
Generating and Managing
Secure Passwords for
Online Accounts
Generierung und Verwaltung sicherer Passwörter für Onlinekonten
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Moritz Horsch, M.Sc. aus Dernbach
Tag der Einreichung: 18.09.2017, Tag der mündlichen Prüfung: 28.11.2017
Darmstadt 2018 — D 17

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Prof. Chris J. Mitchell, Ph.D.

Fachbereich Informatik
Theoretische Informatik
Kryptographie und Computeralgebra



Generating and Managing Secure Passwords for Online Accounts

Generierung und Verwaltung sicherer Passwörter für Onlinekonten

Genehmigte Dissertation von Moritz Horsch, M.Sc. aus Dernbach

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Prof. Chris J. Mitchell, Ph.D.

Tag der Einreichung: 18.09.2017
Tag der mündlichen Prüfung: 28.11.2017

Darmstadt 2018 — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-70039
URL: http://tuprints.ulb.tu-darmstadt.de/7003

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/







Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 18.09.2017

(Moritz Horsch)





Wissenschaftlicher Werdegang

Oktober 2012 – heute

Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe von Prof. Dr. Johannes Buchmann, Fach-

bereich Informatik, Fachgebiet Theoretische Informatik – Kryptographie und Computeralgebra

an der Technischen Universität Darmstadt.

März 2010 – Juli 2012

Studium Master of Science Informatik an der Technischen Universität Darmstadt.

Oktober 2004 – März 2010

Studium Bachelor of Science Informatik an der Technischen Universität Darmstadt.





List of Publications
[H1] Moritz Horsch, Johannes Braun, and Johannes Buchmann. The Wide Diversity of Pass-

word Requirements – And how to cope with it. In (in submission), 2017. Cited on pages
15 and 63.

[H2] Moritz Horsch, Johannes Braun, and Johannes Buchmann. Password Assistance. In
Open Identity Summit (OID), Lecture Notes in Informatics, pages 35–48. German Infor-
matics Society, 2017. Cited on page 15.

[H3] Moritz Horsch, Johannes Braun, Dominique Metz, and Johannes Buchmann. Update-
tolerant and Revocable Password Backup. In Australasian Conference on Information Se-
curity and Privacy (ACISP), Lecture Notes in Computer Science, pages 390–397. Springer,
2017. Cited on page 123.

[H4] Moritz Horsch, Mario Schlipf, Johannes Braun, and Johannes Buchmann. Password
Requirements Markup Language. In Australasian Conference on Information Security and
Privacy (ACISP), Lecture Notes in Computer Science, pages 426–439. Springer, 2016.
Cited on pages 63, 74, and 91.

[H5] Moritz Horsch, Mario Schlipf, Stefan Haas, Johannes Braun, and Johannes Buchmann.
Password Policy Markup Language. In Open Identity Summit (OID), Lecture Notes in
Informatics, pages 135–147. German Informatics Society, 2016. Cited on pages 15
and 137.

[H6] Moritz Horsch, Andreas Hülsing, and Johannes Buchmann. PALPAS – PAsswordLess
PAssword Synchronization. In International Conference on Availability, Reliability and
Security (ARES), pages 30–39. IEEE Computer Society, 2015. Cited on page 97.

[H7] Moritz Horsch, David Derler, Christof Rath, Hans-Martin Haase, and Tobias Wich. Open
Source für europäische Signaturen. Datenschutz und Datensicherheit, 38(4):237–241,
2014. Cited on page 109.

[H8] Moritz Horsch, Max Tuengerthal, and Tobias Wich. SAML Privacy-Enhancing Profile. In
Open Identity Summit (OID), Lecture Notes in Informatics, pages 11–22. German Infor-
matics Society, 2014. Cited on page 109.

[H9] David Derler, Christof Rath, Moritz Horsch, and Tobias Wich. Design und Implemen-
tierung eines Localhost Signaturgateways. In D-A-CH Security, pages 36–45. syssec Ver-
lag, 2014. Cited on page 109.

[H10] Moritz Horsch, Detlef Hühnlein, Anja Lehmann, Johannes Schmölz, and Tobias Wich.
Authentisierung mit der Open eCard App. Datenschutz und Datensicherheit, 37(8):507–
511, 2013. Cited on page 109.

I



[H11] Moritz Horsch, Detlef Hühnlein, Christian Breitenstrom, Thomas Wieland, Alexan-
der Wiesmaier, Benedikt Biallowons, Dirk Petrautzki, Simon Potzernheim, Johannes
Schmölz, Alexander Wesner, and Tobias Wich. Die Open eCard App für mehr Trans-
parenz, Vertrauen und Benutzerfreundlichkeit beim elektronischen Identitätsnachweis.
In 13. Deutscher IT-Sicherheitskongress, pages 391–403. SecuMedia Verlag, 2013. Cited
on page 109.

[H12] Johannes Braun, Moritz Horsch, and Andreas Hülsing. Effiziente Umsetzung des Ket-
tenmodells unter Verwendung vorwärtssicherer Signaturverfahren. In 13. Deutscher IT-
Sicherheitskongress, pages 347–359. SecuMedia Verlag, 2013.

[H13] Tobias Wich, Moritz Horsch, Dirk Petrautzki, Johannes Schmölz, Detlef Hühnlein,
Thomas Wieland, and Simon Potzernheim. An Extensible Client Platform for eID, Sig-
natures and More. In Open Identity Summit (OID), Lecture Notes in Informatics, pages
55–68. German Informatics Society, 2013. Cited on page 109.

[H14] Detlef Hühnlein, Jörg Schwenk, Tobias Wich, Vladislav Mladenov, Florian Feldmann,
Andreas Mayer, Johannes Schmölz, Bud P. Bruegger, and Moritz Horsch. Options for
integrating eID and SAML. In Digital Identity Management (DIM), pages 85–96. ACM,
2013. Cited on page 109.

[H15] Moritz Horsch, Johannes Braun, Alexander Wiesmaier, Joachim Schaaf, and Claas
Baumöller. Verteilte Dienstnutzung mit dem neuen Personalausweis. In D-A-CH Se-
curity, pages 186–197. syssec Verlag, 2012.

[H16] Johannes Braun, Moritz Horsch, and Alexander Wiesmaier. iPIN and mTAN for Secure
eID Applications. In International Conference on Information Security Practice and Experi-
ence (ISPEC), Lecture Notes in Computer Science, pages 259–276. Springer, 2012. Cited
on page 113.

[H17] Gerrit Hornung, Moritz Horsch, and Detlef Hühnlein. Mobile Authentisierung und Sig-
natur mit dem neuen Personalausweis – Innovative technische und rechtliche Lösungsan-
sätze. Datenschutz und Datensicherheit, 36(3):189–194, 2012. Cited on page 136.

[H18] Detlef Hühnlein, Dirk Petrautzki, Johannes Schmölz, Tobias Wich, Moritz Horsch,
Thomas Wieland, Jan Eichholz, Alexander Wiesmaier, Johannes Braun, Florian Feld-
mann, Simon Potzernheim, Jörg Schwenk, Christian Kahlo, Andreas Kühne, and Heiko
Veit. On the design and implementation of the Open eCard App. In Sicherheit, Lec-
ture Notes in Informatics, pages 95–110. German Informatics Society, 2012. Cited on
page 109.

[H19] Detlef Hühnlein, Johannes Schmölz, Tobias Wich, Benedikt Biallowons, Moritz Horsch,
and Tina Hühnlein. Eine Referenzarchitektur für die Authentisierung und elektronische
Signatur im Gesundheitswesen. In GI-Jahrestagung, pages 1651–1664. German Infor-
matics Society, 2012.

[H20] Detlef Hühnlein, Johannes Schmölz, Tobias Wich, Benedikt Biallowons, Moritz Horsch,
and Tina Hühnlein. Standards und Schnittstellen für das Identitätsmanagement in der
Cloud. In D-A-CH Security, pages 208–218. syssec Verlag, 2012. Cited on page 109.

II List of Publications



[H21] Detlef Hühnlein, Johannes Schmölz, Tobias Wich, and Moritz Horsch. Daten- und
Identitätsschutz in Cloud Computing, E-Government und E-Commerce, chapter Sicher-
heitsaspekte beim chipkartenbasierten Identitätsnachweis, pages 153–168. Springer,
2012. Cited on page 134.

[H22] Johannes Braun, Moritz Horsch, Alexander Wiesmaier, and Detlef Hühnlein. Mobile
Authentisierung und Signatur. In D-A-CH Security, pages 32–43. syssec Verlag, 2011.
Cited on page 136.

[H23] Alexander Wiesmaier, Moritz Horsch, Johannes Braun, Franziskus Kiefer, Detlef Hühn-
lein, Falko Strenzke, and Johannes A. Buchmann. An efficient mobile PACE implemen-
tation. In Asia Conference on Computer and Communications Security (ASIACCS), pages
176–185. ACM, 2011.

Patents:

[H24] Alexander Wiesmaier, Johannes Braun, and Moritz Horsch. EP 2639997 – Method and
system for secure access of a first computer to a second computer. European Patent
Office, 2014. EP Patent 2 639 997.

[H25] Claas Baumöller, Joachim Schaaf, Moritz Horsch, Alexander Wiesmaier, and Johannes
Braun. EP 2600270 – Identification element-based authentication and identification
with decentralised service use. European Patent Office, 2013. Pending Application EP
Patent 2 600 270.

Implementation:

[H26] Moritz Horsch. Password Assistance Project. https://passwordassistance.info.
Cited on pages 40, 66, 68, 75, 79, 87, 88, 89, 92, 110, 112, 132, 139, 140, 148,
and 159.

List of Publications III

https://passwordassistance.info




Abstract
User accounts at Internet services contain a multitude of personal data such as messages, do-

cuments, pictures, and payment information. Passwords are used to protect these data from

unauthorized access. User authentication based on passwords has many advantages for both

users and service providers. Users can use passwords across many platforms, devices, and

applications and do not need to carry an additional device. Service providers can implement

password-based user authentication with little effort and operate it with low cost per user.

However, passwords have a key problem: the conflict between security and ease of use. For

security reasons, passwords must be attack-resistant, individual for each account, and changed

on a regular basis. But, these security requirements make passwords very difficult to use. They

require users to create and manage a large portfolio of passwords. This poses three problems:

First, the generation of attack-resistant passwords is very difficult. Second, the memorization of

many passwords is practically impossible. Third, the regular change of passwords is very time-

consuming. These problems are aggravated by the different password requirements, interfaces,

and procedures of services. The preservation of passwords for users such as storing passwords

on user devices mitigates the memorization problem, but it raises new problems: the confiden-

tiality, availability, recoverability, and accessibility of the preserved passwords. Despite decades

of research, the problems of passwords are not solved yet. Consequently, secure passwords are

not usable in practice. As a result, users select weak passwords, use them across accounts, and

barely change them.

In this thesis, we introduce the Password Assistance System (PAS). It makes secure passwords

usable for users. This is achieved by automation and comprehensive support. PAS covers all

aspects of passwords. It generates, preserves, and changes passwords for users as well as ensures

the confidentiality, availability, recoverability, and accessibility of the preserved passwords. This

reduces the efforts and activities of users to deal with passwords to a minimum and thus enables

users to practically realize secure passwords for their online accounts for the first time.

PAS is the first solution that is capable of handling the different password implementations of

services. This is achieved by a standardized description of password requirements, interfaces,

and procedures. Moreover, PAS is solely realized on the user-side and requires no changes on

the service-side. Both features ensure the practicability of PAS and make it ready to be used.

V



PAS solves the password generation problem by creating attack-resistant, individual, and valid

passwords for users automatically. Users just need to provide the URL of a service to generate an

optimal password for an account. Our uniform description of password requirements provides

the information to generate passwords in accordance with the individual password requirements

of services. PAS is able to generate the requirements descriptions automatically by extracting

the password requirements of services from their websites. So far, this was done for 185,696

services. Moreover, PAS is equipped with an optimal password-composition rule set for the

event that services do not explicitly state their password requirements, which is the usual case.

By means of the optimal rule set, PAS also generates attack-resistant passwords with the best

possible acceptance rate in case of unknown password requirements.

PAS solves the password memorization problem by preserving passwords for users. This releases

users from memorizing their passwords and facilitates to use individual passwords for accounts.

PAS makes users’ password portfolios available on all their devices as well as automatically syn-

chronizes changes. PAS achieves this without storing passwords at servers so that an attacker

cannot steal them from servers. Moreover, PAS provides a backup solution to recover the pre-

served passwords in case of loss. Users need to create backups only once and do not have to

update them even when their password portfolios change. Consequently, users can keep back-

ups completely offline at secure, different, and physically isolated locations. This minimizes the

risk of compromise and loss as well as enables an emergency access to the passwords for trusted

persons. Moreover, PAS has a built-in revocation mechanism. It allows users to completely

invalidate devices and backups in case they lose control over them. This guarantees that no

passwords can be stolen from lost user devices and backups once revoked. Users always have

full control of their passwords.

PAS solves the password change problem by changing passwords automatically for users. Users

neither need to create new passwords nor manually log in to their accounts. Our uniform de-

scription of password interfaces and procedures provides the information to change passwords

at arbitrary services. Moreover, PAS is the first solution that provides autonomous password

changes. It changes passwords on a regular basis with respect to the security level of passwords

as well as immediately after PAS detects a compromise of users’ passwords.

The practicability of PAS is demonstrated by an implementation. The individual components

of PAS can be used independently, integrated into other applications, and combined to a single

user application, called a password assistant.

In summary, this thesis presents a solution that makes secure passwords usable. This is done by

automation and comprehensive support in the generation and management of passwords.

VI Abstract



Zusammenfassung
Nutzerkonten bei Internetdiensten enthalten eine Vielzahl von personenbezogenen Daten wie

Nachrichten, Dokumente, Bilder und Bankdaten. Um diese sensiblen Daten vor unberechtigtem

Zugriff zu schützen werden Passwörter verwendet. Eine Passwort-basierte Authentisierung hat

für Nutzer und Dienstanbieter viele Vorteile. Nutzer können Passwörter bei verschiedenen Platt-

formen, Geräten und Anwendungen auf die gleiche Art und Weise nutzen. Dienstanbieter kön-

nen eine Passwort-basierte Authentisierung leicht implementieren sowie mit wenig Aufwand

und geringen Kosten betreiben.

Passwörter haben jedoch ein zentrales Problem: Der Konflikt zwischen Sicherheit und

Nutzbarkeit. Aus Sicherheitsgründen müssen Passwörter diversen Angriffen wie Wörterbücher,

Brute-Force, usw. widerstehen, sich zwischen Konten unterscheiden und regelmäßig geändert

werden. Jedoch führen diese drei Sicherheitsanforderungen dazu, dass Passwörter sehr schwer

nutzbar sind. Um die Sicherheitsanforderungen zu erfüllen, müssen Nutzer ein großes Port-

folio an Passwörtern erstellen und verwalten. Dies führt zu drei Problem: Erstens ist es sehr

schwierig sichere Passwörter zu erstellen. Zweitens ist es praktisch unmöglich sich viele Pass-

wörter zu merken. Drittens ist es sehr zeitaufwendig Passwörter regelmäßig zu ändern. Die un-

terschiedlichen Passwort-Anforderungen sowie Schnittstellen und Prozeduren zur Nutzung von

Passwörtern der Dienstanbieter tragen zu einer Verschärfung dieser Probleme bei. Durch das

Speichern von Passwörtern auf Nutzergeräten müssen sich Nutzer zumindest ihre Passwörter

nicht mehr merken. Jedoch schafft dieser Lösungsansatz neue Probleme: Die Vertraulichkeit,

Verfügbarkeit, Wiederherstellbarkeit und Zugreifbarkeit im Notfall der gespeicherten Passwörter

muss gewährleistet werden. Trotz jahrelanger Forschung und unzähligen Lösungsvorschlägen

sind die Probleme von Passwörtern bis heute nicht gelöst. Daher können Nutzer in der Praxis

sichere Passwörter nicht verwenden. Nutzer wählen daher im Alltag einfache Passwörter, ver-

wenden die gleichen Passwörter für mehrere Konten und ändern Passwörter nur sehr selten.

In dieser Arbeit stellen wir das Password Assistance System (PAS) vor. Es ermöglicht Nutzern

sichere Passwörter für ihre Konten bei Dienstanbietern im Internet zu verwenden. Dies geschieht

durch eine Automatisierung und einer umfassenden Unterstützung bei der Generierung und

Verwaltung von Passwörtern. PAS berücksichtigt und umfasst alle Aspekte und Bereiche von

Passwörtern. Es generiert, speichert und ändert regelmäßig die Passwörter von Nutzern. Es

stellt außerdem die Vertraulichkeit, Verfügbarkeit, Wiederherstellbarkeit und Zugreifbarkeit im

VII



Notfall der gespeicherten Passwörter sicher. PAS reduziert damit den Aufwand und die Aufgaben

von Nutzern hinsichtlich ihrer Passwörter auf ein Minimum. Nutzer sind mit PAS das erste Mal

in der Lage sichere Passwörter in der Praxis einzusetzen.

PAS ist die erste Lösung, die mit den verschiedenen Implementierungen von Passwörtern bei

Dienstanbietern umgehen kann. Dies wird durch eine einheitliche Beschreibung der Passwort-

Anforderungen, -Schnittstellen und -Prozeduren erreicht. Außerdem ist PAS eine reine Nutzer-

seitige Lösung und erfordert keine Änderungen auf Seiten der Dienstanbieter. Mit diesen zwei

Eigenschaften ist der Einsatz von PAS in der Praxis gewährleistet.

PAS löst das Problem der Erstellung sicherer Passwörter indem es automatisch Passwörter

für Nutzer generiert. Diese Passwörter sind sicher gegen Angriffe, unterschiedlich für jedes

Nutzerkonto und entsprechen den jeweiligen Passwort-Anforderungen der Dienstanbieter. Dazu

müssen Nutzer nur die URL eines Dienstanbieters angeben. PAS generiert dann ein op-

timales Passwort automatisch. Eine einheitliche Beschreibung der verschiedenen Passwort-

Anforderungen bildet die Grundlage um Passwörter im Einklang mit den jeweiligen Passwort-

Anforderungen der Dienstanbieter zu generieren. PAS ist in der Lage diese Beschreibungen

automatisch zu erstellen, indem es die Passwort-Anforderungen von den Webseiten der Dienst-

anbieter extrahiert. Die einheitlichen Beschreibungen der Passwort-Anforderungen wurden in

dieser Arbeit bereits für 185.696 Dienstanbieter erstellt. Des Weiteren nutzt PAS optimierte

Regeln für die Erstellung von Passwörtern für den Fall, dass die Passwort-Anforderungen eines

Dienstanbieters nicht zur Verfügung stehen. Dies gilt für die Mehrheit der Dienstanbieter im

Internet, wie wir in einer umfassenden Studie in dieser Arbeit zeigen. Mit diesen Regeln gener-

iert PAS Passwörter, die sicher gegen Angriffe sind und von der Mehrzahl der Dienstanbieter

akzeptiert werden.

PAS löst das Problem das sich Nutzer nur wenige Passwörter merken können indem es die

Passwörter speichert. Damit ist es möglich unterschiedliche Passwörter für Nutzerkonten zu

verwenden. PAS sorgt darüber hinaus dafür, dass die Passwörter auf allen Geräten der Nutzer

zur Verfügung stehen einschließlich neuer und geänderter Passwörter. Dies geschieht jedoch

ohne die Passwörter auf Servern im Internet zu speichern. Angreifer sind daher nicht in der

Lage, die Passwörter von Servern zu stehlen. PAS stellt auch eine Backup Lösung bereit, so

dass Nutzer ihre Passwörter nicht verlieren können. Ein Backup muss dabei nur einmal erstellt

werden. Eine Aktualisierung ist nicht erforderlich, auch wenn sich Passwörter ändern. Diese

Eigenschaft erlaubt es, Backups an sicheren und verschiedenen Orten aufzubewahren. Dies

reduziert das Risiko, dass Backups selbst verloren oder zerstört werden, sowie Angreifer Zugriff

auf diese erhalten. Darüber hinaus können damit Backups bei vertrauenswürdigen Personen

hinterlegt werden, so dass diese im Notfall Zugriff auf die Passwörter haben. PAS bietet darüber

VIII Zusammenfassung



hinaus ein Revokationsmechanismus für Nutzergeräte und Backups an. Mit diesem sind Nutzer

in der Lage darauf enthaltenen PAS-spezifischen Daten nutzlos zu machen. Angreifer können

dann keine Passwörter von gestohlenen Geräten oder Backups entwenden. Nutzer haben damit

zu jeder Zeit die volle Kontrolle über ihre Passwörter.

PAS löst ebenfalls das Problem der regelmäßigen Änderungen von Passwörtern. Dies erledigt

PAS vollautomatisch. Nutzer müssen weder neue Passwörter erstellen, noch sich bei ihren Kon-

ten anmelden. Die einheitliche Beschreibung der Password-Schnittstellen und -Prozeduren der

Dienstanbieter ermöglicht eine Automatisierung von Passwort-Änderungen bei beliebigen Dien-

sten. Außerdem ist PAS die erste Lösung die Passwörter autonom ändert. Dies geschieht in

regelmäßigen Abständen mit Hinblick auf das Sicherheitsniveau der Passwörter und sobald PAS

ein Missbrauch von Passwörtern feststellt.

Die Praxistauglichkeit von PAS ist durch eine Implementierung demonstriert. Die Komponen-

ten von PAS können dabei einzeln genutzt sowie in andere Anwendungen integriert werden.

Verbunden zu einer Nutzerapplikation bilden sie den Password Assistant.

Zusammenfassend stellt diese Arbeit ein System bereit, das die Nutzung von sicheren Pass-

wörtern bei Nutzerkonten ermöglicht. Dies wird durch eine Automatisierung und einer umfan-

greichen Unterstützung bei der Generierung und Verwaltung von Passwörtern erreicht.

IX





Contents

List of Publications I

Abstract V

Zusammenfassung VII

List of Figures XV

List of Tables XVII

1 Introduction 1

2 Background 7
2.1 Cryptographic primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Pseudo-random generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Digital signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Transport Layer Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Password-based authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Password storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Password guessing attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Passwords require ubiquitous assistance 15
3.1 System and attacker model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Requirements and conditions for secure passwords . . . . . . . . . . . . . . . . . 18

3.2.1 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Service conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Usage requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Password tasks of users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Password generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Password preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Password change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Service conditions for passwords: password requirements . . . . . . . . . . . . . 28
3.4.1 Application of password requirements . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Security levels resulting from password requirements . . . . . . . . . . . . 35

XI



3.5 Service conditions for passwords: password interfaces and procedures . . . . . . . 40
3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Login interfaces and procedures . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.3 Password change interfaces and procedures . . . . . . . . . . . . . . . . . 44

3.6 Passwords in practice and the state of the art . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Password generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.2 Password preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.3 Password change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Realization of secure passwords by ubiquitous password assistance . . . . . . . . 61
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Automatic generation of attack-resistant and valid passwords 63
4.1 Conceptual description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Uniform description of password requirements . . . . . . . . . . . . . . . . . . . 65
4.3 Automatic generation of password requirements descriptions . . . . . . . . . . . . 72

4.3.1 Extraction and interpretation of password requirements . . . . . . . . . . 73
4.3.2 Generation of password requirements descriptions . . . . . . . . . . . . . 75
4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Distribution of password requirements descriptions . . . . . . . . . . . . . . . . . 79
4.4.1 Service-independent centralized solution . . . . . . . . . . . . . . . . . . 79
4.4.2 Privacy-preserving decentralized solution . . . . . . . . . . . . . . . . . . 80

4.5 Optimal fallback password-composition rules for password assistants . . . . . . . 81
4.5.1 Optimization of the acceptance rate . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Optimization of the acceptance rate under the condition of 128-bit security 84

4.6 Implementation and practical evaluation . . . . . . . . . . . . . . . . . . . . . . . 86
4.6.1 Large-scale creation of password requirements descriptions . . . . . . . . 86
4.6.2 Usage of password requirements descriptions in password assistants . . . . 89
4.6.3 Application and impact of optimized fallback password-composition rules . 92

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Passwordless and seamless password synchronization 97
5.1 Solution for password preservation and synchronization . . . . . . . . . . . . . . 98

5.1.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1.2 Password generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.3 Password synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.4 Device management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Client application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Server application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Security evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.1 Extended system and attacker model . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Security properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.3 Attack scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.4 Trust relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

XII Contents



6 Update-tolerant and revocable password backup with emergency access 123
6.1 Solution for password backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.1 Creation of backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 Data recovery from backups . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.1.3 Revocation of backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1.4 Recovery of server-side data . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Emergency access to backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.1 Creation of backups with emergency access . . . . . . . . . . . . . . . . . 129
6.2.2 Access backups in case of emergency . . . . . . . . . . . . . . . . . . . . . 130

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.1 Backup device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.2 Client application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.3 Details of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Security evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.1 Extended system and attacker model . . . . . . . . . . . . . . . . . . . . . 134
6.4.2 Attack scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Automatic and autonomous password change 137
7.1 Conceptual description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Uniform description of password policies . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Tool-based creation of password policy descriptions . . . . . . . . . . . . . . . . . 146
7.4 Distribution of password policy descriptions . . . . . . . . . . . . . . . . . . . . . 148

7.4.1 Service-independent centralized solution . . . . . . . . . . . . . . . . . . 148
7.4.2 Privacy-preserving decentralized solution . . . . . . . . . . . . . . . . . . 149

7.5 Strategies for autonomous password changes . . . . . . . . . . . . . . . . . . . . 149
7.5.1 Proactive password change strategy . . . . . . . . . . . . . . . . . . . . . 149
7.5.2 Reactive password change strategy . . . . . . . . . . . . . . . . . . . . . . 153

7.6 Implementation and practical evaluation . . . . . . . . . . . . . . . . . . . . . . . 157
7.6.1 Creation of password policy descriptions . . . . . . . . . . . . . . . . . . . 157
7.6.2 Usage of password policy descriptions in password assistants . . . . . . . . 158

7.7 Easy-to-use passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 Conclusion 165

Bibliography XIX

Contents XIII





List of Figures
2.1 Activity diagram of password-based authentication. . . . . . . . . . . . . . . . . . 10

3.1 Password life cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Distribution of minimum password lengths. . . . . . . . . . . . . . . . . . . . . . 31
3.3 Distribution of maximum password lengths. . . . . . . . . . . . . . . . . . . . . . 32
3.4 Security levels resulting from password requirements. . . . . . . . . . . . . . . . 38
3.5 Password change procedure of Google. . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Password change procedure of Facebook. . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Data flow of the automatic password generation procedure. . . . . . . . . . . . . 64
4.2 Password generation procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Structure of a PRD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Structure of the password requirements definition. . . . . . . . . . . . . . . . . . 67
4.5 Data flow of the automatic PRD generation. . . . . . . . . . . . . . . . . . . . . . 72
4.6 Execution steps of the password requirements extraction. . . . . . . . . . . . . . . 73
4.7 Distribution of PRDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Acceptance rates of password lengths. . . . . . . . . . . . . . . . . . . . . . . . . 83
4.9 Security level and acceptance rate of optimal password-composition rules. . . . . 85
4.10 Password generation with KeePass. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 PALPAS password generation procedure. . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Data flow of the password generation procedure. . . . . . . . . . . . . . . . . . . 102
5.3 Data flow of the password synchronization procedure. . . . . . . . . . . . . . . . 103
5.4 Data flow of the password update procedure. . . . . . . . . . . . . . . . . . . . . 105
5.5 Data flow of the password deletion procedure. . . . . . . . . . . . . . . . . . . . 106
5.6 Data flow of the initial installation procedure. . . . . . . . . . . . . . . . . . . . . 107
5.7 Data flow of the installation procedure on further devices. . . . . . . . . . . . . . 108
5.8 Architecture of the PALPAS client. . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.9 Architecture of the PALPAS server. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Data flow of the backup procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Data flow of the recovery procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3 Data flow of the emergency access procedure. . . . . . . . . . . . . . . . . . . . . 130
6.4 Architecture of the PASCO client. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 Data flow of the automatic password change procedure. . . . . . . . . . . . . . . 138
7.2 Structure of a PPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3 Structure of the password interfaces and procedures definition. . . . . . . . . . . 141
7.4 Execution steps of the PPD generation procedure. . . . . . . . . . . . . . . . . . . 146
7.5 Architecture of the PPDR application. . . . . . . . . . . . . . . . . . . . . . . . . 147
7.6 Estimation of the attacker’s increase of guessing power. . . . . . . . . . . . . . . . 151

XV



7.7 Data flow of the password breach notifications. . . . . . . . . . . . . . . . . . . . 153
7.8 Architecture of a password assistant with ALM. . . . . . . . . . . . . . . . . . . . 155
7.9 Architecture of the APACHA client. . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.10 Data flow of easy-to-use passwords. . . . . . . . . . . . . . . . . . . . . . . . . . 161

XVI List of Figures



List of Tables
3.1 Mapping of security requirements to attacker capabilities. . . . . . . . . . . . . . 19
3.2 Application of password requirements. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Application of password lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Application of character sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Application of minimum occurrences. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Application of maximum occurrences. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Number of actions for password change. . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Actions to reach a password change form. . . . . . . . . . . . . . . . . . . . . . . 44
3.9 Available password requirements and meters at password change forms. . . . . . 46

4.1 Incompletely or incorrectly extracted password requirements. . . . . . . . . . . . 76
4.2 Acceptance rate of combined character sets. . . . . . . . . . . . . . . . . . . . . . 84
4.3 Data sets of URLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Default password-composition rules of common passwords generators . . . . . . . 93

5.1 PALPAS secrets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Time intervals for proactive password changes. . . . . . . . . . . . . . . . . . . . 151
7.2 Created PPDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

XVII





1 Introduction
In the last decade, services on the Internet have changed from only providing static content to

services which enable users to communicate, interact, and collaborate. User accounts for email

providers, shopping portals, social networking sites, blogs, wikis, and video sharing platforms

have become an integral part of our life. These accounts contain a multitude of personal data

such as messages, documents, pictures, and payment information. To protect these sensitive

data from unauthorized access, online accounts are usually protected by passwords.

Service providers can implement password-based user authentication with little effort and op-

erate it with low cost per user [114]. Users are familiar with the concept of passwords and

can use them across many platforms, devices, and applications [36]. They do not need to buy

special hardware or need to carry additional devices. Moreover, passwords kept in users’ minds

appear to users to be always available, not threatened by loss like keys, and to be stored in the

safest place on earth to which no one else has access and could steal them. Moreover, in urgent

or emergency situations, users can give passwords to someone else to access accounts on their

behalf just by telling them. These perceived benefits of passwords are very important for users

[128, 131, 208, 244]. Regarding these advantages for users and services, it is very likely that

passwords remain the dominant authentication scheme on the Internet in the future [115].

However, passwords have a key problem: the conflict between security and ease of use. The var-

ious attacks against passwords, such as brute-force [135, 235], dictionary [34, 234], and social

engineering [53], make secure passwords indispensable. This means users must use attack-

resistant and individual passwords for their accounts and change them on a regular basis. But,

these three security requirements make passwords unusable. They require users to generate

and manage a large portfolio of passwords. This poses the following fundamental problems:

• Password generation: Generating passwords that resist brute-force attacks is difficult. User-

chosen passwords often include personal-related and service-related information and have

patterns [141, 202, 224, 247]. This enables very efficient guessing attacks [162, 169, 235].

• Password memorization: Memorizing a multitude of passwords is practically impossible.

Therefore, users create passwords that are easy to remember and reuse them across ac-

counts [43, 66, 95, 129, 233, 241]. This bears the risk that an attacker can easily guess

the passwords and get access to multiple accounts just by obtaining a single password.

1



• Password change: Regularly changing the passwords of all online accounts is very time-

consuming. Consequently, users barely change their passwords [110, 212], even after

security breaches at services or exceptional events like the Heartbleed bug [62, 121, 179].

The generation and change problem are aggravated by the different password implementations

of services [37]. They raise further implementation-related problems:

• Password requirements: Generating passwords in accordance with the different, incompre-

hensible, incomplete, and often unknown services’ password requirements is very difficult.

• Password interfaces and procedures: Changing passwords through the different password

interfaces and procedures implemented by services is very challenging and cumbersome.

The memorization problem of passwords can be mitigated by preserving passwords for users

such as storing them on user devices using a password manager. However, preserving passwords

leads to additional preservation-related problems:

• Password confidentiality: Protecting passwords from unauthorized access is difficult. It is

often done by another password, which raises the aforementioned fundamental problems.

• Password availability: Making passwords available on all devices is challenging. Manually

copying passwords is inconvenient and an online synchronization raises security issues.

But, users cannot access their accounts everywhere and anytime without their passwords.

• Password recoverability: Creating password backups, properly protecting them, keeping

them up-to-date, and storing them at secure locations is practical impossible. But, users

lose their entire digital life when they cannot restore lost passwords.

• Password accessibility: Making passwords available to trusted persons in urgent or even

emergency situations is very challenging. Placing a copy of the passwords at trusted per-

sons raises the same problems such as password backups.

The generation and memorization problem of passwords were already mentioned in 1979 [167].

Even after more than 35 years of research and numerous proposals to replace passwords [16,

25, 36], we are still using passwords and facing the same problems [113, 114, 211]. Even IT

professionals cannot manage passwords properly [128, 151, 209].

Preserving passwords is the most suitable approach to realize at least a large portfolio of attack-

resistant and individual passwords, but the confidentiality, availability, recoverability, and ac-

cessibility of the preserved passwords must be ensured. Moreover, the generation, change, and

implementation-related problems remain.

2 1 Introduction



As long as the fundamental, implementation-related, and preservation-related problems of pass-

words are not solved as a whole, user remain unable to use secure passwords in practice. There-

fore, the research goal of this thesis is:

Make secure passwords usable for users.

In this thesis, we introduce the Password Assistance System (PAS). It enables users to use secure

passwords for their online accounts. This is achieved by automation and comprehensive support.

PAS solves the password problems by performing three tasks for users:

1. Generating attack-resistant and individual passwords in accordance with the respective

password requirements of services automatically.

2. Preserving passwords as well as ensuring their confidentiality, availability, recoverability,

and accessibility.

3. Changing passwords in accordance with the different password interfaces and procedures

of services automatically.

PAS reduces the efforts and activities of users to deal with passwords to a minimum. Moreover,

it covers all aspects of passwords and supports users from the generation of passwords to their

recovery in case of loss. By providing a ubiquitous solution that solves all password problems

and addresses all conditions, concerns, and needs of users, PAS enables users to practically use

secure passwords for their online accounts for the first time.

PAS is the first solution that is capable of handling the different password implementations of

services. The diversity is solved by standardization. A uniform description of password re-

quirements, interfaces, and procedures enables PAS to cope with the implementation-related

problems of passwords. Moreover, PAS is solely realized on the user-side and completely inde-

pendent from services. It does not require any changes on the service-side like new hardware,

interfaces, or communication protocols. Handling the different implementations and requiring

no changes by services ensure the applicability of PAS and make it ready to be used.

The individual components of the PAS can be used independently as well as integrated into

other applications such as password generators and managers. In this way, users that prefer

to continue to use their current applications also benefit from the features of PAS. Combined

to a full-fledged user application, PAS facilitates the next generation of password management

application, the password assistant.

3



Contribution and outline

The main contribution of this thesis is the Password Assistance System that makes secure pass-

words usable for users. PAS achieves this by generating and managing passwords for users

automatically and providing comprehensive support. In the following, we summarize the struc-

ture of this thesis and the four parts of PAS.

Background (Chapter 2)

We start by presenting the relevant background for this thesis. This includes an explanation

of the cryptographic primitives that we use in PAS and a description of the foundations of

password-based authentication. We describe the usage of passwords for online accounts, the

storage of passwords at services, and the various attacks against passwords.

Passwords require ubiquitous assistance (Chapter 3)

In this chapter, we detail the problem of users to use secure passwords for their accounts. We

identify security requirements for passwords, conditions stated by services that affect the usage

of passwords in practice, and usage requirements to ensure a practical and usable solution as

well as address conditions, concerns, and needs of users. Based on these requirements and

conditions, we define three tasks for users that enable them to realize secure passwords for

their accounts. In brief, these tasks are generating, preserving, and changing passwords.

To realize these three password tasks in practice, we analyze the service conditions in detail.

In the largest ever conducted survey on password requirements, we demonstrate that the re-

quirements of services are quite different, incomprehensible, incompletely stated, and often not

mentioned at all. In a second survey, we show that also the password interfaces and procedures

of services are quite different.

Moreover, we examine existing user studies and proposals with respect to the realization of

the three password tasks. It turns out that users cannot perform the tasks manually. None of

the proposals covers all tasks and in many cases the service conditions prevent a practical use.

Furthermore, the proposals do not address all conditions, concerns, and needs of users as well

as often raise new problems.

With regard to this result, we outline PAS. It enables users to realize the three password tasks

and thus secure passwords by automation and comprehensive support.

4 1 Introduction



Automatic generation of attack-resistant and valid passwords (Chapter 4)

In this chapter, we describe the first part of PAS which realizes the first password task of gener-

ating passwords. We present the first solution that automatically generates attack-resistant and

valid passwords for users. In contrast to existing approaches, users neither have to find out the

password requirements of services nor to adjust generated passwords until they get accepted

by services. Users just need to provide the URL of a service in order to generate an optimal

password for an account.

We introduce a standardized description of password requirements, the first practical solution

to handle the different requirements of services and the basis for the automatic generation of

valid passwords. We present a tool that automatically creates the descriptions by extracting

the password requirements from the services’ websites. Moreover, we describe solutions to

distribute the descriptions. We develop an optimal password-composition rules for the event

that services do not explicitly state their password requirements, which is the usual case.

To evaluate the feasibility of our solution, we created standardized requirements descriptions of

185,696 services, implemented a password assistant that makes use of them, and also integrated

them into an existing password generator.

Passwordless and seamless password synchronization (Chapter 5)

In this chapter, we present the second part PAS. It provides the first component for the second

password task of preserving passwords. It preserves passwords for users and ensures their con-

fidentiality and availability. We present the first usable and secure password synchronization

scheme. It makes the password portfolios of users available on all their devices as well as seam-

lessly synchronizes changes. In contrast to common approaches, our password synchronization

scheme does not store any passwords, neither at devices nor at servers on the Internet. There-

fore, they cannot be stolen by compromising servers. Our solution also has a build-in revocation

mechanism to invalidate the data stored on devices in an information-theoretical secure way.

This prevents the theft of passwords from stolen devices.

Update-tolerant and revocable password backup with emergency access (Chapter 6)

We describe the third part of PAS in this chapter. It provides the second component for the

second password task. We complement our password synchronization scheme from Chapter 5

with a secure and usable backup solution. It provides the recoverability and accessibility of the

preserved passwords and ensures that users never lose their passwords. In addition, it allows

users to make their passwords available to trusted persons in emergency situations.

5



Our backup system is the first solution that creates backups that do not need to be updated even

when users’ password portfolios change. Users need to create backups only once and can keep

them completely offline at secure, different, and physically isolated locations. This minimizes

the risk of compromise and loss. Further, it allows users to place backups at trusted persons to

achieve an emergency access. Like our password synchronization scheme, our backup solution

has a built-in revocation mechanism. It allows users to invalidate backups if they lose control

over them. The revocation mechanism works without having access to backups and guarantees

that no passwords can be leaked from them once revoked. Altogether, PAS provides the first

secure and usable solution for the preservation-related problems of passwords. It ensures their

confidentiality, availability, recoverability, and accessibility.

Automatic and autonomous password change (Chapter 7)

In this chapter, we describe the fourth and last part of PAS. It realizes the third password task

of changing passwords. We present the first solution that completely automate this task so that

users do not need to take care of this anymore. Users neither need to create passwords nor to

log in to their accounts.

We introduce a standardized description for password interfaces and procedures, the first prac-

tical solution to handle the different password implementations of services and the foundation

for automatic password changes at arbitrary services. We develop a tool for users to easily create

the descriptions for their services. Moreover, we provide a service to distribute descriptions so

that they must be created only once and then can be shared with all Internet users. In this way,

our solution can support a large number of services with minor efforts and in a short time.

We realize an autonomous password change by two strategies. Password changes are performed

on a regular basis with respect to the security level of passwords as well as immediately after PAS

detects a compromise of users’ passwords. In this way, passwords are changed in an intelligent

manner and not simply after a fixed time interval like 90 days.

To evaluate the feasibility of our solution, we created standardized password interfaces and

procedures descriptions of popular services and implemented a password assistant that makes

use of them and automatically changes passwords.

Conclusion (Chapter 8)

Finally, in this chapter we conclude this thesis and discuss future work.

6 1 Introduction



2 Background
In this chapter, we provide the necessary background for this thesis. First, we explain the

cryptographic primitives that we use in our solution in Section 2.1. Second, we describe the

foundations of password-based authentication in Section 2.2. We explain authentication in

general as well as its different factors and types. Then, we describe the usage of passwords for

user authentication at Internet services and the storage of passwords at services. Finally, we

provide a detailed summary of the various guessing attacks against passwords.

2.1 Cryptographic primitives

In this section, we describe the cryptographic primitives that we use in PAS. We limit our expla-

nations to the scope of this thesis.

2.1.1 Pseudo-random generator

A random generator produces a sequence of unpredictable bits. The randomness is collected

from physical sources such as thermal noise, spinning hard drive, and input devices [76]. The

number of randomness that can be gathered from such sources in a certain time interval is

limited. Therefore, in practice often a pseudo-random generator (PRG) is used. It is seeded with

a short sequence of truly random bits produced by a random generator. This short input seed

is then expanded to a long sequence of pseudo-random bits [45]. A PRG is cryptographically

secure if it is practically impossible for an attacker to distinguish between the output of a PRG

and a sequence of truly random bits. This property is called pseudo-randomness. Such PRGs

are sufficient for the usage in security-critical applications. A list of secure PRGs can be found

in [19]. PAS uses a PRG to generate random passwords (cf. Chapter 4).

Rejection sampling

Rejection sampling is a technique to generate random values under certain constraints [27,

Chapter 11.4]. PAS uses rejection sampling to generate random passwords under given require-

ments (cf. Chapter 4). A typical example is generating passwords that contain at least a number.

7



By means of rejection sampling, this works as follows: A random password is generated by us-

ing a PRG. Then, it is checked whether the password fulfills the requirements, e.g. containing

at least one number. If not, the password is discarded and a new password is generated. This

process is repeated until a password is found that fulfills all requirements.

While this process in theory might never terminate, in practice it ends after a few iterations. We

consider the generation of a password with a length of 10 characters and consisting of letters

and numbers and at least one number. The probability that after τ iterations such a password

is not generated is ((1− 10
62)

10)τ = 0.17τ < 2−2τ. This probability vanishes exponentially fast in

the number of iterations. In practice this means for τ = 4 the probability is less than 1%.

2.1.2 Hash function

A hash function maps data of arbitrary length to data of fixed length [45]. The input is usually

called the message and the output the hash. For our solution we make use of cryptographic hash

functions which have three properties: one-wayness, second-preimage resistance, and collision

resistance [120, 187]. One-wayness means that a hash function is not invertible, i.e. the message

for a given hash cannot be computed. Second-preimage describes the property that for a given

message it is impossible to find another message so that both have the same hash. Collision

resistance means that it is impossible to find two different messages with the same hash.

Hash functions are used to securely store passwords. Instead of storing passwords in plain,

services just store the hashes of passwords. During a login, services hash the submitted password

and compare the result to the stored hash. In Section 2.2.1 we describe the storage of passwords

at services more detailed. The one-wayness ensures that an attacker obtaining a hash is not

able to compute the corresponding password. Second-preimage resistance is irrelevant with

respect to password hashing, because the attacker already knows the password. Finding another

password with the same hash is pointless. The same applies for the collision resistance. Finding

two passwords with the same hash does not provide any advantage for an attacker.

2.1.3 Encryption

Encryption is used to keep data secret. It can be used to protect stored data as well as to

protect data which is transferred between entities over a public network such as the Internet.

Encrypting and decrypting data is done with a corresponding encryption and decryption key.

PAS uses symmetric encryption schemes such as AES [75] and a one-time pad (OTP) [22, 163]

in which the same key is used for encryption and decryption. Encryption is used by PAS to

protect the communication between entities as well as stored data.

8 2 Background



2.1.4 Digital signature

A digital signature scheme is used to sign electronic data. A signature is created by using a secret

key and can be verified by using the corresponding public key. Typically, signatures are used to

sign emails or documents like contracts. But, they can also be used for authentication. PAS

uses signatures to authenticate clients and servers. A client can authenticate itself to a server in

the following way: The server generates a random nonce and sends it to the client. The client

signs the nonce with its secret key and sends the signature back to the server. The server in turn

verifies the signature using the public key of the client. If the signature is correct, the client is

authenticated to the server. Note that this assumes that the server knowns the public key of the

client. This can be achieved using certificates.

2.1.5 Certificate

A certificate binds a public key to a subject identifier [63]. In practice, subjects are URLs for

websites or email addresses. Among other information, a certificate contains the identifier of

the entity and its public key. A certificate is signed by a trusted Certificate Authority (CA) which

attests that the public key belongs to the subject. The signature provides a provable binding

which can be verified by others.

Besides the issuance of certificates, a CA operates a directory service for retrieving certificates

and revocation information [41]. Servers in PAS are equipped with certificates issued by com-

mercial CAs. For the issuance and management of client certificates PAS operates its own CA.

2.1.6 Transport Layer Security

Transport Layer Security (TLS) is a protocol that establishes an encrypted and authenticated

communication channel between a client and a server [71]. The authentication is based on

digital signatures and certificates for key distribution. TLS is the de facto standard for secure

communication on the Internet. A prominent example is web browsing in which TLS secures

the communication between a web browser and a web server. PAS uses TLS to protect the

communication between clients and servers and for mutual authentication.

2.1 Cryptographic primitives 9



2.2 Password-based authentication

Authentication is the process of identifying and verifying the identity of an entity. We focus on

the authentication of users. User authentication can be realized with various factors which can

be divided into five categories [28, 36, 40]: something the user knows (e.g. a password), some-

thing the user has (e.g. a smart card), something the user is (e.g. biometrics like a fingerprint),

somewhere the user is (e.g. at home), or somebody the user knows (e.g. a friend).

The different authentication means can be used on their own (single-factor authentication) and

can be combined (two-factor or even multi-factor authentication) [102]. For user accounts at

services on the Internet, today, mainly a single-factor authentication using a knowledge-based

factor is used: passwords.

During the creation of an online account, the user and the service agree on a username and a

password. The username identifies each user of the service and consequently must be unique.

The password is used to verify that the user is who he claims to be and therefore must be kept

secret. To log in to his account, the user needs to provide both, his username and his password,

to the service. This means that the service must store these data which we describe in the next

section. Figure 2.1 illustrates the authentication procedure in detail.

User provides 
username and

password.

No

Invalid username 
and/or password.

Prompt user 
again.

_Yes_

User 
authentication 

successful.
Grant access.

Correct username

and password?

Figure 2.1: Activity diagram of password-based authentication.

10 2 Background



2.2.1 Password storage

In this section, we explain the storage of passwords at services. Regarding the preservation of

passwords on the user-side, we describe the various approaches in Section 3.6.2.

To properly protect passwords from leakage, best practice is to store them in a salted and hashed

way [84, 107, 132]. A salt is a user-specific random value which is generated the service during

account creation [167]. It is concatenated with the user password before computing the hash.

The salt and the hashed password are then stored in a password database. The salt protects from

attacks based on precomputed (reverse) lookup and rainbow tables [112, 117, 173, 239].

When a user attempts to log in to his account, the service looks up the salt using the submitted

username. Next, it concatenates the salt with the submitted password and computes the hash.

Finally, the service compares the computed hash with the stored hash value in its database. If

both are equal the login is successful. Otherwise, the user provided a wrong password.

Storing passwords in a salted and hashed manner protects passwords and allows services to

efficiently verify passwords during login. To prevent an attacker from computing the passwords

from stolen hashes, a cryptographically secure hash function must be used (cf. [65]). We can

expect that services currently use SHA-1 [122, 165].

2.2.2 Password guessing attacks

We describe the various kinds of guessing attacks against passwords in this section. A thorough

understanding of these attacks is vital to develop effective countermeasures. It appears that any

predicable patterns in passwords can be exploited to improve guessing attacks.

We start in Section 2.2.2.1 with the conceptually simplest guessing attack: brute-force. In

Section 2.2.2.2 we describe a more sophisticated attack using dictionaries and in Section 2.2.2.3

we present guessing attacks based on probabilistic models. All these attacks can be performed

online and offline. In an online attack an attacker tries to log in to an account using guessed

passwords. In an offline attack an attacker has a hashed password and tries to find the same

hash. We look at the online/offline attack scenario in detail in Section 3.1 and 3.2.1. In the

following sections, we focus on the more general concepts of the guessing attacks.

Besides these guessing attacks, there are a number of further attacks against passwords from

the domain of social engineering such as phishing [6], insider [223], social interactions [108],

and malware [185]. Because these attacks cannot be prevented by technical means and are not

specific to passwords, these are out of scope and we refer to [36, 185] for further details.

2.2 Password-based authentication 11



2.2.2.1 Brute-force attack

The concept of a brute-force attack is to simply try out all possible passwords. For instance,

starting with the password candidate aaaa, an attacker tries aaab, aaac, aaad, and so on. This

approach is well-suited for short passwords. However, with an increasing number of possible

passwords, a brute-force attack quickly becomes very time-consuming and even impractical.

To optimize a brute-force attack, the password requirements of services can be taken into ac-

count. This is called a mask attack. Requirements like occurrences of characters or position

restrictions can reduce the number of possible passwords and speeds up a brute-force attack.

In general, a brute-force attack is very inefficient regarding real-world password guessing, be-

cause it does not consider how users choose passwords in practice. As we describe in Section

3.6.1, user-chosen passwords usually have certain patterns and include user-related and service-

related information. This can be exploited by more sophisticated strategies which we describe

in the following sections.

2.2.2.2 Dictionary attack

In a dictionary attack an attacker selects password candidates from a dictionary [167]. Besides

natural-language dictionaries [178], stolen password sets [135], common quotes [141], and

wordlists created by mangling rules are used. Typical mangling rules are adding a number or

special character at the end of passwords as well as transforming letters to uppercase or to num-

bers. For example, password can be transformed into Password, password1, and pa33word. Once

invented to help users creating stronger passwords (cf. Section 3.6.1), nowadays many modern

password cracking tools such as Hashcat [111], John the Ripper [177], and PasswordsPro [124]

consider mangling rules to improve password guessing.

A dictionary attack is more efficient than a brute-force attack because it considers how users

choose passwords in practice (cf. Section 3.6.1). The popular Openwall wordlists collection [178]

contains approximately 40 million entries. This narrows the search space in comparison to a

brute-force attack. A dictionary attack might not find all passwords, if they are not part of the

dictionary or constructed by mangling rules. This particularly applies for random passwords.

Another disadvantage is that password candidates are selected from a dictionary in a sequential

order. This ignores the fact that some passwords and character sequences are more frequently

used by users than others. Attacks based on probabilistic models, which we describe in the next

section, take also advantage of this fact. They try more likely password candidates first.

12 2 Background



2.2.2.3 Probabilistic models

A probabilistic password model assigns a probability value to a character sequence. It takes as

input large password sets and outputs password candidates for a guessing attack ordered with

descending probability. The idea behind this approach is that an attack is more efficient when

passwords that are used more frequently are tested before passwords used less frequently.

There exist two types of probabilistic models: template-based and string-based [153]. A

template-based model aims at patterns in passwords to determine the probability of password

candidates. For instance, user-chosen passwords often start with letters and end with numbers

and special characters (cf. Section 3.6.1). A string-based model focuses on the fact that certain

character sequences are more likely than others, due to the layout of a typical keyboard or the

language. For instance, th is the most frequent character sequence in English [246] and 1qazxcv

a keyboard pattern. In the following, we explain both models in detail.

Template-based model using probabilistic context-free grammar

A template-based password model can be realized by a probabilistic context-free grammar [235].

The grammar is used to define mangling rules to create additional password candidates for a

dictionary attack. The production rules of the grammar are derived from a training set of plain-

text passwords, which works as follows: First, the structure of the passwords is determined.

For instance, password12? is represented by the structure L8N2SP1, where L denotes letters, N

numbers, and SP special characters. The indices denote the length of the respective character

sequence. Moreover, the probabilities of occurrences are assigned to all observed structures.

Second, the probabilities of occurrences of numbers and special characters of the training set is

determined. This information is used to select suitable candidates for the variables N and SP.

For instance, the two-digit number 12 and the special character ! were the most frequent ones

in the training data used in [235]. Based on this information, the aforementioned exemplary

structure is refined to L8N2SP1 → L812!. Password candidates are finally generated by filling

out the variable L by words form a dictionary with the same length. For instance, L812! is used

to create password candidates like computer12!, baseball12!, and superman12!.

Probabilistic context-free grammars has found large application in the research area [53, 57, 70,

119, 135, 153, 158, 200, 220, 224, 234, 242]. They can be improved by taking more general

patterns in user-chosen passwords into account [57]. This is also the advantage of string-based

models which we describe next.

2.2 Password-based authentication 13



String-based models using markov chains and neural networks

A string-based probabilistic password model predicts the probability of the subsequent character

in a password candidate based on the preceding characters, so-called context characters. For

instance, given the context characters passwor, a string-based probabilistic model outputs the

character d [162]. Similar to a template-based password model, it is trained using leaked

passwords, natural-language dictionaries, and so forth.

String-based probabilistic password model can be realized using markov models [73, 169] and

neural networks [162]. While markov models are very resource-intensive, neural networks pro-

vides a much more efficient solution and even allows to build an accurate client-side password

meter [162].

Besides password cracking, markov chains are used in other applications such as password

strength meters [54, 216] and password verification based on keystroke pattern analysis [56].

Moreover, various researchers have shown that markov chains and neural networks are more

efficient than a probabilistic context-free grammar [70, 73, 153, 169].

14 2 Background



3 Passwords require ubiquitous assistance
In this section, we detail the problem of users to use secure passwords for their online accounts.

It turns out that the problem is not solved yet and we state that the Password Assistance System

(PAS), presented in this thesis, is a promising solution.

We start in Section 3.1 with the specification of a system model and an attacker model. Then, we

identify in Section 3.2 the requirements and conditions for the realization of secure passwords

in practice. First, we define security requirements for passwords to resist the attacker we aim

to protect against. Second, we identify conditions stated by services that affect the usage of

passwords in practice. Third, we specify usage requirements to ensure a practical and usable

solution as well as to address conditions, concerns, and needs of users.

Based on these requirements and conditions, we define three tasks for users that enable them

to realize secure passwords for their accounts in Section 3.3. These tasks are generating, pre-

serving, and changing passwords.

To realize these tasks in practice, we analyze the service conditions in Section 3.4 and 3.5 in

detail. First, we present the largest survey on password requirements. We analyzed 185,696

services and show that their requirements are quite different, incompletely stated, and often

entirely missing. Second, we present a survey on password usage at services. It appears that

services have also different interfaces and procedures for login and password change.

Moreover, we examine existing literature and proposals with respect to the realization of the

password tasks in Section 3.6. It follows from this examination that users have many problems

with these tasks and cannot perform them manually. Further, existing proposals are unsatisfac-

tory, impractical, or even insecure and do not enable users to use secure passwords.

We briefly describe our solution in Section 3.7. PAS enables users to realize the three tasks

and thus secure passwords by automation and comprehensive support. We finally conclude this

chapter in Section 3.8.

Parts of the contributions of this chapter were published in [H1, H2, H5]. This chapter extends

the published contributions by (1) a detailed analysis of password-based authentication and its

issues regarding security and ease of use and (2) an analysis of the password interfaces and

procedures implemented by services.

15



3.1 System and attacker model

In this section, we present a system model that describes password-based authentication as it is

used for online accounts at services on the Internet. Moreover, we describe the attacker model

used in this thesis and characterize the attacker we aim to protect against.

System model

Entities

The entities involved in our system model are a user U and a service provider SP . SP provides

a service which is only available to legitimate users. The usage of the service requires U to

authenticate himself by providing a username and a password. The username cun identifies the

user’s account c at the service. The password cpw acts as a credential conforming the legitimacy

of U . The objective of the password-based user authentication is that only U can access his

account and use the service provided by SP .

Password storage and preservation

In our system model, we expect that U preserves cpw and cun so that he does not need to

memorize them. With respect to SP , we assume that it also stores the password cpw and the

username cun. The password is stored in a salted and hashed way. For a detailed explanation of

the storage of passwords at services, we refer to Section 2.2.1.

Communication channel

The communication between U and SP is done over a public network, i.e. the Internet. Both

entities establish a secure channel in which SP first authenticates itself to U . The authentication

of U using username and password is done through this secure channel. Both password cpw and

username cun are transmitted in plain-text. In practice, the channel is established using TLS (cf.

Section 2.1.6) and the authentication of SP is achieved by an X.509 certificate [63] issued by a

trusted CA [42, 69].

16 3 Passwords require ubiquitous assistance



Attacker model

Attacker goal

We consider an attacker A who aims at obtaining access to the account c of U . To achieve this,

A needs to have the username cun and the password cpw of U . A succeeds when he impersonates

U at the service, gets access to the account, and remains undetected.

Attacker capabilities

We assumeA knows the username cun. Obtaining cun in practice is very easy as for most services

the username corresponds to the user’s email address or profile name in case of social network

sites. With respect to obtain cpw, we consider that A has the following three capabilities:

AC1 Online attack: A only knows cun. He tries to obtain cpw by repeatedly attempting to log

in to the account c with a different password. For this attack, A uses the common login

form of the service. The attack is successful when A finds cpw.

AC2 Offline attack: A knows cun, the salted and hashed password H(cpw), and the used salt

and hash function. A systematically try out all possible passwords offline. He uses the

salt and applies the same hash function as SP , until he finds a match for H(cpw).

AC3 Targeted attack: A knows cun and a password c′pw of another account c′ of U . Within

a targeted online attack, A attempts to log in to the account c with the password c′pw.

Moreover, if A has H(cpw), he can verify in a targeted offline attack if c′pw is a valid

password for c by computing H(c′pw) and comparing it to H(cpw).

Attacker limitations

We exclude trivial attacks, attacks that cannot be prevented by technical means, and attacks

that are not specific to passwords. This includes phishing [6], insider [223], social engineer-

ing [108], and malware [185] attacks. We also exclude attacks exploiting account recovery

mechanisms [35, 96, 191] and breaking the secure channel between U and SP [62, 72, 166].

3.1 System and attacker model 17



3.2 Requirements and conditions for secure passwords

In this section, we define security requirements, service conditions, and usage requirements for

secure passwords. The security requirements are derived from the attacker model described

in the previous section. For the realization of secure passwords, it is indispensable to take the

service conditions into account. Passwords can only be used in practice under these conditions.

The usage requirements are essential for a practical and usable solution as well as to address the

conditions, concerns, and needs of users. They are deduced from the fact that users’ preserve

their passwords. In the following, we summaries the requirements and conditions and detail

them in Section 3.2.1 to 3.2.3.

Security requirements

SR1 Brute-force-resistant password: A password must have a security level of at least 128 bits.

If not feasible, the highest possible security level should be used. A password should

neither have any patterns nor contain any user-related and service-related information.

SR2 Individual password: A password must be different for each account. It should not be

reused (even not partially) for other accounts or password changes.

SR3 Changing password: A password must be changed on a regular basis and immediately

after a compromise of the password is detected.

Service conditions

SC1 Password requirements: A password must comply with the individual password require-

ments of a service.

SC2 Password interfaces and procedures: A password can only be used through the password

interfaces and according to the password procedures provided by a service.

Usage requirements

UR1 Password confidentiality: A password must be protected from unauthorized access.

UR2 Password availability: A password must be available on all user devices.

UR3 Password recoverability: A password must be recoverable in case of loss.

UR4 Password accessibility: A password must be available in emergency situations.

18 3 Passwords require ubiquitous assistance



3.2.1 Security requirements

We provide a detailed justification for the security requirements in this section. These require-

ments are deduced from the attacker model described in Section 3.1. Table 3.1 illustrates how

the security requirements SR1 to SR3 correspond to the attacker capabilities AC1 to AC3.

AC1 AC2 AC3

SR1 � �
SR2 �
SR3 � � �

Table 3.1: Mapping of security requirements to attacker capabilities.

The security requirement SR1 is deduced from the general attacker’s capability of guessing

passwords. This might be just a handful of guesses within an online attack (AC1), or millions

of guesses in case of an offline attack (AC2). Security requirement SR2 is derived from the

attacker’s capability of performing a targeted attack (AC3). And, requirement SR3 is deduced

from all three attacker’s capabilities and aims at invalidating passwords before the attacker can

exploit them [212, 247].

SR1 – Brute-force-resistant password

Guessing a multitude of passwords through an online attack is time-consuming. It is limited by

the bandwidth of the attacker and the services and can be thwarted by countermeasures such as

blocking the attacker after multiple incorrect login attempts [66, 84, 90, 180]. But, in practice

online attacks are feasible. Besides examples from the real world [14, 143], studies [37, 229]

show that popular services are vulnerable against online guessing attacks.

While an online attack is always possible, an offline attack requires that an attacker first com-

promise a service and obtain its password database. Countless examples [122, 159, 165], even

at popular services such as Adobe, eBay, and Twitter, show that such security incidents are likely

and threaten millions of Internet users. The power of an offline attack has been demonstrated

in case of the password breach at LinkedIn: 90% of the 117 million password hashes (SHA-1)

could be cracked in 72 hours [89].

With respect to these results, users should not rely on services following best practices for

thwarting online and offline attacks. Consequently, users should use passwords for their on-

line accounts that withstand even millions of guesses. To measure the resistance of passwords

3.2 Requirements and conditions for secure passwords 19



against brute-force attacks, the security level of passwords need to be determined. We provide a

metric for this in Section 3.4.2. To withstand a brute-force attack, today, it is general consensus

that a security level of 128 bits should be used [30, 44]. To this end, we require that passwords

for online accounts have such a security level of 128 bits. However, as we show in Section 3.4,

some services do not allow users to use attack-resistant passwords. To this end, we require that

at least passwords with the best possible security level are used.

With respect to the more sophisticated attacks described in Section 2.2.2, it is important that

passwords are not chosen from dictionaries, contain user-related and service-related informa-

tion, and do not have any patterns which can be exploited. Such patterns occur when users

use mangling rules or just try to randomly press keys on their keyboards. Without patterns,

probabilistic models do not provide any benefit and an attacker needs to perform a brute-force

attack which is very time-consuming and in case of a security level of 128 bits impossible.

Password-hashing function

A password-hashing function such as bcrypt [182], scrypt [176], and PBKDF2 [130] slows down

a guessing attack. This might justify lower security levels to achieve security against offline

brute-force attacks. However, in practice these functions are barely used [165]. Furthermore,

such functions can only be considered secure when used with a proper number of iterations

raising questions on their appropriate usage and actuality. For example the PBKDF2 standard

recommending 1000 iterations goes back to the year 2000 [130].

In general, the research community does not consider current password-hashing functions se-

cure anymore [15] and proposed new schemes such as Catena [88, 152] and Argon2 [26]. But,

their implementations are still under development. And, most important, from the user per-

spective it is not visible how services are protecting their passwords. We make the pessimistic

but robust assumption that services only salt and hash passwords (cf. Section 3.1) and use an

ordinary hash function. This makes a security level of 128 bits necessary to protect from offline

brute-force attacks.

SR2 – Individual password

In a targeted attack (cf. AC3) an attacker uses a stolen password, e.g. obtained by a successful

online or offline attack, to get access to another account of the user. This attack is only possible

when passwords are reused across accounts. Note that also a partially reuse of passwords allows

to determine passwords with high accuracy [66, 230]. Consequently, the simple but effective

countermeasure is to use an individual password of each account.

20 3 Passwords require ubiquitous assistance



Besides a simultaneous reuse of passwords, it is also essential not to reuse old passwords. There

exists no period of time until a compromised password becomes invalid. Reusing a password

that was stolen even years ago is a security threat, as it can be misused by an attacker at any

time. A prominent example is the hack of Mark Zuckerberg’s Twitter and Pinterest account in

2016 [196]. Besides the fact that he used the weak password dadada, the attacker obtains his

password from a password breach at LinkedIn four years before [89].

In general, we need to keep in mind that the compromise of passwords might remain undetected

and it is impossible to determine which passwords can be reused without posing a security threat

and which ones cannot. To this end, we require not to reuse passwords in general.

SR3 – Changing password

An online attack (cf. AC1) is always possible, even when services implement countermeasures

like limiting the rate of login attempts. An attacker can easily adapt the rate of his attack to

stay below the threshold triggering such a countermeasure. Although very time-consuming, it

allows an attacker to test a multitude of passwords over months. As we cannot expect that

services inform users about failed login attempts or users just do not notice such reports, it is

necessary to change passwords regularly. This destroys all the attacker’s knowledge about the

user’s password (in form of an exclusion list) and he must start from scratch.

In case of an offline attack (cf. AC2), an attacker can make millions of guesses per day. Be-

sides the attacker’s performance and time, the only limiting factors are the security level of the

password and the way how the service had stored the password. With regard to security re-

quirement SR1 and our assumption that services store passwords in a salted and hashed way,

stolen passwords resist even offline brute-force attacks. Nevertheless, it is reasonable also to

regularly change attack-resistant passwords due to the following reasons:

• Service-side password storage: Hash functions might become insecure (e.g. [31, 232]). In

this way, an attacker is able to obtain the passwords without guessing them.

• Password transmission: Passwords are usually transmitted to services in plain-text [37].

Even when this is done through a TLS channel, an attacker might find security vulnerabil-

ities to break the encryption (e.g. [62, 72, 166]).

• Password compromise: There are attacks against passwords in which the security level of

passwords is irrelevant such as a phishing attack [185]. Such attacks can hardly be solved

by technical means. The only practical mitigation is changing passwords regularly and

thus invalidate potentially compromised passwords.

3.2 Requirements and conditions for secure passwords 21



3.2.2 Service conditions

In this section, we briefly summarize the conditions for passwords made by services. For a

detailed description we refer to Section 3.4 and 3.5. Taking these service conditions into account

is essential because passwords can only be used in practice under these conditions.

SC1 – Password requirements

Password requirements are fixed rules regarding the password length and the allowed and/or

required characters. Users can only select passwords for their accounts that comply with the in-

dividual requirements of services. We present in Section 3.4 a survey on password requirements

and show that they are quite different, incompletely stated, and often missing at all.

SC2 – Password interfaces and procedures

Besides the selection of passwords, the usage of passwords is bound by services. Passwords at

services can only be used through their provided password interfaces. In practice, these are the

HTML forms for login, password change, and password reset at the services’ websites. Moreover,

the interaction with these interfaces is predefined by certain procedures. For instance, to change

an account password, a user needs to log in to his account, browse to the password change form,

and submit his new password. We describe the password interfaces and procedures of services

in Section 3.5 in detail and demonstrate that they are also quite different.

3.2.3 Usage requirements

We next explain the usage requirements. They are essential for a practical and usable solution

for the realization of secure passwords. Moreover, they address user conditions such as having

numerous accounts [82], user concerns such as being afraid of password loss [160, 203, 208],

and user needs such as having passwords available on all their devices in order to access account

everywhere and anytime [105].

Due to security requirements SR1 and SR2, users need to cope with large password portfo-

lios. Additionally, passwords must be regularly changed because of security requirement SR3.

Memorizing such a huge number of passwords is impossible [2, 59, 82, 85, 164, 208, 237].

22 3 Passwords require ubiquitous assistance



Therefore, a technical solution is necessary that preserves passwords for users. Typical realiza-

tions are storing passwords or regenerating them on demand (cf. Section 3.6.2). Such a solution

needs to fulfill the following four usage requirements.

UR1 – Password confidentiality

Preserved passwords are vulnerable to unauthorized access. Typical situations are the loss or

theft of persistent passwords. Therefore, it is necessary to protect them.

UR2 – Password availability

Today, users have multiple devices like desktop computers, tablets, and smartphones. Passwords

must be available on all devices, so that users are able to access their accounts at Internet

services everywhere and anytime. Otherwise, users will continue to memorize passwords and

consequently use weak passwords. Users will not take the risk of being unable to log in to their

accounts, because they do not have access to their passwords.

UR3 – Password recoverability

Preserved passwords are also threatened by loss. To this end, it is indispensable that users can

recover them. Users take the possibility of losing their passwords and thereby their entire digital

life very serious [160]. They would not use a solution that is vulnerable to password loss.

UR4 – Password accessibility

Preservation of passwords releases users from memorizing them. However, not knowing the

passwords makes it impossible to give someone else access to accounts in urgent or emergency

situations. For instance, after a robbery or natural disaster, it is essential that users can send

messages (via email or social media) or get a copy of their identity card stored on a cloud storage

provider. Because of this, users must be able to give passwords to someone else even when they

have no access to them. Otherwise, they will keep unprotected copies of there passwords which

are vulnerable to unauthorized access [208].

3.2 Requirements and conditions for secure passwords 23



3.3 Password tasks of users

In this section, we define tasks for users that enable them to realize secure passwords for their

accounts. This is done in the following way: At the beginning, we introduce the password life

cycle, which describes the various stages of a password of an online account. Based on this life

cycle and in consideration of the requirements and conditions for passwords described in the

previous section, we specify the password tasks of users. The tasks are generating, preserving,

and changing passwords. We detail the tasks in Section 3.3.1 to 3.3.3.

Password life cycle

The password of a user account at an Internet service has different stages. The progression of

these stages is represented by the password life cycle which is illustrated in Figure 3.1. Note that

this cycle describes the stages from the user perspective and represents the stages of a password

for a single account. Therefore, this life cycle exists for each password of a user. The rectangles

of the cycle represent the password stages and the arrows the user actions.

_Change_

Destruct

Generate
Exists Preserved Usable

SynchronizedBacked up 

Recover

Account

creation

Account

deletion

Copy

Figure 3.1: Password life cycle. It represents the progression of stages from the user perspective
through which each password of an account passes.

24 3 Passwords require ubiquitous assistance



We now describe the password life cycle in detail: During the account creation, the password

is generated and its life cycle begins. After successfully submitting the password to the service

and finishing the account creation, the password is preserved. To address the issue of loss, the

preserved password is additionally copied to a backup location. In the event of loss, it can be

recovered from this backup.

Against the background of multiple devices, the preserved password is synchronized between

all user devices. When needed the password is retrieved from the preservation and becomes

usable to users, for instance to log in to the account. In this situation, users can also change the

password of the account which leads to the generation of a new password. This in turn leads

to the preservation of this new password as well as the copy to the backup location and to the

other user devices. Finally, the password is destructed when the account is deleted, including

the backup and the copies located on other devices.

We remind the reader that we are focusing in this thesis on a pure user-side solution for the

realization of secure passwords. To this end, we do not consider means of reseting passwords

provided by services to solve the loss of preserved passwords. A typical mechanism is sending

a new password to a recovery email address or mobile number. Note that such reset mech-

anisms have proven not to be reliable and secure [35, 96]. We address the issue of loss by

creating a backup. This approach has the advantages that it does not rely on services properly

implementing password reset mechanisms and it leaves users in control of their passwords.

Based on the password life cycle, security requirements, service conditions, and usage require-

ments for passwords, we define in the next sections tasks for users to realize secure passwords.

Note that users need to do these tasks for every single password.

3.3.1 Password generation

The first password task of users is to generate a password. The password must fulfill the follow-

ing three conditions:

1. The password must be attack-resistant (cf. SR1).

2. The password must differ from the passwords of other accounts (cf. SR2).

3. The password must comply with the password requirements of the service (cf. SC1).

Generating such a password is very difficult for users. We name this the password generation

problem. In Section 3.6.1, we describe that users fail to generate such passwords in practice

despite countless measures by services and proposals for users to generate passwords.

3.3 Password tasks of users 25



3.3.2 Password preservation

After generating the password, the second task for users is to preserve the password. In addition

to this, users must perform the following four subtasks:

1. Protect the preserved password from unauthorized access (cf. UR1).

2. Make the preserved password available on all devices (cf. UR2).

3. Create a backup of the preserved password (cf. UR3).

4. Create a backup of the preserved password with emergency access (cf. UR4).

We refer to this as the password preservation problem. We summarize in Section 3.6.2 existing

proposals for this problem. A prominent example is storing passwords in a password manager.

In the following sections, we detail the subtasks of preserving the password.

3.3.2.1 Password protection

The first subtask of preserving the password is to protect it. We refer to this as the password

confidentiality problem. We summarize in Section 3.6.2.1 existing proposals for this problem.

The typical approach of encrypting preserved passwords with another password is insecure.

3.3.2.2 Password synchronization

The second subtask of users is to make the preserved password available on all their devices. We

name this challenge the password availability problem. We summarize in Section 3.6.2.2 existing

proposals for this problem. In brief, manually copying the preserved password to all devices

is not a practical solution and the common approach of synchronizing preserved passwords

between devices over the Internet leads to security issues.

3.3.2.3 Password backup

The third subtask is to create a backup of the preserved password. Users must protect the

backup from unauthorized access and must place it at a secure location to protect it from loss

as well. With respect to malware or physical damage like fire a different and distant location is

important, e.g. at a friend’s place.

26 3 Passwords require ubiquitous assistance



We refer to this as the password recoverability problem. In Section 3.6.2.3 we examine proposals

for creating backups of preserved passwords. It follows from this examination that placing

backups at secure locations to protect them as well from loss and unauthorized access and

keeping them up-to-date at the same time is an unsolved problem in practice.

3.3.2.4 Password backup with emergency access

The last subtask of users is to create a backup with emergency access in order to grant access to

the preserved password to a trusted person in urgent or even emergency situations. Users must

protect the backup from unauthorized access and must enable an emergency access. Finally, the

user must place the backup at a trusted person.

We name this the password accessibility problem. In Section 3.6.2.4 we summarize proposals to

realize an emergency access to preserved passwords. It turns out that they are unsatisfactory,

impractical, and even insecure.

3.3.3 Password change

The third user task is to change the password regularly and immediately after a compromise of

it is detected. This is deduced from security requirement SR3. Changing the password of an

account consists of three subtasks:

1. Generate a new password. This implies the password generation problem which we de-

scribed in Section 3.3.1.

2. Log in to the account and change the password. This must be done through the password

interface and procedure of the service (cf. SC2).

3. Preserve the new password. This includes the password preservation problem that we

describe in Section 3.3.2.

We denote this as the password change problem. In Section 3.6.3 we describe that users in

practice barley change their passwords and that existing proposals for this problem are unsatis-

factory or even insecure. A key challenge are the different password interfaces and procedures

implemented by services (cf. Section 3.5).

To conclude, the realization of secure passwords for online accounts requires three complex and

extensive tasks. Performing these tasks manually is practically impossible for users. In Section

3.6, we show that there is no solution for this problem. PAS solves this problem by automation

and comprehensive support.

3.3 Password tasks of users 27



3.4 Service conditions for passwords: password requirements

In the following section, we detail the first type of service conditions for passwords: password

requirements. In practice, users can only use passwords that comply with the password require-

ments of services. To perform the first password task of generating attack-resistant, individual,

and particularly valid passwords (cf. Section 3.3) it is therefore essential to have a thorough

understanding of the password requirements of services.

We present the first investigation of password requirements on a global scale by analyzing

185,696 services. We start in Section 3.4.1 with an overview of the application of password

requirements and the usage of the following three main password requirements: password

length, character sets, and required occurrences of certain characters. The characterization of

the requirements reveals three results: First, only 30.98% of the services describe password

requirements at all. Second, there is a large variety of requirements. We found 1401 distinct

password requirements sets. Third, the requirements are often incompletely stated. Only 4017

(2.15%) services fully specify the essential information to create a valid password: lengths and

allowed characters.

Then, we analyze in Section 3.4.2 the security implications of the password requirements. This

is done by determining the security levels achievable with the given password requirements of

the services. We show that none of the services enforces passwords that resist offline brute-force

attacks and that every fifth service even does not allow such passwords at all.

For the collection of such a large sample of password requirements we developed a tool that

extracts the requirements form the websites of services automatically. We analyzed more than 3

million websites to find services offering online accounts and therefore must have some sort of

password requirements. We describe our tool later in Section 4.3 along with an evaluation and

limitations. In brief, in an evaluation of 250 services our tool correctly extracted the require-

ments for 91.2% of the services. Consequently, we can expect the vast majority of our collected

password requirements to be correct. Only a small fraction was incompletely or incorrectly ex-

tracted. Consequently, the concrete numbers for the application of password requirements and

the security levels presented in this section might not exactly reflect reality. On the one hand,

this can hardly be achieved because services may change their requirements at any time. On the

other hand, our collected data provides such clear results that small deviations in the absolute

numbers do not affect the key points of our contributions.

28 3 Passwords require ubiquitous assistance



3.4.1 Application of password requirements

During our analysis of 3,236,319 websites, we detected 185,696 services with a sign-up form.

Consequently, these services must have some sort of password requirements. However, only

57,536 (30.98%) services explicitly describe requirements on their websites. We noticed that

popular and newer websites state requirements more often than smaller and older ones.

Table 3.2 shows the application of password requirements and lists the number of services

specifying password lengths, character sets, and occurrences of certain characters. Altogether,

only 4017 (2.15%) services fully specify the essential information to create a password: lengths

and allowed characters. In total, we found 1401 distinct password requirement sets.

Password requirement #Services %ΣAll

Password lengths 52,276 90.86%

Character sets 17,751 30.85%

Occurrences of characters 8,419 14.63%

Table 3.2: Number of services specifying password requirements and the percentage with re-
spect to the 57,536 services (ΣAll) that specify password requirements at all. Services
may be counted multiple times.

Our findings confirm Bonneau and Preibusch’s [37] results from 2010 considering a set of pop-

ular 150 services. This shows, that the desolate state regarding well-documented password

requirements is rather stable, despite the fact that users create better passwords when given

advice as documented by various user studies [49, 77, 198, 220, 226].

For users, this lack of well-documented requirements is very problematic. Passwords have to

be created using the trial and error approach: Users need to enter a password and wait for

feedback by a password meter, or even worse, submit a password to find out whether it fulfills

the requirements of a service. This makes password generation very onerous and challenging.

Leading to resignation, this is certainly one of the reasons for weak passwords found by many

user studies [123, 138, 208].

In the following sections we take a closer look at the three aforementioned types of require-

ments. In Section 3.4.1.1, we consider the password lengths. It appears that the minimal

password lengths are quite similar between services but the maximum password lengths differ

significantly. In Section 3.4.1.2, we present which character sets are accepted by the services.

We discover that special characters and spaces find little application. Finally, Section 3.4.1.3

focuses on the restriction of occurrences of certain characters.

3.4 Service conditions for passwords: password requirements 29



3.4.1.1 Password length

In the following, we focus on minimum and maximum password lengths. In Table 3.3 we list

the number of services specifying a minimum and/or a maximum password length.

Password length #Services %ΣPWL %ΣAll

Minimum 22,948 43.90% 39.88%

Only minimum 11,310 21.64% 19.66%

Maximum 40,966 78.36% 71.20%

Only maximum 29,328 56.10% 50.97%

Minimum and maximum 11,638 22.26% 20.23%

Minimum or maximum 52,276 100.00% 90.86%

Table 3.3: Number of services specifying a password length as well as the corresponding per-
centage regarding the 52,276 services (ΣPWL) specifying password lengths and the
percentage regarding the 57,536 services (ΣAll) that specify requirements at all.

The minimum password length is the key factor for the lower bound of the achieved security

level (cf. Section 3.4.2). It is highly questionable that 60.12% of the 57,536 services do not spec-

ify this requirement. The resulting lack of a minimum security level for the user passwords bears

the risk that many passwords get compromised in case of a password breach at the services.

Two possible reasons why services specify a maximum password length are as follows: First, in

order to prevent attacks (e.g. overflow attacks). Second, more likely, as a consequence of a limi-

tation of their password implementations. Examples for such limitations are storage constraints

of the password database or performance constraints when processing passwords.

The fact that services specify much more often a maximum than a minimum password length in-

dicates that performance and service-side efforts caused by long passwords are more important

than security considerations. This confirms the conclusion of Florêncio and Herley [83], based

on an analysis of 75 services, that security requirements are not the driving factor of services’

password requirements.

30 3 Passwords require ubiquitous assistance



Minimum password length

Figure 3.2 illustrates the distribution of the minimum password lengths among 22,948 services.

Astonishingly, we found more than 300 services that allow passwords with one or two charac-

ters. The most famous example is wikipedia.org with a minimum password length of a single

character. The majority of services (35.40%) have a minimum length of 6 characters.

1 2 3 4 5 6 7 8 9 10

19
3

11
8

1,
20

6

1,
33

8 2,
34

9

8,
21

4

5,
55

1

3,
78

2

61 13
6

Minimum password length

#
Se

rv
ic

es

Figure 3.2: Distribution of the minimum password lengths of 22,948 services.

In 1999, Zviran and Haga [247] reported on the characteristics of 860 user-chosen passwords.

The distribution of the length of these passwords (cf. [247, Figure 2]) is very similar to the

distribution of the minimum password lengths that we found at the services 18 years later.

Moreover, our findings confirm former and more recent studies [91, 92, 229] based on up to 50

services. Consequently, there is no progress towards longer and therefore stronger passwords. It

seems that services still follow the NIST FIPS 112 publication from 1985 saying that “passwords

should be, at a minimum, 6 characters in length” [47].

Maximum password length

Figure 3.3 depicts the maximum password lengths of 40,966 services. In comparison to the

minimum password lengths, as illustrated in Figure 3.2, there is a much wider diversity. We

exclude 36 password lengths which are specified by only one or two services (e.g. 37, 101,

64000) from the figure for readability reasons.

3.4 Service conditions for passwords: password requirements 31

wikipedia.org


8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 39 40 42 45 47 48 49 50 51 54 55 56 58 60 63 64 65 68 70 72 75 79 80 90 95 96 99 10
0

11
0

12
0

12
5

12
7

12
8

14
0

15
0

20
0

22
5

25
0

25
4

25
5

25
6

30
0

32
0

40
0

45
0

50
0

51
2

60
0

10
00

10
24

20
00

20
48

40
96

21
47

48
36

47

37
0

82
97

4
38

1,
06

3
21 16

0
1,

83
1

1,
64

4
29 11

9
27

6,
02

5
25 20 8

73
3 1,

06
5

41 11 31 23
1,

89
3

26
4,

24
9

12 6
18

6
33 15

2,
72

6
9 11

1
11 20 15

5,
70

3
3 3 56 3 3

51
8

7
2,

25
3

18 4 12
8

42 11
6

6 14
2

11 92 13
1,

11
0 1,

67
6

11
3 27
3

13 7
2,

54
5

31 11
1

19
9

3 10
5

34
1,

47
1

11
1

17 3 5 3 29 12 4 13 14
4

6 5 12 91

Maximum password length

#
Se

rv
ic

es

Figure 3.3: Distribution of the maximum password lengths of 40,966 services.

While many of the chosen maximum lengths appear arbitrary, the peaks reveal patterns which

we discuss in the following:

• Password lengths as a multiple of ten: Services have a preference to select password lengths

as a multiple of ten (e.g. 10, 20, 30). This is explicable with human-chosen lengths and

reflects the general human preference to use smooth numbers. As illustrated in Figure 3.3

the most common lengths are 20 (14.70%) followed by 50 (13.92%).

• Password lengths as a power of two: Another characteristic of the distribution is that services

tend to select the length as a power of two (e.g. 16, 32, 64). Services might believe that this

is a benefit for the encryption or hashing algorithm they use when processing passwords

for storage. Passwords that fit to the block size of a cipher or hash function need not to be

padded. However, in practice such pursued benefits are questionable as it seems unlikely

that users create passwords exactly matching the maximum length.

• Password lengths suitable for numeric data types: The high number of services with a maxi-

mum password length of 15, 255, and 2147483647 is an indication that the chosen max-

imum length has something to do with the service’s password implementation. 15 is the

maximum value representable by a nibble (half-byte), 255 by a byte, and 2147483647 by

an integer. It seems that these services store the password length in a separate field in their

database. That might indicate that these services store the passwords in plain-text instead

of hash values. A hash value always has a fixed length independent of the input (e.g. in

case of SHA-256 a 32 bytes value). Consequently, hashed passwords would not require

to store the length. That services still store passwords in plain-text is shown by password

breaches [122, 159, 165] and a survey by Bauman et al. [20].

32 3 Passwords require ubiquitous assistance



A reasonable maximum password length must be a trade-off between the security level and

performance. Random passwords with 1000 characters do not provide any security benefit

in comparison to random passwords with 100 characters [207]. Also a maximum length of

2147483647 is nonsense and even dangerous because it might allow overflow and denial-

of-service attacks. Encoding each character of a password with 1 byte, a password with

2147483647 characters would have a size of 2 gigabytes. It is very likely that creating an

account with a 2 gigabyte password will crash a service. The services with a password length of

24 or 25 characters might have chosen such a reasonable length. These 1798 services provide an

average security level of 145 bits, which fulfills our security requirement SR1 of attack-resistant

passwords (cf. Section 3.2.1).

3.4.1.2 Character sets

In this section, we analyze the character sets that are accepted by services. For the 17,751

services specifying character sets we provide detailed numbers in Table 3.4.

Note that the character set Letters include services stating “uppercase characters”, “lowercase

characters”, and “English characters”. In case that a service states “alphanumeric characters”

we count this as letters and numbers.

Character set # Services %ΣCS %ΣAll

Letters 12,416 69.95% 21.58%

Numbers 15,448 87.03% 26.85%

Specials 3,581 20.17% 6.22%

Spaces 1,201 6.77% 2.09%

Table 3.4: Number of services specifying character sets as well as the corresponding percentage
regarding the 17,751 services (ΣCS) specifying character sets and the percentage re-
garding the 57,536 services (ΣAll) that specify password requirements at all. Services
may be counted multiple times.

Surprisingly, more services allow numbers than letters. Most probably, services allow letters

by default and only state additional requirements. We noticed in a manual evaluation of 250

services that all accepted letters and numbers (cf. Section 4.3.3).

It is not that problematic that services focus on letters and numbers as long as they allow rea-

sonably long passwords so that attack-resistant passwords can be used.

3.4 Service conditions for passwords: password requirements 33



The application of special characters and spaces is very low. This seems to be another evidence

that the design decisions for password requirements are driven by implementation constrains.

Besides a limited password length, legacy systems only support passwords consisting of letters

and numbers. Furthermore, accepting special characters and spaces demands a solid implemen-

tation which has a proper encoding and escaping of spaces and special characters. Otherwise,

the implementation is vulnerable to various attacks such as SQL injections [106].

3.4.1.3 Occurrences of characters

Requirements regarding the occurrences of certain characters such as “use at least one number”

are the least stated password requirements. Only 8,419 (14.63%) of the 57,536 services specify

such a requirement. In Table 3.5 and 3.6 we provide detailed numbers for which character

sets services specify minimum and maximum occurrences. We did not find a service specifying

occurrences for spaces. The fact that minimum occurrences appear much more often than max-

imum occurrences indicates that this requirement serves the purpose to enforce that a character

set is actually used by users when creating passwords.

Character set # Services %ΣOcc %ΣAll

Letters 3,661 43.48% 6.36%

Numbers 6,014 71.43% 10.45%

Specials 1,176 13.97% 2.04%

Table 3.5: Number of services specifying minimum occurrences as well as the corresponding per-
centage regarding the 8,419 services (ΣOcc) specifying occurrences and the percentage
regarding the 57,536 services (ΣAll) that specify password requirements at all. Services
may be counted multiple times.

Character set # Services %ΣOcc %ΣAll

Letters 21 0.25% 0.04%

Numbers 103 1.22% 0.18%

Specials 25 0.30% 0.04%

Table 3.6: Number of services specifying maximum occurrences as well as the corresponding per-
centage regarding the 8,419 services (ΣOcc) specifying occurrences and the percentage
regarding the 57,536 services (ΣAll) that specify password requirements at all. Services
may be counted multiple times.

34 3 Passwords require ubiquitous assistance



3.4.2 Security levels resulting from password requirements

We analyze the security implications of the password requirements present in the previous sec-

tion. This is done by determining the security levels achievable with the given password re-

quirements of the services. We show that none of the 57,536 services enforces attack-resistant

passwords and that every fifth service even does not allow such passwords at all.

We start by describing in Section 3.4.2.1 the assumptions that we make throughout the analysis

and in Section 3.4.2.2 the metric we use to measure the security levels. Then, we present in

Section 3.4.2.3 the results of our analysis.

3.4.2.1 Assumptions

As shown in Section 3.4.1, by far not all services explicitly state requirements. We base the

analysis of the security implications presented in this section on the 57,536 services that provide

requirements of any kind. If these requirements are incompletely stated, we make the following

assumptions throughout the analysis:

• If no minimum password length is specified, we assume the service has no lower limit.

• If no maximum password length is specified, we assume the service has no upper limit.

• If no character sets are specified, we assume that the service allows letters and numbers.

The assumption that all services accept letters and numbers is based on the following facts:

• As shown in Table 3.4 (Page 33) approximately 70% of the services explicitly accept letters

and nearly 90% allow numbers.

• The huge number of 52,276 (90.86%) services specifying a password length use phrases

such as “at least 10 characters”. We interpret the term characters as letters and numbers.

• Research based on leaked password databases shows that passwords are usually alphanu-

meric (cf. [50, 224, 234]).

• In our evaluation set of 250 services that we used for our password requirements extraction

tool (cf. Section 4.3.3) all services accepted letters and numbers.

To this end, we assume that all services that we analyzed accept letters and numbers. However,

for languages based on non-Latin alphabets this assumption must be reviewed. For instance,

Chinese services focus on numbers [229].

3.4 Service conditions for passwords: password requirements 35



Note that assuming special characters as generally accepted by services cannot be justified given

the relatively low number of services explicitly stating these as valid characters (cf. Table 3.4,

Page 33). Furthermore, in practice there is no consensus observable which characters are ac-

tually to be subsumed as special characters. The ASCII character encoding standard defines 32

special characters plus space [11]. In our evaluation set of 250 services none of them defines

these 32 characters. Sometimes services provide examples for special characters or use more

puzzling phrases like “standard special characters” (e.g. united.com). We even found coun-

terexamples such as costco.com and target.com. They claim to allow special character, but

actually only a subset is allowed (e.g. < and > are not allowed). Therefore, we consider special

characters and spaces only as accepted in our analysis if this is explicitly stated in the password

requirements of a service.

3.4.2.2 Security metric

For the comparison and analysis of the security level of the password requirements, a uni-

form representation of security level is required. We determine the security level of password

requirements by evaluating the security of passwords created under these requirements.

We adopt the metric by Florêncio and Herley [83] and calculate the security level of a randomly

generated password by S = L · log2(C), where C is the cardinality of the character set and L is

the password length. We consider a password consisting of letters and numbers and a length of

10 characters. Then, is C = 26 + 26 + 10 = 63, L = 10, and S = 10 · log2(62) = 59 bits.

The security level provided by the password requirements of a service is defined as the range

between a minimum security level Smin and a maximum security level Smax . These levels are

calculated as Smin = Lmin · log2(C) and Smax = Lmax · log2(C), where Lmin and Lmax is the

minimum and maximum password length, respectively.

For instance, Google has a minimum password length of Lmin = 8 and maximum password

length of Lmax = 100. Furthermore, it allows uppercase letters, lowercase letters, numbers,

special characters, and spaces resulting in C = 26 + 26 + 10 + 20 + 1 = 83. Note that Google

states “common punctuation” characters, however does not list them in detail. We successfully

tested the following 20 special characters: ! " § $ % & / ( ) = \ ? + - * # . : , ;. Under these

password requirements, the security level is Smin = 51 bits and Smax = 638 bits.

Our metric ignores the password requirements of minimum and maximum occurrences of char-

acters. We consider this as an acceptable simplification because the requirement of maximum

occurrences is almost never used (cf. Section 3.4.1.3). And, the requirement of minimum oc-

currences lowers the security level by at most 1 bit in the worst case (given a password length

36 3 Passwords require ubiquitous assistance

united.com
costco.com
target.com


L ≥ 4) but on average the reduction is much lower: Let Ci for i = 1, ..., n be the cardinalities of

the allowed character sets and C =
∑

i Ci. Given for each of the character sets, one occurrence

is enforced, then S = log2(C
L −
∑

i (C − Ci)L) = log2(C
L · (1 −
∑

i (
C−Ci

C )
L). As each of the

terms (C−Ci
C )

L approaches zero for sufficiently large L, S approaches log2(C
L) = L · log2(C).

Now consider the worst case found in all analyzed password requirements, which occurs for the

combination of the character sets letters and numbers. Then is C = 62, Ci = 52 and C2 = 10.

For L = 4, (1 −
∑

i (
C−Ci

C )
L = 1 − (52

62)
4 − (10

62)
4 > 0.5) which implies, that less than 1 bit of

security level is lost.

Furthermore, the metric provides an upper bound for the achievable security level and is ap-

propriate under the assumption of randomly generated passwords. Note that user-chosen pass-

words usually follow certain patterns that can be exploited as we explain in Section 2.2.2.3 and

3.6.1. Therefore, the actually realized security levels of user-chosen passwords are often much

lower. However, we use our metric only to compute the security level of random passwords

as well as to compare the security level of password requirements. To this end, it is adequate

for our needs. For measuring the security level of user-chosen passwords, we recommend to

use guessability, which provides the number of guesses needed by an attacker to guess a given

password [33, 34, 135, 222, 234].

3.4.2.3 Findings

We calculated the minimum and maximum security levels for the 57,536 services using our

aforementioned metric. Figure 3.4 illustrates which percentage of the services stays below a

certain security level given the specified password requirements. The upper blue line represents

the distribution regarding minimum security levels, the lower red line the distribution regarding

maximum security levels.

The sharp increases of the security levels are caused by the strong dependence of the security

level on the specified password lengths and mirror the peaks in Figure 3.2 and 3.3 (Page 31 and

32). For instance, there is a strong increase at 35 bits at the line depicting the minimum security

levels. This is caused by an increase of the minimum password length from 5 to 6 characters

(cf. Figure 3.2, Page 31). A same characteristic exists near 120 bits for the maximum password

length (cf. Figure 3.3, Page 32) which is caused by a length of 20 characters.

3.4 Service conditions for passwords: password requirements 37



20 40 60 80 100 120 140
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Security level in bits

Figure 3.4: Percentage of services staying below a certain security level. The blue line represents
the distribution regarding minimum security levels, the red line the maximum levels.

None of the services enforces attack-resistant passwords

Regarding the serious threat of offline brute-force attacks (cf. Section 3.2.1) it would be rea-

sonable that services enforce attack-resistant passwords as a counteractive or precautionary

measure (besides properly storing passwords).

Nevertheless, not a single service enforces attack-resistant passwords as the blue curve of Figure

3.4 shows. Around 60% of the services do not enforce any security level at all. Figure 3.4 also

reveals that the vast majority of services (99.5%) already accept passwords with a security level

of 50 bits. But, what does it mean in practice and is this a security problem? To answer this

question, we need to take a look at the feasibility of brute-force attacks in practice and how

users typically create passwords.

Current password cracking tools like Hashcat [101, 111] can perform more than 250 SHA-1

hashes on a single day using standard hardware. So, from a technical perspective, a brute-force

attack for a security level of 50 bits is absolutely feasible. But, does an attacker really need to

brute-force a search space of 250 bits?

38 3 Passwords require ubiquitous assistance



Our calculated security level assumes randomly generated passwords which can be seen as an

upper bound. In practice users do not create random passwords. Their passwords often include

user-related and service-related information and have exploitable patterns (cf. Section 3.6.1).

As we explained in Section 2.2.2, this makes attacks much more effective.

Moreover, user studies show that users choose passwords that narrowly comply with the min-

imum password requirements [200, 201, 221]. On average, they choose one character more

than required. This also allows optimized attacks. Consequently, we expect that user-chosen

passwords have a lower security level than calculated with our metric and an attacker must

perform less guesses to obtain many passwords. This has clearly been shown in practice: 90%

of the 117 million LinkedIn password hashes (SHA-1) could be cracked in 72 hours [89].

Every fifth service does not allow attack-resistant passwords

As we described in Section 3.2.1 both users and services can tackle the threat of offline brute-

force attacks by employing a high security level for passwords. When considering security con-

scious users, the question evolves, whether they would be able to use attack-resistant passwords

in practice.

The maximum achievable security levels are depicted in the lower red graph of Figure 3.4. It

shows that, 21.6% of the services prevent passwords with a security level greater or equal to 128

bits. For these services, users cannot use attack-resistant passwords, even if they want to. From

the viewpoint of automatic password generation based on the specified password requirements

(cf. Chapter 4) this means that such an approach leads to attack-resistant passwords for 78.4%

of services that specify their requirements.

To conclude, the security implications of the password requirements specified by the services on

the Internet are unsatisfactory and leave much room for improvement. First, the wide accep-

tance of weak passwords (i.e. security level of 50 bits) is a huge security problem, as security

unaware users are not guided towards secure passwords. That this is indeed a problem was

demonstrated by countless examples (cf. [122, 159, 165]). Second, by preventing users to use

attack-resistant passwords for their accounts it in many cases even affects password security in

a negative way, contradicting its desirable goal of leading to more security.

3.4 Service conditions for passwords: password requirements 39



3.5 Service conditions for passwords: password interfaces and procedures

In this section, we characterize the second type of service conditions for passwords: password

interfaces and password procedures. In practice, users can only access their accounts through

the services’ login forms and change their passwords through the respective password change

forms available at the services’ websites. Moreover, the interaction with these interfaces, i.e.

forms, is predefined by certain procedures. With respect to password changes such a proce-

dure requires for instance that users need to additionally enter the current account password

along with the new password. To perform the third password task of changing passwords (cf.

Section 3.3.3) and thus realize secure passwords, it is therefore necessary to have a thorough

understanding of the actual implemented password interfaces and procedures of services.

We conducted an analysis of password interfaces and procedures of 200 representative services1

In the following, we present the results of a subset of 10 popular services with regard to pass-

word changes. The services a listed in Table 3.7. At the beginning, we provide in Section 3.5.1

an overview of the results and exemplary describe the password change procedures of Google

and Facebook. It appears that the services’ password interfaces and procedures differ in many

ways. This includes the number of actions that are necessary to perform a password change, the

way to firstly reach the password change form, and to actually change a password.

Then, we take a closer look at the interfaces and procedures implemented by services for the

login in Section 3.5.2 and for the password change in Section 3.5.3. It turns out that the

login is very similar at services. But, the challenge of generating passwords under the services’

password requirements, that we detailed in Section 3.4 for the sign-up of accounts, occurs again

when users need to generate a new password during the password change.

Our analysis reveals insights in the different implementations and technologies used by services

and provides the basis to cope with this problem. In Chapter 7 we present a standardized

description of password interfaces and procedures that provides the first practical solution to

handle this problem.

1 The Alexa Top 500 US list [8] reduced by websites with pornographic and illegal content, non-English websites,

and websites that do not have or allow the creation of online accounts (e.g. banking websites). The list of

services is available at [H26].

40 3 Passwords require ubiquitous assistance



3.5.1 Overview

For a thorough analysis of the password interfaces and procedures for changing passwords at

services, we divide a password change procedure into three sub-procedures:

1. Login: To change an account password, a user logs in to his account.

2. Select password change: After the login, a user navigates to the password change form

where he can actually change his account password.

3. Perform password change: After reaching the password change form, a user enters his new

password into the form and submits it to the service. He might need to provide the current

password again and/or need to confirm the new password by entering it twice.

We examined the aforementioned sub-procedures of the 10 services. For each sub-procedure, we

counted the actions that users need to perform. Actions include entering a string (e.g. username

or password) and clicking on a button to submit the data or to navigate through the website.

In Table 3.7 we provide the number of actions that users need to perform to change the password

of an account at the respective service. In the second to fourth column, we list the number of

actions for the respective sub-procedures. According to these numbers, the login at the services

is quite similar, but the number of actions to change passwords significantly differs between the

services. While users just need 5 actions to change a password of a Wikipedia account, they

need 10 actions in case of an eBay account.

Service Login Select password change Perform password change Σ

Google 4 4 5 13

Facebook 3 3 4 10

Amazon 3 4 4 12

Reddit 3 2 4 9

Yahoo 4 4 5 13

Wikipedia 3 2 3 8

Twitter 3 3 4 10

eBay 3 4 6 13

LinkedIn 3 3 4 10

Netflix 3 3 4 10

Table 3.7: Number of actions for password change.

3.5 Service conditions for passwords: password interfaces and procedures 41



Password change procedure of Google

We illustrate in Figure 3.5 the procedure to change a password of a Google account. Each

rectangle represents a user action such as entering a string or clicking a button. Moreover, the

actions in Figure 3.5 are divided into the three aforementioned sub-procedures: login, select

the password change, and finally perform the password change.

Google has a two-step login procedure, where the username and the password is entered on a

separate login screen (cf. Section 3.5.2). At the first login screen, a user only enters his username

and then clicks the “Next” button. At the second login screen, the user enters his password and

then clicks on “Sign in”. To reach the password change form, the user needs to navigate through

multiple extensive account settings pages: First, he needs to click on the account icon and then

on the “My Account” button. In the account overview, the user needs to click the “Sign-in &

security” button and then the “Password” button.

The actual password change consists of five actions: First, the user needs to enter his current

password at the login form again (second login screen). Second, he needs to click on “Sign in”.

The third and fourth action is to enter and confirm the new password. Finally, the user needs

to click on “Change password” to submit the new password to Google. In total, changing a

password of a Google account takes 13 actions.

L
o
g
in

P
e
rf

o
rm

 

p
a
ss

w
o
rd

 c
h
a
n
g
e

S
e
le

ct
 

p
a
ss

w
o
rd

 c
h
a
n
g
e

Enter 
username

Click on 
account icon

Click on  My 
Account 

Click on 
 Sign-in & 
security 

Click on 
 Password 

Enter 
password

Click on 
 Sign in 

Click on 
 Sign in 

Enter new 
password

Click on 
 Change 

password 

Confirm 
password

Click on 
 Next 

Enter 
password

Figure 3.5: Password change procedure of Google.

42 3 Passwords require ubiquitous assistance



Password change procedure of Facebook

In Figure 3.6 we illustrate the actions to change a password of a Facebook account. It is obvious

that this requires less actions and can be done faster and is a less cumbersome task for users.

L
o
g
in

P
e
rf

o
rm

 

p
a
ss

w
o
rd

 c
h
a
n
g
e

S
e
le

ct
 

p
a
ss

w
o
rd

 c
h
a
n
g
e

Enter 
username

Click on 
account icon

Click on 
 Settings 

At password 
click on 
 Edit 

Enter 
password

Click on
 Log in 

Enter new 
password

Click on 
 Save 

Changes 

Confirm 
password

Enter 
password

Figure 3.6: Password change procedure of Facebook.

3.5.2 Login interfaces and procedures

In this section, we focus on the interfaces and procedures of the login at the evaluated services.

In general, we can distinguish between two types of realizations:

1. One-step login procedure: A user simply enters his username and password and clicks on a

button, which sums up to three user actions. As shown in Table 3.7 such a one-step login

procedure is implemented by the majority of services that we have evaluated.

2. Two-step login procedure: Entering the username and the password is divided into two steps

and two respective login screens. First, a user enters his username and clicks on a button.

Second, he enters his password and completes the login by clicking on a further button.

Regarding the analyzed services the two-step approach is only implemented by Google and

Yahoo. Introduced in 2015, Google aimed at an easier integration of other authentication means

3.5 Service conditions for passwords: password interfaces and procedures 43



into the same login screen, e.g. one-time passwords [100]. This approach also allows to add

a user-specific image or message into the second screen to tackle phishing attacks. A similar

system was already introduced by Yahoo in 2007 [3]. As we see in the next section there is also

a similarity between the realization of the login and the password change procedure.

3.5.3 Password change interfaces and procedures

We now focus on the interfaces and procedures to actually change the password of an account.

As already mentioned, we divide this into two sub-procedures. First, we evaluate in Section

3.5.3.1 the actions to reach the password change form. Second, we examine in Section 3.5.3.2

the actual password change which consists of entering the new password and submitting it to

the service through the respective password change form.

3.5.3.1 Select password change

To actually change the password of an account, a user needs to navigate to the password change

form where he can enter his new password. In Table 3.8 we enumerate the buttons that a user

needs to click in order to reach the password change form at the respective service.

Service Buttons to reach a password change form

Google Account icon→ “My Account”→ “Sign-in & security”→ “Password”

Facebook Account icon→ “Settings”→ “Password”

Amazon Account icon→ “Your Account”→ “Login & Security Settings”→ “Edit”

Reddit “Preferences”→ “password/mail”

Yahoo Account icon→ “Account Info”→ “Account security”→ “Change password”

Wikipedia “Preferences”→ “Change password”

Twitter Account icon→ “Settings and privacy”→ “Password”

eBay Account icon→ “Account settings”→ “Personal Information”→ “Edit”

LinkedIn Account icon→ “Settings & Privacy”→ “Change”

Netflix Account icon→ “Your Account”→ “Change password”

Table 3.8: Actions to reach a password change form.

Besides the number of buttons users need to click, there is also a large variety in the naming of

these buttons. While Amazon uses a precise description “Login & Security Settings”, eBay has a

more puzzling naming “Personal Information”. Greene and Choong [103] pointed out that users

44 3 Passwords require ubiquitous assistance



have problems with the ambiguous terminology used in password requirements stated by ser-

vices. It is very likely that users also struggle with the different ways to reach a password change

form at a service. An indication for this are the various tutorials how to change passwords at

services available at http://howdoichangemypassword.com and http://www.wikihow.com.

3.5.3.2 Perform password change

Besides different a number of actions for reaching the password change form, there is also a

large variety regarding the number of actions to actually change a password (cf. Table 3.7,

Page 41). We noticed that services that implement a one-step login procedure also implement

a simpler password change form where users just need to enter the current password and two

times the new password. We made the same observation with the two-step login procedure,

which is implemented by Google and Yahoo. When changing a password at both services, a user

sees the second login screen again and needs to enter his current account password. Then, both

services provide a form where a user just needs to enter his new password twice.

However, we found two exceptions: First, in case of Wikipedia users do not need to provide

the current password and can just enter and confirm the new password. Because of this, a

password change at Wikipedia requires the fewest user actions. Second, like Google and Yahoo,

eBay users see the login screen again and need to enter the current password. But, then a user

must enter his current password again at the subsequent password change form. In summary,

changing a password of an eBay account requires to enter the current account password three

times and the new password two times.

Password requirements at the password change forms

In Section 3.4, we showed that generating a valid password for an online account is very difficult

for users because the password requirements of services are quite different, often incompletely

stated, or entirely missing. But, in the analysis in Section 3.4 we evaluated the password re-

quirements available at the sign-up forms of services. It is unclear whether services properly

state their password requirements at the password change forms. Unfortunately, our analysis

reveals that the lack of well-documented password requirements occurs again.

Our analysis was done by evaluating the password change forms of the services. We evaluated

whether the services state their requirements at the password change form and whether they

provide a password meter (we describe password meters in detail in Section 3.6.1).

3.5 Service conditions for passwords: password interfaces and procedures 45

http://howdoichangemypassword.com
http://www.wikihow.com


Due to the lack of well-documented password requirements at the majority of the services, we

additionally determined the requirements by trying out a multitude of passwords with different

lengths and character sets. Note that we were not able to determine the maximum length of

some services such as Facebook, as illustrated by the question mark (?) in Table 3.9. We skip

our tests when a service accepted passwords with more than 1024 characters. The results of our

analysis are presented in Table 3.9 and discussed in the following.

Service Password requirements Password lengths Character sets Password meter

Google � 8 – 100 L, N, SP, Sa �
Facebook � 6 – ? L, N, SP, S �
Amazon � 6 – 1024 L, N, SP, S �
Reddit � 6 – ? L, N, SP, S �
Yahoo � 7 – 128 L, N, SP, S �
Wikipedia � 1 – ? L, N, SP, Sb �
Twitter � 6 – ? L, N, SP, S �
eBay � 6 – 64 L, N, SPc �
LinkedIn � 6 – ? L, N, SP, S �
Netflix � 4 – 60 L, N, SP, S �

a A password cannot start or end with a space.
b A single space as a password is not allowed, but a single number or letter.
c The special characters <, >, [, ], / are not allowed.

Table 3.9: Password requirements and password meters available at password change forms.
The character sets are abbreviated by L = letters, N = numbers, SP = special charac-
ters, and S = spaces. The symbol � denotes that a service states password require-
ments or provides a password meter. In contrast, the symbol � illustrates that a
service do not provide password requirements or a password meter at its password
change form.

Application of password requirements

The results of our analysis in Table 3.9 show that only 4 of the 10 services actually state their

password requirements at their password change form. Consequently, we can see that there is

the same lack of well-documented password requirements as at the sign-up forms (cf. Section

3.4.1). Furthermore, we found out that services that do not provide password requirements at

their password change form also do not state their requirements at the sign-up form.

46 3 Passwords require ubiquitous assistance



Password lengths

The distribution of the minimum password lengths of the services fits to the results of our large-

scale survey of password requirements stated at sign-up forms. There is also the same large

variety for the maximum password length (cf. Section 3.4.1.1).

Character sets

Regarding the allowed character sets, we found a larger acceptance of special characters and

spaces in comparison to our results presented in Section 3.4.1.2. However, we also encountered

the missing consensus which characters are actually to be subsumed as special characters. For

example, eBay states to accept special characters, but does not allow <, >, [, ], /. Moreover,

we found limitations regarding spaces. Passwords at Google cannot start or end with a space.

Anecdotally, Wikipedia does not accept a single space as a password while a single number or

letter is fine. Regarding the occurrences of characters only eBay requires that besides letters a

password must also include at least one number or one special character.

Password meters

Besides the missing password requirements there is also little application of password meters. A

password meter provides a graphic feedback whether the entered password fulfills the password

requirements or not. Furthermore, it rates the security level of the password using colored bars

or labels such as weak, normal, or strong which indicate the strength of the password. Only half

of the services provide a password meter. Although, there are many issues with password meters

in practice, researchers have documented that they lead to stronger user-chosen passwords. We

describe password meters including their advantages and disadvantages in Section 3.6.1.

3.6 Passwords in practice and the state of the art

In this section, we describe that the problem of users to use secure passwords for their online

accounts is not solved yet. This is done in the following way: For each of the password problems

detailed in Section 3.3, we provide an overview of the related literature. We summarize studies

on how users cope with the problems in practice. And, we describe proposals that aim at the

mitigation of the problems. We also evaluate whether these proposals are suitable for the real-

ization of the three password tasks of generating, preserving, and changing passwords. It turns

out that none of the proposals address all password problems and that the service conditions

often prevent their practical use.

3.6 Passwords in practice and the state of the art 47



We begin with the password generation problem in Section 3.6.1. It turns out that an enforce-

ment of proper passwords by services leads to circumvention strategies by users. Moreover,

password-composition advices for users do not create attack-resistant passwords and tools for

password generation are impractical because they do not consider the different password re-

quirements of services. To this end, the password generation problem is unsolved.

Then, we focus on the password preservation problem and evaluate existing approaches for the

realization of the second password task of preserving passwords in Section 3.6.2. Subsequently,

we analyze proposals for the password confidentiality problem in Section 3.6.2.1. It becomes

apparent that properly protecting preserved passwords is an unsolved problem and the common

approach of using a master password is insecure. We examine proposals to solve the password

availability problem in Section 3.6.2.2. It follows from this examination that the common ap-

proach of storing preserved passwords on Internet servers is not preferred by users and leads to

many security issues. Afterwards, we focus on the password recoverability problem in Section

3.6.2.3. According to user studies, the risk of password loss is the main obstacle for users to

preserve passwords. It follows from the examination of proposals that placing password back-

ups at secure locations to protect them as well from loss and unauthorized access while keeping

backups up-to-date at the same time is an unsolved problem in practice. We evaluate proposals

for the password accessibility problem in Section 3.6.2.4. It becomes apparent that existing

proposals do not meet user needs. Users are in the dilemma of either losing control of their

passwords or having access to them in emergency situations. In summary, there exist no solu-

tion for the realization of the second password task of preserving passwords and ensuring their

confidentiality, availability, recoverability, and accessibility.

Finally, we discuss the password change problem in Section 3.6.3. According to studies, users

change their passwords very seldom. Proposals to automatically change passwords on behalf

of users struggle with the different password implementations at services and still let users in

charge of triggering password changes. Consequently, there exist no fully automated solution to

realize the third password task of regularly and if necessary immediately changing passwords.

3.6.1 Password generation

Users have well-defined strategies to generate passwords [208, 221]. These strategies often

contain user-related and service-related information [202, 247]. Examples include terms related

to love, sexual terms, profanity, animals, food, money [224], dates [225], phrases from music

lyrics, movies, literature, television shows [141], and locations [221] as well as the names or

the URLs of services [184, 221]. Furthermore, the users’ strategies lead to patterns in passwords

such as starting with letters and ending with numbers or special characters [82, 138, 153, 184,

48 3 Passwords require ubiquitous assistance



202, 203, 212, 247]. These highly predictable information and patterns make passwords easy

to guess [34, 135, 138, 158, 200, 201, 221]. Besides user studies, countless password breaches

[122, 159, 165] show the tremendous and persistent dimension of the password generation

problem. It remains a problem for users for decades [167, 211].

There exists various proposals to solve this problem, which we discuss in the following. First,

we examine in Section 3.6.1.1 the approach of services to enforce proper passwords. Second,

we evaluate password-composition advices for users to generate proper passwords in Section

3.6.1.2. Finally, we analyze tools for users to generate passwords in Section 3.6.1.3. It turns out

that none of the approaches solves the password generation problem and can be used to realize

the first password task of generating attack-resistant, individual, and valid passwords.

3.6.1.1 Enforcement

In the following, we analyze the approach of services to enforce proper passwords. It appears

that users often respond with circumvention strategies and enforcement does not solve the

password generation problem.

Password requirements

Password requirements are rules for passwords with respect to the length and the allowed

and/or required characters. Services implement password requirements to guide users to select

proper passwords but also to prevent incompatibilities with their password implementations.

Typical examples for incompatibilities are encoding problems with an umlaut or a backslash.

The general problem of password requirements is that they cannot prevent users from choosing

and reusing weak passwords such as password1234 [197]. Such a password on the one hand

might fulfill the requirements of a service, while on the other hand is easy to guess. In case

passwords get rejected by services, users have well-defined coping strategies. They append

special characters or numbers and always use the same character for this purpose [208, 221].

As we have shown in Section 3.4.2 as well as done by other researchers [37, 229], the password

requirements of services fail to serve their purpose with respect to security. They do not enforce

attack-resistant passwords and, even worse, some services do not allow them.

The design decisions on which services choose their password requirements are often unclear

[229]. Security needs seem not to be the driving factor as some of the largest and most attacked

services allow weak passwords [83]. There is also no noticeable improvement towards better

password requirements [91, 92], despite various well-engineered proposals (cf. [135, 201]).

3.6 Passwords in practice and the state of the art 49



Password requirements often lead to user frustration [123, 158]. Users often need multiple

attempts to generate passwords in accordance with password requirements [138, 200, 201,

226]. One reason is the ambiguous terminology used in password requirements. Users are

confused by terms such as non-alphanumeric, symbols, special characters, and punctuation marks

[103]. As we mentioned in Section 3.4.2.1, in practice there is also no consensus observable on

the service-side which characters are actually to be subsumed as special characters. It is likely

that this also applies for symbols and punctuation marks.

Password meters

Password meters provide a graphic feedback whether the entered password fulfills the password

requirements or not. Furthermore, it rates the security level of the password using colored bars

or labels such as weak, normal, or strong which indicate the strength of the password.

Various studies have shown that password meters lead users towards the generation of stronger

passwords [77, 198, 218, 220]. However, this applies only for important accounts. In case of

low-value accounts users continue using weak passwords even with the presence of a password

meter [77]. Moreover, only password meters that rate passwords very strictly actually lead to

stronger passwords in the sense of guessing-resistance [220]. But, strict password meters make

the password generation more time-consuming so that users find them more annoying [220].

In practice, password meters are highly inconsistent in assessing the security level of passwords.

Even weak passwords such as password1 are rated as strong which makes users believe that they

have chosen a proper password, but actually they have not [50, 51]. Many implementations of

password meters also have security issues, including the leakage of passwords to third parties

and the transmission of passwords over the Internet in plain-text [1]. The design of password

meters at Internet services is also often not well-engineered [50], despite various proposals for

accurate password meters (cf. [54, 216, 218, 228]).

Blacklists

Services also try to enforce proper passwords by rejecting common passwords such as 123456,

password, and letmein. Blacklists often contain commonly and frequently used passwords [192].

However, large blacklists demand an proper implementation to ensure an efficient lookup [23,

205]. Although recommended by the NIST [46], blacklists are not widely adopted [229] and

there is a huge difference between their implementations [50]. Moreover, they only lead to a

small improvement regarding guessing attacks [135, 198, 201]. Users circumvent blacklists by

simply changing the capitalization or inserting a number to their blacklisted passwords [104].

50 3 Passwords require ubiquitous assistance



System-assigned passwords

Another approach is to assign users passwords generated by services. Such system-assigned

passwords can be generated with respect to services’ countermeasures against online and of-

fline attacks. Moreover, they solve the problem of password reuse (as long as users cannot

change passwords). Despite these security benefits, system-assigned passwords suffer from poor

memorability [199, 237].

To mitigate this issue, there is the idea of persuasive passwords [87, 118]. User-chosen passwords

are strengthened by the service by adding random characters at random positions. However, this

approach fails in practice because users compensate the service-side improvement by choosing

simpler initial passwords [87]. In general, an attacker knowing the strengthening algorithm can

easily guess the strengthen passwords so that the security improvement is negligible [195].

3.6.1.2 Password-composition advices

Researchers identified the users’ lack of security knowledge as a major reason for weak pass-

words [128]. This indicates that the problem might be solved by providing instructions on

how to proper generate passwords. In this section, we examine advices for users to generate

passwords. It turns out that they cannot be used to generate attack-resistant passwords.

Complex passwords

First and foremost, there is the ancient advice of using complex passwords: 8 characters with

a mixture of uppercase and lowercase letters, numbers, and special characters [226]. Having

more different types of characters makes passwords harder to guess. The security benefit of

complex passwords is also known by users [132]. However, today passwords with 8 characters

provide negligible security [135, 200, 201]. They can be guessed by a brute-force attack in a

few hours and therefore longer passwords are necessary [101, 111].

Mangling rules

Memorizing complex passwords is difficult for users. To solve this, one proposal is to use a

word or a phrase and transform it to a complex password by means of mangling rules. A

typical rule is to transform letters to uppercase or numbers. For example, password can be

transformed into Password, password1, and pa33word. But, nowadays password cracking tools

(cf. [111, 124, 177]) consider mangling rules so that such passwords are guessed easily.

3.6 Passwords in practice and the state of the art 51



Passphrases

Instead of short, complex passwords, another proposal is to use longer passwords consisting

of multiple words, so-called passphrases. Being longer can provide more security because an

attacker needs longer to guess such passwords [135]. Moreover, using words allows users to

generate passphrases with a meaning to them, thus being easier to memorize [135, 138].

However, passphrases and in general longer passwords negatively influence the ease of use of

passwords. Users need longer to create such passwords and make more mistakes while entering

them which yield to a higher number of login failures [133, 134, 201]. Login failures caused by

typographical errors can be addressed by storing multiple variants of a passphrase [18, 161].

In practice, users select passphrases like passwordpassword [200], so that “passphrases are vul-

nerable to dictionary attacks like all schemes involving human choice” [39]. Using large dic-

tionaries collected from the Internet (e.g. Wikipedia, news sites, and blogs) it is possible to

successfully guess passphrases [184], even with up to 20 characters [206]. Only when includ-

ing numbers and special characters also passphrases withstand a powerful attacker [200]. But,

also this becomes obsolete with an increasing computational power of the attacker [200, 201].

Therefore, users must use very long and complex passphrases which are practically impossible

to memorize. This makes it very likely that users again trade security for memorability and ease

of use. Consequently, passphrases are also no solution for attack-resistant passwords.

Anecdotally, passphrases were already proposed by Kurzban in 1985 [142]. However, he insists

that passphrases are generated by services due to security reasons.

Mnemonic phrase-based passwords

Similar to passphrases, there is the advice of using so-called mnemonic phrase-based passwords.

A user choose a sentence and select the first character of each word. The resulting string is the

password. For example, the sentence “Passwords are always stronger on the other side” is

condensed into the password Paasotos. Mangling rules can also be applied to further strengthen

the password for instance to Paa50t05.

The security of mnemonic phrase-based passwords highly depends on the fact that users choose

a unique sentence [238]. But, in practice users select sentences from music lyrics, movies, and

literature [141]. This makes such passwords easy to guess [137].

52 3 Passwords require ubiquitous assistance



3.6.1.3 Tools

Despite the various approaches such as password meters and password-composition advices,

user-chosen passwords remain vulnerable to guessing attacks. Security experts recommend to

use password generators. They create random passwords that do not have patterns. Therefore,

an attacker can only use time-consuming brute-force attacks to guess such passwords. Attacks

using dictionaries and probabilistic models do not provide any advantage. Users are aware

of the security benefit of random passwords [95]. But, similar to system-assigned passwords,

passwords generated by password generators suffer from poor memorability [148].

Password generators exist as web (e.g. random.org) and stand-alone applications (e.g. [214])

as well as are an integral part of most password managers (e.g. [67, 144, 186]). They create

passwords based on predefined password-composition rules, which specify the length and the

included characters of the generated passwords.

The rules of common password generators are sub-optimal as we describe in Section 4.6.3.

Generated passwords are not attack-resistant and often get rejected by services, because they

do not fulfill the services’ password requirements. The only solution for users is to manually

look up the password requirements for each individual service and to configure the password

generator accordingly. With respect to the wide diversity as well as the huge lack of password

requirements that we showed in Section 3.4, this is a very cumbersome task. This inconvenience

induces users not to employ password generators and rather stick to weak passwords.

One solution would be that all services use the same password requirements [9, 84, 207]. Be-

cause of the various password implementations and missing official standards, it is very unlikely

that this will happen.

Moreover, there exist password generators creating passwords which are easy to remember

for users (e.g. [67]). They do not include ambiguous characters (e.g. Il, an uppercase i and

a lowercase L) or make the password easily pronounceable (e.g. nenesotifexe). Such schemes

often based on the algorithm of Morrie Gasser [74], but such passwords are insecure [93].

To conclude, password generators are the only option to generate attack-resistant passwords

because the generated passwords have no patterns. To this end, they are the best candidate to

realize the first password task. But, existing generators are impractical because they do not take

the password requirements of services into account.

PAS solves this problem by generating attack-resistant and valid passwords for users automati-

cally (cf. Chapter 4).

3.6 Passwords in practice and the state of the art 53

random.org


3.6.2 Password preservation

In this section, we evaluate approaches to preserve passwords. We also describe two alternatives

to address the memorization problem of passwords without preserving passwords. In Section

3.6.2.1 to 3.6.2.4, we evaluate the preservation-related problems: confidentiality, availability,

recoverability, and accessibility.

Storing passwords

The most common solution to preserve passwords it to store them on user devices. A prominent

example is a password manager. It saves passwords in a local database. While this seems to be

a suitable approach, we describe in Section 3.6.2.1 that providing the confidentiality of stored

passwords is very difficult.

Storing password generation data

Instead of storing passwords, they can be regenerated when needed. This can be done for

instance based on service-related information, some information that users need to memorize,

or some data stored on devices. A survey of existing approaches is available at [155].

Earlier schemes generate passwords by hashing a user-chosen master password and the URLs

of services [105, 189]. As long as users know their master password they can regenerate their

passwords at any time. But, an attacker who steal a password can perform an offline guessing

attack to obtain the master password and then generate all passwords [150]. One solution is

to use an attack-resistant seed for the password generation instead of a predictable user-chosen

password. But, the seed must be stored because it is practically impossible to memorize it.

Furthermore, the approach of simply hashing a master password or a seed together with the

URLs cannot be used to generate new passwords for accounts. This problem can be solved by

adding an additional salt in the hashing for each account [105]. However, memorizing the salts

is not possible for users so that also the salts must be stored on devices. Storing the seed and

the salts leads to the confidentiality, availability, recoverability, and accessibility problem of this

data. For instance, when the seed and the salts are not available on a device, a user cannot

generate his passwords.

At first glance storing password generation data instead of passwords does not provide any ben-

efits. But, it follows from the examination of the confidentiality, availability, recoverability, and

accessibility problem in the next sections that this approach allows to solve these problems.

54 3 Passwords require ubiquitous assistance



Remembering passwords

Various researchers have shown that users can memorize random passwords using repetition

[38], cues [5, 29], and training videos [109]. However, in these studies users only needed

to learn a single password. As such approaches are very time-consuming and sometimes cost

weeks to learn a password [38], they are not applicable for a multitude of passwords.

Reusing passwords

Another approach is the reuse of passwords across accounts. Thus, users only need to memorize

a small number of passwords. But, this approach raises a major security threat. In case an at-

tacker obtains a password of a user, he gets access to all the other accounts where this password

is used. This is called the domino effect of password reuse [129].

Despite this obvious security threat, there are researchers that recommend password reuse as a

suitable coping strategy for the memorization problem of passwords instead of preserving them.

Users should categorize their online accounts based on the importance and use proper pass-

words for high-value accounts and reuse passwords for low-value accounts [85, 243]. However,

in practice users do the opposite. They often reuse the passwords of their valuable accounts

and in general reuse passwords that they use often [17, 233]. The reuse of passwords also

increases over time, because users have more and more accounts but do not create more pass-

words [95]. Even when users do not exactly reuse passwords, they often make only minor

adjustments [66, 138, 202, 221, 242]. Although users know that reusing passwords is totally

insecure, they justify their behavior as necessary because otherwise they need to memorize too

many passwords [170, 219, 241].

3.6.2.1 Password confidentiality

We analyze proposals to ensure the confidentiality of preserved passwords in the section. It

becomes apparent that the common approach of encrypting preserved passwords by a user-

chosen master password does not properly protect them against an attacker.

The confidentiality of preserved passwords is realized by encryption. In case the encryption key

is derived form a user-chosen master password there is the risk of efficient attacks (cf. Section

2.2.2). One mitigation approach is to use a password-hashing function such as PBKDF2 [130] to

derive a proper encryption key. This makes an attack more time-consuming, however, it is still

feasible. Another approach is to randomly generate the encryption key, store it along with the

encrypted preserved passwords, and encrypt the key with a master password. However, this just

3.6 Passwords in practice and the state of the art 55



shifts the problem. In practice, the derivation of encryption keys is often poorly implemented so

that efficient attacks are possible even when users use proper master passwords [21, 52, 245].

Besides guessing the master password, there is also the risk of other vulnerabilities such as in

the storage format which allow an attacker to obtain the passwords without guessing the master

password [94, 149, 204, 210].

Another mitigation approach to prevent the guessing of the master password are decoy passwords

[32, 55]. When an attacker uses a wrong master password for decryption, he gets a set of

plausible-looking decoy passwords. This forces him to verify the passwords online to distinguish

between the decoy passwords and the real passwords of users. However, generating decoy

passwords that are indistinguishable from user-chosen passwords is very difficult [97], if not

impossible at all [175].

Moreover, there exist proposals that protect preserved passwords by making use of additional

devices [160, 231]. However, such approaches require users to always carry an extra device.

This is burdensome and bears the risk of loss.

In essence, protecting preserved passwords by a master password does not ensure the confiden-

tiality of passwords. Assuming a master password with an appropriate securely level also just

provide a first line of defense. In Chapter 5, we present the first secure solution for the con-

fidentiality problem. We introduce a revocation mechanism to invalidate preserved passwords

which prevents that the passwords can be stolen.

3.6.2.2 Password availability

In this section, we examine proposals to realize the availability of passwords on all user devices.

It follows from this examination that manually copying preserved passwords between devices

is not a practical solution. Storing preserved passwords online for synchronization leads to the

confidentiality issues described in previous section.

Offline synchronization

Manually copying preserved passwords between user devices is not a practical solution. It is

burdensome and time-consuming, because users must do this after any changes of their pass-

word portfolio. This happens frequently due to the continually increasing number of accounts

and regular password changes.

56 3 Passwords require ubiquitous assistance



Online synchronization

Another approach is to store preserved passwords at servers on the Internet to make them

available on all devices. This is done by various password managers (cf. [67, 144]) but users can

also use a simple cloud storage provider to realize this. However, storing preserved passwords

on the Internet generally raises various security issues.

First and foremost, there is the risk of server compromise [145, 146, 174] in which an attacker

steals the preserved passwords. This leads to the confidentiality issues discussed in Section

3.6.2.1. The attacker can perform a powerful offline attack or exploit security flaws in the

storage format. Moreover, there is the risk of governmental access [61]. This includes that

server operators are forced to hand over the preserved passwords to governmental agencies

or even forced to implement backdoors that enable an access to the passwords. Note that

if such backdoors become public they can also be misused by an attacker. Users take these

risks very serious and worry about giving control of their passwords to an online service [131].

The security issues are very serious if the preserved passwords contains the passwords. This

applies for the majority of the existing proposals such as password managers. The security

of the preserved passwords then solely relies on the security level of the user-chosen master

password. It is unlikely that such passwords withstand a large-scale offline brute-force attack.

In case the preservation of passwords is done by storing password generation data, this data

can also be stored on servers to realize a synchronization of the preserved passwords. Like PAS

(cf. Chapter 5), this is done by AutoPass [156]. Passwords are made available on all devices by

generating them using some secret data that is stored on devices and some non-sensitive data

that is stored on servers. The data on servers enable all devices to generate the same passwords

as well as synchronize new passwords and password changes. But, the data on the servers does

not allow an attacker to obtain the passwords. Nevertheless, even this approach has a security

issue. There is the risk that a malicious server in cooperation with a malicious service determine

the secret data stored on the user devices and thus obtain all passwords [156]. PAS is the first

solution that is not vulnerable to this attack.

3.6.2.3 Password recoverability

We next evaluate approaches to create and maintain backups of preserved passwords. It turns

out that placing backups at secure locations to protect them as well from unauthorized access

and loss while keeping them up-to-date at the same time is an unsolved problem in practice.

3.6 Passwords in practice and the state of the art 57



Offline backup

Backups of preserved passwords can be stored on external hard drives or local network storage

devices. This also allows an automatic update. But, they are threaten by malware [24, 136].

Therefore, it is recommended to store backups on read-only memories such as CDs and put them

at secure, different, and physically isolated locations [78, 217]. For instance, at friends which

also has the benefit that backups are protected from physical damage like fire.

However, this runs contrary to the requirement of keeping backups up-to-date. After any

changes to the users’ password portfolio backups must be updated because outdated backups

are useless. However, regularly creating new backups and putting them at a friend’s place is

practically impossible. Having the preserved password on multiple devices also does not serve

as a proper backup solution because of the serious threat of malware [79].

Online backup

Backups can also be stored on servers. This allows users to protect their backups from fire or

burglars. However, when the backups contain the passwords this approach poses the same se-

curity issues as already discussed in Section 3.6.2.2. An attacker can get access to the servers,

steal a backup, and finally obtain the passwords. As we explained in Section 3.6.2.1 the confi-

dentiality of stolen preserved passwords can hardly be archived by a master password. In case

the preservation of passwords is realized by generation data and the data is independent of

passwords, online backups are suitable. This applies for PAS (cf. Chapter 5).

3.6.2.4 Password accessibility

In this section, we examine proposals to solve the password accessibility problem. It follows

from this examination that existing proposals to make preserved passwords available to trusted

persons in urgent or even emergency situations are impractical and raise new security issues.

Copy of preserved passwords

One approach is to place copies of the preserved passwords at trusted persons. However, this is

not a practical solution because users need to keep the copies up-to-date. Moreover, the copies

must be properly protected, for instance by a master password. This is necessary because the

copies can be stolen from the trusted persons. Moreover, users might want to approve the access

to their passwords. But, telling a very long and complex master password to trusted persons in

urgent or emergency situations, for instance via phone, is error-prone.

58 3 Passwords require ubiquitous assistance



Sharing account credentials

If the preserved passwords are stored online, users can tell trusted persons their credentials

(i.e. username and password for the storage account). But, this approach has many drawbacks.

First, telling the password via phone is error-prone. Second, trusted persons get access to all

passwords. Third, this approach is not possible if the storage account is protected by a second

factor (e.g. one-time-key, SMS on a mobile device, device-specific secret [4]). It also does not

work if the preservation of passwords is realized by generation data. This requires additional

secret data stored on user devices, but this data is not available to trusted persons.

Instead of sharing the credentials in case of emergency, users can provide them to trusted per-

sons in advance, e.g. written on a piece of paper [4]. However, in this case users have no

possibility to approve the emergency access to their preserved passwords. Moreover, there is

the risk that the credentials get stolen from trusted persons and an attacker gets access to the

preserved passwords, e.g. in case of a burglary.

Predefined emergency access

Another approach is to set up a predefined emergency access including a mechanism to approve

the access. The approval can be realized by a waiting period, which can be chosen by users

[67, 144]. If a trusted person requires emergency access, the access to the preserved passwords

is granted after this period. During the waiting period, users can refuse the access. However,

selecting an appropriate waiting period is impossible. For emergency purposes, a very short

period is important, but then users might not be able to refuse an unauthorized emergency

access. A typical situation would be an attacker misusing the emergency access of a trusted

person. Against this background, a longer waiting period might be more appropriate but then

an immediate access in urgent situations is impossible.

PAS allows to defined an emergency access to passwords and provides an approval by means

of a PIN (cf. Chapter 6). This solves both issues. Trusted persons cannot access the passwords

without the PIN and users can approve the access to their passwords immediately by handing

over the PIN.

3.6 Passwords in practice and the state of the art 59



3.6.3 Password change

Users barely change their passwords [110, 212, 247], even after security breaches at services

or exceptional events like the Heartbleed bug [62, 121, 179]. Against this background, some

services enforce regular password changes. While this is common practice at companies, uni-

versities, and government services, banks and general services do not implement it [83, 84].

Despite the security benefits of reducing the time an attacker has to guess passwords and invali-

dating possibly compromised passwords (cf. Section 3.2.1), enforcing regular password changes

fails to serve its purpose in practice if users need to memorize passwords. Users develop strate-

gies for the generation of the new passwords which leads to patterns [242]. This makes it very

easy to determine the new passwords from old ones.

Preserving passwords allows users also to use attack-resistant passwords when regularly chang-

ing passwords. But, changing passwords through the different password interfaces and proce-

dures implemented by services is very challenging and cumbersome for users (cf. Section 3.5).

One approach to solve the password change problem is to change passwords on behalf of users.

This can be realized by an application running as a web browser extension [144, 157]. How-

ever, this is inconvenient and error-prone, because users cannot use the browser while changing

passwords and might even interrupt the process by closing the browser. Moreover, it is not a

suitable solution to change passwords of all accounts. It also does not work on mobile devices.

Another realization is performing the password changes by a server [67, 68]. This enables a

simultaneous change of all passwords but the server finally knows the passwords of the users

which raises serious security issues and user concerns [131].

Another issue of existing approaches (e.g. [67, 144]) is the limited number of supported ser-

vices. Because these approaches are proprietary, users have no option to use it with other

services. Like our solution, the proposal by Mayer et al. [157] can be used with arbitrary

services. But, it is also realized in the browser leading to the aforementioned issues.

Another drawback of all existing proposals is that users are left in charge of triggering password

changes. This means they need to keep track of doing it regularly. Moreover, it does not ensure

that passwords are immediately changed in case of a password compromise. It can take weeks

until users get informed about a password breach at a service and change their passwords.

PAS is the first solution that solves the aforementioned issues (cf. Chapter 7). It works with

arbitrary services, is independent of applications and platforms, and provides fully-autonomous

password changes. PAS changes passwords on a regular basis with respect to the security level

of passwords as well as immediately after it detects a compromise of users’ passwords.

60 3 Passwords require ubiquitous assistance



3.7 Realization of secure passwords by ubiquitous password assistance

The three password tasks of generating, preserving, and changing passwords enable users to use

secure passwords for their accounts. But, in practice these tasks are so complex and extensive

that it is practically impossible for users to perform them manually. Existing proposals often

do not consider the conditions of services and therefore are quite useless for practical use.

Moreover, they only cover some parts of the tasks, but to make secure passwords usable for

users it is necessary to perform all of them. It follows from countless studies that users will only

adapt a solution when it encompasses all aspects of passwords. If users are only able to partially

use secure passwords they will continue using weak passwords.

In this thesis, we present the Password Assistance System (PAS). It enables users to use secure

passwords for their online accounts. This is achieved by automating the three passwords tasks

and providing comprehensive support. PAS consists of four parts:

1. Password generation: The password generation problem is solved by generating attack-

resistant and valid passwords for users automatically. Users just need to provide the URL

of a service in order to generate an optimal password for an account.

2. Password synchronization: The preservation, confidentiality, and availability problem is

tackled by password synchronization scheme. It protects preserved passwords and makes

them available on all user devices.

3. Password backup: The password recoverability and accessibility problem is solved by back-

ups. Backups do not need to be updated even when passwords change, they can be revoked

without physical access, and they provide a fully controllable emergency access.

4. Password change: The password change problem is solved by changing passwords auto-

matically. Users neither need to create new passwords nor need to log in to their accounts.

Passwords are changed on a regular basis with respect to the security level of passwords

as well as immediately after compromise of users’ passwords is detected.

PAS is the first solution that is capable of handling the different password implementations of

services. A uniform description of password requirements, interfaces, and procedures enables

it to cope with the various implementations. We describe the four parts of PAS in Chapter 4 to 7.

3.7 Realization of secure passwords by ubiquitous password assistance 61



3.8 Conclusion

In this chapter, we detailed the problem of users to use secure passwords for their accounts.

Secure passwords are indispensable to protect the multitude of personal data contained in ac-

counts. Yet, users are not able to use secure passwords in practice.

We defined requirements and conditions for secure passwords. First, we defined security re-

quirements for passwords. In essences, passwords must be (1) attack-resistant, (2) different

for each account, and (3) changed on a regular basis and immediately after a compromise is

detected. This prevents an attacker from guessing and misusing stolen passwords. Second,

we detailed the conditions of services for passwords. We presented the largest ever conducted

survey of password requirements and detailed their characteristics and security implications.

Password requirements at Internet services are quite different, incompletely stated, and often

missing at all. None of the 57,536 analyzed services enforce attack-resistant passwords and

every fifth service even does not allow such passwords at all. Furthermore, we analyzed the

password interfaces and procedures of services for the first time. It follows from this survey that

here again users need to cope with very different password implementations. Third, we defined

usage requirements which ensure a practical and usable solution as well as address conditions,

concerns, needs of users.

Based on these requirements and conditions, we defined three tasks that enable users to realize

secure passwords for their accounts: generating, preserving, and changing passwords. But, it

is practically impossible for users to perform these tasks manually. It is therefore obvious that

users are not able to use secure passwords for their accounts in practice. To verify this claim, we

examined how users cope with the password tasks in practice. Based on an extensive survey of

existing literature regarding users’ behaviors and perceptions of passwords as well as proposed

solutions it became apparent that the problem of using secure passwords is still not solved.

Finally, we outlined our solution: Password Assistance System. It enables users to realize secure

passwords. This is achieved by automating the three passwords tasks and providing compre-

hensive support. We present the individual parts of PAS in the next chapters.

62 3 Passwords require ubiquitous assistance



4 Automatic generation of
attack-resistant and valid passwords

In Chapter 3, we have shown that the generation of passwords that are attack-resistant and

compliant with the individual password requirements of services is very difficult for users.

In this chapter, we present the first part of PAS. It solves the password generation problem by au-

tomation. Brute-force-resistant and valid passwords are generated automatically by password

assistants. Users just need to provide the URL of the service in order to generate an optimal

password. PAS realizes this by making the services’ requirements available to password assis-

tants and providing optimal fallback password-composition rules for the case that no explicit

requirements for a service are available. We provide a conceptual description of our solution in

Section 4.1.

Then, we describe the four building blocks of our solution: First, Password Requirements De-

scriptions (PRD), a standardized description of password requirements that can be processed

by password assistants (cf. Section 4.2). Second, the automatic generation of PRDs for the

numerous services that already exist on the Internet (cf. Section 4.3). Third, the distribution

of PRDs to make them available to password assistants (cf. Section 4.4). Fourth, optimal fall-

back password-composition rules for password assistants that can be used in the event that the

password requirements for a service are partially or entirely not available (cf. Section 4.5).

We present a practical evaluation and implementation of our solution in Section 4.6. We present

a large-scale generation of PRDs for 185,696 services. Furthermore, we complement our so-

lution by password assistants that make use of PRDs. Moreover, we show that our optimal

password-composition rule set is indeed a good fallback solution for services with no explicit

password requirements. We conclude this chapter in Section 4.7.

The contributions of this chapter were published as parts of [H1, H4]. This chapter extends the

published contributions by the development of a stand-alone PRD-based password assistant.

63



4.1 Conceptual description

This section provides a conceptual description of our solution which solves the password gen-

eration problem. We introduce the next generation of password management applications, a

password assistant. It supports users with the first password task of generating passwords.

The password assistant performs the task for users and generates attack-resistant and valid

passwords automatically.

The entities involved in our solution are a user, a password assistant, and a repository for Pass-

word Requirements Descriptions (PRD). A PRD described the password requirements for ser-

vices in a standardized way. We consider that the user needs to generate a password for a new

account. The password assistant supports the user in this challenge and generates a password

for him. The repository provides the PRD of the service for which the password is used. The gen-

eral application flow of the password generation is illustrated in Figure 4.1 and briefly described

in the following:

1. The user enters the URL of the service (e.g. example.org) into the password assistant for

which he needs to generate a password.

2. The password assistant uses the URL to request the PRD of the service from the repository.

In case the requirements of the service are partially or entirely not available, the assistant

makes use of a set of fallback password-composition rules.

3. The password assistant generates an attack-resistant password compliant with the received

password requirements and hands it over to the user.

_URL_

_PRD_
_Password_

User
Password 
assistant

PRD
repository

_URL_

Figure 4.1: Data flow of the automatic password generation procedure.

We now introduce a solution to automatically generate attack-resistant and valid passwords.

As illustrated in Figure 4.2 it consists of two components. First, a cryptographically secure

Pseudo-random Generator (PRG) that generates a random value. Second, a Password Gener-

ator (PG) that derives a password from the random value in accordance with given password

requirements. In Section 4.6.2 we describe the implementation of both components in detail.

64 4 Automatic generation of attack-resistant and valid passwords



PG_Random_ _Password_PRG

Password

requirements

Figure 4.2: Password generation procedure.

Despite existing approaches, our concept is the first secure and usable solution for the password

generation problem for the following reasons:

• Brute-force-resistant passwords are generated. If not supported by services, at least pass-

word with the best security level are generated.

• Valid passwords are generated by considering the individual requirements of services.

• Fallback password-composition rules are used if the password requirements of a service

are incomplete or missing.

Altogether, generating optimal passwords is as secure, easy, and comfortable as possible. Users

only need to provide the URL of the service. The realization of our solution consists of four

building blocks which are presented in the following Section 4.2 to 4.5.

4.2 Uniform description of password requirements

In Section 3.4, it was shown that password requirements of services are very different and

described in various ways. For instance, a maximum password length of 10 is expressed by “not

more than 10”, “do not use 11 or more”, or “at most 10 characters”. In total, we found 1401

distinct password requirements sets. This makes it very problematic for password assistants to

handle and consider the services’ password requirements during password generation.

In this section, we solve this problem by presenting a uniform description of password require-

ments. It allows to specify the many different password requirements of services in a standard-

ized format. Such descriptions can be processed by password assistants in order to consider the

individual password requirements of services during password generation.

In the following, we introduce our uniform description language and provide examples for

standardized password requirements descriptions.

4.2 Uniform description of password requirements 65



Password Requirements Markup Language

The Password Requirements Markup Language (PRML) specifies a framework for Password Re-

quirements Descriptions (PRDs). A PRD is a standardized description of the password require-

ments of a service. It provides all information to automatically generate a valid password.

We conducted an analysis of password requirements for 200 representative services1 in order

to provide a comprehensive specification for PRDs. Based on the results, we identified common

password requirements and specified PRML. As illustrated in Figure 4.3, a PRD consists of two

parts: First, some metadata used to identify and manage PRDs properly. Second, the actual

password requirements of services. In the following, we describe both parts and in particular

how the individual password requirements of a service can be described by a PRD.

Password Requirements Description

Metadata
Password 

requirements

Figure 4.3: Structure of a PRD.

We encode PRDs in XML and provide a full XML Schema at [H26]. XML is well-specified and

supported by many programming languages. This enables an easy integration of PRDs into

password assistants. In practice, an XML-encoded PRD has a file size of 1 – 2 kilobytes.

A PRD is represented by a <prd> XML element. It has three attributes which form the metadata:

url, version, and prmlVersion. The url specifies the URL of the service associated with the

PRD. The version number allows password assistants to differentiate between multiple versions

of a PRD and to update it if necessary. The prmlVersion specifies the version of PRML that is

used to describe the PRD.

The password requirements and their structure, which can be specified by a PRD, are illustrated

in Figure 4.4 and described in the following:

• Character sets: The <characterSets> element defines a list of allowed character sets. Each

character set is described by a <characterSet> element which in turn defines a name (e.g.

numbers) and the list of actual characters (e.g. 0123456789).

1 The Alexa Top 500 US list [8] reduced by websites with pornographic and illegal content, non-English websites,

and websites that do not have or allow the creation of online accounts (e.g. banking websites). The list of

services is available at [H26].

66 4 Automatic generation of attack-resistant and valid passwords



Character sets Properties

Length

Sequences

Occurrences

Positions

Choices

Character-set-

related properties

Password-related 

properties

Password requirements

Figure 4.4: Structure of the password requirements definition.

• Properties: The <properties> element contains password-related and character-set-

related properties. The former defines further restrictions for passwords as a whole,

the latter further restrictions for the previously specified character sets. The restrictions

for the character sets are defined within a <characterSettings> element and a reference

to a character set specified in the <characterSets> element.

Password-related properties:

– Minimum and maximum password length: The minimum and maximum length of pass-

words are specified by a <minLength> and <maxLength> element.

– Sequences: The <maxConsecutive> element specifies the number of allowed consecu-

tive characters. It allows to prevent the usage of sequences like 1111 or 1234.

Character-set-related properties:

– Minimum and maximum occurrences: The occurrences of characters from a certain

character set is defined by a <characterSet> element. The element defines an at-

tribute name which refers to a character set (as defined in the overall list of character

sets, cf. <characterSets> element) as well as a minimum (<minOccurs>) and a max-

imum (<maxOccurs>) occurrence. This allows defining requirements such as “the

password should contain at least one number and one special character”.

4.2 Uniform description of password requirements 67



– Positions: A <positionRestriction> element is used to restrict the occurrences (min-

imum (<minOccurs>) and maximum (<maxOccurs>) occurrence) of a character set to

a single or a range of positions (<positions>). Multiple <positionRestriction> el-

ements must be combined by a logical AND. They can be used to express requirements

such as “the password must start with a letter”.

– Choices: Choices of character sets are defined by a <requirementGroup> element

which contains a list of <requirementRule> elements. Each rule refers to a char-

acter set and defines a minimum and maximum occurrence. Moreover, each

<requirementRule> can be restricted to certain positions by a <positions> ele-

ment. The number of rules that must be fulfilled is specified by the <minRules>

element. The <requirementRule> elements are combined with a logical OR. A

<requirementGroup> allows defining conditions such as “the password must contain

at least two from the three character sets letters, numbers, and special characters”.

Note that a PRD does not contain a blacklist of passwords that are not accepted by a service or

to be considered as insecure in general (e.g. password, 123456, qwerty, and letmein). PRDs are

intended for password assistants to generate random and attack-resistant passwords. They are

not intended to assess or validate user-chosen passwords like password meters.

In the following, we provide two exemplary PRDs. One for a fictitious service and one for the

existing service PayPal. Further 185,696 PRDs are available at [H26].

PRD for a fictitious service

We consider a fictitious service with the URL example.com for which the PRD is presented in

Listing 4.1. The service accepts passwords consisting of letters, numbers, special characters,

and spaces. This is represented by the corresponding <characterSet> elements within the

<characterSets> list. As defined in the <characterSettings> element, passwords must con-

tain letters, numbers, and special characters. Spaces may be used, which is represented by the

<minOccurs>0</minOccurs> part. However, at least two numbers must be used, but at most

one special character (cf. the <minOccurs> and <maxOccurs> elements, respectively).

Furthermore, the service restricts the first character of passwords. As specified by the

<positionRestiction>, the first character of a password must be a letter. Moreover, the pass-

word should not have more than three consecutive identical characters. Finally, the minimum

password length accepted by the service is 10 and the maximum is 20 characters, which is

represented by the <minLength> and <maxLength> element, respectively.

68 4 Automatic generation of attack-resistant and valid passwords



<prd url="https://www.example.com" version="1.0" prmlVersion="1.0">

<characterSets >

<characterSet name="Letters">

<characters >abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ </characters >

</characterSet >

<characterSet name="Numbers">

<characters >0123456789</characters >

</characterSet >

<characterSet name="Specials">

<characters >,;.:-_</characters >

</characterSet >

<characterSet name="Spaces">

<characters > </characters >

</characterSet >

</characterSets >

<properties >

<characterSettings >

<characterSet name="Letters"/>

<characterSet name="Numbers">

<minOccurs >2</minOccurs >

</characterSet >

<characterSet name="Specials">

<maxOccurs >1</maxOccurs >

</characterSet >

<characterSet name="Spaces">

<minOccurs >0</minOccurs >

</characterSet >

<positionRestriction characterSet="Letters">

<positions >1</positions >

<minOccurs >1</minOccurs >

</positionRestriction >

</characterSettings >

<maxConsecutive >3</maxConsecutive >

<minLength >10</minLength >

<maxLength >20</maxLength >

</properties >

</prd>

Listing 4.1: PRD of a fictitious service. The PRD defines the character sets letters, numbers, spe-
cial characters, and spaces. Passwords must contain letters, numbers, and special
characters. Spaces may be used. However, at least two numbers must be used,
but at most one special character. Furthermore, the first character must be a letter.
Passwords should not have more than three consecutive identical characters. The
minimum password length is 10 and the maximum is 20 characters.

4.2 Uniform description of password requirements 69



PRD for PayPal

In addition to the fictitious example, we now present a PRD for an existing service showing

how PRDs look in practice. In the following, we list the password requirements of PayPal and

point out the corresponding elements in the PRD (cf. Listing 4.2). The requirements have been

extracted from PayPal’s sign-up form available at https://www.paypal.com/signup.

1. “8 characters or longer.”

2. “Do not use more than 20 characters.”

3. “Include at least 1 number or symbol (such as !@#$%^).”

4. “Do not use your email address.”

5. “Please avoid 4 or more consecutive repeated characters (like 1111).”

6. “Please avoid consecutive numbers (like 1234 or 4321).”

7. “Please avoid key sequences (like qwer or rewq).”

8. “Please avoid key and number sequences (like qwer, rewq, 1234 and 4321).”

9. “Do not use any spaces.”

The Requirement 1. and 2. are represented by the <minLength> and <maxLength> ele-

ment, respectively. The Requirement 3. appears as the <requirementGroup> element in the

<characterSettings> element, as part of the <properties> element. For each character set

numbers and special characters (PayPal calls it symbols) there exists a <requirementRule> el-

ement. Both define a minimum occurrence of one character. The <minRule> element finally

specifies that at least one of these two rules must be fulfilled. The Requirement 4. is not part

of the PRD, because PRDs are intended for generating random passwords and therefore do not

contain a blacklist. The Requirement 5. to 8. are represented by the <maxConsecutive> ele-

ment. Finally, Requirement 9. is implemented such that spaces are not defined in the set of

allowed character sets in the <characterSets> element.

70 4 Automatic generation of attack-resistant and valid passwords

https://www.paypal.com/signup


<prd url="https://paypal.com" version="1.0" prmlVersion="1.0">

<characterSets >

<characterSet name="Letters">

<characters >abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVQXYZ </characters >

</characterSet >

<characterSet name="Numbers">

<characters >0123456789</characters >

</characterSet >

<characterSet name="Specials">

<characters >.,:;-+*?%&amp;=</characters >

</characterSet >

</characterSets >

<properties >

<characterSettings >

<characterSet name="Letters"/>

<requirementGroup >

<minRules >1</minRules >

<requirementRule characterSet="Numbers">

<minOccurs >1</minOccurs >

</requirementRule >

<requirementRule characterSet="Specials">

<minOccurs >1</minOccurs >

</requirementRule >

</requirementGroup >

</characterSettings >

<maxConsecutive >3</maxConsecutive >

<minLength >8</minLength >

<maxLength >20</maxLength >

</properties >

</prd>

Listing 4.2: PRD of PayPal. Passwords can consist of letters, numbers, and special characters. Be-
sides letters, at least one number or one special character must be used. A password
should not have more than three consecutive identical characters. The minimum
password length is 8 and the maximum is 20 characters.

4.2 Uniform description of password requirements 71



4.3 Automatic generation of password requirements descriptions

In the previous section, we introduced Password Requirements Descriptions (PRDs) to solve

the problem of the different descriptions and presentations of password requirements. To en-

able password assistants to use PRDs in practice, the PRDs for services are required. However,

creating these PRDs manually for the huge number of existing services is not feasible.

In this section, we solve this problem by generating PRDs automatically. We present the Pass-

word Requirements Crawler (PRC), an application that automatically extracts the password

requirements of a service from its website and translates them into a PRD. The password re-

quirements are extracted from the sign-up forms of services. This is the common location where

users are confronted with them while generating passwords for their online accounts.

Figure 4.5 illustrates the components of the PRC and the data flow of the automatic PRD gen-

eration. The PRC consists of two components and takes as input the service’s sign-up form as

an HTML document and outputs the PRD of the service. The Password Requirements Extractor

(PRE) extracts password requirements and the Password Requirements Description Generator

(PRDG) generates the PRD based on the PRE’s output.

We describe later in Section 4.6.1 how we find the sign-up form on a service’s website and

download it as an HTML document in order to use it as input for the PRE. The subsequent

Section 4.3.1 and 4.3.2 describe the PRE and the PRDG, respectively. Section 4.3.3 provides an

evaluation of the PRC. Finally, in Section 4.3.4 we discuss limitations.

PRDG
Password

requirements
_PRD_PRE

HTML

document

<form>

  <label for="username">Username</label>

  <input id="username" name="username">

  <label for="pw">Password</label>

  <input id="pw" name="pw" maxLength="20">

  <div id="passwordHelp">

    <ul>

      <li>Your password must be at least 10 characters  long.</li>

      <li>Use letters, numbers or special characters.</li>

      ...

    </u l>

  </d iv>

</form>

Minimum password length = 10

Maximum password length = 20

Allows character sets = letters, numbers, special characters

<prd url="www.example.com">

  <characterSets>

    <characterSet name="Letters">

      <characters>a..zA..Z</characters>

    </characterSet>

    ...

  </characterSets>

  <properties>

    <minLength>10</minLength>

    <maxLength>20</maxLength>

  </propert ies>

</prd>

Figure 4.5: Data flow of the automatic PRD generation.

72 4 Automatic generation of attack-resistant and valid passwords



4.3.1 Extraction and interpretation of password requirements

The Password Requirements Extractor (PRE) extracts password requirements from an HTML

document. It outputs the extracted requirements in a uniform description, which is then used

by the PRDG to create the PRD of the service.

In practice, the description and presentation of password requirements are extremely diverse.

Services describe their requirements in natural language instead of a structured format like

PRDs. For instance, a maximum password length of 10 is expressed by “not more than 10”, “do

not use 11 or more”, or “at most 10 characters”. This diversity makes it extremely challenging

to identify and extract password requirements from websites. For instance, regular expressions

would be too narrow to cover all the different expressions. We apply Natural Language Processing

technologies [48] to precisely identify and extract password requirements from websites.

Figure 4.6 provides an overview of the processing steps performed by the PRE. Password re-

quirements are extracted in two ways. First, natural language processing using the Apache

UIMA framework [13, 80] is used to analyze the textual content of the HTML document

(dashed path). Second, information provided by the HTML document itself is analyzed by

the HTML Metadata Extractor (solid path). Both results are finally combined. We describe the

requirements extraction in the following.

HTML

preprocessor

Sentence

splitter

Natural 

language

parser

Keyword 

annotator

Dependency 

parser

Information 

interpreter

HTML

metadata 

extractor

Requirements

HTML

document

Figure 4.6: Execution steps of the password requirements extraction.

• HTML preprocessor (HP): It removes content from the HTML document that in general

does not contain password requirements, such as the header, images, and drop-down lists.

Furthermore, it adds sentence delimiters to list items, text blocks, and paragraphs in order

to improve the subsequent detection of sentences in the content. The HP outputs plain-text

without any HTML markup.

4.3 Automatic generation of password requirements descriptions 73



• Sentence splitter (SS): It takes as input the loose collection of words and punctuation marks

from the HP and splits it into sentences. It detects beginnings and ends of sentences and

annotates them with a delimiter.

• Natural language parser (NLP): It determines the grammatical structure of each sentence.

It detects groups of words that belong together and identifies the category of each word

(verb, subject, or object). It outputs a dependency tree for each sentence, which describes

the sentence’s grammatical structure and the textual relations of its words.

• Keyword annotator (KA): It searches for keywords to identify sentences that potentially

contain password requirements. Relevant keywords were identified based on 20 represen-

tative websites and extended by linguistically related words (cf. [194, H4] for details). In

essence, we use keywords related to character sets like uppercase and numbers and key-

words focusing on password lengths such as at least and more than. The KA outputs a list

of sentences containing these keywords.

• Dependency parser (DP): It combines the results from the NLP and KA and puts both into

a relation. For the example “use 6 to 12 characters” the dependency tree provides the

information that 6 and 12 are numbers and the KA identified the word characters as a

keyword. The DP now determines the relation between the numbers 6 and 12 and labels

it as a number range.

• Information interpreter (II): It finally takes all information into account and extracts the

password requirements from the sentences. The example sentence “use not more than 16

characters” is interpreted as follows. The number 16 refers to the object characters and the

keyword more than indicates that at least 16 characters must be used. Then, the negation

not is considered and the sentence is interpreted as such that the maximum password

length is 16. The II outputs the extracted requirements in a structured format. All the

different expressions of password requirements used by services are now boiled down to a

uniform format.

• HTML metadata extractor (HME): Besides the textual analysis of the document, the HME

analyzes the HTML source code to extract additional information about the password re-

quirements. The HTML standard specifies an optional minlength and maxlength attribute

for input fields. If present, the HME stores these values to the final list of extracted require-

ments as the minimum and maximum password length. If password lengths are found by

both II and HME, the higher minimum length and lower maximum length are used.

74 4 Automatic generation of attack-resistant and valid passwords



4.3.2 Generation of password requirements descriptions

The Password Requirements Description Generator (PRDG) takes as input the requirements

found by the PRE and generates a PRD. The requirements stated by services are often incomplete

as we have shown in Section 3.4. A prominent example are special characters. Some services

allow them or even require them, but they usually do not list them. To mitigate this problem

the PRDG uses the following default rules for generating PRDs:

• Missing character sets: If a service does not name allowed character sets, the allowed

character sets are set to letters and numbers.

• Missing password lengths: If a service does not specify a minimum and/or maximum pass-

word length, these values are also undefined in the PRD.

• Missing special characters: If a service allows or require special characters but does not

name them, we define the following special characters in the PRD: . : , ; - + * ! ? % & =.

In Section 3.4.2.1 we provided a detailed justification for these design decisions. To close the

gap of the undefined minimum and/or maximum password length, we provide optimal lengths

with respect to acceptance rate and security level in Section 4.5.

4.3.3 Evaluation

In the following, we present an evaluation of the PRC showing that it achieves a ratio of 91.2%

for a correct generation of PRDs. Moreover, we discuss implications for (1) the results of our

large-scale survey of password requirements (cf. Section 3.4) and (2) password assistants using

the PRDs created by our PRC (cf. Section 4.6.2).

We evaluated the PRC based on 250 services to verify that it extracts password requirements

correctly. We used 200 websites selected from the Alexa Top 500 US list [8] and further 50

randomly selected websites with explicitly stated password requirements from the Alexa Top

1 Million list [7]. For this set, we manually looked up the sign-up forms and the password

requirements stated there. The PRC was independently applied to the same set for automatic

requirements extraction. Finally, we compared our manually extracted requirements with the

automatically extracted ones. In case of 228 (91.2%) services the PRC exactly extracted the

password requirements stated on the services’ websites. For 8 (3.2%) services the PRC did

not extract all requirements and for 14 (5.6%) services it extracted (parts of) them incorrectly.

Table 4.1 provides details about the affected requirements. The data set used for the evaluation

is available at [H26].

4.3 Automatic generation of password requirements descriptions 75



Password requirement Not extracted Incorrectly extracted

Minimum password length 5 2

Maximum password length 1 4

Character sets 4 6

Occurrences of characters 1 6

Table 4.1: Number of services for which password requirements were incompletely or incorrectly
extracted by the PRC. Services may be counted multiple times.

4.3.3.1 Implications for our password requirements survey

The password requirements for our large-scale survey of password requirements presented in

Section 3.4 were collected using the PRC. With respect to the outcome of the previously pre-

sented evaluation, we now discuss implications for the results of this survey.

The evaluation of the PRC shows that we can expect the vast majority of collected password

requirements to be correct. Only a small fraction was incompletely or incorrectly extracted.

Therefore, the concrete numbers for the application of password requirements (cf. Section

3.4.1), the security levels (cf. Section 3.4.2), and the acceptance rates of passwords (cf. Sec-

tion 4.5) might not exactly reflect reality.

On the one hand, this can hardly be achieved because services may change their requirements at

any time. On the other hand, our collected data provides such clear results that small deviations

in the absolute numbers do not affect the key points of our contributions presented in Section

3.4 and 4.5.

The evaluation shows that the PRC did not extract the minimum password length for 5 of the

250 services. So, in practice there might be more services specifying a minimum password

length than we presented in Section 3.4.1.1. In the two cases where the PRC selected an in-

correct minimum length it extracted a higher length than specified by the services. To this end,

we can expect that the distribution of the minimum password length as well as the minimum

security levels are even a little bit lower in practice.

Regarding the maximum length the PRC failed only for one service. In case of the 4 services

with an incorrect length, we found two cases with a lower and two with a higher length than

specified by the services. Consequently, we expect only a very little deviation of our results

regarding the maximum password length.

76 4 Automatic generation of attack-resistant and valid passwords



The cases of missing and incorrect character sets were dominated by special characters and

spaces. This might be caused by a lack of proper training data for the PRC, because both are

rarely used in practice. We found nearly the same number of cases where the PRC wrongly

extracted an unstated character set as well as where it did not find an allowed one. To this

end, we expect a very little deviation of our results regarding character sets. The major issue

regarding the occurrences was that the PRC interpreted a minimum password length as a mini-

mum required occurrence. For instance, the requirement “passwords must be 8 letters or more

and contain at least 1 number” was interpreted as a minimum occurrence of 8 letters and a

minimum occurrence of 1 number. Correct would be a minimum password length of 8. Thus,

we can assume that in practice services specify minimum password lengths more often than we

presented, but less minimum occurrences. This issue could be mitigated by an upper bound for

minimum occurrences. However, because of the rare adoption of this requirement and thus the

lack of suitable training data, we could not identify an appropriate upper bound.

4.3.3.2 Implications for password generation

We now discuss implications for password assistants that use PRDs created by our PRC. When

password assistants use the PRDs of the 250 services as well as our optimal fallback password-

composition rule set they generate valid passwords for 97.6% of the services.

As already mentioned, in the two cases where the PRC selected an incorrect minimum length it

extracted a higher length than specified by the services (cf. Table 4.1). To this end, password

assistants would still generate valid passwords. Regarding the maximum password length, we

found two cases with a lower and two cases with a higher length than specified by the services.

Consequently, at least in two cases password assistants would generate valid passwords.

In 5 of the 6 cases with incorrect character sets, password assistants would still generate valid

passwords. The character sets that were wrongly extracted are actually accepted by the services,

even though they were no explicitly stated as allowed. Regarding the character sets that were

not found by the PRC only one service actually requires to use such a character set. As already

mentioned, the major issue regarding the occurrences was that the PRC interpreted a minimum

password length as a minimum required occurrence. Thus, also in this situation, password

assistants would generate passwords compliant with the services’ requirements.

Altogether, in case of the 14 services were the PRC extracted (parts of) the password require-

ments incorrectly, only for 4 services invalid passwords would be generated by password assis-

tants. This sums up to a rate of 95.2% for valid password generation based on the information

provided by the PRDs.

4.3 Automatic generation of password requirements descriptions 77



Besides the 14 cases with incorrectly extracted password requirements, our evaluation showed

that in case of 8 services not all requirements were extracted. In Section 4.5, we present an opti-

mal fallback password-composition rule set for password assistants that can be used in case the

password requirements of a service are partially or entirely unavailable. This rule set specifies

the character sets letters and numbers and a maximum password length of 22 characters. Using

these rules, in case of the aforementioned 8 services with incomplete password requirements,

password assistants would generate valid passwords for 6 of the 8 services. This sums up to an

acceptance rate of 97.6%.

4.3.4 Limitations

In this section, we discuss limitations of our PRC and their effects for our large-scale survey of

password requirements presented in Section 3.4.

The PRC interprets password requirements stated in English. Although, this covers 52.7% of all

websites on the Internet [227], it might have excluded the requirements of some services. As

we explained in Section 4.3.1, the PRC extracts requirements from the textual content and the

source code. While the textual extraction fails for foreign languages, the PRC is still capable of

extracting the minimum and maximum password length from the attributes of the password in-

put field. To this end, the limitation to English mainly affects our results regarding the character

sets and occurrences of characters, that we have presented in Section 3.4.1.2 and 3.4.1.3. The

PRC could be adapted for other languages, but this is out of scope of this thesis.

The PRC is capable of extracting the major password requirements: password length, character

sets, and occurrences of characters. Further requirements such as position restrictions (e.g. “the

password must start with a letter”) are not extracted. While ignoring such requirements might

affect our calculations regrading the acceptance rate of passwords (cf. Section 4.5), the effect is

very limited because such requirements are barely used in practice. For instance, the manually

analyzed set of 250 services only contains four services with position restrictions. This very low

application in practice was also found by Florêncio and Herley [83].

78 4 Automatic generation of attack-resistant and valid passwords



4.4 Distribution of password requirements descriptions

To use PRDs during password generation, they must be available to password assistants. In

this section, we present two solutions to realize the distribution of PRDs. First, we present in

Section 4.4.1 a central service that distributes PRDs (cf. Figure 4.7a). Second, we present in

Section 4.4.2 an alternative decentralized approach in which services themselves provide their

PRDs to password assistants (cf. Figure 4.7b).

_PRD_

Password 
assistant

PRDDS

_URL_

(a) Service-independent centralized solution.

Password 
assistant

Service
1

Service
2

Service
3

_PRD_

(b) Privacy-preserving decentralized solution.

Figure 4.7: Distribution of PRDs.

4.4.1 Service-independent centralized solution

In order to distribute PRDs, we realize the Password Requirements Description Distribution

Service (PRDDS), which is available at [H26]. It is developed as a Java Web Service and provides

an interface through which password assistants can search and receive the PRDs of services (cf.

Figure 4.7a). Searching and identifying PRDs are based on the URL specified by the url attribute

in a PRD.

By making the PRDs available through our PRDDS, they must be created only once and can

used by all Internet users and their password assistants. This allows an immediate deployment

of PRDs for a large variety of services without demanding any efforts by services.

4.4 Distribution of password requirements descriptions 79



The communication between password assistants and the PRDDS is secured using TLS. This

prevents manipulations of the PRDs as well as eavesdropping on the requests and thus user

profiling by a third party attacker.

The PRDDS allows users to submit PRDs of unknown services. The submission system checks the

plausibility of the specified requirements and rejects PRDs with obvious errors. The checks for

instance verify that the minimum length must be smaller than the maximum password length,

the sum of the maximum occurrences of characters must be smaller than the maximum pass-

word length, and any position restriction must be in range of the minimum and maximum

password length.

To prevent an attacker from adding manipulated PRDs, a submitted PRD is also manually eval-

uated by the PRDDS provider. To address incorrect or outdated PRDs, the PRDDS also provides

a feedback system that allows users to report issues with PRDs. Moreover, the PRDDS keeps a

history and change log of each PRD.

The disadvantage of the centralized solution is that the PRDDS itself in principle learns the

services used by users and could create user profiles. Well-known mitigations to this problem are

connections over web proxies or VPN networks to anonymize the communication (cf. [12, 215]).

An even stronger guarantee for anonymity can be achieved by using the TOR network [213] or

our decentralized solution that we present in the next section.

4.4.2 Privacy-preserving decentralized solution

An alternative to the PRDDS and the aforementioned mitigation approaches is the provision of

PRDs by the services themselves (cf. Figure 4.7b). However, this requires a uniform mechanism

to obtain PRDs from services.

We propose to use the well-known location scheme as specified in the RFC 5785 [171]. The PRD

of a service is then available at the URL https://www.example.org/.well-known/prd.xml.

This enables password assistants to retrieve the PRD directly from each service in a unified way.

Moreover, it removes the privacy issue and the requirement to trust in the correctness of the

PRDs provided by the PRDDS.

On the negative side, such a decentralized distribution relies on the cooperation of services and

would entail a presumably long transition time. This gap is bridged by our PRDDS. In practice,

password assistants should first try to receive a PRD directly from a service. If unavailable,

password assistants should try to fetch the PRD from the PRDDS. If also this fails, password

assistants should use fallback password-composition rules for password generation, which we

present in the next section.

80 4 Automatic generation of attack-resistant and valid passwords

https://www.example.org/.well-known/prd.xml


4.5 Optimal fallback password-composition rules for password assistants

Our large-scale survey of password requirements presented in Section 3.4 shows three chal-

lenges while generating passwords: First, services have often different password requirements.

Second, password requirements are often incompletely stated. Third, the majority of services

do not state any requirements at all. In this section, we solve the incompleteness of password

requirements by an optimal fallback password-composition rule set, which password assistants

can use if the requirements for a service are partially or entirely unavailable.

The wide diversity of password requirements can be handled by using PRDs. This guarantees

the acceptance of the passwords. Moreover, the results of our security analysis of the password

requirements in Section 3.4.2 show that in this way attack-resistant passwords are theoreti-

cally possible for 78.4% of analyzed services. For the other 21.6% of the services with explicit

requirements still the best possible passwords can be generated by using PRDs.

However, this solution cannot cope with the incompleteness of password requirements. As we

have shown in Section 3.4.1 only 31% of the services explicitly state password requirements.

For the majority of the services it is unknown how the passwords must look like. Furthermore,

only 4017 (2.15%) services fully specify the essential information to generate valid passwords:

lengths and allowed characters. Thus, for a practical solution fallback password-composition

rules must be in place that password assistants can use if the password requirements for a

service are partially or entirely unavailable.

Because for those services no data is available, we determine an optimal password-composition

rule set based on the password requirements of the 57,536 services (cf. Section 3.4). Given that

the implicit requirements have the same characteristics as the ones of services that provide their

requirements, this optimal password-composition rule set is also optimal for services without

explicit or partial requirements. We validate this assumption as well as the quality of our optimal

rule set in the evaluation in Section 4.6.3.

In Section 4.5.1, we present a password-composition rule set that achieves the absolutely mini-

mal rejection rate. We show that the definition of a single password-composition rule set that fits

for all services, i.e. a single rule set that achieves an acceptance rate of 100%, is impossible.

In Section 4.5.2, we refine the former password-composition rule set into an optimal rule set that

creates both attack-resistant and valid passwords with respect to the password requirements of

services. We show that the security and acceptance rate of passwords are conflicting objectives

and present a possible trade-off based on the variation of the password length.

4.5 Optimal fallback password-composition rules for password assistants 81



4.5.1 Optimization of the acceptance rate

In order to develop a password-composition rule set which generates passwords in accordance

with the services’ password requirements, an optimal password length and character set must

be found. We solve this optimization problem in two steps: First, we determine an opti-

mal password length in Section 4.5.1.1. Second, we define an optimal character set for our

password-composition rule set in Section 4.5.1.2.

The compliance to the password requirements of the services is measured by the acceptance rate

of passwords created under a given password-composition rule set. Note that the evaluation is

done under the assumptions presented in Section 3.4.2.1. In brief, if no minimum/maximum

password length is specified we assume that services have no lower/upper limit and if no char-

acter sets are specified we assume that services allow letters and numbers.

4.5.1.1 Optimal password length

We examined password lengths from 1 to 50 characters and counted the number of services

that accept such a length. The results are illustrated in Figure 4.8a. The blue line represents the

acceptance rate with respect to the minimum password length and the red line the maximum

password length, respectively. The acceptance rate regarding the minimum password length

is increasing until 10 characters. Whereas, the acceptance rate with respect to the maximum

password length decreases constantly after 8 characters. The sharp increases and decreases of

the acceptance rates correspond to the peaks in Figure 3.2 and 3.3 (Page 31 and 32).

Figure 4.8b highlights the acceptance rate around the intersection of both lines where the opti-

mum is to be found. The green line represents the acceptance rate considering both, minimum

and maximum password length, at the same time. This is decisive for the optimal password

length. It shows the maximum at a password length of 8 characters with 99.7%, followed by

10 characters with an acceptance rate of 99.2%. Between 8 and 10 characters neither for the

minimum nor for the maximum password length full acceptance is achieved simultaneously.

This is caused by services where the minimum password lengths conflict with the maximum

lengths of other services. As illustrated in Figure 3.2 (Page 31), there are 197 services with a

minimum password length of 9 or 10 characters. At the same time, there are 370 services with

a maximum length of 8 (cf. Figure 3.3, Page 32). Therefore, there exists no password length

that is supported by all services.

82 4 Automatic generation of attack-resistant and valid passwords



10 20 30 40 50
0%

20%

40%

60%

80%

100%

Password length

A
cc

ep
ta

nc
e

ra
te

(a) Acceptance rates for password lengths
between 1 and 50 characters.

4 6 8 10 12 14

96%

98%

100%

102%

104%

Password length

A
cc

ep
ta

nc
e

ra
te

(b) Acceptance rates for password lengths
between 4 and 14 characters.

Figure 4.8: Acceptance rates for different password lengths. The blue line represents the ac-
ceptance rate with respect to the minimum password length and the red line the
maximum password length, respectively. The green line in (b) represents the accep-
tance rate considering both, minimum and maximum password length, at the same
time. The highest acceptance rate of 99.7% is reached for a password length of 8
characters followed by 10 characters with 99.2%.

4.5.1.2 Optimal character set

We now determine an optimal character set for our password-composition rule set. This is

done by counting the number of services accepting different combinations of character sets. We

combine the character sets and determine the acceptance rate based on the numbers presented

in Table 3.4, 3.5, and 3.6 (Page 33 and 34). The acceptance rates are listed in Table 4.2.

Following from this, the absolute maximum of the acceptance rate is reached for the password-

composition rule set that specifies a password length of 8 characters and the character sets letters

and numbers. This password-composition rule set has an overall acceptance rate of 97.6% and

a security level of S = L · log2(C) = 8 · log2(62) = 47 bits (cf. Section 3.4.2.2).

The lower acceptance rates for only letters or only numbers compared to their combination,

results from the number of services demanding both letters and numbers by the minimum oc-

currences requirement (cf. Table 3.5, Page 34). The combination of letters and numbers does

also not achieve full acceptance because of the demand for special characters by 1,176 services.

However, it marks the optimum under the given assumptions.

4.5 Optimal fallback password-composition rules for password assistants 83



Combination of character sets Acceptance rate

Letters 88.11%

Numbers 92.00%

Letters, numbers 97.96%

Letters, numbers, specials 6.22%

Letters, numbers, specials, spaces 0.64%

Table 4.2: Acceptance rate of combined character sets.

To this end, there exists no single password-composition rule set that creates valid passwords for

all services. There is neither a password length nor a (set of) character set(s) that is accepted

by all services that we analyzed in our survey presented in Section 3.4. This shows that our

approach of service-specific PRDs, which we presented in Section 4.2, is necessary.

4.5.2 Optimization of the acceptance rate under the condition of 128-bit security

We showed that there exists no single password-composition rule set to generate valid passwords

for all services. The aforementioned rule set with an optimal acceptance rate creates insecure

passwords. More precise, passwords with a security level of 47 bits which can be brute-forced

on a single day using standard hardware. We now refine this insecure password-composition

rule set under the restriction that the generated passwords resist offline brute-force attacks to

achieve both attack-resistant and valid passwords under the conditions of the given password

requirements of the services.

In Section 4.5.1.2 the conjunction of letters and numbers was identified as the optimal character

set. Using only letters or numbers decreases the security level compared to the combined set for

a fixed password length. Increasing the character set by special characters leads to a drop of the

acceptance rate which cannot be compensated by a potential decrease of the password length.

Therefore, the conjunction of letters and numbers is also optimal when additionally taking into

account the resulting security level. As a consequence, the only remaining parameter that can

be varied to steer the resulting security level is the password length.

Under these conditions, we can calculate the necessary password length to realize the desired

security level of 128 bit providing resistance against offline brute-force attacks. With the metric

presented in Section 3.4.2.2 the required password length is given by L =
 

128
log2(62)

£

= 22

characters which results in a security level of 130 bits.

84 4 Automatic generation of attack-resistant and valid passwords



In order to determine the related acceptance rate of the refined password-composition rule

set we counted the services accepting letters and numbers as well as a password length of 22

characters. We assumed that services accept such passwords when they do not specify password

lengths, character sets, or occurrences of certain characters (cf. Section 3.4.2.1). As a result

44,099 of the 57,536 services accept passwords created under our password-composition rule

set which implies an acceptance rate of 76.6%.

In Figure 4.9, we illustrate the security level for the character set comprising letters and numbers

depending on the password length. Additionally, the figure depicts the acceptance rate for this

character set also depending on the password length. The figure shows, that the two objectives

(1) increasing the acceptance rate and (2) increasing the security level are contradicting for

password lengths greater than 8 characters. Moreover, Figure 4.9 shows a possible trade-off

between these objectives which can be realized by varying the password length.

To conclude, our optimal password-composition rule set specifies the character sets letters and

numbers and a password length of 22 characters. It provides a security level of 130 bits and an

acceptance rate of 76.6%.

5 10 15 20 25 30

25

50

75

100

125

150

175

200

225

250

Password length

Se
cu

ri
ty

le
ve

l

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
cc

ep
ta

nc
e

ra
te

Figure 4.9: Security level (blue line) and acceptance rate (red line) depending on the password
length for the combined character set letters and numbers. The aimed security level
of 128 bits is achieved for 22 characters with an acceptance rate of 76.6%.

4.5 Optimal fallback password-composition rules for password assistants 85



4.6 Implementation and practical evaluation

In this section, we present an evaluation of our solution. We show that our concept of automat-

ically generating attack-resistant and valid passwords is applicable in practice.

We start in Section 4.6.1 by showing that our PRC, as presented in Section 4.3, can be used

to automatically generate PRDs on a large scale. We used the PRC to create PRDs for 185,696

services. This huge set served as the data basis for our survey on password requirements (cf.

Section 3.4) and lays the foundation for a practical application of PRD-based password assis-

tants. Such password assistants that make use of PRDs are presented in Section 4.6.2. We

present stand-alone password assistants as well as the integration of PRDs into an already exist-

ing password generator. Finally, we evaluate in Section 4.6.3 the application and impact of our

optimized password-composition rule set, which was presented in Section 4.5.

4.6.1 Large-scale creation of password requirements descriptions

In the previous sections, we built the foundation for password assistants that are capable of

generating attack-resistant and valid passwords automatically. However, to actually solve the

password generation problem in practice, the PRDs for existing services are required. In this

section, we present a large-scale generation of PRDs for 185,696 services.

Because the PRC requires the sign-up form of a service as an HTML document to generate a

PRD, we developed the Sign-up Form Crawler (SFC). It takes as input the root URL of a service

(e.g. example.com) and, if it exists and is found, downloads and stores the service’s sign-up

form as an HTML document. This is then used as input for the PRC to generate the PRD.

In Section 4.6.1.1, we explain how the SFC finds the sign-up form of a service. In Section

4.6.1.2, we then describe how we selected a sample of services and finally we discuss in Section

4.6.1.3 limitations of our approach.

4.6.1.1 Finding password requirements

Naturally, our survey is limited to services where users can choose their passwords. Thus, we

ignore services with system-assigned passwords such as online banking services. The SFC iden-

tifies relevant services, where users can choose passwords, by checking for the presence of a

sign-up form on the service’s website. It takes as input the URL of a service and, if found,

downloads the sign-up form and stores it as an HTML document.

86 4 Automatic generation of attack-resistant and valid passwords

example.com


The procedure to find a sign-up form is the following: The SFC takes as input the URL of the

service (e.g. example.com). It browses the service’s website and searches the available links

on the root page for the keywords registration, sign up, create account, and join and checks if

they lead to a sign-up form. After following two links in sequence without detecting a sign-up

from, the search is aborted and it is assumed that the service has none. To identify a sign-up

form and filter out login and newsletter forms, the SFC checks the HTML <input> elements. A

sign-up form usually contains at least an input field for the password and additional ones for

user-related data, such as name, email, or address. The SFC requires a minimum of three input

fields (one password and two additional ones) to accept a form as a sign-up form. The employed

search strategy was developed based on a manual analysis of 200 websites2.

4.6.1.2 Selecting a sample of services

We collected 3,999,883 URLs from four data sets provided by the ranking companies Alexa,

Majestic, and Quantcast. These sets contain the top US and global websites and after removing

duplicates consist of 3,236,319 unique URLs (cf. Table 4.3). It is important to note that the

number of unique URLs is not equal to the number of services, which is indeed much smaller.

For instance, the list of unique URLs contains 68 URLs with google.com.* (e.g., google.com.co,

google.com.fr) which all point to Google and thus must be considered as the same service.

Dataset Date # URLs # Unique URLs

Alexa [7] 2015 1,000,000 999,959

Majestic [154] 2016 1,000,000 704,523

Quantcast [183] 2015 999,882 854,131

Quantcast [183] 2011 1,000,001 677,706

3,999,883 3,236,319

Table 4.3: Data sets of URLs.

After removing duplicates, we checked the availability of the 3,236,319 URLs. It turned out that

about 20% of the URLs were not available and were therefore ignored after performing several

connection attempts. For the remaining URLs we used our SFC to find the sign-up forms, as

described in the previous Section 4.6.1.1.

2 The Alexa Top 500 US list [8] reduced by websites with pornographic and illegal content, non-English websites,

and websites that do not have or allow the creation of online accounts (e.g. banking websites). The list of

services is available at [H26].

4.6 Implementation and practical evaluation 87

example.com
google.com.*
google.com.co
google.com.fr


For about 75% of the URLs no sign-up form could be detected. In comparison to a manual

analysis of the Alexa Top 500 websites [8], where 60% have no online accounts, and the fact

that the set contains many old and static websites this is plausible. For 185,696 services the sign-

up form was found and downloaded. The stored HTML documents were then used as input for

our PRC to create the PRDs of the services, which was described in detail in Section 4.3. The

processing of the 3,236,319 URLs took approximately 3 months running 4 computers in parallel

and produced more than 3 TB of traffic.

4.6.1.3 Limitations

We only considered the sign-up forms and not services’ help or FAQ pages to find password

requirements. This might have prevented requirements of some services from being found.

However, this limitation was necessary: First, it filters out password requirements that are men-

tioned in articles or news and do not represent the requirements of an actual service (e.g. an

article about selecting appropriate password requirements). Second, the sign-up form is the

most likely place to find requirements, because here users need to select passwords. Compared

to searching the entire websites of services this provides a much better performance and facili-

tates the analysis of a huge sample. In our analysis of the 250 websites3, we only found a single

service which provided more detailed password requirements on its help page.

Furthermore, the SFC only captures password requirements that are available before submitting

the sign-up form. The SFC selects the password input field before downloading the form in

order to capture password requirements that are not written in the initial sign-up form and

loaded by a separated AJAX request. However, the sign-up form is not submitted with random

passwords to get error messages that might contain password requirements. This approach

would require to submit the form many times with different passwords because we do not know

which passwords are invalid. A proper sample would consist of more than 5000 passwords to

cover a reasonable number of different password lengths (cf. Figure 3.2 and 3.3, Page 31 and

32) and character sets (cf. Table 4.2, Page 84). While such an extension of the SFC might reveal

more password requirements, we did not implement it, because it causes heavy load on the

services’ infrastructure and leads to unforeseeable consequences.

3 200 websites selected from the Alexa Top 500 US list [8] and further 50 randomly selected websites with

explicitly stated password requirements from the Alexa Top 1 Million list [7]. The list is available at [H26].

88 4 Automatic generation of attack-resistant and valid passwords



4.6.2 Usage of password requirements descriptions in password assistants

In this section, we present password assistants that make use of PRDs and the optimal fallback

password-composition rule set. These password assistants are the place where the previously

presented building blocks are put together and our solution comes alive. It is also the place

where the password generation problem is actually solved by PAS in the users’ daily life.

We start in Section 4.6.2.1 with presenting our PRD-based password assistant realized as a web

and mobile application. In Section 4.6.2.2 we demonstrate that PRDs can also be integrated

into existing password generators.

4.6.2.1 PRD-based password assistant

We present the development of a PRD-based password assistant in this section. We implemented

our solution for password generation, consisting of a Pseudo-random Generator (PRG) and

a Password Generator (PG), that we introduced in Section 4.1 in JavaScript. Along with a

connector for the PRDDS and a parser for PRDs, this builds the code base for the deployment of

our password assistant on multiple platforms.

We used the Angular framework [98] to build a web application and the NativeScript framework

[181] to build mobile applications for Android and iOS. Our implementation is available at

[H26]. In the following, we explain the realization of the PRG and the PG in detail.

Pseudo-random Generator

The PRG generates a random value with a desired number of bits. We use the PRG provided

by the Web Cryptography API [236]. Other programming languages provide similar PRGs, e.g.,

the class SecureRandom in case of Java. In the situation that the platform-provided PRG is not

able to provide the desired number of bits, the PRG can be called multiple times and the output

can be concatenated to a single bitstring of the desired length.

Password Generator

The PG maps the random value generated by the PRG to a password which complies with

requirements defined by a PRD. This is done in three steps:

4.6 Implementation and practical evaluation 89



1. The PG calculates the required number of bits N that the PRG needs to produce. This is

done by N = L · dlog2(C)e + B, where L is the desired password length, C the cardinality

of the allowed character set, and B the security buffer. We choose a security buffer of at

least 128 bits and calculate it as B = 128 + L − (128 mod L).

Using at least 128 bits more than required guarantees a negligibly biased distribution over

the character set. More specifically, for each value v in the character set, the probability

that v is chosen deviates from 1
C at most by 2−128. Please note that adding fewer additional

bits (e.g. 20 bits) recognizably increases the probability of biased passwords.

We consider a PRD that specifies a password length of 22 characters and a character set

of letters and numbers, like our optimal password-composition rule set (cf. Section 4.5).

The cardinality is C = 62, the password length is L = 22, and the security buffer B =

128 + 22− (128 mod 22) = 128 + 22− 18 = 132. The number of bits that the PRG must

produce is N = 22 · dlog2(62)e + 132 = 22 · 6 + 132 = 264.

2. The random value is mapped to a sequence of characters. This works as follows: The

random value is considered as a bit string and divided into L blocks of N/L bits. The bits

of each block are converted to a positive integer X and then reduced to a number between

0 and C − 1 using the modulo operator. The final number X then serves as an index in the

character set. For instance, 0 = a and 51 = Z in our example character set. The resulting

characters of each block are concatenated and forms the generated passwords.

3. The password requirements are verified. For instance, the given PRD specifies that a pass-

word must consist of at least one number. To generate valid passwords while ensuring that

passwords are uniformly distributed, we use rejection sampling (cf. Section 2.1.1).

In brief, the PG checks if the generated password fulfills all requirements. If not, the

password is discarded and the PG start again with Step 1 and obtains a new pseudo-

random value from the PRG. A password is generated according to Step 2 and verified.

This process is repeated until the password fulfills all requirements stated by the PRD.

Please note that a straight-forward approach of considering requirements during the pass-

word generation (e.g. generate i − 1 characters, check if they contain a number, if not

select a digit for the i-th character) would produce biased passwords.

For the event that the given PRD is incomplete, the PG makes use of our optimal fallback

password-composition rule set. Moreover, for very large maximum password lengths like

100, the PG automatically reduces the maximum length to generate passwords with at

least 128-bit security level but with the least needed characters. The reduced password

length is determined by L =
 

128
log2(C)

£

.

90 4 Automatic generation of attack-resistant and valid passwords



4.6.2.2 KeePass extension

To demonstrate the usage of PRDs by existing password generators we implemented an exten-

sion for KeePass. KeePass [186] is an open-source password manager. It provides an extension

framework that allows third-party developers to enhance it with additional functionality, such

as our PRDs for automatic generation of attack-resistant and valid passwords.

Our extension allows users to generate attack-resistant and valid passwords by just entering the

URL of the service. After entering the URL, our extension retrieves the corresponding PRD from

our PRDDS, configures the internal KeePass’ password generator accordingly, and generates a

password. Users neither need to find out the password requirement nor configure the KeePass’

password generator manually (cf. [193, H4]).

(a) Original password generator of KeePass. (b) PRD-based password assistant for KeePass.

Figure 4.10: Password generation with KeePass.

Figure 4.10 contrasts the original way to generate passwords with KeePass and the novel one

provided by our extension. As shown in Figure 4.10a users need to cope with a multitude of

different input fields and checkboxes to generate a password of certain characteristics. However,

to do so, users first need to find out the password requirements of the service. In case of our

extension, as depicted in Figure 4.10b, users just need to enter the URL of the service.

4.6 Implementation and practical evaluation 91



4.6.3 Application and impact of optimized fallback password-composition rules

In Section 4.5, we presented an optimal password-composition rule set that generates passwords

with a security level of 130 bits and an acceptance rate of 76.6%. We now evaluate the quality

of this rule set. First, in Section 4.6.3.1 we show that our rule set is a good fallback solution for

services not stating requirements. Second, in Section 4.6.3.2 we demonstrate that our rule set

significantly improves the currently implemented rules of common password generators.

4.6.3.1 Application to services without explicit requirements

For the development of our optimal password-composition rule set in Section 4.5, we assumed

that the available password requirements are a good estimator for services that do not state any

requirements. To verify this assumption, we evaluated our optimal rule set on 100 randomly

chosen services that do not state any password requirements.

We manually tested, whether the services accept a password generated under the optimized

password-composition rule set. The acceptance rate turned out to be 80%, which is very close to

the estimated acceptance rate of 76.6% (cf. Section 4.5.2). The only found reason for password

rejection were length constraints, which as well is as expected. The maximum lengths—in some

cases found in error messages—appeared to exclusively be a choice of 10, 12, 15, 16 or 20.

So, our 22-character password that we used for the evaluation was just too long. These length

constraints again exactly fit to the peaks we found in explicit password requirements as shown

in Figure 3.3 (Page 32). The data set used for the evaluation is available at [H26].

Altogether this confirms our assumption and subsequently that our optimized password-

composition rule set is a good fallback solution for password assistants when no explicit or

only partial password requirements are available. Moreover, we tested our optimized password-

composition rule set for the services which we analyzed regarding their password procedures

and interfaces for changing a password (cf. Section 3.5). In Table 3.9 (Page 46) we showed that

6 of the 10 services do not state any password requirements at the password change form. Our

optimized password-composition rule set generates valid passwords for all of them.

4.6.3.2 Impact on password generators

In this section, we show that our optimal password-composition rule set significantly improves

the currently implemented rules of common password generators. We analyzed the password-

composition rules of password generators and compared them to our optimized rule set.

92 4 Automatic generation of attack-resistant and valid passwords



Table 4.4 lists 15 password generators, their default password-composition rules as well as the

resulting security level and acceptance rate. We calculated the security level based on the metric

described in Section 3.4.2.2. The acceptance rate is determined based on the results described

in Section 4.5.1. Astonishingly, we observed the same wide diversity of password-composition

rule sets as with the password requirements of services on the Internet.

Password Generator Password length Character sets Security level Acceptance rate

http://passwordsgenerator.net 16 L, N, SP 101 bits 5.65%

http://www.freepasswordgenerator.com 10 L, N 59 bits 97.18%

https://identitysafe.norton.com/password-generator 12 L, N, SP, S 76 bits 0.59%

https://lastpass.com/generatepassword.php 12 L, N, SP 76 bits 6.10%

https://strongpasswordgenerator.com 15 L, N, SP, S 95 bits 0.50%

https://www.dashlane.com/password-generator 12 L, N, SP 76 bits 6.10%

https://www.passwort-generator.com 8 L, N, SP 50 bits 6.15%

https://www.random.org/passwords/ 8 L, N 47 bits 97.64%

https://www.safepasswd.com 10 L, N, SP 63 bits 6.19%

1Password (https://1password.com/) 16 L, N 95 bits 90.15%

KeePass (http://keepass.info) 20 L, N 119 bits 87.01%

Password Gorilla (https://github.com/zdia/gorilla) 8 L, N, SP 50 bits 6.15%

Password Safe (https://pwsafe.org) 12 L, N 71 bits 95.43%

PWGen (http://pwgen-win.sourceforge.net) 12 L, N 71 bits 95.43%

RoboForm Password Generator (http://www.roboform.com) 8 L, N 47 bits 97.64%

Optimized password-composition rules 22 L, N 130 bits 76.65%

Table 4.4: Default password-composition rules of common passwords generators and their re-
lated security level and acceptance rate.

The security level of the generated passwords is by far too low to resist offline brute-force

attacks in most cases. Only KeePass with 119 bits almost reaches the desired security level of

128 bits. With 50 bits or less, several password generators have security levels which, as already

discussed, can easily be brute forced.

A further problem can be seen in the low acceptance rates resulting from the inclusion of spe-

cial characters and spaces by default. This leads to many rejected passwords. Currently, the

only solution for users is to look up the password requirements of each service manually and

configure a password generator accordingly. This is very inconvenient for users or might even

not be possible at all. As we showed in Section 3.4.1, only one third of the services actually

state their password requirements. Moreover, this process is error-prone. Even when services

allow special characters and users configure their password generator accordingly, it is likely

that the generated password gets rejected because of the missing consent on special characters

(cf. Section 3.4.2.1). Under these circumstances users can only reconfigure the password gener-

ator repeatedly in a trial-and-error approach until they finally succeed in generating a password

that is accepted by the service.

4.6 Implementation and practical evaluation 93



So how can password generators benefit directly from our findings? First, half of the listed

generators can significantly increase both, acceptance rate and security by simply changing their

standard settings to our proposed password-composition rules. A second improvement that can

directly be derived from our findings is the simplification of the user interface of password

generators. Instead of presenting a multitude of configuration settings (cf. Figure 4.10a, Page

91), for which the effects are unclear to most of the users, a simple slider could be presented

which allows to make use of the security-acceptance-rate trade-off discussed in Section 4.5.2.

Such a slider easily covers the standard rules of the second half of the password generators.

Adding one single check box to include special characters appears to be sufficient to cover

nearly 100% of the services password requirements.

4.7 Conclusion

In this chapter, we solved the password generation problem. PAS enables password assistants

to fully automate the generation of passwords by creating attack-resistant and valid passwords

for users automatically. So far, users have struggled with the generation of passwords. They

had to manually find out the password requirements of each service and configure a password

generator accordingly or adjust generated passwords until they finally got accepted. Our solu-

tion only prompts for the URL of a service to generate an attack-resistant and valid password.

PAS thereby makes the generation of optimal passwords for online accounts as secure, easy, and

comfortable as possible for users.

We presented PRML which is intended to specify PRDs for Internet services. A PRD uniformly

describes service’s password requirements and makes them thereby available to password assis-

tants. We have shown that this solution is necessary because there exist no single password-

composition rule set that fits to all services. PRD-based password assistants generate the

best-possible passwords and guarantee their acceptance. Moreover, we presented an optimal

fallback password-composition rule set. It solves the problem that the password requirements

of the majority of services on the Internet are partially or entirely unavailable. Our rule set gen-

erates attack-resistant passwords with an estimate acceptance rate of 76.6%. In an evaluation

of 100 services even an acceptance rate of 80% was reached.

The practicality of our solution and its capability to solve the password generation problem

have been extensively demonstrated. We presented the PRC which creates PRDs automatically

by extracting the password requirements form the services’ websites. Our evaluation shows,

that the PRC achieves a rate of 91.2% for the correct generation of PRDs. In conjunction with

our optimal fallback password-composition rule set, valid passwords for even 97.6% of 250

evaluated services are generated.

94 4 Automatic generation of attack-resistant and valid passwords



The PRC was used to generate PRDs for 185,696 services so far. The PRDs are available through

our PRDDS. This huge set allows to use PRD-based password assistants already in practice.

An application that already uses PRDs is AutoPass [156]. We presented the implementation of

a PRD-based password assistant which is available as a web and mobile application and the

integration of PRDs into KeePass.

Our contribution presented in this chapter is also highly valuable for existing password gen-

erators in general. We have shown that our optimal fallback password-composition rule set

significantly improves the current default rules of common password generators. Moreover, our

results have shown that the user interfaces of password generators can be drastically simplified

while still covering nearly 100% of the services requirements.

In this chapter, we presented the first part of PAS. It enables the automatic generation of attack-

resistant and valid passwords. In the subsequent Chapter 5, we present a password synchro-

nization scheme that uses PRDs to automatically generate attack-resistant, individual, and valid

passwords for users and makes them available on all their devices.

4.7 Conclusion 95





5 Passwordless and seamless
password synchronization

In Chapter 3, it was shown that properly protecting preserved passwords is very challenging.

Moreover, an offline synchronization of preserved passwords is very inconvenient for users and

existing online synchronization approaches are insecure.

In this chapter, we present the second part of PAS which solves the password preservation, confi-

dentiality, and availability problem. We introduce the PAsswordLess PAssword Synchronization

(PALPAS) scheme. It automatically generates attack-resistant, individual, and valid passwords

for online accounts and preserves them for users. Moreover, it protects the preserved passwords,

makes them available on all user devices, and automatically synchronizes changes. But, PALPAS

does not store passwords, neither at user devices nor at servers on the Internet. The preserva-

tion of passwords is done by storing a secret on all devices and some data on a central server.

PALPAS generates the same passwords on all devices by combining the device-side secret and

the service-side data. Updating the data on the server makes changes to password portfolios

seamlessly available to all devices. But, the data on the server is statistically independent of

the passwords. Thus, the data enables a passwordless synchronization of passwords between

devices and it is impossible for an attacker to steal passwords from the server. In addition, PAL-

PAS provides a revocation mechanism that allows users to invalidate the secret on their devices.

This guarantees that the seed cannot be stolen from lost devices once revoked and an attacker

cannot obtain the users’ passwords. We detail PALPAS in Section 5.1.

We present a realization of PALPAS consisting of a client and a server application in Section 5.2.

Further, we provide a detailed security evaluation in Section 5.3 and deduce in particular that

PALPAS is the first secure online password synchronization scheme. Finally, we conclude this

chapter in Section 5.4.

The main contributions of this chapter were published as part of [H6]. This chapter extends the

published contributions by a revocation mechanism for user devices and an additional protection

against a compromised synchronization server.

97



5.1 Solution for password preservation and synchronization

This section describes the PAsswordLess PAssword Synchronization (PALPAS) scheme. It auto-

matically generates attack-resistant, individual, and valid passwords for online accounts and

preserves them for users. Moreover, it protects the preserved passwords, makes them available

on all user devices, and automatically synchronizes changes. But, PALPAS does not store pass-

words, neither at user devices nor at servers on the Internet. It retrieves passwords on devices

on demand by regenerating them.

We start in Section 5.1.1 by describing the system architecture of PALPAS. Then, we detail the

generation of passwords in Section 5.1.2 and explain how this preserves passwords and enables

their retrieval. Next, we explain in Section 5.1.3 how a password portfolio is made seamlessly

available on all user devices without storing passwords on devices and servers. Finally, we

describe the management of user devices including the installation of PALPAS and the revocation

of devices in case of loss in Section 5.1.4.

5.1.1 System architecture

This section provides details about the components of the PALPAS system, the data used by

PALPAS, and the storage location of the individual data.

Components

The PALPAS system consists of two components:

• PALPAS server (PLS): A central server that stores some user data. All devices of a user have

access to the data and can add, update, and delete it.

• PALPAS client (PLC): An application installed on all devices of a user. It generates the user’s

passwords on demand using some data stored locally on a device and some data received

from the PLS.

We impose minimal trust assumptions on the PLS. We only consider the PLS to be trustworthy

with regard to the availability of the data. For a detailed discussion about the trust relation

between users and the PLS, we refer to Section 5.3.4. We present an implementation of both

components in Section 5.2. In the following, we detail the data used by PALPAS and explain

where it is stored.

98 5 Passwordless and seamless password synchronization



Device-side data

All devices of a user store the following user-specific data:

• PALPAS secret (ps): The PALPAS secret consists of two parts:

– Seed: A randomly generated secret that serves as input for the password generation.

– Data protection key (kData): A randomly generated key that is used for privacy and

integrity protection of the user data stored on the PLS. An encryption key kData,Enc and

an integrity key kData,Mac (MAC, Message Authentication Code) is derived from kData.

The PALPAS secret is created when a user uses PALPAS for the first time and it does not

change over time. A device stores the secret ps = (seed, kData) encrypted by a one-time-

pad (OTP) [22, 163]. Each user device (UD) randomly samples its individual one-time-pad

key otpUD when the PLC is installed for the first time. A device only stores the encrypted

PALPAS secret psUD = ps ⊕ otpUD, the corresponding key otpUD is stored on the PLS. This

enables a secure revocation of the PALPAS secret in case of device loss (cf. Section 5.1.4.3).

Furthermore, each device of a user stores the following device-specific data:

• Authentication key (skAuth): A randomly generated secret key used to authenticate a device

against the PLS. The key is created along with a corresponding public key pkAuth during

the installation of the PLC. skAuth,UD is stored on the user device and pkAuth,UD on the

PLS. A device stores skAuth,UD encrypted with kmpw. This encryption key is derived from a

user-chosen master password (MPW) and not stored.

In Section 5.1.4, we describe the complete installation procedure of the PLC in which the afore-

mentioned data is created. In the following, we explain which data is stored on the PLS.

Server-side data

Each PALPAS user has an account at the PLS which contains the following data:

• Account data: For each account c of the user at an Internet service, the PLS stores an

account data object datac = (sal tc, prdc, unc, urlc), with the following content:

– sal tc: A random value that differs for each account. The sal t is used as input for

the password generation and facilitates individual passwords for the different user

accounts. Changing the sal t allows to create a new password for the account, as

necessary for a password change. A salt is generated when the PLC initially creates

the password, i.e. during the account registration.

5.1 Solution for password preservation and synchronization 99



– prdc: The Password Requirements Description (PRD) specifies the password require-

ments of the service (cf. Section 4.2). The prd is for instance retrieved from the

PRDDS (cf. Section 4.4.1) when the PLC initially creates a password. In the event of

a password change the prd might be updated to comply with the recent password

requirements of the service.

– unc: The username for the account at the service, e.g. me@example.org.

– urlc: The service’s URL where the user has the account, e.g. https://example.org.

Each datac is encrypted with the user-specific encryption key kData,Enc by the PLC before it

is transferred to the PLS. To retrieve only the account data of a specific account and not

all of them, each datac is associated with an identifier idc. It is generated by the PLC by

idc = HMAC(kData,Mac, urlc) using a Keyed-Hash Message Authentication Code (HMAC)

[168] and the user-specific key kData,Mac.

The account data is added, updated, or deleted during the synchronization of a password port-

folio. We describe this in detail in Section 5.1.3. Besides the account data, the PLS stores the

following device-specific data:

• One-time-pad keys: The individual one-time-pad keys (otp) of the user’s devices on which

the encrypted PALPAS secret ps is stored.

• Authentication keys: The individual public authentication keys (pkAuth) of the user’s devices

that are allowed to access the data stored at the PLS.

We provide details of the account creation at the PLS and the registration of further devices in

which the one-time-pad and authentication keys are added to the PLS in Section 5.1.4.

5.1.2 Password generation

We next detail how PALPAS in general generates attack-resistant, individual, and valid pass-

words for online accounts. Moreover, we describe the complete data flow of generating a

particular password for a login at an account.

As depicted in Figure 5.1, PALPAS generates a password in two steps: First, a cryptographically

secure Pseudo-random Generator (PRG) generates a random value using the seed and a sal t.

Second, a Password Generator (PG) derives a password from the random value. The PG ensures

that the password complies with the service’s password requirements provided by the prd.

100 5 Passwordless and seamless password synchronization

https://example.org


In case the requirements of a service are unavailable, PALPAS uses our optimal fallback

password-composition rules and generates passwords consisting of letters and numbers with

a length of 22 characters (cf. Section 4.5).

PG_random_ _password_PRG_seed_

salt prd

Figure 5.1: PALPAS password generation procedure.

The PRG and the PG are deterministic. Therefore, by using the same seed, sal t, and prd, always

the same password is generated. Because of this, PALPAS does not need to store passwords. It

can regenerate them on demand. We present details about the implementation of the PRG and

the PG in Section 5.2.1.

We describe the complete data flow of generating a password in the following. The user (U)

wants to log in to his account c at the service (S) using his user device (UD). He has an account

at the PLS and the UD is registered at the PLS. The PLC is installed on the UD and generates the

user’s password for the account. To simplify the description, we consider the PLC and the UD

as a single entity and just use the term UD in our explanations in the next sections. The entire

procedure of generating a password is described in the following and the corresponding data

flow is illustrated in Figure 5.2.

1. U enters his master password (MPW) and the URL of the service on the UD (urlc).

2. The UD derives kmpw from the MPW and decrypts skAuth,UD. Then, the UD and the PLS

perform a mutual authentication in which the UD uses its skAuth,UD.

3. The UD requests otpUD from the PLS. Then, it decrypts the locally stored PALPAS secret

psUD with otpUD by computing ps = psUD ⊕ otpUD. The UD now has ps = (seed, kData).

4. The UD derives kData,Mac from kData and computes idc = HMAC(kData,Mac, urlc). Then, it

sends idc to the PLS and requests the corresponding account data.

5. The PLS responds with the related datac.

6. The UD derives the encryption key kData,Enc from kData and uses it to decrypt datac. The

UD has now sal tc, prdc, and unc. It next generates the password pwc using the seed, sal tc,

and prdc. Finally, the UD logs in to the account c at S using pwc and unc.

5.1 Solution for password preservation and synchronization 101



_pw c, un c_

UDS PLS

_datac_

_idc_

_Authentication data_

_otpUD_

U

_MPW, url c_

Figure 5.2: Data flow of the password generation procedure.

5.1.3 Password synchronization

In this section, we detail the synchronization of a password portfolio across user devices. It is re-

alized by adding, updating, or deleting account data on the PLS. The account data is not cached

on devices. Every time a password needs to be generated a device receives the corresponding

account data from the PLS. In this way, it always gets the current account data and generates

the latest passwords.

In the following, we describe the three situations affecting password portfolios and requiring

a synchronization: First, adding a password to the user’s portfolio after account creation at an

Internet service in Section 5.1.3.1. Second, updating an account password in Section 5.1.3.2.

Third, deleting a password from the portfolio in Section 5.1.3.3.

5.1.3.1 Synchronization of new passwords

After creating a password for a new online account it is necessary to make it available on all

devices so that users can access their new account everywhere and anytime. PALPAS realizes

this by adding the corresponding account data object on the PLS. Other devices are then able

to receive the data, obtain the salt and the PRD, and thus to generate the password. The

procedure of creating a new password for an online account and making it available on all

devices is explained below. The corresponding data flow is depicted in Figure 5.3.

102 5 Passwordless and seamless password synchronization



1. U enters his MPW and the URL of the service on the UD.

2. The UD derives kmpw from the MPW and decrypts skAuth,UD. Then, the UD and the PLS

perform a mutual authentication in which the UD uses its skAuth,UD.

3. The UD requests otpUD from the PLS. Then, it decrypts the locally stored PALPAS secret

psUD with otpUD by computing ps = psUD ⊕ otpUD. The UD now has ps = (seed, kData).

4. The UD receives prdc from the PRDDS. In case the PRD of the S is unavailable, U is

prompted to use a default PRD (cf. Section 4.5) or to create one for the S manually. Then,

the UD generates sal tc as well as the account password pwc using the seed, sal tc, and

prdc. U now selects a username unc and uses unc and pwc to create an account at the S.

5. After the account creation, the UD derives kData,Enc and kData,Mac from kData. It creates

datac = (sal tc, prdc, unc, urlc) and encrypts it with kData,Enc. In addition, it computes the

corresponding account data identifier idc = HMAC(kData,Mac, urlc). Finally, it sends datac

and idc to the PLS.

UDS PLS

_Authentication data_

_otpUD_

_idc, datac_

_pw c, un c_

U

_MPW, url c_

Figure 5.3: Data flow of the password synchronization procedure.

After storing the account data at the PLS, it can be immediately received by the other devices of

U . Thus, the new password is seamlessly available on all devices.

Other approaches, such as storing a password database on a server, have the drawback that

devices have to regularly checking for updates to prevent outdated copies of passwords. This

causes heavy network load. Furthermore, to new passwords seamlessly available on all devices

users have to manually trigger a synchronization. PALPAS is doing this automatically.

5.1 Solution for password preservation and synchronization 103



5.1.3.2 Update of passwords

Changing the password of an online account requires to make the new password available on

all user devices. PALPAS realizes this by generating a new salt for the account and updating

the related account data at the PLS. To tackle the issue of device failures during this procedure,

PALPAS temporary stores the old and the new salt at the PLS. This prevents situations like (1)

the salt on the PLS was updated but the account passwords is not changed and (2) the password

was changed but the new salt is not send to the PLS. Typical situations are application crashes

or network interrupts. Moreover, this mechanism signals other devices that a password change

is in progress. This is necessary for our solution of automatic password changes presented in

Chapter 7. The complete procedure is described in the following. The corresponding data flow

is shown in Figure 5.4:

1. U enters his MPW and the URL of the service on the UD.

2. The UD derives kmpw from the MPW and decrypts skAuth,UD. Then, the UD and the PLS

perform a mutual authentication in which the UD uses its skAuth,UD.

3. The UD requests otpUD from the PLS. Then, it decrypts the locally stored PALPAS secret

psUD with otpUD by computing ps = psUD ⊕ otpUD. The UD now has ps = (seed, kData).

4. The UD derives kData,Mac from kData and computes idc = HMAC(kData,Mac, urlc). Then, it

sends idc to the PLS and requests the corresponding account data.

5. The PLS responds with the related datac.

6. The UD derives the encryption key kData,Enc from kData and uses it to decrypt datac. The

UD has now sal tc, prdc, and unc. It next generates the password pwc using the seed, sal tc,

and prdc. Finally, the UD logs in to the account c at the S using pwc and unc.

7. The UD generates a new salt sal t ′c and the corresponding password pw′c. Next, it created a

new account data object data′c = (sal tc, sal t ′c, prdc, unc, urlc) which includes the old and

the new salt. The UD encrypts data′c with kData,Enc and sends it to the PLS.

8. The UD changes the account password at the S to pw′c.

9. After a successful password change, the UD creates data′′c = (sal t ′c, prdc, unc, urlc) only

containing the new salt, encrypts it with kData,Enc, and sends it to the PLS.

Note that in Step 7, the UD also queries the PRDDS for an update of prdc and, if available,

receives the latest version. prd ′c is then also included into data′c and data′′c . After storing the

updated account data at the PLS, the new password is immediately available on all devices.

104 5 Passwordless and seamless password synchronization



_pw  c_

UDS PLS

_datac_

_idc_

_Authentication data_

_otpUD_

_idc, data  c_

_pw c, un c_

U

_MPW, url c_

_idc, data   c_

Figure 5.4: Data flow of the password update procedure.

The UD might not be able to successfully change the password (Step 8) or to finally update the

account data (Step 9). This situation can be solved by any device of U, which works as follows:

The UD receives data′c and generates the passwords pwc and pw′c. If it can log in with pwc, it

continues with Step 8. Otherwise, the UD performs Step 9.

5.1.3.3 Deletion of passwords

Finally, we explain the last operation of synchronizing a password portfolio across devices, the

deletion of a password. The procedure consists of four steps which are enumerated below. The

related data flow is depicted in Figure 5.5.

1. U enters his MPW and the URL of the service on the UD.

2. The UD derives kmpw from the MPW and decrypts skAuth,UD. Then, the UD and the PLS

perform a mutual authentication in which the UD uses its skAuth,UD.

3. The UD requests otpUD from the PLS. Then, it decrypts the locally stored PALPAS secret

psUD with otpUD by computing ps = psUD ⊕ otpUD. The UD now has ps = (seed, kData).

4. The UD derives kData,Mac from kData and computes the account data identifier idc =

HMAC(kData,Mac, urlc). Then, it sends idc to the PLS and requests the deletion of the related

account data object datac at the PLS.

5.1 Solution for password preservation and synchronization 105



UD PLS

_idc_

_Authentication data_

U

_MPW, url c_

_otpUD_

Figure 5.5: Data flow of the password deletion procedure.

In case U now tries to generate the password again and the UD requests the corresponding

account data, the PLS responds with an error. Because the account data is not stored on user

devices the password is immediately unavailable on all devices. In case of other approaches

users need to worry that the password is still stored on other devices.

5.1.4 Device management

We detail the management of user devices in this section. First, we describe the case where

users use PALPAS for the first time in Section 5.1.4.1. Second, we explain the case where users

want to set up PALPAS on further devices in Section 5.1.4.2. Third, we provide details about the

revocation of devices in the event of loss or theft in Section 5.1.4.3. To address the loss of the

PALPAS data in such situations, we present a backup solution for PALPAS in Chapter 6.

5.1.4.1 Initial installation

The initial setup of PALPAS includes the installation of the PLC on a device and the creation of

an account at the PLS. The installation procedure is described in the following and the corre-

sponding data flow is illustrated in Figure 5.6.

1. After installing the PLC on the UD, U chooses a MPW. The UD derives kmpw from the MPW.

Then, it generates the PALPAS secret ps = (seed, kData). Afterwards, the UD randomly

samples a one-time-pad key otpUD and encrypts the PALPAS secret by computing psUD =

ps ⊕ otpUD. The UD only keeps psUD and deletes ps. Then, it generates an authentication

key pair skAuth,UD and pkAuth,UD and stores skAuth,UD encrypted by the kmpw.

106 5 Passwordless and seamless password synchronization



2. The UD connects to the PLS and the PLS authenticates itself to the UD.

3. The UD sends pkAuth,UD and otpUD to the PLS. The PLS creates and account and stores

pkAuth,UD and otpUD. Finally, the UD deletes otpUD.

UD PLSU

_Authentication data_

_pkAuth,UD, otpUD_

_MPW_

Figure 5.6: Data flow of the initial installation procedure.

The user account at the PLS is now created and U can synchronize his passwords (cf. Section

5.1.3) or set up PALPAS on his further devices, which we explain in the next section.

The registration at the PLS does not require any personal information of users, not even an

email address. Moreover, the registration is as easy as possible. Users do not need to provide

a username, a valid email address to obtain a conformation link, nor select a password which

might be leaked during a later password breach.

5.1.4.2 Installation on further devices

We next describe the case where users want to set up PALPAS on further devices. This must

be done only once for each device and includes the installation of the PLC on the further user

device (UD′), the transfer of the PALPAS secret, and the registration of the device at the PLS.

1. U enters his MPW at the UD.

2. The UD derives kmpw from the MPW and decrypts skAuth,UD. Then, the UD and the PLS

perform a mutual authentication in which the UD uses its skAuth,UD.

3. The UD requests otpUD and an authentication token tAuth from the PLS. tAuth is randomly

created by the PLS and has a limited validity. It is used to temporary authenticate the UD′

at the PLS and to link the UD′ to the user’s account.

5.1 Solution for password preservation and synchronization 107



4. The UD decrypts the locally stored PALPAS secret psUD with otpUD by computing ps = psUD

⊕ otpUD. Then, the UD makes ps = (seed, kData) and tAuth available to U. This can be done

by storing the data in a file or encoding it as a QR code.

5. U installs the PLC on the UD′ and chooses a MPW. The UD′ derives kmpw from the MPW.

6. U transfers ps = (seed, kData) and tAuth to the UD′.

7. The UD′ connects to the PLS which authenticate itself to the UD′.

8. The UD′ randomly samples a one-time-pad key otpUD′ and uses it to encrypt the PALPAS

secret by psUD′ = ps ⊕ otpUD′. It only keeps psUD′ and deletes ps. Then, it generates an

authentication key pair skAuth,UD′ and pkAuth,UD′ and stores skAuth,UD′ encrypted with kmpw.

Afterwards, the UD′ sends pkAuth,UD′, tAuth, and otpUD′ to the PLS. The PLS verifies tAuth

and stores pkAuth,UD′ and otpUD′. Finally, the UD′ deletes otpUD′.

UDUD PLS

_Authentication data_

_otpUD, tAuth_

U

_seed, kData, tAuth_

_seed, kData, tAuth_

_Authentication data_

_pkAuth,UD   otpUD   tAuth_

_MPW_

_MPW_

Figure 5.7: Data flow of the installation procedure on further devices.

The further user device UD′ has now access to the user’s account at the PLS and can retrieve the

account data for generating passwords or an authentication token to register another device.

U can choose the same MPW for the UD and the UD′. But, he can also use different pass-

words, because the derived encryption key kmpw is only used to protect the locally stored secret

authentication key. We discuss the security benefit of the feature in Section 5.3.3.4.

108 5 Passwordless and seamless password synchronization



5.1.4.3 Revocation of devices

With regard to the risk of device loss and theft, a protection of the PALPAS data stored on devices

is required. The encryption of the data using a user-chosen master password only provides a first

line of defense, because such a password does not withstand a large-scale brute-force attack.

PALPAS has a revocation mechanism to solve this problem. A revocation invalidates the PALPAS

secret on a device and prevents the leakage of passwords. In the following, we explain the

revocation mechanism and refer to Section 5.3 for a detailed security evaluation.

All existing user devices are registered at the PLS with their individual pkAuth and otp. To revoke

a device a user deletes the related pkAuth,UD and otpUD at the PLS. Now the device can no longer

retrieve any data from the PLS. This includes the account data, authentication tokens, and

particularly the otpUD. Therefore, the device cannot generate passwords, register new devices,

and decrypt the PALPAS secret psUD anymore. Moreover, the deletion of otpUD invalidates psUD

and it is impossible to recover the PALPAS secret ps from the revoked device. Thus, the user

device is useless for an attacker and the passwords of the user cannot be stolen.

Alternative revocation methods

Users might not have access to another device, which is registered at the PLS, to do the revoca-

tion. Therefore, alternative methods to perform a revocation are necessary. A typical situation

is the theft of a mobile device while being on holiday. It takes days until users come home and

can revoke a stolen device from their desktop computer. We present two solutions to solve this

problem and to ensure a secure revocation at any time.

• PALPAS backup: The first solution is a PALPAS backup which is placed at a friend. Users

can call their friends and ask them to revoke their stolen or lost device on their behalf. This

solution can be realized with our backup solution present in Chapter 6.

• Alternative authentication means: The second solution is to allow users to revoke their

devices with other means of authentication such as electronic identity cards. We present

a solution to support multiple authentication means on the PLS-side in [H20]. To enable

users to use their different authentication means on devices, we present various solutions

based on electronic identity cards [H11, H10, H18], signature cards [H7, H9, H13], and

the Single Sign-on systems using SAML (Security Assertion Markup Language) [H8, H14].

These solutions enable users to securely revoke their devices everywhere and anytime.

5.1 Solution for password preservation and synchronization 109



5.2 Implementation

In this section, we present a realization of our solution. We describe the implementation of the

PALPAS client application in Section 5.2.1 and the PALPAS server in Section 5.2.2.

5.2.1 Client application

We start in this section by describing the architecture of the PLC and then provide details of

the implementation of the PALPAS password generation scheme and the other cryptographic

primitives used in PALPAS. We implemented the PLC in Java. The source code is available at

[H26]. For the realization of the cryptographic primitives we used Bouncy Castle [147].

PALPAS client

User 

interface

PALPAS

password

generator

User

Storage
PRD 

repository
PRDDS

PLS Core
PLS 

connector

Figure 5.8: Architecture of the PALPAS client.

Architecture

The architecture of the PLC is depicted in Figure 5.8. It consists of six main components which

we briefly describe below.

• Core: It manages the application and instantiates the other components.

• User interface: It provides a graphical user interface for the user. It allows the user to

generate passwords for his new online accounts and to manage his password portfolio.

• Storage: It stores necessary data on the user device such as the encrypted PALPAS secret

and the secret authentication key for the PLS.

• PLS connector: It establishes the communication to the PLS. The connector performs the

authentication and retrieval of the account data stored on the PLS.

110 5 Passwordless and seamless password synchronization



• PRD repository: It manages the PRDs of the services for which the user has accounts. In

case the user adds an account to PALPAS, the repository requests the corresponding PRD

of the service from the PRDDS (cf. Section 4.4.1). In case the PRD is not available, the

user is prompted to use a default PRD (cf. Section 4.5) or to create one for the service. The

repository also checks for updates during a password change.

• PALPAS password generator: It implements the PALPAS password generation scheme (cf.

Section 5.1.2). For the login at services, it triggers the PLS connector to receive the corre-

sponding account data from the PLS. In case of a password change, it generates a new salt

and corresponding password and instructs the PLS connector to update the account data

at the PLS. We provide more details regarding its realization below.

PALPAS password generator

As described in Section 5.1.2, the password generation is done in two steps: First, the PRG

generates a random value using the seed and the account-specific salt. Second, the PG derives a

password from the random value according to the password requirements provided by a PRD.

We implemented the PRG using the block cipher AES 128 in CBC mode [19]. The seed is used as

the key and the salt as input for the cipher. The output is the random. We iteratively increment

and then encrypt the salt value until enough random bits for the PG are produced.

We already described the implementation of the PG using rejection sampling in detail in Section

4.6.2.1. In brief, the PG maps the random value to a password. Next, it verifies whether the

password fulfills the password requirements. If not, the password is discarded and the PG

obtains a new random value from the PRG and starts from scratch.

Realization of the cryptographic primitives

For the generation of the PALPAS secret ps = (seed, kData) we use the secure random number

generator of Java (class SecureRandom). All secrets are 128-bit values. For skAuth and pkAuth

we generate a 2048-bit RSA key pair. kmpw is derived from the user’s master password using

the PBKDF2 function [130]. kData,Enc and kData,Mac are derived from kData using an HMAC-based

Extract-and-Expand Key Derivation Function (HKDF) [140].

For the encryption of the account data we use AES 128 in CBC mode. Each account data object

is encrypted separately using a different initialization vector (IV). Both, ciphertext and IV are

additionally protected using a HMAC [139, 168]. Ciphertext, IV, and the HMAC value are stored

on the PLS.

5.2 Implementation 111



5.2.2 Server application

We now provide details about the implementation of the PALPAS server, including its compo-

nents, the user authentication, and its deployment. The source code and the detailed specifica-

tion of its interfaces are available at [86, H26].

PALPAS server

StorageAPI DBSPLC

Core CA

Figure 5.9: Architecture of the PALPAS server.

Architecture

The architecture of the PLS is depicted in Figure 5.9. It consists of four main components which

we briefly describe in the following:

• Core: It instantiates the other components and manages the application. It also takes care

of log files and error handling.

• API: The Application Protocol Interface provides means for creating new accounts as well

as managing existing ones. This particularly includes adding, receiving, updating, and

deleting account data. Moreover, the API provides means to receive authentication tokens

and to revoke devices. The API is used by the PALPAS clients.

• Storage: It manages the stored user and authentication data. The data is saved on a

separate database server (DBS).

• CA: The Certificate Authority component manages the certificates used for user/device

authentication. We describe its realization below.

112 5 Passwordless and seamless password synchronization



User authentication

As described in Section 5.1.1, the authentication at the PLS is based on device-specific authenti-

cation keys. To bind the individual public authentication keys to each device we use certificates

(cf. Section 2.1.5). Besides its individual secret authentication key skAuth,UD, each user device

has a certificate c tAuth,UD which is used for the authentication. For the issuance and management

of the certificates, the PLS operates its own CA.

The issuance of a certificate works as follows: During the account creation at the PLS, the UD

sends a Certificate Signing Request (CSR) [172] to the PLS. The CSR contains only the public

key pkAuth,UD of the device and no further personal information. It is signed by skAuth,UD. The

PLS creates an X.509 certificate [63] c tAuth,UD based on the CSR and transmits it to the UD. The

subject of the certificate contains a user identifier (UID) and a device identifier (DID), which

are both randomly generated by the PLS. The serial number of c tAuth,UD is stored in the user’s

account at the PLS.

We use TLS with client authentication to mutually authenticate the PLS and a UD. Within the

TLS handshake the PLS presents its certificate c tAuth,PLS to the UD so that the UD can verify

the PLS’ identity. We equip the PLS with a certificate issued by a commercial CA. In addition,

the PLS requests a certificate from the UD which responds with c tAuth,UD. The PLS verifies the

certificate and identifies the user based on the UID encoded in the subject field of the certificate.

Then, the PLS checks if the serial number of c tAuth,UD is allowed to access the account. For a

detailed description of TLS with client authentication, we refer to [63].

Authenticating each device by its own certificate in conjunction with individual OTPs has the

advantage of a fine-granular revocation. In case of theft or loss the user can revoke the access

for a device by removing the serial number from the list of allowed devices in his account. Please

see Section 5.1.4.3 and 5.3.3.4 for further details.

Apart from that, users might want to additionally protect their accounts by multi-factor authen-

tication. We present such a solution in [H16]. The integration such a multi-factor authentication

in the PLS is future work.

Deployment

We developed the PLS as a Java web application providing a RESTful API. For the implementa-

tion of the CA we used Bouncy Castle [147]. For the storage of the user and authentication data

we used the Java Persistence API and a MySQL server as a backend.

5.2 Implementation 113



The PLS is deployed on a Tomcat server. The server is running behind an Apache server which

acts a proxy and the TLS endpoint. Any TLS connections to the PALPAS clients are established

and managed by the Apache server. For the account creation, it performs an unilateral authen-

tication in which only the server authenticates itself to the UD using c tAuth,PLS. In case a UD

requests access to a user account, the Apache server requests the UD’s certificate. After the

connection establishment, the Apache server forwards the request to the PLS along with infor-

mation about the UD’s certificate c tAuth,UD such as the serial number. Based on this data, the

PLS can perform the authorization, i.e. verifies that the UD is allowed to access the account.

Besides the TLS management, we equipped the Apache server with various countermeasures

against denial-of-service attacks [240]. For instance, we limit the number of requests devices

can make to the PLS. This setup also allows to balance the load to multiple servers which is

necessary to support a huge number of PALPAS users.

5.3 Security evaluation

We evaluate the security of PALPAS in this section. At the beginning, we extend in Section 5.3.1

our current system and attacker model to take the PLS into account. Particularly, we describe

the additional attacker’s capabilities. Then, we describe the security properties of the PALPAS’

password generation procedure in Section 5.3.2 and evaluate them with respect to the attacker’s

capabilities in Section 5.3.3. We show that the attacker is not able to obtain the passwords of

users. Finally, we detail the trust relation between users and the PLS in Section 5.3.4. We

describe that PALPAS imposes only a minimal trust assumption with respect to the PLS and

users only need to trust in the availability of their data stored on the PLS.

5.3.1 Extended system and attacker model

We extend our system model described in Section 3.1 with a further entity: the PALPAS server

P . The user U has an account at P which contains the data described in Section 5.1.1. The

access to the account requires that U authenticates himself against P . This is done by the device-

specific authentication keys. The communication between U and P is done over the Internet.

Both entities establish a secure and mutually authenticated channel using TLS.

114 5 Passwordless and seamless password synchronization



Attacker goal

So far, we considered an attacker A who aims at obtaining the password of U for an online

account. We now assume that A aims at obtaining the PALPAS data of U in order to generate

his entire password portfolio.

Table 5.1 provides an overview of the secrets used by the PALPAS system to generate passwords

and to manage the account data. Note that the salts are non-security-sensitive data. In Section

5.3.3, we explain that A cannot obtain any information from them. Moreover, the public au-

thentication keys of the user’s devices are also useless for A because the are public information

by nature and therefore uncritical. Their knowledge also raises no privacy issue because they

are only used for the PLS and not for other services.

Secret Objective Properties

seed Password generation • Randomly generated by the PLC.

• Created during the first installation of the PLC.

• Same for all user devices.

• Manually transfered by the user only once per device.

kData Remote data protection • Randomly generated by the PLC.

• Created during the first installation of the PLC.

• Same for all user devices.

• Manually transfered by the user only once per device.

otp Local data protection • Randomly generated by the PLC.

• Created during the installation of the PLC on a device.

• Different for all user devices.

• Stored on the PLS.

skAuth Device authentication • Randomly generated by the PLC.

• Created during the installation of the PLC on a device.

• Different for all user devices.

kmpw User authentication and

local data protection

• Derived from user’s master password.

• Not stored.

• Same/different for user devices.

• Entered for every use of the PLC.

Table 5.1: PALPAS secrets.

5.3 Security evaluation 115



Attacker capabilities

We assume that A knows which services U is using and the usernames of his accounts. This

knowledge allowsA to obtain the PRDs of the services. With respect to the new goal of obtaining

the user’s PALPAS data, we consider that A has the following four additional capabilities:

AC4 A knows the password cpw of an account c of U at a service.

AC5 A knows sal tc which was used to generate cpw for the account c of U .

AC6 A knows sal tc and cpw of the account c of U .

AC7 A knows the encrypted PALPAS secret ps and an encrypted secret authentication key

skAuth used to authenticate U at P .

Attacker limitations

We consider the same attacker’s limitations as described in Section 3.1. In particular, we assume

that user devices are not compromised. Note that PALPAS has an inherent protection against

phishing attacks because it uses public-key cryptography for user authentication at the PLS [10,

60]. Other password synchronization solutions (e.g. [144]) are vulnerable to an attacker luring

users to a fraud website to obtain their credentials for a password synchronization server.

5.3.2 Security properties

In this section, we describe the security properties of the PALPAS password generation pro-

cedure. First, we explain that A cannot obtain the seed by knowing passwords and/or salt

values. Second, we describe that PALPAS is the first solution that automatically generates

attack-resistant, individual, and valid passwords for users.

In the first step of the password generation, PALPAS uses a PRG. It takes as input the seed and

a salt and outputs a random value. We assume that the PRG is cryptographically secure. This

means that A cannot distinguish between the output of the PRG and a truly random value. This

property is named pseudo-randomness. As described in Section 5.2.1, we implement the PRG

using the block cipher AES 128 in CBC mode which provides this property [19].

It follows from the pseudo-randomness of the PRG that A knowing the output of the PRG,

cannot learn the seed or salt. A also cannot compute an input of the PRG by knowing another

input. This means A cannot compute the seed by knowing a salt. A also cannot determine the

PRD’s output by knowing either a seed or a salt. This is only possible by having both inputs.

116 5 Passwordless and seamless password synchronization



Computing the outputs of all possible seeds and salts is infeasible because the seed and the salt

are 128-bit values. Such a brute-force attack is the only option of A, because PALPAS generates

seeds and salts completely random. Other approaches (e.g. [105, 189]) that use the URL of

services or user-chosen master passwords as input allow efficient attacks.

In the second step of the password generation, the PG derives a password from the random value

using the modulo operator. Further, the PG uses rejection sampling to ensure that the password

complies with a given PRD. The input of the PG, i.e. the random value, is at least 128 bits

longer than its output (cf. Section 4.6.2.1). For instance, in case of 2130 possible passwords the

random value is 264 bits long. This 128-bit security buffer ensures a uniform distribution of the

generated passwords while using the modulo operator. Moreover, there exist multiple random

values for the same password. In case of the previous example and under the assumption that no

further restrictions are applied, there exist 2136 random values that result in the same password.

With the knowledge about the functioning of the PG and the publicly available PRDs, A can

determine plausible random values for a password. But, he cannot determine if it is the correct

one generated by the seed and salt of U . With respect to the pseudo-randomness of the PRG, A
can also not compute the seed and salt from a random value. To conclude, A cannot obtain the

seed by knowing passwords and/or salt values.

PALPAS fulfills the security requirement SR1 of generating attack-resistant passwords (cf. Sec-

tion 3.2). The seed and the salts are completely random values and not derived from any

user-related or service-related information. Moreover, the PRG and the PG generates pass-

words in a uniform way. Consequently, the generated passwords do not have any patterns that

can be exploited by A. Further, PALPAS generates passwords with a security level of 130 bits

which makes a brute-force attack infeasible. If attack-resistant passwords are not supported by

services, PALPAS generates passwords with the best possible security level.

PALPAS also fulfills security requirement SR2 of generating individual passwords (cf. Section

3.2). This is ensured by using different salt values for accounts and always randomly generating

them. Consequently, a password is never used twice.

Finally, PALPAS fulfills the service condition SC1 of generating valid passwords (cf. Section

3.2). This is done by the PG which takes the individual password requirements of services into

account. In case the requirements of a service are partially or entirely unavailable, PALPAS

makes use of our optimized password-composition rule set (cf. Section 4.5) to generate attack-

resistant passwords with the best possible acceptance rate. To conclude, PALPAS is the first

solution that automatically generates attack-resistant, individual, and valid passwords.

5.3 Security evaluation 117



5.3.3 Attack scenarios

In this section, we evaluate the security properties of PALPAS described in the previous section

with respect to the new attacker’s capabilities defined in Section 5.3.1. We show that A is not

able to obtain the seed of U and generate his password portfolio.

5.3.3.1 Scenario 1

In the first attack scenario, we evaluate the attacker’s capability of knowing a password of U (cf.

AC4). A obtained the password for instance by a password breach at the respective service. We

show that A is not able to generate the other passwords of U .

With respect to the assumptions about the PALPAS’ password generation procedure described in

Section 5.3.2, A is able to invert the PG and determine plausible random values for the stolen

password. However, it follows from the pseudo-randomness of the PRG that knowing its output,

i.e. the random value, it is infeasible to learn the seed and the salt value. To this end, A cannot

generate the other passwords of U .

The same applies for the cases in which A obtains multiple passwords of U from different

services or passwords from a single service over a long period of time. A can obtain plausible

random values for these passwords by inverting the PG, but he cannot learn the seed and the

salt values from them. Due to the fact that PALPAS generates individual passwords for accounts,

A can also not reuse stolen passwords to get access to other accounts of U .

5.3.3.2 Scenario 2

In the second attack scenario, we consider that A knows a salt value of U (cf. AC5). A got it for

instance by a security incident at P . We show that A cannot generate the user’s passwords.

The salts are randomly chosen values and statistically independent of the passwords and from

the seed. Because of this, A cannot derive any information from them, e.g. for which service

a salt was used. Furthermore, it follows from the pseudo-randomness of the PRG that only

knowing a salt computing the output of the PRG without the seed is infeasible. To this end, A
cannot generate the user’s password portfolio.

118 5 Passwordless and seamless password synchronization



5.3.3.3 Scenario 3

In the third attack scenario, we combine the previous scenarios and consider that A knows a

password and the corresponding salt (cf. AC6). A obtained this information for example by a

security breach at P and at a service. We show that even in this case A cannot generate the

other passwords of U .

With respect to the assumptions described in Section 5.3.2, A is able to invert the PG and

determine plausible random values for the stolen password. However, it follows from the

pseudo-randomness of the PRG that knowing its output and the salt it is impossible to learn

the seed. To this end, A cannot generate the other passwords of U .

5.3.3.4 Scenario 4

In the last attack scenario, we assume that A knows the encrypted PALPAS secret ps and an

encrypted secret authentication key skAuth (cf. AC7). He got this data for instance by stealing a

device of U . We show that the PALPAS’ revocation feature (cf. Section 5.1.4.3) prevents A from

generating the user’s password portfolio.

A cannot decrypt ps without the corresponding key otp. As part of PALPAS’ revocation pro-

cedure, the key is deleted from P . Therefore, it is impossible to recover ps because it is

a one-time-pad encryption yielding information-theoretic security [22, 163]. To this end, A
cannot obtain the seed of U and therefore cannot generate his password portfolio.

skAuth is encrypted with kmpw which is derived from the user’s master password. We expect that

the MPW has an appropriate security level. This assumption is reasonable because this is the

only password that U needs to memorize. Therefore, it provides a sufficient protection until

pkAuth is revoked by U and thus skAuth cannot be misused by A to access P .

Alternatives to a master password

The encryption key kmpw is only used for the protection of skAuth on a device. U can choose

the same MPW for all devices, but can also use different ones. This allows him to choose a

very strong password for his mobile devices because they are most threatened. Moreover, it

is possible to facilitate a protection of skAuth with many different authentication means which

especially are more secure than a user-chosen master password.

5.3 Security evaluation 119



In case of mobile devices with a fingerprint reader it would be possible to randomly generate

kmpw, save it in a keystore stored on the device, and protect it with the user’s fingerprint. The

PLC then asks U for his fingerprint instead of requiring a long and complex master password.

Another possibility is to store skAuth on a smart card and protect it with a PIN. The key is then

located in the protected memory of the card and A has only a limited number of attempts to

guess the PIN. This smart card approach is suitable for desktop computers with a card reader

but also works with NFC-enabled mobile devices. Our backup solution for PALPAS presented in

Chapter 6 makes use of this smart card approach.

Other approaches that use for instance a master password to encrypt passwords do not support

different authentication means. Their security entirely relies on the questionable assumption

that users select an attack-resistant master password or immediately change all their account

passwords if there is a suspicion that the master password is compromised.

5.3.4 Trust relation

Finally, we evaluate the trust relation between U and P . Certainly, U needs to trust P to some

extent. However, PALPAS imposes only a minimal trust assumption with respect to P . It only

requires that P ensures the availability of the user data. PALPAS does not expect P to be

trustworthy with respect to privacy and data integrity.

The user’s privacy-sensitive information stored at P are the URLs of the services and his user-

names. Both would allow P to create a detailed user profile. PALPAS protects the user’s privacy

in two ways: First, the account data which includes both, service URL and username, is en-

crypted with kData,Enc. The key is only available on the devices of U . Second, account data

identifiers are generated by computing an HMAC with kData,Mac over the service’s URL. The key

is also only available on the devices of U . Moreover, the encryption of the salts prevents a ma-

nipulation by a malicious P (cf. Section 3.6.2.4). More precise, A controlling P and a service

cannot shuffle the account data of U so that he logs in to the service with the passwords of his

other accounts.

For users that do not want to rely on the assumption that P ensures the availability of their data,

we describe an alternative approach in Section 6.1.4. The basic approach is to redundantly store

the account data on multiple PLSs to mitigate the risk of loss. Besides loss protection, this also

mitigates unavailability during a potential temporary outage or maintenance of a PLS.

120 5 Passwordless and seamless password synchronization



5.4 Conclusion

In this section, we presented PALPAS, the first secure and usable online password synchroniza-

tion scheme. Users’ passwords are generated on demand using the seed stored on devices and

the salts synchronized with the PLS. Users only need to remember a single master password.

PALPAS performs the first password task of generating attack-resistant, individual, and valid

passwords for online accounts automatically for users.

The initial installation of PALPAS as well as the setup of further devices is very easy and conve-

nient. The first installation of PALPAS only requires to choose a master password. In contrast

to other approaches, users do not need to provide any personal information such as an email

address. The setup of PALPAS on further devices must be done only once. It only requires to

transfer some data which can be easily done by a QR code.

The practicality of PALPAS has been demonstrated by a realization of the PALPAS client and the

PALPAS server. Moreover, we provided a detailed security evaluation of PALPAS. We explained

that an attacker cannot obtain a seed and generate users’ passwords, neither by compromising

the PLS and/or services nor stealing user devices. Moreover, we described that PALPAS gener-

ates passwords according to the related security requirements and service conditions for secure

passwords defined in Section 3.2. Finally, we stated that PALPAS only imposes minimal trust

requirements on the PLS. This allows to operate a PLS with standard hardware and software.

Users can even run their own PLS.

PALPAS is the second part of PAS. It solves the preservation, confidentiality, and availability prob-

lem of passwords. In the subsequent Chapter 6, we complement PALPAS with a backup solution

called PASCO (PALPAS RECOVERY). It is the third part of PAS and ensures the recoverability and

accessibility of preserved passwords. PASCO allows to cope with situations of data loss on both

sides, user devices and the PLS. PASCO also provides an emergency access for backups which

allows users to grant access to their passwords. Finally, in Chapter 7, we present the fourth

part of PAS which provides automatic password changes and enables users to change their pass-

words regularly. PALPAS makes the new passwords automatically and seamlessly available on

all devices. Moreover, PAS feature of automatic password changes also enables users to easily

migrate from their weak to attack-resistant passwords generated by PALPAS.

5.4 Conclusion 121





6 Update-tolerant and revocable
password backup with emergency access

In Chapter 3, we showed that creating and maintaining backups of preserved passwords for

recovery and emergency access is very difficult for users. Backups must be placed at secure

locations and kept up-to-date at the same time.

In this section, we present the third part of PAS which solves the password recoverability and

accessibility problem. We introduce PASCO (PALPAS RECOVERY), a secure and usable backup

solution for PALPAS (cf. Chapter 5). It ensures that users never lose their passwords by providing

recoverability of the PALPAS data. Backups created by PASCO do not have to be updated even

when users’ passwords change. Users need to create backups only once and can keep them

completely offline at secure, different, and physically isolated locations. This minimizes the

risk of compromise and loss as well as enables an emergency access to the users’ passwords

by trusted persons. Moreover, PASCO backups have a built-in revocation mechanism. It allows

users to completely invalidate backups if they lose control over them. The revocation mechanism

works without having access to the backups themselves and guarantees that no passwords can

be leaked from the backups once revoked. We detail PASCO in Section 6.1.

Afterwards, we present the fully controllable emergency access of PASCO backups in Section 6.2.

Users can authorize trusted persons to access backups and obtain a set of pre-defined passwords

in urgent or emergency situations.

Then, we present an implementation of PASCO in Section 6.3 as well as a security evaluation in

Section 6.4. Finally, we conclude this chapter in Section 6.5.

The contributions of this chapter were published as part of [H3]. This chapter extends the

published contributions by the description of the implementation and the security evaluation.

123



6.1 Solution for password backup

In this section, we describe PASCO (PALPAS RECOVERY), a secure and usable backup solu-

tion for PALPAS (cf. Chapter 5). It ensures that users never lose their passwords by providing

recoverability of the PALPAS data.

The seed, the salts, and the PRDs are crucial for the PALPAS password generation procedure.

Moreover, the secret authentication key skAuth and the encryption key kData are necessary to

retrieve the account data from the PALPAS server (PLS). The availability of these three pieces of

data must be guaranteed. Otherwise, the user’s password portfolio is lost.

The account data is stored at the PLS. Their availability has to be guaranteed by the PLS, which

is in line with our trust assumption (cf. Section 5.1.1). We assume that the provider of the PLS

implements proper measures to restore the data at any time. As an alternative, we describe a

user-side solution using multiple PLSs in Section 6.1.4. The PALPAS secret ps = (seed, kData) and

the individual skAuth are exclusively stored on the user devices and thus are at high risk of loss.

Typical situations are lost, stolen, or damaged devices as well as malware. The recoverability of

the PALPAS data on the devices is ensured by PASCO.

PASCO backup device

PASCO uses a separate backup device (BD) to store a backup of the PALPAS data. We consider

the BD to be a tamper resistant device that provides secure storage, user authentication, and

basic cryptographic algorithms such as encryption and hashing. In Section 6.3 we present a

practical realization of PASCO using an off-the-shelf smart card as a BD.

In the same way as user devices, the BD stores the PALPAS secret ps = (seed, kData) encrypted

with a one-time-pad key otpBD. Furthermore, it has its own secret authentication key skAuth,BD

for the PLS. The corresponding pkAuth,BD is stored on the PLS. To prevent the BD from unautho-

rized access, it is protected by a user-chosen PIN. A retry counter for the PIN prevents guessing

attacks. After five wrong PIN entries the BD erases all stored data.

We explain the creation of update-tolerant PASCO backups in Section 6.1.1 and how to re-

store the PALPAS data from backups in Section 6.1.2. In Section 6.1.3, we describe the built-in

revocation mechanism provided by PASCO backups.

124 6 Update-tolerant and revocable password backup with emergency access



6.1.1 Creation of backups

We now describe the creation of PASCO backups in order to protect the PALPAS data stored on

user devices from loss. The user (U) already uses PALPAS on his user device (UD). He has an

account at the PLS and the UD is registered at the PLS. The procedure to create a PASCO backup

is described in the following and the corresponding data flow is illustrated in Figure 6.1.

1. U initializes the BD with a PIN.

2. The UD and the PLS perform a mutual authentication in which the UD uses its skAuth,UD.

3. The UD requests an authentication token tAuth and otpUD from the PLS.

4. The UD decrypts the locally stored PALPAS secret psUD with otpUD by computing ps = psUD

⊕ otpUD. Then, it sends ps = (seed, kData) and tAuth to the BD.

5. The BD randomly samples a one-time-pad key otpBD and encrypts the PALPAS secret by

computing psBD = ps ⊕ otpBD. It only keeps psBD and deletes ps. Then, it generates an

authentication key pair and stores skAuth,BD. Afterwards, the BD sends pkAuth,BD, tAuth, and

otpBD to the PLS. The PLS verifies tAuth and stores pkAuth,BD and otpBD. Finally, the BD

deletes otpBD.

_seed, kData, tAuth_

UDBD

_PIN_

U PLS

_tAuth, otpUD_

_pkAuth,BD, tAuth, otpBD_

_Authentication data_

Figure 6.1: Data flow of the backup procedure.

An update of the BD is not necessary, even when the password portfolio of U is changed. Chang-

ing, adding, or deleting passwords only requires to update, store, or delete the related account

data at the PLS. This is an integral part of PALPAS itself (cf. Section 5.1.3). As the PLS provides

availability of the account data or the account data is stored on multiple PLSs (cf. Section 6.1.4),

PASCO itself does not need to take care of it.

6.1 Solution for password backup 125



6.1.2 Data recovery from backups

Typical reasons for the loss of the PALPAS data are lost, stolen, or damaged devices as well as

malware. To restore the PALPAS data on a user device, the user needs to have the BD and the

corresponding PIN. The procedure is depicted in Figure 6.2 and works as follows:

1. U authenticates himself to the BD with his PIN.

2. The BD and the PLS perform a mutual authentication in which the BD uses its skAuth,BD.

3. The BD requests tAuth and otpBD from the PLS.

4. The BD decrypts the locally stored PALPAS secret psBD with otpBD by computing ps = psBD

⊕ otpBD. Then, it transfers ps = (seed, kData) and tAuth to the UD.

5. The UD randomly samples a one-time-pad key otpUD and encrypts the PALPAS secret by

computing psUD = ps ⊕ otpUD. It only keeps psUD and deletes ps. Then, it generates an

authentication key pair and stores skAuth,UD. Afterwards, the UD sends pkAuth,UD, tAuth, and

otpUD to the PLS. The PLS verifies tAuth and stores pkAuth,UD and otpUD. Finally, the UD

deletes otpUD.

_seed, kData, tAuth_

UDBD

_PIN_

U PLS

_tAuth, otpBD_

_pkAuth,UD, tAuth, otpUD_

_Authentication data_

Figure 6.2: Data flow of the recovery procedure.

The UD has now access to the user’s account at the PLS and can retrieve the account data for

generating the passwords.

126 6 Update-tolerant and revocable password backup with emergency access



6.1.3 Revocation of backups

It is essential to place backups at various locations to protect them from loss and to enable an

emergency access to passwords. However, this bears the risk that backups get lost, users cannot

get them back, or just forget that they exist. An attacker might be able to compromise a stolen

backup at some point in time and thus obtains the entire password portfolio of a user.

Like user devices, all existing backup devices are registered at the PLS with their individual

pkAuth and otp. This allows to revoke backup devices in the same way as user devices (cf.

Section 5.1.4.3): The user deletes pkAuth,BD and otpBD of a BD at the PLS. Now the BD can no

longer access the PLS and requests data. Moreover, the deletion of otpBD invalidates psBD on

the BD. This means it is impossible to recover the PALPAS secret ps from the BD. Thus, the BD

is useless and the passwords cannot get stolen. We refer to Section 6.4 for a detailed security

evaluation for the revocation mechanism.

6.1.4 Recovery of server-side data

PASCO provides recoverability of the PALPAS data stored on user devices. So far, the recover-

ability of the account data stored on the PLS is to be guaranteed by the PLS provider. However,

for users that do not want to rely on this assumption, we describe an alternative approach to

protect the server-side PALPAS data from loss. The basic approach is to redundantly store the

account data on multiple PLSs to mitigate the risk of loss. Besides loss protection, this also

mitigates unavailability during a temporary outage or maintenance of a PLS.

Storing the data on multiple PLSs can be realized with minor adaption of the PALPAS client

(PLC). Instead of storing the data on a single PLS, a PLC mirrors the account data to one or even

more additional PLSs. The communication protocols and interfaces of the PLS providers do not

need to be changed. The additional network traffic is negligible, because the account data only

make up for a few kilobytes. To efficiently create individual authentication and encryption keys

for different PLSs, we introduce a new scheme to generate these keys. As well, we show how a

one-time-pad key can me masked in order to provide privacy protection.

In the original version of PALPAS kData, skAuth and the related pkAuth are randomly generated.

Instead of applying kData directly, it is used as input for a Key Derivation Function (KDF) to

create PLS-specific encryption keys. Moreover, PLS-specific authentication keys are derived from

a randomly generated secret kAuth. As well, the OTP keys are masked before storing them on

the PLSs.

6.1 Solution for password backup 127



This approach has two advantages: First, it protects the users’ privacy because keys are not

reused. Otherwise, collaborating PLS providers could identify users by comparing the authenti-

cation or OTP keys. Second, it does not require to store a multitude of keys on a user/backup

device so it can be realized on a resource-constrained device like a smart card. Only a small

random bit string needs to be additionally stored. In detail, the generation of PLS-specific

encryption and authentication keys and the OTP masking work as follows.

PLS-specific encryption keys

When users use the PLC for the first time kData is randomly created. But, the PLC does not use

the key directly, it creates a PLS-specific key kData,PLS = KDF(kData, urlPLS) on demand for each

PLS, where urlPLS is the URL of the PLS. From kData,PLS an encryption key kData,PLS,Enc and a

message authentication key kData,PLS,Mac can be derived as in the original PALPAS. For setting up

the PLC on other devices, users just transfer kData to a new device as done in the original version

of PALPAS. The URLs of the PLSs can be included in this transfer or manually entered.

PLS-specific authentication keys

Instead of randomly generating an authentication key pair, the PLC randomly creates a secret

kAuth and stores it on the device like skAuth in the original PALPAS version. Then, it creates

a PLS-specific secret kAuth,PLS = KDF(kAuth, urlPLS) for each PLS. kAuth,PLS serves as input for a

PRG which is used for the key generation of PLS-specific authentication key pairs comprising

skAuth,PLS and pkAuth,PLS. By storing kAuth these keys can be regenerated at any time.

Note that in case of setting up the PLC on a further device an authentication token tAuth,PLS from

each PLS must be requested. The tokens can be transferred together with the URLs of the PLSs,

the seed, and kData by a file transfer or a QR code.

PLS-specific OTP key masking

When setting up a device, the PLC samples a random bitmask m in addition to the one-time-pad

key otp that is used to encrypt the PALPAS secret on the device. Then, it creates a PLS-specific

bitmask mPLS = KDF(m, urlPLS). Instead of otpBD (cf. Step 4, Section 6.1.1), the BD sends

otpBD,PLS = otpBD ⊕ mPLS to the PLS. m is stored on the device while mPLS is recomputed on

demand to recover otpBD from otpBD,PLS.

128 6 Update-tolerant and revocable password backup with emergency access



6.2 Emergency access to backups

This section describes our solution which solves the password accessibility problem. We extend

PASCO to provide an emergency access for backups. User can authorize trusted persons to

obtain a set of pre-defined passwords from a backup in urgent or emergency situations.

The extension of PASCO consists of two parts: First, in addition to storing the PALPAS data,

the BD now also implements the PALPAS password generation procedure (cf. Section 5.1.2).

Second, the PLS is equipped with a fine-grained access control system for the account data. For

each pkAuth, a user can specify different access rules. While, one pkAuth may have access to all

data, another pk′Auth can only access the account data for the user’s mail account.

We describe the creation and management of backup devices with emergency access in Section

6.2.1. Particularly, we explain how to control which accounts can be accessed with a specific

BD. Then, we describe the procedure for an emergency access in Section 6.2.2.

6.2.1 Creation of backups with emergency access

The procedure for creating BDs with emergency access is nearly the same as described in Sec-

tion 6.1.1. It only differs in the second step, where the UD requests tAuth. The request is

supplemented by an access control list (ACL). The ACL is basically a list of account data identi-

fiers (cf. Section 5.1.3). The pkAuth,BD registered using tAuth in Step 4 is later only granted access

to the account data defined by the ACL. The ACL for each pkAuth can be modified at any time by

the user through an authorized device. For instance, the user can enable the access to his social

media account during vacation and disable it afterwards. Both can be done without having

physical access to the BD. Moreover, the user can also revoke the BD to invalidate it completely

as described in Section 6.1.3.

The BD can simultaneously act as a backup and an emergency password generation device.

Thus, depositing a single BD at a friend’s place is sufficient. To provide both features, a BD is

equipped with multiple authentication keys. One pkAuth is allowed to request an authentication

token tAuth as needed for the restoring procedure (cf. Section 6.1.2). Another pk′Auth can only

retrieve certain account data and is used for the emergency access. To equip a BD with multiple

authentication keys, the creation procedure described in Section 6.1.1 is performed multiple

times with a different tAuth, pkAuth, ACL, and a different PIN. Depending on the PIN, a BD

uses the corresponding skAuth for the authentication at the PLS. In accordance with the ACL

associated to pkAuth, the PLS allows to request an authentication token or only certain account

data, e.g. for the mail account.

6.2 Emergency access to backups 129



6.2.2 Access backups in case of emergency

We envision that the user (U) has deposited a PASCO backup (BD) at a friend’s place. Allowing

the friend, referred to as the backup holder (H), to create the user’s password for an account

works as follows. The data flow is depicted in Figure 6.3.

1. U tells H the emergency PIN of the BD and the URL of the service where H should access

the user’s account.

2. H uses the PIN to authenticate himself to the BD and also transfers urlc to the BD.

3. The BD and the PLS perform a mutual authentication in which the BD uses its skAuth,BD.

4. The BD requests it one-time-pad key otpBD from the PLS. Then, it decrypts the locally

stored PALPAS secret psBD with otpBD by computing ps = psBD ⊕ otpBD. The BD now has

ps = (seed, kData).

5. The BD derives kData,Mac from kData and computes idc = HMAC(kData,Mac, urlc). Then, it

sends idc to the PLS and requests the corresponding account data.

6. The PLS responds with the related datac.

7. The BD derives kData,Enc from kData and uses it to decrypt datac. The BD has now sal tc,

prdc, and the username unc. Then, it generates the password pwc using the seed, sal tc,

and prdc. Finally, the BD hands pwc and unc over to H. H can now browse the service and

log in to the user’s account.

_pw c, un c_

BDH

_PIN, url c_

U PLS

_PIN, url c_

_Authentication data_

_datac_

_idc_

_otpBD_

Figure 6.3: Data flow of the emergency access procedure.

130 6 Update-tolerant and revocable password backup with emergency access



6.3 Implementation

In this section, we present an implementation of our solution as well as demonstrate the real-

ization of PASCO with an off-the-shelf smart card.

We start by explaining the implementation of a PASCO backup device using a smart card in

Section 6.3.1. Then, we present a PASCO client in Section 6.3.2. Finally, we explain how the

data flows of the conceptual description of PASCO are realized in practice in Section 6.3.3.

6.3.1 Backup device

In Section 6.1, we described the BD to be a tamper resistant device that provides secure storage,

user authentication, and basic cryptographic algorithms. We realized the BD with a smart card.

A smart card fulfills the pursued security features. Namely, it securely stores the PALPAS secret

and protects it from unauthorized access and other threats like malware. Consequently, a smart

card is a valid and practical realization of PASCO.

We used a Java card (NXP J3D081) and developed a Java Card Applet (Classic Platform) that

implements the backup and the emergency access feature. The PALPAS secret is stored in the

secure memory of the card and is protected by a PIN. For the data exchange we built on the

standard Application Protocol Data Units (APDU) specified by the ISO 7816 [127].

6.3.2 Client application

In this section, we describe the PASCO client. It runs on user devices and implements the

creation, recovery, and emergency access procedure. For the backup procedure it acts as an in-

termediate between the backup device and the PLS. With respect to the backup creation and data

recovery, the PASCO client is installed in parallel to the PALPAS client (PLC). For the emergency

access scenario it runs as a stand-alone application on the device of the backup holder.

The architecture of the PASCO client is depicted in Figure 6.4. It consists of six main components

which we briefly describe in the following.

• Core: It manages the client and instantiates the other components.

• User interface: It provides a graphical user interface for a user. It allows to start the creation,

recovery, and emergency access procedure as well as to configure the client.

6.3 Implementation 131



• Smart card connector: It provides the communication to the smart card (BD) and imple-

ments the APDUs.

• PLC connector: It provides data exchange between the PASCO client and the PLC. It is used

to access the PALPAS data such as the authentication key and certificate for the PLS.

• PLS connector: It establishes the communication to the PLS. The connector performs the

authentication to the PLS and obtains the necessary certificates and signatures from the

PLC connector (in case of the creation procedure) or smart card connector (in case of the

recovery and emergency access procedure). It is also used to retrieve the account data,

authentication tokens, and one-time-pad keys.

• PALPAS password generator: It implements the PALPAS password generation procedure (cf.

Section 5.1.2) and is used in case of the emergency access procedure.

PASCO client

User 

interface

Smart card 

connector

PLC 

connector

PLS BD

PALPAS 

password 

generator

PLS 

connector

Core User

PLC

Figure 6.4: Architecture of the PASCO client.

We implemented the PASCO client in Java and used the Java Smart Card IO for the card com-

munication. The implementation is available at [H26].

6.3.3 Details of operation

Smart cards and Internet services like the PLS use different communication protocols. Therefore,

they cannot communicate directly with each other. A user device must act as an intermediate to

translate between the different protocols and data formats. Moreover, smart cards have limited

storage capacity and computation power so that some operations must be performed by user

132 6 Update-tolerant and revocable password backup with emergency access



devices. Because of this, the communication flows of our implementation slightly differ from

the conceptual description of our solution presented in Section 6.1 and 6.2. We explain the

differences in the following.

Authentication at the PLS

Because the BD and the PLS cannot communicate directly, the UD establishes the connection to

the PLS in the restore and emergency access procedure. The UD also performs the authentication

to the PLS on behalf of the BD using TLS with client authentication. This works as follows: The

UD connects to the PLS which requests a certificate for authentication. The UD obtains the

certificate from the BD and transfers c tAuth,BD to the PLS. Moreover, during the TLS handshake

the UD sends a hash of all handshake messages to the BD. The hash is signed by the BD using

skAuth,BD. This signature proves the possession of skAuth,BD to the PLS.

For further details, we refer to RFC 5246 [71]. Note that this procedure does not raise security

issues, because the security-sensitive secret authentication key skAuth,BD never leaves the BD and

the PIN is required to access the certificate on the BD and to generate the signature.

Shared password generation

Besides limited communication capabilities, smart cards have resource restrictions with respect

to storage capacity and computation power. Therefore, the password generation in the emer-

gency access procedure is jointly done by the BD and the PASCO client running on the device of

the backup holder. The password generation (cf. Section 5.1.2) is done as follows:

1. Random generation: The first part of the password generation, the generation of the ran-

dom, is done by the BD. The BD decrypts ps = psBD ⊕ otpBD to obtain the seed and kData.

It then decrypts datac to get sal tc, prdc, and unc. Using the seed and sal tc, it computes

the random, and hands it along with prdc and unc over to the PASCO client.

2. Password generation: The second part is done by the PASCO client. It takes as input the

random and the prdc from the BD and computes the password.

The joint approach is necessary, because the processing of XML-encoded PRDs as used by PALPAS

could not be realized on the smart card. Yet, this does not pose security issues, because the seed

and kData never leave the smart card.

6.3 Implementation 133



6.4 Security evaluation

We evaluate the security of PASCO in this section. At the beginning, we extend in Section 6.4.1

our current system and attacker model to take PASCO backups into account. Particularly, we

describe the additional attacker’s capabilities and evaluate them in Section 6.4.2. We show that

the attacker is not able to obtain the user’s password portfolio from a PASCO backup.

6.4.1 Extended system and attacker model

We extend our system model described in Section 3.1 and 5.3.1. The user U has created a

PASCO backup which contains the data described in Section 6.1. We assume that the BD was

securely created and the BD is protected by a PIN. The BD is registered at the user’s account at

the PALPAS server P . The access to this account requires that the BD authenticates itself to P .

This is done by the device-specific authentication key skAuth,BD.

Attacker goal

We again consider an attackerA that aims at obtaining the PALPAS data of U in order to generate

his entire password portfolio (cf. Section 5.3.1). This timeA focuses on obtaining this data from

the BD of U .

Attacker capabilities

With respect to the new goal of obtaining the user’s PALPAS data from his BD, we consider that

A has the following two additional capabilities:

AC8 A is able to obtain the BD of U .

AC9 A is able to circumvent the PIN protection of the BD after same time and thus obtains

the encrypted PALPAS secret psBD and the secret authentication key skAuth,BD.

Attacker limitations

We consider the same attacker’s limitations as described in Section 3.1 and 5.3.1. In brief, we

exclude trivial attacks, attacks that cannot be prevented by technical means, and attacks that

are not specific to passwords. We provide a more general security evaluation of the usage of

smart cards in [H21].

134 6 Update-tolerant and revocable password backup with emergency access



6.4.2 Attack scenarios

In this section, we evaluate the new attacker’s capabilities defined in the previous section. We

show that A is not able to obtain the PALPAS data of U from his BD and therefore cannot

generate his password portfolio.

6.4.2.1 Scenario 1

In the first attack scenario, we evaluate the attacker’s capability of obtaining the BD of U (cf.

AC8). A for instance has stolen it from a trusted person of U . We show that A is not able to

generate any passwords with the stolen BD.

The BD is protected with a PIN. The PIN has a retry counter which only allows five PIN entries.

Then, the entire data on the BD is deleted. Assuming U has chosen a PIN with four digits, the

probability that A successfully guesses the PIN after five attempts is 5/10.000 = 0.05%. This is

very unlikely, so that A does not obtain the PIN and therefore cannot generate any passwords

from a stolen BD. After five wrong attempts the PALPAS data on the BD is deleted so that A
cannot obtain it anymore.

6.4.2.2 Scenario 2

In the second attack scenario, we consider that A is able to circumvent the PIN protection after

some time and to extract psBD and skAuth,BD from the BD (cf. AC9). A might achieve this for

instance by a side-channel attack [64, 116, 188]. We show that PASCO’s revocation feature (cf.

Section 6.1.3) prevents A from obtaining the user’s PALPAS data and therefore cannot generate

his password portfolio.

A cannot decrypt the PALPAS secret psBD without the corresponding one-time-pad key otpBD

which is stored at P . Assuming that U revokes the BD before A is able to circumvent the

PIN protection, the public authentication key pkAuth,BD and otpBD are deleted from P . There-

fore, it is impossible for A to recover psBD because it is a one-time-pad encryption yielding

information-theoretic security [22, 163]. To this end, A cannot obtain the PALPAS data of U
and consequently cannot generate his password portfolio.

6.4 Security evaluation 135



6.5 Conclusion

In this chapter, we presented PASCO which creates backups of the PALPAS data with the follow-

ing three properties: First, backups do not have to be updated when users’ password portfolios

change. Second, backups can be revoked even without physical access in an information-

theoretical secure way. Third, backups provide a fully controllable emergency access. These

features address the key concerns of users regarding loss and inaccessibility of passwords

[160, 208]. Besides providing access to passwords in urgent or emergency situation, PASCO

backups can also be used to cover the event of death. By means of PASCO, users can make

sure that their spouse get access to their passwords in case of death. So far, it was practically

impossible for users to place backups of preserved passwords at secure locations and to keep

them up-to-date simultaneously.

The practicality of PASCO has been demonstrated by a realization with an off-the-shelf smart

card. A smart card can be easily deposited at secure locations such as a safe or a friend’s place

for recovery and emergency access purposes.

Apart from that, users can use a PASCO backup device as a secure mobile password genera-

tor. This is particularly a major advantage in the mobile environment. Storing the PALPAS

data on a PIN-protected smart card within its protected memory provides much more security

compared to security features available on mobile devices. The smart card that we used has a

contactless interface and thus it is capable to communicate with NFC-enabled mobile devices

(cf. [H17, H22]). Using the smart card as a password generator allows users to literally have

their passwords in their wallet. With the two properties of PASCO, update-tolerance and revo-

cability, users do not have to update the card when their password portfolio changes and they

are able to revoke the smart card in case of loss at any time.

PASCO is the third part of PAS. It solves the password recoverability and accessibility prob-

lem. Based on PALPAS and PASCO, PAS provides the first full-fledged solution for the password

preservation problem. PAS ensures the confidentiality, availability, recoverability, and accessi-

bility of preserved passwords. In the subsequent Chapter 7 we present the fourth and last part

of PAS. It provides automatic password changes and enables users to change their passwords

regularly. The update-tolerance of PASCO backups releases users from updating their backups

every time a password has been changed.

136 6 Update-tolerant and revocable password backup with emergency access



7 Automatic and autonomous
password change

In Chapter 3, it was shown that changing passwords is a burdensome task. Besides the num-

ber of passwords, users are challenged with different password interfaces and procedures for

password change implemented by services.

In this chapter, we present the fourth and last part of PAS. It solves the password change prob-

lem by enabling an automatic and autonomous password change. Users neither need to create

new passwords nor to log in to their accounts. PAS realizes this by making the password require-

ments, interfaces, and procedures of services available to password assistants, which perform

the password changes on behalf of users. We provide a conceptual description of our solution

in Section 7.1.

Then, we describe the four building blocks of our solution: First, Password Policy Descriptions

(PPD), a standardized description of password interfaces and procedures which can be pro-

cessed by password assistants (cf. Section 7.2). Second, a tool to easily create PPDs for services

that already exist on the Internet (cf. Section 7.3). Third, the distribution of PPDs to make them

available to password assistants (cf. Section 7.4). Fourth, strategies for password assistants to

autonomously change passwords (cf. Section 7.5).

We present an implementation of our solution in Section 7.6. We demonstrate the generation of

PPDs for popular services. Furthermore, we complement our solution by a password assistant

that makes use of PPDs and is capable of changing passwords automatically.

Moreover, we present easy-to-use passwords in Section 7.7, a further application of PAS. They

solve the problem of using passwords on a device that does not belong to a user. In this situation

entering passwords is inconvenient, error-prone, and dangerous because of malware. PAS sets a

temporarily easy-to-use password for an account and replaces it by an attack-resistant one after

the service usage on the other device automatically.

The contributions of this chapter were published as part of [H5]. This chapter extends the

published contributions by the strategies for autonomous password changes and the concept of

easy-to-use passwords.

137



7.1 Conceptual description

This section provides a conceptual description of our solution that solves the password change

problem. We expand password assistants with the ability to automatically and autonomously

change passwords. This enables assistants to perform the third password task of regularly chang-

ing passwords and immediately after a compromise of passwords is detected for users.

The entities involved in our solution are a user, a password assistant, a repository for Password

Policy Descriptions (PPD), and a service. The user has an account at the service and his account

password is preserved by his password assistant. The password assistant takes over the task

of password changes and releases the user from any actions. The repository provides the PPD

of the service. A PPD describes the service’s password implementation including its password

requirements, interfaces, and procedures. In particular, it specify how to change a password at

the service. The general application flow of the automatic and autonomous password changes

is illustrated in Figure 7.1 and briefly described in the following:

1. The password assistant uses the URL of the service to retrieve its PPD from the repository.

2. The password assistant generates a new password in accordance with the current password

requirements of the service, which are described in the policy.

3. The password assistant logs in to the user’s account at the service and changes the account

password. This is done through the service’s password interfaces and corresponding pro-

cedures described in the PPD. Finally, the password assistant preserves the new password.

4. The password assistant regularly changes the password with respect to the security level

of the password as well as immediately after it detects a compromise of user’s password.

_PPD_
Password 
assistant

PPD 
repository

Change

_password_

Service

_URL_

Figure 7.1: Data flow of the automatic password change procedure.

The fourth part of PAS that enables these automatic password changes consists of four building-

blocks which are presented in the following Section 7.2 to 7.5.

138 7 Automatic and autonomous password change



7.2 Uniform description of password policies

In Section 3.5, we saw that services have different password interfaces and procedures for the

usage of passwords at their websites. This makes it problematic for password assistants to

change passwords automatically.

In this section, we solve this problem by presenting a uniform description of password interfaces

and procedures. It allows to describe the different password implementations of services, e.g. for

changing a password, in a standardized format. Such descriptions enable password assistants

to automate password tasks. In the following, we introduce our uniform description language

and provide an example of a description.

Password Policy Markup Language

We introduce the Password Policy Markup Language (PPML) which enables the definition of

Password Policy Descriptions (PPD) for services. A PPD is a standardized description of the ser-

vice’s password implementation, including password requirements, interfaces, and procedures.

The objective of a PPD is twofold. First, it provides all information to enable password assistants

to automate the first and third password task (cf. Section 3.3.1 and 3.3.3). More precise, a PPD

facilitates password assistants to (1) generate a valid password, (2) log in to an account, (3)

change a password, and (4) reset a password on behalf of users. Second, if such an automa-

tion is not possible for a service (e.g. due to a CAPTCHA), a PPD provides all information to

assist users with performing the password tasks manually. Namely, a PPD provides the URLs

of the password interfaces so that password assistants can directly guide users to these inter-

faces. Therefore, users do not need to finding them on the service’s website by hand. As seen in

Section 3.5, finding the password interfaces of services is very inconvenient and challenging.

We conducted an analysis of password interfaces and procedures of 200 representative ser-

vices1 in order to develop a comprehensive and representative specification for PPDs. Based on

these results, we identified common patterns and created a universal description for password

interfaces and password procedures.

As illustrated in Figure 7.2, a PPD consists of three parts: First, the metadata which is used to

identify and manage PPDs properly. Second, the password requirements of the service and third

its password interfaces and procedures.

1 The Alexa Top 500 US list [8] reduced by websites with pornographic and illegal content, non-English websites,

and websites that do not have or allow the creation of online accounts (e.g. banking websites). The list of

services is available at [H26].

7.2 Uniform description of password policies 139



Password Policy Description

Metadata
Password 

requirements

Password 

interfaces and 

procedures

Figure 7.2: Structure of a PPD.

We encode PPDs in XML and provide a full XML Schema at [H26]. XML is well-specified and

supported by many programming languages, which enables an easy integration of PPDs into

password assistants. In practice, an XML-encoded PPD has a file size of a few kilobytes.

A PPD is represented by a XML element <ppd>. It has three attributes which form the metadata:

url, version, and ppmlVersion. The url specifies the URL of the service associated with the

PPD. The version number allows PAS to differentiate between versions of a PPD and to update

it if required. The ppmlVersion specifies the PPML version that was used to describe the PPD.

In the following, we describe the second and the third part of a PPD in detail. An example of a

PPD can be found in Listing 7.1 (Page 144).

Password requirements

A PPD allows to specify the same password requirements as a PRD (cf. Section 4.2). As PRDs

focus on password generation and PPDs on password management (in particular password

change), a PPD additionally supports to specify the expiration of passwords:

• Expiration: The <expires> element defines the number of days until a password expires

and should be updated. We leave it to password assistants to keep track of the dates and

to prompt users to change their passwords in time or do it autonomously.

Password interfaces and procedures

In addition to the password requirements, a <ppd> element contains a <service> element that

describes the password interfaces and procedures of a service. As depicted in Figure 7.3,

it provides information about the registration, login, password change, and password reset.

These password interfaces are represented by a <register>, <login>, <passwordChange>, and

<passwordReset> element, respectively.

140 7 Automatic and autonomous password change



Registration

Procedures

Login

Password interfaces and procedures

Retry counter

Location

Procedures

Password change

Retry counter

Location

Procedures

Password reset

Retry counter

LocationLocation

Figure 7.3: Structure of the password interfaces and procedures definition.

All elements contain a <location> element which is described in the following:

• Password interface location: The <location> element contains the URL of the HTML form

for the registration, login, password change, and password reset at the service’s website.

This information is intended to directly guide users to these password interfaces, i.e. HTML

forms, to access them manually. The information for accessing these interfaces automati-

cally is part of the <procedures> element (see below).

In addition, the <login>, <passwordChange>, and <passwordReset> elements contain a

<retryCounter> and <procedures> element which are described in the following:

• Retry counter for passwords: The <retryCounter> element specifies the number of at-

tempts to enter passwords. In case of the login it defines the number of possible login

attempts. For password changes it defines how often users can enter an incorrect old pass-

word and for password resets how often users can answer security questions (or enter

recovery information) before an account gets disabled.

• Password procedures: The <procedures> element describes the password procedure for the

login, password change, and password reset of a service. A procedure is a set of instructions

telling password assistants what actions need to be performed and how the execution of

these actions can be verified. For example, a login procedure describes how to log in to

an account and how to verify that the login was successful. We provide more technical

information about procedures in the following.

7.2 Uniform description of password policies 141



Procedures

Due to the different technologies that services use for their password interfaces, we an-

notate the procedures with an additional technology type. We define four types: HTTP,

HTML, JavaScript, and Extended JavaScript. Password procedures are represented by the

elements <*LoginRoutine>, <*PasswordChangeRoutine>, and <*PasswordResetRoutine> ele-

ment where ‘*’ indicates the type (http, html, js, or extentedJS, e.g. <httpLoginRoutine>).

The basis for all these procedures are HTTP POST and GET commands [81] which are used

to interact with the service’s password interfaces and to perform a login, password change, or

password reset. A POST or GET command is defined by a <post> or <get> element, respectively.

Both contain an <url> element which defines the target URL of the command. Furthermore,

both include an <assert> element which is used to define a list of assertions that need to be

verified in order to check whether the POST or GET command was performed successfully or

not. We provide more information about assertions later. The <post> element additionally

contains a list of <data> elements representing the data which is sent to a service within the

POST command (e.g. the username and password within a login procedure). In the following,

we describe the four technology types in detail:

• HTTP: A HTTP-based procedure contains a list of <post> and <get> elements. Such a

procedure is used if the password interfaces of a service can be accessed by using plain

HTTP GET or POST commands.

• HTML: A HTML-based procedure extends the HTTP procedure by a <form> element. The

element consists of a list of <selector> elements which define identifiers to select HTML

input fields and enter values in an HTML form. An HTML-based procedure must be used

when HTML forms contain hidden input fields with random values like a session identifier.

• JavaScript: A JavaScript-based procedure provides the same functionality as an HTML

procedure. The elements of the type js only indicate that the password assistant processing

the PPD needs to support JavaScript in order to access the password interfaces of the

service. This is necessary when services use JavaScript to manipulate the input of an

HTML form before submitting it. For instance, services hash the password by JavaScript

on the client-side before submitting it.

• Extended JavaScript: This type extends the HTTP procedure and additionally defines a

<javascript> element which contains plain JavaScript code. In case that the aforemen-

tioned types are not applicable, developers can use this type to implement the procedure

using the complete functionality of JavaScript. A password assistant needs to browse the

password interface and execute the JavaScript in order to perform the procedure.

142 7 Automatic and autonomous password change



Listing 7.1 shows an example for an HTML-based login and password change procedure. The

<htmlPasswordChangeRoutine> has an attribute login which refers to the login procedure.

This allows to reuse procedures and makes the creation of PPDs easier and more efficient.

Assertions

It is essential that PAS can verify the correct execution of a procedure, e.g., verify that a login was

successful. Therefore, a procedure contains one or more assertions which a password assistant

needs to verify. PPML defines the following types of assertions:

• Existence of a cookie: A certain cookie is set after performing the procedure.

• Non-existence of a cookie: A certain cookie is not set after performing the procedure.

• Content: The service responses with a certain message, e.g. “the password is wrong”.

• Location: The response from the service redirects to a certain URL.

The procedures of PPML are a powerful framework to describe password interfaces and proce-

dures of services. They are highly flexible and support the wide range of different technologies

and methods of password implementations used by services.

Application

A PPD covers all situations of password usage at a service, namely registration, login, password

change, and password reset. It facilities a comprehensive assistance in creating and manag-

ing passwords. The information about the login simplifies the daily usage of passwords. It

also improves the security of automatic logins, because password assistants do not need to use

heuristics to find the login forms, which are vulnerable to phishing attacks [207]. The informa-

tion about the password change facilitates an automatic password change. Apart from that, also

the details about the registration and password reset improves the ease of use of passwords.

Finding the registration form of services is challenging. Often users need to click first on Sign

in and then on buttons like Create account. Using a password assistant, users simply select the

service in the assistant, e.g by entering its URL. The password assistant opens the registration

form and also directly generates an optimal password for the account.

The information about the password reset are useful in various situations. First, it can be used

for password changes if the actual password change procedure cannot be realized for a service.

Second, it can be used to cope with a compromised account when the attacker already changed

the password and the user cannot access his account anymore.

7.2 Uniform description of password policies 143



<ppd url="https://www.example.com" version="1.0" ppmlVersion="1.0">

<characterSets >

<characterSet name="Letters">

<characters >abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ </characters >

</characterSet >

<characterSet name="Numbers">

<characters >0123456789</characters >

</characterSet >

</characterSets >

<properties >

<characterSettings >

<characterSet name="Letters" />

<characterSet name="Numbers" />

</characterSettings >

<minLength >10</minLength >

<maxLength >20</maxLength >

</properties >

<service>

<register >

<location >https://www.example.com/register </location >

</register >

<login>

<location >http://www.example.com/login</location >

<retryCounter >3</retryCounter >

<procedures >

<htmlLoginRoutine >

<get>

<url>https://www.example.com/login/</url>

<assert>

<url><prefix>https://www.example.com/login/</prefix></url>

</assert>

</get>

<form>

<selector >

#main form[action^="https://www.example.com/login/"]

</selector >

<element>

<selector >#username </selector ><value >{{username}}</value>

</element>

<element>

<selector >#password </selector ><value >{{password}}</value>

</element>

<assert>

<select><selector >#userMenu </selector ></select>

144 7 Automatic and autonomous password change



</assert>

</form>

</htmlLoginRoutine >

</procedures >

</login>

<passwordChange >

<procedures >

<htmlPasswordChangeRoutine login="htmlLoginRoutine">

<get>

<url>https://www.example.com/account/</url>

<assert>

<url><prefix>https://www.example.com/account/</prefix></url>

</assert>

</get>

<form>

<selector >

#main form[action^="https://www.example.com/account/"]

</selector >

<element>

<selector >#password </selector >

<value >{{password}}</value>

</element>

<element>

<selector >#newPassword </selector >

<value >{{newPassword}}</value>

</element>

<element>

<selector >#confirmNewPassword </selector >

<value >{{newPassword}}</value>

</element>

<assert>

<select><selector >div.success </selector ></select>

</assert>

</form>

</htmlPasswordChangeRoutine >

</procedures >

</passwordChange >

<passwordReset >

<location >https://www.example.com/account/recovery </location >

</passwordReset >

</service>

</ppd>

Listing 7.1: PPD for a fictitious service using HTML procedures.

7.2 Uniform description of password policies 145



7.3 Tool-based creation of password policy descriptions

In the previous section, we introduced PPDs to describe the wide diversity of password interfaces

and procedures at services in a uniform way. To enable password assistants to use PPDs in

practice, the PPDs for existing services are required. However, manually creating the PPDs for

services is inconvenient.

In this section, we solve this problem. We present the Password Policy Description Recorder

(PPDR), an application that records password interfaces and procedures of a service and creates

the corresponding PPD automatically. The PPDR makes the creation of PPDs as easy as possible

and is particularly designed for non-technical users. Users just need to perform a password pro-

cedure, e.g. changing an account password, in a web browser to create PPDs. In the following,

we explain the creation of PPDs using the PPDR in detail.

The PPDR is realized as a browser extension. It guides users through the PPD generation process

and records their interactions with a service’s website. The general creation process of a PPD

describing the password change procedure consists of six steps (cf. Figure 7.4).

Go to
login form

Select
input fields

Change 
password

Go to 
password 

change form

Select 
input fields

Log in

Figure 7.4: Execution steps of the PPD generation procedure.

The PPDR shows messages to users with detailed instructions for each step. Users need to

confirm each step by pressing a button. In the following, we describe the six steps which users

need to perform:

1. Browse to the login form at the service’s website.

2. Mark the username and password input field of the login form.

3. Enter username and password and log in to the account.

4. Browse to the password change form of the service.

146 7 Automatic and autonomous password change



5. Mark the input fields (old, new, confirm password) of the password change form.

6. Enter the old/new/confirm password and change the password of the account.

The PPDR records all links and input fields that are clicked and selected by a user while per-

forming these steps. Based on this information the PPDR creates the PPD. In the following, we

provide further technical details about the PPDR.

PPDR

User interface

Collector
PPD 

generator

UserService

Figure 7.5: Architecture of the PPDR application.

As depicted in Figure 7.5, the PPDR consists of three main components.

• User interface: It shows the instructions to the user and controls the progression of the

steps. Moreover, it automatically selects the input fields of the login and password change

form. This simplifies Step 2 and 5 so that the user only needs to verify the selection and

the PPD generation becomes even more convenient. The selection is done by highlighting

the input fields with different colors. Incorrect selection can be corrected by the user.

• Collector: It records the user interactions with the website. In case the user clicks on a

link or selects an input field, the collector tries to determine the HTML id attribute of the

link/field. This provides the information for the procedures defined in the PPD.

• PPD generator: It generates the PPD of the service based on the information provided by

the collector. The password procedure is generated as an extended JavaScript procedure

(e.g. <extenedJSPasswordChangeRoutine>, cf. Section 7.2). After the generation, the PPD

generator delivers the PPD to the user.

In Section 7.6.1, we present the generation of PPDs of popular services using our PPDR.

7.3 Tool-based creation of password policy descriptions 147



7.4 Distribution of password policy descriptions

To use PPDs in practice, they must be available to password assistants. This can be realized

using the same two approaches that we already developed for PRDs (cf. Section 4.4). First, a

central service that distributes PPDs. Second, an alternative decentralized approach in which

services themselves provide their PPDs to password assistants.

7.4.1 Service-independent centralized solution

In order to distribute PPDs, we realized the Password Policy Description Distribution Service

(PPDDS), which is available at [H26]. Its implementation is based on the PRDDS that we

introduced in Section 4.4.1.

Like the PRDDS, the PPDDS allows users to submit PPDs of unknown services. Thus, PPDs must

be created only once and can be made available through the PPDDS to all Internet users. To

prevent an attacker from adding manipulated PPDs, a submitted PPD is manually evaluated and

automatically verified by four sanity checks. One attack for instance is changing the URL of the

login procedure so that usernames and passwords are send to the attacker’s server.

The first sanity check verifies the password requirements stated in the PPD. This is done in the

same way as described in Section 4.4.1. The second check verifies that the URLs for the pass-

word interfaces and procedures stated in the <service> element fit to the URL of the service

associated with the PPD (the url attribute in the <ppd> element). This mitigates the risk of

URLs pointing to other servers. The third sanity check verifies the URLs against the Google Safe

Browsing service [99]. This detects URLs pointing to malware or phishing websites. In the last

sanity check the TLS certificates used by the servers available under the URLs are evaluated.

They must be the same. This detects an attacker that has control of a subdomain of the service.

For instance, the actual service is available at https://example.org and the attacker is in con-

trol of https://attacker.example.org. A prominent example for this case are blogs hosted by

WordPress. The PPDDS also checks the validity of the certificates as well as their trustworthiness

by using the ICSI Certificate Notary service [125].

The PPDDS also provides a history and change log of each PPD. Erroneous PPDs can be reported

by users through a feedback system.

148 7 Automatic and autonomous password change

https://example.org
https://attacker.example.org


7.4.2 Privacy-preserving decentralized solution

Such as for PRDs, we propose to use the well-known location scheme [171] to make the PPD

of a service available to password assistants. The PPD of a service is then available at the URL

https://www.example.org/.well-known/ppd.xml. As discussed in Section 4.4.2, this avoids

the privacy and trust issue comparison to the centralized solution.

However, such a decentralized distribution relies on the cooperation of services and would entail

a presumably long transition time. This gap is bridged by our PPDDS. In practice, password

assistants should first try to receive a PPD directly from a service. If unavailable, password

assistants should try to fetch the PPD from the PPDDS.

7.5 Strategies for autonomous password changes

To achieve the goal of complete automation, strategies for autonomous password change are

required. Password changes are necessary on a regular basis and immediately after password

compromise. We present two password change strategies to realize this.

First, we present a proactive strategy for autonomous password changes in Section 7.5.1. It

tackles undetected password breaches at services. More precise, an attacker has stolen the pass-

word database from a service unnoticed and tries to obtain the passwords through an offline

attack. Second, we describe in Section 7.5.2 a reactive strategy that changes passwords imme-

diately after password compromise . It addresses detected password breaches at services and

unauthorized access to user accounts.

7.5.1 Proactive password change strategy

Password breaches are often not immediately detected by services themselves or just not made

public. Users often only become aware of password breaches after the stolen passwords are

put up for sale on the black market. To invalidate stolen passwords before an attacker can

compromise, i.e. successfully guess, and exploit them, we present a proactive password change

strategy. It regularly changes a password after a certain time interval. In the following, we

describe two solutions to select appropriate intervals for password changes.

7.5 Strategies for autonomous password changes 149

https://www.example.org/.well-known/ppd.xml


7.5.1.1 Time intervals based on password security

The time that an attacker needs to guess a stolen (salted and hashed) password by an offline

attack depends on two factors: First, the attacker’s guessing power, i.e. how fast he can guess

passwords. Second, the security level of the password. We select the time interval to change a

password depending how long it withstands an offline brute-force attack. In this way, a pass-

word is changed before an attacker can guess it. Note that a fixed time interval for all passwords,

e.g. 90 days as proposed in the literature [58, 190], is not suitable. As we have shown in Sec-

tion 3.4.2, the various password requirements of services lead to different security levels of

passwords. Therefore, some passwords must be changed more frequently than others.

We calculate the days how long a password withstands an attack by T = Smax/G · I , where Smax

is the maximum security level of the service’s password requirements, G is the current guessing

power of the attacker, and I the rate of increase of the attacker’s guessing power, e.g. due to

faster hardware. As described in Section 3.4.2.2, Smax is calculated by Lmax · log2(C), where

Lmax is the maximum password length and C is the cardinality of the character set allowed by

the service. Both information is obtained by the PPD of the service.

In the following, we describe the selection of proper values for the attacker’s guessing speed and

guessing improvement. Then, we demonstrate our metric in practice and determine the time

intervals for password changes.

Determining the attacker’s guessing power

Best practice for offline attacks is guessing passwords in parallel on multiple graphic cards [111].

By doubling the number of graphic cards, an attacker can double his guessing power and thus

halve the time to guess a password. Consequently, the overall attacker’s guessing power depends

on how many graphic cards an attacker can afford.

The number of password guesses that are possible with a current graphic card can be obtained

from benchmarks (cf. [101]). For instance, using a graphic card for approximately 1.000$ an

attacker can perform approximately 1015 SHA-1 guesses per day. Note that we consider that

services use SHA-1 to hash passwords (cf. Section 3.1). This guessing power allows him to

guess passwords consisting of letters and numbers with a length of 9 characters within two

weeks. However, an attacker with a budget of 1.000.000$ can afford 1000 graphic cards and

thus would be able to guess such passwords in 3 hours.

150 7 Automatic and autonomous password change



We consider two attackers. First, a basic attacker with a budget of 10.000$ and consequently

a guessing power of G = 1016 hashes per day. Second, a powerful attacker with a budget of

1.000.000$ and a guessing power of G = 1018.

Determining the attacker’s increase of guessing power

We use Moore’s law to approximate the rate of increase of the attacker’s guessing power [44].

Consequently, the guessing power doubles every 18 months and the improvement factor is I =

2(12/18) ≈ 1.5 per year. To verify the applicability of Moore’s law for our metric, we compared

its predictions with real benchmarks [101] of the last 2.5 years. It turns out that it is indeed

a suitable approximation for the attacker’s improvement regarding offline brute-force attacks.

The results are illustrated in Figure 7.6 in a simplified form. The blue line shows the guessing

power according to the benchmarks and the red line the estimated increase using Moore’s law.

05/2015 06/2016 04/2017

0.6

0.8

1

·1015

SH
A

-1
ha

sh
es

pe
r

da
y

Figure 7.6: Estimation of the attacker’s increase of guessing power.

Time intervals in practice

Based on our metric, we calculate time intervals for exemplary PPDs. Table 7.1 provides the

time intervals for passwords consisting of letters and numbers with different lengths.

Password length Days (basic attacker) Days (powerful attacker)

< 9 < 1 < 1

9 1 < 1

10 96 8

11 5963 501

> 11 > 105 > 104

Table 7.1: Time intervals for proactive password changes.

7.5 Strategies for autonomous password changes 151



The results show that passwords with 9 or less characters should be changed every day. With

regard to the results of our password requirements survey presented in Section 3.4, this would

apply for approximately 450 services. Passwords with 10 characters should be changed every

week or every three months depending on the attacker’s guessing power. This applies for ap-

proximately 1000 services in our survey. Finally, for passwords with 11 or more characters a

password change every year is sufficient.

Password changes on a daily basis are feasible as we can assume that users turn on at least

one of their devices each day so that a password assistant can change passwords. While more

frequent password changes are technically possible, this might raise usability issues when users

get logged out after a password change or services consider this as suspicious account activity.

Password changes on a yearly basis for passwords with more than 12 characters are not nec-

essary from a mathematical point of view. Nevertheless, as we described in Section 3.2.1, it is

reasonable to regularly change them due to the following reasons:

• Hash functions used for password storage might become insecure.

• The secure channel between users and services might become insecure.

• Passwords might be compromised by other attacks (e.g. phishing) in which the security

level of passwords is irrelevant.

Against this background, passwords with more than 12 characters like attack-resistant pass-

words would be changed every year. And, of course, immediately in case of password breaches

and suspicious account activity. Our solution can do this automatically for users without de-

manding any efforts or interactions by them.

7.5.1.2 Time intervals based on user preferences and service conditions

Another solution is to let users select the time interval of password changes. We suggest to

allows users to configure the time interval in two ways:

• Easy mode: Password change on a daily, weekly, monthly, and yearly basis.

• Expert mode: Password change on an arbitrary time interval.

This allows users to keep in control of password changes and it considers users’ personal at-

titudes. Examples include the users’ trust in services, the account value, and the attitude to

security. Moreover, it enables users to cope with services requiring regular password changes.

152 7 Automatic and autonomous password change



7.5.2 Reactive password change strategy

It is essential to immediately change passwords when accounts are compromised. This is the

objective of the reactive password change strategy. We present two solutions to enable password

assistants to detect compromised accounts of their users. First, we present in Section 7.5.2.1 a

central notification service where password assistants receive reports about password breaches.

Second, we describe in Section 7.5.2.2 a decentralized approach in which the users’ password

assistants themselves monitor accounts to detect compromise. In case compromised accounts

are detected, password assistants automatically and autonomously change the passwords of the

affected accounts.

7.5.2.1 Notification service

We introduce the Password Breach Notification Service (PBNS), a central service that maintains

a list of password breaches. Password assistants observe this list to get notified about password

breaches at services. In case an account of a user is affected by a breach, the user’s password

assistant automatically and autonomously performs a password change. Such a password as-

sistant running on a user’s mobile device can watch for password breaches around the clock.

The necessary information to perform the password change are provided by PPDs which can be

retrieved from the PPDDS. The entire setting and general data flow is depicted in Figure 7.7.

_PPDs_
Password 
assistant

PPDDSPBNS
List of 

_password_ 

breaches

Figure 7.7: Data flow of the password breach notifications.

List of password breaches

For each password breach the list contains three information. First, the URL of the affected

service. Second, the date on which the password breach has happened, encoded according to

ISO 8601 [126]. Third, a link to a detailed description of the breach provided by the PBNS.

Listing 7.2 provides an example. The list contains password breaches of three real Internet

services happened in May 2017. Based on the information about breached available at [122,

159], the entire list would currently contain approximately 250 services.

7.5 Strategies for autonomous password changes 153



<services >

<service>

<url>http://www.dafont.com</url>

<date>2017-05-18</date>

<description >

https://pbns.passwordassistance.info/2017/05/18/dafont

</description >

</service>

<service>

<url>https://www.zomato.com</url>

<date>2017-05-17</date>

<description >

https://pbns.passwordassistance.info/2017/05/17/zomato

</description >

</service>

<service>

<url>http://bell.ca</url>

<date>2017-05-15</date>

<description >

https://pbns.passwordassistance.info/2017/05/15/bell

</description >

</service>

</services >

Listing 7.2: Password breach list.

While requesting the list from the PBNS, a password assistant can specify a time interval. The

list returned by the PBNS then only contains password breaches that happened within this time

interval. This keeps password assistants informed about password breaches in an efficient way.

Instead of always downloading the entire list, password assistants can only request a sublist of

recent breaches that happened after the last request. This significantly reduces network load

and processing time. The implementation of the PBNS is future work.

Detecting password breaches

In practice, reports about password breaches are mainly received from the media. The operator

of the PBNS observes prominent news portals for such reports. In addition to this, the PBNS

provides a reporting system. It allows users to inform the PBNS about password breaches. The

operator of the PBNS verifies such reports and if necessary announce a password breach through

the notification list.

154 7 Automatic and autonomous password change



Besides users, the reporting system is also used by our account monitor, that we present in the

next section, to automatically report account compromise. This facilitates an early alert system

that detects password breaches long before news reports or stolen passwords are put up for sale

on the black market.

While other approaches (e.g. [122, 144]) request users to register their usernames, our solution

protects the users’ privacy. The PBNS does not know the services for which users have accounts.

In our solution, the monitoring is done by the users’ password assistants which know the ser-

vices/usernames anyway. Moreover, our solution directly notifies the password assistants, thus,

passwords are changed immediately. Other approaches (e.g. [122, 144, 157]) inform users.

Consequently, valuable time is lost before passwords are changed. A typical situation is when

users are on holiday.

7.5.2.2 Account login monitor

To detect compromised accounts of individual users, we present the Account Login Monitor

(ALM). It monitors the logins of online accounts. In the event of a login, the ALM checks if the

login was done by the user. If not, the ALM triggers a password change to invalidate the former

account password immediately.

The ALM is capable of recognizing a targeted attack against a single user. Such attacks as well

as attacks against a small number of users often are not become public and therefore not listed

by the PBNS. In general, the ALM further reduces the time span between account compromise

and password change.

Password assistant

Password 

changer

PBNS

connector

Service

ALM PBNS

PPD

repository
PPDDS

Core

Figure 7.8: Architecture of a password assistant with ALM.

7.5 Strategies for autonomous password changes 155



The ALM is directly integrated into a password assistant. A conceptual architecture of such

a password assistant is depicted in Figure 7.8. It consists of five main components which we

briefly describe in the following:

• Core: It manages the components and in particular keeps records of password changes.

• Account Login Monitor: It monitors the logins of the user’s account at the service. In case

an unauthorized login is detected, the ALM triggers a password change. We describe two

solutions to realize the detection of unauthorized logins later in this section.

• Password changer: It changes passwords of accounts. A password change is triggered by

the ALM. The password changer obtains the necessary information to change passwords,

including services’ password requirements, interfaces, and procedures, from PPDs.

• PBNS connector: It implements the notification and reporting feature of the PBNS. In case

the ALM detects a compromised account, the PBNS connector sends the URL of the affected

service to the PBNS. As described in Section 7.5.2.1, this information is used to rapidly

detect password breaches. In addition, the PBNS connector periodically receives the list of

recent password breaches from the PBNS and checks if an account of the user is affected.

In such a case, the PBNS connector triggers the password changer.

• PPD repository: It manages the PPDs of the services for which the user has accounts. In

case the user adds an account, the repository requests the corresponding PPD of the service

from the PPDDS (cf. Section 7.4). The repository also checks for updates.

Detecting unauthorized logins

We describe two general solutions to realize the ALM and detect unauthorized logins.

The first realization of the ALM makes use of account activity logs such as the last login field.

It states the date and time of the last login. The ALM logs in to an account and memorizes the

point in time. After a random period of time, it logs in again and checks the last login field. If

a login was perform in the meanwhile, the ALM contacts the core component of the password

assistant (cf. Figure 7.8) and checks if the user recently performed a login. If not, someone else

obviously accessed the account and the ALM triggers a password change.

The second realization of the ALM makes use of login notifications send by services via email.

Many popular services such as Google allow users to activate such notifications. The ALM

monitors the user’s mailbox to detect login notification. When a login notification arrives, the

ALM contacts the core component of the password assistant and checks if the user recently

performed a login. If not, it triggers a password change.

156 7 Automatic and autonomous password change



In case of PALPAS (cf. Chapter 5) it is possible to make such login information available to all

user devices. The PALPAS server stores an additional time stamp for each account data object

which indicates the last access. In case the ALM receives a login notification, it computes the

related account data identifier (cf. Section 5.1.3) and requests the time stamp. Based on the

time stamp it decides whether the user recently logged in to the account. In case of a login

from another device, the PALPAS client of that device would have requested the corresponding

account data in order to generate the account password. Therefore, the time stamp could not

be older than a few minutes.

It depends on the service if the ALM can be realized by means of last login fields or email

notifications. To cope with the different implementations of the notification mails, locations

of last login fields,or other types of realizing a detection of unauthorized logins, a uniform

description is required. This can be provided by the next version of PPML (cf. Section 7.2). The

implementation of the ALM is also future work.

7.6 Implementation and practical evaluation

In this section, we present an implementation and practical evaluation of our solution. We

demonstrate that our concept of automatically changing passwords is applicable in practice.

We start in Section 7.6.1 by an evaluation of our PPDR and show that it can be used to generate

PPDs for existing services. Then, we present a password assistant in Section 7.6.2 that makes

use of PPDs and thus is capable of automatically changing passwords for users.

7.6.1 Creation of password policy descriptions

We used our PPDR to create PPDs of 25 popular services selected from the Alexa Top 100 list

[7]. For 21 services the PPDR was able to create PPDs. Table 7.2 provides an excerpt of these

services and shows which technology types of procedures are supported by them.

In case of the other 4 services the PPD creation using the PPDR failed because of two reasons:

First, the login form of the service is embedded in an iFrame. Second, the id attributes of input

fields are not static so that the PPDR was unable to determine proper selectors for the fields for

the procedures. For such services, the PPDs must be created manually.

7.6 Implementation and practical evaluation 157



Service Procedure type

Amazon HTML

Dropbox ExtJS

eBay HTML

Facebook ExtJS

Google HTML

LinkedIn HTML

Netflix HTML

Paypal ExtJS

Twitter HTML

Wikipedia JS

Table 7.2: Created PPDs.

7.6.2 Usage of password policy descriptions in password assistants

In this section, we present the Automatic Password Changer (APACHA). It is a password assistant

that solves the password change problem. APACHA can process PPDs and is thereby capable of

automatically changing passwords on behalf of users. A password change can be triggered

by users as well as by proactive strategy as described in Section 7.5. APACHA does not store

passwords on user devices. It implements the PALPAS scheme that we presented in Chapter 5.

The architecture of APACHA is depicted in Figure 7.9. It consists of seven main components

which we briefly describe in the following.

• Core: It manages APACHA and in particular keeps track of regular password changes.

• User interface: It provides a graphical user interface for the user. The interface provides

a list of all online accounts that are managed by APACHA as well as a form to add new

accounts to APACHA. Each account in the list has a button that triggers the password

change and a button to configure the proactive password change strategy of the account.

• Storage: It stores necessary data on the user device such as the PALPAS secret as well as

secret authentication key and certificate for the PLS. The storage is protected by a user-

chosen master password.

• PPD repository: It manages the PPDs of the services for which the user has an account. In

case the user adds an account to APACHA, the repository requests the PPD of the service

from the PPDDS (cf. Section 7.4). The repository also checks for updates.

158 7 Automatic and autonomous password change



• PLS connector: It establishes the communication to the PLS and performs the authentica-

tion. It obtains the secret authentication key and certificate for the authentication from the

storage component. The PLS connector is also used to retrieve the account data, authenti-

cation tokens, and one-time-pad keys from the PLS.

• PALPAS password generator. It implements the PALPAS password generation procedure. For

the login at a service, it retrieves the corresponding account data from the PLS (through the

PLS connector). In case of a password change, it generates a new salt and corresponding

password and updates the account data at the PLS.

• Password changer: It takes as input the PPD of a service and executes the password change

procedure defined in the PPD. For the login at the service, the password changer obtains

the current password from the PALPAS password generator. It also triggers the password

generator to generate a new password for the password change. After performing and

verifying a password change it informs the PLC connector to update the salt at the PLS so

that the new password is available to other devices.

APACHA

User 

interface

Password

changer

PALPAS

password

generator

UserService

Storage

PPD 

repository
PPDDS

PLS

Core

PLS 

connector

Figure 7.9: Architecture of the APACHA client.

We implemented APACHA in Java. The password changer uses the Web Engine of JavaFX to

interact with the services’ password interfaces. This enables APACHA to support all types of

procedures (HTTP, HTML, JavaScript, and Extended JavaScript, cf. Section 7.2). The implemen-

tation is available at [H26].

7.6 Implementation and practical evaluation 159



Solving the migration problem

Besides the password change problem, APACHA also solves the problem of migrating from weak

to secure passwords. When users decide to establish secure passwords they often already have a

lot of accounts. This is a major obstacle because it is very time-consuming to manually replace all

passwords by attack-resistant ones. APACHA does this for users automatically. Users only need

to provide the username and the password of an account as well as the URL of the corresponding

service. APACHA obtains the PPD of the service, automatically logs in to the account, and

replaces the weak password by an attack-resistant one. This allows users to easily eliminate

their weak passwords and establish secure passwords for their accounts.

7.7 Easy-to-use passwords

In this section, we describe the concept of easy-to-use passwords. It makes the usage of pass-

words on devices that does not belong to users as easy and safe as possible. Easy-to-use pass-

words can be realized by password assistants like APACHA (cf. Section 7.6.2).

Today, users access their accounts mainly from their own devices. In particular, smartphones

allow this everywhere and anytime. However, there are still situations in which users need to

access their accounts from devices that do not belong to them. For instance, a user wants to

access his video streaming account from a friend’s computer or his cloud storage account to print

out some documents. Another example includes accessing accounts from public computers at

airports to safe the battery of one’s smartphone. These situations pose two issues:

• Manually entering passwords on another device is very inconvenient and error-prone.

Brute-force-resistant passwords are very long and might contain ambiguous characters

which lead to typographical errors.

• There is the risk of malware on the other device so that an attacker obtains the users’

passwords and gets access to their accounts.

Based on PAS’ feature of automatic password changes these issues can be solved. A PPD-enabled

password assistant can temporarily replace the account password by an easy-to-use password.

Such a password is short and less complex so that it can be easily entered on another device

where a user wants to access his account. After service usage, the password assistant automati-

cally changes the password in order to invalidate a possibly compromised password and replaces

it by an attack-resistant one. The password assistant can obtain the necessary information to

generate a valid easy-to-use and attack-resistant password from the service’s PPD.

160 7 Automatic and autonomous password change



In the following, we describe the application flow of easy-to-use passwords (cf. Figure 7.10).

A user (U) who has a user device (UD), e.g. his smartphone, with a PPD-enabled password

assistant. To simplify the description, we consider the UD and the password assistant as a single

entity and just use the term UD in the following explanation. U wants to access his account at

a service (S) from another device (D). Instead of entering his current attack-resistant password

at the D, he makes use of easy-to-use passwords provides by PAS.

1. U selects the S on the UD.

2. The UD generates an easy-to-use password. It logs in to the user’s account and replaces

the current account password by the easy-to-use password.

3. The UD provides the username and the easy-to-use password to U.

4. U now enters his username and the easy-to-use password on the D.

5. The D logs in to the user’s account at S using the username and the easy-to-use password.

U can now access his account on the D.

6. When U finishes the service usage on the D, he selects S on the UD again.

7. The UD generates a new attack-resistant password. It logs in to the user’s account again

and changes the account password. The easy-to-use password is now invalid and the D or

a possible attacker cannot access the user’s account anymore.

UDU

_Select service_

D S

Change password

to easy-to-use 

password
_Username, password_

_Username, password_

_Username, password_

_Select service_
Change password

_to brute-force-resistant_

password

_Service usage_

Figure 7.10: Data flow of easy-to-use passwords.

7.7 Easy-to-use passwords 161



Easy-to-use passwords has many benefits. From the usability perspective, it meets the users’

preference of a portable password assistant using a mobile device [131]. It also does not require

users to install any software (e.g. a password manager/assistant) on the other device, which is

often not possible at all, e.g. in case of public computers at airports.

From the security perspective, users only need to enter the password of the account that they

want to access on the other device and not a master password of a password manager or creden-

tials for an online password manager. To this end, there is only the risk that an attacker obtains

the account password and not the entire password portfolio of a user. But, with easy-to-use

passwords this password becomes immediately invalid after service usage as it is changed by

the password assistant.

An attacker might change the account password to keep access to the user’s account, but also

this attack is immediately detected when the password assistant changes the password at the

end of the service usage. Finally, easy-to-use passwords are completely transparent to services so

it works with all services for which automatic password changes based on PPDs are possible.

7.8 Conclusion

In this chapter, we solved the password change problem. PAS enables password assistants to

automatically and autonomously change password on a regular basis and immediately after

password compromise. Existing approaches are limited to popular services and certain platforms

and browsers. PPDs are the first universal solution to realize an automation of password changes

at arbitrary services. They are independent from platforms and programming languages. This

facilitates an easy integration of PPDs into password assistants running on different platforms

and devices. Furthermore, PPDs can be easily extended to support new technologies. Using

the PPDR, also the generation of PPDs is very simple and can be done by users themselves. By

making the PPDs available through the PPDDS, they must be created only once and can be made

available to all Internet users and their password assistants.

Moreover, existing approaches only simplify password changes, but left the responsibility to

actually perform password changes to users. PAS solves this by two sophisticated password

change strategies that facilitates automatic password changes in an intelligent way. Passwords

are changed on a regular basis with respect to the security level of passwords as well as immedi-

ately after PAS detects a compromise of users’ passwords. This minimizes the time period for an

attacker to exploit stolen passwords. In this way, PAS significantly improvements the password

security of Internet users while requiring no interactions and efforts by users at all.

162 7 Automatic and autonomous password change



The practicality of our solution and its capability to solve the password change problem have

been demonstrated. We generated PPDs for existing services by using our PPDR. Moreover, we

developed APACHA which makes use of PPDs and demonstrates that a PPD provides all neces-

sary information to automatically change passwords of online accounts at real services. APACHA

is designed as a stand-alone application. But, many users already use password managers and

might not be willing to switch to APACHA, even if their current password manager does not

support automatic password changes. To solve this problem, APACHA can act as a simple pass-

word changer in the background while users continue to use their current password manager.

Many password managers support extensions or have APIs that allow to access the passwords

that they manage. This enables an integration of APACHA into such applications. In this way,

users benefit from automatic and autonomous password changes realized by APACHA and can

continue to use their current password manager. Of course, other applications can also directly

use the individual components of PAS such as PPDs and their retrieval from the PPDDS.

Easy-to-use passwords are an additional example for the strength of PAS. Besides making pass-

words easier to use, easy-to-use passwords allow to maintain secure passwords even when users

use their passwords on other devices, where they have no control of the platform and device se-

curity. Like all components of PAS are entirely realized on the user-side, easy-to-use passwords

are widely applicable in practice because they are transparent to services.

In this chapter, we presented the fourth and last part of PAS. It fully automates the third pass-

word task of changing passwords. In Chapter 4 we described the first part which fully automates

the first password task of generating passwords. In Chapter 5 and 6 we presented the second

and third part of PAS which perform the second password task of preserving passwords. PAS

as a whole thereby provides the first ubiquitous solution that performs all password tasks. It

solves all password problems and addresses all conditions, concerns, and needs of users. In this

way, PAS enables users to practically use secure passwords for their online accounts at Internet

services for the first time.

7.8 Conclusion 163





8 Conclusion
In this thesis, we presented the Password Assistance System (PAS). It enables users to realize se-

cure passwords for their accounts at services on the Internet. We presented the various security

requirements, service conditions, and usage requirements of secure passwords. Moreover, we

described the complex and extensive password tasks of users to achieve secure passwords for

their accounts. The three tasks are generating, preserving, and changing passwords. Manually

performing these tasks is practically impossible for users.

PAS performs the first password task of generating attack-resistant, individual, and valid pass-

words for users automatically. We showed that attack-resistant and individual passwords are

essential because services are compromised in practice and users can only expect a basic protec-

tion of their passwords. Other than existing approaches, PAS automatically generates passwords

in accordance with services’ password requirements. The need therefore was demonstrated by

our largest ever conducted survey of password requirements. We showed that the requirements

are quite different, incomplete, and often missing at all. Further, we showed that there exists

no single password-composition rule set that creates valid passwords for all services. We intro-

duced Password Requirements Descriptions (PRD) to handle the wide diversity of the password

requirements. Moreover, we introduced solutions to automatically create PRDs and distribute

them. So far, PAS provides PRDs for 185,696 services. Finally, we complemented PAS with an

optimal password-composition rule set to solve the incompleteness of password requirements.

Based on this rule set, password assistants generate attack-resistant passwords with the best pos-

sible acceptance rate even when requirements are unavailable. In addition, existing password

generators can be significantly improved regarding security and acceptance rate at the same

time by using our optimal password-composition rules. Up to now they make use of suboptimal

rules, which generate weak and/or invalid passwords.

Furthermore, PAS extensively supports users in the second password task of preserving pass-

words. We introduced the Passwordless Password Synchronization (PALPAS) scheme which

automatically generates attack-resistant, individual, and valid passwords and preserves them

for users. Moreover, it protects the preserved passwords, makes them available on all user de-

vices, and automatically synchronizes changes. But, PALPAS does not store passwords, neither

at user devices nor at servers on the Internet. On contrast to other approaches, passwords can-

not be stolen from servers. PALPAS’ revocation mechanism additionally provides protection in

165



case of device theft. We also presented PASCO (PALPAS RECOVERY), a backup solution that

provides recovery of the PALPAS data. Backups do not have to be updated when users’ pass-

word portfolios change. PASCO also allows an emergency access to the passwords of users for

trusted persons. Like PALPAS, PASCO is equipped with a revocation mechanism which facilitates

invalidation of backups even when users do not have physical access to them. Based on PALPAS

and PASCO, PAS provides the first solution for the password preservation problem. By achieving

the confidentiality, availability, recoverability, and accessibility of the passwords, PAS address all

concerns and needs of users regarding the preservation of passwords.

Moreover, PAS performs the third password task of changing passwords for users automatically.

In contrast to existing approaches, it does not only simplify password changes, it completely

takes over this extensive and time-consuming task. We introduced Password Policy Descriptions

(PPD) to cope with the different password interfaces and procedures of services. Moreover, PAS

is equipped with a proactive and a reactive password change strategy to realize complete au-

tomation. It changes passwords on a regular basis with respect to the security level of passwords

as well as immediately after PAS detects a compromise of users’ passwords. Finally, with easy-

to-use passwords we outlined a further application of PAS to complement our goal of making

the usage of passwords as easy as possible by means of automation.

We evaluated the practicality of PAS and it became apparent that it is ready to be used in

practice. None of the PAS’ components demands changes to services, they can be operated in-

dependently, and used with arbitrary services. With PPDs there exist the first practical solution

that allows to handle the different services’ password implementations. PPDs can be easily ex-

tended to cope with changes and new technologies coming up in the future. Moreover, users can

create their own PPDs to use PAS with any service they want. We implemented the components

of PAS as stand-alone applications, showed their integration in existing applications, and even

new applications such as AutoPass [156] already build on PAS.

Future work

There still exist further challenges and interesting research topics related to this thesis. One

challenge is imposed by the Internet of Things (IoT). Similar to the constantly increasing number

of online accounts, users will have more and more connected physical devices, such as connected

cars and smart homes. User authentication in the IoT is again build on passwords. This leads to

the same problems which we already encounter with user accounts on the Internet: weak and

reused passwords. Extending the scope of PAS and the functionality of password assistants to

cover the new challenge of users to generate and manage secure passwords for the IoT should

be subject of further research.

166 8 Conclusion



Bibliography
[1] Steven Van Acker, Daniel Hausknecht, Wouter Joosen, and Andrei Sabelfeld. Password

Meters and Generators on the Web: From Large-Scale Empirical Study to Getting It Right.
In Proc. CODASPY, 2015. Cited on page 50.

[2] Anne Adams and Martina Angela Sasse. Users Are Not The Enemy. CACM, 42(12), 1999.
Cited on page 22.

[3] Naveen Agarwal, Scott Renfro, and Arturo Bejar. Yahoo!’s Sign-in Seal and current anti-
phishing solutions, 2007. Cited on page 44.

[4] AgileBits Inc. 1Password. https://1password.com. Cited on page 59.

[5] Mahdi Nasrullah Al-Ameen, Matthew K. Wright, and Shannon Scielzo. Towards Making
Random Passwords Memorable: Leveraging Users’ Cognitive Ability Through Multiple
Cues. In Proc. CHI, 2015. Cited on page 55.

[6] Ahmed AlEroud and Lina Zhou. Phishing environments, techniques, and countermea-
sures: A survey. COMSEC, 68, 2017. Cited on pages 11 and 17.

[7] Alexa Internet. Alexa Top Sites. http://www.alexa.com/topsites. Cited on pages 75,
87, 88, and 157.

[8] Alexa Internet. Top Sites in United States. http://www.alexa.com/topsites/

countries/US. Cited on pages 40, 66, 75, 87, 88, and 139.

[9] Bander AlFayyadh, Per Thorsheim, Audun Jøsang, and Henning Klevjer. Improving us-
ability of password management with standardized password policies. In Proc. SAR-SSI,
2012. Cited on page 53.

[10] Adil Alsaid and Chris J. Mitchell. Preventing phishing attacks using trusted computing
technology. In Proc. INC, 2006. Cited on page 116.

[11] American National Standards Institute (ANSI). Coded Character Sets – 7-Bit American
Standard Code for Information Interchange (7-Bit ASCII). ANSI X3.4-1986, 1986. Cited
on page 36.

[12] Anonymizer Inc. Anonymizer. https://www.anonymizer.com. Cited on page 80.

[13] Apache Software Foundation. Apache UIMA. https://uima.apache.org. Cited on
page 73.

[14] Apple Inc. Apple Media Advisory – Update to Celebrity Photo Investigation, 2014. https:
//www.apple.com/newsroom/2014/09/02Apple-Media-Advisory/. Cited on page 19.

[15] Jean-Philippe Aumasson. Password Hashing Competition. https://password-hashing.
net. Cited on page 20.

XIX

https://1password.com
http://www.alexa.com/topsites
http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US
https://www.anonymizer.com
https://uima.apache.org
https://www.apple.com/newsroom/2014/09/02Apple-Media-Advisory/
https://www.apple.com/newsroom/2014/09/02Apple-Media-Advisory/
https://password-hashing.net
https://password-hashing.net


[16] Michael Bachmann. Passwords are Dead: Alternative Authentication Methods. In Proc.
JISIC, 2014. Cited on page 2.

[17] Daniel V. Bailey, Markus Dürmuth, and Christof Paar. Statistics on Password Re-use and
Adaptive Strength for Financial Accounts. In Proc. SCN, 2014. Cited on page 55.

[18] Gregory V. Bard. Spelling-Error Tolerant, Order-Independent Pass-Phrases via the
Damerau-Levenshtein String-Edit Distance Metric. In Proc. ACSW Frontiers, 2007. Cited
on page 52.

[19] Elaine B. Barker and John M. Kelsey. Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. NIST Special Publication 800-90A Rev. 1,
2015. Cited on pages 7, 111, and 116.

[20] Erick Bauman, Yafeng Lu, and Zhiqiang Lin. Half a Century of Practice: Who Is Still
Storing Plaintext Passwords? In Proc. ISPEC, 2015. Cited on page 32.

[21] Andrey Belenko and Dmitry Sklyarov. “Secure Password Managers” and “Military-Grade
Encryption” on Smartphones: Oh, Really? Blackhat Europe, 2012. Cited on page 56.

[22] Steven M. Bellovin. Frank Miller: Inventor of the One-Time Pad. Cryptologia, 35(3),
2011. Cited on pages 8, 99, 119, and 135.

[23] Francesco Bergadano, Bruno Crispo, and Giancarlo Ruffo. Proactive Password Checking
with Decision Trees. In Proc. CCS, 1997. Cited on page 50.

[24] Akashdeep Bhardwaj, G. V. B. Subrahmanyam, Vinay Avasthi, and Hanumat Sastry. Ran-
somware: A Rising Threat of new age Digital Extortion. CoRR, abs/1512.01980, 2015.
Cited on page 58.

[25] Robert Biddle, Sonia Chiasson, and Paul C. van Oorschot. Graphical passwords: Learning
from the first twelve years. CSUR, 44(4), 2012. Cited on page 2.

[26] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New Generation of
Memory-Hard Functions for Password Hashing and Other Applications. In Proc. EuroS&P,
2016. Cited on page 20.

[27] Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006. Cited
on page 7.

[28] Matthew A. Bishop. Computer Security: Art and Science. Addison-Wesley, 2003. Cited on
page 10.

[29] Jeremiah Blocki, Manuel Blum, and Anupam Datta. Naturally Rehearsing Passwords. In
Proc. ASIACRYPT, 2013. Cited on page 55.

[30] BlueKrypt. Cryptographic Key Length Recommendation. https://www.keylength.com.
Cited on page 20.

[31] Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Function of MD5. In
Proc. EUROCRYPT, 1993. Cited on page 21.

[32] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. Kamouflage: Loss-Resistant
Password Management. In Proc. ESORICS, 2010. Cited on page 56.

XX Bibliography

https://www.keylength.com


[33] Joseph Bonneau. Statistical Metrics for Individual Password Strength. In Proc. SPW,
2012. Cited on page 37.

[34] Joseph Bonneau. The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords. In Proc. SP, 2012. Cited on pages 1, 37, and 49.

[35] Joseph Bonneau, Elie Bursztein, Ilan Caron, Rob Jackson, and Mike Williamson. Secrets,
Lies, and Account Recovery: Lessons from the Use of Personal Knowledge Questions at
Google. In Proc. WWW, 2015. Cited on pages 17 and 25.

[36] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The Quest
to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes. In Proc. SP, 2012. Cited on pages 1, 2, 10, and 11.

[37] Joseph Bonneau and Sören Preibusch. The Password Thicket: Technical and Market
Failures in Human Authentication on the Web. In Proc. WEIS, 2010. Cited on pages 2,
19, 21, 29, and 49.

[38] Joseph Bonneau and Stuart E. Schechter. Towards Reliable Storage of 56-bit Secrets in
Human Memory. In Proc. USS, 2014. Cited on page 55.

[39] Joseph Bonneau and Ekaterina Shutova. Linguistic Properties of Multi-word Passphrases.
In Proc. FC, 2012. Cited on page 52.

[40] John G. Brainard, Ari Juels, Ronald L. Rivest, Michael Szydlo, and Moti Yung. Fourth-
factor authentication: somebody you know. In Proc. CCS, 2006. Cited on page 10.

[41] Johannes Braun. Maintaining security and trust in large scale public key infrastructures.
PhD thesis, Darmstadt University of Technology, Germany, 2015. Cited on page 9.

[42] Johannes Braun, Florian Volk, Jiska Classen, Johannes A. Buchmann, and Max
Mühlhäuser. CA trust management for the web PKI. JCS, 22(6), 2014. Cited on page 16.

[43] Alan S. Brown, Elisabeth Bracken, Sandy Zoccoli, and King Douglas. Generating and
remembering passwords. ACP, 18(6), 2004. Cited on page 1.

[44] Bostjan Brumen and Viktor Taneski. Moore’s Curse on Textual Passwords. In Proc. MIPRO,
2015. Cited on pages 20 and 151.

[45] Johannes A. Buchmann. Introduction to Cryptography. Springer, 2002. Cited on pages 7
and 8.

[46] William E. Burr, Donna F. Dodson, Elaine M. Newton, Ray A. Perlner, W. Timothy Polk,
Sarbari Gupta, and Emad A. Nabbus. Electronic Authentication Guideline. NIST Special
Publication 800-63-2, 2013. Cited on page 50.

[47] James H. Burrows. Password Usage. Federal Information Processing Standards Publica-
tion (FIPS) 112, 1985. Cited on page 31.

[48] Erik Cambria and Bebo White. Jumping NLP curves: A review of natural language pro-
cessing research. CIM, 9(2), 2014. Cited on page 73.

[49] John Campbell, Wanli Ma, and Dale Kleeman. Impact of restrictive composition policy
on user password choices. BIT, 30(3), 2011. Cited on page 29.

Bibliography XXI



[50] Xavier de Carné de Carnavalet and Mohammad Mannan. From Very Weak to Very Strong:
Analyzing Password-Strength Meters. In Proc. NDSS, 2014. Cited on pages 35 and 50.

[51] Xavier de Carné de Carnavalet and Mohammad Mannan. A Large-Scale Evaluation of
High-Impact Password Strength Meters. TISSEC, 18(1), 2015. Cited on page 50.

[52] Luca Casati and Andrea Visconti. Exploiting a Bad User Practice to Retrieve Data Leakage
on Android Password Managers. In Proc. IMIS, 2017. Cited on page 56.

[53] Claude Castelluccia, Chaabane Abdelberi, Markus Dürmuth, and Daniele Perito. When
Privacy meets Security: Leveraging personal information for password cracking. CoRR,
abs/1304.6584, 2013. Cited on pages 1 and 13.

[54] Claude Castelluccia, Markus Dürmuth, and Daniele Perito. Adaptive Password-Strength
Meters from Markov Models. In Proc. NDSS, 2012. Cited on pages 14 and 50.

[55] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and Thomas Ristenpart. Cracking-Resistant
Password Vaults Using Natural Language Encoders. In Proc. SP, 2015. Cited on page 56.

[56] Wendy Chen and Weide Chang. Applying Hidden Markov Models to Keystroke Pattern
Analysis for Password Verification. In Proc. IRI, 2004. Cited on page 14.

[57] Hsien-Cheng Chou, Hung-Chang Lee, Hwan-Jeu Yu, Fei-Pei Lai, Kuo-Hsuan Huang, and
Chih-Wen Hsueh. Password cracking based on learned patterns from disclosed passwords.
IJICIC, 2013. Cited on page 13.

[58] Peter Cisar and Sanja Maravic Cisar. Password – A Form of Authentication. In Proc. SISY,
2007. Cited on page 150.

[59] Luke St. Clair, Lisa Johansen, William Enck, Matthew Pirretti, Patrick Traynor, Patrick D.
McDaniel, and Trent Jaeger. Password Exhaustion: Predicting the End of Password Use-
fulness. In Proc. ICISS, 2006. Cited on page 22.

[60] Richard Clayton. Insecure real-world authentication protocols (or why phishing is so
profitable). In Proc. SPW, 2005. Cited on page 116.

[61] Cloud Security Alliance. What Rules Apply to Government Access to Data Held
by US Cloud Service Providers. https://cloudsecurityalliance.org/download/

government-access-to-data-held-by-us-cloud-service-providers/. Cited on
page 57.

[62] Codenomicon. The Heartbleed Bug. http://heartbleed.com. Cited on pages 2, 17, 21,
and 60.

[63] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
5280, 2008. Cited on pages 9, 16, and 113.

[64] Jean-Sébastien Coron, Paul C. Kocher, and David Naccache. Statistics and secret leakage.
In Proc. FC, 2000. Cited on page 135.

[65] Quynh H. Dang. Secure Hash Standard (SHS). Federal Information Processing Standard
Publication (FIPS) 180-4, 2012. Cited on page 11.

XXII Bibliography

https://cloudsecurityalliance.org/download/government-access-to-data-held-by-us-cloud-service-providers/
https://cloudsecurityalliance.org/download/government-access-to-data-held-by-us-cloud-service-providers/
http://heartbleed.com


[66] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng Wang. The
Tangled Web of Password Reuse. In Proc. NDSS, 2014. Cited on pages 1, 19, 20, and 55.

[67] Dashlane Inc. Best Password Manager, Free Form Filler, Secure Digital Wallet. https:
//www.dashlane.com. Cited on pages 53, 57, 59, and 60.

[68] Dashlane Inc. Dashlane Security Whitepaper. https://www.dashlane.com/download/
Dashlane-Security-Whitepaper-V2.8.pdf. Cited on page 60.

[69] Antoine Delignat-Lavaud, Martín Abadi, Andrew Birrell, Ilya Mironov, Ted Wobber, and
Yinglian Xie. Web PKI: Closing the Gap between Guidelines and Practices. In Proc. NDSS,
2014. Cited on page 16.

[70] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. Password Strength: An Empirical
Analysis. In Proc. INFOCOM, 2010. Cited on pages 13 and 14.

[71] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246, 2008. Cited on pages 9 and 133.

[72] Thai Duong and Juliano Rizzo. Here come the XOR ninjas, 2011. Cited on pages 17
and 21.

[73] Markus Dürmuth, Fabian Angelstorf, Claude Castelluccia, Daniele Perito, and Chaabane
Abdelberi. OMEN: Faster Password Guessing Using an Ordered Markov Enumerator. In
Proc. ESSoS, 2015. Cited on page 14.

[74] Morris Dworkin. Automated Password Generator (APG). Federal Information Processing
Standard Publication (FIPS) 181, 1993. Cited on page 53.

[75] Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal, James Foti, Lawrence E.
Bassham, E. Roback, and James F. Dray Jr. Advanced Encryption Standard (AES). Federal
Information Processing Standard Publication (FIPS) 197, 2001. Cited on page 8.

[76] D. 3rd Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. RFC
4086, 2005. Cited on page 7.

[77] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, and Cor-
mac Herley. Does my password go up to eleven?: The impact of password meters on
password selection. In Proc. CHI, 2013. Cited on pages 29 and 50.

[78] Federal Bureau of Investigation (FBI). Incidents of Ransomware on the Rise
– Protect Yourself and Your Organization. https://www.fbi.gov/news/stories/

incidents-of-ransomware-on-the-rise/. Cited on page 58.

[79] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. A
survey of mobile malware in the wild. In Proc. SPSM@CCS, 2011. Cited on page 58.

[80] David A. Ferrucci and Adam Lally. UIMA: an architectural approach to unstructured
information processing in the corporate research environment. NLE, 10(3-4), 2004. Cited
on page 73.

[81] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, 1999. Cited on page 142.

Bibliography XXIII

https://www.dashlane.com
https://www.dashlane.com
https://www.dashlane.com/download/Dashlane-Security-Whitepaper-V2.8.pdf
https://www.dashlane.com/download/Dashlane-Security-Whitepaper-V2.8.pdf
https://www.fbi.gov/news/stories/incidents-of-ransomware-on-the-rise/
https://www.fbi.gov/news/stories/incidents-of-ransomware-on-the-rise/


[82] Dinei Florêncio and Cormac Herley. A Large Scale Study of Web Password Habits. In
Proc. WWW, 2007. Cited on pages 22 and 48.

[83] Dinei Florêncio and Cormac Herley. Where do security policies come from? In Proc.
SOUPS, 2010. Cited on pages 30, 36, 49, 60, and 78.

[84] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. An Administrator’s Guide to
Internet Password Research. In Proc. LISA, 2014. Cited on pages 11, 19, 53, and 60.

[85] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. Password Portfolios and the
Finite-Effort User: Sustainably Managing Large Numbers of Accounts. In Proc. USS, 2014.
Cited on pages 22 and 55.

[86] Roman Fojtik. Salt Synchronization Service. Bachelor thesis, Darmstadt University of
Technology, Germany, 2016. Cited on page 112.

[87] Alain Forget, Sonia Chiasson, Paul C. van Oorschot, and Robert Biddle. Improving text
passwords through persuasion. In Proc. SOUPS, 2008. Cited on page 51.

[88] Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A Memory-Consuming Pass-
word Scrambler. IACR, 2013. Cited on page 20.

[89] Lorenzo Franceschi-Bicchierai. Another Day, Another Hack: 117 Million LinkedIn Emails
And Passwords. https://goo.gl/YWaMkR. Cited on pages 19, 21, and 39.

[90] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Biggio, and Giorgio Giacinto.
Who Are You? A Statistical Approach to Measuring User Authenticity. In Proc. NDSS,
2016. Cited on page 19.

[91] Steven Furnell. An assessment of website password practices. COMPSEC, 26(7-8), 2007.
Cited on pages 31 and 49.

[92] Steven Furnell. Assessing password guidance and enforcement on leading websites. CFS,
2011(12), 2011. Cited on pages 31 and 49.

[93] Ravi Ganesan, Chris Davies, and Bell Atlantic. A new attack on random pronounceable
password generators. In Proc. NCSC, 1994. Cited on page 53.

[94] Paolo Gasti and Kasper Bonne Rasmussen. On the Security of Password Manager
Database Formats. In Proc. ESORICS, 2012. Cited on page 56.

[95] Shirley Gaw and Edward W. Felten. Password management strategies for online accounts.
In Proc. SOUPS, 2006. Cited on pages 1, 53, and 55.

[96] Nethanel Gelernter, Senia Kalma, Bar Magnezi, and Hen Porcilan. The Password Reset
MitM Attack. In Proc. SP, 2017. Cited on pages 17 and 25.

[97] Maximilian Golla, Benedict Beuscher, and Markus Dürmuth. On the Security of Cracking-
Resistant Password Vaults. In Proc. CSS, 2016. Cited on page 56.

[98] Google Inc. Angular. https://angular.io. Cited on page 89.

[99] Google Inc. Google Safe Browsing. https://safebrowsing.google.com. Cited on
page 148.

XXIV Bibliography

https://goo.gl/YWaMkR
https://angular.io
https://safebrowsing.google.com


[100] Google Inc. Minor updates to your Google sign-in experience, 2015. https://support.
google.com/mail/forum/AAAAK7un8RUoAsE-6wmaSU/?hl=en. Cited on page 44.

[101] Jeremi M. Gosney, 2017. https://gist.github.com/epixoip. Cited on pages 38, 51,
150, and 151.

[102] Paul A. Grassi, Michael E. Garcia, and James L. Fenton. Digital Identity Guidelines. NIST
Special Publication 800-63-3, 2017. Cited on page 10.

[103] Kristen K. Greene and Yee-Yin Choong. Must I, can I? I don’t understand your ambiguous
password rules. IMCS, 25(1), 2017. Cited on pages 44 and 50.

[104] Hana Habib, Jessica Colnago, William Melicher, Blase Ur, and Sean Segreti. Password
Creation in the Presence of Blacklists. In Proc. USEC, 2017. Cited on page 50.

[105] J. Alex Halderman, Brent Waters, and Edward W. Felten. A Convenient Method for Se-
curely Managing Passwords. In Proc. WWW, 2005. Cited on pages 22, 54, and 117.

[106] William G. J. Halfond, Jeremy Viegas, and Alessandro Orso. A Classification of SQL-
Injection Attacks and Countermeasures. In Proc. ESSoS, 2006. Cited on page 34.

[107] Aaron L. F. Han, Derek F. Wong, and Lidia S. Chao. Password Cracking and Countermea-
sures in Computer Security: A Survey. CoRR, abs/1411.7803, 2014. Cited on page 11.

[108] Christian Happ, André Melzer, and Georges Steffgen. Trick with treat – reciprocity in-
creases the willingness to communicate personal data. CHB, 61, 2016. Cited on pages
11 and 17.

[109] S. M. Taiabul Haque, Mahdi Nasrullah Al-Ameen, Matthew Wright, and Shannon Scielzo.
Learning system-assigned passwords (up to 56 bits) in a single registration session with
the methods of cognitive psychology. In Proc. USEC, 2017. Cited on page 55.

[110] Harris Interactive; Various sources (Dashlane). Which of the following online security
precautions did you take within the past 30 days?, 2015. http://www.statista.com/
statistics/418676/us-online-security-precuations/. Cited on pages 2 and 60.

[111] Hashcat. hashcat – advanced password recovery. https://hashcat.net. Cited on pages
12, 38, 51, and 150.

[112] Martin E. Hellman. A cryptanalytic time-memory trade-off. TIT, 26(4), 1980. Cited on
page 11.

[113] Cormac Herley. More Is Not the Answer. SP, 12(1), 2014. Cited on page 2.

[114] Cormac Herley and Paul C. van Oorschot. A Research Agenda Acknowledging the Persis-
tence of Passwords. SP, 10(1), 2012. Cited on pages 1 and 2.

[115] Cormac Herley, Paul C. van Oorschot, and Andrew S. Patrick. Passwords: If We’re So
Smart, Why Are We Still Using Them? In Proc. FC, 2009. Cited on page 1.

[116] Erwin Hess, Norbert Janssen, Bernd Meyer, and Torsten Schütze. Information Leakage
Attacks Against Smart Card Implementations of Cryptographic Algorithms and Counter-
measures – A Survey. In Proc. EUROSMART, 2000. Cited on page 135.

Bibliography XXV

https://support.google.com/mail/forum/AAAAK7un8RUoAsE-6wmaSU/?hl=en
https://support.google.com/mail/forum/AAAAK7un8RUoAsE-6wmaSU/?hl=en
https://gist.github.com/epixoip
http://www.statista.com/statistics/418676/us-online-security-precuations/
http://www.statista.com/statistics/418676/us-online-security-precuations/
https://hashcat.net


[117] Josef Horalek, Filip Holík, Oldrich Horák, Lukás Petr, and Vladimir Sobeslav. Analysis of
the use of rainbow tables to break hash. JIFS, 32(2), 2017. Cited on page 11.

[118] Shiva Houshmand and Sudhir Aggarwal. Building better passwords using probabilistic
techniques. In Proc. ACSAC, 2012. Cited on page 51.

[119] Shiva Houshmand, Sudhir Aggarwal, and Umit Karabiyik. Identifying Passwords Stored
on Disk. In Proc. IFIP WG 11.9, 2015. Cited on page 13.

[120] Andreas Hülsing. Practical forward secure signatures using minimal security assumptions.
PhD thesis, Darmstadt University of Technology, Germany, 2013. Cited on page 8.

[121] Daniel Humphries. 67 Percent of Internet Users Haven’t Changed Pass-
words After Heartbleed. http://intelligent-defense.softwareadvice.com/

67-percent-havent-changed-passwords-after-heartbleed-0414/. Cited on pages
2 and 60.

[122] Troy Hunt. Have I been pwned? https://haveibeenpwned.com. Cited on pages 11, 19,
32, 39, 49, 153, and 155.

[123] Philip Inglesant and Martina Angela Sasse. The true cost of unusable password policies:
password use in the wild. In Proc. CHI, 2010. Cited on pages 29 and 50.

[124] InsidePro Software. PasswordsPro. http://www.insidepro.com. Cited on pages 12
and 51.

[125] International Computer Science Institute (ICSI). ICSI Certificate Notary. https://
notary.icsi.berkeley.edu. Cited on page 148.

[126] International Organization for Standardization (ISO). Data elements and interchange
formats – Information interchange – Representation of dates and times. ISO/IEC 8601,
2004. Cited on page 153.

[127] International Organization for Standardization (ISO). Identification cards – Integrated
circuit cards – Part 8: Commands for security operations. ISO/IEC 7816-8, 2004. Cited
on page 131.

[128] Iulia Ion, Rob Reeder, and Sunny Consolvo. “...No one Can Hack My Mind”: Comparing
Expert and Non-Expert Security Practices. In Proc. SOUPS, 2015. Cited on pages 1, 2,
and 51.

[129] Blake Ives, Kenneth R. Walsh, and Helmut Schneider. The domino effect of password
reuse. CACM, 47(4), 2004. Cited on pages 1 and 55.

[130] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. Cited on
pages 20, 55, and 111.

[131] Ambarish Karole, Nitesh Saxena, and Nicolas Christin. A Comparative Usability Evalua-
tion of Traditional Password Managers. In Proc. ICISC, 2010. Cited on pages 1, 57, 60,
and 162.

[132] Keisuke Kato and Vitaly Klyuev. Strong passwords: Practical issues. In Proc. IDAACS,
2013. Cited on pages 11 and 51.

XXVI Bibliography

http://intelligent-defense.softwareadvice.com/67-percent-havent-changed-passwords-after-heartbleed-0414/
http://intelligent-defense.softwareadvice.com/67-percent-havent-changed-passwords-after-heartbleed-0414/
https://haveibeenpwned.com
http://www.insidepro.com
https://notary.icsi.berkeley.edu
https://notary.icsi.berkeley.edu


[133] Mark Keith, Benjamin Shao, and Paul John Steinbart. The usability of passphrases for
authentication: An empirical field study. IJMMS, 65(1), 2007. Cited on page 52.

[134] Mark Keith, Benjamin Shao, and Paul John Steinbart. A Behavioral Analysis of Passphrase
Design and Effectiveness. JAIS, 10(2), 2009. Cited on page 52.

[135] Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy
Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez. Guess Again
(and Again and Again): Measuring Password Strength by Simulating Password-Cracking
Algorithms. In Proc. SP, 2012. Cited on pages 1, 12, 13, 37, 49, 50, 51, and 52.

[136] Amin Kharraz, William K. Robertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda.
Cutting the Gordian Knot: A Look Under the Hood of Ransomware Attacks. In Proc.
DIMVA, 2015. Cited on page 58.

[137] Johannes Kiesel, Benno Stein, and Stefan Lucks. A Large-scale Analysis of the Mnemonic
Password Advice. In Proc. NDSS, 2012. Cited on page 52.

[138] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. Of passwords and people:
measuring the effect of password-composition policies. In Proc. CHI, 2011. Cited on
pages 29, 48, 49, 50, 52, and 55.

[139] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authenti-
cation. RFC 2104, 1997. Cited on page 111.

[140] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function
(HKDF). RFC 5869, 2010. Cited on page 111.

[141] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human selection of mnemonic
phrase-based passwords. In Proc. SOUPS, 2006. Cited on pages 1, 12, 48, and 52.

[142] Stanley A. Kurzban. Easily Remembered Passphrases: A Better Approach. SIGSAC, 3(2-4),
1985. Cited on page 52.

[143] Martin Landi. Stars’ nude photo attack may have been down to pass-
word codes, 2014. http://www.independent.ie/business/technology/news/

stars-nude-photo-attack-may-have-been-down-to-password-codes-30552629.

html. Cited on page 19.

[144] LastPass Corporate. LastPass – The Last Password You Have to Remember. https://
lastpass.com. Cited on pages 53, 57, 59, 60, 116, and 155.

[145] LastPass Corporate. LastPass Security Notification, 2011. https://blog.lastpass.com/
2011/05/lastpass-security-notification.html/. Cited on page 57.

[146] LastPass Corporate. LastPass Security Notification, 2015. https://blog.lastpass.com/
2015/06/lastpass-security-notice.html/. Cited on page 57.

[147] Legion of the Bouncy Castle Inc. Bouncy Castle Crypto APIs, 2017. https://www.
bouncycastle.org. Cited on pages 110 and 113.

Bibliography XXVII

http://www.independent.ie/business/technology/news/stars-nude-photo-attack-may-have-been-down-to-password-codes-30552629.html
http://www.independent.ie/business/technology/news/stars-nude-photo-attack-may-have-been-down-to-password-codes-30552629.html
http://www.independent.ie/business/technology/news/stars-nude-photo-attack-may-have-been-down-to-password-codes-30552629.html
https://lastpass.com
https://lastpass.com
https://blog.lastpass.com/2011/05/lastpass-security-notification.html/
https://blog.lastpass.com/2011/05/lastpass-security-notification.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://www.bouncycastle.org
https://www.bouncycastle.org


[148] Michael D. Leonhard and V. N. Venkatakrishnan. A Comparative Study of Three Random
Password Generators. In Proc. EIT, 2007. Cited on page 53.

[149] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. The Emperor’s New Password
Manager: Security Analysis of Web-based Password Managers. In Proc. USS, 2014. Cited
on page 56.

[150] David Llewellyn-Jones and Graham Rymer. Cracking PwdHash: A Bruteforce Attack on
Client-Side Password Hashing. In Proc. PASSWORDS, 2016. Cited on page 54.

[151] Ijlal Loutfi and Audun Jøsang. Passwords are not always stronger on the other side of the
fence. In Proc. USEC, 2015. Cited on page 2.

[152] Stefan Lucks and Jakob Wenzel. Catena Variants – Different Instantiations for an Ex-
tremely Flexible Password-Hashing Framework. In Proc. PASSWORDS, 2015. Cited on
page 20.

[153] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A Study of Probabilistic Password
Models. In Proc. SP, 2014. Cited on pages 13, 14, and 48.

[154] Majestic. Top Million Root Domains List. https://majestic.com/reports/

majestic-million. Cited on page 87.

[155] Fatma Al Maqbali and Chris J. Mitchell. Password Generators: Old Ideas and New. In
Proc. WISTP, 2016. Cited on page 54.

[156] Fatma Al Maqbali and Chris J. Mitchell. AutoPass: An Automatic Password Generator. In
Proc. ICCST, 2017. Cited on pages 57, 95, and 166.

[157] Peter Mayer, Hermann Berket, and Melanie Volkamer. Enabling Automatic Password
Change in Password Managers Through Crowdsourcing. In Proc. PASSWORDS, 2016.
Cited on pages 60 and 155.

[158] Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas Christin,
Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase Ur. Measuring password
guessability for an entire university. In Proc. CSS, 2013. Cited on pages 13, 49, and 50.

[159] David McCandless. World’s Biggest Data Breaches.
http://www.informationisbeautiful.net/visualizations/

worlds-biggest-data-breaches-hacks/. Cited on pages 19, 32, 39, 49, and 153.

[160] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C. van
Oorschot. Tapas: design, implementation, and usability evaluation of a password man-
ager. In Proc. ACSAC, 2012. Cited on pages 22, 23, 56, and 136.

[161] Andrew Mehler and Steven Skiena. Improving Usability Through Password-Corrective
Hashing. In Proc. SPIRE, 2006. Cited on page 52.

[162] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas
Christin, and Lorrie Faith Cranor. Fast, lean, and accurate: Modeling password guessabil-
ity using neural networks. In Proc. USS, 2016. Cited on pages 1 and 14.

XXVIII Bibliography

https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/


[163] Frank Miller. Telegraphic code to insure privacy and secrecy in the transmission of telegrams.
CM Cornwell, 1882. Cited on pages 8, 99, 119, and 135.

[164] George A. Miller. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2), 1956. Cited on page 22.

[165] Dennis Mirante and Justin Cappos. Understanding password database compromises. TR-
CSE-2013-02, 2013. Cited on pages 11, 19, 20, 32, 39, and 49.

[166] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: Exploiting the
SSL 3.0 Fallback, 2014. Cited on pages 17 and 21.

[167] Robert Morris and Ken Thompson. Password Security – A Case History. CACM, 22(11),
1979. Cited on pages 2, 11, 12, and 49.

[168] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic
composition. In Proc. EUROCRYPT, 2014. Cited on pages 100 and 111.

[169] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using
time-space tradeoff. In Proc. CCS, 2005. Cited on pages 1 and 14.

[170] Gilbert Notoatmodjo and Clark D. Thomborson. Passwords and Perceptions. In Proc.
AISC, 2009. Cited on page 55.

[171] M. Nottingham and E. Hammer-Lahav. Defining Well-Known Uniform Resource Identi-
fiers (URIs). RFC 5785, 2010. Cited on pages 80 and 149.

[172] M. Nystrom and B. Kaliski. PKCS #10: Certification Request Syntax Specification Version
1.7. RFC 2986, 2000. Cited on page 113.

[173] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In Proc.
CRYPTO, 2003. Cited on page 11.

[174] OneLogin Inc. Security Incident, 2017. https://www.onelogin.com/blog/

may-31-2017-security-incident. Cited on page 57.

[175] Cecilia Pasquini, Pascal Schöttle, and Rainer Böhme. Decoy password vaults: At least as
hard as steganography? In Proc. SEC, 2017. Cited on page 56.

[176] C. Percival and S. Josefsson. The scrypt Password-Based Key Derivation Function. RFC
7914, 2016. Cited on page 20.

[177] Alexander Peslyak. John the Ripper. http://www.openwall.com/john/. Cited on pages
12 and 51.

[178] Alexander Peslyak. Openwall wordlists collection. http://www.openwall.com/

wordlists/. Cited on page 12.

[179] Pew Research Center. Heartbleed’s Impact. http://www.pewinternet.org/2014/04/
30/heartbleeds-impact/. Cited on pages 2 and 60.

[180] Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks. In Proc.
CCS, 2002. Cited on page 19.

Bibliography XXIX

https://www.onelogin.com/blog/may-31-2017-security-incident
https://www.onelogin.com/blog/may-31-2017-security-incident
http://www.openwall.com/john/
http://www.openwall.com/wordlists/
http://www.openwall.com/wordlists/
http://www.pewinternet.org/2014/04/30/heartbleeds-impact/
http://www.pewinternet.org/2014/04/30/heartbleeds-impact/


[181] Progress Software Corporation. NativeScript. https://www.nativescript.org. Cited
on page 89.

[182] Niels Provos and David Mazières. A Future-Adaptable Password Scheme. In Proc. USENIX,
FREENIX Track, 1999. Cited on page 20.

[183] Quantcast. Quantcast Top Million U.S. Web Sites. https://www.quantcast.com/

top-sites. Cited on page 87.

[184] Ashwini Rao, Birendra Jha, and Gananand Kini. Effect of grammar on security of long
passwords. In Proc. CODASPY, 2013. Cited on pages 48 and 52.

[185] Mudassar Raza, Muhammad Iqbal, Muhammad Sharif, and Waqas Haider. A survey of
password attacks and comparative analysis on methods for secure authentication. WASJ,
19(4), 2012. Cited on pages 11, 17, and 21.

[186] Dominik Reichl. KeePass Password Safe. http://keepass.info. Cited on pages 53
and 91.

[187] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Basics: Defini-
tions, Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In Proc. FSE, 2004. Cited on page 8.

[188] Tanja Römer and Jean-Pierre Seifert. Information leakage attacks against smart card
implementations of the elliptic curve digital signature algorithm. In Proc. ESMART, 2001.
Cited on page 135.

[189] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell. Stronger
Password Authentication Using Browser Extensions. In Proc. USS, 2005. Cited on pages
54 and 117.

[190] Karen Scarfone and Murugiah Souppaya. Guide to Enterprise Password Management.
NIST Special Publication 800-118, 2009. Cited on page 150.

[191] Stuart E. Schechter, A. J. Bernheim Brush, and Serge Egelman. It’s no secret: measuring
the security and reliability of authentication via “secret” questions. In Proc. SOUPS, 2009.
Cited on page 17.

[192] Stuart E. Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity is everything:
A new approach to protecting passwords from statistical-guessing attacks. In Proc. HotSec,
2010. Cited on page 50.

[193] Mario Schlipf. Passwort-Richtlinien. Bachelor thesis, Darmstadt University of Technology,
Germany, 2014. Cited on page 91.

[194] Mario Schlipf. Password Policy Crawler. Master thesis, Darmstadt University of Technol-
ogy, Germany, 2015. Cited on page 74.

[195] David Schmidt and Trent Jaeger. Pitfalls in the automated strengthening of passwords.
In Proc. ACSAC, 2013. Cited on page 51.

XXX Bibliography

https://www.nativescript.org
https://www.quantcast.com/top-sites
https://www.quantcast.com/top-sites
http://keepass.info


[196] Stan Schroeder. Mark Zuckerberg’s Twitter and Pinterest accounts hacked, pos-
sibly due to an awfully weak password. http://mashable.com/2016/06/06/

mark-zuckerberg-twitter-hacked/. Cited on page 21.

[197] Tobias Seitz, Manuel Hartmann, Jakob Pfab, and Samuel Souque. Do Differences in
Password Policies Prevent Password Reuse? In Proc. CHI Extended Abstracts, 2017. Cited
on page 49.

[198] Richard Shay, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Alain Forget, Saranga
Komanduri, Michelle L. Mazurek, William Melicher, Sean M. Segreti, and Blase Ur. A
Spoonful of Sugar?: The Impact of Guidance and Feedback on Password-Creation Behav-
ior. In Proc. CHI, 2015. Cited on pages 29 and 50.

[199] Richard Shay, Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Blase Ur,
Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Correct horse bat-
tery staple: exploring the usability of system-assigned passphrases. In Proc. SOUPS, 2012.
Cited on page 51.

[200] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L.
Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
Can long passwords be secure and usable? In Proc. CHI, 2014. Cited on pages 13, 39,
49, 50, 51, and 52.

[201] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L.
Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
Designing Password Policies for Strength and Usability. TISSEC, 18(4), 2016. Cited on
pages 39, 49, 50, 51, and 52.

[202] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon, Michelle L.
Mazurek, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Encountering stronger
password requirements: user attitudes and behaviors. In Proc. SOUPS, 2010. Cited on
pages 1, 48, 49, and 55.

[203] Chao Shen, Tianwen Yu, Haodi Xu, Gengshan Yang, and Xiaohong Guan. User practice
in password security: An empirical study of real-life passwords in the wild. COMPSEC,
61, 2016. Cited on pages 22 and 49.

[204] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and Collin Jackson. Password
Managers: Attacks and Defenses. In Proc. USS, 2014. Cited on page 56.

[205] Eugene H. Spafford. OPUS: preventing weak password choices. COMPSEC, 11(3), 1992.
Cited on page 50.

[206] Peder Sparell and Mikael Simovits. Linguistic Cracking of Passphrases Using Markov
Chains. IACR, 2016. Cited on page 52.

[207] Frank Stajano, Max Spencer, Graeme Jenkinson, and Quentin Stafford-Fraser. Password-
Manager Friendly (PMF): Semantic Annotations to Improve the Effectiveness of Password
Managers. In Proc. PASSWORDS, 2014. Cited on pages 33, 53, and 143.

[208] Elizabeth Stobert and Robert Biddle. The Password Life Cycle: User Behaviour in Man-
aging Passwords. In Proc. SOUPS, 2014. Cited on pages 1, 22, 23, 29, 48, 49, and 136.

Bibliography XXXI

http://mashable.com/2016/06/06/mark-zuckerberg-twitter-hacked/
http://mashable.com/2016/06/06/mark-zuckerberg-twitter-hacked/


[209] Elizabeth Stobert and Robert Biddle. Expert Password Management. In Proc. PASS-
WORDS, 2015. Cited on page 2.

[210] Ben Stock and Martin Johns. Protecting users against XSS-based password manager
abuse. In Proc. ASIACCS, 2014. Cited on page 56.

[211] Viktor Taneski, Marjan Hericko, and Bostjan Brumen. Password security – no change in
35 years? In Proc. MIPRO, 2014. Cited on pages 2 and 49.

[212] Viktor Taneski, Marjan Hericko, and Bostjan Brumen. Impact of security education on
password change. In Proc. MIPRO, 2015. Cited on pages 2, 19, 49, and 60.

[213] The Tor Project Inc. TOR Project: Anonymity Online. https://www.torproject.org.
Cited on page 80.

[214] Christian Thöing. PWGen. http://pwgen-win.sourceforge.net. Cited on page 53.

[215] TorGuard. TorGuard: online privacy protection services. https://torguard.net. Cited
on page 80.

[216] Harshal Tupsamudre, Vijayanand Banahatti, and Sachin Lodha. POSTER: Improved
Markov Strength Meters for Passwords. In Proc. CCS, 2016. Cited on pages 14 and 50.

[217] United States Computer Emergency Readiness Team (US-CERT). Alert (TA16-
091A) – Ransomware and Recent Variants. https://www.us-cert.gov/ncas/alerts/
TA16-091A. Cited on page 58.

[218] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer, Nicolas Christin, Jessica Colnago, Lor-
rie Faith Cranor, Henry Dixon, Pardis Emami Naeini, Hana Habib, Noah Johnson, and
William Melicher. Design and Evaluation of a Data-Driven Password Meter. In Proc. CHI,
2017. Cited on page 50.

[219] Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, Nicolas Christin, and Lorrie Faith
Cranor. Do Users’ Perceptions of Password Security Match Reality? In Proc. CHI, 2016.
Cited on page 55.

[220] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L.
Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. How Does Your Password Measure Up? The Effect of Strength
Meters on Password Creation. In Proc. USS, 2012. Cited on pages 13, 29, and 50.

[221] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. “I Added ’!’ at the End to Make It Secure”: Observing
Password Creation in the Lab. In Proc. SOUPS, 2015. Cited on pages 39, 48, 49, and 55.

[222] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga
Komanduri, Darya Kurilova, Michelle L. Mazurek, William Melicher, and Richard Shay.
Measuring Real-World Accuracies and Biases in Modeling Password Guessability. In Proc.
USS, 2015. Cited on page 37.

[223] Wali Ahmed Usmani, Diogo Marques, Ivan Beschastnikh, Konstantin Beznosov, Tiago
João Vieira Guerreiro, and Luís Carriço. Characterizing Social Insider Attacks on Face-
book. In Proc. CHI, 2017. Cited on pages 11 and 17.

XXXII Bibliography

https://www.torproject.org
http://pwgen-win.sourceforge.net
https://torguard.net
https://www.us-cert.gov/ncas/alerts/TA16-091A
https://www.us-cert.gov/ncas/alerts/TA16-091A


[224] Rafael Veras, Christopher Collins, and Julie Thorpe. On Semantic Patterns of Passwords
and their Security Impact. In Proc. NDSS, 2014. Cited on pages 1, 13, 35, and 48.

[225] Rafael Veras, Julie Thorpe, and Christopher Collins. Visualizing semantics in passwords:
the role of dates. In Proc. VIZSEC, 2012. Cited on page 48.

[226] Kim-Phuong L. Vu, Robert W. Proctor, Abhilasha Bhargav-Spantzel, Bik-Lam (Belin) Tai,
Joshua Cook, and E. Eugene Schultz. Improving password security and memorability to
protect personal and organizational information. IJMMS, 65(8), 2007. Cited on pages
29, 50, and 51.

[227] W3Techs. Usage of content languages for websites. https://w3techs.com/

technologies/overview/content_language/all. Cited on page 78.

[228] Ding Wang, Debiao He, Haibo Cheng, and Ping Wang. fuzzyPSM: A New Password
Strength Meter Using Fuzzy Probabilistic Context-Free Grammars. In Proc. DSN, 2016.
Cited on page 50.

[229] Ding Wang and Ping Wang. The Emperor’s New Password Creation Policies: An Evalua-
tion of Leading Web Services and the Effect of Role in Resisting Against Online Guessing.
In Proc. ESORICS, 2015. Cited on pages 19, 31, 35, 49, and 50.

[230] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. Targeted Online Pass-
word Guessing: An Underestimated Threat. In Proc. CCS, 2016. Cited on page 20.

[231] Luren Wang, Yue Li, and Kun Sun. Amnesia: A Bilateral Generative Password Manager.
In Proc. ICDCS, 2016. Cited on page 56.

[232] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In
Proc. CRYPTO, 2005. Cited on page 21.

[233] Rick Wash, Emilee J. Rader, Ruthie Berman, and Zac Wellmer. Understanding Pass-
word Choices: How Frequently Entered Passwords Are Re-used across Websites. In Proc.
SOUPS, 2016. Cited on pages 1 and 55.

[234] Matt Weir, Sudhir Aggarwal, Michael P. Collins, and Henry Stern. Testing metrics for
password creation policies by attacking large sets of revealed passwords. In Proc. CCS,
2010. Cited on pages 1, 13, 35, and 37.

[235] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and Bill Glodek. Password Cracking
Using Probabilistic Context-Free Grammars. In Proc. SP, 2009. Cited on pages 1 and 13.

[236] World Wide Web Consortium. Javascript Web Cryptography API. https://www.w3.org/
TR/WebCryptoAPI. Cited on page 89.

[237] Jeff Jianxin Yan, Alan F. Blackwell, Ross J. Anderson, and Alasdair Grant. Password
Memorability and Security: Empirical Results. SP, 2(5), 2004. Cited on pages 22 and 51.

[238] Weining Yang, Ninghui Li, Omar Chowdhury, Aiping Xiong, and Robert W. Proctor. An
Empirical Study of Mnemonic Sentence-based Password Generation Strategies. In Proc.
CCS, 2016. Cited on page 52.

Bibliography XXXIII

https://w3techs.com/technologies/overview/content_language/all
https://w3techs.com/technologies/overview/content_language/all
https://www.w3.org/TR/WebCryptoAPI
https://www.w3.org/TR/WebCryptoAPI


[239] Hwei-Ming Ying and Noboru Kunihiro. Decryption of frequent password hashes in rain-
bow tables. In Proc. CANDAR, 2016. Cited on page 11.

[240] Saman Taghavi Zargar, James Joshi, and David Tipper. A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks. COMSUR, 15(4), 2013.
Cited on page 114.

[241] Emanuel von Zezschwitz, Alexander De Luca, and Heinrich Hussmann. Survival of the
Shortest: A Retrospective Analysis of Influencing Factors on Password Composition. In
Proc. INTERACT, 2013. Cited on pages 1 and 55.

[242] Yinqian Zhang, Fabian Monrose, and Michael K. Reiter. The security of modern password
expiration: an algorithmic framework and empirical analysis. In Proc. CCS, 2010. Cited
on pages 13, 55, and 60.

[243] Leah Zhang-Kennedy, Sonia Chiasson, and Paul C. van Oorschot. Revisiting password
rules: facilitating human management of passwords. In Proc. ECRIME, 2016. Cited on
page 55.

[244] Rui Zhao and Chuan Yue. Toward a secure and usable cloud-based password manager
for web browsers. COMPSEC, 46, 2014. Cited on page 1.

[245] Dominik Ziegler, Mattias Rauter, Christof Stromberger, Peter Teufl, and Daniel M. Hein.
Do you think your passwords are secure? In Proc. PRISMS, 2014. Cited on page 56.

[246] Herbert Spencer Zim. Codes and secret writing. W. Morrow, 1948. Cited on page 13.

[247] Moshe Zviran and William J. Haga. Password Security: An Empirical Study. JMIS, 15(4),
1999. Cited on pages 1, 19, 31, 48, 49, and 60.

XXXIV Bibliography


	Cover
	List of Publications
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Cryptographic primitives
	Pseudo-random generator
	Hash function
	Encryption
	Digital signature
	Certificate
	Transport Layer Security

	Password-based authentication
	Password storage
	Password guessing attacks


	Passwords require ubiquitous assistance
	System and attacker model
	Requirements and conditions for secure passwords
	Security requirements
	Service conditions
	Usage requirements

	Password tasks of users
	Password generation
	Password preservation
	Password change

	Service conditions for passwords: password requirements
	Application of password requirements
	Security levels resulting from password requirements

	Service conditions for passwords: password interfaces and procedures
	Overview
	Login interfaces and procedures
	Password change interfaces and procedures

	Passwords in practice and the state of the art
	Password generation
	Password preservation
	Password change

	Realization of secure passwords by ubiquitous password assistance
	Conclusion

	Automatic generation of attack-resistant and valid passwords
	Conceptual description
	Uniform description of password requirements
	Automatic generation of password requirements descriptions
	Extraction and interpretation of password requirements
	Generation of password requirements descriptions
	Evaluation
	Limitations

	Distribution of password requirements descriptions
	Service-independent centralized solution
	Privacy-preserving decentralized solution

	Optimal fallback password-composition rules for password assistants
	Optimization of the acceptance rate
	Optimization of the acceptance rate under the condition of 128-bit security

	Implementation and practical evaluation
	Large-scale creation of password requirements descriptions
	Usage of password requirements descriptions in password assistants
	Application and impact of optimized fallback password-composition rules

	Conclusion

	Passwordless and seamless password synchronization
	Solution for password preservation and synchronization
	System architecture
	Password generation
	Password synchronization
	Device management

	Implementation
	Client application
	Server application

	Security evaluation
	Extended system and attacker model
	Security properties
	Attack scenarios
	Trust relation

	Conclusion

	Update-tolerant and revocable password backup with emergency access
	Solution for password backup
	Creation of backups
	Data recovery from backups
	Revocation of backups
	Recovery of server-side data

	Emergency access to backups
	Creation of backups with emergency access
	Access backups in case of emergency

	Implementation
	Backup device
	Client application
	Details of operation

	Security evaluation
	Extended system and attacker model
	Attack scenarios

	Conclusion

	Automatic and autonomous password change
	Conceptual description
	Uniform description of password policies
	Tool-based creation of password policy descriptions
	Distribution of password policy descriptions
	Service-independent centralized solution
	Privacy-preserving decentralized solution

	Strategies for autonomous password changes
	Proactive password change strategy
	Reactive password change strategy

	Implementation and practical evaluation
	Creation of password policy descriptions
	Usage of password policy descriptions in password assistants

	Easy-to-use passwords
	Conclusion

	Conclusion
	Bibliography

