‖Gχ(z)‖ ≤ C
(
(1 ∨ |z|)−1 + |z| ‖Rχ̃(z)‖L2→L2

)
with a constant C > 0 independent of z. The reverse inequality - with a different
constant, ignoring the first summand on the right hand side and χ̃ replaced by χ -
is also true.

3.3. Decay of the local energy

It can happen that a whole strip {z ∈ C;−δ < <z < 0} is free of poles of
Gχ - see for instance [29]. In [21] the impact of the presence of such a strip on
local energy decay was studied. There it was shown in a first step that such a strip
implies that the norm of Gχ can be estimated by C exp(C |=(z)|α) for large z on
this strip, and for some α > 0. Indeed α = d − 1 in this article but it was not
shown that this is optimal. In a second step the authors showed that this implies
a bound of the form (1 + |=z|)α on Gχ for large arguments in a region of the form
{z ∈ C;−C(1 + |=z|)−α < <z < 0}. This step is rather abstract and relies only on
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the fact that Gχ is a truncated resolvent of a bounded C0-semigroup. Finally, in a
third step they applied a Tauberian theorem (more precisely, [40, Proposition 1.4])
to get, for d odd, a (log(t)/t)m/α decay rate for the local energy. If d is even one
gets a t−d ∨ (log(t)/t)m/α decay rate.

In the following we get rid of the logarithmic term, and simplify the proof com-
pared to [21], by using a single application of Corollary 1.34 to the local resolvent
on a strip. To present a more general result we consider the following conditions.

(a) There is a continuous and non-decreasing function M : R+ → (0,∞) such
that Rχ has no poles in ΩM .

(b) There is a real number r > 0 and a continuous and non-decreasing function
K : R+ → [2,∞) satisfying K(s) ≥ cmax{s,M(s)} for any s ≥ 0 such
that

|=z| ‖Rχ(z)‖L2→L2 ≤ CK(|=z|)

for all z ∈ ΩM with |=z| ≥ r/2.
(c) If d is even we assume furthermore that the number r from condition (b)

is chosen so small that (3.7) is true for all z in a ball of radius r around 0.

Under these assumptions we can prove

Theorem 3.4. Let m ∈ N1 and assume that the conditions (a-c) above are
satisfied. (i) If d ≥ 3 is odd, then

pm(t) ≤ C

M−1
logK(c1t)m

for every t ≥ 1

and for a sufficiently small constant c1 > 0. (ii) If d ≥ 2 is even then

pm(t) ≤ C max

{
1

td
,

1

M−1
logK(c1t)m

}
for every t ≥ 1

and for a sufficiently small constant c1 > 0. Here, MlogK(s) = M(s) log(K(s)) for
s ≥ 0.

Proof. (i). For <z > 0, let Gχ(z) = χ(z −A)−1χ. Assumptions (a) and (b)

together with Proposition 3.3 imply that Gχ extends analytically to ΩM ∪C+ and
satisfies

‖Gχ(z)‖ ≤ CK(|=z|) for z ∈ ΩM .

Thus, by Corollary 1.34, for every x0 ∈ H∥∥χetA(1−A)−mχx0

∥∥ ≤ C

M−1
logK(c1t)m

‖x0‖ .(3.8)

By the closed graph theorem the constant C does not depend on x0. For simplicity
we assume m = 1 in the following. The general case can be treated in almost the
same way.

Let χ1 ∈ C∞c (Rd) be a function such that 0 ≤ χ1 ≤ 1 and χ1 = 1 on suppχ. Of
course, Propositions 3.2 and 3.3 remain valid if one replaces χ by χ1. Note that the
commutator [χ, 1−A] is a bounded operator on H. Let x1 = (1−A)−1x0 ∈ D(A).
By Corollary 1.34,∥∥χetAχx1

∥∥ ≤ ∥∥χetA(1−A)−1χx0

∥∥+
∥∥χ(χ1e

tA(1−A)−1χ1)[χ, (1−A)]x1

∥∥
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≤ C

M−1
logK(c1t)

(‖x0‖+ ‖x1‖)

≤ C

M−1
logK(c1t)

‖x1‖D(A) .

Without loss of generality we may assume that χ = 1 on Bρ. Observe that the

norm of elements of D(A), supported in Ω ∩ Br, is equivalent to the norm in the
space H2 ×H1(Ω). This follows from maximal regularity of the Dirichlet-Laplace
operator on the bounded and smooth domain Ω ∩ Bρ. Thus the last inequality
(restricted to those x1 with support in Bρ) implies the conclusion of the theorem.

(ii) The proof of the second assertion is analogous and uses Corollary 1.37
instead of 1.34. �

Let us go back to the situation described at the beginning of Section 3.3. We
assume for simplicity of presentation that d is odd. We see that we can apply the
above theorem with M = δ for some δ > 0 and K(s) = C exp(C |=(z)|α). Thus we
get

pm(t) ≤ C

t
m
α

for t ≥ 1.

So our approach helped to remove the logarithmic loss in this situation.





CHAPTER 4

Waves on a square with constant damping on a
strip

4.1. Introduction

Let 2 = (0, 1)2 be the unit square. We parametrize it by Cartesian coordinates
x and y. Let a - the damping - be a function on 2 which depends only on x such
that a(x) = a0 > 0 for x < σ and a(x) = 0 for x > σ where σ is some fixed number
from the interval (0, 1). We consider the damped wave equation:

utt(t, x, y)−∆u(t, x, y) + 2a(x)ut(t, x, y) = 0 (t ∈ (0,∞), (x, y) ∈ 2),

u(t, x, y) = 0 (t ∈ (0,∞), (x, y) ∈ ∂2),

u(0, x, y) = u0(x, y), ut(0, x, y) = u1(x, y) ((x, y) ∈ 2).

We are interested in the energy

E(t,x0) =
1

2

∫ ∫
|∇u(t, x, y)|2 + |ut(t, x, y)|2 dxdy

of a wave at time t with initial data x0 = (u0, u1). Let D = (H2 ∩H1
0 ) ×H1

0 (2)
denote the set of classical initial data. In this chapter we aim to prove

Theorem 4.1. Let 2, a and E(t,x0) be as above. Then supE(t,x0)1/2 ≈ t−2/3

where the supremum is taken over initial data satisfying ‖x0‖D = 1.

In Section 4.3 we show that this theorem is equivalent to Theorem 4.3 below.
Section 4.2 is devoted to the proof of Theorem 4.3.

Remark 4.2. The proof of Theorem 4.1 shows that a higher dimensional ana-
logue is also true. That is, one can replace y ∈ R by y ∈ Rd−1 for any natural
number d ≥ 2. The exact decay rate remains the same for all d.

We want to acknowledge that our work on this topic was partly motivated
and influenced by a lecture series given by Matthieu Léautaud at the conference
“Modern Applications of Operator Theory” in Bȩdlewo (2016) and a paper of Batty,
Paunonen and Seifert [9].

4.1.1. The semigroup approach. If we set x(t) = (u(t), ut(t)) and x0 =
(u0, u1) we may formulate the damped wave equation as an abstract Cauchy prob-
lem on the Hilbert space H = H1

0 × L2(2):

ẋ(t) = Ax(t), x(0) = x0 , where A =

(
0 1
∆ −2a(x)

)
.(4.1)

67
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The domain of A is D(A) = (H2 ∩H1
0 )×H1

0 (2). The operator A is dissipative on
H (we equip H1

0 (2) with the gradient norm), that is

∀(u, v) ∈ D(A) : <〈A(u, v), (u, v)〉H = −2

∫
2
a |v|2 ≤ 0.

Note that A : D(A)→ H is invertible since A(u, v) = (f, g) is equivalent to ∆u =
g−2af , v = f and since the Dirichlet-Laplace operator −∆ : H2∩H1

0 (2)→ L2(2)
is invertible. By the Lumer-Phillips theorem (see for example [4, Theorem 3.4.5])
the operator A generates a C0-semigroup of contractions. In particular (4.1) is
well-posed, i.e. for any x0 ∈ H there exists a unique mild solution x ∈ C([0,∞);H)
to (4.1); see for example [4, Chapter 3.1] for the definition of mild solutions. As in
[4, Chapter 3.1] we call x a classical solution of (4.1) if it is a mild solution and
if in addition x ∈ C1([0,∞);H) ∩ C([0,∞);D(A)). By [4, Proposition 3.1.9. h)] a
mild solution with initial value in D(A) is already a classical solution.

Note that the inclusion D(A) ↪→ H is compact by the Rellich-Kondrachov
theorem. Thus the spectrum of A contains only eigenvalues of finite multiplicity.

4.1.2. Classification of the main result. Our situation is a very particular
instance of the so called partially rectangular situation. A bounded domain Ω is
called partially rectangular if its boundary ∂Ω is piecewise C∞ and if Ω contains
an open rectangle R such that two opposite sides of R are contained in ∂Ω. We call
these two opposite sides horizontal. One can decompose Ω = R∪W , where W is an
open set which is disjoint to R. In our particular situation we can W choose to be
empty. Furthermore it is assumed, that a > 0 on W and a = 0 on S, where S ⊆ R
is an open rectangle with two sides contained in the horizontal sides of R. To avoid
the discussion of null-sets we assume for simplicity that either a is continuous up
to the boundary or it is as in the beginning of the introduction of this chapter.

Under these constraints one can show that the energy of classical solutions can
never decay uniformly faster than 1/t2, i.e.

sup
x0∈D(A)

E(t,x0)
1
2 &

1

t
.(4.2)

This result seems to be well-known. Unfortunately we do not know an original
reference to this bound on the energy. A short modern proof using [8, Proposition
1.3] can be found in [3]. But there is also a geometric optics proof using quantified
versions of the techniques of [42]. Unfortunately the latter approach seems to be
never published anywhere.

On the other hand, if we assume that the damping does not vanish completely
in R (this is an additional assumption only if W is empty), then

∀x0 ∈ D(A) : E(t,x0)
1
2 .

1

t
1
2

.(4.3)

This is a corollary of one of the main results in [3]. There, the authors showed
that stability at rate t−1/2 for an abstract damped wave equation is equivalent to
an observability condition for a related Schrödinger equation. Earlier contributions
towards (4.3) were given by [15] and [34].

Having the two bounds (4.2) and (4.3) at hand a natural question arises: are
these bounds sharp? Concerning the fast decay rates related to (4.2) this is partly
answered by [15] and [3]. Essentially the authors showed that if the damping
function is smooth enough than one can get a decay rate as close to t−1 as one
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wishes. Unfortunately they could not characterize the exact decay rate in terms of
properties of a. A breakthrough into this direction was achieved in [33] (see also
[16, 13]) in a slightly different situation (there S degenerates to a line).

To the best of our knowledge it is completely unknown if the slowest possible
rate t−1/2 is attained. To us the only known result in this direction is due to
Nonnenmacher: if we are in the very particular situation of a damped wave equation
on a square with constant damping on a strip, parallel to one of the sides of the
square, then

sup
x0∈D(A)

E(t,x0)
1
2 &

1

t
2
3

;

see [3, Appendix B]. So this situation is a candidate for the slow decay rate. In this
chapter we show that Nonnenmacher’s bound is actually equal to the exact decay
rate.

This of course raises a new question. Is it possible to find a non-vanishing
bounded damping in a partially rectangular domain, satisfying the constraints spec-
ified above, but discarding the continuity assumptions, such that the exact decay
rate for E(t,x0)

1
2 is strictly slower than t−2/3? We think this is an interesting

question for future research.

4.1.3. From waves to stationary waves. Let f ∈ L2(2). We consider the
stationary damped wave equation with Dirichlet boundary conditions{

P (s)u(x, y) = (−∆− s2 + 2isa(x))u(x, y) = f(x, y) in 2
u(x, y) = 0 on ∂2

(4.4)

As already said above, to prove Theorem 4.1 is essentially to show

Theorem 4.3. The operator P (s) : H2 ∩H1
0 (2)→ L2(2) from (4.4) is invert-

ible for every s ∈ R. Moreover∥∥P (s)−1
∥∥
L2→L2 ≈ 1 + |s|

1
2 .

Actually we only prove the .-inequality since the reverse inequality is a con-
sequence of Proposition 4.6. This proposition, due to Nonnenmacher, shows that
there are eigenvalues of A approaching the imaginary axis fast enough to get the
desired lower bound on the stationary resolvent. Since it is well-known we also
do not prove the invertability of P (s). The (simple) standard proof is based on
testing the homogeneous stationary wave equation with u. From considering real
and imaginary part of the resulting expression one easily checks u = 0 by a unique
continuation principle.

4.2. A sharp resolvent estimate

Here is the plan for the proof of Theorem 4.3: First, we separate the y-
dependence of the stationary wave equation from the problem. As a result we
are dealing with a family of one dimensional problems which are parametrized by
the vertical wave number n ∈ N. Then we derive explicit solution formulas for
the separated problems. These formulas allow us to estimate the solutions of the
separated problems by their right-hand side with a constant essentially depending
explicitly on s and n. In the final step we introduce appropriate regimes for s rela-
tive to n which allow us to drop the n-dependence of the constant by a (short) case
study.
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Because of the symmetry of (4.4) we have
∥∥P (−s)−1

∥∥
L2→L2 =

∥∥P (s)−1
∥∥
L2→L2 .

Therefore in the following we always assume s to be positive.

4.2.1. Separation of variables. First recall that the functions sn(y) =
√

2 sin(nπy)
for n ∈ {1, 2, . . .} form a complete orthonormal system of L2(0, 1). Thus considering
u and f satisfying (4.4) we may write

u(x, y) =
∞∑
n=1

un(x)sn(y) and f(x, y) =
∞∑
n=1

fn(x)sn(y).(4.5)

In terms of this separation of variables the stationary wave equation is equivalent
to the one dimensional problem Pn(s)un = fn where

Pn(s) = −∂2
x − k2

n + 2isa(x), and(4.6)

k2
n = s2 − (nπ)2.

Note that kn might be an imaginary number. In a few lines we see that only the
real case is important. In that case we choose kn ≥ 0. But first we prove the
following simple

Lemma 4.4. Let φ : R+ → (0,∞). Then the estimate
∥∥Pn(s)−1

∥∥
L2→L2 . φ(|s|)

uniformly in n is equivalent to the estimate
∥∥P (s)−1

∥∥
L2→L2 . φ(|s|).

Proof. Let P (s)u = f and expand u and f as in (4.5). Then the implication
from the left to the right is a consequence of the following chain of equations and
inequalities:

‖u‖2L2 =

∞∑
n=1

‖un‖2L2 . φ(|s|)2
∞∑
n=1

‖fn‖2L2 = φ(|s|)2 ‖f‖2L2 .

The reverse implication follows from looking at f(x, y) = fn(x)sn(y) and u(x, y) =
un(x)sn(y). �

So below we are concerned with the separated stationary wave equation{
Pn(s)un(x) = fn(x) for x ∈ (0, 1)
un(0) = un(1) = 0

(4.7)

where Pn(s) is defined in (4.6). In view of Lemma 4.4 we are left to show ‖un‖L2 .
s1/2 ‖fn‖L2 uniformly in n in order to prove Theorem 4.3. It turns out that such
an estimate is easy to prove if kn is imaginary.

Lemma 4.5. There exists a constant c > 0 such that
∥∥Pn(s)−1

∥∥
L2→H1

0
. 1

holds uniformly in n whenever s2 ≤ (nπ)2 + c.

Note that Pn(s)−1 is considered as an operator mapping to H1
0 (0, 1). But it

does not really matter since we will only use this estimate after replacing H1
0 by

L2.

Proof. Testing equation (4.7) by un and taking the real part leads to∫ 1

0

|u′n|
2 − c

∫ 1

0

|un|2 ≤
∫ 1

0

|fnun| .

Recall that ‖v′‖2L2 ≥ π2 ‖v‖2L2 for all v ∈ H1
0 (0, 1) since π2 is the lowest eigenvalue

of the Dirichlet-Laplacian on the unit interval. Thus the conclusion of the Lemma
holds for all c < π2. �
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This lemma allows us to assume

kn =
√
s2 − (nπ)2 > c(4.8)

for some universal constant c > 0 not depending on neither s nor n.

4.2.2. Explicit formula for Pn(s)−1. From now on we consider (4.7) under
the constraint (4.8). To avoid cumbersome notation we drop the subscript n from
kn, i.e. we write k instead from now on. Next let v = un|[0,σ], g = fn|(0,σ) and
w = un|[σ,1], h = fn|(σ,1). We may write (4.7) as a coupled system consisting of a
wave equation with constant damping and an undamped wave equation:

(−∂2
x − k2 + 2isa0)v(x) = g(x) for x ∈ (0, σ),

(−∂2
x − k2)w(x) = h(x) for x ∈ (σ, 1),
v(0) = w(1) = 0,

v(σ) = w(σ), v′(σ) = w′(σ).

(4.9)

4.2.2.1. Solution of the homogeneous equation. The following ansatz satisfies
the first three lines of (4.9) with g, h = 0:

v0(x) =
1

k′
sin(k′x), w0(x) =

1

k
sin(k(1− x)),(4.10)

where k′ is the solution of k′2 = k2 − 2isa0 which has negative imaginary part.
4.2.2.2. Solution of the inhomogeneous equation. The following ansatz satisfies

the first three lines of (4.9):

vg(x) = − 1

k′

∫ x

0

sin(k′(x− y))g(y)dy, wh(x) = −1

k

∫ 1

x

sin(k(y − x))h(y)dy.

(4.11)

This is simply the variation of constants (or Duhamel’s) formula. It is useful to
know the derivatives of these particular solutions:

v′g(x) = −
∫ x

0

cos(k′(x− y))g(y)dy, w′h(x) = +

∫ 1

x

cos(k(y − x))h(y)dy.(4.12)

4.2.2.3. General solution. The general solution of the first three lines of (4.7)
has the form

v = av0 + vg, w = bw0 + wh.(4.13)

Our task is to find the coefficients a = a(s, n) and b = b(s, n). Therefore we have
to analyze the coupling condition in line four of (4.9). A short calculation shows
that it is equivalent to(

v0 −w0

v′0 −w′0

)∣∣∣∣
x=σ︸ ︷︷ ︸

=:M(s,n)

(
a
b

)
=

(
wh − vg
w′h − v′g

)∣∣∣∣
x=σ

.

From the preceding equation we easily deduce

a =
1

detM

[
w′0(vg − wh)− w0(v′g − wh)

]
x=σ

,(4.14)

b =
1

detM

[
v′0(vg − wh)− v0(v′g − wh)

]
x=σ

.(4.15)

Moreover,

detM =
1

k′
sin(k′σ) cos(k(1− σ)) +

1

k
cos(k′σ) sin(k(1− σ)).(4.16)
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4.2.3. Proving a general estimate ‖un‖L2 ≤ C(k, k′,M) ‖fn‖L2 . For this
inequality we will derive an explicit formula for C in terms of k, k′ and M . In
the next subsection we identify the qualitatively different regimes in which s can
live. By regime we mean a relation which says how big s - the full momentum - is
compared to nπ - the momentum in y-direction. For each of these regimes we then
easily translate the explicit k, k′,M dependence of C to a an explicit dependence
on s.

4.2.3.1. Elementary estimates for w0 and wh. Directly from the definition of
w0 (see (4.10)) we deduce

‖w0‖∞ ≤
1

k
, ‖w′0‖∞ ≤ 1 and ‖w0‖2 ≤

√
1− σ
k

.(4.17)

In the same manner for wh from (4.11) and (4.12) we deduce:

‖wh‖∞ ≤
√

1− σ
k

‖h‖2 , ‖w
′
h‖∞ ≤

√
1− σ ‖h‖2 and ‖wh‖2 ≤

1− σ
k
‖h‖2 .(4.18)

4.2.3.2. Estimating w. Recall from (4.13) that w = bw0 + wh. Recall the for-
mula (4.15) for b. Note that

(v′0vg − v0v
′
g)(σ) =

1

k′

∫ σ

0

sin(k′y)g(y)dy.

Thus it seems to be natural to decompose

b =
1

detM

[
(v0w

′
h − v′0wh) + (v′0vg − v0v

′
g)
]
x=σ

=: b1 + b2.

This leads to the decomposition of w = b1w0 + b2w0 + wh into three parts. With
the help of (4.17) and (4.18) each part can easily be estimated as follows:

‖b1w0‖2 .
e|=k

′|σ

|k′ detM |

(
1

k
+
|k′|
k2

)
‖h‖2 ,

‖b2w0‖2 .
e|=k

′|σ

|k′ detM |
1

k
‖g‖2 , ‖wh‖2 .

1

k
‖h‖2 .

(4.19)

We could now add all three single estimates to get the desired estimate on w but
we wait until we have done the same thing for v.

4.2.3.3. Estimating v. Recall from (4.13) that v = av0 +vh. Recall the formula
(4.14) for a. Note that

(w0w
′
h − w′0wh)(σ) =

1

k

∫ 1

σ

sin(k(1− y))h(y)dy and

vg =
(−w′0v0 + w0v

′
0)(σ)

detM
vg =: vg,2 + vg,3.

Thus it seems to be natural to decompose

a =
1

detM

[
(w0w

′
h − w′0wh) + w′0vg − w0v

′
g

]
x=σ

=: a1 + a2 + a3.

This in turn leads to a decomposition of v = a1v0 + (a2v0 + vg,2) + (a3v0 + vg,3)
into three parts. Essentially it remains to find a good representation of the second
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and the third part of v. First let us write

a2v0 + vg,2 =
w′0(σ)

k′ detM
(vg(σ) sin(k′x)− k′v0(σ)vg(x))︸ ︷︷ ︸

=: I(x)

,

a3v0 + vg,3 =
w0(σ)

k′ detM

(
−v′g(σ) sin(k′x) + k′v′0(σ)vg(x)

)︸ ︷︷ ︸
=: II(x)

.

Simple calculations yield

−2I(x) =

∫ σ

0

cos(k′(σ − x− y))g(y)dy −
∫ x

0

cos(k′(σ − x+ y))g(y)dy

−
∫ σ

x

cos(k′(σ + x− y))g(y)dy,

and

2II(x) =

∫ σ

x

sin(k′(σ + x− y))g(y)dy −
∫ x

0

sin(k′(σ − x+ y))g(y)dy

−
∫ σ

0

sin(k′(σ − x+ y))g(y)dy.

Using this and again the elementary estimates (4.17) and (4.18) for w0 and wh we
deduce

‖a3v0 + vg,3‖2 .
e|=k

′|σ

|k′ detM |
1

k
‖g‖2 ,

‖a2v0 + vg,2‖2 .
e|=k

′|σ

|k′ detM |
‖g‖2 , ‖a1v0‖2 .

e|=k
′|σ

|k′ detM |
1

k
‖h‖2 .

(4.20)

4.2.3.4. Conclusion. Putting (4.19) and (4.20) together we get the desired in-
equality

‖un‖L2 .

[
e|=k

′|σ

|k′ detM |

(
1 +
|k′|
k2

)
+

1

k

]
‖fn‖L2 .(4.21)

4.2.4. Regimes where s can live. Keeping (4.21) in mind, our task is now
to find asymptotic dependencies of k and k′ on s and a lower bound for |k′ detM |.
A priori there is no unique asymptotic behavior of k =

√
s2 − (nπ)2 as s tends to

infinity because of k’s dependence on n. To overcome this difficulty we introduce
the following four regimes:

(i) c ≤ k ≤ cs 1
2 , (ii) cs

1
2 ≤ k ≤ Cs 1

2 , (iii) Cs
1
2 ≤ k ≤ cs, (iv) cs ≤ k < s.

Recall that c (resp. C) means a small (resp. large) constant. Both constants may
be different in each regime. But by convention made for the symbols c and C we
may assume that consecutive regimes overlap.

Since we want to investigate the asymptotics s → ∞ we always may assume
s > s0 for some sufficiently large number s0 > 0.



74 4. WAVES ON A SQUARE WITH CONSTANT DAMPING ON A STRIP

4.2.4.1. Regime (i): c ≤ k ≤ cs 1
2 . For sufficiently small c the first order Taylor

expansion of the square root at 1 gives a good approximation of

k′ =
√

2a0s
1
2 e−

iπ
4

(
1 +

ik2

a0s
+O(k4s−2)

)
.

In particular =k′ = −√a0s
1
2 (1 +O(k2s−1)) tends with a polynomial rate to minus

infinity as s tends to infinity. Therefore cot(k′σ) = i + O(s−∞). Together with
(4.16) this gives us the following useful formula for

detM =
sin(k′σ)

k′

[
cos(k(1− σ)) +

k′

k
(i+O(s−∞)) sin(k(1− σ))

]
.(4.22)

It is not difficult to see that the term within the brackets is bounded away from
zero. Thus |k′ detM | & exp(|=k′|σ). From (4.21) now follows (recall also (4.8))

‖un‖L2 .

(
1 +
|k′|
k2

)
‖fn‖L2 . s

1
2 ‖fn‖L2 uniformly in n.

4.2.4.2. Regime (ii): cs
1
2 ≤ k ≤ Cs

1
2 . Because of k′2 = k2 − 2isa0 we see

that both <k′ and −=k′ are of order s
1
2 . Therefore (4.22) is valid also in this

regime. Again the term within the brackets is bounded away from zero. Thus
|k′ detM | & exp(|=k′|σ) and (4.21) imply

‖un‖L2 . ‖fn‖L2 uniformly in n.

4.2.4.3. Regime (iii): Cs
1
2 ≤ k ≤ cs. Using first order Taylor expansion for the

square root at 1 gives

k′ = k
(
1− ia0sk

−2 +O(s2k−4)
)
.

In particular, if we choose C big enough we can assume the ratio k′/k to be as close
to 1 as we wish. Similarly, if we choose c small enough we may assume −=k′ to be
as large as we want. Therefore we may assume cot(k′σ) to be as close to i as we
wish. This means that the following variant of (4.22) is true for this regime

detM =
sin(k′σ)

k′
[cos(k(1− σ)) + (i+ ε) sin(k(1− σ))] ,

where ε ∈ C is some error term with a magnitude as small as we wish. If we choose
c and C such that |ε| ≤ 1/2 we see that the term within the brackets is bounded
away from zero. Thus |k′ detM | & exp(|=k′|σ) and (4.21) imply

‖un‖L2 . ‖fn‖L2 uniformly in n.

4.2.4.4. Regime (iv): cs ≤ k < s. As in the previous regime

k′ = k
(
1− ia0sk

−2 +O(s−2)
)
.

In particular k′/k = 1 + O(s−1) → 1 and =k′ = −a0sk
−1 + O(s−1) is bounded

away from 0,+∞ and −∞. Thus

detM =
1

k′
[sin(k′σ) cos(k(1− σ) + cos(k′σ) sin(k(1− σ)))] +O(s−2)

=
sin(k + (k′ − k)σ)

k′
+O(s−2).

This implies that |k′ detM | ≈ 1. Thus from (4.21) we deduce

‖un‖L2 . ‖fn‖L2 uniformly in n.
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4.2.5. Conclusion. Let un solve Pn(s)un(x) = fn(x), where Pn(s) is defined
in (4.6). Section 4.2.4 together with Lemma 4.5 shows that the estimate ‖un‖L2 .
s1/2 ‖fn‖L2 holds uniformly for any n. Therefore, Lemma 4.4 implies Theorem 4.3.

4.3. Sharp t−
4
3 -decay rate for the energy

Now we prove Theorem 4.1. Therefore, recall the definition of the energy E
and the damped wave operator A from Section 4.1. Then Theorem 0.3 (or Theorem
2.2) together with the converse part of Theorem 0.1 restricted to our situation says
in particular that for any α > 0

sup
‖x0‖D(A)=1

E(t,x0)
1
2 ≈ t− 1

α ⇔
∥∥(is−A)−1

∥∥ ≈ sα.(4.23)

From Proposition B.1 (see also [3, Proposition 2.4 and Lemma 4.6]) we get∥∥(is−A)−1
∥∥ ≈ sα ⇔ ∥∥P (s)−1

∥∥
L2→L2 ≈ sα−1.(4.24)

In the appendix of [3] Stéphane Nonnenmacher proved

Proposition 4.6 (Nonnenmacher, 2014). The spectrum of A contains an in-
finite sequence (zj) with =zj →∞ such that (=zj)−3/2 . <zj < 0.

Actually he proved this theorem under periodic boundary conditions, but the
proof applies also to Dirichlet or Neumann boundary conditions. Note that Propo-
sition 4.6 together with (4.24) establishes the ‘&‘-inequality of Theorem 4.3.

Using (4.23) and (4.24) together with Theorem 4.3 yields Theorem 4.1.





CHAPTER 5

A viscoelastic boundary damping model

5.1. Introduction

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and k : R→ [0,∞)
be an integrable function, depending on the time-variable only and vanishing on
(−∞, 0). We consider a model for the reflection of sound on a wall (see e.g. [41]):{

Utt(t, x)−∆U(t, x) = 0 (t ∈ R, x ∈ Ω),

∂nU(t, x) + k ∗ Ut(t, x) = 0 (t ∈ R, x ∈ ∂Ω).
(5.1)

The function U is called the velocity potential. One can derive the acoustic pressure
p(t, x) = Ut(t, x) and fluid velocity v(t, x) = −∇U(t, x) from U . The second formula
gives the velocity potential its name. Extending k by 0 for negative arguments the
convolution with Ut is given by the usual formula k∗Ut(t, x) =

∫∞
0
k(r)Ut(t−r, x)dr.

Here n is the outward normal vector of ∂Ω, which exists almost everywhere for
Lipschitz domains. Furthermore ∂n denotes the normal derivative on the boundary.

We assume that k ∈ L1(0,∞) is a completely monotone function. That is, there
exists a positive Radon measure ν on [0,∞) such that k(t) =

∫
[0,∞)

e−τtdν(τ). We

note here that the integrability assumption on k is easily checked to be equivalent
to

ν({0}) = 0 and

∫ ∞
0

τ−1dν(τ) <∞.(5.2)

Let eτ (t) = e−τt1[0,∞)(t) and

ψ(t, τ, x) = eτ ∗ Ut(t, x) (t ∈ R, τ ≥ 0, x ∈ ∂Ω).

By defining p = Ut, v = −∇U and ψ as above one can rephrase (5.1) in an equivalent
way as 

pt(t, x) + div v(t, x) = 0 (t > 0, x ∈ Ω),

vt(t, x) +∇p(t, x) = 0 (t > 0, x ∈ Ω),

[ψt + τψ − p](t, τ, x) = 0 (t > 0, τ > 0, x ∈ ∂Ω),[
−v · n+

∫∞
0
ψ(τ)dν(τ)

]
(t, x) = 0 (t > 0, x ∈ ∂Ω),

(5.3)

Note that we restrict here to positive times. This is to arrive at an abstract Cauchy
problem. The initial state is described by the triplet x0 = (p0, v0, ψ0) consisting
of p, v and ψ evaluated at time t = 0. It is important to observe that p0 and v0

cannot fully describe the system’s state at t = 0 since there are memory effects at
the boundary. The missing data from the past is stored in the auxiliary function
ψ.

77
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Let us define the energy of the system to be the sum of potential, kinetic and
boundary energy:

E(x0) =

∫
Ω

|p0(x)|2 + |v0(x)|2 dx+

∫ ∞
0

∫
∂Ω

|ψ0(τ, x)|2 dS(x)dν(τ).

Furthermore we introduce the homogeneous first order energy by

Ehom1 (x0) =

∫
Ω

|∇p0|2 + |div v0|2 dx+

∫ ∞
0

∫
∂Ω

|τψ0 − p0|2 dSdν(τ).

The first order energy is defined by E1 = E + Ehom1 . Let us define the (zeroth
order) energy space, and the first order energy space by

H = H0 = L2(Ω)×∇H1(Ω)× L2
ν((0,∞)τ ;L2(∂Ω)),(5.4)

H1 = {x0 ∈ H : E1(x0) <∞ and

[
−v0 · n|∂Ω +

∫ ∞
0

ψ0(τ)dν(τ)

]
= 0}.(5.5)

Here ∇H1(Ω) is the space of vector fields v ∈ (L2(Ω))d for which there exists a
function (potential) U ∈ H1(Ω) such that v = −∇U . We note that the space
of gradient fields ∇H1(Ω) is a closed subspace of (L2(Ω))d since Ω satisfies the
Poincaré inequality1. To make the boundary condition, appearing in the definition
of H1, meaningful we use that the trace operator Γ : H1(Ω)→ H1/2(∂Ω), u 7→ u|∂Ω

is continuous and has a continuous right inverse. Therefore we see that v·n|∂Ω is well
defined as an element of H−1/2(∂Ω) = (H1/2(∂Ω))∗ for vector fields v ∈ (L2(Ω))d

with div v ∈ L2(Ω) by the relation

〈v · n,Γu〉
H−

1
2×H

1
2 (∂Ω)

=

∫
Ω

div vu+

∫
Ω

v · ∇u(5.6)

for all u ∈ H1(Ω). Also note that E1(x0) < ∞ implies ψ0 ∈ L1
ν since ψ0(τ) =

ψ0(τ)
1+τ + Γp

1+τ + τψ0(τ)−Γp
1+τ and (τ 7→ 1

1+τ ) ∈ L1
ν ∩ L2

ν(0,∞) by (5.2).2 The quadratic
forms E and E1 turn H and H1 into Hilbert spaces, respectively.

An initial state x0 is called classical if its first order energy is finite and the
boundary condition is satisfied (i.e. x0 ∈ H1). We say that x ∈ C1([0,∞);H) ∩
C([0,∞);H1) is a (classical) solution of (5.3) if it satisfies the first two lines in
the sense of distributions and the last two lines in the trace sense, i.e. with v · n
defined by (5.6) and p replaced by Γp. From Theorem 5.1 below plus basics from
the theory of C0-semigroups it follows that the initial value problem corresponding
to (5.3) is well-posed in the sense that for all classical initial data x0 ∈ H1 there is
a unique solution x with x(0) = x0 and the mapping Hj 3 x0 7→ x ∈ C([0,∞);Hj)
is continuous for j ∈ {0, 1}. For a solution x with x0 = x(0) we also write e.g.
E(t,x0) instead of E(x(t)). Note that Ehom1 (x(t)) = E(ẋ(t)) - this justifies the
adjective “homogeneous” for the quadratic form Ehom1 .

Our aim is to find the optimal decay rate of the energy, uniformly with respect
to classical initial states. This means that we want to find the smallest possible
non-increasing function N : [0,∞)→ [0,∞) such that

E(t,x0) ≤ N(t)2E1(x0)

1Poincaré inequality: if Ω is a bounded Lipschitz domain then there exists a C > 0 such that

for all p ∈ H1(Ω) with
∫
Ω p = 0 we have

∫
Ω |p|

2 ≤ C
∫
Ω |∇p|

2.
2Here and in the following we abbreviate Lpν((0,∞)τ ;L2(∂Ω)) simply by Lpν for p ∈ {1, 2}.
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for all x0 ∈ H1. By Part 1 of this thesis this is essentially equivalent to estimating
the resolvent of the wave equation’s generator A (defined in Section 5.2 below)
along the imaginary axis near infinity and near zero.

The two main results of this chapter are Theorem 5.4 and 5.9. The Sections
5.3 and 5.4 are devoted to the proofs. We illustrate the application of our main
results to energy decay by several examples in Section 5.5. Our first main result
(Theorem 5.4) implies in particular that the task of estimating the resolvent of the
complicated 3 × 3-matrix operator A is equivalent to estimating the resolvent of
the corresponding (and much simpler) stationary operator. Our second main result
(Theorem 5.9) thus determines an upper resolvent estimate of A at infinity. Unfor-
tunately we need additional assumptions on the acoustic impedance (see (5.21)).
However in our separate treatment of the case Ω = (0, 1) in Section 5.6 we see that
in this case actually no additional assumptions are required for the conclusion of
Theorem 5.9 to hold. Even more is true, the given upper bound on the resolvent
is also optimal in the 1D setting. This and observations from the examples lead us
to three questions and corresponding conjectures formulated in Section 5.8.

In Section 5.2 we recall the semigroup approach of Desch, Fas̆angová, Milota
and Probst [22]. For convenience of the reader we recall some basic and some not
so basic facts from the literature concerning the trace operator, fractional Sobolev
spaces and Besov spaces in Appendix C. For the reader interested in the physical
background of equation (5.1) we recommend [38].

5.2. The semigroup approach

We reformulate (5.3) as an abstract Cauchy problem in a Hilbert space:{
ẋ(t) = Ax(t),

x(0) = x0 ∈ H.
(5.7)

Following the approach of [22] we define the energy/state space H as in (5.4)
and write x = (p, v, ψ) for its elements (the states). Again let Γ : H1(Ω) →
H1/2(∂Ω), u 7→ u|∂Ω be the trace operator on Ω. By abuse of notation let τ denote
the multiplication operator on L2

ν(0,∞) mapping ψ(τ) to τψ(τ). We define the
wave operator by

A =

 0 −div 0
−∇ 0 0
Γ 0 −τ

 with D(A) = H1.

Note that E1(x0) = ‖x0‖2D(A) = ‖x0‖2H + ‖Ax0‖2H1
for all x0 ∈ D(A).

Theorem 5.1 ([22]). The Cauchy problem (5.7) is well posed. More precisely,
A is the generator of a C0-semigroup of contractions in H.

Taking formal Laplace transform of the wave equation (5.1) yields{
z2u(x)−∆u(x) = f (x ∈ Ω),

∂nu(x) + zk̂(z)u(x) = g (x ∈ ∂Ω).
(5.8)

Here z is a complex number and formally u = Û(z) =
∫∞

0
e−ztU(t)dt, f = zU(0) +

Ut(0) and g = k̂(z)U(0)|∂Ω. A way to give (5.8) a precise meaning is via the
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form method. Thus for z ∈ C\(−∞, 0) let us define the bounded sesquilinear form
az : H1 ×H1(Ω)→ C by

az(p, u) = z2

∫
Ω

pu+

∫
Ω

∇p · ∇u+ zk̂(z)

∫
∂Ω

ΓpΓudS.

If we replace the right-hand side f, g by F ∈ H1(Ω)∗ (dual space of H1), given by
〈F, η〉 =

∫
Ω
fη +

∫
∂Ω
gΓηdS, then a functional analytic realization of (5.8) is given

by

∀η ∈ H1(Ω) : az(u, η) = 〈F, η〉(H1)∗,H1(Ω) .(5.9)

For all z ∈ C\(−∞, 0) for which (5.9) has for all F ∈ H1(Ω)∗ a unique solution u ∈
H1(Ω) we define the stationary resolvent operator R(z) : H1(Ω)∗ → H1(Ω), F 7→ u.

Theorem 5.2 ([22]). The spectrum of the wave operator satisfies

σ(A)\(−∞, 0] = {z ∈ C\(−∞, 0] : R(z) does not exist.}
⊆ {z ∈ C : <z < 0}.

Furthermore all spectral points in C\(−∞, 0] are eigenvalues.

Following the proof of the preceding theorem given in [22] one sees that for
s ∈ C\i[0,∞)

(is−A)(p, v, ψ) = (q, w, ϕ) ∈ H(5.10)

is equivalent to

∀u ∈ H1(Ω) : ais(p, u) = 〈F, u〉(H1)∗,H1(Ω)(5.11)

and v =
w +∇p
is

, ψ(τ) =
Γp+ ϕ(τ)

is+ τ
,

where

〈F, u〉 = is

∫
Ω

qu−
∫

Ω

w · ∇u− is
∫
∂Ω

[∫ ∞
0

ϕ(τ)

is+ τ
dν(τ)

]
Γu dS

=: 〈F1, u〉+ 〈F2, u〉+ 〈F3, u〉 .(5.12)

Observe that the adjoint operator of R(z) is given by R(z)∗ = R(z) for all z ∈
C\(−∞, 0) for which R(z) is defined. Finally, we mention:

Theorem 5.3 ([22]). The wave operator A is injective.

In the next section we characterize all kernels k for which A is invertible.

5.3. (is−A)−1 at zero and relation to R(is)

In this section we prove the first main result of this chapter.

Theorem 5.4. The following holds:

(i) Let M : (0,∞)→ [1,∞) be a non-decreasing function. Then[
∃s1 > 0∀ |s| ≥ s1 :

∥∥(is−A)−1
∥∥ ≤ CM(|s|)

]
⇔
[
∃s2 > 0∀ |s| ≥ s2 : ‖R(is)‖L2→L2 ≤ C |s|−1

M(|s|)
]
.

(ii) ∃s3 > 0∀ |s| ≤ s3 :
∥∥(is−A)−1

∥∥ ≤ C |s|−1
.

(iii) A is invertible iff (τ 7→ τ−1) ∈ L∞ν , i.e. ∃ε > 0 : ν|(0,ε) = 0.
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If A is not invertible we deduce from Theorem 5.3 that A cannot be surjective
in this case. In Section 5.3.4 we characterize the range of A.

5.3.1. Singularity at∞. In this subsection we prove Theorem 5.4 (i). There-
fore, let us first define the auxiliary spaces Xθ by the real interpolation method:

Xθ =


L2(Ω) resp. H1(Ω) if θ = 0 resp. 1,

(L2(Ω), H1(Ω))θ,1 if θ ∈ (0, 1),

(Xθ)∗ if θ ∈ [−1, 0).

For θ ∈ (0, 1) the space Xθ coincides with the Besov space Bθ,21 (Ω).
Let us explain why we use the Besov spaces Xθ instead of the Bessel potential

spacesHθ(Ω). The reason is that while the trace operator Γ : Hθ(Ω)→ Hθ−1/2(∂Ω)
is continuous for θ ∈ (1/2, 1] this is no longer true for θ = 1/2 (with the convention
H0 = L2). On the other hand Γ : X1/2 → L2(∂Ω) is continuous (see Proposition
C.2). A corollary of this fact is that for some C > 0

∀u ∈ H1(Ω) : ‖Γu‖2L2(∂Ω) ≤ C ‖u‖L2(Ω) ‖u‖H1(Ω) .(5.13)

Actually, by Lemma C.4, the preceding trace inequality is equivalent to the conti-
nuity of the trace operator Γ : X1/2 → L2(∂Ω).

Let us prove the following extrapolation result.

Proposition 5.5. Let M : (1,∞)→ [1,∞) be a non-decreasing function. If

‖R(is)‖X−a→Xb = O(|s|a+b−1
M(|s|)) as |s| → ∞(5.14)

is true for a = b = 0, then it is also true for all a, b ∈ [0, 1].

Proof. Throughout the proof we may assume |s| to be sufficiently large. As-
sume that (5.14) is true for a = b = 0. Let f ∈ L2(Ω) and p = R(is)f , i.e.

∀u ∈ H1(Ω) : ais(p, u) =

∫
Ω

fu.

Because of (5.13) and the uniform boundedness of k̂(is) there are constants c, C > 0

such that <ais(p, p) ≥ c ‖p‖2H1 − Cs2 ‖p‖2L2 . This helps us to estimate

c ‖p‖2H1 ≤ <ais(p, p) + Cs2 ‖p‖2L2

≤ ‖f‖L2 ‖p‖L2 + Cs2 ‖p‖2L2

≤ s−2 ‖f‖2L2 + Cs2 ‖p‖2L2

≤ CM(|s|)2 ‖f‖2L2 .

In other words, (5.14) is true for a = 0, b = 1. By duality (recall R(z)∗ = R(z)) it
is also true for a = −1, b = 0. Almost the same calculation as above but now with
the help of (5.14) for the now known case a = −1, b = 0 shows that (5.14) is also
true for a = −1, b = 1.

It remains to interpolate. First interpolate between the parameters (a = 0, b =
1) and (a = 1, b = 1) to get (5.14) for a ∈ [0, 1], b = 1. Then interpolate between
the parameters (a = 0, b = 0) and (a = 1, b = 0) to get (5.14) for a ∈ [0, 1], b = 0.
One last interpolation gives us the desired result. �
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Let us proceed with the proof of Theorem 5.4(i). The implication “⇒” follows
immediately from the equivalence of (5.10) and (5.11) with w,ϕ = 0. Therefore
we have to show ‖x‖H ≤ CM(|s|) ‖y‖H, for all large |s| and for all x = (p, v, ψ) ∈
D(A),y = (q, w, ϕ) ∈ H satisfying (5.10), where C does not depend on s and y.

Let Fj for j ∈ {1, 2, 3} be defined by (5.12) and let pj satisfy

∀u ∈ H1(Ω) : ais(pj , u) = 〈Fj , u〉(H1)∗,H1(Ω) .

Case j = 1. It is clear that ‖F1‖L2 = |s| ‖q‖L2 . By Proposition 5.5 we have

‖p1‖Xb = O(|s|bM(|s|)) ‖q‖L2 for all b ∈ [0, 1]. Case j = 2. It is clear that

‖F2‖X−1 ≤ ‖w‖L2 . By Proposition 5.5 we have ‖p2‖Xb = O(|s|bM(|s|)) ‖w‖L2 for

all b ∈ [0, 1]. Case j = 3. By the continuity of the trace Γ : X1/2 → L2(∂Ω),
Hölder’s inequality and (5.2) we have

‖F3‖
X−

1
2
≤ C |s|

∥∥∥∥∫ ∞
0

ϕ(τ)

is+ τ
dν(τ)

∥∥∥∥
L2(∂Ω)

≤ C |s|
1
2 ‖ϕ‖L2

ν
.

Again by Proposition 5.5 this yields ‖p3‖Xb = O(|s|bM(|s|)) ‖ϕ‖L2
ν

for all b ∈ [0, 1].

Overall we derived the estimate ‖p‖Xb = O(|s|bM(|s|)) ‖y‖H for all b ∈ [0, 1].
Finally, this together with (5.11) implies

‖v‖L2 ≤ C |s|−1
(‖w‖L2 + ‖p‖H1)

≤ CM(|s|) ‖y‖H
and

‖ψ‖L2
ν
≤ |s|−1 ‖ϕ‖L2

ν
+ ‖Γp‖L2

(∫ ∞
0

1

|is+ τ |2
dν(τ)

) 1
2

≤ |s|−1 ‖ϕ‖L2
ν

+ C |s|−
1
2 ‖p‖

X
1
2

≤ CM(|s|) ‖y‖H .

This concludes the proof of Theorem 5.4 part (i).

5.3.2. Singularity at 0. Now we prove Theorem 5.4 (ii). For s 6= 0 we equip

the Sobolev space H1(Ω) with the equivalent norm ‖u‖2H1
s

:= ‖u‖2L2 +
∥∥s−1∇u

∥∥2

L2 .

In what follows we are interested in the asymptotics s→ 0 while s 6= 0. As in the
preceding subsection we introduce some auxiliary spaces by the real interpolation
method

Xθ
s =


L2(Ω) resp. H1

s (Ω) if θ = 0 resp. 1,

(L2(Ω), H1
s (Ω))θ,1 if θ ∈ (0, 1),

(Xθ
s )∗ if θ ∈ [−1, 0).

We prove an analog of Proposition 5.5 - but without the unknown function M .

Proposition 5.6. Let a, b ∈ [0, 1] and θ+ = max{a+ b− 1, 0}. Then

‖R(is)‖X−as →Xbs = O(|s|−1−θ+) as s→ 0.(5.15)

Before we can prove this proposition we show
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Lemma 5.7. There is a constant C(Ω) solely depending on the dimension and
the volume of Ω such that for all u ∈ H1(Ω)∫

Ω

|∇u|2 +

∫
∂Ω

|u|2 dS ≥ C(Ω)

∫
Ω

|u|2 .

Proof. For the dimension d = 1 this is an easy exercise for the reader. For
d ≥ 2 we recall the isoperimetric inequality of Maz’ya [36, Chapter 5.6] which is
valid for all functions v ∈W 1,1(Ω):∫

Ω

|∇v|+
∫
∂Ω

|v| dS ≥ d
√
π

Γ(1 + d
2 )

1
d

(∫
Ω

|v|
d
d−1

) d−1
d

.

The right-hand side can easily be estimated from below by a constant times the
L1(Ω)-norm of v since Ω is bounded. The conclusion now follows by plugging in
v = u2. �

Proof of Proposition 5.6. Because of (5.13) and the continuity of R 3 s 7→
k̂(is) at zero we have for all u ∈ H1(Ω)

ais(u, u) =

∫
Ω

|∇u|2 + isk̂(0)

∫
∂Ω

|u|2 dS + o(1) ‖∇u‖2L2 +O(s2) ‖u‖2L2 .

Thus for sufficiently small |s| we deduce from Lemma 5.7 and the fact k̂(0) > 0
that for all solutions p ∈ H1(Ω) of the stationary wave equation (5.11) with F =
f ∈ L2(Ω) the following estimate holds:

|s| ‖p‖2L2 ≤ C |ais(p, p)| = C |〈f, p〉|

≤ C |s|−1 ‖f‖2L2 +
|s|
2
‖p‖2L2 .

This shows (5.15) in the case a = b = 0.
Let us define the semi-linear functional

Gs(u) = −s
∫

Ω

u+ ik̂(is)

∫
∂Ω

udS

for u ∈ H1(Ω). Observe that Gs(1) → ik̂(0) |∂Ω| 6= 0 as s tends to 0. It is easy
to see from Poincaré’s inequality (recall that Ω has Lipschitz boundary) that the
expression ‖∇u‖L2 + |Gs(u)| defines a norm on H1(Ω) which is equivalent to the
usual one - uniformly for small |s|. In particular p 7→ ‖∇p‖L2 is an equivalent norm
on the kernel of Gs.

Remember that p is the solution of (5.11) for F = f ∈ L2(Ω). We decompose
p = p0 + pG with pG = Gs(p) = const. ∈ L2(Ω) and Gs(p0) = 0. Then

ais(p, p0) = ais(p0, p0) = (1 +O(|s|))
∫

Ω

|∇p0|2 .

This implies

‖∇p0‖2L2 ≤ C |ais(p, p0)| ≤ C |〈f, p0〉| ≤ C ‖f‖L2 ‖∇p0‖ .

This in combination with (5.15) for a = b = 0 implies ‖p‖H1
s
≤ C |s|−1 ‖f‖L2 which

is (5.15) for the parameters a = 0, b = 1. By duality (recall R(z)∗ = R(z)), equation
(5.15) is also true for a = 1, b = 0. A similar calculation as above with f replaced
by F ∈ H1(Ω)∗ and (5.15) for a = 1, b = 0 shows (5.15) for a = 1, b = 1.
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What remains to do is some interpolation. It is important to interpolate in the
right order. First, one has to show

‖R(is)‖
X0
s→X

b1
s
, ‖R(is)‖Xa1s →X0

s
= O(|s|−1

)

for a1, b1 ∈ [0, 1]. This can be done via interpolation between (a = 0, b = 0) and
(a = 0, b = 1) for the first estimate and between (a = 0, b = 0) and (a = 1, b = 0)
for the second estimate. Choosing a1 and b1 appropriately, the preceding estimates
imply (5.15) in the case a + b ≤ 1. Interpolation between the preceding case and
a = 1, b = 1 yields the remaining part of the proposition. �

Let us proceed with the proof of Theorem 5.4(ii) in a similar fashion as for

part (i). We have to show ‖x‖H ≤ C |s|−1 ‖y‖H for all small |s| and for all x =
(p, v, ψ) ∈ D(A), y = (q, w, ϕ) ∈ H satisfying (5.10) where C does not depend on s
and y. Let Fj for j ∈ {1, 2, 3} be defined by (5.12) and let pj satisfy

∀u ∈ H1(Ω) : ais(pj , u) = 〈Fj , u〉(H1)∗,H1(Ω)

Case j = 1. It is clear that ‖F1‖L2 = |s| ‖q‖L2 . By Proposition 5.6 we have
‖p1‖Xbs = O(1) ‖q‖L2 for all b ∈ [0, 1]. Case j = 2. It is clear that ‖F2‖X−1

s
≤

|s| ‖w‖L2 . By Proposition 5.6 we have ‖p2‖Xbs = O(|s|−b) ‖w‖L2 for all b ∈ [0, 1].

Case j = 3. By the continuity of the trace Γ : X1/2 → L2(∂Ω) and by Hölder’s
inequality we have for all |s| ≤ 1

‖F3‖
X
− 1

2
s

≤ ‖F3‖
X−

1
2
≤ C |s|

∥∥∥∥∫ ∞
0

ϕ(τ)

is+ τ
dν(τ)

∥∥∥∥
L2(∂Ω)

≤ C |s|
1
2 ‖ϕ‖L2

ν
.

By Proposition 5.6 this yields ‖p3‖Xbs = O(|s|−
1
2−(b− 1

2 )+) ‖ϕ‖L2
ν

for all b ∈ [0, 1].

Overall we derived the estimate ‖p‖Xbs = O(|s|−
1
2−(b− 1

2 )+) ‖y‖H for all b ∈ [0, 1].

Finally, this together with (5.11) implies

‖v‖L2 ≤ C |s|−1
(‖w‖L2 + ‖∇p‖L2)

≤ C |s|−1 ‖w‖L2 + C ‖p‖H1
s

≤ C |s|−1 ‖y‖H

and because of ‖p‖
X

1
2
≤ ‖p‖

X
1
2
s

for |s| ≤ 1

‖ψ‖L2
ν
≤ |s|−1 ‖ϕ‖L2

ν
+ ‖Γp‖L2

(∫ ∞
0

1

|is+ τ |2
dν(τ)

) 1
2

≤ |s|−1 ‖ϕ‖L2
ν

+ C |s|−
1
2 ‖p‖

X
1
2
s

≤ C |s|−1 ‖y‖H .

This concludes the proof of Theorem 5.4 part (ii).
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5.3.3. Spectrum at 0. Let us prove part (iii) of Theorem 5.4.
“⇒”. Let us first assume that y = (q, w, ϕ) ∈ H and x = (p, v, ψ) ∈ D(A)

satisfy (5.10) for s = 0. There is a function u ∈ H1(Ω) such that w = ∇u. We may
assume

∫
Ω
u = 0 to make u unique. Then (5.10) for s = 0 is

div v(x) = q(x) (x ∈ Ω),

∇p(x) = w(x) = ∇u(x) (x ∈ Ω),

τψ(τ, x)− p(x) = ϕ(τ, x) (τ > 0, x ∈ ∂Ω),

−v · n(x) +
∫∞

0
ψ(τ, x)dν(τ) = 0 (x ∈ ∂Ω).

(5.16)

From the second line we see that necessarily p = u + α for some complex number
α. We have

ψ =
ϕ+ Γu+ α

τ
∈ (L1

ν ∩ L2
ν)(0,∞;L2(∂Ω)).(5.17)

The L1
ν-inclusion follows by the definition of D(A) as explained in the paragraph

following (5.5). Let us now specialize to the situation q, w = 0 and ‖ϕ‖L2
ν
≤ 1. Then

u = 0. By the existence of A−1 there must be a uniform bound |α| ≤ C where
the constant does not depend on ϕ. Because of this, (5.17) and

∫∞
0
τ−1dν(τ) <∞

we deduce a bound
∥∥τ−1ϕ

∥∥
L1
ν

= ‖ψ‖L1
ν

+ C ≤ C where C does not depend on

ϕ. Since this is true for all ϕ ∈ L2
ν(0,∞;L2(∂Ω)) we deduce that the function

(0,∞) 3 τ 7→ τ−1 is in L2
ν(0,∞). If we use this in the L2

ν-inclusion in (5.17) we see
that

∥∥τ−1ϕ
∥∥
L2
ν

= ‖ψ‖L2
ν

+ C ≤ C where C does not depend on ϕ. Thus τ−1 is an

L2
ν-multiplier and thus it must be bounded with respect to the measure ν.

“⇐”. Assume now that ν|(0,ε) = 0 for some ε > 0. Given y = (q, w, ϕ) ∈ H
we show that there is a unique solution x = (p, v, ψ) ∈ D(A) of (5.16). From the
second line of (5.16) we see that necessarily p = u+ α for some complex number α
and u as in the first part of the proof. The definition of H forces the necessity of
the ansatz v = −∇U for some function U ∈ H1(Ω) with

∫
Ω
U = 0 for uniqueness

purposes. It remains to uniquely determine α and U since then ψ is uniquely given
by (5.17). Let h = −

∫∞
0
ψdν ∈ L2(∂Ω). Then the first and the last line of (5.16)

are equivalent to {
−∆U(x) = q(x) (x ∈ Ω),

∂nU(x) = h(x) (x ∈ ∂Ω).

By the Poincaré inequality this equation has a solution U - which is unique under
the constraint

∫
Ω
U = 0 - if and only if

0 =

∫
Ω

q +

∫
∂Ω

hdS

=

∫
Ω

q −
∫
∂Ω

(
k̂(0)Γu+

∫ ∞
ε

ϕ(τ)

τ
dν(τ)

)
dS − α |∂Ω| k̂(0).(5.18)

In the second equality we also used (5.17). Since k̂(0) 6= 0 this determines α and
thus also U uniquely. This completes the proof.

5.3.4. The range of A. In the case that A is not invertible (i.e. (τ 7→
τ−1) /∈ L∞ν ) in spite of Theorem 2.5 and [35, Proposition 3.1] it is important to
know the range R(A) of A. To characterize the range we have to distinguish two
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cases: (i) (τ 7→ τ−1) ∈ L2
ν and (ii) (τ 7→ τ−1) /∈ L2

ν . In case (ii) for a given
ϕ ∈ L2

ν(0,∞;L2(∂Ω)) there might exist no p ∈ H1(Ω) such that(
τ 7→ ϕ(τ) + Γp

τ

)
∈ L2

ν(0,∞;L2(∂Ω)).

In the case that p exists, its boundary value Γp is uniquely determined and the
function (τ 7→ ϕ(τ)/τ) is integrable with respect to ν. Therefore we can define the
complex number

mϕ,p =

∫
∂Ω

∫ ∞
0

ϕ(τ) + Γp

τ
dν(τ)dS.(5.19)

Equipped with this notation we can now formulate:

Theorem 5.8. Assume that A is not invertible (i.e. (τ 7→ τ−1) /∈ L∞ν ). (i) If
(τ 7→ τ−1) ∈ L2

ν , then

R(A) =

{
(q, w, ϕ) ∈ H;

∫ ∞
0

∥∥∥∥ϕ(τ)

τ

∥∥∥∥2

L2(∂Ω)

dν(τ) <∞

}
.

(ii) If (τ 7→ τ−1) /∈ L2
ν , then

R(A) =

{
(q, w, ϕ) ∈ H;∃p ∈ H1(Ω) : w = ∇p,

∫
Ω

q = mϕ,p and∫ ∞
0

∥∥∥∥ϕ(τ) + Γp

τ

∥∥∥∥2

L2(∂Ω)

dν(τ) <∞

}
where mϕ,p is given by (5.19). If (q, w, ϕ) is in the image of A then p is unique.
In fact it is the first component of the pre-image of (q, w, ϕ).

Proof. Let y = (q, w, ϕ) ∈ H. Clearly y ∈ R(−A) if and only if we can find
x = (p, v, ψ) ∈ H1 such that −Ax = y. Let u ∈ H1(Ω) be such that ∇u = w and∫

Ω
u = 0. As in the proof of Theorem 5.4(iii) we see that necessarily p = u+ α for

some complex number α and

ϕ+ Γp

τ
= ψ ∈ L2

ν(0,∞;L2(∂Ω)).(5.20)

Let us assume that case (i) is valid. Then ψ thus defined is in L2
ν if and only

if (τ 7→ ϕ(τ)/τ) is square integrable with respect to ν. Now one can proceed as in
the “⇐”-part of the proof of Theorem 5.4(iii) to find the unique p and v such that
−Ax = y.

Let us now assume that case (ii) is valid. By (5.20) it is clear that the existence
of p as in the definition of R(A) is necessary. From the fact that (τ 7→ τ−1) is not
square integrable we see that Γp is uniquely defined. Now we can again proceed as
in the “⇐”-part of the proof of Theorem 5.4(iii) to find the unique p and v such
that −Ax = y. The condition

∫
Ω
q = mϕ,p on y comes from (5.18), where we have

to replace k̂(0)Γu+
∫∞
ε

ϕ(τ)
τ dν(τ)+αk̂(0) by

∫∞
0

ϕ(τ)+Γp
τ dν(τ) in our situation. �

5.4. (is−A)−1 at infinity

We are seeking for a non-decreasing function M : [1,∞)→ [1,∞) such that for
some constant C > 0 ∥∥(is−A)−1

∥∥ ≤ CM(|s|) (|s| ≥ 1).
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In this section we show that the function M(s) = 1/<k̂(is) is an upper bound (up
to a constant) for the norm of (is −A)−1 when |s| is large and if some additional

assumptions on the acoustic impedance k̂ and the domain are satisfied.
More precisely we assume that the acoustic impedance satisfies∣∣∣k̂∣∣∣

∣∣∣k̂∣∣∣2
(<k̂)2

 (is) = o

(
1

L(s)

)
as s→∞,(5.21)

where L(s) = sα(1 + log(s)) for s ≥ 1.

The real number α ∈ [0, 1) is a domain dependent constant which will be defined
below. Note that for α ≥ 1 there cannot be any integrable completely monotone
function which satisfies this condition.

Let (uj) be the sequence of normalized eigenfunctions of the Neumann-Laplacian
with respect to the corresponding (non-negative) frequencies (λj). That is

λ2
juj(x) + ∆u(x) = 0 (x ∈ Ω),

∂nuj(x) = 0 (x ∈ ∂Ω),

‖uj‖L2(Ω) = 1.

(5.22)

The eigenfrequencies are counted with multiplicity and we may order them so that
0 ≤ λ1 ≤ λ2 ≤ . . .. We call a function p ∈ L2(Ω) a spectral cluster of width
δ > 0 whenever sup{|λj − λi| ; aj , ai 6= 0} ≤ δ where p =

∑
ajuj is the expan-

sion of p into eigenfunctions. We define the (mean) frequency λ(p) ≥ 0 of p by

λ(p)2 =
∑
|(aj/ ‖p‖L2)|2 λ2

j . We assume that the domain has the property that
for sufficiently small δ > 0 there are constants c, C > 0 such that for any spectral
cluster p of width δ the following estimate is true

c ‖p‖2L2(Ω) ≤
∫
∂Ω

|Γp|2 dS ≤ Cλ(p)α ‖p‖2L2(Ω) .(5.23)

We call the left inequality the lower estimate and the right inequality the upper
estimate. Note that the upper estimate is trivially satisfied for α = 1 by applying
the trace inequality from Lemma C.3. It is indeed reasonable to assume that this
estimate holds for some α strictly smaller than 1. For example if the boundary of
∂Ω is of class C∞ then both estimates hold with α = 2/3; see [5] for this result.
For Ω being an interval one can choose α = 0 and for a square α = 1/2 is optimal.

This section is devoted to the proof of our second main result:

Theorem 5.9. Assume that (5.21) is satisfied, where α ∈ [0, 1) is such that
(5.23) holds for all spectral clusters p of sufficiently small width δ > 0. Then there
is a constant C > 0 such that

‖R(s)‖L2→L2 ≤
C

s<k̂(is)

for all s ≥ 1.

Compare this result to Theorem 5.4 to obtain that the norm of
∥∥(is−A)−1

∥∥
is bounded by C

<k̂(is)
under the constraints of the preceding theorem.
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5.4.1. Some auxiliary definitions. We fix a δ > 0 such that (5.23) is true
for any spectral cluster of width 3δ. For p, q ∈ H1(Ω) we define the Neumann form
by

aNz (p, q) = z2

∫
Ω

pq +

∫
Ω

∇p · ∇q.

We cover [0,∞) by disjoint intervals Ik = [kλ, (k+ 1)λ) for k = 0, 1, 2, . . . such that

(i) λ ∈ [2δ, 3δ],
(ii) ∃kc ∈ N : Ikc ⊃ (s− δ, s+ δ).

The covering depends on s ≥ 1 but this does not matter for our considerations.
With the help of this partition we can uniquely expand every function p ∈ L2(Ω)
in terms of spectral clusters in the following way:

p =

∞∑
k=0

ckpk where pk =
∑
λj∈Ik

ajuj , ‖pk‖L2(Ω) = 1.

Let sk(p) ∈ Ik be such that

s2
k(p) =

∫
Ω

|∇pk|2 .

Let p0
+(−) =

∑
k>(<)kc

ckpk and p0 = p0
− + p0

+. Let pc = ckcpkc . Obviously

p = p0 + pc. Define

p+ =

{
p0

+ + pc if aNis(pc) ≥ 0,

p0
+ else,

and let p− be given by p = p+ + p−. Finally let p̃ = p+ − p−.

5.4.2. Some auxiliary lemmas. For the remaining part of Section 5.4 we
use the notation introduced in Subsection 5.4.1 and we assume that |s| ≥ 1.

Lemma 5.10. For all p ∈ H1(Ω) we have aNis(p, p̃) ≥ |s| δ
∥∥p0
∥∥2

L2(Ω)
.

Proof.

aNis(p, p̃) ≥ aNis(p0, (p̃)0) =
∑
k 6=kc

∣∣s2 − s2
k

∣∣ |ck|2 ≥ sδ ∑
k 6=kc

|ck|2 = sδ
∥∥p0
∥∥2

L2(Ω)
.

�

A little bit more involved is the proof of the next lemma.

Lemma 5.11. There is a constant C > 0 (depending on δ and α) such that for
all p ∈ H1(Ω) ∫

∂Ω

∣∣Γp0
∣∣2 dS ≤ C |s|α (1 + log(|s|))a

N
is(p, p̃)

|s|

Proof. Since aNis(p, p̃) ≥ aNis(p0, (p̃)0) we may assume that pc = 0. Because of∫
∂Ω

|Γp|2 dS ≤ 2

∫
∂Ω

|Γp−|2 + |Γp+|2 dS

and aNis(p, p̃) = aNis(p+)− aNis(p−)
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we may assume without loss of generality that either p = p+ or p = p−. We give
the proof in detail for the case p = p+. The case p = p− is analogous and therefore
we omit it.∫

∂Ω

|Γp+|2 dS =

∥∥∥∥∥∑
k>kc

ckΓpk

∥∥∥∥∥
2

L2(∂Ω)

≤

(∑
k>kc

|ck| ‖Γpk‖L2(∂Ω)

)2

≤

(
Cδ

α
2

∑
k>kc

|ck| k
α
2

)2

≤ Cδα
(∑
k>kc

|ck|2 (s2
k − s2)

)
︸ ︷︷ ︸

aNis(p+)

(∑
k>kc

kα

s2
k − s2

)
︸ ︷︷ ︸

=:J

.

In the first line we used the continuity of the trace operator Γ : H1(Ω)→ L2(∂Ω).
From the second to the third line we used the upper estimate (5.23) together with
sk ∈ Ik = λ[k, k+ 1) with λ ∈ [2δ, 3δ]. It remains to estimate J . It is a well known
trick to estimate sums of positive and non-increasing summands by corresponding
integrals.

J =
∑
k>kc

kα

s2
k − s2

≤
∑
k>kc

kα

λ2k2 − s2

≤ (kc + 1)α

λ2(kc + 1)2 − s2
+

∫ ∞
kc+1

xα

λ2x2 − s2
dx

=: J1 + J2.

It is not difficult to see that J1 can be estimated by a constant times δ−1−αsα−1.
For J2 we substitute y = λx/s and use that λ(kc + 1) ≥ 1 + δ. This yields

J2 ≤ Cδ−1−αsα−1

∫ ∞
1+ δ

s

yα

y2 − 1
dy

≤ Cδ−1−αsα−1

(∫ 2

1+ δ
s

1

y − 1
dy +

∫ ∞
2

1

y2−α dy

)
≤ Cδ−1−αsα−1(log(

s

δ
) + 1).

This concludes the proof. �

5.4.3. Proof of Theorem 5.9. Let p ∈ H1(Ω) and |s| ≥ 1. We have to verify

sup{|ais(p, u)| ;u ∈ H1(Ω), ‖u‖L2(Ω) ≤ 1} ≥ c |s| <k̂(is) ‖p‖L2(Ω)

for some constant c > 0 independent of p and s. In the following we assume
that aNis(pc) ≥ 0. This implies that p+ = (p0)+ + pc and p− = (p0)−. The case
aNis(pc) < 0 can be treated similarly and we therefore omit it. First we prove an



90 5. A VISCOELASTIC BOUNDARY DAMPING MODEL

auxiliary estimate with the help of Lemma 5.11:∫
∂Ω

|Γp+|2 + |Γp−|2 dS =

∫
∂Ω

∣∣Γp0
+

∣∣2 +
∣∣Γp0
−
∣∣2 + |Γpc|2 + 2<(Γp0

+Γpc)dS

≤
∫
∂Ω

2
∣∣Γp0

+

∣∣2 +
∣∣Γp0
−
∣∣2 + 2 |Γpc|2 dS

≤ CL(s)
aNis(p, p̃)

|s|
+ 2

∫
∂Ω

|Γpc|2 dS.(5.24)

Let us define

L1(s) =


∣∣∣k̂(is)

∣∣∣
<k̂(is)

2

L(s) ≥ L(s).

Our assumption (5.21) on k is equivalent to |k̂|(is) = o(1/L1(s)) as |s| → ∞. Now
we come to the final part of the proof which consists of distinguishing two cases.
Essentially the first case means that p is roughly the same as p0 and the second
case means that p is roughly the same as pc. We fix a constant ε1 ∈ (0, 1) to be
chosen later. The choice of ε1 does not depend on s.

Case 1: L1(s)aNis(p, p̃) ≥ ε1 |s|
∫
∂Ω
|Γpc|2 dS. We first show that in this case

the Neumann form dominates the form ais for |s| big enough in the following sense:∣∣ais(p, p̃)− aNis(p, p̃)∣∣ =

∣∣∣∣sk̂(is)

∫
∂Ω

(Γp+ + Γp−)(Γp+ − Γp−)dS

∣∣∣∣
≤ 2

∣∣∣sk̂(is)
∣∣∣ ∫
∂Ω

|Γp+|2 + |Γp−|2 dS

≤ C
∣∣∣sk̂(is)

∣∣∣ ε−1
1 L1(s)

aNis(p, p̃)

|s|

≤ 1

2
aNis(p, p̃).

From the second to the third line we used the assumption of case 1 and (5.24). By
(5.21) the last line is valid for all s ≥ s0, where s0 is sufficiently large depending on
how small ε1 is. Therefore we have

|ais(p, p̃)| ≥
(

1

4
+

1

4

)
aNis(p, p̃)

≥ sδ

4

∥∥p0
∥∥2

L2(Ω)
+

ε1 |s|
4L1(s)

∫
∂Ω

|Γpc|2 dS

≥ cε1 |s|
L1(s)

(∥∥p0
∥∥2

L2(Ω)
+ ‖pc‖2L2(Ω)

)
≥ cε1 |s| <k̂(is) ‖p‖2L2(Ω) .

From the second to the third line we used the lower estimate (5.23) and in the last
step we used our assumptions on the acoustic impedance (5.21). The theorem is
proved for case 1.

Case 2: L1(s)aNis(p, p̃) < ε1 |s|
∫
∂Ω
|Γpc|2 dS. By Lemma 5.10 and since

lim|s|→∞ L1(s) =∞ this yields∫
∂Ω

|Γpc|2 dS ≥
∥∥p0
∥∥2

L2(Ω)
(5.25)
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for all |s| ≥ s1 with an s1 > 0 not depending on ε1. We show now that in case 2
the form ais is dominated by the contribution from the boundary. By Lemma 5.11
we have ∣∣∣∣∫

∂Ω

p0pcdS

∣∣∣∣ ≤ (CL(s)
aNis(p, p̃)

|s|

) 1
2
(∫

∂Ω

|pc|2 dS
) 1

2

≤ C
√
ε1

(
L(s)

L1(s)

) 1
2
∫
∂Ω

|pc|2 dS

≤ <k̂(is)

2
∣∣∣k̂(is)

∣∣∣
∫
∂Ω

|pc|2 dS.

In the last step we choose ε1 so small that C
√
ε1 ≤ 1/2. Finally from this, (5.25)

and the lower estimate (5.23) we deduce that

=ais(p, pc) ≥
1

2
|s| <k̂(is)

∫
∂Ω

|pc|2 dS

≥ c |s| <k̂(is)(‖pc‖2L2(Ω) +
∥∥p0
∥∥2

L2(Ω)
)

= c |s| <k̂(is) ‖p‖2L2(Ω)

which yields the claimed result.

5.5. Examples: sharp decay rates for k̂ satisfying a power law

To illustrate Theorem 5.4 and Theorem 5.9, we consider special standard kernels
k = kβ,ε (with ε > 0 and 0 < β < 1) introduced below. These standard kernels

have the property that <k̂(is) ≈ |k̂(is)| ≈ |s|β−1
for large |s|. This makes it easy to

check whether (5.21) is satisfied or not. We take a closer look at Ω being a square
or a disk. In the case of the disk we show the optimality of the resolvent estimate,
that is we show that

∥∥(is−A)−1
∥∥ is not only bounded from above by a constant

times 1/<k̂(is) but also from below. The standard kernels are designed in such a
way that A is invertible (i.e. (τ 7→ τ−1) ∈ L2

ν ; see Theorem 5.4). We have assumed
this for the simplicity of exposition. However, in Subsection 5.5.5 we briefly show
that our results yield (sharp) decay rates also in the presence of a singularity at
zero. The case Ω = (0, 1) is treated separately in Sections 5.6 and 5.7.

5.5.1. Properties of the standard kernels. For ε > 0 and 0 < β < 1 let

kβ,ε(t) = e−εtt−(1−β) for t > 0.

To keep the notation short we fix ε and β now and write k instead of kβ,ε throughout
this section. Obviously k ∈ L1(0,∞) and for all n ∈ N0 we have (−1)ndnk/dtn(t) >
0. The latter property is a characterization of completely monotone functions. Thus
the kernel k is admissible in the sense that the semigroup from Section 5.2 is defined.

Let Γ denote the Gamma function. Taking Laplace transform yields for z > −ε

k̂(z) =

∫ ∞
0

e−(ε+z)tt−(1−β)dt =
1

(ε+ z)β

∫ ∞
0

s−(1−β)e−sds =
Γ(β)

(ε+ z)β
.

By analyticity the equality between the left end and the right end of this chain of
equations extends to C\(−∞,−ε].
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For s ∈ R, let ϕ(s) ∈ (−π2 ,
π
2 ) be the argument of ε− is. Note that ϕ(s)→ ∓π2

as s→ ±∞. Then we have

k̂(is) = Γ(β)

∣∣∣∣ ε− isε2 + s2

∣∣∣∣β (cos(βϕ(s)) + i sin(βϕ(s))) .

In particular

<k̂(is) ≈
∣∣∣=k̂(is)

∣∣∣ ≈ 1

|s|β
for |s| ≥ 1.

Here by ≈ we mean that the left-hand side is up to a constant, which does not
depend on s, an upper bound for the right-hand side and vice versa. The first
≈-relation implies that the condition (5.21) is equivalent to the simpler estimate

<k̂(is) = o(1/L(s)) as |s| tends to infinity. More precisely we have

(5.21)⇔ β > α.(5.26)

It is well known that for z > 0 and β ∈ (0, 1)

z−β =
sin(πβ)

π

∫ ∞
0

1

τ + z

dτ

τβ
.

Thus

k̂(z) =
sin(βπ)

πΓ(β)

∫ ∞
ε

1

τ + z

dτ

(τ − ε)β
.

In the notation of Section 5.1 this means

dν(τ) =
sin(βπ)

πΓ(β)
·

1[ε,∞)

(τ − ε)β
dτ.

By Theorem 5.4 (iii) we see that A is invertible.

5.5.2. Smooth domains. Let us suppose that Ω has a C∞ boundary and let
k = kβ,ε for some ε > 0 and 0 < β < 1. By [5] we know that (5.23) is satisfied for
α = 2/3. Thus by (5.26) and Theorem 5.9 we have

β >
2

3
=⇒ ∀s ∈ R :

∥∥(is−A)−1
∥∥ ≤ C(1 + |s|)β .(5.27)

By Theorem 0.3 or 2.2 this implies

Proposition 5.12. Let ∂Ω be of class C∞ and k = kβ,ε. If β > 2/3 then, for
all t > 0 and x0 ∈ H1,

E(t,x0) ≤ Ct−
2
βE1(x0).

5.5.3. The disk. Let Ω = D be the unit disk in R2. The smallest possible
choice of α in (5.23) is indeed 2/3. The simple proof is based on a Rellich-type
identity, see for instance [5, page 5]. So the circle already realizes the “worsed case
scenario” with respect to the upper bounds for Neumann eigenfunctions. Thus in
Proposition 5.12 we cannot replace the condition β > 2/3 by a weaker one. Instead
we show the optimality of the upper bound for the energy decay. Therefore we
investigate the spectrum of A.
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Lemma 5.13. Let Ω = D and k = kβ,ε. Then there exists a sequence (zn) in
the spectrum of A such that (=zn) is positive and increasing and such that there
exists a constant C > 0 such that, for every n,

C

(=zn)β
≤ <zn < 0.

As a corollary we have

∀s > 0 : sup
|σ|≤s

∥∥(iσ −A)−1
∥∥ ≥ C(1 + s)β .

By the converse part of Theorem 0.1 together with Theorem 0.3 or 2.2 this implies

Proposition 5.14. Let Ω = D and k = kβ,ε. If β > 2/3 then we have for all
t ≥ 1 that

ct−
2
β ≤ sup

E1(x0)≤1

E(t,x0) ≤ Ct−
2
β .

If β ∈ (0, 1) is arbitrary the left inequality remains valid.

Proof of Lemma 5.13. Except for the rate of convergence of (zn) towards
the imaginary axis the content of our lemma is included in [23, Theorem 5.2].
Therefore we only sketch the existence of a sequence (zn) with imaginary part
tending to infinity and real part tending to zero.

First recall that an eigenvalue is a complex number zn such that (5.9) with
F = 0 and z = zn has a non-zero solution u. After a transformation to polar
coordinates, by a separation of variables argument one can show that the existence
of u is equivalent to the existence of a non-zero solution v of

v′′(r) + 1
rv
′(r)− ( l

2

r2 + z2)v(r) = 0 (0 < r < 1),

v′(1) + zk̂(z)v(1) = 0,

v(0+) is finite,

for some l ∈ N0. The first and the third line forces v(r) to be proportional to
Jl(izr), where Jl is the l-th order Bessel function of the first kind (see e.g. [1,
Chapter 9]). Therefore the second line implies

J ′l (iz)

Jl(iz)
= ik̂(z).(5.28)

We have seen that a complex number zn /∈ (−∞, 0] is an eigenvalue of the wave
operator if and only if it is a zero of (5.28) for some l. Let us fix l now. Following the
approach of [23] one can prove the existence of a sequence of zeros (zn) = (isn−ξn)
with sn = nπ+(2l+1)π/4, <ξn > 0 and ξn tending to zero, by a Rouché argument.

It remains to prove that ξn = O((=zn)−(1−β)). By [1, Formula 9.2.1] the
following asymptotic formula holds if z tends to infinity while <z stays bounded
(and l is fixed):

Jl(iz) =

√
2

πz
cos

(
iz − (2l + 1)

4
π

)
+O(|z|−1

).(5.29)

A naive way to get the corresponding asympotic formula for J ′ and J ′′ would
be to take derivatives of the cosine. In fact this yields the correct leading term.
The error term is again O(|z|−1

) in both cases. For the first derivative this is
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[1, Formula 9.2.11]. The formula for the second derivative then follows from the
ordinary differential equation satisfied by Jl.

Thus by a Taylor expansion of (5.28) we get:

0 + iξn +O(|ξn|2 + n−1) = ik̂(isn)− iξnk̂′(isn) +O(|ξn|2 + n−1).

This implies

ξn = (1 + o(1))k̂(isn)(5.30)

= (1 + o(1))
Γ(β)

sβn
(cos(βϕ(sn)) + i sin(βϕ(sn))) .

Here ϕ(s) is the argument of ε− is (see Section 5.5.1). �

Note that in the undamped case k = 0 we have z0
n = sn+O(s−1

n ) by [1, Formula
9.5.12] for the eigenvalues z0

n. Here again sn = nπ+(2l+1)π/4 and l is fixed. Thus

(5.30) implies that zn = z0
n − (1 + o(1))k̂(isn).

5.5.4. The square. Let Ω = Q = (0, π)2 be a square. In terms of upper
bounds for boundary values of spectral clusters the square behaves slightly better
than the disk. It seems to be reasonable to believe that this is due to the fact that
the square has no whispering gallery modes.

Lemma 5.15. Let Ω = Q, k = kβ,ε and δ > 0. If δ is sufficiently small then
for each L2(Q)-normalized spectral cluster p of width δ of the Neumann-Laplace
operator

c ≤
∫
∂Ω

|Γp|2dS ≤ Cs(p) 1
2 .

The constants c, C > 0 do not depend on p. Furthermore the exponent α(Q) = 1/2
is optimal, i.e. one cannot replace it by a smaller one.

The optimality assertion of Lemma 5.15 may be somewhat surprising. If p
was restricted to be a (pure) eigenfunction of the Neumann-Laplace operator the
optimal exponent would be α = 0. This is a direct consequence of the explicit
formula available for the eigenfunctions. However, it will be clear from the proof
why spectral clusters behave differently.

As in the preceding examples the lemma implies

Proposition 5.16. Let Ω = Q, k = kβ,ε. If β > 1/2 then, for all t > 0 and
x0 ∈ H1,

E(t,x0) ≤ Ct−
2
βE1(x0).

Proof of Lemma 5.15. The explicit form of the normalized Neumann eigen-
functions um,n and its eigenfrequencies λm,n ≥ 0 is

um,n(x, y) = 2 cos(mx) cos(ny), λ2
m,n = m2 + n2.

Let p =
∑
m,n an,mun,m be a normalized spectral cluster of width δ. We choose

s ≥ 0 such that the set of indices (m,n) with am,n 6= 0 is included in I which is
given by

I = {(m,n) ∈ N2
0; s2 ≤ m2 + n2 ≤ (s+ δ)2},

I1 = {(m,n) ∈ I;m ≥ n}.
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Without loss of generality we may assume that
∑
I1
|am,n|2 ≥ 1/2. We first prove

the lower bound: ∫
∂Ω

|Γp|2dS =
∑
n

∥∥∥∥∥∑
m

am,nΓum,n

∥∥∥∥∥
2

L2(∂Ω)

≥ 16π
∑
I1

|am,n|2

≥ 8π ‖p‖2L2(Ω) .

In the first line we use the orthogonality relation for the cosine functions with
respect to the y variable. In the second line we use ‖um,n‖L2(∂Ω) = 4

√
π and the

fact that the partial sum over m in the preceding step includes only one member if
δ is small and if the index set is restriced to I1.

Let Nn be the number of non-zero summands with respect to the inner sum in
line one. It is not difficult to see that Nn ≤ C

√
s for a constant independent of n

and s. Therefore we have∫
∂Ω

|Γp|2dS =
∑
n

∥∥∥∥∥∑
m

am,nΓum,n

∥∥∥∥∥
2

L2(∂Ω)

=
∑
n

N2
n

∥∥∥∥∥ 1

Nn

∑
m

am,nΓum,n

∥∥∥∥∥
2

L2(∂Ω)

≤ C
∑
m,n

Nn |am,n|2

≤ Cs 1
2 ‖p‖2L2(Ω) .

It remains to prove optimality of the exponent α = 1/2. For n1 ∈ N we consider a
special spectral cluster p1 of the form

p1 = 2

N−1∑
m=0

am cos(mx) cos(n1y)

where N = N(n1) = dε
√
n1e.

If ε > 0 is sufficiently small and n1 large enough we see that p1 is a spectral cluster
of width δ. If we set am = 1/

√
N we see that the L2(Ω)-norm of p1 is 1 and∫

{0}×(0,1)

|Γp1|2 dS =

∣∣∣∣∣
N∑
m=1

am

∣∣∣∣∣
2

= N(n1) ≥ ε
√
n1.

This finishes the proof since s(p1) ∈ [n1, n1 + δ]. �

5.5.5. Decay in the presence of a singularity at zero. So far in this
section we have excluded the case when A has a singularity at zero. The purpose of
this subsection is to show that getting decay rates in this case is not more difficult
than in the case where there is no singularity at zero. As in the previous subsection

we simplify our presentation by considering a special family (k̂′α,β)α,β of acoustic
impedances given by the measures

dν′α,β = ταdτ |(0,1) + (τ − 1)−βdτ |(1,∞) (α ∈ (0,∞), β ∈ (0, 1)).
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Obviously (τ 7→ τ−1) is integrable with respect to ν′α,β (thus k′α,β is integrable) but
it is not bounded with respect to that measure. Observe that α > 1 implies that
(τ 7→ τ−1) is square integrable with respect to ν′. In the following we assume for
simplicity that α > 1. The reason is that by Theorem 5.8 the range of A has a
simpler representation in this case.

Lemma 5.17. Let α ∈ (1,∞), β ∈ (0, 1). Then (τ 7→ τ−1) is integrable, square
integrable but unbounded with respect to ν′α,β. Moreover

k̂′α,β(z) =
π

sin(βπ)
(1 + z)−β +O(|z|−1

)

as z tends to infinity avoiding R−.

Proof. We only have to prove the last statement. We calculate

k̂′(z) =

∫ 1

0

τα

z + τ
dτ +

∫ ∞
1

1

z + τ

dτ

(τ − 1)β
=: I + II.

It is easy to see that the modulus of I is bounded by (|z| − 1)−1 for all z with
|z| > 1. With regard to II we see that the well known identity

z−β =
sin(βπ)

π

∫ ∞
0

1

z + τ

dτ

τβ

finishes the proof. �

Proposition 5.18. Let α ∈ (0,∞), β ∈ (2/3, 1) and k = k′α,β. Let ∂Ω be a
C∞-manifold. Then ∥∥(is−A)−1

∥∥ = O(|s|β)

as |s| > 1 tends to infinity.

Proof. This is an immediate consequence of Lemma 5.17 together with The-
orem 5.4(i) and Theorem 5.9. �

We are now in the position to prove an optimal decay estimate.

Proposition 5.19. Let α ∈ (1,∞), β ∈ (2/3, 1) and k = kα,β. Let ∂Ω be a
C∞-manifold. Then

E(t,x0) ≤ C

1 + t2

[
E1(x0) +

∫ ∞
0

‖ψ0(τ)‖2L2(∂Ω)

dν(τ)

τ2

]
holds for all t ≥ 0 and for all x0 = (p0, v0, ψ0) ∈ H for which the right-hand side is
finite. The constant C > 0 does not depend on x0 or t. Moreover this estimate is
sharp in the sense that it would be invalid if one replaces C/(1+ t2) by o(1/(1+ t2))
as t tends to infinity.

Proof. Proposition 5.18, Theorem 5.4(ii) together with Theorem 2.5 yield∥∥etAx0

∥∥ ≤ C

1 + t
‖x0‖D(A)∩R(A) for all x0 ∈ D(A) ∩R(A).

We know that the norm of D(A) is (equivalent to) the square root of the first order
energy E1. By Theorem 5.8 the norm on R(A) is given by

‖x0‖2R(A) = E(x0) +

∫ ∞
0

‖ψ0(τ)‖2L2(∂Ω)

dν(τ)

τ2
.
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This gives the desired estimate. The sharpness of this estimate follows from [10,
Theorem 6.9 and the remarks in Section 8]. �

5.6. Sharp resolvent bounds for the 1D case

Throughout this section Ω = (0, 1) and k is a completely monotone, integrable
function. We aim to show that in the 1D setting the conclusion of Theorem 5.9 re-
mains true without any further hypothesis - like (5.21) - on the acoustic impedance.
Even more can be done - we prove that the upper estimate is optimal. More pre-
cisely we prove

Theorem 5.20. Let Ω = (0, 1). Then there are constants c, C > 0 such that
for all s > 1 we have

c

<k̂(is)
≤ sup

1≤|σ|≤s

∥∥(iσ −A)−1
∥∥ ≤ C

<k̂(is)
.

We prove the lower bound by investigating the spectrum of −A which is close to
the imaginary axis (Subsection 5.6.1). Furthermore we give a more or less concrete
formula for the stationary resolvent operator R(is) which allows to prove the upper
bound (Subsection 5.6.2). Section 5.7 contains implications of Theorem 5.20 for
the decay rates of the energy of the wave equation.

5.6.1. The spectrum. The spectrum of A satisfies a characteristic equation
which is implicitly contained in [23]. For convenience of the reader we give a
complete proof.

Proposition 5.21. A number z ∈ C\(−∞, 0] is in the spectrum of A, and
hence an eigenvalue, if and only if it satisfies(

k̂(z)− i tan

(
iz

2

))
·
(
k̂(z) + i cot

(
iz

2

))
= 0(5.31)

Proof. By Theorem 5.2 together with the equivalence between (5.10) and
(5.11) we see that z is a spectral point if and only if there is a non-zero function p
solving 

z2p(x)− p′′(x) = 0 (x ∈ (0, 1)),

−p′(0) + zk̂(z)p(0) = 0,

p′(1) + zk̂(z)p(1) = 0.

Up to a scalar factor the first two lines are equivalent to the following ansatz

p(x) = cos(izx)− ik̂(z) sin(izx).

Plugging this into the third line yields that z is an eigenvalue if and only if(
k̂(z)2 + 2ik̂(z) cot(iz) + 1

)
z sin(iz) = 0.(5.32)

Note that the zeros of the sine function do not lead to an eigenvalue since the
cotangent function has a singularity at the same point. Actually we already know
from the situation of general domains that an eigenvalue which is neither zero nor
a negative number must have negative real-part. Thus we may simplify (5.32) by
dividing by z sin(iz). The claim now follows from the formula cot(ζ) − tan(ζ) =
2 cot(2ζ) which is valid for all complex numbers ζ. �
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Let H,R > 0. The reader may consider H and R as large numbers. We are
interested in the part of the spectrum of −A contained in the strip

URH = {z ∈ C; |=z| > R and −H < <z < 0}.

Proposition 5.22. Let H > 0. Then for R > 0 large enough there exists a
natural number n0 > 0 such that the part of the spectrum of A which is contained
in URH is given by a doubly infinite sequence (zn)∞n=±n0

with z−n = zn for all n and

=zn = πn−
[
(2 +O(|k̂|))=k̂

]
(iπn),

<zn = −
[
(2 +O(|k̂|))<k̂

]
(iπn).

As a consequence the lower bound in Theorem 5.20 is proved.
Note that the two asymptotic formulas given by the proposition imply zn =

(2+o(1))k̂(inπ) for n tending to plus or minus infinity. This formula can be proved
by the same Taylor expansion argument as in the proof of Lemma 5.13. See also
the remark after the proof of the mentioned lemma. But this is not enough in order
to prove the lower bound in Theorem 5.20 since it might happen that the real part

of k̂(is) tends much faster to zero than its imaginary part! This explains the more
elaborate Taylor expansion technique in the proof below.

Proof of Proposition 5.22. We are searching for the solutions z ∈ URH of
the characteristic equation (5.31). For simplicity we only consider the solutions of

z ∈ URH and F (z) := k̂(z)− i tan

(
iz

2

)
= 0.

We apply a Rouché argument to show that the zeros of this equation are close to
the zeros is2n = 2nπi of the tangens-type function on the right-hand side. Let (ε2n)
be a null-sequence of positive real numbers, smaller than H, to be fixed later. Let
B2n be the open ball of radius ε2n around the center is2n. For r > 0 let

VRH(r) = {z ∈ C;R < =z < R+ r and −H < <z < H}.(5.33)

Take K(r) to be the boundary of the set VRH(r)\(
⋃
nB2n). Since k̂(z) tends to zero

as z tends to infinity with bounded real part we can choose R so large and (ε2n)

so slowly decreasing such that |k̂(z)| < |i tan(iz/2)| for z ∈ K(r). Thus Rouché’s
theorem for meromorphic functions says that for F and for (z 7→ i tan(iz/2)) re-
stricted to VRH(r) the number of zeros minus the number of poles (counted with
multiplicity) is the same for all r > 0. The poles of F are actually the same as for
for the tangens type function. Thus it is proved that for large enough n0 ∈ N the
zeros of F from URH for R = (2n0−1)π are simple and contained in the balls B2n for
|n| ≥ n0. Note that we used that we already know that zeros of the characteristic
equation must have negative real part.

We have verified that all zeros z2n of F |URH are given by the following ansatz:

z2n = is2n − ξ2n with <ξ2n > 0 and ξ2n = o(1).

In the remaining part of the proof we want to simplify the notation by dropping

the indices from z, s and ξ. We also write k̂ instead of k̂(z). It is not difficult to
verify that F (z) = 0 is equivalent to

ez =
1− k̂
1 + k̂

=
(1− i=k̂)−<k̂
(1 + i=k̂) + <k̂

.
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Let α = arg(1 + i=k̂) be the argument of 1 + i=k̂ and L = (1 + (=k̂)2)1/2. Then

arg(1± k̂) = ±α(1 +O(<k̂)) = ±(1 +O(|k̂|))=k̂,

thus =ξ = 2(1 +O(|k̂|))=k̂.

This yields the first asymptotic formula claimed in the proposition. The second
asympotic formula is a direct consequence of

e−<ξ =
L− (1 +O(|α|2))<k̂
L+ (1 +O(|α|2))<k̂

= 1− 2

L
(1 +O(|=k̂|2))<k̂ +O((<k̂)2).

�

5.6.2. Upper resolvent estimate. We prove the upper estimate stated in
Theorem 5.20. By Theorem 5.4 part (i) it suffices to show

Proposition 5.23. For all |s| ≥ 1 we have ‖R(is)‖L2→L2 ≤ C(|s| <k̂(is))−1.

Proof. For some f ∈ L2(0, 1) let p be the solution of
−s2p(x)− p′′(x) = f (x ∈ (0, 1)),

−p′(0) + isk̂(is)p(0) = 0,

p′(1) + isk̂(is)p(1) = 0.

(5.34)

Let us define two auxiliary functions pf and p0 by

pf (x) = −1

s

∫ x

0

sin(s(x− y))f(y)dy and p0(x) = cos(sx) + ik̂(is) sin(sx).

It is easy to see that p = ap0 + pf with a ∈ C is the only possible ansatz which
satisfies the first two lines in (5.34). The parameter a is uniquely defined by the
condition from the third line. A short calculation yields that this condition is
equivalent to

as ·
(
k̂(is) + i tan

(s
2

))(
k̂(is)− i cot

(s
2

))
︸ ︷︷ ︸

=:D(s)

· sin(s) = −p′f (1)− isk̂(is)pf (1).

Note that the singularities of D cancel the zeros of the sine function. Thus we have
an explicit formula for a in terms of f . Further note that the absolute values of
spf (1) and p′f (1) can be estimated from above by a constant times ‖f‖L2 . Thus

|a| ≤ C

|s|
· 1

|D(s) sin(s)|
· ‖f‖L2(0,1) .

By the presence of the tangent and contangent type function the factor D(s) sin(s)
can only be small in a neighbourhood of s = 2nπ or s = (2n+ 1)π. But in this case

the real part of k̂ prevents D from getting too small. We thus have an estimate

|D(s) sin(s)| ≥ c<k̂(is) for |s| ≥ 1 which in turn gives an upper bound on |a|.
Since the L2-norm of p0 can be estimated from above by a constant the proof is
finished. �
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5.7. Examples: sharp decay rates under <k̂(i·) ∈ PD

For simplicity of exposition we assume that Ω = (0, 1) throughout this section.
Let us summarize what we found out in Section 5.6.

Theorem 5.24. Let Ω = (0, 1) and k be an integrable completely monotone
function. Then there is c, C > 0 such that for all s ≥ 1

c

<k̂(is)
≤ sup

1≤|σ|≤s

∥∥(iσ −A)−1
∥∥ ≤ C

<k̂(is)
.

Moreover, A is injective and has no singularity at zero iff ν|[0,ε) = 0 for some ε > 0.

If this condition is violated the singularity is of the weakest possible type: s−1.

Again to simplify the presentation we assume in the following ν|[0,ε) = 0 for
some ε > 0. This is to avoid a singularity of A at zero. An immediate consequence
of Theorem 5.24, 0.1 (or 1.3) is

Theorem 5.25. Assume that ν|[0,ε) = 0 for some ε > 0. Then there are
constants c, C > 0 such that for all t ≥ 1

c

M−1(Ct)
≤ sup
E1(x0)≤1

E(t,x0)
1
2 ≤ C

M−1
log (ct)

where the strictly increasing function M : R+ → (0,∞) is given by M(s) =

(<k̂(is))−1.

A recipe how to adapt the formulation of the above theorem in case of a non-
invertible A was given in Section 5.5.5. A disadvantage of Theorem 5.25 is that,
although we know (thanks to Theorem 5.24) precisely the exact growth rate of the
resolvent along the imaginary axis, it does not exactly determine the decay rate.
There is a “logarithmic gap” between the upper and the lower bound. The (main)

purpose of this section is to find weak conditions on k̂ which allow to replace Mlog

by M . Actually the results of Chapter 2 allow us to characterize those acoustic

impedances k̂ for which this is possible.

5.7.1. Sharp decay rates under <k̂(i·) ∈ PD. Clearly we can replace Mlog

by M in Theorem 5.25 if we assume that k is a standard kernel as discussed in
Section 5.5. This follows from Theorem 0.3 and 5.24. Proposition 5.26 shows

that <k̂(i·) can be chosen in such a way that it is asymptotically equivalent to
any prescribed regularly varying function with index in (−2, 0). In this situation
Theorem 0.3 is not applicable anymore. However, Theorem 2.2 is still applicable.
We give a precise statement right after the next Proposition.

Proposition 5.26. Let α ∈ (0, 2) and ` : R+ → (0,∞) be a slowly varying
function. Then one can choose ν in such a way that ν|[0,1) = 0, (τ 7→ τ−1) ∈ L1

ν

and

<k̂(is)−1 ∼ sα`(s)
as s→∞.

Proof. Let us define the measure ν by the following Lebesgue-density u :
R+ → [0,∞):

u(t) =

{
0 for t < 1

(2−α)
Γ(α2 )Γ(2−α2 ) t

−αl(t)−1 for t ≥ 1
.
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The Laplace-transform k̂ of k is given as a Stieltjes-transform of the measure ν.
For <z > 0 we have

k̂(z) =

∫
[0,∞)

1

z + τ
dν(τ) =

∫ ∞
1

1

z + τ
u(τ)dτ.

By a change of variables under the integral sign it is not difficult to see that the real

part of k̂ is a composition of the square-function with another Stieltjes-transform.

<k̂(is) =

∫ ∞
1

τ

s2 + τ
u(τ)dτ =

∫ ∞
1

1

s2 + t

1

2
u(
√
t)︸ ︷︷ ︸

=:v(t)

dt.

From [11, Theorem 1.5.8] we deduce

V (t) :=

∫ t

0

v(τ)dτ ∼ 1

Γ(α2 )Γ(2− α
2 )
t
2−α
2 `(t

1
2 )−1.

Thus [11, Theorem 1.7.4] yields

<k̂(is) =

∫ ∞
1

1

s2 + t
dV (t) ∼ s−αl(s)−1.

This finishes the proof. �

Now we can formulate a nice characterization of those k̂ for which we get rid
of the logarithmic loss in Theorem 5.25.

Theorem 5.27. Let Ω = (0, 1) and k be an integrable completely monotone
function. Let the strictly increasing function M : R+ → (0,∞) be given by M(s) =

(<k̂(is))−1. Then

∀t ≥ 1 : sup
E1(x0)≤1

E(t,x0)
1
2 ≤ C

M−1(ct)
(5.35)

holds for some c, C > 0 if and only if <k̂(i·) ∈ PD. Moreover, in case <k̂(i·) ∈ PD
we have for all c > 0 that M−1(c(·)) ≈M−1 and in particular (5.35) holds for any
c > 0 if one adjusts C appropriately.

Proof. First assume <k̂(i·) ∈ PD. Then M ∈ PI. Therefore (5.35) follows
from Theorem 2.2. The fact that c > 0 can be chosen arbitrary if one adjusts C > 0
appropriately follows from Lemma A.3.

Let us now assume that (5.35) holds. Proposition 5.22 tells us that the spectrum
of the 1D wave equation already determines the growth of the resolvent along the

imaginary axis. Therefore Proposition 2.6 yields M ∈ PI and thus <k̂(i·) ∈ PD. �

5.8. Open questions

For a complete treatment of resolvent estimates for wave equations like (5.1) it
would be desirable to answer at least the following two questions.

Question 1. Is the upper bound on
∥∥(is−A)−1

∥∥, given by Theorem 5.9,
optimal?

Question 2. Can one discard the additional assumption (5.21) on k̂ without
changing the conclusion of Theorem 5.9?

A strategy to positively answer question 1 is to show that there exists a se-
quence of eigenvalues of −A which tend to infinity and approach the imaginary
axis sufficiently fast. We have seen that this strategy works at least for Ω = (0, 1)
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and Ω = D (see Section 5.6 and Subsection 5.5.3). For the disk we restricted to
kernels k = kβ,ε. However, with the more elaborate Taylor argument which proved
Proposition 5.22 one can discard this restriction from Lemma 5.13. We believe
that there is a general argument for any bounded Lipschitz domain Ω yielding the
existence of such a sequence of eigenvalues.

By our investigations in Section 5.6 we already have a positive answer for
question 2 in the 1D setting. Moreover, if Ω = D is the disk we already know

from the spectrum that a non-decreasing function M with M(s) = o((<k̂(is))−1)
can never be an upper bound for

∥∥(is−A)−1
∥∥ for all large |s|. We think that the

answer to question 2 is either “yes”, or if “no” then the upper bound solely depends

on <k̂ and the infimum of all α making the upper estimate in (5.23) true for all
spectral cluster p.

Concerning the application of resolvent estimates to energy decay there is also
a third question. Let us assume for a moment that the answers to questions 1 and 2
were positive. Then Theorem 5.25 was true for any Ω. In general it is not possible
to replace Mlog by M in Theorem 0.1. However, does our particular situation allow
for a smaller upper bound? Motivated by the results of Chapter 2 we ask

Question 3. Is Theorem 5.25 true for all bounded Lipschitz domains Ω -
even with M−1

log (ct) and M−1(Ct) replaced by M−1
qm(t)? Here Mqm is as defined in

Theorem 2.15.
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APPENDIX A

Regular variation

A.1. Regularly and slowly varying functions (Rα and R0)

Given a ≥ 0 let M : [a,∞) → (0,∞) be a measurable function. We say that
M is regularly varying of index α ∈ R [11, Chapter 1] and write M ∈ Rα if

∀λ ∈ (0,∞) : lim
s→∞

M(λs)

M(s)
= λα.

One can show that a function is regularly varying of some index if the above limit
merely exists for a large enough set of λ > 0. “Large enough” means that if one
constructs the closure of the set under multiplication and inversion one gets (0,∞).
Functions in R0 are said to be slowly varying. It is easy to see that for each function
M ∈ Rα there exists a slowly varying function ` such that

M(s) = sα`(s) for s ≥ a.

By Karamata’s Theorem [11, Theorem 1.3.1] every slowly varying function ` can
be represented as

`(s) = c(s) exp

(∫ s

a

ε(τ)
dτ

τ

)
for s ≥ a.(A.1)

Here a ≥ 0 is a real number, ε : [a,∞) → R is a locally integrable function with
ε(τ) → 0 as τ → ∞ and c : [a,∞) → (0,∞) is measurable with c(τ) → c0 > 0 as
τ →∞. In case a = 0 we furthermore assume that τ 7→ ε(τ)/τ is integrable on [0, 1].
We call ` normalized if one can choose c to be constant. From the representation
(A.1) one can deduce that each regularly varying function of strictly positive (neg-
ative) index is asymptotically equivalent to a smooth and finally strictly increasing
(decreasing) regularly varying function of the same index.

A.2. The classes PI, PD, BI and BD

Given a ≥ 0 let M : [a,∞) → (0,∞) be a measurable function. We say that
M has positive increase [11, Chapter 2.1] and write M ∈ PI if

∃α > 0, s0 ≥ a, b ∈ (0, 1]∀s ≥ s0, λ ≥ 1 :
M(λs)

M(s)
≥ bλα.(A.2)

If the function M is non-decreasing, then it is easy to see that if (A.2) holds for
some s0 > a, then it also holds for any s0 > a with the same choice of α and
possibly a different choice of b for each s0. Similarly we say that M has positive
decrease and write M ∈ PD if

∃α > 0, s0 ≥ a,B ∈ [1,∞)∀s ≥ s0, λ ≥ 1 :
M(λs)

M(s)
≤ Bλ−α.
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Clearly, if M ∈ PD then M(s) = O(s−α), s → ∞ for some α > 0. Moreover, M
has positive increase if and only if 1/M has positive decrease.

There are several equivalent characterizations of functions of positive increase/decrease
[11, Chapter 2]. For convenience of the reader we give a useful characterization of
positive increase/decrease for non-decreasing/increasing functions.

Lemma A.1. Let a ≥ 0. If M : [a,∞)→ (0,∞) is non-decreasing, then M has
positive increase if and only if

(A.3) ∃λ > 1 : lim inf
s→∞

M(λs)

M(s)
> 1.

Similarly, if M : [a,∞)→ (0,∞) is non-increasing, then M has positive decrease if
and only if

∃λ > 1 : lim sup
s→∞

M(λs)

M(s)
< 1.

Proof. It is clear that if M has positive increase then (A.3) holds for all suffi-
ciently large λ > 1, even without the monotonicity assumption. Suppose therefore
that (A.3) holds. We fix an s0 > a and consider the function m : [1,∞) → [1,∞)
defined by

m(λ) = inf
s≥s0

M(λs)

M(s)
for λ ≥ 1.

Then m is non-decreasing and, for λ, µ ≥ 1, we have

m(λµ) = inf
s≥s0

M(λµs)

M(µs)

M(µs)

M(s)
≥ inf
t≥µs0

M(λt)

M(t)
· inf
s≥s0

M(µs)

M(s)
≥ m(λ)m(µ).

Thus m is super-multiplicative, and using (A.3) we also see that there exists λ0 > 1
such that m(λ0) > 1. Now given λ ≥ 1 there exist unique n ∈ N0 and θ ∈ [0, 1)

such that λ = λn+θ
0 . Let b = m(λ0)−1 and α = logm(λ0)/ log λ0. Then b ∈ (0, 1],

α > 0 and by super-multiplicativity of m we have

m(λ) ≥ m(λn0 ) ≥ m(λ0)n ≥ bm(λ0)n+θ = bλα,

giving the first result. The second statement follows by applying the first part to
the function 1/M . �

Given a ≥ 0 let M : [a,∞) → (0,∞) be a measurable function. We say that
M has bounded increase [11, Chapter 2.1] and write M ∈ BI if

∃α > 0, s0 ≥ a,B ∈ [1,∞)∀s ≥ s0, λ ≥ 1 :
M(λs)

M(s)
≤ Bλα.

Similarly we say that M has bounded decrease and write M ∈ BD if

∃α > 0, s0 ≥ a, b ∈ (0, 1]∀s ≥ s0, λ ≥ 1 :
M(λs)

M(s)
≥ bλ−α.(A.4)

Obviously M ∈ BI if and only if 1/M ∈ BD. An analogous argument as in the
proof of Lemma A.1 shows that

Lemma A.2. Let a ≥ 0 and let M1,M2 : [a,∞) → ∞ be non-increasing and
non-decreasing, respectively. Then

M1 ∈ BI⇔ ∃λ > 1 : lim sup
s→∞

M1(λs)

M1(s)
<∞ and
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M2 ∈ BD⇔ ∃λ > 1 : lim inf
s→∞

M2(λs)

M2(s)
> 0.

The following inclusions are easy to see:

∀α ∈ R : Rα ⊂ BI ∩ BD,

∀α > 0 : Rα ⊂ PI, R−α ⊂ PD.

Moreover there is no slowly varying function which has positive increase or decrease.
We conclude this section with a useful lemma.

Lemma A.3. Let a ≥ 0 and suppose that M : [a,∞) → (0,∞) is a continuous
non-decreasing function which has positive increase. Then for every c > 0 we have
M−1(t) ≈M−1(ct) as t→∞ .

Proof. The fact thatM has positive increase implies that there exist constants
α > 0, b ∈ (0, 1] and s0 ≥ a such that

(A.5)
M(σ)

M(s)
≥ b

(σ
s

)α
for σ ≥ s ≥ s0.

Let t ≥ M(s0) and λ ≥ 1. Setting σ = M−1(λt) and s = M−1(t) in (A.5) we see
that

M−1(λt)

M−1(t)
≤ b−1/αλ1/α.

Thus according to A.4 the function M−1 has bounded increase, which implies the
desired result since M−1 is non-decreasing. �

A.3. The class PIN

Let a ≥ 0 be fixed throughout this section. Given a measurable function
M : [a,∞) → (0,∞) we say that M has quasi-positive increase (with auxiliary
function N) if there exists an s0 ≥ a and a continuous non-decreasing function
N : [s0,∞)→ (0,∞) such that

∃b ∈ (0, 1]∀s ≥ s0, λ ≥ 1 :
M(λs)

M(s)
≥ bλ1/N(λs).(A.6)

Notice in particular that a measurable function M : [a,∞) → (0,∞) has positive
increase if and only if it has quasi-positive increase and admits a bounded auxiliary
function.

Given (b, s0) ∈ (0, 1]×[a,∞) a continuous non-decreasing function N : [a,∞)→
(0,∞) is called a (b, s0)-admissible auxiliary function (with respect to M) if (A.6)
holds for these choices of b and s0. We call N admissible (b-admissible) if it is
(b, s0)-admissible for some choice of (b, s0). A b-admissible auxiliary function N is
called b-minimal if for any b-admissible auxiliary function N1 there exists s1 ≥ a
such that N(s) ≤ N1(s) for all s ≥ s1. An auxiliary function N is called optimal
if it is b-minimal for some b ∈ (0, 1] and if for any b1 ∈ (0, 1] and any b1-admissible
auxiliary function N1 there exists s1 ≥ a such that b−1N(s) ≤ b−1

1 N1(s) for all
s ≥ s1. We refer to Remark 2.11 for the purpose of these definitions. Note that N
is (b, s0)-admissible if and only if

N(s) ≥ sup
1<λ≤ s

s0

log(λ)

log
(

M(s)
M(λ−1s)

)
+ log(b−1)

for s > s0.(A.7)
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This formula also implies, in case M is a normalized slowly varying function
where ε in its Karamata representation (A.1) is positive, continuous and non-
decreasing, that N(s) = ε(s)−1, s ≥ a defines a 1-minimal auxiliary function. Ob-
serve that (A.7) implies that a (b, s0)-admissible auxiliary function with N(s) =
O(log(s)), s→∞ can always be found if b 6= 1 and M is non-decreasing. This is not
true in general for b = 1 as examples with non-decreasing slowly varying functions
show (take e.g. ε(s) = log(s)−1 log(log(s))−1, s ≥ ee).

Before going to the examples we remind the reader that, by definition, (b-
)minimal and optimal auxiliary functions are essentially unique (if they exist) in
the following sense: whenever there exist two b-minimal (or optimal) auxiliary
functions then for suitable s1 ≥ a they must coincide on the interval [s1,∞).

Example A.4. For α ∈ (0,∞) let us consider the function given by M(s) =
log(s)α, s ≥ e and M(s) = 1, s ∈ [0, e). Given b ∈ (0, 1] we want to find a b-minimal
auxiliary function N of M . By using (A.7) and the substitution θ = log(λ)/ log(s)
we get that for s0 ≥ e any (b, s0)-admissible auxiliary function N satisfies

N(s) ≥ sup

 θ

log
(

b−1

(1−θ)α

) ; θ ∈
(

0, 1− log(s0)

log(s)

] · log(s) for s > s0.(A.8)

Note that for large s the supremum in (A.8) is attained for 0 < θ < 1−log(s0)/ log(s).
In case b = 1 the supremum is “attained” in the limit θ ↓ 0. Hence, a b-minimal
auxiliary function N is given by

N(s) = β log(s) for s ≥ e where β = sup

 θ

log
(

b−1

(1−θ)α

) ; θ ∈ (0, 1]

 .(A.9)

For arguments s ∈ [0, e) we may extend N by the value β. We proved that for the
logarithm raised to some power all (b-)minimal auxiliary functions are essentially
again the logarithm - up to a scaling factor which only depends on α and the value
of b.

Let us now find an optimal auxiliary function N of M . We already know from
the above reasoning that necessarily N(s) = β log(s), s ≥ s1 for some β > 0 and
some s1 > e since an optimal auxiliary function is also minimal. Given β > 0
let bβ ∈ (0, 1] be the supremum of all b ∈ (0, 1] such that a b-minimal auxiliary
function exists for M . We aim to find the maximal possible value for β−1bβ . A
short calculation shows that

bβ =

{
(αβ)−αeα−β

−1

for β < α−1,

1 for β ≥ α−1.

Moreover, one can show that bβ-minimal functions actually exist. Another short
calculation shows that β−1bβ gets maximal for β = (1 + α)−1. We proved that

N(s) =

{
(1 + α)−1 log(s) for s ≥ e,
(1 + α)−1 for s ∈ [0, e),

defines an optimal auxiliary function for M which is e−1(1 + α−1)α-minimal.

Example A.5. For α ∈ (0, 1) let us consider the function given by M(s) =
exp(log(s)α), s ≥ 1 and M(s) = 1, s ∈ [0, 1). Again, by using (A.7) and the
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substitution θ = log(λ)/ log(s) we get that for s0 ≥ 1 any (b, s0)-admissible auxiliary
function N satisfies for s > s0

N(s) ≥ sup

{
θ

1− (1− θ)α + log(b−1) log(s)−α
; θ ∈

(
0, 1− log(s0)

log(s)

]}
· log(s)1−α.

Observe that the supremum is attained for 0 < θ < 1− log(s0)/ log(s) if s is large
and b 6= 1. If b = 1 the supremum is “attained” in the limit θ ↓ 0. From this formula
it is easily seen that any optimal auxiliary function is necessarily 1-minimal. We
proved that an optimal auxiliary function is given by

N(s) =

{
α−1 log(s)1−α for s ≥ 1,

α−1 for s ∈ [0, 1).





APPENDIX B

Basic resolvent estimates for the wave equation

B.1. The damped wave equation on bounded domains

On an open, bounded and connected subset Ω ⊂ Rd, with d ≥ 1, we consider
the damped wave equation

utt(t, x)−∆u(t, x) + 2a(x)ut(t, x) = 0 (t ∈ (0,∞), x ∈ Ω),

u(t, ·)|∂Ω = 0 (t ∈ (0,∞)),

u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω).

(B.1)

with a positive damping function a ∈ L∞(Ω). If we set x(t) = (u(t), ut(t)) and
x0 = (u0, u1) we can formulate the wave equation as an abstract Cauchy problem

ẋ(t) = Ax(t), x(0) = x0 where A =

(
0 1
∆ −2a(x)

)
,(B.2)

and D(A) = {u ∈ H1
0 (Ω); ∆u ∈ L2(Ω)} ×H1

0 (Ω).

on the Hilbert space H = H1
0×L2(Ω). Note that ∂Ω 6= ∅. Thus the energy E(x0) =∫

Ω
|∇u0(x)|2 + |u1(x)|2 dx defines a norm on the energy space H. Everything what

was said in Section 4.1.1 for the special case Ω = [0, 1]2 remains true in the general
case. In particular the resolvent mapping z 7→ (z−A)−1 is a meromorphic function
on C with poles of finite order which are located in the strip [−2 ‖a‖∞ , 0) + iR.

B.1.1. Basic resolvent estimates. The inhomogeneous eigenvalue equation
for the damped wave equation is (is−A)(u, v) = (f, g). Here, s is in the strip R+
i(0, 2 ‖a‖∞]. This vector-valued equation is equivalent to the stationary equation:

−∆u− s2u+ 2isa(x)u = h := g + (is+ 2a(x))f.(B.3)

The function v is then simply equal to isu − f . If is is not a pole of (is − A)−1,
then we can define R(s) := (−∆− s2 + 2isa(x))−1. This is an operator from L2(Ω)
to H1

0 (Ω). Now we can express the resolvent of the damped wave operator in terms
of the resolvent R(s) of the stationary wave equation:

(is−A)−1 =

(
R(s)(is+ 2a(x)) R(s)

R(s)(−s2 + 2isa(x))− 1 isR(s)

)
.(B.4)

Proposition B.1. Let A and R be as above. Then for real s with large modulus∥∥(is−A)−1
∥∥
H→H ≈ ‖R(s)‖L2→H1

0
≈ |s| ‖R(s)‖L2→L2 .

Only in the case of no damping (a = 0) it can happen that is is an eigenvalue.
But then we formally set the norms appearing in Proposition B.1 to be equal to∞.

The next proposition deals with estimates of the form

‖u‖2L2 .

(
M(s)

|s|

)2

‖h‖2L2 +M(s)

∫
Ω

a |u|2(B.5)
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and

‖u‖2H1
0
.M(s)2 ‖h‖2L2 + |s|2M(s)

∫
Ω

a |u|2(B.6)

for solutions u of (B.3) with h ∈ L2(Ω). The function M is defined for large positive
values of s, is bounded from below by a strictly positive number and is extended
symmetrically for negative s.

Proposition B.2. Let M be as above. Then∥∥(is−A)−1
∥∥
H→H .M(s)⇔ ∀u, h : (B.5)⇔ ∀u, h : (B.6).

Here “∀u, h” means “for all h ∈ L2(Ω) and u ∈ H1
0 (Ω) which satisfy (B.3)”.

The third proposition deals with estimates of the form (B.6), locally where the
damping is non vanishing.

Proposition B.3. Suppose ω ⊆ Ω is an open subset such that there exists
another open subset ω′ ⊆ Ω containing the closure of ω such that a restricted to ω′

is bounded from below by a strictly positive number. Then

‖u‖2H1(ω) .
1

|s|2
‖h‖2L2 + |s|2

∫
Ω

a |u|2

for every solution u of (B.3) with h ∈ L2(Ω).

In view of Propositions B.2 and B.5 below, the aforementioned proposition
shows that in regions where the damping acts, the strongest possible estimates
(M(s) = 1) for (is−A)−1 are valid. Thus only estimates on undamped regions of
Ω are of interest.

B.1.2. Proof of Proposition B.1. We give the proof as a sequence of lem-
mas. First, we prove the easy direction of the inequalities.

Lemma B.4. For real s

‖R(s)‖2L2→H1
0

+ |s|2 ‖R(s)‖2L2→L2 ≤
∥∥(is−A)−1

∥∥2

H→H .

Here we equip H1
0 (Ω) with the norm (

∫
|∇u|2)

1
2 .

Proof. This is a direct consequence of (B.4), which implies

(is−A)−1(0, g) = (R(s)g, isR(s)g)

for all g ∈ L2(Ω), and the definition of the energy norm in H. �

The next proposition is interesting for its own sake. It is a consequence of
Weyl’s law for the eigenvalues of the Dirichlet Laplacian.

Proposition B.5. For real s of large modulus∥∥(is−A)−1
∥∥
H→H & 1.

Note that an estimate of the form
∥∥(is−A)−1

∥∥
H→H &

1
|s| is valid for any

densely defined closed operator A. This can be proved by contradiction using the
resolvent identity. However this estimate seems to be slightly too weak for our
purposes as we will see for example at the end of the proof of Lemma B.6.
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Proof of Proposition B.5. Only for this proof we introduce the notation
Aa := A to make the dependence of A on the damping a visible. Let us first
investigate the case a = 0. For positive s let N(s) be the number of linearly
independent smooth functions u which satisfy{

−∆u(x)− σ2u(x) = 0 (x ∈ Ω)

u|∂Ω = 0

for some 0 < σ ≤ s. By Weyl’s law this number satisfies

N(s) =
ωd

(2π)d
vol(Ω)sd +O(sd−1).

The number ωd is the volume of the unit ball in Rd. Let (δs)s>0 be an increasing
family of positive numbers which tend to infinity but satisfy δs = o(s). Then

N(s+ δs)−N(s) & δss
d−1.

In particular A0 has many eigenvalues in the interval i[s, s + δs] if s is sufficiently
large. Now - hoping to get a contradiction - suppose that the assertion of the lemma
was not true. This means that there is a sequence (sn) tending to infinity such that∥∥(isn −A0)−1

∥∥
H→H tends to zero. Without loss of generality we may assume that∥∥(isn −A0)−1

∥∥
H→H = o(δ−1

sn ).

Then a Neumann series argument shows that A0 cannot have any eigenvalues in
the interval i[sn, sn + δsn ] for large n - contradiction!

We treat the case a 6= 0 by a perturbation argument.

Aa = A0 +B where B =

(
0 0
0 −2a(x)

)
.

Again suppose that there exists a sequence (sn) tending to infinity such that∥∥(isn −Aa)−1
∥∥
H→H tends to zero. Then a Neumann series argument gives

(isn −A0)−1 = (1− (isn −Aa)−1B)−1(isn −Aa)−1 → 0.

This is a contradiction to the first part of the proof. �

Lemma B.6. For real s of large modulus∥∥(is−A)−1
∥∥
H→H . ‖R(s)‖L2→H1

0
+ |s| ‖R(s)‖L2→L2 .

Proof. The proof is done if we can estimate the components of the first row
of the matrix in (B.4) against the components of the second row. The estimation
of the second component of the first row of (B.4) is straightforward:∥∥R(s)(−s2 + 2isa(x))− 1

∥∥
H1

0→L2

= ‖R(s)∆‖H1
0→L2 . ‖R(s)‖H−1→L2 = ‖R(s)‖L2→H1

0
.(B.7)

For the last equality we used that R(−s) is the adjoint of R(s) and R(−s)g = R(s)g
for all g ∈ L2(Ω). Next observe

R(s)(is+ 2a(x)) =
1

is
R(s)(−s2 + 2isa(x)) =

1

is
(1 +R(s)∆).(B.8)
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Therefore let us consider u, f ∈ H1
0 (Ω) such that the stationary wave equation

(B.3) is satisfied with h replaced by ∆f . Then testing the stationary wave equation
against u implies

‖∇u‖2L2 − s2 ‖u‖2L2 + 2is

∫
a |u|2 = 〈∆f, u〉H−1,H1

0
.

This in turn implies

‖u‖2H1
0
≤ s2 ‖u‖2L2 + ‖∆f‖H−1 ‖u‖H1

0

≤ C(s2 ‖u‖2L2 + ‖f‖2H1
0
) +

1

2
‖u‖2H1

0
.

This together with (B.7) yields ‖R(s)∆‖H1
0→H1

0
. |s| ‖R(s)‖H−1→L2 + 1. By (B.8)

the last estimate can be used to estimate the upper left entry in the matrix given
in (B.4). Summing up our calculations we get∥∥(is−A)−1

∥∥
H→H .

1

|s|
+ ‖R(s)‖L2→H1

0
+ |s| ‖R(s)‖L2→L2 .

By Proposition B.5 we can absorb the term 1/ |s| on the right-hand side into the
left-hand side. �

From the next lemma we conclude the validity of Proposition B.1.

Lemma B.7. For real s of large modulus

‖R(s)‖L2→H1
0
≈ |s| ‖R(s)‖L2→L2 .

Proof. Let h ∈ L2(Ω), s ∈ R and u ∈ H1
0 (Ω) be a solution of the stationary

wave equation (B.3). Testing this equation with u and taking the real part yields

‖∇u‖2L2 ≤ ‖h‖L2 ‖u‖L2 + s2 ‖u‖2L2

.
1

s2
‖h‖2L2 + s2 ‖u‖2L2 .

Therefore

‖R(s)‖L2→H1
0
.

1

|s|
+ |s| ‖R(s)‖L2→L2 .(B.9)

Similarly we get

s2 ‖u‖2L2 ≤ ‖h‖L2 ‖u‖L2 + ‖∇u‖2L2

≤ C

s2
‖h‖2L2 +

s2

2
‖u‖2L2 + ‖∇u‖2L2 ,

which implies

|s| ‖R(s)‖L2→L2 .
1

|s|
+ ‖R(s)‖L2→H1

0
.(B.10)

It remains to explain why we can drop the term 1/ |s| in the inequalities (B.9)
and (B.10). If we could not drop this term in either (B.9) or (B.10), it would be
possible to find a sequence (sn) of positive numbers which tend to infinity such that
both |sn| ‖R(sn)‖L2→L2 and ‖R(sn)‖L2→H1

0
could be estimated by 1/ |sn|. But this

contradicts Proposition B.5 and Lemma B.6. �
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B.1.3. Proof of Proposition B.2. It is trivial that
∥∥(is−A)−1

∥∥
H→H .

M(s) implies (B.5) and (B.6). Let h ∈ L2(Ω) and let u ∈ H1
0 (Ω) be a solution of

the stationary wave equation. We have to show that (B.5) and (B.6) both imply∥∥(is−A)−1
∥∥
H→H .M(s).

(i) Let (B.5) be true. Testing the stationary wave equation with u and taking
the imaginary part yields

|s|
∫
a |u|2 ≤ ‖h‖L2 ‖u‖L2

≤ CM(s)

ε |s|
‖h‖2L2 +

ε |s|
M(s)

‖u‖2L2

for any ε > 0. If we choose ε small enough, the aforementioned statement together
with (B.5) implies ‖u‖L2 . M(s) ‖h‖L2 . This gives the assertion by Proposition
B.1.

(ii) Let (B.6) be true. Testing the stationary wave equation with u and taking
the real part yields |s| ‖u‖L2 . ‖∇u‖L2 + ‖h‖L2 / |s|. Thus for all ε > 0

s2

∫
a |u|2 ≤ |s| ‖h‖L2 ‖u‖L2

. ‖h‖L2 (
1

|s|
‖h‖L2 + ‖u‖H1

0
)

.
1

|s|
‖h‖2L2 +

M(s)

ε
‖h‖2L2 +

ε

M(s)
‖u‖2H1

0
.

Using this estimate in (B.6) with ε small yields together with Proposition B.1 the
claim.

B.1.4. Proof of Proposition B.3. Choose a smooth cut-off function 0 ≤ η ≤
1 which is equal to 1 in ω such that its support is in a region where the damping
a is bounded from below by a strictly positive number. Let us test equation (B.3)
with uη2. Then∫

Ω

(
|∇u|2 η2 + 2∇u · ∇ηuη − s2 |u|2 η2 + 2isa |u|2 η2

)
=

∫
Ω

huη2.

By using ∇u ·∇ηuη ≥ − 1
2 |∇u|

2
η2− 1

2 |∇η|
2 |u|2 and

∣∣huη2
∣∣ ≤ 1

2|s|2 |h|
2
+ |s|

2

2 |u|
2
η2

we end up with ∫
ω

|∇u|2 ≤
∫

Ω

|∇u|2 η2

.
1

|s|2
‖h‖2L2 + |s|2

∫
Ω

|u|2 η2

.
1

|s|2
‖h‖2L2 + |s|2

∫
Ω

a |u|2 .

The corresponding estimate for ∇u replaced by u is trivial.

B.2. The (undamped) wave equation on exterior domains

We are in the situation of Chapter 3. We aim to prove Proposition 3.3 which
we repeat here for convenience of the reader.
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Proposition B.8. Let δ > 0 and let χ̃ be defined as χ but with χ̃ = 1 on a
neighbourhood of the support of χ. Let z with −δ < <z < 0 be no pole of Rχ, then

‖Gχ(z)‖ ≤ C
(
(1 ∨ |z|)−1 + |z| ‖Rχ̃(z)‖L2→L2

)
with a constant C > 0 independent of z. The reverse inequality - with a different
constant, ignoring the first summand on the right hand side and χ̃ replaced by χ -
is also true.

Proof. From (3.6) we deduce that

Gχ(z) =

(
zRχ(z) Rχ(z)

z2Rχ(z)− χ2 zRχ(z)

)
, z2Rχ(z)− χ2 = χR(z)∆χ.(B.11)

Therefore the last statement of the proposition follows directly from

Gχ(z)(0, g) = (Rχ(z)g, zRχ(z)g) .

To prove the inequality displayed in the proposition we assume without loss of
generality that |z| ≥ 1. Furthermore we let χ1 be a function satisfying the same
constraints as χ̃ but with support contained in the interior of the set where χ̃ is
equal to 1. Let H−1

D (Ω) be the dual space of H1
D(Ω). Clearly ∆ : H1

D(Ω)→ H−1
D (Ω)

is continuous. Furthermore the commutator [∆, χ] : H1
D(Ω)→ L2(Ω) is continuous

too. This is not completely obvious since [∆, χ] = ∇χ ·∇+(∆χ) has a zeroth order
term. Fortunately, ∆χ is compactly supported, ∂Ω 6= ∅, ∂Ω ∈ C∞ and therefore
∆χ acts as a bounded operator on H1

D(Ω) by the Poincaré-Steklov inequality for
bounded domains. By the same reasoning we have already seen in Chapter 3 that
χ acts as a bounded operator on H1

D(Ω). Before coming to the first estimates let
us finally note that for all z ∈ C\R− and g ∈ L2(Ω) we have

Rχ(z)∗g = Rχ(z)g = Rχ(z)g.(B.12)

Here the bars mean the complex conjugate and ∗ means the L2-adjoint of an oper-
ator. If z is a pole of Rχ this equality simply means that z is a pole too.

Our goal is to verify the following estimates:

‖zRχ(z)‖H1
D→H1

D
.

1

|z|
+ |z| ‖Rχ̃(z)‖L2→L2 ,(B.13)

‖χR(z)∆χ‖H1
D→L2 .

1

|z|
+ |z| ‖Rχ1

(z)‖L2→L2 ,(B.14)

‖Rχ(z)‖L2→H1
D
.

1

|z|
+ |z| ‖Rχ1(z)‖L2→L2 .(B.15)

By (B.11) this implies the conclusion of the proposition.
Step 1. Estimation of ‖Rχ(z)‖L2→H1

D
. Let f ∈ L2(Ω) and u = R(z)χf . Then,

by Proposition 3.2, the L2
loc-function u is a distributional solution of{

z2u(x)−∆u(x) = χ(x)f(x) (x ∈ Ω),
u(x) = 0 (x ∈ ∂Ω).

(B.16)

Testing the equation with χu leads after a short calculation, using integration by
parts, to

‖χ∇u‖2L2 .
1

|z|2
‖χf‖2L2 + |z|2 ‖(∇χ)u‖2L2 .

This implies (B.15).
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Step 2. Estimation of ‖χR(z)∆χ‖H1
D→L2 .

‖χR(z)∆χ‖H1
D→L2 = ‖Rχ(z)∆ + χR(z)[∆, χ]‖H1

D→L2

. ‖Rχ(z)‖H−1
D →L2 + ‖Rχ1(z)‖L2→L2

.
1

|z|
+ |z| ‖Rχ1

(z)‖L2→L2 .

From the second to the third line we used a duality argument (using (B.12)) together
with (B.15). We have proved (B.14).

Step 3. Estimation of ‖zRχ(z)‖H1
D→H1

D
. First we observe that by (B.15)∥∥z2Rχ(z)

∥∥
H1
D→H1

D

= ‖1 +Rχ(z)∆ + χR(z)[∆, χ]‖H1
D→H1

D

≤ 1 + ‖Rχ(z)∆‖H1
D→H1

D
+ ‖Rχ1(z)‖L2→H1

D

. 1 + ‖Rχ(z)‖H−1
D →H1

D
+ |z| ‖Rχ1(z)‖L2→L2 .

It remains to estimate the middle term in the last line. Let f ∈ H−1
D (Ω) and let

u ∈ H1
D(Ω) be the solution of (B.16) given by R(z)χf . Testing the equation with

χu leads after a short calculation to

‖χ∇u‖2L2 . ‖χf‖2H−1
D

+ |z|2 ‖(∇χ)u‖2L2 .

This implies together with a duality argument (using (B.12)) and (B.15)

‖Rχ(z)‖H−1
D →H1

D
. 1 + |z| ‖Rχ1

(z)‖H−1
D →L2 . 1 + |z|2 ‖Rχ̃(z)‖L2→L2 .

But now this in turn implies (B.13). The proof is finished. �





APPENDIX C

Besov spaces: a borderline case for the trace
theorem

In this thesis we work with fractional Sobolev spaces, Besov spaces and the trace
operator acting on them. Note also that we work with the space Hs(∂Ω) which is
not only a fractional Sobolev space but also is a function space on a closed subset
of Rd which has empty interior. In this appendix we aim at providing some results
from the literature about Sobolev/Besov spaces and their relation to interpolation
spaces which is necessary to follow the arguments from Chapter 5.

Of exceptional importance for the proof of Theorem 5.4 (i) and (ii) is the validity
of the borderline trace theorem - Proposition C.2. This borderline case seems to
be well-known to the experts - also for Lipschitz domains - but unfortunately we
were not able to find it in the literature except in [50, Theorem 18.6]. The proof
given there is not in our spirit since Besov spaces are not defined as interpolation
spaces there. Therefore we give a simple direct proof via the characterization of
Besov spaces as interpolation spaces which is true if Ω has the so called extension
property (which in turn is satisfied if Ω is a Lipschitz domain).

C.1. Fractional Sobolev- and Besov spaces

Let Ω ⊂ Rd be a bounded Lipschitz domain. Here by Lipschitz we mean
that locally near any boundary point and in an appropriate coordinate system one
can describe Ω as the set of points which are above the graph of some Lipschitz
continuous function from Rd−1 into R.

Let 1 ≤ p ≤ ∞. We assume the reader to be familiar with the usual Sobolev
space W 1,p(Ω) which consists of all functions u ∈ Lp(Ω) for which all distributional
derivatives ∂ju are in Lp(Ω). There are different methods of defining Besov spaces.
For our purposes it is most convenient to define the Besov spaces for 0 < s < 1 and
1 ≤ q ≤ ∞ as real interpolation spaces:

Bs,pq (Ω) = (Lp(Ω),W 1,p(Ω))s,q.(C.1)

Another approach is to define Bs,pq (Rd) for example via interpolation and then to

define the Besov space on Ω as restrictions to Ω of Besov function on Rd. In general
these approaches are not equivalent but if Ω satisfies the extension property they
are equivalent [49, Chapter 34]. In our setting (0 < s < 1) we say that Ω satisfies
the extension property if there is a linear and continuous operator Ext : W 1,p(Ω)→
W 1,p(Rd) such that (Extu)|Ω = u for each u from W 1,p(Ω). The extension property
is fulfilled if Ω is bounded and has a Lipschitz boundary. In the following we always
assume that this extension property is fulfilled - otherwise some statements from
below are not valid.
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The Sobolev-Slobodeckij spaces are defined as special Besov spaces W s,p(Ω) =
Bs,pp (Ω). It is common to write Hs instead of W s,2 in the Hilbert space setting.
For 0 ≤ s ≤ 1 it is also possible to define the scale of fractional Sobolev spaces
(also known as Bessel potential spaces) Hs,p(Ω) via Fourier methods for the special
case Ω = Rd and via restriction for the general case. These spaces form a scale of
complex interpolation spaces. In general the fractional Sobolev spaces differ from
the Sobolev-Slobodeckij spaces but coincide in the case p = 2 (see [2, Chapter
7.67]). Note that in the book [2] the letter W stands for the fractional Sobolev
spaces. We also have H1,p(Ω) = W 1,p(Ω) for 1 < p < ∞ - which is Calderón’s
Theorem (see [30, page 7]).

We mention that for all 0 < s1 ≤ s < 1 and q, q1 ∈ [1,∞] with the restriction
q ≤ q1 if s1 = s:

Bs,pq (Ω) ↪→ Bs1,pq1 (Ω).

This is a direct consequence of a general result about the real interpolation method
(see e.g. [49, Lemma 22.2]).

It is possible to define the Besov space Bs,pq (A) on a general class of closed

subsets A of Rd - the so called d-sets. For Ω having a Lipschitz boundary its
boundary ∂Ω is such a set, since it is a (d− 1)-dimensional manifold topologically.
The required background is included in [30, Chapter V]. Again we write Hs(A) =

Bs,22 (A) in the Hilbert space setting.

C.2. Traces for functions with 1/p or more derivatives

Throughout this subsection Ω ⊆ Rd is a bounded domain with Lipschitz bound-
ary and we let 1 < p <∞. For 1/p < s < 1 the following theorem is a special case
of [30, Chapter VI, Theorem 1-3]. For s = 1 it is a special case of [30, Chapter VII,
Theorem 1-3], keeping in mind that by Calderón’s Theorem the Bessel potential
spaces are the ordinary Sobolev spaces for positive integer orders s.

Theorem C.1. Let 1/p < s < 1. Then the trace operator Γ : C(Ω) →
C(∂Ω), u 7→ u|∂Ω extends continuously to an operator

Γ : Bs,pq (Ω)→ B
s− 1

p ,p
q (∂Ω).

Furthermore Γ has a continuous right inverse:

Ext : B
s− 1

p ,p
q (∂Ω)→ Bs,pq (Ω), Γ ◦ Ext = id

B
s− 1

p
,p

q (∂Ω)
.

The theorem remains valid for s = 1, q = p if one replaces Bs,pq (Ω) by W 1,p(Ω).

Unfortunately this theorem is false for any 1 ≤ q ≤ ∞ in the borderline case
s = 1/p if one replaces the target space of Γ by Lp(∂Ω). But for our purposes it is
sufficient that a weakened version remains valid.

Proposition C.2. The trace operator Γ : B
1
p ,p

1 (Ω)→ Lp(∂Ω) is continuous.

Actually the trace operator is indeed surjective (but we do not need this prop-
erty in this thesis) and a more general version is proved in [50, Section 18.6]. How-
ever there is no linear extension operator from Lp(∂Ω) back to the Besov space
(see [50] and references therein).

We indicate a simple direct proof of Proposition C.2. It is based on two lemmas
which have very simple proofs on their own. The first one is
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Lemma C.3. There exists a constant C > 0 such that for every C∞ function
u with compact support in Rd

‖Γu‖Lp(∂Ω) ≤ C ‖u‖
1− 1

p

Lp(Ω) ‖u‖
1
p

W 1,p(Ω) .

The straightforward proof can be found in [49, Lemma 13.1]. For a different
proof in the case p = 2 we refer to [37]. The second ingredient to the proof of
Proposition C.2 is [49, Lemma 25.3] which we recall here for the convenience of the
reader.

Lemma C.4. Let (X0, X1) be an interpolation couple, Y a Banach space and
let 0 < θ < 1. Then a linear mapping L : X0 ∩ X1 → Y extends to a continuous
operator L : (X0, X1)θ,1 → Y if and only if there exists a C > 0 such that for all

u ∈ X0 ∩X1 we have ‖Lu‖Y ≤ C ‖u‖
1−θ
X0
‖u‖θX1

.

Proof of Proposition C.2. Apply the if-part of Lemma C.4 toX0 = Lp(Ω),
X1 = W 1,p(Ω), Y = Lp(∂Ω), L = Γ and θ = s. Use Lemma C.3 to verify the con-
verse. �
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und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in
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