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Theoretical Predictions of Axonal Pathways Activated  

by Subthalamic Deep Brain Stimulation 

 

Abstract 

by 

KABILAR GUNALAN 

 

Deep brain stimulation (DBS) is an established clinical therapy for 

Parkinson’s disease (PD).  Experimental data suggests that DBS activates axons 

near the active electrode contact.  However, the specific axonal pathways directly 

activated by DBS are not clearly defined.  In this study, we used patient-specific 

computational models to provide insights of the pathways mediating the 

therapeutic response to subthalamic DBS. 

One such model, known as the field-cable pathway-activation model (FC 

PAM), is the current gold standard for predicting axonal activation on a patient-

specific basis.  However, FC PAMs require significant technical expertise and 

computational resources.  Thus, the driving force (DF) and volume of tissue 

activated (VTA) methods, which are derived from simplified FC models, are 

typically used in clinical research studies.  We compared the predictions of the 

FC PAM, DF PAM, and VTA PAM during subthalamic DBS.  Unfortunately, none 

of these simplified models (i.e. DF PAM or VTA PAM) were able to match the 



	
	

xx	

results of the FC PAM in terms of stimulation thresholds or pathway activation 

estimates across all pathways and combinations of stimulus parameters. 

The pathways in the subthalamic region that mediate the therapeutic 

effects of DBS are not clearly defined.  We constructed FC PAMs of three PD 

patients explicitly representing six axonal pathways.  We calculated the pathways 

activated by the clinically-defined therapeutic stimulation setting in each patient.  

Our results suggest that therapeutic stimulation activates multiple pathways and 

these pathways were not consistent among the PD patients. 

We used an FC PAM to dissect the neural elements mediating cortical 

evoked potentials.  Experimental recordings of cortical evoked potentials are 

used to evaluate the effects of subthalamic DBS and have components that 

occur at discrete times after each stimulus pulse.  We compared the conduction 

times for small (5.7 µm), medium (10.0 µm), and large (15.0 µm) diameter 

corticofugal axons of both the hyperdirect and internal capsule pathways.  We 

found that subthalamic DBS likely activates small diameter hyperdirect axons 

resulting in the medium latency cortical evoked potentials. 

This work lays the foundation for studies selectively targeting pathways in 

the subthalamic region with the use of FC PAMs to dissect the complex clinical 

response to stimulation. 
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Chapter 1 – Introduction 
 

1.1.  Parkinson's disease 

Parkinson’s disease (PD) is a neurodegenerative disorder in which 

patients suffer from motor symptoms [Jankovic et al., 1990; Obeso et al., 2010] 

and non-motor symptoms [Barone et al., 2009].  The diagnosis of PD is based on 

the cardinal motor symptoms, including resting tremor, bradykinesia, rigidity, and 

postural instability.  However, diagnosis and management of the disease is 

difficult as the patients usually present with a heterogeneous combination of 

symptoms. 

The pathological origin of these PD symptoms is thought be a result of the 

dysfunction of brain circuits [DeLong, 1990; McIntyre and Hahn, 2010].  PD 

patients have a loss of dopaminergic neurons in the substantia nigra pars 

compacta [Damier et al., 1999].  The loss of these cells is thought to manifest 

into synchronized oscillatory activity within the basal ganglia [Brown et al., 2001].  

Administration of levodopa, a dopaminergic medication, in PD patients reduces 

this oscillatory activity and concurrently improves symptoms such as 

bradykinesia and rigidity [Kuhn et al., 2006].  But whether this oscillatory activity 

is a symptomatic expression of the disease or a cause of the symptoms is yet to 

be fully characterized. 

Upon diagnosis, PD patients are initially treated with dopaminergic 

medications to manage the symptoms of the disease [Cotzias et al., 1969; 

Connolly and Lang, 2014].  As the disease progresses, patients require 

increased dosages of levodopa to manage the motor symptoms but levodopa-
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induced dyskinesias can occur [Rascol et al., 2000; Schrag and Quinn, 2000].  

Dyskinesias are a side effect of the levodopa therapy that often compromises the 

overall goal of levodopa on the improvement in quality of life.  Surgical 

alternatives, such as ablation surgery and deep brain stimulation (DBS) [Benabid 

et al., 1987], help manage the motor symptoms thereby reducing the required 

amount of dopaminergic medications and controlling dyskinesias. 

 

1.2.  Deep brain stimulation 

DBS is a surgical alternative for the treatment of the motor symptoms of 

PD.  DBS systems are completely internalized with a lead implanted within the 

brain connected, with an extension wire, to an implanted pulse generator (IPG) 

(Figure 1.1). These systems produce a pulsatile electrical current within the brain 

that modulates the activity of the neurons near the DBS lead to suppress 

symptoms.  DBS has become an established therapy, largely replacing ablative 

surgery, as it provides a reversible and customizable alternative to lesioning 

[Benabid et al., 1991]. 
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Figure 1.1.  Illustration of an implanted deep brain stimulation system.  The 

system includes a pulse generator implanted in the chest that is connected with 

an extension wire to the DBS lead. 

 

An important factor in the outcome of DBS is the location of the 

therapeutic contact [Rolston et al., 2016].  Stereotactic surgical targeting of the 

DBS lead provides a systematic method for precisely positioning the electrode 

within the brain.  First, preoperative structural magnetic resonance images 

(MRIs) are acquired of the patient.  Second, on the day of surgery, a stereotactic 

frame is attached to the patient’s head [Leksell, 1950] and the patient undergoes 

a MRI or computed tomography (CT) scan with this frame in place.  Third, the 

surgeon then fuses the two sets of images to visualize the target structures on 

the MRI in the context of this stereotactic coordinate system.  The surgeon uses 

structures that are visible on the MRIs and distances from visible landmarks to 

determine a target for the DBS lead.  Fourth, once the patient is in the operating 

room, it is also common that microelectrode recordings can be used to map and 
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verify the target structure, and intraoperative stimulation with the DBS lead is 

used to verify suppression of symptoms. 

For PD, there are generally two structures within the basal ganglia that 

can be targeted for stimulation: subthalamic nucleus (STN) or globus pallidus 

internus (GPi) [Limousin et al., 1998].  Initially it was believed that STN DBS 

produced better outcomes, but similar motor symptom control and reduction in 

antiparkinsonian medications has been shown with stimulation of both targets 

[Anderson et al., 2005; Odekerken et al., 2013; Miocinovic et al., 2013].  Even 

within the subthalamic region, there is not a consensus on the optimal target 

[Hamel et al., 2017].  This is likely because the neural elements mediating the 

therapeutic effect of stimulation are not well characterized. 

The choice of stimulation settings is another important factor that effects 

therapeutic outcomes.  There are thousands of programmable stimulation setting 

combinations as the electrode contact configuration, stimulus pulse amplitude, 

stimulus pulse width, and stimulus pulse frequency can be individually modified.  

For STN DBS, the stimulus pulse width is typically programmed to 60 µs or 90 µs 

[Volkmann et al., 2006] and the stimulus pulse frequency is between 130 Hz and 

200 Hz [Moro et al., 2002], but the electrode contact configuration and stimulus 

pulse amplitude are dependent on each patient’s response.  A few weeks after 

surgery, the clinician performs a monopolar review of the device to determine the 

ideal settings for stimulation [Volkmann et al., 2002].  In this process, a contact is 

selected under monopolar configuration and the stimulus amplitude is 

incrementally increased.  For each stimulus amplitude, any symptom 



	
	

5	

improvement and side effects are noted.  This process is repeated for all four 

electrode contacts.  The electrode contact with the largest amplitude difference 

between the suppression of symptoms and evolution of side effects is selected.  

This programming process is currently done without exact knowledge of where 

the electrode is placed within the target region of the patient’s brain, but 

commercial software technologies are emerging onto the market that provide this 

visualization. 

Given the appropriate patient selection, electrode localization, and 

stimulation parameter selection, DBS can improve the quality of life for PD 

patients; however, the mechanisms of action are still under investigation.  Initial 

theories on the mechanisms of action of DBS was that it suppressed neuronal 

activity in the nucleus where stimulation is delivered thereby mimicking the 

mechanism of action of lesioning therapies [Lozano et al., 2002].  However, 

experimental [Hashimoto et al., 2003; Anderson et al., 2003; Montgomery, 2006] 

and theoretical [Ranck, 1975; McIntyre et al., 2004; Miocinovic et al., 2006] 

studies suggest that clinical DBS generates action potentials in axons near the 

electrode.  These action potentials are transmitted to the downstream nuclei with 

an overall effect of reducing the pathological beta oscillatory activity in the basal 

ganglia [Giannicola et al, 2010; Whitmer et al., 2012] and as a result improving 

information flow [Zimnik et al., 2015].  In this dissertation, we focus on quantifying 

those axonal pathways directly activated by therapeutic STN DBS using patient-

specific computational models. 
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1.3.  Electrical stimulation modeling 

Action potential conduction along an axon can be modeled with a multi-

compartment cable structure (Figure 1.2) [Hodgkin and Huxley, 1952].  The 

model of the unmyelinated squid giant axon originally developed by Hodgkin and 

Huxley has subsequently been customized for a myelinated mammalian 

membrane with representations of nodal and internodal compartments 

[Frankenhaeuser and Huxley, 1964; Sweeney et al., 1987].  In this dissertation, 

we use the latest evolution of this axon model developed by McIntyre et al. 

[2002] that has been validated against experimental measurements for action 

potential shape, conduction velocity, strength-duration relationships, and 

strength-distance relationships. 

 

 

Figure 1.2.  Multi-compartment cable axon model.  (Left) Illustrative example of a 

cross section of a myelinated axon.  (Right) Schematic diagram of a simplified 

double cable axon model with representations of the cell membrane and myelin.  

Ga – axial conductance; Gp – periaxonal conductance; Gmyelin – myelin 

conductance; GL – leakage conductance; GK – potassium conductance; GNa – 

sodium conductance; Cm – membrane capacitance; Cmyelin – myelin capacitance; 

Vm – transmembrane voltage. 

 

 

For a given axon model, McNeal [1976] described the methodology for 

calculating the threshold amplitude for activation of an axon with an extracellular 

stimulating electrode placed at a finite distance from the axon.  McNeal showed 
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that the change in transmembrane voltage of the cable axon model (Vm, Figure 

1.2) in response to an applied extracellular voltage is described with a set of 

partial differential equations (Equation 1.1).  The assumption with this model is 

that the voltage on the outside of the axon is dictated solely by the extracellular 

voltage generated by the stimulating electrode.  Thus, to understand the effects 

of stimulation in the nervous system the voltage distribution generated by a 

stimulating electrode needs to be coupled to cable models of axons. 

 

!"
#$",&
#'

+ )& − +, ∙ ∆/$",& = +, ∙ ∆/$1,& 

Equation 1.1.  The cable equation.  Ga – axial conductance; I – ionic current 

through the membrane; Cm – membrane capacitance; Vm – transmembrane 

voltage; Ve – extracellular voltage generated by stimulating electrode; i – index of 

a compartment; ∆ - second difference operator. 

 

This general theory of axon stimulation models has been integrated with 

patient imaging data to quantify the axonal pathways activated by DBS (Figure 

1.3) [Miocinovic et al., 2006].  In order to do so, first, the voltage distribution 

generated by the stimulating electrode is calculated within a volume conductor 

model using the finite element method.  These volume conductor models of DBS 

have evolved from a point source in an infinite homogeneous medium to 

incorporating patient-specific properties such as the DBS macroelectrode, 

boundaries of the head, and anisotropic tissue conductivities [Foutz and 

McIntyre, 2010; Chaturvedi et al., 2010; Howell and McIntyre, 2016; Howell and 

McIntyre, 2017].  Second, the trajectories of the multi-compartment cable axons 

are based off of pathway reconstructions in the patient’s head.  Together, these 
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models calculate the theoretical response of pathways to the DBS voltage 

distribution using multi-compartment cable models of axons and are thus known 

as field-cable pathway-activation models (FC PAMs).  In Chapter 2, we describe 

the latest evolution of these FC PAMs that incorporate patient-specific properties 

including the tissue conductivities and axonal trajectories within the head.  In the 

remainder of this dissertation we use FC PAMs to investigate the pathways 

activated during therapeutic stimulation. 

 

 
Figure 1.3.  Field-cable pathway activation model.  The deep brain stimulation 

(DBS) lead is implanted in the subthalamic nucleus (green).  The DBS voltage 

distribution (not shown) is used to stimulate a multi-compartment cable model 

representation of an internal capsule axon and the response of this axon is 

quantified.  This axon model generates a propagating action potential in 

response to the suprathreshold stimulus.  Stimulation setting: contact 2 (-), case 

(+); 2.9 V; 90 µs; 130 Hz. 

 

 

Solving the differential equations describing the nonlinear response of the 

transmembrane voltage to the applied DBS voltage distribution (Equation 1.1) is 
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a computationally intensive task.  Thus, several studies have developed 

simplified methods for predicting the axonal response to stimulation, exploiting 

the theoretical observation that the change in the transmembrane voltage is 

related to the second spatial difference of the applied extracellular voltage along 

that element (∆
2
Ve, Equation 1.1) [McNeal, 1976; Rattay, 1986].   Such simplified 

methods include the driving force (DF) model [Warman et al., 1992; Peterson et 

al., 2011] and volume of tissue activated (VTA) model [Butson and McIntyre, 

2006; Madler and Coenen, 2012; Chaturvedi et al., 2013; Astrom et al., 2015].  In 

Chapter 3, we evaluate these simplified methods for predicting axonal activation 

compared to the gold standard FC PAM in the context of subthalamic DBS. 

 

1.4.  Tractography 

Tractography is a non-invasive method for reconstructing axonal pathways 

on a patient-specific basis.  Tractography relies on diffusion-weighted (DW) MRIs 

that are acquired for each patient.  A DW MRI provides a measurement of the 

diffusion of water in the brain.  Tractography is based on the assumption that 

water is more likely to diffuse along the trajectories of anisotropic white matter 

[Moseley et al., 1990].  From a set of DW images measuring diffusion in at least 

six different directions, a model is created that describes diffusion on a voxel-by-

voxel basis.  The first such model was based on a tensor [Basser et al., 1994].  

Alternative approaches have subsequently been described that effectively create 

probability distribution functions in each voxel to represent the likelihood of 
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diffusion in any given direction.  One such alternative that we employ in this work 

was developed by Behrens et al. [2003; 2007]. 

Based on the voxel-wise diffusion models, streamline trajectories between 

different brain regions are calculated with a tractography algorithm. This process 

involves tracking from a seed region to a target region, based on the described 

diffusion direction in each voxel.  With probabilistic tractography algorithms, the 

diffusion model probability distribution functions can be repeatedly sampled to 

capture the spatial spread in the distribution of streamline trajectories.  

Constraints can be placed on these algorithms such that the streamlines have to 

pass through waypoint regions and avoid exclusion regions.  This results in the 

streamline trajectories theoretically representative of patient-specific axonal 

pathways between the seed and target regions.  In our analysis, we used 

probabilistic tractography to reconstruct the internal capsule (IC), 

cerebellothalamic tract (CbTT), and medial lemniscus (ML) pathways.  However, 

the trajectories of the tractography-based streamlines are very sensitive to the 

diffusion model, tractography algorithm, and input parameters [Behrens et al., 

2007; Thomas et al., 2014].  As described in Chapter 4, probabilistic tractography 

was not able to generate anatomically realistic trajectories of the 

subthalamopallidal (SP) and lenticular fasciculus (LF) pathways and thus stylized 

representations were generated [Miocinovic et al., 2006]. 
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1.5.  Motivation 

The axonal pathways in the subthalamic region that mediate the therapeutic 

response to DBS are not clearly defined.  Patient-specific computational models 

can provide insights on the neurons directly modulated by DBS.  These model 

results can be coupled with clinical measurements to get a better understanding 

of axonal pathways that when stimulated generate therapeutic effects or side 

effects.  The aim of this dissertation was focused on constructing detailed 

patient-specific models of subthalamic DBS in PD patients and calculating the 

response of axons to therapeutic stimulation. 

Previous studies have used computational models to provide insights on the 

pathways activated by STN DBS.  Miocinovic et al. [2006] reconstructed the SP, 

LF, and IC pathways in two non-human primates implanted with DBS electrodes.  

They observed that increasing stimulation from a non-therapeutic amplitude to a 

therapeutic amplitude resulted in an increase in SP activation in both subjects, 

but an increase in LF activation in only one subject.  Coenen et al. [2011] 

targeted stimulation to the CbTT pathway in a subject resulting in tremor 

cessation.  Chaturvedi et al. [2012] explored the use of current steering with 

multiple independent sources to selectively activate either the SP or LF before 

activation of the IC.  Since the time of these studies more information has been 

published in anatomical tracing studies regarding the trajectory of these and 

other pathways [Gallay et al., 2008; Kita and Kita, 2012; Haynes and Haber, 

2013].  In addition to these developments, constraining an increased number of 

volume conductor model parameters has become a popular approach to 



	
	

12	

implementing these models [Howell and McIntyre, 2016; Howell and McIntyre, 

2017]. 

 

1.6.  Hypotheses 

In this dissertation. we use patient-specific computational models to 

characterize activation of the SP, LF, IC, CbTT, ML, and hyperdirect (HD) 

pathways. 

In Chapter 2, we provide a detailed description of the development steps 

for a patient-specific FC PAM.  These FC PAMs account for the anatomical and 

biophysical details of each patient, and explicitly calculate the nonlinear axonal 

response to the DBS voltage distribution.  Furthermore, the FC PAM presented 

here implements the latest advances in image processing, volume conductor 

modeling, and biophysical axonal stimulation modeling.  Thus, this FC PAM 

represents the current gold standard for predicting axonal activation in humans.  

The workflow presented in this chapter is used for the construction of the FC 

PAMs in Chapters 3-5. 

In Chapter 3, we compare the differences in axonal activation predictions 

between these detailed patient-specific DBS models (i.e. FC PAM) and simplified 

DBS models (i.e. VTA and DF).  Our goal is to evaluate the accuracy of DF and 

VTA models compared to FC PAMs for DBS relevant parameters.  We calculate 

the differences in stimulation thresholds and pathway activation between the FC 

PAM and the four predictors (DF-Peterson, VTA-Chaturvedi, VTA-Madler, VTA-

Astrom) for a range of axon diameters (2 µm - 10 µm), stimulus pulse widths (30 
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µs - 120 µs), and electrode configurations (monopolar, bipolar, tripolar, 

quadripolar). 

In Chapter 4, we calculate the axonal pathways activated by therapeutic 

subthalamic DBS in three PD patients using detailed patient-specific FC PAMs.  

We hypothesize that therapeutic stimulation (contact 2 [-], case [+]; 1-5 Volts; 60 

µs; 130 Hz) in the subthalamic region selectively activates the HD and SP 

pathways, over the LF, CbTT, IC, and ML pathways. 

In Chapter 5, we use a FC PAM to dissect the axons mediating short 

latency cortical evoked potentials during subthalamic DBS.  These cortical 

evoked potentials have components that occur at 1.0 ms, 5.7 ms, and 22.2 ms 

after each stimulus pulse, which are referred to as R1, R2, and R3 respectively 

[Walker et al., 2012].  R1 is assumed to arise from antidromic invasion of layer V 

pyramidal neurons, R2 from intracortical synaptic activity, and R3 from 

orthodromic activity along the basal ganglia output nuclei.  We construct a 

patient-specific FC PAM of the IC and HD pathways to verify the validity of these 

assumptions.  We hypothesize that short latency responses at 1.0 ms in cortex 

are due to activation of hyperdirect axons.  We stimulate in the subthalamic 

region and quantify the timings of action potentials arriving in cortex along these 

two pathways. 

  



	
	

14	

Chapter 2 – Creating and parameterizing patient-specific 
deep brain stimulation pathway-activation models 
 

Gunalan K, Chaturvedi A, Howell B, Duchin Y, Lempka SF, Patriat R, Sapiro G, 

Harel N, McIntyre CC. Creating and parameterizing patient-specific deep brain 

stimulation pathway-activation models using the hyperdirect pathway as an 

example. PloS one. 2017 Apr 25;12(4):e0176132. 

 

Abstract 

Background:  Deep brain stimulation (DBS) is an established clinical 

therapy and computational models have played an important role in advancing 

the technology.  Patient-specific DBS models are now common tools in both 

academic and industrial research, as well as clinical software systems.  However, 

the exact methodology for creating patient-specific DBS models can vary 

substantially and important technical details are often missing from published 

reports.  Objective:  Provide a detailed description of the assembly workflow and 

parameterization of a patient-specific DBS pathway-activation model (PAM) and 

predict the response of the hyperdirect pathway to clinical stimulation.  Methods:  

Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, 

Python) enables the creation and visualization of a DBS PAM. An example DBS 

PAM was developed using 7T magnetic resonance imaging data from a single 

unilaterally implanted patient with Parkinson’s disease (PD).  This detailed 

description implements our best computational practices and most elaborate 

parameterization steps, as defined from over a decade of technical evolution.  
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Results:  Pathway recruitment curves and strength-duration relationships 

highlight the non-linear response of axons to changes in the DBS parameter 

settings.  Conclusion:  Parameterization of patient-specific DBS models can be 

highly detailed and constrained, thereby providing confidence in the simulation 

predictions, but at the expense of time demanding technical implementation 

steps.  DBS PAMs represent new tools for investigating possible correlations 

between brain pathway activation patterns and clinical symptom modulation. 

 

2.1. Introduction 

Deep brain stimulation (DBS) is an established therapy for the treatment 

of movement disorders (e.g. essential tremor, Parkinson’s disease (PD), and 

dystonia) and shows promise for the treatment of epilepsy and neuropsychiatric 

diseases (e.g. obsessive compulsive disorder, Tourette syndrome, and 

depression) (Lozano and Lipsman, 2013).  Despite the growing clinical use of 

DBS, there is a paucity of knowledge on the neural response to the applied 

voltage distribution, and correlations linking the modulation of different brain 

pathways with clinical outcomes are lacking.  Pathway-activation models (PAMs) 

are new scientific tools designed to help to address those knowledge gaps. 

The motivation for creating PAMs comes from the clinical observation that 

accurate placement of the electrode within the target is a major determinant of 

therapeutic outcomes in DBS interventions (e.g. Welter et al., 2014; Eisenstein et 

al., 2014; Riva-Posse et al., 2014).  However, a clear scientific definition of the 

“target” for each DBS therapy has been somewhat elusive.  Experimental and 
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theoretical data suggest that axons are the most excitable neural elements to 

extracellular electrical stimulation (Ranck, 1975; McIntyre and Grill, 1999), and a 

primary effect of DBS is the generation of action potentials in axons (McIntyre et 

al., 2004; Miocinovic et al., 2006).  Thus, irrespective of the neurological disorder 

under consideration, a growing consensus suggests that the target of the 

stimulation is likely to be axonal in nature (Gradinaru et al., 2009; Riva-Posse et 

al., 2014).  However, the specific axonal pathways that are the explicit 

therapeutic targets for DBS are still under debate. 

Given that a basic purpose of diffusion-weighted imaging (DWI) is to 

characterize axonal pathways in the brain, a burgeoning field of DBS research is 

now using DWI-based tractography to better understand the activated pathways 

(Coenen et al., 2012; Henderson, 2012).  Numerous clinical studies have 

recently conducted tractography from voxels near DBS electrode contacts to 

identify potential axonal pathways that may be stimulated in disorders such as 

PD (Coenen et al., 2011), essential tremor (Klein et al., 2012), depression 

(Gutman et al., 2009), and epilepsy (Rossi et al., 2010).  However, studies of this 

type commonly ignore the underlying biophysics of electrical stimulation when 

attempting to identify activated pathways.  PAMs represent a methodology to 

explicitly calculate the axonal response to DBS, as well as its dependence on a 

number of factors that include:  1) the electrode configuration, 2) the shape, 

duration, and frequency of the applied stimuli, 3) the electrical conduction 

properties of the brain tissue medium, 4) the geometry and trajectory of the 

axons, and 5) the membrane biophysics of the axons. 
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We propose that accurate assessment of axonal activation requires 

modeling the direct application of the DBS voltage distribution on anatomically 

and biophysically accurate models of axons.  Chaturvedi et al. (2010) and Lujan 

et al. (2012, 2013) demonstrated our first attempts at creating the conceptual 

basis of PAMs.  These studies used medical images to locate the DBS electrode 

and model the voltage distribution generated in the patient’s head.  Then 

tractography was used to define the location and trajectory of axonal pathways 

surrounding the electrode.  Finally, the DBS voltage distribution was used to 

stimulate cable models of individual axons.  However, these first generation 

PAMs had very difficult software integration hurdles that exceeded what would be 

realistic for use in larger scale clinical analyses, as well as technical limitations in 

the volume conductor electric field models.  Therefore, we worked to develop an 

improved workflow for constructing PAMs, and implemented numerous model 

parameterization steps that improve the detail and accuracy of the simulations.  

This manuscript describes how each step of the workflow comes together to 

create a PAM. 

We present an example patient-specific PAM of unilateral subthalamic 

DBS that characterizes stimulation of two corticofugal pathways:  1) internal 

capsule fibers of passage, and 2) the hyperdirect pathway.  Layer V pyramidal 

neurons send projections via the internal capsule to the brainstem and spinal 

cord.  Of these projections, 5-10% give off a collateral to the subthalamic nucleus 

(STN) and are collectively known as the hyperdirect pathway (Nambu et al., 

2002; Kita and Kita, 2012; Haynes and Haber, 2013).  Electrical (Li et al., 2007; 
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Li et al., 2012) and optogenetic (Gradinaru et al., 2009; Sanders and Jaeger, 

2016) stimulation of the hyperdirect pathway has been directly linked to 

therapeutic benefit in rodent models of PD.  In addition, human experiments have 

supported the hypothesis that DBS of the hyperdirect pathway is related to 

symptom relief (Walker et al., 2012; Whitmer et al., 2012).  In contrast, direct 

activation of internal capsule fibers of passage is known to generate muscle 

contraction side effects (Tommasi et al., 2008).  Therefore, we use our PAM 

example to demonstrate the different DBS recruitment characteristics of these 

two clinically relevant pathways. 

 

2.2. Materials and Methods 

2.2.1. Ethics statement 

Collection of all patient data for this study was approved by the University 

of Minnesota Institutional Review Board (IRB).  The patient provided informed 

written consent prior to participating in the research and this consent procedure 

was approved by the IRB. 

 

2.2.2. Patient data 

The imaging data was acquired from a 67-year old right-handed male 

diagnosed with PD for ~11 years.  A Medtronic 3389 DBS lead was implanted in 

the left STN and connected to an Activa SC implantable pulse generator (IPG) 

(Medtronic, Minneapolis, MN).  Using standard clinical programming procedures 

(Volkmann et al., 2002), the following therapeutic stimulation parameters were 
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selected:  monopolar configuration with contact 2 as the cathode and the IPG 

case as the anode, pulse amplitude of 1.7 V, pulse width of 60 µs, and pulse 

frequency of 130 Hz.  His OFF medication, OFF stimulation motor subscore of 

the Unified Parkinson’s Disease Rating Scale was 31, and the ON medication, 

ON stimulation score was 14.  The impedance measured by the IPG at contact 2 

was 1450 Ω, which is the dynamic load of the circuit as defined at 70 µs into the 

stimulus pulse (Appendix B). 

 

2.2.3. Workflow overview 

The general workflow required to create a PAM is outlined in Fig 2.1 and 

detailed in the following sections.  First, we acquired, pre-processed, and co-

registered the patient’s imaging data (Section 2.2.4 and Appendix B).  Second, 

we calculated the voltage distribution generated by the DBS electrode (Section 

2.2.5).  Third, we constructed multi-compartment cable axon models whose 

trajectories were based on tractography reconstructions of axonal pathways of 

interest near the DBS electrode (Section 2.2.6).  Fourth, we used the DBS 

voltage distribution to stimulate the model axons and quantified their response 

(Section 2.2.7). 
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Figure 2.1.  Scientific workflow for development of pathway-activation models.  

Color shading corresponds to the software program used for each step.  Patient 

images are processed and tractography is performed in FSL (red).  The finite 

element model is constructed and solved in COMSOL (purple).  The axon model 

is constructed and the threshold stimulus amplitude for action potential 

generation is solved for in NEURON (pink).  We automated many of the steps 

using custom MATLAB, Python, NEURON, and Bash scripts. 

 

2.2.4. Image acquisition 

The patient underwent pre-operative scanning on a 7T magnetic 

resonance imaging (MRI) system (Magnex Scientific, UK) at the Center for 

Magnetic Resonance Research (CMRR) at the University of Minnesota, using 

T1-weighted (T1W), T2-weighted (T2W), susceptibility-weighted (SW), and 

diffusion-weighted (DW) imaging (Appendix B).  We also obtained a pre-

operative T1W image on a 1.5T Siemens Magnetom Espree.  A post-operative 

CT image was acquired on a Siemens Biograph64 Sensation approximately 1 

month after the DBS surgery. 
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2.2.5. DBS voltage distribution 

The voltage distribution generated by the DBS electrode varies both 

spatially and temporally in the tissue medium (Fig 2.2 and Fig 2.3).  The 

conductance and permittivity of the tissue medium and electrode-tissue interface 

(ETI) affect the voltage distribution generated within the head.  Temporally, the 

stimulus waveform generated by the IPG consists of a cathodic phase, 

interphase interval, passive recovery phase, and interpulse interval (Fig 2.3F).  

For a given set of stimulation parameters, we used a four-step approach to 

approximate the voltage distribution generated by the DBS electrode as a 

function of space and time (Equation 2.1) (Butson and McIntyre, 2005; 

Miocinovic et al., 2009; Howell and McIntyre, 2016; 2017): 

 

Equation 2.1.  DBS voltage distribution. 

Φ x, y, z, t = Φ x, y, z, t = 0 ∗ A ∗ V;<==>?(t) 

 

First, we calculated the static solution of the voltage distribution in the tissue 

medium, Φ x, y, z, t = 0  (Fig 2.3E and Section 2.2.5.1).  The voltage on the 

electrode surface was set to -1 V with respect to ground, which was defined at 

the base of the neck and set to 0 V (Fig 2.2D) (Walckiers et al., 2010).  Second, 

because the differential equation solved is linear, we scaled the voltage 

distribution by the stimulus amplitude, A, under investigation.  Third, to account 

for the filtering effects of the IPG circuitry, lead wires, and the ETI on the DBS 

waveform “seen” by the tissue, we calculated the tissue voltage over time, 
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V;<==>?(t), with an equivalent electrical circuit of the implanted DBS system	(Fig 

2.3F and Appendix B and Section 2.2.5.2).  Finally, the extracellular voltage 

distribution is scaled by the tissue waveform at each time step, Φ x, y, z, t .  This 

process is described in further detail in the following sections. 

 

 

Figure 2.2.  Finite element model boundaries.  (A) The non-skull stripped 1.5T 

T1-weighted (T1W) image is used to extract the inner skull surface (red).  (B) 

Inner skull surface mesh from (A) prior to any processing.  (C) An oblique coronal 

view of the post-operative CT image, co-registered to the pre-operative T1W 

image, that is used to localize the four collinear electrode contacts.  The inset 

shows the artifact of the 4 electrode contacts and a 3-dimensional rendering of 

the model Medtronic 3389 DBS electrode fit to the electrode artifact.  (D) 

Domains of the finite element model, including the electrode, brain, and head.  

The neck region of the head surface mesh is set to 0 V under the monopolar 

configuration (blue). 

 

2.2.5.1. Spatial characteristics 

We calculated the voltage distribution generated in the tissue 

medium, 	Φ x, y, z, t = 0 , for monopolar cathodic stimulation delivered through 

contact 2.  Laplace’s equation was solved using an electrostatic finite element 

model (FEM) in COMSOL.  We constructed the FEM using the following five 

steps.  First, we constructed volumes representing a Medtronic 3389 DBS 

electrode, an encapsulation layer surrounding the electrode, and domains of the 

brain and head.  Each electrode contact was modeled as a cylindrical surface, 

with 1.5 mm length and 0.5 mm spacing between contacts.  The length of the 
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entire electrode shaft was 60 mm but did not pass outside the brain domain.  We 

modeled the encapsulation layer with a radius of 0.5 mm along the entire length 

of the electrode shaft.  Surface meshes representing the inner skull and outer 

head surfaces were constructed (Fig 2.2A/B and Appendix B) and imported into 

COMSOL to define volumes of the brain and head (Fig 2.2D). 

 

Figure 2.3.  Finite element model and DBS voltage distribution.  (A) 

Segmentation of the head into different tissue types (grey matter – red, white 

matter – green, cerebrospinal fluid – dark blue, muscle – light purple, tendon – 

yellow, bone – pink, fat – light blue, skin – dark purple, intervertebral disks – not 

visible, blood – orange, air – black).  (B) Conductivity tensors within the head 

normalized by their volume.  Anisotropic conductivity tensors are constructed 

within the brain using the eigenvectors of the diffusion tensors and a scalar 

mapping of the diffusion eigenvalues.  Each tensor is colored according to its 

fractional anisotropy.  (C) Same tensors from (B) but scaled so that the relative 

differences in conductivities can be visualized.  (D) Zoomed view of tensors from 

(C) near the DBS electrode.  (E) Isolines of the voltage distribution generated by 

a -1.7 V stimulus at contact 2.  (F) The stimulus waveform at the electrode-tissue 

interface generated by the implantable pulse generator. 
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Second, we defined a conductivity tensor field within the head (Appendix 

B).  The tensor field outside of the brain was isotropic, and was anisotropic within 

the brain.  Within the brain, we defined symmetric conductivity tensors using a 

load preservation approach that was based off of the patient-specific diffusion 

tensor data (Howell and McIntyre, 2016).  We defined the isotropic conductivity of 

the encapsulation layer so that the model impedance matched the clinically-

measured impedance (Appendix B).  To do so, we varied the encapsulation layer 

conductivity between 0.05 – 0.2 S/m (Grill and Mortimer, 1994; Butson et al., 

2006), and then calculated the model impedance by replicating the impedance 

measurements of the Medtronic programming device. 

Third, we defined Dirichlet boundary conditions of -1 V at contact 2 and 0 

V at the neck region of the head surface (Fig 2.2D).  The inactive contacts were 

modeled using boundary conditions, and the electrode shaft (except for the 

contacts) and head surface (except for the neck region) were modeled as perfect 

insulators (Appendix B).  Fourth, we generated a multi-resolution, tetrahedral 

volume mesh between the outer boundary of the DBS electrode and the inner 

boundary of the outer head (Appendix B).  Fifth, we solved the model to calculate 

the voltage distribution, Φ x, y, z, t = 0  (Fig 2.3E). 

 

2.2.5.2. Temporal characteristics 

We calculated the temporal modulation of the voltage distribution using an 

equivalent electrical circuit model for voltage-regulated, monopolar stimulation 

(Appendix B).  The equivalent electrical circuit model included representations of 
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the blocking capacitors (10 µF), extension wire and lead wire resistances (55 Ω), 

ETI with a double-layer capacitance and Faradaic resistance in parallel, and 

tissue resistance.  The distributed values of the double-layer capacitance and 

Faradaic resistance of the ETI were 30 µF/cm
2
 and 150 Ωcm

2
, respectively, 

which equated to lumped values of 1.8 µF and 2.5 kΩ (Wei and Grill, 2009).  We 

ignored the tissue capacitance because the double-layer capacitance is 

approximately two orders of magnitude larger than the tissue capacitance 

(Butson and McIntyre, 2005; Howell and McIntyre, 2016).  The access resistance 

of our electrostatic FEM (i.e. tissue resistance) with contact 2 set as the working 

electrode was 1373 Ω (Appendix B).  A ‘parasitic’ capacitance (3 nF) and 

‘parasitic’ resistance (20 kΩ) were included in parallel with the load of the DBS 

system so the voltage waveform generated across the tissue resistance had 

decay characteristics during the interphase interval that matched the measured 

waveform from the output of a Medtronic IPG (data not shown). 

The voltage waveform generated across the tissue resistance (i.e. tissue 

waveform) was calculated for an applied rectangular pulse train (Fig 2.3F).  For 

each pulse, the applied rectangular waveform consisted of a cathodic phase, 

interphase interval, passive recovery phase, and interpulse interval.  The tissue 

waveform, V;<==>?(t), was calculated by applying Kirchhoff’s current law to the 

equivalent circuit model and using forward Euler numerical time integration to 

solve the ordinary differential equations.  Finally, we scaled the extracellular 

voltage distribution, Φ x, y, z, t = 0 , by the tissue waveform,	V;<==>?(t), at each 
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time step to calculate the temporal aspects of the voltage distribution, Φ x, y, z, t  

(Appendix B). 

 

2.2.6. Axon model 

We constructed multi-compartment cable models of myelinated axons to 

represent the hyperdirect pathway, as well as internal capsule fibers of passage, 

in NEURON (Fig 2.4).  Both pathways consisted of a corticofugal axon passing 

through the internal capsule.  The models representing the hyperdirect pathway 

where unique in that they had an axon collateral that branched from the 

corticofugal axon and terminated in the STN (Kita and Kita, 2012; Hayes and 

Haber, 2014). 

We used probabilistic tractography to define the trajectory of each 

corticofugal axon (Fig 2.4B).  FSL’s probabilistic tractography tool (probtrackx) 

generated trajectories, or ‘streamlines’, which originated in the seed mask and 

terminated in the target masks (Appendix B).  Of the 13,219 corticofugal 

streamlines that were reconstructed with probabilistic tractography, we randomly 

sampled 2,000 for use in our models.  One thousand streamlines were used to 

model the internal capsule fibers of passage, and the other 1,000 streamlines 

were designated to the hyperdirect pathway.  We fit a smoothing spline to each 

tractography-generated streamline to ensure a smooth trajectory for each 

streamline (Fig 2.4C and Appendix B). 
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Figure 2.4.  Tractography-based axon model of the hyperdirect pathway and 

internal capsule fibers of passage.  (A) Subcortical nuclei outlined on the T2-

weighted coronal image (subthalamic nucleus [STN] – green, substantia nigra – 

orange, red nucleus – red, thalamus – yellow, putamen – purple, globus pallidus 

externus – light blue, globus pallidus internus – dark blue).  (B) Tractography-

generated corticofugal streamlines.  Inset is a sagittal view of the resulting 

streamlines.  (C) A smoothing spline (white) is fit to an example tractography-

generated streamline (blue).  (D) The hyperdirect pathway axon is comprised of a 

collateral that branches off of a (i) corticofugal axon at a (ii) node of Ranvier (blue 

spheres) and (iii) terminates in a random voxel (red) within the STN.  An example 

population of (E) 100 internal capsule fibers of passage and (F) 100 hyperdirect 

pathway axons.  The inset in (F) shows that each hyperdirect pathway axon is 

comprised of a corticofugal axon with a branching collateral that terminates within 

the STN, whereas the inset in (E) shows that the internal capsule fibers of 

passage do not have a collateral. 

 

For the hyperdirect pathway axons, we modeled the collateral as a branch 

at a randomly chosen node of Ranvier along the corticofugal axon that was within 

the axial bounds of the STN (Fig 2.4D).  A random voxel within the STN was 

selected as the termination point of the collateral.  We then generated an arc 

connecting the branch point node of Ranvier and the termination point within the 

STN to define the collateral trajectory.  If the collateral passed through the DBS 

electrode, we randomly selected a different voxel within the STN and 

recalculated the corresponding arc. 

The geometric and electrical parameters of the corticofugal axons were 

defined from previously established models (McIntyre et al., 2002).  The 

myelinated axon was modeled with a double cable structure and the nodes of 

Ranvier contained active (i.e. voltage-gated fast Na
+
, persistent Na

+
, and slow K

+
 

ion channel conductances) and passive (i.e. leak conductance, capacitance) 

membrane properties.  The axon model compartments of the corticofugal axons 

were defined with a myelin diameter of 5.7 µm and the hyperdirect collaterals 
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were defined with a myelin diameter of 1.8 µm.  We divided each corticofugal 

axon into compartments (node of Ranvier, MYSA, FLUT, STIN) and calculated 

the coordinates of each compartment along the arc length of the streamline.  The 

coordinates of each compartment for the hyperdirect collateral were defined in 

the same manner as the corticofugal axon.  We shortened the collateral’s first 

node of Ranvier to 0.5 μm and shortened the distal end of the collateral so that it 

ended with a node of Ranvier.  The terminal node was assigned passive 

membrane properties to minimize any role as a hyperexcitable locus for action 

potential initiation (McNeal, 1976). 

 

2.2.7. Axon model stimulation 

The response of each individual axon model to the spatially- and 

temporally-varying DBS voltage distribution, Φ x, y, z, t , was calculated with 

NEURON (Appendix B) (Hines and Carnevale, 2001).  For each pulse width (20-

120 µs), with contact 2 set as the cathode and the IPG case set as the anode, we 

used a binary search algorithm to determine the stimulus amplitude, A, that was 

sufficient for generating propagating action potentials.  The threshold stimulus 

amplitude was calculated to within 0.01 V.  The axons were stimulated with 3 

pulses and the criteria for activation was that the distal active nodes of Ranvier 

on the corticofugal axon had to generate a 1-to-1 response to each stimulus 

pulse.  For both the internal capsule fibers of passage and hyperdirect pathway 

axons, we excluded axons from subsequent analyses that had thresholds greater 

than or equal to 150 V or initiated action potentials in the distal active nodes of 
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Ranvier on the corticofugal axon.  This resulted in 989 internal capsule fibers of 

passage and 1000 hyperdirect pathway axons.  Subsequently, each of these 

axons for a given pathway were clustered randomly into 100 populations of 1000 

axons in a bootstrapping manner (with replacement), to quantify the effects of 

variability in the distribution of the axon trajectories.  The average and standard 

deviation of the number of activated axons for the 100 populations in response to 

a specific stimulation amplitude are presented. 

We systematically changed several simulation parameters to ensure that 

the results converged on an accurate solution.  The differences in stimulation 

threshold amplitudes for axons of the internal capsule fibers of passage were 

calculated.  Two different analyses were performed: 1) we increased the mesh 

resolution in COMSOL from 1,429,416 to 2,347,048 tetrahedral elements; and 2) 

we decreased the time step in NEURON from 1 µs to 0.5 µs.  Each of these 

changes resulted in less than 1.2% differences in the stimulation thresholds. 

 

2.3. Results 

PAMs are the integrated processing of imaging data from DBS patients 

with tractography and electrical stimulation modeling to provide a theoretical 

estimate of axonal pathway activation.  In this study, we generated an example 

PAM using high-field (7T) MRI data to construct the patient model (Lenglet et al., 

2012).  These images have higher signal-to-noise, voxel resolution, and contrast 

than the 1.5T or 3T MRIs typically collected for clinical DBS procedures (Duchin 

et al., 2012). 
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Figure 2.5.  Model predictions for the activation of the hyperdirect pathway and 

internal capsule fibers of passage.  Representative population of (A1) 100 

hyperdirect pathway axons and (B1) 100 internal capsule fibers of passage 

(subthalamic nucleus – green, thalamus – yellow).  (A2), (B2) The voltage 

distribution generated by -1.7 V applied at contact 2 is interpolated along the 

streamlines.  (A3), (B3) The voltage distribution is used to stimulate the axon 

models, and those axons that are activated by the clinically effective stimulation 

setting (-1.7 V, 60 µs, 130 Hz) are shown in red.  (C) Percent activation of each 

pathway as a function of the stimulation amplitude (contact 2 [cathode], IPG case 

[anode], 60 µs, 130 Hz).  The dashed vertical line is the clinically effective 

stimulation amplitude. 

 

We designed the patient-specific PAM to enable comparison of the DBS-

induced activation of two sets of corticofugal axonal pathways.  One set 

represented the hyperdirect pathway and the other represented the internal 

capsule fibers of passage.  The activation of both pathways was calculated as a 

function of stimulation amplitude (Fig 2.5).  At the clinically effective stimulation 

setting (contact 2 [cathode], IPG case [anode], 1.7 V, 60 µs, 130 Hz), the model 

predicted 13.6 ± 1.2% activation of the hyperdirect pathway and 0 ± 0% 

activation of the internal capsule fibers of passage (Appendix B). 
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The model predictions corresponded well with the clinical hypothesis that 

the hyperdirect pathway is directly activated during therapeutic subthalamic DBS.  

The steep slope of the hyperdirect recruitment curve also supports the clinical 

hypothesis that the degree of hyperdirect pathway activation is proportional to the 

degree of therapeutic benefit (Walker et al., 2012).  However, hyperdirect 

pathway activation is constrained by stimulation spread into the internal capsule 

fibers of passage.  Significant activation of these internal capsule fibers of 

passage is known to generate unwanted side effects (Tommasi et al., 2008).  

Previous electromyography-based estimates for DBS-induced muscle 

contractions have suggested that side effects begin to occur at ~10% activation 

of the internal capsule fibers of passage (Chaturvedi et al., 2010). 

A key concept in the clinical implementation of DBS is the “therapeutic 

window,” i.e. the stimulation amplitude range between the onset of therapeutic 

effects and the generation of side effects (Volkmann et al., 2002).  Typically, the 

electrode contact with the largest therapeutic window is the contact selected for 

chronic stimulation.  Given that good therapeutic effects were generated in our 

example patient with ~15% activation of the hyperdirect pathway, we then 

quantified the stimulus amplitudes necessary to activate 15 ± 5% of the 

hyperdirect pathway as a function of the stimulus pulse width; thereby creating a 

hyperdirect strength-duration curve (Fig 2.6A).  A similar internal capsule fibers of 

passage strength-duration curve was also generated for 10 ± 5% activation. 
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Figure 2.6.  Model and clinical strength-duration and charge-duration curves.  (A) 

Model threshold amplitudes for activation of the hyperdirect pathway (pink filled 

circle) and internal capsule fibers of passage (black open circle) at 15 ± 5% and 

10 ± 5%, respectively.  (B) Clinically-measured threshold amplitudes for DBS-

induced rigidity control (green filled diamond) and muscle contractions (green 

open diamond) (Reich et al., 2015).  (C) Total charge injected during the cathodic 

phase of the stimulus for the threshold amplitudes shown in A and B. 

 

The results show that the amplitude window between direct activation of 

the hyperdirect pathway and the internal capsule fibers of passage increases 

with decreasing pulse width (Fig 2.6A).  This theoretical calculation provides a 

possible biophysical explanation for the typical clinical practice of using short 

pulse widths to increase the therapeutic window (Rizzone et al., 2001).  In 

addition, our theoretical results, albeit from a single patient, match well with the 

strength-duration curves for clinically measured, DBS-induced rigidity control and 

muscle contractions (Fig 2.6B) (Reich et al., 2015).  To more directly compare 

the model and clinical strength-duration curves, which were generated with 

voltage-controlled and current-controlled IPGs, respectively, we plotted the 

results from Fig 2.6A/B as charge-duration curves (Fig 2.6C).  The total charge 

injected during the cathodic phase of the stimulus was calculated with trapezoidal 

numerical integration for the stimulus amplitudes in Fig 2.6A/B.  Of particular note 
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was the tight congruence of the theoretical hyperdirect activation with clinical 

measurements on the control of rigidity (Fig 2.6C). 

 

2.4. Discussion 

This manuscript provides a detailed description of the technical steps to 

construct a patient-specific PAM.  PAMs represent a new scientific tool for 

integrating brain mapping connectomics with the computational neuroscience of 

electrical stimulation modeling.  An obvious application of PAMs is in the field of 

clinical DBS, where the concepts of pathway-targeted neuromodulation for the 

control of specific symptoms are currently under intense clinical investigation. 

 

2.4.1. Next generation models of DBS 

Over the last two decades, the clinical applications of DBS have evolved 

from a focus on movement disorders to expanded opportunities in treating 

psychiatric disorders and epilepsy.  A common feature that potentially links these 

various disorders are the existence of dysfunctional brain circuit oscillations that 

can be overridden by direct extracellular stimulation of axonal pathways (Lozano 

and Lipsman, 2013).  In turn, the application of DBS to brain circuit modulation 

presents an exciting opportunity to leverage the massive scientific efforts 

currently underway to map the human connectome (e.g. Van Essen et al., 2013; 

Setsompop et al., 2013).  However, most connectome-type projects rely on data 

derived from healthy subjects, whereas DBS is implemented in patients with 

neurological disorders, who have putative differences in their brain anatomy and 
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axonal connections.  In addition, we propose that an important aspect of 

integrating tractography with DBS modeling is to define methods that accurately 

predict the biophysical response of specific axonal pathways to electrical 

stimulation. 

A key component of PAMs are the use of multi-compartment cable axon 

models to quantify the neural response to DBS.  This is in contrast to more 

simplistic approaches to estimate brain regions where DBS-induced action 

potentials are likely to occur via activation volume predictor functions (e.g. 

Chaturvedi et al., 2013).  Only PAMs explicitly represent the transmembrane 

currents generated by extracellular stimulation, which are responsible for 

inducing membrane depolarization in the neural compartments closest to the 

active cathodic electrode contact (McNeal, 1976).  These stimulation-induced 

inward currents open sodium channels, and if the polarization is sufficiently 

strong, an action potential will be generated.  However, a wide range of factors 

dictate DBS-induced action potential generation including:  1) the electrode 

configuration, 2) the shape, duration, and frequency of the applied stimuli, 3) the 

electrical conduction properties of the brain tissue medium, 4) the geometry and 

trajectory of the axons, and 5) the membrane biophysics of the axons.  In our 

experience, the most anatomically and electrically accurate method currently 

available to account for those various factors is a PAM. 

In addition to PAMs, activation volume tractography (AVT) represents an 

alternative method to link tractography and stimulation.  New academic software 

tools such as DBSproc (Lauro et al., 2016) and Lead-DBS (Horn and Kuhn, 
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2015) facilitate the creation of AVT models.  In general, both PAMs and AVT use 

similar methods to construct a patient-specific model of the anatomy and the 

DBS electrode location.  The major differences reside in the methodology for 

predicting axonal pathway activation.  AVT defines an activation volume around 

the DBS electrode contact and then uses the voxels contained within that 

activation volume as seeds for tractography.  AVT can help identify pathways of 

interest in a DBS therapy, but is prone to generating erroneous results (e.g. 

anatomically nonexistent pathways) (Behrens et al., 2007).  Alternatively, PAMs 

use tractography to define known anatomical pathways of interest a priori, and 

then calculates the biophysical response of those pathways to electrical 

stimulation.  However, relative to AVT, PAMs are more difficult to develop and 

analyze.  We propose that each method has its own merits and value, with the 

major comparison being speed and simplicity for AVT versus anatomical detail 

and biophysical realism for PAMs. 

 

2.4.2. DBS modeling in clinical research 

While connectome-based DBS modeling is still in its infancy, the 

applications for clinical investigation have already been numerous.  DBS for 

depression represents one of the most active areas of investigation, with studies 

addressing the potential pathways directly activated by DBS (Johansen-Berg et 

al., 2008; Lujan et al., 2012; Lujan et al., 2013), differences in pathway activation 

between alternative surgical targets (Gutman et al., 2009), prospective 

identification of novel surgical targets (Schlaepfer et al., 2013), and probabilistic 
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identification of pathways related to therapeutic benefit (Riva-Posse et al., 2014).  

Similarly, wide-ranging efforts are currently underway in movement disorders, 

with numerous recent examples focused on the development of correlations 

between stimulation of various pathways and the control of tremor (Coenen et al., 

2011; Klein et al., 2012; Groppa et al., 2014; Sweet et al., 2014). 

The results of this study provide theoretical insight into stimulation of the 

hyperdirect pathway during subthalamic DBS.  Activation of the hyperdirect 

pathway has been hypothesized to be related to improvements in rigidity (Butson 

et al., 2011).  Our patient-specific biophysical branching model of hyperdirect 

collaterals in the STN provided an opportunity to more directly address that 

hypothesis (Fig 2.6), which necessitated a more anatomically realistic model than 

previous attempts to reconstruct the hyperdirect pathway (Aravamuthan et al., 

2007; Whitmer et al., 2012; Brunenberg et al., 2012; Kang and Lowery, 2014).  

This is because both the complex axonal trajectory and branching impact the 

activation threshold from extracellular stimulation (McNeal, 1976).  The model 

results demonstrate robust activation of the hyperdirect pathway at the clinical 

stimulation setting in our example patient (Fig 2.5).  We also observed strong 

congruence between strength-duration curves for activation of the hyperdirect 

pathway in our model and population averages of clinically-measured rigidity 

control from DBS (Fig 2.6).  These results support the concept that future PAM 

analyses, applied to a population of DBS patients, may help in identifying 

correlations between direct activation of a particular pathway and modulation of a 

clinical symptom. 
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2.4.3. Study limitations and future work 

The PAM created for this study represents a highly detailed patient-

specific DBS computational model.  However, as with any model, multiple 

limitations and caveats exist.  PAMs are able to predict the direct activation of 

individual axonal pathways to a stimulus pulse, but it should be noted that PAMs 

do not quantify the network-level modulatory effects of DBS.  However, such 

questions may eventually be addressed by the future combination of PAMs with 

large-scale network activity models (Hahn and McIntyre, 2010). 

Image registration and definition of the DBS electrode location in the brain 

represent some of the most important sources of error in creating patient-specific 

DBS models.  We used established registration algorithms to transform the 7T 

images, 1.5T image, and CT image to a common coordinate system (Duchin et 

al., 2012), and registration quality was verified using visual inspection to ensure 

that the subcortical and cortical boundaries aligned.  In addition, we used 

established methods to minimize error in alignment of a model DBS electrode to 

the electrode artifact in the CT (Hemm et al., 2009). 

Once the image pre-processing is complete, the patient-specific FEM and 

tractography-based axon models can be integrated together.  While DBS FEMs 

are only an approximation of a highly complex phenomenon (Butson et al., 2007), 

they are able to match in vivo experimental recordings of the voltage distribution 

in the brain with impressive fidelity (Miocinovic et al., 2009).  However, our latest 

advances in DBS FEM parameterization reinforce the importance of 
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incorporating all of the electrical details described in our PAM workflow to 

generate the most accurate results (Howell and McIntyre, 2016; 2017).   

The multi-compartment cable models of axons we used were stylized to a 

single diameter and ignore some of the complex branching patterns of real axons 

(Kita and Kita, 2012; Haynes and Haber, 2013).  These biophysical limitations 

are also coupled to the general limitations of tractography, which are well 

documented elsewhere (Jones et al., 2013) and are directly applicable to its use 

in PAMs.  Nonetheless, tractography does represent the only non-invasive 

method to reconstruct structural connectivity on a patient-specific basis (Van 

Essen et al., 2013). 

One area of necessary future development is refinement to the pathway 

reconstruction techniques and biophysical axon models.  In the case of the 

hyperdirect pathway, as the collaterals terminate near the active DBS electrode 

contacts, consideration should be taken regarding the termination points of the 

streamlines.  We initially attempted to use tractography to reconstruct the 

hyperdirect terminations within the STN (Aravamuthan et al., 2007; Brunenberg 

et al., 2012; Petersen et al., 2016); however, the reconstructions through the grey 

matter were very tortuous and anatomically unrealistic.  Anatomical tracing 

studies have shown that the hyperdirect pathway often branches upon entering 

the posterio-dorso-lateral aspect of the STN and collaterals terminate throughout 

the STN (Parent and Hazrati, 1995; Nambu et al., 2002; Kita and Kita, 2012; 

Haynes and Haber, 2013).  Additionally, studies have shown that the hyperdirect 

collaterals are typically less than 1 µm in diameter (Kita and Kita, 2012; Mathai et 
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al., 2013).  And in the human internal capsule, there is a wide range of axon 

diameters from <1-10 µm (Graf von Keyserlingk and Schramm, 1984; Firmin et 

al., 2014).  Each of these anatomical details will affect the predictive power of the 

model and represent opportunities for future improvement. 

 

2.5. Conclusions 

PAMs represent advanced computational tools with potential to augment 

clinical investigations on the mechanisms of DBS.  The functional goal of PAMs 

is to provide quantitative patient-specific predictions on the axonal pathways 

directly activated by DBS, and then enable linkage of those pathway activation 

metrics to clinical outcome measures associated with specific symptoms.  In 

addition, PAMs could one day be coupled with functional neuroimaging to help 

investigate the network-level neuromodulatory effects of DBS (e.g. Kahan et al., 

2014; Fox et al., 2014). 
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Chapter 3 – Comparison of methods for quantifying 
axonal responses in patient-specific models 
 

Abstract 

Medical imaging has played a major role in defining the general 

anatomical targets for deep brain stimulation (DBS) therapies.  However, 

specifics on the underlying brain circuitry that is directly modulated by DBS 

electric fields remain relatively undefined.  Detailed biophysical modeling of DBS 

provides an approach to quantify the theoretical responses to stimulation at the 

cellular level, and has established a key role for axonal activation in the 

therapeutic mechanisms of DBS.  When coupled with advances in defining the 

structural connectome of the human brain, axonal pathways activated by DBS 

can be simulated within the broader context of the brain circuitry and correlated 

with clinical outcomes.  These pathway-activation models (PAMs) represent 

powerful tools for DBS research, but the theoretical predictions are highly 

dependent upon the underlying assumptions of the particular modeling strategy 

used to create the PAM.  In general, three types of PAMs are used to estimate 

activation:  1) field-cable (FC) models, 2) driving force (DF) models, and 3) 

volume of tissue activated (VTA) models.  FC models represent the “gold 

standard” for analysis but at the cost of extreme technical demands and 

computational resources.  Consequently, DF and VTA PAMs, derived from 

simplified FC models, are typically used in clinical research studies, but the 

relative accuracy of these implementations is unknown.  Therefore, we 

performed a head-to-head comparison of the different PAMs, specifically 
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evaluating DBS of three different axonal pathways in the subthalamic region.  

The DF PAM was markedly more accurate than the VTA PAMs, but none of 

these simplified models were able to match the results of the patient-specific FC 

PAM across all pathways and combinations of stimulus parameters.  These 

results highlight the limitations of using simplified predictors to estimate axonal 

stimulation and emphasize the need for novel algorithms that are both 

biophysically realistic and computationally simple. 

 

3.1. Introduction 

Deep brain stimulation (DBS) is an established clinical therapy for a range 

of neurological disorders.  The most common application is subthalamic DBS for 

the treatment of Parkinson’s disease (PD).  Advanced medical imaging and 

decades of clinical experience have helped define possible anatomical targets for 

therapeutic stimulation in the subthalamic region [e.g. Saint-Cyr et al., 2002; 

Herzog et al., 2004; Nowinski et al., 2005; Butson et al., 2011; Welter et al., 

2014; Eisenstein et al., 2014].  However, there is still little to no clinical 

consensus on the specific neural elements (and/or axonal pathways) that are 

necessary and sufficient for evoking therapeutic effects when stimulated [Hamel 

et al., 2017]. 

Patient-specific computational models are tools to study the underlying 

effects of DBS and develop more effective stimulation paradigms [McIntyre et al., 

2007]. They allow for noninvasive quantitative characterization of the theoretical 

response of various neural elements to a wide range of stimulation settings.  
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Recently, patient-specific DBS models have been used in combination with 

explicit representations of axonal pathways, typically derived from tractography, 

to evaluate possible stimulation correlations with symptom improvement or side 

effects [Chaturvedi et al., 2010].  These pathway-activation models (PAMs) 

explore the effects of DBS while leveraging advances in scientific documentation 

of the human brain structural connectome.  Subthalamic DBS has already been 

the focus of numerous PAM studies [e.g. Coenen et al., 2011; Chaturvedi et al., 

2012; Groppa et al., 2014; Sweet et al., 2014; Accolla et al., 2016; Vanegas-

Arroyave et al., 2016; Gunalan et al., 2017; Horn et al., 2017; Akram et al., 2017].  

However, the various analyses with PAMs have employed a wide range of 

different methods without much in the way of documentation or validation of their 

accuracy. 

There are currently three general classes of methods for estimating the 

response of axonal pathways to DBS: 1) field-cable (FC) methods, 2) driving 

force (DF) methods, and 3) volume of tissue activated (VTA) methods.  FC 

methods are the most detailed and technically demanding, explicitly modeling the 

electric field, axonal trajectories, and transmembrane ion channels responsible 

for action potential initiation in response to extracellular stimuli [McNeal, 1976; 

Gunalan et al., 2017].  DF methods require calculation of the electric field but 

simplify the estimation of the transmembrane response to substantially speed up 

the simulations [Warman et al., 1992; Peterson et al., 2011].  VTA methods 

simplify calculations of the electric field and axonal response into a generic 
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algorithm that is the fastest and easiest to implement [Butson and McIntyre, 

2006; Chaturvedi et al., 2013].  

Numerous academic software tools have recently been created to help 

facilitate the use of algorithms to estimate pathway activation by clinical DBS 

researchers [e.g. Miocinovic et al., 2007; Horn and Kuhn, 2015; Lauro et al., 

2016; Noecker et al., 2017].  However, these tools hide non-expert users from 

the technical details of the methodology and tend to rely on numerous 

simplifications to generate their results, which subsequently have unknown 

implications on the conclusions reached.  This technical issue within the 

burgeoning field of connectomic modeling of DBS is exacerbated by the lack of 

direct comparisons of different methods for estimating axonal responses to 

electrical stimulation [Chaturvedi et al., 2010; Howell and McIntyre, 2017].   

Therefore, the goal of this study was to perform a head-to-head comparison of 

different methods for estimating axonal activation, specifically evaluating DBS of 

three different axonal pathways in the subthalamic region. 

 

3.2. Methods 

3.2.1. Patient-specific model of subthalamic DBS 

The technical details and methodology for constructing the patient-specific 

models of DBS are described in prior works [Howell and McIntyre, 2016; Howell 

and McIntyre, 2017; Gunalan et al., 2017] and summarized below.  We 

hypothesized that the assumptions and simplifications inherent in DF and VTA 

PAMs would generate markedly different results when compared to the current 
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standard for biophysical modeling of DBS, FC PAMs.  We used the most detailed 

patient-specific foundation for DBS modeling currently available to perform our 

analysis [Gunalan et al., 2017], and attempted to minimize sources of variance 

between comparison of methods.  We used the FC PAM, one DF PAM [Peterson 

et al., 2011] and three VTA PAMs [Chaturvedi et al., 2013; Madler and Coenen, 

2012; Astrom et al., 2015] to estimate the activation thresholds of individual 

axons within three different pathways coursing through the subthalamic region. 

Our pathways of interest were the internal capsule fibers of passage (IC), 

hyperdirect pathway (HDP), and cerebellothalamic tract (CbTT).  These 

pathways were chosen for their clinical relevance.   

 

3.2.1.1. Patient data 

Collection of all patient data for this study was approved by the University 

of Minnesota Institutional Review Board.  Pre-operative T1-weighted (T1W), T2-

weighted (T2W), susceptibility-weighted (SW), and diffusion-weighted (DW) 

images were obtained on a 7T magnetic resonance imaging (MRI) system 

(Magnex Scientific, UK) [Duchin et al., 2012; Gunalan et al., 2017].  A pre-

operative T1W image was also acquired on a 1.5T Siemens Magnetom Espree.  

These MRI data were used to create the anatomical model of the patient.  A 

post-operative CT image (Biograph64 Sensation, Siemens) was obtained 

approximately 1 month after surgery and used to define the location of the 

implanted DBS electrode. 
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3.2.1.2. Image processing 

The DW images were corrected for distortions from eddy currents using 

FSL’s eddy tool and from magnetic field inhomogeneities using FSL’s topup tool.  

We registered all images to the T1W image using Advanced Normalization Tools 

or FSL’s image registration tool, flirt [Jenkinson and Smith, 2001; Jenkinson et 

al., 2002].  FSL’s brain extraction tool, bet [Smith, 2002], was used to isolate the 

brain from the 1.5T T1W image, and subsequently, we used FSL’s automated 

segmentation tool, fast [Zhang et al., 2001], to subdivide the brain image into 

grey matter, white matter, and cerebrospinal fluid (CSF).  The locations of bone 

and other soft tissues (e.g. fat and muscle) were approximated using a detailed 

single-patient atlas named MIDA [Iacono et al., 2015].  A linear mapping was 

calculated by using flirt with 12 degrees of freedom to coregister the grey matter, 

white matter, and CSF tissue types in the MIDA image to those in the patient’s 

T1W image, and the affine transformation was used to warp the MIDA masks of 

the non-brain regions into the patient’s T1W space [Gunalan et al., 2017]. 

Manual segmentation of subcortical nuclei (putamen, globus pallidus, 

subthalamic nucleus, substantia nigra, red nucleus) was performed with Seg3D.  

As no image had adequate contrast for thalamic segmentation, we fit the 

thalamic atlas developed by Krauth et al. [2010] to the 1.5T T1W image in 

Cicerone [Miocinovic et al., 2007].  Freesurfer’s recon tool was used to segment 

the ipsilateral CSF and contralateral cerebral hemisphere from the 1.5T T1W 

image [Fischl et al., 2012]. 
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3.2.1.3. Streamline reconstruction 

We reconstructed three pathways for our analysis: internal capsule fibers 

of passage (IC), hyperdirect pathway (HDP), and cerebellothalamic tract (CbTT) 

(Figure 3.1).  IC and HDP are comprised of layer V pyramidal cells that project 

corticofugal axons from the motor cortex, through the internal capsule, and 

terminate in the brainstem/spinal cord.  The HDP is distinct from the IC in that it 

gives off a collateral from the corticofugal axon to the STN [Nambu et al., 2002; 

Kita and Kita, 2012; Haynes and Haber, 2013].  The CbTT originates from the 

dentate nucleus of the cerebellum, passes through the superior cerebellar 

peduncle, and terminates in the ventral lateral posteroventral (VLpv) thalamic 

nucleus [Gallay et al., 2008]. 

The IC, HDP, and CbTT each represent pathways of substantial clinical 

interest in the subthalamic region for DBS studies.  Stimulation of the IC is 

commonly associated with motor contraction side effects of subthalamic DBS 

[Tommasi et al., 2008; Mahlknecht et al., 2017].  Stimulation of the HDP is 

thought to be a major contributor to the therapeutic effects of subthalamic DBS 

[Walker et al., 2012; Sanders and Jaeger, 2016].  Stimulation of the CbTT is 

considered therapeutic for the control of tremor [Coenen et al., 2011; Groppa et 

al., 2014; Sweet et al., 2014], but has also been implicated in the generation of 

speech disturbance side effects [Astrom et al., 2010; Tripoliti et al., 2014]. 
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Figure 3.1.  Patient-specific axonal pathways.  (A) A coronal view of the 7T T2-

weighted magnetic resonance image along with overlaid representations of the 

DBS lead (Medtronic model 3389), thalamus (yellow), and subthalamic nucleus 

(green). Representative population of 100 streamlines of the: (B) internal capsule 

fibers of passage (white streamlines), (C) hyperdirect pathway (pink streamlines), 

and (D) cerebellothalamic tract (orange streamlines). Axes: D = dorsal, L = 

lateral. 
 

We used the probabilistic tractography toolbox in FSL to reconstruct the 

IC, HDP, and CbTT pathways.  Diffusion parameters were fit using bedpostx, and 

streamlines were generated with probtrackx.  We saved only those streamlines 

that originated in the seed mask, terminated in the target mask(s), and avoided 

the exclusion masks (as well as the patient-specific DBS electrode position).  We 

fit a smoothing spline to the tractography-generated streamlines to create the 

axonal trajectories used in our simulations (Figure 3.1 and Appendix C). 

The streamlines of the IC were generated from a seed region (with 100 

seeds per voxel) that resided in the white matter lateral to the STN, between the 

thalamus and lenticular nucleus.  Streamlines connected a target mask in the 

cerebral peduncle of the midbrain to another target mask superior to the seed 

mask [Gunalan et al., 2017], while avoiding the ipsilateral thalamus, globus 

pallidus, putamen, substantia nigra, red nucleus, CSF, DBS lead, and 

contralateral cerebral hemisphere.  This process resulted in 13,219 streamlines, 

from which we randomly subsampled 1,000 to represent the IC.  The corticofugal 
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streamlines of the HDP were constructed by randomly subsampling another 

1,000 samples from the IC population.  Then for each axon of the HDP, we 

constructed a collateral that branched from a node of Ranvier along the 

corticofugal axon and terminated within the STN [Kang and Lowery, 2014; 

Gunalan et al., 2017]. 

The streamlines of the CbTT were generated from a seed mask within the 

contralateral superior cerebellar peduncle (with 2,000 seeds per voxel) (Appendix 

C).  Streamlines decussated, then passed through a waypoint mask between the 

red nucleus and subthalamic nucleus, and terminated within the VLpv thalamic 

nucleus (Appendix C) [Gallay et al., 2008], while avoiding the ipsilateral globus 

pallidus, substantia nigra, subthalamic nucleus, ventral lateral anterior (VLa) 

thalamic nucleus, ventral posterior lateral (VPL) thalamic nucleus, CSF, DBS 

lead, and contralateral cerebral hemisphere.  Additionally, we excluded 

streamlines that traveled superior to the VLpv thalamic nucleus.  Applying these 

constraints resulted in 1,662 streamlines, from which we randomly subsampled 

1,000 for creation of our CbTT.  We then extended these CbTT streamlines up 

into the VLpv, using a weighting of the average their trajectory, so they did not 

simply terminate at the ventral border of the thalamus. 
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Figure 3.2.  FC PAM of subthalamic DBS.  (A) Tissue-type segmentation (grey 

matter – red, white matter – green, cerebrospinal fluid – dark blue, muscle – light 

purple, tendon – yellow, bone – pink, fat – light blue, skin – dark purple, 

intervertebral disks – not visible, blood – orange, air – black).  (B) Conductivity 

tensors.  The tensors are colored according to their fractional anisotropy (FA).  

(C) Isolines of the potential distribution generated by the Medtronic model 3389 

lead (active contact – red).  Inset.  Stimulus waveform at the electrode-tissue 

interface.  (D) Extracellular potentials interpolated along a tractography-

generated streamline.  (E) Multi-compartment cable model of an axon is 

stimulated with a suprathreshold stimulus from D.  (Right) Stimulus waveform 

and transmembrane voltage response at select nodes of Ranvier (red line - node 

of action potential initiation).  (F) Subsample of 100 axons representing the 

internal capsule fibers of passage.  (G) Potential distribution used to stimulate the 

axon models.  (H) Axons that generate action potentials in response to 

stimulation. 
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3.2.1.4. Volume conductor 

The volume conductor of the head consisted of three domains (Figure 

3.2): (1) a domain of encapsulation tissue delineated by the internal boundary 

representing the implanted Medtronic model 3389 lead and the outer surface of a 

0.5 mm thick uniform layer surrounding the lead, (2) a domain of brain tissue 

delineated by the outer boundaries of the encapsulation tissue and the surface of 

the brain, and (3) a non-brain domain delineated by the outer boundaries of the 

brain and the scalp. 

We constructed a conductivity tensor field for the entire head volume in 

the patient’s T1W space.  Specifically, each voxel was categorized into 1 of 11 

different types of tissues (Figure 3.2A), each with its own corresponding effective 

conductivity [Gunalan et al., 2017].  Within the brain volume, FSL’s dtifit tool was 

used to fit a single tensor to the signal in each voxel of the patient’s DW image 

and the tensors in DW space were warped to T1W space.  We then used the 

load preservation approach to define a conductivity tensor in each voxel from the 

respective isotropic conductivity, and eigenvalues and eigenvectors of the fitted 

diffusion tensor [Howell and McIntyre, 2016].  Diffusion tensor data was only 

used within the boundaries of the patient’s brain (i.e. domain 2); therefore, 

conductivity tensors within the brain were modeled as anisotropic, whereas the 

conductivity tensors outside the brain (i.e. in domain 3) were modeled as 

isotropic. 

We used COMSOL (version 5.1) to construct tetrahedral meshes for the 

head model.  The mesh was refined with an especially high nodal density within 
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a 30-mm cubic region surrounding the tip of the modeled DBS lead.  Elements 

within domain 1, the encapsulation tissue, were assigned an isotropic 

conductivity of 0.07 S/m, which falls within the range of previously reported 

values [Grill and Mortimer, 1994] and was chosen so that the load of the modeled 

head matched that measured from the patient by the Medtronic programming 

device [Gunalan et al., 2017].  Elements in domains 2 and 3, the brain and non-

brain domains, respectively, were assigned conductivity tensors based on their 

proximity to the nearest neighbor in the tensor field defined by the structured 

rectangular grid in the patient’s T1W space.  The complete head model consisted 

of 1,429,416 total tetrahedral elements and 6,524,354 nodes in the finite element 

mesh. 

For stimulation configurations where the implantable stimulator was 

intended to be the return electrode (i.e. monopolar configurations), we defined 

Dirichlet boundary conditions of 1 V at the active contact(s), and 0 V at the neck.  

Inactive contacts were treated as ideal conductors and modeled using Robin 

boundary conditions that specified two conditions, per contact: all potentials 

within the contact were equal in value, and the net current flow through the 

surface of the contact was 0 A.  Neumann boundary conditions of 0 A/mm
2
 were 

used to model the electrode shaft and scalp surface (minus the neck) as perfect 

insulators.  In stimulation configurations where the return and source were both 

electrode contacts (i.e. bipolar configurations), the base of the neck was 

insulated. 
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The potential field in the volume conductor at the onset of the stimulus 

was calculated by using the finite element method (FEM) to solve numerically 

Laplace’s equation for conductive media:  

 

Equation 3.1.  Laplace’s equation. 

∇ ⋅ (Σ ⋅ ∇Φ) = 0 

 

, where Σ is the tensor conductivity field.  The variation of the potentials over time 

was approximated by multiplying the above solution with a time-varying 

waveform derived from an equivalent circuit model of the implanted DBS system 

[Gunalan et al., 2017]. 

 

3.2.1.5.  Cable model of axons 

Multi-compartment cable models of axons were constructed and solved in 

the NEURON simulation environment (version 7.3).  We started with the MRG 

axon model [McIntyre et al., 2002] and modified some of the geometrical 

parameters to better reflect central nervous system axons [Howell and McIntyre, 

2016].  We defined the diameter of the hyperdirect collateral as a fraction (1/3.1) 

of the diameter of the corticofugal axon [Hongo et al., 1987; Struijk et al., 1992; 

Grill et al., 2008].  We used the streamlines generated from tractography (Section 

3.2.1.3) to define the axonal trajectories in the volume conductor.  The 

extracellular potentials at the coordinates of each compartment of the axon 

model were interpolated from the spatiotemporal distribution of potentials 

calculated from the volume conductor model (Section 3.2.1.4).  These potentials 
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were used to stimulate the modeled axons [McNeal, 1976; Gunalan et al., 2017] 

(Figure 3.2).  For a given electrode configuration and stimulus pulse width, we 

used a binary search algorithm to determine the threshold stimulus amplitude for 

action potential generation to within 0.01 V.  An axon was deemed activated 

when it responded “one-to-one” with the stimulus frequency.  The combination of 

the electric field from the volume conductor and axonal responses from the multi-

compartment cable models represent the results of the FC PAM (Figure 3.2). 

 

3.2.2.  DF PAM 

Simulating the nonlinear response of axons in an FC PAM is a time-

consuming process.  Therefore, incentives exist for estimating the axonal 

response using predictive algorithms.  Charge flow throughout an axon is 

modeled with the cable equation, where the driving force (DF) approximates the 

effects of the extracellular potentials on the neural membrane [McNeal, 1976].  

Warman et al. [1992] demonstrated that a weighted version of the DF could be 

used to calculate the steady-state response of a passive cable in response to an 

extracellular stimulus, and the passive response could, in turn, be used to 

estimate the threshold for activation in the corresponding nonlinear axon model.  

However, it is not possible to determine a priori the critical steady-state response 

that corresponds to the threshold for activation in the nonlinear axon model.  

Therefore, DF-based predictors are capable of reducing computation time and 

achieving relatively high accuracy in most situations, but require extensive 

parameterization steps [Moffitt et al., 2004].  In this study, we elected to analyze 
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the most recent iteration of a DF-based predictor [Peterson et al., 2011], which 

we refer to as DF-Peterson. 

 
Figure 3.3.  DF PAM of subthalamic DBS.  (A) Extracellular potentials (F1 ) 

calculated from the patient-specific volume conductor (3 V, contact 2 [˗]) were 

interpolated along 100 internal capsule fibers of passage.  (B) (Top) F1 at the 

nodes of Ranvier along an example axon.  (Bottom) Second differences of F1 
(black line) and weighted second differences of F1  (blue line).  (Inset) 

Corresponding weights for weighted second difference calculation (green line).  

(C) Peterson et al. [2011] threshold modified driving force (MDFth) values as a 

function of the maximum extracellular potential (F1,G ) (black line).  Patient-

specific axons with a MDF that lie above the threshold curve are classified as 

active (red cross).  (D) Axons that are categorized as active for a 3 V stimulus 

amplitude.  Pulse width = 90 μs.  Axon diameter = 5.7 μm. 
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3.2.2.1.  DF-Peterson 

Peterson et al. [2011] estimated stimulation thresholds based on two 

metrics: the maximum magnitude of the stimulus potentials (F1) across the axon 

and the weighted sum of Δ
2F1 across the nodes of Ranvier (NoRs), which they 

refer to as a modified driving force (MDF), 

Equation 3.2.  Modified driving force. 

HIJ = K&(LM,I)N/F1,&
O//

&QRO//
 

 

Equation 3.3.  Second difference calculation. 

N/F1,& = F1,&RS − 2F1,&+F1,&US 

 

, where i is the index of a given NoR, wi is a weighting term at the i
th
 NoR for a 

given stimulus pulse width (PW) and axon diameter (D), and 2n+1 is the total 

number of NoRs.  The calculation of the weights is summarized in the Section A 

of the Supplementary Text. 

Development of the DF-Peterson algorithm can be summarized in two 

phases:  In the first phase, vectors of applied potentials were constructed without 

the use of a volume conductor.  They began by designating values for F1 and 

Δ
2F1  at the middle NoR, which we refer to as F1,G  and Δ

2F1,G , respectively.  

Assuming that F1,G is maximal and F1,RS = F1,US, (3.3) was used to define F1,RS 

and F1,US.  The remaining nodal potentials were then set to decay so that the first 

derivatives were zero at the ends of the axons, and a fitted spline was used to 

define the potentials at all internodal compartments.  This process was repeated, 
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constructing vectors of applied potentials for various different combinations of 

F1,G  and Δ
2F1,G , and (3.2) was used to calculate an MDF for each vector of 

potentials. 

In the second phase, simulations were conducted in NEURON to 

determine which vectors of potentials from the previous phase evoked action 

potentials in the modeled axon [McIntyre et al., 2002].  The threshold MDF was 

defined as the smallest MDF for a given F1,G  whose corresponding potentials 

directly activated the axon.  The threshold MDFs for all values of F1,G at a given 

PW and D were summarized in a lookup table, and phases 1 and 2 were 

repeated for various combinations of PW and D.  PWs ranged from 20 μs to 10 

ms, and Ds ranged from 4 μm to 20 μm.  We refer to the threshold F1,G and 

threshold MDF as F1,G,VW and MDFth, respectively. 

Peterson et al. [2011] provide the data for implementing their predictor in 

Tables S1 and S3 of their supplement (Note: in their Table S3, units of potentials 

are in mV, whereas units of MDF are in μV).  We calculated weights at 

unspecified combinations of D and PW using bilinear interpolation, and nearest 

neighbor extrapolation was used to estimate MDFth at F1,G,VW > 500 mV (Appendix 

C).  We also used a fitted spline to approximate the continuous relationship 

between F1,G,VW and MDFth.  Stimulation thresholds at a given D and PW were 

calculated as follows (Figure 3.3).  First, for a given axon, we sampled F1 at the 

NoRs generated with the patient-specific volume conductor (Figure 3.3A/B).  The 

NoR at which F1 was maximal was designated as i = 0.  The potential at this NoR 

was defined as F1,G,XO&V, and we used (2) to calculate the corresponding MDFunit, 
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where “unit” designates that values were calculated at an applied voltage of 1 V.  

Then, F1,G  and MDF were calculated by multiplying F1,G,XO&V  and MDFunit by a 

scalar, respectively.  The stimulation threshold voltage was the smallest scalar 

multiple that when applied to F1,G,XO&V  generated an F1,G  whose corresponding 

MDF was > MDFth (Figure 3.3C/D). 

For the HDP, we calculated the thresholds in a piecewise manner.  We 

calculated the MDFunit along the main body of the corticofugal axon separately 

from the MDFunit along the collateral projecting to the STN.  We then used the 

larger of the two MDFunit to calculate thresholds as described above. 

 

3.2.3.  VTA PAMs 

Another way to simplify bioelectric field modeling is to use a predictor to 

estimate the nonlinear relationship between the parameters of stimulation and 

the spatial extent over which axons are activated.  The typical approach is to use 

an ellipsoidal volume, commonly referred to as a volume of tissue activated 

(VTA) [Butson and McIntyre, 2006].  VTA PAMs are derived from highly 

simplified FC models, where a DBS lead is placed in an isotropic volume 

conductor and used to estimate the extent of activation of straight axons oriented 

perpendicular to the electrode shaft (Figure 3.4A).  Simulations are conducted to 

assess which axons are directly activated for various stimulation settings and 

circumscribing ellipsoids are used to approximate the region of activation.  This 

section describes three common implementations of VTA PAMs (Figure 3.4).  

We defined the stimulation threshold for direct activation of an axon as the 



	
	

59	

minimum voltage amplitude needed to generate a VTA that intersects the 

respective streamline for a given axon diameter, stimulus pulse width, and 

electrode configuration (Figure 3.4C). 

 

3.2.3.1.  VTA-Chaturvedi 

Chaturvedi et al. [2013] used a series of ellipsoids to approximate the 

planar regions of activation, and then used an artificial neural network (ANN) to 

predict the relationship between a set of input parameters (described below), and 

the center and radii of the ellipsoids, which were the output of the ANN.  We refer 

to this VTA PAM as VTA-Chaturvedi.  This predictor represents the latest 

advancement of the original concepts developed by Butson and McIntyre [2006] 

and is capable of predicting the VTA for multipolar electrode configurations and 

multiple axon diameters. 
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Figure 3.4.  VTA PAM for subthalamic DBS.  (A) Illustrative example of training a 

VTA algorithm with a simplified axisymmetric model of DBS.  (A1) Multi-

compartment cable models of straight axons perpendicular to the electrode are 

modeled.  (A2) The potential distribution from a volume conductor model with 

isotropic and homogeneous conductivities is used to stimulate the model axons.  

(A3) Those axons that are activated by stimulation are shown as red.  A 

circumscribing ellipse is then used to characterize the spatial extent of activation 

of the straight axons.  (A4) The ellipse is then extruded about the electrode shaft 

to create a 3-dimensional ellipsoid volume.  (B) Trajectories of internal capsule 

fibers of passage are generated using probabilistic tractography.  (C) A rigid body 

transformation is used to map the VTA to the patient-specific location of the DBS 

electrode, and the trajectories of axons that intersect the VTA are categorized as 

active (red streamlines). 

 

Given an electrode configuration, an electrode/access resistance (Ra), a 

stimulus amplitude ≤ 10 V, a PW between 60 μs and 450 μs, and axon diameter 

of 2 μm, 5.7 μm, or 10 μm; we generated an ellipsoid or set of ellipsoids based 

on the radii and center coordinates output from the ANN.  The VTAs were then 

used to estimate which axons in the IC, HDP, and CbTT pathways were 

activated by quantifying the intersection of individual streamlines with the VTA 

(Figure 3.4).  The VTA-Chaturvedi predictor is currently employed by the 

StimVision software tool [Noecker et al., 2017]. 
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3.2.3.2.  VTA-Astrom 

Astrom et al. [2015] constructed VTAs based on the magnitude of the 

electric field (ET).  For a given combination of PW and D, ET was calculated at the 

location in the grid where the furthest perpendicular axon was activated, and this 

process was repeated (at a given PW and D) across a number of stimulation 

amplitudes.  The effective nominal threshold, or ET,th, was the median threshold 

ET across all the stimulus amplitudes.  The VTA, then, was the minimum 

ellipsoidal volume circumscribing the volume delineated in the bulk tissue where 

E were > ET,th.  We refer to this predictor as VTA-Astrom. 

Astrom et al. [2015] provide a table summarizing ET,th for PWs between 30 

μs and 120 μs and Ds between 2 μm and 7.5 μm.  Because only values for ET,th 

were provided, we constructed the simplified axisymmetric volume conductor 

model used in their work.  The conductivity of the bulk tissue and scar were set to 

0.2 S/m and 0.1 S/m, respectively, which yielded an Ra that matched their 

reported value of 1 kΩ.  We then changed the encapsulation layer conductivity 

from 0.1 S/m to 0.0625 S/m, yielding an Ra of 1.37 kΩ, that matched the Ra in our 

patient-specific model, and we used the axisymmetric model to calculate the 

VTAs described above.  For combinations of PW and D that were not provided in 

the tables, we estimated ET,th by using a fitted bivariate decaying rational function 

to interpolate and extrapolate values (Appendix C).  The concept of ET,th-based 

VTAs are currently employed by the Lead-DBS software tool [Horn et al., 2017]. 

VTA-Astrom is based on a myelinated single-cable axon model whose ion 

channels and geometry are different than that of the double-cable model used in 
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this study.  The results of the former match the latter when their axon diameters 

are 3.5 μm and 5.7 μm [Astrom et al., 2015], respectively, so to match better 

VTA-Astrom with the FC PAM, we reduced the axon diameter by a factor of 

0.6140 (i.e., 3.5/5.7) when analyzing a subset of the axonal responses with VTA-

Astrom (Appendix C). 

 

3.2.3.3.  VTA-Madler 

Madler and Coenen [2012] began with digital reconstructions of ellipsoidal 

VTAs originally calculated by Butson et al. [2006], and the lateral radius of each 

ellipsoid, which is the radius transverse to the electrode shaft’s axis, was used to 

define a corresponding spherical VTA.  Next, they used a fitted second-order 

bivariate polynomial to approximate the relationship between the applied voltage, 

the nominal dependent variable, and two nominal independent variables, the 

radius of the spherical VTA and Ra.  Coefficients that altered the output of the 

predictor by < 1% were dropped, thereby allowing the radius of the spherical VTA 

to be expressed as a closed-form function of the applied voltage and Ra.  We 

refer to this bivariate quadratic predictor as VTA-Madler. 

VTA-Madler can be used for a range of Ra, namely between 741 Ω and 

1244 Ω, but the data used to fit the predictor only reflects one combination of PW 

and D; more specifically, PW = 90 μs and D = 5.7 μm.  Therefore, this predictor is 

very limited compared to the other more flexible predictors.  The VTA-Madler 

predictor is currently employed by the DBSproc software tool [Lauro et al., 2016]. 
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3.2.4.  Analyses 

Stimulation thresholds were calculated for all 1,000 axons in each 

pathway (IC, HDP, CbTT) using the most advanced methods for patient-specific 

modeling of DBS (Section 3.2.1, Figure 3.2) [Gunalan et al., 2017].  We defined 

thresholds from the FC PAM as our gold standard and evaluated the ability of the 

simplified predictor functions to estimate the thresholds of each axon.  We 

omitted those axons from our analyses that initiated action potentials from the 

distal nodes of Ranvier along the main body of the axon, as calculated with the 

FC PAM.  This resulted in 933, 983, and 1,000 axons for the IC, HDP, and CbTT, 

respectively.  We defined absolute error in the voltage stimulation threshold (Vth) 

as Vth,Predictor-Vth,FC.  Axons with Vth,FC > 10 V or Vth,Predictor > 10 V were omitted 

from the stimulus threshold error calculations, as these stimulation amplitudes 

are not relevant to clinical DBS. 

Using the threshold amplitude calculations, we created recruitment curves 

at a 0.1 V step size.  For a given pathway, each axon was randomly clustered 

into 100 subsamples of 1000 axons in a bootstrapping manner (with 

replacement), to quantify the effects of variability in the distribution of the axon 

trajectories.  The average and 2.5% to 97.5% quantiles of the number of 

activated axons for the 100 subsamples in response to a stimulation amplitude 

are presented in the recruitment curves. 
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Table 3.1.  Predictive algorithms and the parameters for which they were 

developed. 

Predictor Amplitude 
(V) 

Pulse 
width (μs) 

Frequency 
(Hz) 

Configuration Electrode 
impedance 
(Ω) 

Axon 
diameter 
(μm) 

DF-Peterson 0-0.5
a 

20 - 10,000 Single 

pulse
b 

N/A
a 

N/A
a 

4.0 - 20.0 

VTA-Chaturvedi ≤ 10 60, 90, 120, 

150, 180, 

210, 450 

130
c 

Monopolar, 

Bipolar 

Low (0-749), 

Medium 

(750-1250), 

High (1251+) 

2.0, 5.7, 

7.3, 8.7, 

10.0 

VTA-Madler 1-10 90 130
c 

Monopolar Low (741), 

Medium 

(1003), High 

(1244) 

5.7 

VTA-Astrom 1-5 (step 

0.5) 

30, 60, 90, 

120 

Single 

pulse
c 

Monopolar 1000 2.0 - 7.5 

(step 0.5)
d 

a
Predictor was developed for a peak extracellular potential along an axon.  Thus 

this is irrespective of the applied stimulus amplitude and electrode configuration. 
b
Square, monophasic pulse. 

c
Representative of the stimulation waveform output from a Medtronic pulse 

generator. 
d
Axon diameter to internodal distance relationship is different than the other 

predictors. 

 

3.3.  Results 

We constructed a detailed patient-specific model of subthalamic DBS and 

used it to evaluate a range of different methods for estimating axonal response.  

The FC PAM, which incorporated the latest advances in biophysical modeling of 

DBS [Gunalan et al., 2017], served as our gold standard, and we compared 

those results to the estimations of four predictive algorithms.  Some of the 

predictors were unable to simulate all of the combinations of stimulus pulse 

widths, electrode configurations, and axon diameters investigated in this study.  

Therefore, an absence of results in the figures indicates that the corresponding 
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predictor could not evaluate thresholds for that given set of parameters.  The 

model parameters used to develop each predictor are summarized in Table 3.1. 

 

 
Figure 3.5.  Axon-to-axon comparison of threshold stimulus amplitude (Vth) with 

FC, DF, and VTA PAMs.  We used a stimulus pulse width of 90 μs and a 

monopolar cathodic electrode configuration (contact 2 [-] and case [+]) to 

stimulate axons with diameters of 5.7 μm.  The rows denote results for the: (A) 

internal capsule fibers of passage, (B) hyperdirect pathway, and (C) 

cerebellothalamic tract; and there is one column for each of the four predictors.  

In this plot, we set axons with Vth > 10 V as 10 V, so that all axons representing a 

pathway can be visualized in the field of view. 

 

3.3.1.  Errors in stimulation thresholds 

Absolute errors in the predicted stimulation thresholds had systematic 

trends.  Errors generally increased with increasing stimulus amplitude, and errors 

in estimating the stimulation thresholds of the HDP were markedly greater than 
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the errors in estimating thresholds of the IC and CbTT (Figures 3.5 and 3.6).  

However, the order of magnitude of the absolute errors was not the same across 

the different predictors (Figure 3.7).  We observed the largest errors with VTA-

Astrom, which had median errors of between −1 V and −4 V.  The next most 

accurate predictors were VTA-Chaturvedi and VTA-Madler, with median errors of 

between −3 V and 3 V.  DF-Peterson was the most accurate, with median errors 

of between −3 V and 1 V.  No predictor was accurate enough to limit errors to 

within 1 V across all stimulus pulse widths, electrode configurations, and axon 

diameters tested (Figure 3.7). 
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Figure 3.6.  Errors in the threshold stimulus amplitude as a function of the 

electrode-to-axon distance.  Each column pertains to one predictor, and errors 

were calculated for the: (A) internal capsule fibers of passage, (B) hyperdirect 

pathway, and (C) cerebellothalamic tract.  In this analysis, the stimulus pulse 

width was 90 μs; contact 2 was the cathode (-), the case was the anode (+), and 

the axon diameter was 5.7 μm. 

 

Given that the DF and VTA PAMs are derived from relatively simplified 

models of stimulation (Figures 3.3 and 3.4), we expected to find inherent biases 

in their results as described above.  The biases in the VTA PAMs are likely due 

to disparities in the decay and shape of the extracellular potentials between the 

simple volume conductor model (Figure 3.4A2) and the highly detailed patient-

specific volume conductor (Figure 3.2C) (Section 3.4.1).  In addition, the bias in 

VTA-Astrom to underestimate the stimulation thresholds is likely because of the 

axon model used to generate this predictor (Appendix C and Section 3.2.3.2).  
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Alternatively, DF-Peterson is developed from an even more simplified volume 

conductor than that of the VTA PAMs, but it performed better.  However, DF 

predictors are a 1-degree simplification from FC models, whereas VTA predictors 

are a 2-degree simplification.  As such, DF predictors are able to take advantage 

of both the patient-specific extracellular potentials and the actual axonal 

trajectories in their threshold predictions. 
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Figure 3.7.  Absolute errors in the stimulation thresholds for a variety of stimulus 

pulse widths and axon diameters.  We started with a stimulus pulse width of 90 

μs, a monopolar electrode configuration of contact 2 (-) and case (+), and an 

axon diameter of 5.7 μm; and we varied each parameter individually.  The 

absolute error in the stimulation threshold for each predictor is plotted for the 

different pulse widths (column 1), and axon diameters (column 2).  Rows denote 

results for the: (A) internal capsule fibers of passage, (B) hyperdirect pathway, 

and (C) cerebellothalamic tract. Note: data was omitted when all stimulation 

thresholds were > 10 V. 
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3.3.2.  Errors in pathway recruitment 

Although the four predictors were unable to estimate accurately the 

stimulation thresholds of individual axons, the predictors could still, in some 

cases, accurately predict the percent activation of a given pathway (Figures 3.8 

and 3.9).  We bootstrapped the 933, 983, and 1,000 sampled axons of the IC, 

HDP, and CbTT pathways, respectively, into 100 subsamples of 1,000 axons for 

each pathway.  Bootstrapping was implemented to assess how well the sampled 

axons represents the true population of axons within each pathway.  The data 

presented represents the average and 2.5% to 97.5% quantiles of activated 

axons for the 100 subsamples in response to stimulation (Figures 3.8 and 

3.9).  These quantiles give an indication of the variability of the bootstrapped 

subsamples.  The overlap of these quantiles between the predictor (i.e. DF-

Peterson, VTA-Chaturvedi, VTA-Madler, VTA-Astrom) and the FC PAM indicates 

that in some, but not all, cases there is likely not a difference in prediction 

capability. 

To account for the effect size, we elected to use the maximum absolute 

differences in pathway activation as the criteria for accuracy.  We first designated 

a predictor as accurate if it estimated the percent activation of a given pathway to 

within 5% accuracy (on an absolute scale) at amplitudes of < 10 V (Table 3.2).  

VTA-Astrom, because of its large bias in underestimating Vth, overestimated the 

percent activation of all pathways, regardless of the choice of stimulus pulse 

width (Figure 3.8) or axon diameter (Figure 3.9).  VTA-Madler and VTA-

Chaturvedi were also inaccurate for all of the cases tested.  DF-Peterson, 
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although more accurate than all the VTA PAMs, still only satisfied our criterion for 

accuracy in 4 of the 18 cases. 

 

 
Figure 3.8.  Recruitment curves generated with the FC, DF, and VTA PAMs for 

stimulus pulse widths of 30 μs, 60 μs, 90 μs, and 120 μs.  Recruitment curves 

were calculated for the: (A) internal capsule fibers of passage, (B) hyperdirect 

pathway, and (C) cerebellothalamic tract.  The electrode configuration was 

contact 2 (-), case (+) and axon diameter was 5.7 μm.  The data presented 

represents the average and 2.5% to 97.5% quantiles of activated axons for the 

100 subsamples in response to stimulation. 

 

If we relaxed our criterion for accuracy to a maximum absolute error of 

10%, we observed that DF-Peterson could satisfy 11 of the 18 cases, VTA-

Chaturvedi could satisfy 2 of the 18 cases, and VTA-Astrom remained inaccurate 

in all cases.  DF-Peterson was the only PAM accurate enough to capture the 
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monotonic trends of the recruitment curves in most cases.  However, given that 

clinical/behavioral effects are typically noted at pathway activation levels 

beginning at ~10% [Chaturvedi et al., 2010; Gunalan et al., 2017], it is unclear if a 

10% error tolerance is acceptable for clinical analyses. 
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Figure 3.9.  Recruitment curves generated with the FC, DF, and VTA PAMs for 

axon diameters of 2 μm, 5.7 μm, and 10 μm.  Recruitment curves were 

calculated for the: (A) internal capsule fibers of passage, (B) hyperdirect 

pathway, and (C) cerebellothalamic tract.   The stimulus pulse width was 90 μs 

and electrode configuration was contact 2 (-), case (+).  The data presented 

represents the average and 2.5% to 97.5% quantiles of activated axons for the 

100 subsamples in response to stimulation. 
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Table 3.2.  Maximum absolute difference in percent activation between each 

predictor and the FC PAM, for the range of 0-10 Volts.  This analysis is based on 

the data presented in the recruitment curves in Figures 8 and 9.  ‘-’ signifies that 

the predictor was not developed for the pulse width and axon diameter 

combination and ‘X’ signifies that the FC PAM predicted 0% activation for the 

entire range.  Data is presented for the internal capsule fibers of passage (IC), 

hyperdirect pathway (HDP), and cerebellothalamic tract (CbTT).

Axon 
diameter 
(μm) 

Pulse 
width 
(μs) 

DF-Peterson VTA-Chaturvedi VTA-Madler VTA-Astrom 

IC HDP CbTT IC HDP CbTT IC HDP CbTT IC HDP CbTT 

2.0 90 X 3.3 3.7 X 17.4 7.4
 --------- --------- --------- 

X 45.4 22.2
 

5.7 30 19.2 17.9 24.1 
--------- --------- --------- --------- --------- --------- 

56.6 63.9 42.5 

5.7 60 10.0 7.7 9.5 23.5 38.7 9.0
 --------- --------- --------- 

58.6 62.7 41.9 

5.7 90 3.3 5.7 4.0 13.5 28.7 22.4
 

17.8 31.1 15.5 50.4 58.1 34.7 

5.7 120 7.3 9.6 10.3 13.6 32.1 29.9
 --------- --------- --------- 

46.4 55.4 30.7 

10.0 90 53.6 25.9 60.7 11.3 69.1 32.8
 --------- --------- --------- ---------

 
---------

 
---------

 

 

The 2.5% to 97.5% quantiles of each predictor did not overlap with the FC 

PAM at all amplitudes (0 V - 10 V) for all DBS relevant stimulus pulse widths 

(30 µs - 120 µs), electrode configurations (monopolar, bipolar, tripolar, 

quadripolar), and axon diameters (2 µm - 10 µm).  This suggests that the 

activation calculations of all predictors are likely different from the gold standard 

FC PAM, for at least a portion of the parameter space tested.  Thus, we have 

elected to use the FC PAM for analysis in the subsequent chapters. 

 

3.4. Discussion 

The goal of this study was to evaluate the relative accuracy of different 

methodologies for estimating pathway activation in the quantification of clinical 

DBS.  We found that algorithms derived from simplified FC models have 
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substantial limitations in their predictive capabilities, especially VTA-based 

predictors which are commonly used in clinical DBS research.  These results call 

into question the validity of numerous recent studies linking direct axonal 

activation with structural connectome results derived from diffusion-weighted 

imaging.  Nonetheless, there exists a great scientific and clinical need to 

characterize the axonal pathways directly modulated by DBS, as well as their 

anatomical connections.  Therefore, the conclusion of our analysis is that future 

connectomic DBS studies require far greater attention to the technical details of 

the DBS modeling strategy being used, as well as appropriate selection of a 

method that has the quantitative accuracy necessary for the desired analysis to 

be performed. 

 

3.4.1. Pathway-activation models 

Patient-specific models of DBS utilizing anatomically and electrically 

accurate volume conductor models and neuron models represent the most 

scientifically advanced tool for simulating the effects of DBS [Gunalan et al., 

2017].  However, these field-cable pathway-activation models (FC PAMs) are so 

technically demanding to implement that their use in clinical research studies is 

greatly limited.  The alternative is to use predictors derived from simplified DBS 

models, which impose various assumptions to speed up the simulations and 

reduce the complexity of implementation.  DF PAMs represent a one-step 

reduction from FC PAMs, whereas VTA PAMs are a two-step reduction.  

Therefore, it is not surprising that the DF PAMs performed better than the VTA 
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PAMs in our analyses (Figure 3.5 and Appendix C).  However, DF PAMs require 

constructing a volume conductor model, making them only moderately easier to 

implement than a corresponding FC PAM and thereby not widely used.  VTA 

PAMs, on the other hand, are substantially easier to implement, and as a result, 

widely used in clinical DBS research. 

 

 
Figure 3.10.  Axisymmetric versus patient-specific volume conductor models.  

(A) Isopotential contours for a -1 V stimulus amplitude created with (left) an 

axisymmetric model aligned to the trajectory of the patient-specific electrode and 

(right) the patient-specific model.  (B-D) Strength-distance relationship of the 

threshold stimulus amplitudes for action potential initiation calculated with the FC 

and VTA predictors.  Thresholds were calculated for the: (B) internal capsule 

fibers of passage, (C) hyperdirect pathway, and (D) cerebellothalamic tract.  The 

stimulus pulse width was 90 μs, electrode configuration was contact 2 (-), case 

(+), and axon diameter was 5.7 μm.  In this plot, we set axons with Vth > 10 V as 

10 V, so that all axons representing a pathway can be visualized in the field of 

view.  Note, electrode-to-axon distance is calculated from the center of the 

electrode contact. 
 

The ease of implementing VTA PAMs facilitates their use in clinical 

research studies and DBS software tools designed to enable patient-specific 

analyses [Horn and Kuhn, 2015; Lauro et al., 2016; Noecker et al., 2017].  

However, the simplifying assumptions and methodology used to create VTA 

PAMs can dramatically affect the subsequent predictions (Figure 3.5).  VTA-

based methods, more generally, are the product of two major simplifications.  

First, the electric field in a detailed patient-specific volume conductor model is 
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modulated by inhomogeneity and anisotropy in the electrical properties of the 

tissue (Figure 3.2), whereas VTA PAMs are derived from volume conductor 

models with a homogenous and isotropic tissue medium.  Second, with a VTA-

based method, the trajectories of surrounding axonal pathways represented are 

assumed to be perfectly straight and perpendicular to the electrode shaft (Figure 

3.4A).  These two simplifications impart symmetry in the model that generates a 

smooth and continuous “strength-distance” relationship (Figure 3.10 and 

Appendix C).  However, more realistic DBS models generate substantial scatter 

in stimulation thresholds as a function of electrode-to-axon distance [Chaturvedi 

et al., 2010].  As a result, the corresponding fit of the VTA PAM to pathway 

recruitment is primarily dictated by how well it approximates the mean of the 

thresholds as a function of distance (Figure 3.10).  In addition, VTA PAMs tend to 

do better simulating the response of relatively straight pathways (Figure 3.10B), 

but have more difficulty when the pathway trajectory is tortuous or branching 

(Figure 3.10C, 3.10D and Appendix C). 

In general, we found that VTA PAMs performed relatively poorly when 

placed into a patient-specific context.  However, if an appropriate method (i.e. 

VTA-Chaturvedi) is being used to estimate activation of an appropriate pathway 

(i.e. IC) at typical stimulation parameter settings (i.e. 60 μs, <5 V), it can perform 

very well (Appendix C).  Nonetheless, those particular instances are limited, and 

our results reinforce the need to apply PAMs with care when using simplified 

algorithms or software tools that shield users from the technical details of the 

underlying model. 
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Unfortunately, simplified PAMs have not been used with care in the recent 

clinical DBS literature.  They have been extended far beyond their design 

capabilities to perform analyses that are likely unsound.  One glaring example is 

the use of activation volume tractography (AVT) (Figure 3.11).  AVT defines an 

activation volume around a DBS electrode contact, uses the voxels contained 

within that volume as seeds for tractography, and then attempts to define 

connectivity between the VTA and different brain regions.  However, this method, 

especially when applied in a grey matter region, actually violates numerous 

assumptions inherent to VTA-based methods [Butson and McIntyre, 2006].  In 

addition, blindly relying on tractography from a seed region to define connectivity 

is likely to generate a great deal of false positive results [Behrens et al., 2007; 

Morris et al., 2008; Thomas et al., 2014]. 

As an example of AVT and its shortcomings, we used AVT (with VTA-

Chaturvedi) to evaluate thalamic connectivity and compared it to the 

corresponding FC PAM estimation of CbTT activation (Figure 3.11 and Appendix 

C).  Not only did the percent activation predicted by the two algorithms not align, 

but the spatial trajectory of the resulting pathways were markedly different.  

Discrepancies with AVT were exacerbated even further when only excluding 

tracts that intersected the CSF or passed into the contralateral cerebral 

hemisphere, which is consistent with the tractography exclusion criteria typically 

used in clinical DBS studies using AVT (Figure 3.11B3).  For example, aberrant 

streamlines from AVT passed above the thalamus before terminating in the VLpv 

(Figure 3.11B3).  Therefore, we have found that minimizing the potential for 
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erroneous results requires first, the construction of the pathways of interest with 

appropriate anatomical constraints, and then the application of the predictor to 

estimate theoretical activation of the pathways. 

 

 
Figure 3.11.  Errors inherent in activation volume tractography (AVT) of the 

cerebellothalamic tract.  (A) FC PAM.  (A1) T2-weighted image with overlaid DBS 

electrode (subthalamic nucleus - green, thalamus - yellow).  (A2) Subsample of 

100 streamlines representing the cerebellothalamic tract.  (A3) Potentials from 

the volume conductor model were calculated at an applied voltage of 1 V, 

interpolated along the streamlines, scaled in space and time, and then used to 

stimulate the modeled axons.  (A4) Axons activated by a 1 V stimulus (2.9 ± 

0.5%).  (A5) Axons activated by a 2 V stimulus (16.3 ± 1.1%).  (B) Activation 

volume tractography.  For clarity, only 10% of the streamlines generated are 

displayed.  (B1) VTA-Chaturvedi predictor for a 1 V stimulus.  (B2) Voxels whose 

centers are within the VTA/ellipsoid.  (B3) Streamlines originating from the VTA 

shown in B2, terminating in the VLpv thalamus, and avoiding CSF and the 

contralateral cerebral hemisphere (16.0%).  (B4) The same as B3 except subject 

to the same exclusion constraints used in the FC PAM, except for the 

subthalamic nucleus and DBS lead (13.7%) (Section 2.1.3).  (B5) The same as 

B4 except for a 2 V VTA (15.1%).  The same model parameters were used for 

both the FC PAM and AVT: pulse width = 90 µs; pulse frequency = 130 Hz; 

electrode configuration = contact 2 (-) and case (+); axon diameter = 5.7 µm. 

 

One application where AVT may be somewhat more accurate is when it is 

used explicitly within large white matter pathways.  Examples include DBS 

clinical research applications focused on neuropsychiatric targets such as the 

anterior limb of internal capsule or the subcallosal cingulate white matter.  For 
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example, AVT from the subcallosal cingulate white matter generates predictions 

[Riva-Posse et al., 2017] that are qualitatively consistent with predictions from a 

patient-specific FC PAM [Lujan et al., 2013].  Nonetheless, AVT is likely not 

generalizable to all white matter regions, and we recommend that AVT 

methodology should not be used in future DBS research. 

 

3.4.2. Limitations 

The major limitation of this study is that no ground truth for model 

comparison actually exists.  The patient-specific FC PAM that we used as our 

gold standard is the most detailed and advanced computational model of DBS 

ever created.  However, while aspects of that model, such as the volume 

conductor and cable model, can be validated and constrained by experimental 

data [McIntyre et al., 2002; Miocinovic et al., 2009], the output predictions of 

pathway activation cannot be measured with current experimental techniques.  It 

is possible to perform indirect measurements that can be used to evaluate model 

predictions, with electromyography (EMG) measurements corresponding to IC 

activation being the most easily attainable [Chaturvedi et al., 2010].  Recent 

clinical interest in using EMG to better characterize activation of the IC during 

subthalamic DBS [e.g. Mahlknecht et al., 2017; Bally et al., 2017], or cortically 

evoked electric potentials from HDP antidromic activation [e.g. Walker et al., 

2012], represent excellent opportunities for the DBS modeling and clinical 

communities to converge on analyses that would be mutually beneficial. 
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Another limitation of our study was that the four predictors we analyzed 

only represent a subset of the different VTA and DF PAMs that are currently 

available.  We chose VTA-Chaturvedi because it is more accurate and 

generalizable than previous VTAs [Chaturvedi et al., 2013].  VTA-Madler and 

VTA-Astrom were chosen because they are being utilized as scientific tools by a 

broader community of researchers studying DBS [e.g. Vanegas-Arroyave et al., 

2016; Horn et al., 2017].  And, we chose DF-Peterson because it is the most 

accurate and generalizable DF-based method currently available [Peterson et al., 

2011].  Therefore, our analyses, although not exhaustive, provide a best-case 

assessment of the performance of current predictive algorithms versus patient-

specific FC PAMs. 

Finally, a group of important limitations associated with modeling of DBS 

are the substantial errors that can arise from image co-registration [Klein et al., 

2009], imprecise localization of the DBS electrode in a post-operative CT [Hemm 

et al., 2009], general ambiguity of tractography [Thomas et al., 2014], and 

uncertainty in various parameters used to define the patient-specific volume 

conductor model [Miocinovic et al., 2009; Howell and McIntyre, 2016].  However, 

by using the same underlying imaging data and model parameters for all of our 

simulations, we were able to hold constant these general errors and focus on 

quantifying the errors that come about from using a predictive algorithm in place 

of a full patient-specific FC PAM.  Nonetheless, it should be noted that these 

general errors do come into play when connectomic DBS analyses are 
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performed across a population of subjects, especially if attempting to map 

population results into an atlas space. 

 

3.5. Conclusions 

Predictive algorithms that estimate the neural response to DBS do simplify 

the process of patient-specific pathway-activation modeling, but those 

simplifications come with the expense of a substantial decline in predictive 

accuracy.  When parameters such as stimulus pulse width, electrode 

configuration, and axon diameter are matched, VTA-based methods offer a 

coarse estimate of the extent of activation but are subject to errors on the order 

of millimeters.  Thus, current versions of these algorithms are likely not suitable 

for defining correlations between clinical metrics and stimulation of specific 

axonal pathways.  While that same caveat probably applies to the currently 

available DF-based method, their general framework, with some additional 

customization for DBS studies, does hold promise for accurately estimating the 

percent activation of individual axonal pathways within a patient-specific context.  

Therefore, future connectomic DBS studies looking to strike a balance between 

model tractability and accuracy should transition away from VTA-based analyses 

and focus on developing and using DF-based tools. 
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Chapter 4 - Theoretical predictions of the axonal 
pathways directly activated by subthalamic deep brain 
stimulation 
 

Abstract 

Deep brain stimulation (DBS) is an established therapy for Parkinson’s 

disease (PD).  Experimental studies suggest that DBS activates neurons near 

the active electrode contact.  However, the specific neurons mediating the 

therapeutic effects of DBS are not clearly defined.  Biophysical models of DBS 

represent the only non-invasive method for calculating the neuronal pathways 

directly activated by stimulation in humans.  In this study, we used these DBS 

models to evaluate our hypothesis that many pathways are activated by the 

clinically-defined therapeutic stimulation setting during subthalamic DBS and 

performed sensitivity analyses to determine the strength of our conclusions.  We 

developed highly detailed patient-specific computational models of subthalamic 

DBS for three PD patients with 7T magnetic resonance imaging data.  We 

reconstructed the trajectories of the subthalamopallidal, hyperdirect, internal 

capsule fibers of passage, cerebellothalamic, lenticular fasciculus, and medial 

lemniscus axonal pathways.  Each of the axons within these pathways were 

modeled as a multi-compartment cable structure.  We calculated the voltage 

distribution generated by the DBS electrode with the finite element method.  We 

stimulated each axon with this DBS voltage distribution and calculated their 

response to stimulation.  The results suggest that multiple pathways are 

activated by therapeutic stimulation, and these pathways were not consistent 
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among the three PD patients.  Misalignments in the electrode position and the 

choice of axon diameter both effected the predictions of pathway activation, but 

the conclusions drawn were largely consistent for the entire parameter space 

investigated.  Lastly, we evaluated alternative stimulation paradigms such as 

electrode configurations and stimulus pulse widths to explore methods for 

increasing selectivity in activation of these pathways.  Electrode configuration 

and position has the greatest ability to change relative recruitment profiles.  

Subthalamic DBS likely activate multiple pathways indiscriminately and selectivity 

is dependent on the electrode position.  Future studies need to focus on 

developing robust methods for reconstructing axonal pathways on a patient-

specific basis and constraining the axon diameter used to represent each axon. 

 

4.1. Introduction 

Deep brain stimulation (DBS) of the subthalamic region is an established 

clinical therapy for Parkinson’s disease (PD) [Benabid et al., 1994; Deuschl et al., 

2006], but wide ranging scientific questions remain unanswered on its 

therapeutic mechanisms of action [Lozano and Lipsman, 2013; McIntyre and 

Anderson, 2016].  Numerous clinical research analyses of subthalamic DBS have 

clearly demonstrated that a major determinate of therapeutic outcome from the 

intervention is accurate electrode placement in the “target” [Butson et al., 2011; 

Welter et al., 2014; Eisenstein et al., 2014].  Unfortunately, scientific definition of 

the specific anatomical substrate for that “target” remains largely unknown.  The 

subthalamic nucleus (STN) is surrounded by myelinated white matter consisting 
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of a wide array of different axonal pathways.  Even within the STN boundaries, 

myelinated axons occupy ~45% of the sensorimotor territory of the nucleus 

[Mathai et al., 2013].  Therefore, while key aspects of subthalamic DBS therapy 

are now commonly attributed to the direct stimulation of axonal pathways, the 

specific axonal pathways of greatest therapeutic relevance remain to be defined. 

Experimental and theoretical studies suggest that electrical stimulation in 

the generates action potentials in axons near the electrode contact [Ranck, 1975; 

McNeal, 1976].  Computational methods for studying the effects of DBS typically 

employ DBS electric field models coupled to models of individual axons to 

simulate action potential signaling in response to specific stimulation parameter 

settings [McIntyre et al., 2004].  These theoretical models, as well as empirical 

clinical observations, have subsequently suggested that many different axonal 

pathways in the subthalamic region are likely stimulated during therapeutic DBS, 

and prompted recent hypotheses that direct activation of different pathways may 

be linked to the control of different symptoms [Miocinovic et al., 2006; Coenen et 

al., 2011; Groppa et al., 2014].  In turn, it is possible that there are actually 

several different “targets” in the subthalamic region and the next level of scientific 

analysis requires a more detailed anatomical description of the relevant axonal 

pathways that might be stimulated during subthalamic DBS. 

To address the detailed anatomy of the subthalamic region, characterize 

the axonal pathways, and evaluate the effects of stimulation, we used 7T 

magnetic resonance imaging (MRI) datasets to construct anatomically and 

biophysically detailed patient-specific DBS models.  We hypothesized that 
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therapeutic stimulation would generate non-discriminate activation of multiple 

pathways, including the subthalamopallidal (SP), hyperdirect (HD), lenticular 

fasciculus (LF), and cerebellothalamic tract (CbTT) pathways.  Further, we 

proposed that the spatial extent of therapeutic stimulation is primarily limited by 

avoiding activation of the internal capsule fibers of passage (IC) and medial 

lemniscus (ML) pathways, and not necessarily targeted activation of a specific 

therapeutic pathway. 

 

4.2. Materials and methods 

This study analyzed the theoretical activation of six axonal pathways by 

DBS electrodes implanted in the subthalamic region of three PD patients using 

field-cable pathway-activation models (FC PAMs).  Each patient-specific FC PAM 

was constructed using the patient’s 7T MRI datasets and included two main 

components: 1) a volume conductor model; and 2) multi-compartment cable 

models of axons.  Highly detailed volume conductor models of DBS were built to 

calculate the DBS voltage distribution.  Multi-compartment cable models of 

myelinated axons with anatomically realistic trajectories were stimulated with the 

DBS voltage distribution and their transmembrane voltage response was 

quantified as a function of the stimulation parameter settings.  We explored the 

response of the SP, HD, LF, CbTT, ML, and IC axonal pathways.  The workflow 

used to create each patient-specific model is detailed in Gunalan et al. [2017].  

We briefly describe the steps below. 
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4.2.1. Ethics statement 

Collection of all patient data for this study was approved by the University 

of Minnesota Institutional Review Board (IRB).  The patients provided informed 

written consent prior to participating in the research and the consent procedure 

was approved by the IRB. 

 

4.2.2. Patient data 

The imaging data was individually acquired from three patients diagnosed 

with PD (Table 4.1).  We selected patients who were implanted unilaterally on the 

left side of the brain.  For each patient, a Medtronic 3389 DBS lead was 

implanted in the left STN (Figure 4.1) and connected to an Activa SC implantable 

pulse generator (IPG) (Medtronic, Minneapolis, MN).  Using standard clinical 

programming procedures [Volkmann et al., 2002], therapeutic stimulation 

parameters were selected for each patient.  The patient-specific stimulation 

parameter settings we evaluated were defined at least 4 months after their 

surgery, ensuring adequate time for clinical optimization.  The DBS electrode 

monopolar impedances, as measured by the IPG [Gunalan et al., 2017], were 

also noted.  The post-operative OFF medication, OFF stimulation motor subscore 

of the Unified Parkinson’s Disease Rating Scale (UPDRS) were compared to the 

ON medication, ON stimulation scores (Table 4.2). 
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Figure 4.1.  Deep brain stimulation lead locations within the subthalamic 

nucleus.  (A-C) Patients 1-3.  (Column 1) Coronal slice directly posterior to the 

subthalamic nucleus (STN, green).  (Column 2) Coronal and (Column 3) sagittal 

zoomed views of electrode contact locations within the STN.  Dorsal – D, Lateral 

– L, Anterior – A. 

 



Table 4.1.  Patient demographic data.  Monopolar impedance measurements were obtained from the Medtronic 
IPG programmer.  IPG = implantable pulse generator.  STN = subthalamic nucleus. 

Patient Gender Handedness Age at 
diagnosis 

Age at 
implant 

Electrode 
location 

Medtronic 
IPG 

Electrode contact impedance measurement (W) Clinically-determined stimulation setting 
Months 

post 
implant 

0 1 2 3 Electrode 
configuration 

Pulse 
frequency 

(Hz) 

Pulse 
amplitude 

(V) 

Pulse 
width 
(µs) 

1 Male Right 58 67 Left STN Activa SC 4 2000 1627 1450 1896 c2(-), case(+) 130 1.7 60 

2 Male Right 49 58 Left STN Activa SC 4 1168 1147 1300 1337 c2(-), case(+) 130 2.0 60 

3 Female Right 55 63 Left STN Activa SC  4 1684 1499 1099 1493 c2(-), case(+) 130 2.4 60 
 
Table 4.2.  Unified Parkinson’s Disease Rating Scale motor subscore.MED = Antiparkinsonian medication.  DBS = 
deep brain stimulation. 

Patient Months post implant OFF MED/OFF DBS OFF MED/ON DBS ON MED/OFF DBS ON MED/ON DBS 
1 4 31 Not available Not available 14 
2 3 36 27 14 12 
3 7 43 32 32 20 

 
Table 4.3.  Model monopolar impedance calculations.  RTissue is the access resistance of each contact.  R70 is the 
model impedance measurement mirroring the Medtronic programmer. 

Patient s (S/m) RTissue (W) R70 (W) 
Contact 2 Contact 2 

1 0.07 1373 1493 
2 0.09 1168 1286 
3 0.12 969 1085 
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4.2.3.  Image processing 

Each patient underwent pre-operative scanning on a 7T MRI system 

(Magnex Scientific, UK) at the University of Minnesota, using T1-weighted (T1W), 

T2-weighted (T2W), susceptibility-weighted (SW), and diffusion-weighted (DW) 

imaging.  We also obtained a pre-operative T1W image on a 1.5T Siemens 

Magnetom Espree.  The T2W and SW images were acquired in slabs focused 

around the basal ganglia nuclei in both the coronal and axial orientations with an 

in-plane resolution of ~0.4 mm.  A post-operative CT image was acquired on a 

Siemens Biograph64 Sensation approximately 1 month after the DBS surgery. 

The 1.5T T1W image was resliced to 0.4 mm isotropic dimensions to 

match the in-plane resolution of the 7T images.  All images were registered to the 

common space of the resliced 1.5T T1W image using ANTS or FSL.  The DW 

images were corrected for distortions from both magnetic field inhomogeneities 

and eddy currents. 

Segmentation of the STN, substantia nigra, and red nucleus was 

performed on the coronal 7T T2W or SW image.  These segmentations were 

transformed to the T1W common space.  These segmentations were thresholded 

at 0.5 and binarized.  As no image provided adequate contrast for segmentation 

of the thalamus, we fit the Harvard-Oxford atlas thalamus to each patient using 

Cicerone [Miocinovic et al., 2007]. 
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4.2.4.  Field-cable pathway-activation model 

4.2.4.1. Volume conductor model 

The voltage distribution generated by the DBS electrode varies both 

spatially and temporally in the brain [Miocinovic et al., 2009].  Therefore, we 

created detailed volume conductor models in COMSOL to account for the tissue 

anisotropy and inhomogeneity in the human head (Figure 4.2) [Gunalan et al., 

2017].  We defined boundaries of the brain and the outer skin by segmenting the 

1.5T T1W image with FSL’s brain extraction tool (Figure 4.2A).  We defined the 

position of the model DBS lead based on the artifact in the post-operative CT, 

registered to the T1W common space [Hemm et al., 2009].  We fitted diffusion 

tensors to the patient-specific DW images using FSL diffusion tensor fitting tool.  

Using these diffusion tensors and the tissue-type segmentation of the head 

(Figure 4.2B), we defined anisotropic conductivities within the boundaries of the 

brain using the load preservation approach [Howell and McIntyre, 2016], and 

isotropic conductivities outside of the brain (Figure 4.2C) [Howell and McIntyre, 

2017].  We defined the encapsulation layer with a 0.5 mm radius around the 

entire electrode shaft, and defined the isotropic conductivity of the encapsulation 

layer such that the model impedance (Table 4.3) best matched the clinical 

impedance (Table 4.1) at the therapeutic electrode contact [Gunalan et al., 

2017].  We applied a Dirichlet boundary condition at the active contact(s).  For 

monopolar configurations, the anode was set to the be neck surface (Figure 

4.2A).  Neumann boundary conditions of 0 A/mm2 were imposed along the 

electrode shaft, except for the contacts, and at the outer skin surface, except for 
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the neck during monopolar configurations.  We solved for the electrostatic 

solution of Laplace’s equation using the finite element method. 

We then calculated the temporal modulation of the voltage distribution 

using an equivalent electrical circuit model for voltage-regulated DBS, such that 

the modeled stimulus waveform matched the waveform of the Medtronic IPG 

[Lempka et al., In review].  For each pulse, the applied rectangular waveform 

consisted of a cathodic phase, interphase interval, passive recovery phase, and 

interpulse interval.  This stimulus waveform was then calculated for a pulse train, 

and the pulse train was applied to the axon models. 
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Figure 4.2.  Patient-specific deep brain stimulation volume conductor model.  (A) 
Outer head and brain boundaries.  Under monopolar configurations the neck is 
defined as 0 V (blue).  (B) Tissue-type segmentation of the head.  (C) 
Conductivity tensors within the head, colored according to their fractional 
anisotropy (FA).  (D) Zoomed view of the conductivity tensors near the electrode.  
(E) DBS voltage distribution isolines for a 1 V stimulus amplitude at contact 2.  
(F) Stimulus waveform at the electrode-tissue interface for a 1 V, 60 µs, and 130 
Hz. 
 

4.2.4.2. Axonal reconstructions 

We constructed multi-compartment cable models of myelinated axons to 

represent six pathways in the subthalamic region (Figure 4.3).  We used 

probabilistic tractography to define the trajectory of each axon in the HD, CbTT, 

ML, and IC pathways.  FSL’s probabilistic tractography tool (probtrackx) 

generated trajectories, or ‘streamlines’, which originated in the seed mask and 
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terminated in the target mask(s) (Table 4.4).  Of the thousands of streamlines 

that were generated for each pathway, we randomly sampled 1,000 for use in 

each specific pathway representation.  We fit a smoothing spline to each 

tractography-generated streamline to ensure a smooth trajectory for use in the 

stimulation modeling [Gunalan et al., 2017]. 

 

 
Figure 4.3.  Axonal pathways in the subthalamic region.  Data is presented for 
Patient 1.  (A) Coronal view of the T2W image, DBS lead, and subcortical nuclei 
(thalamus – yellow, globus pallidus externus – light blue, globus pallidus internus 
– dark blue, subthalamic nucleus – green, substantia nigra – pink, red nucleus – 
red).  (B) Oblique zoomed view of the subthalamic region.  One hundred 
representative streamlines reconstructed for the (C) internal capsule fibers of 
passage, (D) hyperdirect, (E) subthalamopallidal, (F) lenticular fasciculus, (G) 
cerebellothalamic tract, and (H) medial lemniscus pathways. 
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Table 4.4.  Properties of streamlines representing each pathway.  Corticofugal 
axons represent the axons of the internal capsule fibers of passage and 
hyperdirect pathway.  GP – globus pallidus, GPi – globus pallidus internus, Pu – 
putamen, STN – subthalamic nucleus, SN – substantia nigra, RN – red nucleus, 
SCP – superior cerebellar peduncle. 

 Tractography  

Pathway Seed mask Target 
mask(s) 

Exclusion 
masks 

Seeds per 
voxel 

Axon 
diameter 
(µm) 

Corticofugal axon White matter 
near STN 

White matter 
near 
thalamus; 
White matter 
in cerebral 
peduncles 

GPe, Pu, RN, 
SN, thalamus, 
CSF 

100 5.7 

Hyperdirect pathway 
– Collateral section 

Corticofugal 
axon 

STN SN, thalamus N/A 1.8 

Subthalamopallidal STN GP SN, thalamus 1 2.0 
Lenticular fasciculus GPi VLa N/A N/A 2.0 
Cerebellothalamic 
tract 

SCP VLpv GP, STN, SN, 
VLa, VPL, CSF 

2000 5.7 

Medial lemniscus Brainstem VPL GP, STN, SN, 
RN, VLa,  
VLpv, LP, CSF 

1000 5.7 

 

For the hyperdirect pathway axons, we modeled the collateral as a branch 

at a randomly chosen node of Ranvier along the corticofugal axon that was within 

3 mm in the dorsal-ventral direction from the dorsal boundary of the STN.  A 

random voxel within the STN was selected as the termination point of the 

collateral.  We then generated an arc connecting the branch point node of 

Ranvier and the termination point within the STN to define the collateral 

trajectory.  If the collateral passed through the DBS lead, we randomly selected a 

different voxel within the STN and recalculated the corresponding arc. 

Despite our extensive efforts, tractography failed to generate anatomically 

realistic axonal trajectories for the SP and LF pathways.  These relatively small 

pathways cross the IC, thereby making their reconstruction very difficult, even 

with exceptionally high quality DWI data.  Therefore, instead of using streamlines 

that we knew were not consistent with anatomical tracing studies [Sato et al., 
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2000; Parent et al., 2004; Gallay et al., 2008], we elected to create populations of 

stylized trajectories guided by anatomical landmarks [Miocinovic et al., 2006; 

Chaturvedi et al., 2012]. 

For Patient 1, we segmented the globus pallidus internus, globus pallidus 

externus, and putamen from the axial 7T T2W image in T1W common space.  

The SP stylized streamlines originated from each voxel within the subthalamic 

nucleus and terminated in a random voxel in the globus pallidus.  The LF stylized 

streamlines originated in the globus pallidus internus, crossed the IC, coursed 

dorsally over the STN, and projected into the VLa thalamic nucleus.  In order to 

create a consistent reconstruction of the LF we generated a set of 2,000 

streamlines in Patient 1 space and transformed those streamlines to each 

subsequent patient space.  This transform was defined by fitting Patient 1’s 

globus pallidus and thalamus to Patient 2 and 3 using 9 degree of freedoms.  

Additionally, we used the globus pallidus fitting in Patient 2 and 3 as exclusion 

masks in subsequent patient-specific tractography reconstructions of the other 

pathways.  Of the 2,000 stylized streamlines for LF, we ignored those that 

intersected the DBS lead.  We subsampled 1,000 streamlines of the LF and SP 

to represent each of these pathways. 

 

4.2.4.3.  Cable model of axons 

The geometric and electrical parameters of all axon models were defined 

from previously established models [McIntyre et al., 2002; Howell and McIntyre, 

2016].  The myelinated axon was modeled with a double cable structure.  The 
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nodes of Ranvier had voltage-gated fast Na+, persistent Na+, and slow K+ ion 

channel conductances, leakage conductance, and, membrane capacitance 

properties.  The axon models for the various pathways were assigned a single 

diameter (Table 4.4).  Given that local projection neurons can respond differently 

than fibers of passage to electrical stimulation [McIntyre and Grill, 2000; Foutz 

and McIntyre, 2010], we attached a 20 µm diameter soma with passive 

membrane properties to the first node of Ranvier of each SP axon. 

The response of each individual axon model in each modeled pathway to 

the spatially- and temporally-varying DBS voltage distribution was calculated with 

NEURON [Hines and Carnevale, 2001].  We used a binary search algorithm to 

determine the threshold stimulus amplitude that was sufficient for generating 

propagating action potentials at the distal nodes to a train DBS stimuli at 130 Hz. 

From these threshold stimulus amplitudes, we constructed recruitment 

curves representing the percent activation of the pathway as a function of 

stimulus amplitude.  We bootstrapped the sampled axons of each pathway into 

100 subsamples of 1,000 axons.  Bootstrapping was implemented to assess how 

well the sampled axons represents the true population of axons within each 

pathway.  The data presented represents the average and 2.5% to 97.5% 

quantiles of activated axons for the 100 subsamples in response to stimulation 

(Figure 4.4).  These quantiles give an indication of the variability of the 

bootstrapped subsamples.  The overlap of these quantiles between different 

pathways indicates that there is likely not a difference in activation. 
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4.3. Results 

We developed highly detailed computational models of subthalamic DBS 

for three PD patients.  The type of computational model constructed for this 

study, known as a FC PAM [Gunalan et al., 2017], explicitly calculates the 

response of cable axon models with anatomically realistic trajectories to the DBS 

voltage distribution.  To construct these FC PAMs, we generated the trajectories 

of six pathways in the subthalamic region, modeled each axon within these 

pathways as a multi-compartment cable structure, and calculated the response of 

each axon to the voltage distribution generated by the DBS electrode.  We 

retrospectively used these models to evaluate our hypothesis that the clinically-

defined therapeutic stimulation setting selectively activates the HD and SP 

pathways over the LF, CbTT, IC, and ML pathways, and performed sensitivity 

analyses to determine the robustness of our conclusions.  Lastly, we evaluated 

alternative stimulation paradigms to explore possibilities for increasing the 

stimulation selectivity of these pathways. 

 

4.3.1. Activation of Multiple Pathways 

We calculated the activation of axonal pathways in the subthalamic region 

to the clinically-defined therapeutic stimulation setting (Figure 4.4).  We found 

that therapeutic stimulation activates multiple pathways and these pathways 

were not consistent among the three PD patients.  For instance, in Patient 1 the 

HD was activated at a higher percentage than the SP and CbTT pathways, but in 

Patient 3 the LF was activated at a higher percentage than the HD and SP 
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pathways.  We then explored the effects of changing the stimulus amplitude from 

0 to 6 V in each patient and created recruitment curves for each pathway.  The 

results demonstrate that the relative proportions of each pathway can be biased 

by amplitude changes. 

 

 
Figure 4.4.  Pathways activated by the clinically-defined therapeutic stimulation 
setting for each patient.  Recruitment curves for monopolar stimulation with 
contact 2 (60 µs, 130 Hz).  Red dashed line represents the clinically-defined 
therapeutic stimulation setting.  Internal capsule fibers of passage – white; 
hyperdirect pathway – pink; subthalamopallidal pathway – green; lenticular 
fasciculus – blue; cerebellothalamic tract – orange; medial lemniscus – purple.  
The data presented represents the average and 2.5% to 97.5% quantiles of 
activated axons for the 100 subsamples in response to stimulation. 
 

Next, we evaluated the sensitivity of the model predicted pathway 

activation results to two key parameters: electrode location and axon diameter.  

We shifted the location of the DBS electrode by 0.5 mm in the anterior-posterior, 

dorsal-ventral, and medial-lateral directions in Patient 1 (Figure 4.5).  The relative 

trends in activation of the SP and HD pathways stayed consistent with shifts of 

the DBS lead.  However, pathways that were located on one side of the DBS 

lead (e.g. CbTT pathway) were sensitive to changes in DBS lead position.  

Additionally, we modeled all axons within the IC, HD, and ML pathways with 
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diameters of either 2 µm, 4 µm, 5.7 µm, 8 µm, or 10 µm, and all axons within the 

SP, LF, and CbTT pathways with diameters of either 2 µm, 4 µm, 5.7 µm (Figure 

4.6).  For all pathways, the pathway activation was extremely sensitive to the 

choice of axon diameter.  In some cases, the predicted activation changed from 

0% to ~50% as the diameter change from 2 µm to 5.7 µm.  Thus, both electrode 

location and axon diameter have an impact on pathway activation predictions.  

However, the basic model prediction that both the HD and SP pathways are in 

Patient 1 activated during therapeutic stimulation appears robust. 

 

 
Figure 4.5.  Sensitivity of pathway activation to electrode localization.  The 
modeled DBS electrode was shifted by 0.5 mm in a given direction.  Data is 
shown for Patient 1.  Red dashed line represents the clinically-defined 
therapeutic stimulation setting.  Stimulation parameters: voltage-controlled 
stimulation; contact 2 (-), case (+); 60 µs; 130 Hz. 
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Figure 4.6.  Sensitivity of pathway activation to axon diameter.  Activation of the 
(A) internal capsule fibers of passage, (B) hyperdirect pathway, (C) medial 
lemniscus, (D) subthalamopallidal pathway, (E) lenticular fasciculus, and (F) 
cerebellothalamic tract.  All axons within a pathway were modeled as a single 
diameter.  Data is shown for Patient 1.  Red dashed line represents the clinically-
defined therapeutic stimulation setting.  Stimulation parameters: voltage-
controlled stimulation; contact 2 (-), case (+); 60 µs; 130 Hz. 
 

4.3.2. Alternative stimulation paradigms 

The clinically-defined therapeutic stimulation setting for Patient 1 was 

contact 2 (-)/case (+), 1.7 V, 60 µs, and 130 Hz.  We explored the use of 

alternative stimulus pulse widths, electrode configurations, and current-controlled 

stimulation on the activation of the aforementioned 6 pathways for Patient 1.  We 

calculated the activation of these pathways with either 30 µs, 60 µs, 90 µs, and 

120 µs pulse widths (Figure 4.7).  We found that as the amplitude increased the 

SP and HD pathways were activated before any other pathway for all stimulus 
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pulse widths.  Subsequently, we calculated activation of these pathways for four 

monopolar and four adjacent bipolar electrode configurations (Figure 4.8).  For all 

electrode configurations tested, the SP and HD pathways were activated before 

any other pathway.  However, by shifting the active monopolar electrode contact 

from contact 2 to contact 3 the LF increased activation for 1.7 V from 0.1% to 

19.0%.  This change is reflective of the position of contact 3 in the region dorsal 

to the STN.  As contact 2 was located within the dorsal portion of the STN in 

Patient 1, the SP and HD pathways were most likely to be activated. 

 

 
Figure 4.7.  Effect of stimulus pulse width on pathway activation.  (A-D) 
Activation was calculated for 30 µs, 60 µs, 90 µs, and 120 µs stimulus pulse 
widths.  Data is shown for Patient 1.  Red dashed line represents the clinically-
defined therapeutic stimulation setting.  Stimulation parameters: voltage-
controlled stimulation; contact 2 (-), case (+); 130 Hz. 
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Figure 4.8.  Effect of electrode configuration on pathway activation.  Activation 
was calculated for (A-D) monopolar and (E-H) bipolar electrode configurations.  
Data is shown for Patient 1.  Red dashed line represents the clinically-defined 
therapeutic stimulation setting.  Stimulation parameters: voltage-controlled 
stimulation; 60 µs; 130 Hz. 
 

Studies have shown that the DBS electrode impedances change over time 

[Cheung et al., 2013; Hartmann et al., 2015].  Impedance changes are likely due 

to a glial scar formation around the DBS lead [Grill and Mortimer, 1994].  

Previous studies have shown that current-controlled systems can reduced the 
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variability of the stimulus waveform measured in the brain as the electrode 

impedance changes [Lempka et al., 2010].  We changed the encapsulation layer 

conductivity to reflect this impedance change and calculated activation of the 

CbTT pathway during voltage- and current-controlled stimulation (Figure 4.9).  

We modeled the encapsulation layer as a 0.5 mm radius around the entire DBS 

lead with a homogenous conductivity of either 0.05 S/m, 0.07 S/m, or 0.20 S/m, 

which resulted in an access resistance of 1.69 kW, 1.37 kW, or 0.82 kW.  For 

voltage-controlled stimulation, we found that as the encapsulation layer 

conductivity decreased the activation of the CbTT pathway also decreased.  For 

current-controlled stimulation, activation of the CbTT pathway was largely 

insensitive to changes in encapsulation layer conductivity. 

 

 
Figure 4.9.  Analysis of voltage- and current-controlled stimulation.  (A) An 
equivalent electrical circuit of the implanted DBS system for monopolar 
stimulation [Lempka et al., In review].  The brain is represented as a series 
resistance of the encapsulation layer (REncapsulation layer) and bulk tissue (RTissue) 
(dashed purple line).  (B) Activation of the cerebellothalamic tract for voltage-
controlled stimulation.  We defined the encapsulation layer conductivity as either 
0.05 S/m, 0.07 S/m, or 0.20 S/m.  (C) Activation of the cerebellothalamic tract for 
current-controlled stimulation. 
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4.4. Discussion 

We constructed anatomically and biophysically detailed models of 

subthalamic DBS to predict the pathways that mediate the therapeutic response 

to stimulation.  The model results suggest that multiple pathways are robustly 

activated by the clinically-defined therapeutic stimulation setting and these 

pathways were not consistent among the three PD patients.  These general 

conclusions hold true for potential errors in electrode localization and axon 

diameter choice, but these parameters have an appreciable influence on 

activation percentage.  Future studies will need to focus on constraining 

parameters such as the distribution of axon diameters within a pathway to 

produce physiological accurate predictions of pathway activation. 

 

4.4.1. Implications for identifying a therapeutic target 

The clinical literature has made clear that the major determinate of 

therapeutic outcome from DBS interventions is accurate electrode placement in 

the “target”, commonly defined in anatomical terms as the dorsal-lateral STN 

[e.g. Welter et al., 2014; Eisenstein et al., 2014].  However, scientific definition of 

the neural elements making up the “target” for subthalamic DBS has taken many 

different faces over the last two decades.  The original concept of simply 

stimulating the cell bodies of the STN [Limousin et al., 1995], eventually evolved 

to stimulating the efferent axons of the STN neurons [Miocinovic et al., 2006].  In 

addition, recognition that many different axonal pathways in the subthalamic 

region are likely stimulated during therapeutic DBS prompted hypotheses that 
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stimulation of different pathways may be linked to the control of different 

symptoms [Coenen et al., 2011; Chaturvedi et al., 2012].  Plus, basic 

neuroscience investigations using optogenetics in rodents have recently 

highlighted the important role of directly stimulating afferent axonal inputs, most 

notably hyperdirect axon collaterals in the STN [Gradinaru et al., 2009; Sanders 

and Jaeger, 2016].  In turn, it is likely that there are many different “targets” in the 

subthalamic region.   

The models developed in this study provided a framework for us to 

address to the basic question of what pathways are being stimulated (Figure 

4.4).  Our calculations suggest that directly stimulating the SP, HD, and CbTT 

pathways are necessary for therapeutic effect; however, our models cannot 

determine if one or the other is sufficient.  Unfortunately, it does not appear easy 

to disentangle activation of the HD and SP pathways with electrical stimulation, 

as our attempts to explore alternative stimulation paradigms yielded coupled 

activation for all conditions (Figure 4.8).  Therefore, we must look to additional 

metrics and methods to identify if stimulating one of these pathways is more 

important than the other in terms of therapeutic efficacy.  One option could be to 

use correlations of electrophysiological evoked potentials in the connected nuclei 

(i.e. cortex and pallidum) with clinical measurements of benefit.  Such 

experiments have been done in the human cortex (see Chapter 5) [Walker et al., 

2012; de Hemptinne, 2015] with positive results, but corresponding results in 

pallidum remain to be acquired. 
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4.4.2. Implications for stimulation parameter selection 

In this study, we used patient-specific FC PAMs to provide insights on 

theoretical activation of pathways in the subthalamic region.  We explored the 

use of a range of stimulus pulse widths, electrode configurations, and voltage- 

and current-controlled stimulation on pathway activation and selectivity in Patient 

1.  First, we showed that the difference in the stimulus amplitude to activate the 

SP/HD/CbTT pathways compared to the stimulus amplitude to activate the IC 

pathway, known as the therapeutic window, increased as the pulse width 

decreased (Figure 4.7).  These results match previously reported clinical results 

suggesting that short pulse widths widen the threshold amplitude between rigidity 

control and muscle contractions [Rizzone et al., 2001; Reich et al., 2015].  

Second, stimulation with the therapeutic electrode contact activated the SP, HD, 

and CbTT pathways (Figure 4.4).  Theoretical translation of the active monopolar 

electrode contact was able to change the recruitment profile.  For example, 

activation of the LF could be increased in Patient 1 by shifting the active 

monopolar electrode dorsally from contact 2 to contact 3 (Figure 4.8).  And 

activation of the CbTT pathway could be increased in Patient 1 by shifting the 

contact 2 posteriorly by 0.5 mm (Figure 4.5).  Third, compared to voltage-

controlled stimulation, current-controlled stimulation was able to keep consistent 

the pathway activation of, for example, the CbTT pathway as the encapsulation 

layer conductivity changed reflecting a change in electrode impedance.  The 

patient-specific FC PAMs suggest that selectivity of individual pathways is not 
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likely given the close proximity of multiple pathways, but certain stimulation 

paradigms can activate specific groups of pathways. 

 

4.4.3. Study limitations 

The patient-specific FC PAM represents an anatomically and biophysically 

detailed model of DBS, but as with any model limitations exist with the methods 

presented.  Electrode misalignment resulting from image registration errors and 

errors in the placement of the model DBS lead represents a source of error in the 

model predictions.  We explored the sensitivity of our predictions to errors in 

electrode localization by varying the position of the electrode by 0.5 mm in six 

orthogonal directions (Figure 4.5).  The results show that pathway activation can 

change by greater than 10%, suggesting that further work is necessary to 

improve potential errors in electrode localization. 

Subcortical nuclei of the basal ganglia were segmented to create 

constraints for the DWI-based tractography.  We attempted to reduce error in 

nuclei segmentation by acquiring 7T MRI data for each patient, which allow for 

higher resolution and signal-to-noise than conventional 1.5T or 3T images 

[Duchin et al., 2012].  However, these images are not without error as manual 

nuclei segmentation of the substantia nigra, red nucleus, and subthalamic 

nucleus were performed in the coronal 7T T2W or 7T SW image and then 

transformed to 1.5T T1W image space.  As a result of this transformation, the 

borders of the nuclei are less clearly defined because of interpolation during the 



 109	

transformation process.  Furthermore, there was not adequate contrast of the 

thalamus on any 7T image so an atlas thalamus had to be fit to these patients. 

DWI-based tractography provides a technique to predict axonal pathway 

trajectories and has revolutionized connectional neuroanatomy in the human 

brain [e.g. Horn and Blankenburg, 2016; Glasser et al., 2016].  In turn, it is only 

logical that tractography is now playing a major role in DBS research, and 

connectomic-based analyses of subthalamic DBS are beginning to become 

available [e.g. Vanegas-Arroyave et al., 2016; Horn et al., 2017].  However, it 

remains unclear how consistent the grey matter anatomy and axonal trajectory 

anatomy is across PD patients, or if tractography alone is capable of accurately 

reconstructing subthalamic pathways of interest for DBS analysis [Lenglet et al., 

2012; Thomas et al., 2014].  These anatomical details become especially 

important when attempting to characterize the signaling response of axonal 

pathways to DBS because the axonal trajectory is a key determinate of the 

membrane polarization from the applied electric field [McNeal, 1976; Gunalan et 

al., 2017]. 

For a given axon diameter, the multi-compartment cable axon model is 

capable of reproducing excitation characteristics that match experimental 

measurements [McIntyre et al., 2002].  However, each pathway within the brain 

is comprised of axons that have a distribution of diameters [Mathai et al., 2013; 

Firmin et al., 2014] and most analyses to date model all axons within a pathway 

as a single diameter.  As the choice of axon diameter has a large impact on the 

pathway activation predictions (Figure 4.6) [McNeal 1976; Zitella et al., 2015], 
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future models need to account for the realistic distribution of diameters within 

each pathway to accurately predict activation. 

 

4.5. Conclusions 

We developed detailed patient-specific computational models to calculate 

the neuronal pathways directly activated by subthalamic DBS.  The stimulation 

likely activates multiple pathways indiscriminately.  The results presented provide 

a biophysical foundation for interpreting the wide-ranging clinical 

electrophysiology and functional imaging studies exploring the brain network 

activity generated by subthalamic DBS.  However, the models also highlight the 

desire to be more specific and detailed in the stimulation predictions carries with 

it the caveats of scientific gaps in anatomical knowledge and image registration 

limitations.  
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Chapter 5 - Biophysical properties of the hyperdirect 
pathway necessary to match clinical cortical evoked 
potentials from subthalamic deep brain stimulation 
 

Abstract 

Deep brain stimulation (DBS) of the subthalamic region is an established 

clinical therapy for the treatment of Parkinson’s disease (PD).  Direct stimulation 

of the hyperdirect pathway, which consists of a special subset of corticofugal 

axons originating from layer V pyramidal neurons that send an axon collateral to 

the subthalamic nucleus (STN), has been extensively linked to therapeutic 

benefit in experimental studies of PD.  One experimental measurement used to 

evaluate hyperdirect activation is the recording of cortical evoked potentials 

generated by subthalamic DBS.  In humans, these evoked potentials have a very 

fast component (R1) that occurs ~1 ms after the stimulus pulse, as well as a 

slower component (R2) that reaches its peak in ~6 ms.  R1 is typically assumed 

to arise from antidromic invasion of the hyperdirect layer V pyramidal neurons, 

while R2 is assumed to arise from intracortical synaptic activity.  To address 

these assumptions, we used a detailed patient-specific DBS model of hyperdirect 

pathway activation.  We reconstructed the hyperdirect pathway using 

tractography derived from diffusion-weighted images of a PD patient implanted 

with a subthalamic DBS system.  Each of the 1000 tractography-generated 

streamlines were then modeled as a multi-compartment cable structure.  The 

voltage distribution generated by the DBS electrode was calculated and used to 

stimulate the model axons.  The model system allowed us to evaluate conduction 
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times from activation of the hyperdirect axons in the STN to arrival of the action 

potentials in cortex.  We compared the conduction times for small (5.7 µm), 

medium (10.0 µm), and large (15.0 µm) diameter corticofugal axons.  Only the 

15.0 µm models could generate action potentials in cortex at ~1 ms, coinciding 

with clinical measurements for R1, but histological measurements suggest that 

axons of that size are extremely rare in the internal capsule.  Given the expected 

diameter distribution of the hyperdirect pathway, R1 and R2 may actually 

represent a combined continuum of antidromic invasion of cortex, where the 

experimentally recorded waveform is the result of interacting field potentials 

generated by neurons with small, medium, and large diameter axons. 

 

5.1.  Introduction 

Subthalamic deep brain stimulation (DBS) is an established treatment for 

the motor symptoms of Parkinson’s disease (PD) [Limousin et al., 1998].  While 

the therapeutic mechanisms of subthalamic DBS remain unresolved, direct 

activation of the hyperdirect (HD) pathway is thought to play a major role.  The 

HD pathway consists of a subset of corticofugal axons that originate in layer V of 

cortex, pass through the internal capsule, branch collaterals to the subthalamic 

nucleus (STN), and terminate in the brainstem/spinal cord [Nambu et al., 2002; 

Kita and Kita, 2012; Haynes and Haber, 2013].  Electrical and optogenetic 

stimulation studies in rodents have demonstrated a causal link between HD 

pathway activation and therapeutic benefit [Li et al., 2007; Gradinaru et al., 2009; 

Li et al., 2012; Sanders and Jaeger, 2016].  The HD pathway is distinct from the 



 113	

corticofugal axons that do not branch collaterals to the STN, known as the 

internal capsule fibers of passage (IC).  While stimulation of the HD pathway is 

believed to improve PD symptoms, stimulation of the IC pathway is believed to 

cause unwanted side effects such as muscle contractions [Tommasi et al., 2008]. 

Clinical experiments measuring cortical evoked potentials during 

subthalamic DBS have identified several different short latency signals [Ashby et 

al., 2001; Baker et al., 2002; Walker et al., 2012].  Of particular interest, Walker 

et al. [2012] observed three responses (R1-R3) after each DBS pulse with peak 

latencies at 1.0 ± 0.4 ms (R1), 5.7 ± 1.1 ms (R2), and 22.2 ± 1.8 ms (R3).  They 

hypothesized that antidromic activation of the HD pathway was the cause of the 

cortical evoked potential measured at ~1 ms.  Therefore, we attempted to verify 

this hypothesis using a detailed patient-specific computational model of 

subthalamic DBS.  We stimulated the HD and IC pathways in the subthalamic 

region and measured the timings of action potentials arriving in cortex along 

these pathways.  We also explored the role of stimulation parameter settings 

(monopolar, bipolar, and stimulus amplitude), as well as the influence of axon 

diameter on the propagation of action potentials to cortex from subthalamic DBS. 

 

5.2.  Materials and methods 

This study analyzed the theoretical activation of the HD and IC axonal 

pathways by DBS electrodes implanted in the subthalamic region using an 

anatomically and biophysically realistic patient-specific model [Gunalan et al., 

2017].  Using the 7T magnetic resonance imaging (MRI) datasets acquired prior 
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to DBS surgery, we constructed a highly detailed field-cable pathway-activation 

model of DBS.  We explicitly represented the stimulus voltage distribution 

generated by the DBS electrode and then calculated the response of multi-

compartment cable models of myelinated axons with anatomically realistic 

trajectories to the stimulation. 

 

5.2.1.  Ethics statement 

Collection of all patient data for this study was approved by the University 

of Minnesota Institutional Review Board (IRB).  The patient provided informed 

written consent prior to participating in the research and the consent procedure 

was approved by the IRB. 

 

5.2.2.  Patient data 

The PD patient was implanted with a Medtronic 3389 DBS lead in the left 

STN that was connected to an Activa SC IPG (Medtronic, Minneapolis, MN).  

Using standard clinical programming procedures [Volkmann et al., 2002], 

therapeutic stimulation parameters were selected (contact 2 [-], case [+]; 1.7 V; 

60 µs; 130 Hz).  The preoperative OFF medication, OFF stimulation motor 

subscore of the Unified Parkinson’s Disease Rating Scale (UPDRS) was 31, and 

the 4 month post-operative ON medication, ON stimulation UPDRS score was 

14.  The DBS electrode impedance at contact 2, as measured by the IPG, was 

1450 W. 
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5.2.3.  Image acquisition and processing 

The patient underwent pre-operative scanning on a 7T MRI system 

(Magnex Scientific, UK) at the University of Minnesota, using T1-weighted (T1W), 

T2-weighted (T2W), susceptibility-weighted (SW), and diffusion-weighted (DW) 

imaging.  A pre-operative T1W image was also collected on a 1.5T Siemens 

Magnetom Espree.  A post-operative CT image was acquired on a Siemens 

Biograph64 Sensation approximately 1 month after the DBS surgery. 

The 1.5T T1W image was resliced to 0.4 mm isotropic dimensions to 

match the in-plane resolution of the 7T images.  All images were registered to the 

common space of the resliced 1.5T T1W image.  The DW images were corrected 

for distortions from magnetic field inhomogeneities and eddy currents.  

Segmentation of the STN, substantia nigra, and red nucleus was performed on 

the coronal 7T T2W image, and these segmentations were transformed to T1W 

space.  We segmented the globus pallidus internus, globus pallidus externus, 

and putamen from the axial 7T T2W image in T1W space.  As no image provided 

adequate contrast for segmentation of the thalamus, we fit the Harvard-Oxford 

atlas thalamus to the 1.5T T1W image. 

 

5.2.4.  Field-cable pathway-activation model 

5.2.4.1.  DBS voltage distribution 

The voltage distribution generated by the DBS electrode varies both 

spatially and temporally in the tissue medium.  We created an electrostatic finite 

element model in COMSOL to solve Laplace’s equation.  We accounted for the 
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tissue anisotropy and inhomogeneity by defining the conductivities from the 

patient’s DW images and tissue-type segmentation [Howell and McIntyre, 2016; 

Howell and McIntyre, 2017; Gunalan et al., 2017].  We defined the encapsulation 

layer with a 0.5 mm radius around the entire electrode shaft, and defined the 

conductivity of the encapsulation layer such that the model impedance best 

matched the clinical impedance at the therapeutic electrode contact.  We then 

calculated the temporal characteristics of the voltage distribution using an 

equivalent electrical circuit model for voltage-regulated DBS, such that the 

modeled stimulus waveform matched the waveform of the Medtronic IPG 

[Lempka et al., In review]. 
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Figure 5.1.  Patient-specific deep brain stimulation voltage distribution.  (A) 
Boundaries of the finite element model.  Under monopolar configurations, the 
neck is set to 0 V.  (B) Tissue-type segmentation of the head.  (C) Conductivity 
tensors in the head.  The tensors are colored according to their fractional 
anisotropy (FA).  (D) Conductivity tensors near the DBS electrode.  (E) 
Isopotential contour lines of the voltage distribution generated by the DBS 
electrode (contact 2 [-], case [+]; 1 V).  (F) Stimulus waveform at the electrode-
tissue interface (contact 2 [-], case [+]; 1 V; 60 µs; 130 Hz). 
 

5.2.4.2.  Cable model of an axon 

We constructed multi-compartment cable models of myelinated axons to 

represent the axons of the HD and IC pathways (Figure 5.2).  We used 

probabilistic tractography to define the trajectory of the corticofugal axons of the 

HD and IC pathways.  FSL’s probabilistic tractography tool (probtrackx) 

generated trajectories, or ‘streamlines’, which originated in the seed mask of the 

white matter near the STN and terminated in the cortex and the cerebral 
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peduncle of the brainstem.  We used 64 samples per voxel which was equivalent 

to 1,000 samples per mm3.  We ignored those streamlines that intersected the 

DBS lead, STN, red nucleus, globus pallidus, putamen, caudate nucleus, 

thalamus, temporal cortex, cerebrospinal fluid, or contralateral hemisphere.  Of 

the 9,707 streamlines that were generated with tractography, we randomly 

sampled 1,000 to represent the IC pathway and 1,000 to represent the 

corticofugal axon of the HD pathway.  We fit a smoothing spline to each 

tractography-generated streamline to ensure a smooth trajectory for use in the 

stimulation modeling [Gunalan et al., 2017].  The corticofugal streamlines 

between the cerebral peduncles and cortex were 89.0 ± 7.0 mm and 88.8 ± 6.6 

mm in length for the IC and HD pathways, respectively. 
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Figure 5.2.  Patient-specific model of the internal capsule (IC) and hyperdirect 
(HD) pathways.  (A1/B1) Coronal and (A2/B2) sagittal views show the 
tractography-generated corticofugal streamlines of the IC and HD pathways.  The 
HD axons have a collateral that branches off of the corticofugal axon and 
terminates in the subthalamic nucleus.  (A3/B3) Zoomed coronal view of the 
subthalamic region.  Subthalamic nucleus – green, thalamus – yellow. 
 

For the HD axons, we modeled a collateral at a randomly chosen node of 

Ranvier along the corticofugal axon that was within 3 mm in the dorsal-ventral 

direction from the dorsal boundary of the STN (Figure 5.2).  A random voxel 

within the STN was selected as the termination point of the collateral.  We then 

generated an arc connecting the branch point node of Ranvier and the 

termination point within the STN to define the collateral trajectory.  If the collateral 

passed through the DBS electrode, we randomly selected a different voxel within 

the STN and recalculated the corresponding arc. 
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The geometric and electrical parameters of the cable axon models were 

defined from previously established models [McIntyre et al., 2002; Howell and 

McIntyre, 2016].  The myelinated axon was modeled with a double cable 

structure and the nodes of Ranvier contained voltage-gated fast Na+, persistent 

Na+, and slow K+ ion channel conductances, and leakage conductance and 

membrane capacitance properties.  The hyperdirect axon collateral that projected 

into the STN had a diameter that was defined as a fraction of the corticofugal 

axon diameter (1/3.1) [Hongo et al., 1987; Struijk et al., 1992; Grill et al., 2008].  

The response of each individual axon model to the spatially- and temporally-

varying DBS voltage distribution was calculated with NEURON (Figure 5.3) 

[Hines and Carnevale, 2001].  We stimulated each axon with a single DBS pulse 

and an axon was defined as active if an action potential reached cortex. 
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Figure 5.3.  Deep brain stimulation of the internal capsule (IC) and hyperdirect 
(HD) pathways.  (A1/B1) One hundred representative axons of each pathway.  
(A2/B2) The voltage distribution generated by the DBS electrode under a 
monopolar configuration is used to stimulate the cable axon models.  (A3/B3) 
Those axons that generate a propagating action potential, in response to 
monopolar stimulation, that reaches cortex are classified as active (red).  (A4/B4) 
Those axons that generate a propagating action potential in response to bipolar 
stimulation. 
 

5.3.  Results 

We modeled each tractography-generated streamline as a multi-

compartment cable axon structure.  We modeled all of the axons within a 

pathway with a diameter (D) of either 5.7 µm, 10.0 µm, or 15.0 µm.  We 

stimulated these axons with either monopolar or bipolar electrode configurations 

(Figure 5.3).  As expected, we found that as the axon diameter of the pathway 

increased more axons were activated for a fixed stimulation setting. 

We calculated the times for action potential propagation to cortex along 

the IC and HD pathways in response to subthalamic DBS (Figure 5.4 and Table 

5.1).  For the HD pathway, the action potentials arrived in cortex with a bimodal 

distribution due to the site of action potential initiation.  If the action potential 
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initiated in the corticofugal section of a HD axon it typically arrived in the cortex 

earlier (Figure 5.4B1-B3, red) than if the action potential initiated in the STN 

collateral (Figure 5.4B1-B3, green).  A small percentage of the HD axons initiated 

action potentials at the node of Ranvier where the collateral branched from the 

corticofugal axon (Figure 5.4B1-B3, blue). 
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Figure 5.4.  Timings of action potentials arriving in cortex after subthalamic deep 
brain stimulation of the internal capsule (IC) and hyperdirect (HD) pathways.  The 
diameter of the corticofugal axon is represented as either 5.7 µm, 10.0 µm, or 
15.0 µm.  For each HD axon, the collateral diameter is a fraction of the 
corticofugal axon diameter (1/3.1).  (A/B) Monopolar (contact 2 [-]; case [+]) and 
(C/D) bipolar (contact 2 [-]; contact 3 [+]) stimulation was modeled with the 
following settings: 4.0 V; 60 µs.  AP – action potential. 
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Table 5.1.  Action potential arrival time in cortex after subthalamic deep brain 
stimulation of the internal capsule (IC) and hyperdirect (HD) pathways.  Time 
(ms) is calculated from the stimulus onset.  Stimulation setting: monopolar 
(contact 2 [-], case [+]) or bipolar (contact 2 [-], contact 3 [+]); 4.0 V; 60 µs.
Axon 
diameter 
(µm) 

IC axons HD axons activated 
along corticofugal axon 
or branch node 

HD axons activated 
along axon collateral 

Monopolar Bipolar Monopolar Bipolar Monopolar Bipolar 
5.7 2.8 ± 0.2 2.9 ± 0.2 2.8 ± 0.2 2.8 ± 0.2 4.1 ± 0.5 4.0 ± 0.6 
10.0 1.4 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 2.2 ± 0.2 2.1 ± 0.3 
15.0 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 1.6 ± 0.1 1.5 ± 0.2 

 

Once the action potential arrives in cortex it is likely to cause a 

depolarization of the soma resulting in a measuring electrical signal on the 

surface of the scalp [Anderson et al., In preparation].  We aligned the model 

somatic action potentials to the cortical evoked potentials measured clinically by 

Walker et al. [2012].  In order to do so, we shifted a somatic action potential by 

the time delay for the action potential to arrive in cortex (Table 5.1).  Activation of 

the 15.0 µm corticofugal axons of the HD and IC pathways resulted in a somatic 

action potential with a peak at 1.955 ms which was significantly different than the 

average R1 peak at 1.0 ms for the five patients (six brain hemispheres) reported 

by Walker et al. [2012] (99% confidence interval [1.947 ms, 1.963 ms]).  

Activation of the 5.7 µm HD axons along the axon collateral resulted in a somatic 

action potential with a peak at 5.055 ms which was significantly different than the 

average R2 peak of 5.7 ms (99% confidence interval [5.006 ms, 5.104 ms]).  

Interestingly, we aligned these model somatic action potentials to the cortical 

evoked potentials from one patient reported by Walker et al. [2012] (Figure 5.5).  

For this patient, the 5.7 µm HD model somatic action potential qualitatively 

aligned to the R2 peak.  However, statistical analyses could not be performed for 
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this case as the time of the R2 peak was not defined.  This data suggests that 

HD axons with a corticofugal axon diameter equal to or smaller than 5.7 µm 

might result in the R2 peak. 

 
Figure 5.5.  Somatic action potentials aligned to the cortical evoked potentials 
(black lines) from one patient measured by Walker et al. [2012].  Stimulation 
occurs in the subthalamic nucleus.  The somatic action potentials are shifted in 
time according to the corresponding mean action potential arrival time in cortex 
(Table 5.1). 
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We calculated the action potential propagation speed from the node of 

action potential initiation in the subthalamic region to the cortex for the IC and HD 

axons (Table 5.2).  The propagation speed was calculated separately for those 

HD axons that initiated an action potential in the corticofugal axon and those HD 

axons that initiated an action potential in the collateral.  Propagation speed was 

similar for monopolar and bipolar stimulation; however, axon diameter 

substantially effected the conduction speed.  If action potential initiation in the HD 

axon occurred in the STN collateral, as opposed to the corticofugal axon, the 

propagation speed to cortex was slower. 

 

Table 5.2.  Action potential propagation speed after subthalamic deep brain 
stimulation of the internal capsule (IC) and hyperdirect (HD) pathways.  
Propagation speed (m/s) is calculated from the site of action potential initiation to 
cortex.  Stimulation setting: monopolar (contact 2 [-], case [+]) or bipolar (contact 
2 [-], contact 3 [+]); 4.0 V; 60 µs.
Axon 
diameter 
(µm) 

IC axons HD axons activated 
along corticofugal axon 
or branch node 

HD axons activated 
along axon collateral 

Monopolar Bipolar Monopolar Bipolar Monopolar Bipolar 
5.7 25.8 ± 0.3 25.7 ± 0.6 25.7 ± 0.2 25.6 ± 0.5 18.7 ± 1.9 19.4 ± 2.1 
10.0 54.2 ± 1.3 53.5 ± 1.9 53.9 ± 1.2 53.1 ± 1.7 34.6 ± 3.4 37.0 ± 4.7 
15.0 83.3 ± 3.1 82.6 ± 3.6 82.9 ± 3.0 82.4 ± 3.7 46.9 ± 4.0 51.1 ± 7.0 

 

We explored the sensitivity of the results to the stimulation amplitude 

(Figure 5.6).  We found that as the stimulation amplitude increased, as expected 

more axons were activated, but that the general timing of action potentials 

arriving in cortex did not vary.  Additionally, at all stimulus amplitudes (1 V - 4 V) 

the IC pathway was activated resulting in short latency action potentials in cortex. 
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Figure 5.6.  Timings of action potentials arriving in cortex for a range of 
stimulation amplitudes (1 V – 4 V).  Histogram plots are generated for the (A) 
internal capsule and (B) hyperdirect pathways, in response to monopolar (contact 
2 [-], case [+]) and bipolar (contact 2 [-], contact 3 [+]) electrode configurations.  
Stimulus pulse width = 60 µs. 
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5.4.  Discussion 

Short latency cortical evoked potentials arising from subthalamic DBS 

represent clinical measurements that can help dissect the underlying neural 

response to therapeutic stimulation.  Recent advances in recording amplifiers, 

signal processing strategies, and experimental design have enabled 

experimental identification of DBS-induced cortical responses with latencies as 

short as ~1 ms, with additional peaks at approximately ~6 ms and ~22 ms 

[Walker et al., 2012].  The 1 ms and 6 ms latency signals are expected to result 

from antidromic activation of cortical pyramidal neurons and we set out to 

evaluate the plausibility of that hypothesis using a detailed biophysical model of 

human subthalamic DBS.  Our results suggest that the 1 ms peak is unlikely to 

be generated by direct activation of hyperdirect axon collaterals in the STN, but 

could possibly be the result of directly activating corticofugal axons in the internal 

capsule.  However, such a fast response requires axonal conduction velocities, 

and underlying axon diameters, that are extreme for the internal capsule.  In 

addition, the extra time delay needed to generate a somatic action potential spike 

and polarization of the apical dendrites casts further doubt on the 1 ms signal 

being derived specifically from antidromic activation of hyperdirect neurons.  

Alternatively, our simulation results demonstrate that the 6 ms signal is 

consistent with the biophysics of hyperdirect axon collateral activation in the STN 

and propagation to cortex. 

Wide-ranging experimental and clinical studies have recently highlighted 

direct stimulation of the hyperdirect pathway as an important component of 
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therapeutic subthalamic DBS [Li et al., 2007; Gradinaru et al., 2009; Whitmer et 

al., 2012; Walker et al., 2012; Li et al., 2012; Sanders and Jaeger, 2016].  As 

such, we developed a computational model of hyperdirect pathway DBS to 

explore the effects of stimulation within a controlled environment [Gunalan et al., 

2017].  This detailed model allowed us to accurately account for the stimulating 

electric field, axonal trajectories of the internal capsule, and biophysics of action 

potential initiation and propagation (Figure 5.3).  We used the model to evaluate 

the impact of different stimulation conditions (monopolar vs. bipolar), stimulus 

amplitudes, and axon diameters on the direct activation of action potentials in 

hyperdirect neurons and internal capsule fibers of passage.  We then calculated 

the conduction times for those action potentials to reach cortex (Figure 5.4) and 

attempted to reconcile the simulation results with clinical recordings of cortical 

evoked potentials generated by subthalamic DBS (Figure 5.5) [Walker et al., 

2012]. 

Walker et al. [2012] observed that subthalamic DBS activated cortex at ~1 

ms, ~6 ms, and ~22 ms after each DBS pulse, referred to as R1, R2, and R3, 

respectively.  They subsequently concluded that clinically effective subthalamic 

DBS in humans with PD activates the cerebral cortex with short latency, most 

likely by antidromic activation.  In general, our model results support the 

conclusions of Walker et al. [2012] and provide quantitative estimates for the 

underlying neural activation responsible for their experimentally recorded signals.  

However, we found that simulating the 1 ms latency to cortex required model 

parameters (15 µm diameter axons) that are somewhat unlikely given currently 
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available data on the axon diameters and conduction velocities of the pyramidal 

tract [Edgley et al., 1997; Firmin et al., 2014].  Nonetheless, electrophysiological 

recordings are known to demonstrate a strong sampling bias for the most 

excitable and fastest conducting neurons, which would be consistent with the 

largest possible axons contained with the internal capsule [Humphery and Corrie, 

1978; Firmin et al., 2014].  In addition, axon diameter information specifically 

derived from the human internal capsule is relatively limited [e.g. Graf von 

Keyserlingk and Schramm, 1984] and may very well consist of more large 

diameter fibers than seen in lower primates. 

The 6 ms signal (R2) can be more easily reconciled with direct activation 

of hyperdirect axon collaterals in the STN.  Given a corticofugal axon diameter 

(5.7 µm), and resulting conduction velocity (25 m/s), more in line with electron 

microscopy results from the internal capsule [Firmin et al., 2014], we found an 

average cortical arrival time of 4.0 ms for an action potential initiated in the 

hyperdirect axon collateral within the STN (Figure 5.4, Table 5.1).  This timing, 

coupled with the ~1 ms necessary for the antidromic action potential to invade 

the cell body and propagate up to the apical dendrites [Popovic et al., 2011] 

(Figure 5.5), thereby creating the dipole important for evoked potential detection 

[Einevoll et al., 2013], should occur at ~4-6 ms.  The model also predicts 

substantial variability in the cortical arrival times of action potentials initiated in 

hyperdirect axon collaterals (Figure 5.4).  This variability arises from the 

conduction time along the axon collateral in the STN and the different 

corticofugal axon trajectories lengths, which are amplified by the slower 
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conduction velocity of 5.7 µm diameter axons.  The spread in cortical arrival 

times would limit the magnitude of the summated cortical dipole, so it is to be 

expected that R2 would be smaller than R1, as observed experimentally. 

While this study used the most advanced computational model of 

subthalamic DBS currently available to quantify axonal activation and 

propagation, the results remain idealized simulations subject to caveats and 

limitations [Gunalan et al., 2017].  For example, individual components of the 

model can be validated and constrained against experimental measurements, 

such as the axon model [McIntyre et al., 2002] or volume conductor model 

[Miocinovic et al., 2009], but the generalized output predictions of pathway 

activation cannot be directly measured with current experimental techniques.  

Therein lies a key motivation for this study, attempting to evaluate the 

congruence of the model predictions with established experimental recordings.  

However, in that process our theoretical analysis highlighted a number of 

important variables such as the role of axon diameter and the difference between 

stimulating HD axon collaterals or corticofugal axons in dictating the timing of 

cortical evoked potentials.  Therefore, future DBS evoked potential studies would 

likely benefit from a coupled model-experiment analysis strategy to help 

constrain the models as well as improve interpretability of the recorded signals. 

 

5.5.  Conclusions 

In conclusion, our theoretical analysis of antidromic action potential 

propagation to cortex from subthalamic DBS suggests that short latency 
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responses in cortex are the result of directly activating extremely large diameter 

(~15 µm) internal capsule fibers of passage, while the 6 ms signal is the result of 

directly activating moderately sized hyperdirect axon collaterals in the STN. 
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Chapter 6 – Discussion and conclusions 
 

6.1.  Summary of work presented 

Deep brain stimulation (DBS) is an established therapy for treating the 

movement symptoms of Parkinson's disease (PD), but the axonal pathways that 

mediate the therapeutic effects of DBS are not clearly defined.  DBS 

computational models are currently the only non-invasive method for predicting 

the direct effects of stimulation on a patient-specific basis.  The goal of this work 

was to evaluate and utilize patient-specific DBS models to provide insights on the 

effects of stimulation.  Throughout this study, we used these DBS models to 

characterize activation of the subthalamopallidal (SP), lenticular fasciculus (LF), 

hyperdirect (HD), internal capsule fibers of passage (IC), cerebellothalamic tract 

(CbTT), and medial lemniscus (ML) pathways. 

In Chapter 3, we compared the differences in axonal activation predictions 

between detailed patient-specific DBS models described in Chapter 2 (i.e. FC 

PAM) and simplified DBS models (volume of tissue activated [VTA] and driving 

force [DF]).  Our goal was to evaluate the accuracy of DF and VTA models 

compared to FC PAMs for relevant DBS parameters.  We calculated the errors of 

the four predictors (DF-Peterson, VTA-Chaturvedi, VTA-Madler, VTA-Astrom) for 

a range of axon diameters (2 µm - 10 µm), stimulus pulse amplitudes (0.1 V- 10 

V), stimulus pulse widths (30 µs - 120 µs), and electrode configurations 

(monopolar, bipolar, tripolar, quadripolar).  We defined the criteria for accuracy 

as a maximum absolute error of 5% in pathway activation, as clinical effects are 

typically noted at pathway activation levels beginning at ~10% [Chaturvedi et al., 
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2010; Gunalan et al., 2017].  We found that all DF-based and VTA-based 

predictors have errors in stimulation thresholds, and as a result errors in pathway 

activation.  The errors in pathway activation for all predictors were larger than 5% 

for the majority of the parameter space tested.  As all predictors did not meet this 

error tolerance technical specification, we elected to use the FC PAM for 

subsequent analyses. 

In Chapter 4, we calculated the pathways activated by therapeutic 

subthalamic DBS in three PD patients using detailed patient-specific FC PAMs 

and performed sensitivity analyses to determine the strength of the predictions.  

We hypothesized that therapeutic stimulation (contact 2 [-], case [+]; 1-5 Volts; 60 

µs; 130 Hz) in the subthalamic region selectively activates the HD and SP 

pathways, over the LF, CbTT, IC, and ML pathways.  First, we found that 

therapeutic stimulation activates multiple pathways and these pathways were not 

consistent among the three PD patients.  For instance, in Patient 1, the HD was 

activated at a higher percentage than the SP and CbTT pathways, but in Patient 

3, the LF was activated at a higher percentage than the HD and SP pathways.  

Second, we performed a parameter sensitivity analysis to understand the 

influence of electrode localization errors and axon diameter choice on the 

activation predictions in Patient 1.  We found that these parameters can have a 

substantial impact on the results, but the HD and SP were consistently activated 

for the entire parameter space.  Third, we explored alternative electrode 

configurations, stimulus pulse amplitudes, and stimulus pulse widths in Patient 1.  

We found that selective activation of a single pathway is not possible with the 
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current electrode location in the dorsal subthalamic nucleus as multiple pathways 

converge in this region.  This data emphasizes the importance of constructing 

patient-specific models as the activation characteristics are variable among 

patients even though the electrode location is consistently placed within the 

dorsal subthalamic nucleus.  Additionally, the current scientific gaps in the axon 

diameter distribution of these 6 pathways need to be addressed to further 

constrain these model predictions. 

In Chapter 5, we used an FC PAM to dissect the axons mediating short 

latency cortical evoked potentials during subthalamic DBS.  We hypothesized 

that short latency responses at 1.0 ms in cortex are due to activation of 

hyperdirect axons and addressed this hypothesis by constructing a patient-

specific FC PAM of the IC and HD pathways.  We stimulated in the subthalamic 

region and quantified the timings of action potentials arriving in cortex along 

these two pathways.  Action potentials arrived in cortex at dispersed timings that 

were dependent upon the axon diameter and trajectory.  Activation of corticofugal 

axons of large diameter (15.0 µm) IC and HD axons resulted in action potentials 

that invaded the soma of the pyramidal neuron in cortex on average 1.955 ms 

after the stimulus pulse.  The average timing of this cortical invasion is 

significantly slower than the R1 component of the cortical evoked potential.  

Interestingly, activation of medium diameter (5.7 µm) HD axons in the axon 

collateral generated somatic action potentials whose peak qualitatively coincided 

with the R2 component of the cortical evoked potential of one patient measured 

by Walker et al. [2012].  Biophysical models of DBS that explicitly represent 
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action potential conduction along patient-specific axonal trajectories can be 

coupled with experimental measurements of evoked potentials to provide insights 

of the neurons mediating the measured responses. 

Through this work we have advanced the infrastructure for FC PAMs while 

providing insights on the developments necessary for the next generation of 

patient-specific DBS models.  Here, we lay the foundation for future prospective 

studies aimed at targeting stimulation to specific pathway(s) and measuring the 

clinical response, to provide insights on the pathways mediating the therapeutic 

effects of DBS. 

 

6.2.  Current state of DBS modeling 

Computational modeling of DBS has grown in popularity over the past 15-

20 years in both academia and industry.  From a research perspective, DBS 

modeling provides insights of brain activity that are currently not available with 

other imaging modalities in humans.  For example, intense scientific interest 

surrounds identification of the axonal pathways directly activated by DBS and 

how those pathways are connected within the overall brain circuitry.  From a 

clinical perspective, there is a need to simplify the customization of the 

stimulation parameter settings to individual patients, known as programming the 

DBS device, and DBS modeling software for that purpose are now commercially 

available.  However, there exists a wide range of different DBS modeling 

approaches designed for research and/or clinical applications. 
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Experimental evidence suggests that extracellular electrical stimulation 

technologies, such as DBS, generate action potentials in nearby neurons [Ranck, 

1975; Nowak and Bullier, 1998; Hashimoto et al., 2003].  Thus, many of the 

currently available DBS models are focused on calculating the neurons (and their 

axons) that are directly activated by stimulation.  As technology has advanced 

over the years there has been an evolution of these patient-specific DBS models 

(Figure 6.1).  First generation models calculated the position of the DBS 

electrode in the context of the patient’s MRI and subcortical nuclei.  Second 

generation models calculated the position of VTAs relative to the subcortical 

nuclei [Frankemolle et al., 2010; Butson et al., 2011].  Third generation models, 

known as activation volume tractography (AVT), generated tractography-based 

streamlines from the VTAs to calculate the structural connectivity from the 

stimulation site to all brain regions [Vanegas-Arroyave et al., 2016; Horn et al., 

2017].  Fourth generation models calculated the distance between axonal 

pathways defined with strict anatomical constraints and the DBS electrode 

[Coenen et al., 2011].  Fifth generation models, known as a VTA PAM, calculated 

the overlap of a VTA with the axonal pathways defined with strict anatomical 

constraints [Madler and Coenen, 2012].  Sixth generation models, known as a 

FC PAM, calculated the axonal pathways (defined with strict anatomical 

constraints) directly activated by stimulation using biophysical axon models 

[Miocinovic et al., 2006; Chaturvedi et al., 2010].  With each generation, the 

models have become more anatomically and biophysically detailed, with an 

expectation of greater accuracy. 



 
Figure 6.1.  An evolution of computational models of deep brain stimulation.  An example is provided in the context 
of the cerebellothalamic pathway.  (A) Coronal view of a T2-weighted magnetic resonance image, deep brain 
stimulation (DBS) lead, and subcortical nuclei (thalamus – yellow, globus pallidus externus – light blue, globus 
pallidus internus – dark blue, subthalamic nucleus – green, red nucleus – red).  (B) Electrode position relative to 
subcortical nuclei.  (C) Volume of tissue activated (VTA, red).  (D) Activation volume tractography.  The voxels 
within the VTA are used as seeds for tractography.  (E) Diffusion-weighted imaging-based tractography of the 
cerebellothalamic pathway.  (F) Distance from contact 2 to the cerebellothalamic pathway.  (G) Cerebellothalamic 
streamlines intersecting the VTA.  (H) Patient-specific DBS voltage distribution interpolated along the 
cerebellothalamic pathway.  (I) The DBS voltage distribution is used to stimulate multi-compartment cable axon 
models and those that generate action potentials are classified as active (red).  Parameters: axon diameter = 5.7 
µm; stimulus pulse amplitude = 1.7 V; stimulus pulse width = 60 µs; stimulus pulse frequency = 130 Hz. 
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Academic software packages (e.g. Cicerone, Lead-DBS, DBSproc, 

StimVision) [Miocinovic et al., 2007; Horn and Kuhn, 2015; Lauro et al., 2016; 

Noecker et al., 2017] and commercial software packages (e.g. Medtronic’s 

SureTune3, Boston Scientific’s GUIDE, and Brainlab’s Elements) are becoming 

widely available that create a single platform for creation and analysis of patient-

specific DBS models.  These platforms simplify the DBS model construction by 

automating many steps and eliminating the necessity to move data between 

different software packages.  Widely used platforms also have the advantage of 

keeping methodologies consistent between different research studies and patient 

cohorts.  These platforms typically implement DBS models such as AVT and/or 

VTA PAM.  Alternatively, several groups have developed custom workflows to 

implement DBS models that allow for more advanced methodologies (i.e. FC 

PAM) [Miocinovic et al., 2006; Zitella et al., 2013]. 

Clinical DBS research studies using models are typically focused on 

developing correlations between outcomes (e.g. UPDRS-III scores) and model 

results (e.g. DBS electrode position or pathway activation) to infer the therapeutic 

and non-therapeutic regions for stimulation.  Coenen et al. [2011] used 

tractography to target the DBS electrode to the cerebellothalamic pathway for 

suppression of tremor in a patient.  Butson et al. [2011] used VTAs to calculate 

those regions associated with an improvement in bradykinesia and rigidity.  

Frankemolle et al. [2010] showed that cognitive side effects can be avoided by 

targeting stimulation to the dorsal subthalamic nucleus with VTAs.  Vanegas-

Arroyave et al. [2016] illustrated the difference in AVT connectivity patterns 
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between therapeutic and non-therapeutic stimulation.  Horn et al. [2017] used 

AVT connectivity to show that DBS outcomes can be predicted given a desired 

therapeutic connectivity pattern.  In this work, we used FC PAMs to illustrate the 

pathways activated during therapeutic DBS and the strength of these predictions 

given several sources of error (Chapter 4).  These works illustrate a few of the 

ways that DBS models are being utilized to better understand where to stimulate 

within the subthalamic region for PD. 

Recent studies focused on DBS model development have illustrated the 

non-negligible differences in predictions that arise solely from the modeling 

strategy implemented.  For instance, in the volume conductor model, the choice 

of boundary conditions [Walckiers et a., 2010; Golestanirad et al., 2012], or 

ignoring anisotropy and inhomogeneity of the tissue conductivities [Chaturvedi et 

al., 2010; Howell and McIntyre 2017], or even using different methods for 

calculating anisotropic and inhomogeneous tissue conductivities [Howell and 

McIntyre, 2016], can result in errors in the DBS voltage distribution and 

subsequently errors in the excitation thresholds of axons.  Additionally, the 

accuracy of the tractography-generated streamlines is highly dependent on the 

choice of the voxel-wise diffusion model, tractography algorithm, and input 

parameters [Fillard et al., 2011; Thomas et al., 2014].  In this work, we showed 

that simplified methods for predicting axonal activation (i.e. VTA PAM or DF 

PAM) compared to detailed methods (i.e. FC PAM) have non-linear errors in the 

excitation thresholds and pathway activation (Chapter 3).  Thus, there is growing 

evidence that specific methods have to be implemented in order to generate 
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physiologically accurate predictions, and standardizing methodologies will 

minimize the variations in model predictions that arise solely due to the choice of 

methods implemented. 

As more of the model parameters become constrained and platforms for 

implementing the models become refined, more studies will be able to take 

advantage of the insights gained from patient-specific DBS models.  These 

studies will also be able to leverage the large investments that are being made in 

the field of imaging with initiatives such as the Human Connectome Project [Van 

Essen et al., 2013] to produce even more accurate and detailed DBS models.  

Thus, the impact of DBS modeling has yet to reach its full potential. 

 

6.3.  Limitations of DBS models 

Electrical stimulation of excitable tissue is a complex phenomenon 

[Rattay, 1999; Merrill et al., 2005].  The methods presented herein represent the 

latest advancement of patient-specific DBS models of axonal activation.  

However, as with any model, these methods have their own limitations.  In 

developing the next generation of patient-specific DBS models, six general areas 

need to be considered. 

First, image processing steps such as image registration and electrode 

localization can result in errors in the modeled DBS electrode position.  Errors in 

electrode localization can result in non-negligible errors in predicted pathway 

activation [Miocinovic et al., 2006; Chapter 4].  These errors can be potentially 
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minimized by using post-operative 3D rotational fluoroscopy, instead of a post-

operative CT scan, for localizing the DBS electrode [Reinacher et al., 2017]. 

Second, the patient-specific conductivity tensor field within the volume 

conductor model is defined using isotropic tissue-type conductivities that have a 

reported range [Gabriel et al., 1996].  The calculated DBS voltage distribution 

varies as a non-linear function of this range [Howell and McIntyre, 2017].  Non-

invasive methods for measuring conductivities in vivo might be an alternative 

method for more accurately defining conductivities in the model [Akhtari et al., 

2016].  Additionally, the encapsulation layer properties (i.e. thickness, 

conductivity, and heterogeneity) cannot be measured on a patient-specific basis.  

These parameters have a reported range [Grill and Mortimer, 1994] and likely 

change over time [Cheung et al., 2013; Hartmann et al., 2015].  Changes in the 

encapsulation layer conductivity can have a non-negligible effect on pathway 

activation under voltage-controlled stimulation (Chapter 4).  However, current-

controlled stimulation would likely minimize this issue [Lempka et al., 2010]. 

Third, validated methodological standards do not currently exist for the 

creation of tractography-based reconstructions of axonal pathways within the 

subthalamic region.  As the choice of voxel-wise diffusion model, tractography 

algorithm, and input parameters can affect the streamlines reconstructed, 

optimization of tractography methodology for the subthalamic region remains 

unresolved.  Alternatively, pathway atlases, defined within the context of a 

traditional anatomical brain atlas, represent a possible alternative.  Such pathway 

atlases would be defined based on strict constraints in a standard space and 
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transformed to patient space.  Future studies need to validate such approaches 

with histological tracing studies to determine accurate modeling strategies for 

axonal reconstructions. 

Fourth, the multi-compartment cable axon model is a highly detailed 

model of a mammalian axon that is capable of reproducing excitation 

characteristics of experimentally measured axons [McIntyre et al., 2002].  

However, this model is parameterized for larger diameter peripheral nerve axons.  

Future axon models need to be developed that represent the unique electrical 

and geometrical properties of central nervous system axons.  Additionally, the 

composition of axon diameters within each pathway needs to be constrained with 

electron microscopy studies in humans. 

Fifth, there are several methods for predicting axonal activation (i.e. VTA, 

VTA PAM, DF PAM, FC PAM, AVT).  VTA analyses calculate the regions 

activated by stimulation.  VTAs obviate the need for reconstructing axonal 

pathways and calculating the neural response to stimulation, by using previously 

calculated simulations results from idealized conditions with straight axonal 

trajectories in a homogeneous volume conductor.  However, DBS exerts its 

effects on neurons and their axons that take tortuous trajectories around the 

electrode in a heterogeneous environment that is dependent upon the patient-

specific anatomy.  Thus, since our understanding of these pathways has grown 

in the last 10 years [Gallay et al., 2008; Kita and Kita, 2012; Haynes and Haber, 

2013], DBS models need to shift paradigms from calculating the regions 

activated by stimulation to explicitly calculating the pathways activated. 



 144	

Furthermore, comparison of predictions from simplified VTA PAMs with 

detailed FC PAMs have illustrated that such simplified algorithms result in large 

non-linear errors (Chapter 3).  We propose that calculation of the non-linear 

response of axons to stimulation in FC PAMs can be eliminated by using a DF-

based model [Warman et al., 1992; Peterson et al., 2011].  Analysis of a 

previously developed DF-Peterson PAM suggests that it could calculate the 

activation of pathways to within ~10% error for many cases tested (Chapter 3).  

However, the DF-Peterson algorithm was trained using artificial potentials not 

representative of a DBS macroelectrode.  Preliminary analysis of a novel DF 

algorithm trained with more realistic DBS potentials suggests that prediction 

accuracy can be improved for a DF-based algorithm [Howell et al., In 

preparation].  Such a step would expedite the model computation, allowing for 

exploration of the effects of stimulation with a large range of parameters and 

large cohort of patients. 

Sixth, DBS models ignore the interaction of neighboring neurons.  

Populations of neurons simultaneously depolarizing in response to stimulation 

can influence the excitability of nearby neurons by changing the local 

extracellular electric field [Nelson, 1966; Jefferys, 1995].  Additionally, DBS 

models largely ignore the influence of axon collaterals and local interneurons that 

could also change the activity of nearby neurons.  Accounting for both of these 

factors would more closely mimic the in vivo environment. 

The limitations described above represent potential areas of influence on 

model predictions.  Future studies need to incorporate the proposed details to 
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construct anatomically and biophysically accurate models of DBS or provide 

quantitative justification for their exclusion. 

 

6.4.  Future directions 

Patient-specific DBS models are now capable of making especially 

detailed predictions at the cellular and network levels.  However, the validity of 

those predictions remains unclear.  Individual components of the overall model 

system can be independently validated via comparison to experimental data.  For 

example, the volume conductor model can be compared to microelectrode 

recordings of the voltage distribution in the brain [Miocinovic et al., 2009].  In 

addition, the axon model can be constrained by histological measurements of 

sodium channel density or voltage clamp measurements of the membrane 

potential, and compared to electrophysiological measurements of action potential 

generation [McIntyre et al., 2002].  However, validating the integrated DBS model 

represents a more challenging proposition, but validation of DBS models is 

necessary to enhance their scientific credibility and clinical acceptance. 

The DBS model output predictions of pathway activation cannot be directly 

measured with current experimental techniques. However, it is possible to 

perform indirect measurements that could be used to evaluate model predictions, 

with electromyography (EMG) measurements corresponding to IC activation 

being the most easily attainable [Chaturvedi et al., 2010].  Recent clinical interest 

in using EMG to better characterize activation of the IC during subthalamic DBS 

[e.g. Mahlknecht et al., 2017; Bally et al., 2017], or cortically evoked electric 
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potentials from HD antidromic activation [e.g. Walker et al., 2012], represent 

excellent opportunities for the DBS modeling and clinical communities to 

converge on analyses that would be mutually beneficial. 

Future advances in calcium imaging in nonhuman primates represents an 

excellent opportunity to directly validate these model predictions [Sadakane et 

al., 2015].  Current electrode recording technology cannot measure neural 

activity from the entire downstream region where axons, passing by the DBS 

electrode, project.  However, as described by O’Shea et al. [2017], calcium 

imaging coupled to post-mortem brain circuit maps obtained with CLARITY 

[Chung et al., 2013] would provide an unparalleled platform for direct validation of 

the axonal reconstructions and activation predictions.  These cutting edge 

experimental techniques truly have the potential to advance the field of 

computational neuroscience. 

 

6.5.  Conclusions 

The goal of using computational DBS models is to first identify the 

underlying brain circuitry responsible for disease symptoms, and then second 

provide tools to accurately predict optimal strategies for targeted stimulation of 

those specific circuits.  Our current understanding suggests that the simplest and 

most energy efficient method for interfacing with brain circuitry with electrical 

stimulation is via direct activation of axonal pathways. Therefore, this work 

focused on detailing the axonal pathways directly stimulated by clinical DBS. 
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Clinically effective subthalamic DBS likely activates multiple pathways 

indiscriminately, as we showed that the DBS models predict activation of large 

diameter corticofugal axons, the hyperdirect pathway, and the subthalamopallidal 

pathway.  We showed that these results are robust to the choice of a few 

unconstrained parameters, but these results also emphasize the importance of 

standardizing methodologies between studies to minimize the variability in results 

due to the choice of parameters alone.  This work lays the foundation for the use 

of computational models coupled with current steering technology and clinical 

measurements to understand the pathways that mediate specific clinical 

responses in DBS. 
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Appendix A – Short pulse width widens the therapeutic 
window of subthalamic neurostimulation 
 

Reich MM, Steigerwald F, Sawalhe AD, Reese R, Gunalan K, Johannes S, Nickl 

R, Matthies C, McIntyre CC, Volkmann J.  Short pulse width widens the 

therapeutic window of subthalamic neurostimulation. Annals of clinical and 

translational neurology. 2015 Apr 1;2(4):427-32. 

 

Summary 

We explored the impact of pulse durations <60µs on the therapeutic 

window of subthalamic neurostimulation in Parkinson’s disease.  Current 

thresholds for full rigidity control and first muscle contractions were evaluated at 

pulse durations between 20 and 120µs during a monopolar review session in 4 

patients. The average therapeutic window was 2,16mA at 60µs, which 

proportionally increased by 182% at 30µs, while decreasing by 46% at 120µs. 

Measured chronaxies and model data suggest, that pulse durations <60µs lead 

to a focusing of the neurostimulation effect on smaller diameter axons close to 

the electrode while avoiding stimulation of distant pyramidal tract fibers. 

 

A.1. Introduction 

Deep brain stimulation of the subthalamic nucleus (DBS-STN) is an 

established surgical treatment for motor fluctuations or dyskinesia in Parkinson’s 

disease (PD)
1-3

. The outcome critically depends on appropriate lead location
4
 

and setting of stimulation parameters.  Inadvertent leakage of current into 
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adjacent fiber tracts, such as pyramidal fibers lateral to the STN
5
, limits the 

therapeutic window by causing dysarthria or  impaired fine motor skills
6
. As a 

result, much research has been devoted to modelling and visualizing the 

electrical field of a given electrode position and parameter setting within the 

individual brain anatomy 
7
 and to developing new stimulation hardware allowing 

more flexible shaping of the current distribution 
8
. 

Stimulation effects, however, also depend on the temporal characteristics 

of the stimulus waveform. The threshold for activation of neural elements with 

different membrane excitability properties covaries with stimulus strength, and 

duration of the stimulus pulse. The non-linear interdependance of stimulus 

amplitude and pulse duration is reflected by the so called „strength-duration-

curve“ or chronaxie relationship. The minimal amount of current necessary to 

excite a neural element at an infinitely long pulse width (PW) is termed rheobase 

current. Chronaxie is a measure of the excitability of neural elements and has 

been defined as the pulse duration equivalent to the double rheobase current on 

the strength–duration curve.  

Experimental measurements have documented that axons have lower 

chronaxies than neuron cell bodies 
9
. Chronaxies for the beneficial effects of 

DBS have been estimated to be around 129 µs for thalamic and around 151 µs 

for pallidal stimulation 
10, 11

 which is well within the range of myelinated axons. 

Here we present chronaxie evaluations of STN-DBS using a novel 

neurostimulation system (Vercise ®, Boston Scientific, Valencia, CA). In 

particular, we explored the clinical usefulness of stimulation at ultra-short pulse 
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duration as physiological concepts suggest, that stimulation at PW<60 µs could 

improve the selectivity of DBS for particular neural elements and lead to a better 

distinction between desirable and adverse stimulation effects. 

 

A.2. Subjects and methods 

Four patients (2 female, age 49-62 years), who had been implanted with 

the Vercise® neurostimulation system (Boston Scientific, Valencia, CA) for 

bilateral DBS-STN in PD, underwent an extended programming session of their 

DBS system in the practically defined medication off-state (> 12 hours medication 

withdrawal) 2-4 months after surgery. Patients were included into the extended 

monopolar review session for optimizing their stimulation parameters after having 

had a stable clinical response to STN-DBS of greater than 30% motor score 

reduction with conventional programming parameters for at least one month. 

Goal of the monopolar review session was to determine the clinically optimal 

pulse duration and amplitude setting at the monopolar contact previously 

selected for chronic stimulation at 60 µs pulse width. Efficacy of neurostimulation 

was assessed by comparing the severity of motor symptoms at the begin of the 

review session ON DBS to the preoperative Unified Parkinson’s Disease Rating 

Scale, part III (UPDRS-III) in the medication off-state. 

In all patients correct lead positioning had been verified by fusing the 

preoperative stereotactic MRI and chronic (³ 40 days) postoperative CT using 

the stereotactic planning software (Leksell SurgiPlan, Elekta, Sweden). The 

mean AC-PC based coordinates of active contacts of the right hemisphere were 
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12.1±0.8 mm lateral to AC-PC 2.14±1.37 mm below AC-PC, 1.62±0.7 mm 

posterior to MCP, and of left hemispheric active contacts 13.4±0.59 mm lateral, 

2.9±1.3 mm below and 1.4±0.8 mm posterior. 

For the monopolar review session we defined the efficacy threshold of 

DBS as the minimal current necessary to achieve complete or almost complete 

suppression of contralateral rigidity (corresponding to a UPDRS item 22 score of 

0 or 1) and the adverse effect threshold as the minimal current inducing clinically 

noticeable side effects (e.g. muscle contraction). In random order we assessed 

the therapeutic window (TW) for the pulse durations 20, 30, 40, 50, 60, 90 and 

120 µs at a frequency of 130 Hz by quickly ramping up current until adverse 

effects were noted and carefully titrating the current to determine the exact 

threshold.  Thereafter, current was lowered until contralateral arm rigidity 

returned to baseline severity (efficacy threshold). If no adverse effect could be 

encountered after increasing amplitude to 10mA, testing was suspended and no 

TW could be determined. TW (in mA) was calculated for each tested pulse width 

by subtracting the efficacy threshold from the side effect threshold. For 

comparison between subjects TWs were normalized to the TW at 60µs. 

We calculated the chronaxies from the threshold currents for suppression 

of rigidity and muscle contractions by linearizing the strength-duration curves and 

estimating slope and intercept
12

. 
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A.3. Computational model of axonal activation 

An idealized DBS model was constructed to assist in the interpretation of 

the clinical results. The model system consisted of a finite element electric field 

model of the DBS electrode, coupled to populations of multi-compartment cable 

models of myelinated axons. Our previous work described the specific 

parameters of the electric field model 
13

 and axon models 
14

. The effects of the 

DBS electric field on the axons were simulated using methods originally 

described by McNeal 
15

, adapted to specifically address modulation of the DBS 

waveform 
16

 . Our simulations evaluated DBS of two distinct pathways near the 

DBS electrode. One pathway consisted of smaller (2 um) diameter axons located 

closer (1-2 mm) the electrode, while the other pathway consisted of larger (5.7 

um) diameter axons located farther from (4-5 mm) the electrode. The threshold 

current for action potential initiation was calculated for each axon model in each 

pathway, as a function of the pulse width.  

 

A.4. Results 

The patients had a mean UPDRS-III motor score improvement from 

51±11,97 before surgery to 24,75±8,58 points (-52%) in the medication off-state 

with STN-DBS.  

During the monopolar review session we observed a clear inverse 

relationship between PW and side effect thresholds in all patients. Mild 

contractions or fasciculations in hand or face muscles were elicited in all cases 

and served to determine the threshold for activation of pyramidal tract fibers. We 
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did not notice other stimulation induced adverse effects below this threshold in 

any patient. Complete determination of TW was possible for 7 implanted 

electrodes due to a lack of testable rigidity contralateral to one. The therapeutic 

window was 2,2±1,6 mA (median 2,3; range 3,9) at 60 µs, which proportionally 

increased by 182 ± 128% (median 160%; range 341%) at 30µs, while decreasing 

by 46 ± 28% (median 34%; range 84%) at 120µs (Figure A.1). At 20 µs PW 

assessment of the TW was unreliable, because we could not elicit a capsular 

response for 6/8 electrodes below our testing limit of 10 mA . 

The threshold current for complete rigidity control increased from 1,6±0,9 

(median 1,5; range 2,4) mA at 60 µs to 2,9±1,4 (median 2,8; range 3,6) mA at 30 

µs but the calculated total charge delivered per pulse was actually lower: 

95±51 (median 90; range 14) nC/pulse at 60 µs vs. 88±43 (median 84; range 

108) nC/pulse at 30 µs; -7%). 

For both strength duration curves we found a significant linear regression 

fit (rigidity control: r=0,97; contractions: 0,94), when plotting mean threshold 

amplitudes against the inverse of pulse duration (Figure A.1).  The slopes of the 

two regression lines were significantly divergent (74,8 ± 5,8 vs. 168,4 ± 19,0; 

p<0.0001) indicating the stimulation of neural elements with different membrane 

excitability. From the mean and confidence range of the slopes we determined a 

chronaxie of 225 µs (95% confidence range: 180-270 µs) for the suppression of 

rigidity and 126 µs (95% confidence range: 90-163 µs) for muscular contractions. 
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A.5. Discussion 

This is the first systematic analysis of the impact of pulse duration on 

therapeutic and adverse effects of subthalamic deep brain stimulation. 

We found, that the therapeutic window of subthalamic neurostimulation 

increased up to 2 fold when using an ultra-short pulse width of 30 µs compared 

to the standard pulse width setting of 60µs, currently suggested for STN-DBS 

programming 
6
. At 20 µs pulse duration we could not elicit any capsular response 

below our upper testing limit of 10mA in 6/8 electrodes suggesting an even better 

benefit/risk ratio.  As expected, the efficacy threshold in mA increased at shorter 

pulse durations, but the total charge per pulse required for full rigidity control did 

actually decrease, suggesting that short PW stimulation may not only offer less 

risk of inducing stimulation induced adverse effects but also improve the energy 

efficiency of DBS. This would result in greater longevity of primary cell devices or 

expanded charging cycles of rechargeable pulse generators. 

The estimated chronaxie of 168 µs for muscle contraction is well below the 

limit of <200 µs for fast conducting pyramidal tract fibers, whereas a chronaxie of 

222 µs for rigidity suppression indicates stimulation of smaller axons with values 

between 200 and 700 µs
9
.  In order to assist in the interpretation of these clinical 

results, we devised a computational model consisting of a finite element electric 

field model of the DBS electrode, coupled to populations of multi-compartment 

cable models of myelinated axons 
17, 18

. The effects of the DBS electric field on 

the axons were simulated using methods originally described by McNeal
15

, 

adapted to specifically address modulation of the DBS waveform
16

. In keeping 
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with the chronaxie data, our simulations evaluated DBS of smaller (2 um) 

diameter axons located closer (1-2 mm) and larger (5.7 um) diameter axons 

located farther (4-5 mm) from the electrode corresponding to the approximate 

distance of the pyramidal tract. The current thresholds for generating a 

propagating axon potential predicted by the model reproduced the marked 

increase in therapeutic window at pulse durations below 60 µs (Table A.1). 

Hence, the mechanism of stimulation at short pulse duration may be best 

explained by focusing on excitation of smaller myelinated axons near the 

electrode and a steeper falloff for activation of thick myelinated axons with 

increasing radius of current spread. 

Our chronaxie measurements do not allow us to explicitly determine the 

anatomical nature of the fibers responsible for rigidity control. The chronaxie 

could represent excitation of a single fiber pathway or a mixed effect of multiple 

fibers in the subthalamic area, such as corticosubthalamic fibers, pallidothalamic 

fibers dorsal to the STN or pallidosubthalamic fibers crossing the internal 

capsule. Rodent models, however, suggest antidromic driving of 

corticosubthalamic fibers („hyperdirect pathway“) and subsequent retuning of 

motor cortical spike firing as critical for the antiparkinsonian effect of subthalamic 

neurostimulation
19, 20

. In the rat the hyperdirect pathway consists of thin 

collaterals of fast conducting pyramidal tract axons originating from the frontal 

cortex deep layer V neurons 
21

. First imaging studies in humans did indeed 

visualize the ‘‘hyperdirect’’ pathway as a small bundle traveling along the internal 

capsule with the highest connectivity in the dorsolateral portion of the STN 
22

. 
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Hence, programming in STN-DBS could face the dilemma of needing some 

current spread into the internal capsule for optimal coverage of those pyramidal 

tract collaterals, while at the same time avoiding inadvertent stimulation of 

adjacent corticospinal and corticobulbar fibers. 

Our data suggest, that this may be best achieved by stimulating at pulse 

durations below 60 µs. A limitation may be the small number of patients 

investigated. However, the results were consistent and the strength-duration 

relation is a well known physiological phenomenon, which was only reproduced 

in this study. Variability in our measures could result from the unblinded clinical 

assessments, but neither rigidity nor fibrillations or contractions as a results of 

capsular stimulation can be reliably detected using objective methods. 

A future clinical study including blinded assessments of stimulation effects 

on all Parkinsonian symptoms needs to ascertain this concept. 
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A.7. Figures and tables 

 

Table A.1.  Measured and model estimated threshold amplitudes for rigidity 

control and muscle contractions (capsular response) at different pulse durations. 

Pulse Width 
(µs) 

Threshold Amplitude (mA) 
patient data model data 

rigidity control capsular response 2 µm axon 5.7 µm axon 
mean±SD mean±SD mean±SD mean±SD 

20 3,88±2,03 9,05±0,78 7,75±1,99 10,85±1,17 
30 2,94±1,43 7,94±1,30 6,03±1,55 8,43±0,91 
40 2,39±1,17 6,14±0,93 4,96±1,27 6,94±0,74 
50 1,98±0,98 4,53±1,25 4,23±1,08 5,92±0,63 
60 1,59±0,86 3,74±0,92 3,7±0,94 5,18±0,55 
70 - - 3,29±0,84 4,61±0,49 
80 - - 2,98±0,76 4,17±0,44 
90 1,21±0,71 2,94±0,68 2,72±0,69 3,81±0,40 
100 - - 2,5±0,64 3,52±0,37 
110 - - 2,33±0,59 3,27±0,35 
120 0,63±0,40 2,60±0,89 2,17±0,55 3,06±0,32 

 
Figure A.1.  (A) linearized strength-duration curves for rigidity control and muscle 

contractions.  (B) Bar graph depicting the relative change in therapeutic window 

compared to 60 µs pulse duration (TW60µs).  Error bars indicate the standard 

error of mean in both graphs. 
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Figure Error! No text of specified style in document.2.  Model derived strength 

duration curves for action potential initiation in smaller (2 um) diameter axons 

located closer (1-2 mm) the electrode as compared to larger (5.7 um) diameter 

axons located farther from (4-5 mm) the electrode. At shorter pulse duration the 

two curves diverge explaining an increased „therapeutic window“ if benefit was 

associated with stimulation of the nearby fibers and adverse effects with the 

distant thick myelinated axons. 
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Appendix B – Supporting information for Chapter 2 
 

Gunalan K, Chaturvedi A, Howell B, Duchin Y, Lempka SF, Patriat R, Sapiro G, 

Harel N, McIntyre CC. Creating and parameterizing patient-specific deep brain 

stimulation pathway-activation models using the hyperdirect pathway as an 

example. PloS one. 2017 Apr 25;12(4):e0176132. 

 

B.1. Supplementary methods 

B.1.1. Software programs 

We used several software programs in the model development (Table B.2).  

Although each program has methods for data visualization, we wrote custom 

Python scripts using open source software libraries such as Mayavi 

(docs.enthought.com/mayavi/mayavi), to combine all data into a single 

visualization environment.  Some of these scripts are available at the McIntyre 

Lab GitHub site (https://github.com/mcintyrelab). 

 

B.1.2. Image scanning parameters 

We scanned the subject using an actively shielded 7T magnet, using 

SC72 gradients capable of 70 mT/m and a 200 T/m/s slew rate, driven by a 

Siemens console (Erlangen, Germany).  We acquired all 7T images with a 32-

element head array coil (Nova Medical, Inc., Burlington, MA) and with the MRI 

vendor’s 3D distortion correction, which compensates for geometrical distortions 

originating from gradient nonlinearities.  We acquired T2W and SW images in 
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both the coronal and axial orientations centered around the basal ganglia.  We 

acquired DW images with diffusion gradients applied along 50 uniformly 

distributed directions (b-value = ~1500 s/mm2).  We also acquired four additional 

non-DW images (b-value = 5 s/mm2).  We repeated the diffusion acquisition with 

the same parameters and head position but with the opposite phase encoding 

direction to allow for distortion correction. 

 

B.1.3. Image pre-processing and co-registration 

We corrected DW images for distortions from eddy currents using FSL’s 

eddy tool and from magnetic field inhomogeneities using FSL’s topup tool.  We 

registered all images to the same coordinate system using Advanced 

Normalization Tools (ANTs) or FSL’s linear image registration tool (flirt).  To 

facilitate the registration, we extracted non-brain structures from the 1.5T T1W, 

7T T1W, 7T T2W, 7T SW, and 7T DW b0 images using FSL’s brain extraction 

tool (bet).  As the T2W and SW images have in-plane resolutions of 0.39 mm, 

the common coordinate system had an isotropic resolution of 0.4 mm. 

We used a post-operative CT image to verify the final location of the 

implanted DBS electrode.  First, we registered the CT image to the pre-operative 

T1W image and then in Cicerone we positioned a model Medtronic 3389 DBS 

electrode to match the electrode artifact in oblique slices (Fig 2.2C) (Hemm et al., 

2009).  We exported the coordinates of the collinear contact centers from 

Cicerone. 
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B.1.4. Imaging space 

In Python, MATLAB, and COMSOL, we positioned all objects according to 

flipped, scaled voxel space (x,y,z) (Equation B.1).  First, we scaled each 

coordinate in voxel space (i,j,k) by the voxel dimensions (voxelx,voxely,voxelz), 

thereby converting the coordinates to millimeters.  Next, we obtained the x-axis 

orientation from the sign of the determinant of the T1W image qform matrix.  We 

used FSL’s fslorient tool with the -getqform flag to obtain the qform matrix.  

This process can be summarized as follows, where  is the Hadamard product: 

!

"

#

=

%

&

'

∘

)*!+,-

)*!+,.

)*!+,/

∘

0%12( qform )

1

1

    (B.1) 

Although true anatomical space, as defined by the qform of the NIfTI header, can 

also be rotated, translated, and sheared, we have elected to ignore those 

transforms since Python and MATLAB do not handle those transformations 

easily. 

 

B.1.5. Conductivity tensor field construction 

 Howell and McIntyre (2017) showed that the heterogeneity in the soft 

tissues of the head effect the voltage distribution generated by DBS.  They 

defined conductivities for each region outside of the brain instead of a lumped 

equivalent value for all regions, and compared the results.  However, 

specification of these regions on a patient-specific basis is difficult as it requires 

manual segmentation of a MRI.  Thus we have opted to transform the soft 

tissues from the multimodal imaging-based detailed anatomical (MIDA) model of 

 !
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the human head and neck (Iacono et al., 2015).  We used a variant of the MIDA 

model, specifically the MIDA12 model as described by Howell and McIntyre 

(2017).  The following is a list of steps for transforming the MIDA12 regions 

outside of the brain to the patient’s T1W space (Fig 2.3A): 1) Segmented the 

patient brain-extracted 1.5T T1W image into tissue types (grey matter, white 

matter, cerebrospinal fluid [CSF]) with FSL’s fast tool.  2) Registered the 

MIDA12 brain (grey matter, white matter, and CSF) to the tissue-type segmented 

patient brain from step 1 with FLIRT using 12 degrees of freedom.  3) 

Transformed MIDA12 head segmentations to the patient T1W space with nearest 

neighbor interpolation using the transformation from step 2.  The following steps 

will refer to the MIDA12 mask that is now in patient space.  4) Calculated overlap 

in the MIDA12 spinal cord/brainstem regions and patient brain.  Subtracted 

remaining spinal cord/brainstem regions from MIDA12 mask.  5) Subtracted the 

patient’s brain region from MIDA12 mask, thereby leaving soft tissues, skull, and 

residual brain regions from MIDA12.  6) Removed the residual brain regions from 

MIDA12, specifically the dura, grey matter, white matter, and CSF.  Reassigned 

this region to CSF.  7) Added back the remaining MIDA12 spinal cord/brainstem 

regions.  8) Added the tissue-type segmented patient brain from step 1. 

The processing steps to transform the MIDA12 segmentations to patient space 

preserve the anatomy of the patient’s brain.  However, the MIDA12 skull is 

partially removed to ensure preservation of the patient’s brain.  Another limitation 

with this method is that the outer boundary of the patient’s head is not preserved.  

Furthermore, anatomical variability exists from patient to patient and thus using 



 165	

the MIDA12 segmentations to define regions outside of the brain is only an 

approximation. 

Once this classification mask was created (Fig 2.3A), we then constructed 

conductivity tensors, S, that were anisotropic within the brain and isotropic in the 

encapsulation layer surrounding the electrode and outside of the brain (Table 

B.3).  We constructed the anisotropic and inhomogeneous conductivity tensors 

within the brain by first using FSL’s dtifit tool to estimate the diffusion tensors, 

D, from the DW images.  We used FSL’s vecreg tool to transform the diffusion 

tensors from DW to T1W space.  We then used vecreg to down sample this 

image by a factor of 2.  Using eigen decomposition, we decomposed these 

diffusion tensors to diffusion eigenvalues and diffusion eigenvectors.  Using the 

preservation of tensor electrical load approach, we scaled the diffusion 

eigenvalues at each voxel to create conductivity eigenvalues (Howell and 

McIntyre, 2016).  This scalar mapping was dependent on whether the tensor was 

within grey matter, white matter, or CSF.  Finally, using the eigenvalues of S, we 

reconstructed S by assuming that D and S have the same eigenvectors (Basser 

et al., 1994).  We saved a text file with the tensor values at each voxel, resulting 

in a matrix with a size of M x 9.  The first three columns are the x, y, and z 

coordinates, and the last six columns are the upper triangular portion of S.  We 

imported this text file into COMSOL and the conductivity tensors at each voxel 

location were interpolated onto the mesh nodes.  We visualized the conductivity 

tensors in Python (Mayavi) to ensure correct registration with the T1W image and 
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correct orientation of the tensors (Fig 3B/C/D).  For this visualization, we used 

the conductivity eigenvalues to calculate the fractional anisotropy of each tensor. 

We used the isotropic conductivity of the encapsulation layer to match the 

implanted DBS system model impedance to the clinically-measured impedance 

using the following steps (Fig B.2) (Butson et al., 2006): 1) We used the 

Medtronic programming device to measure the electrode impedance for contact 

2 (-0.7 V, 80 µs, 100 Hz).  2) We solved the FEM, with contact 2 set as the 

working electrode, for a range of encapsulation layer conductivities (0.05 – 0.2 

S/m) (Grill and Mortimer, 1994; Butson et al., 2006).  For each encapsulation 

layer conductivity, we calculated the FEM impedance using Ohm’s law (i.e. 

divided the electrode voltage applied by the total current produced at the 

electrode surface).  3) For contact 2, to replicate the impedance measurements 

of the Medtronic programming device, we calculated the implanted DBS system 

model impedance using Ohm’s law by setting RTissue equal to the FEM 

impedance, applying a -0.7 V 80 µs stimulus to the circuit in S1 Fig, and 

measuring the current through RTissue at 70 µs.  4) We selected the encapsulation 

layer conductivity that minimized the absolute difference between the implanted 

DBS system model impedance calculated in Step 3 and the clinical impedance 

measured with the Medtronic programming device in Step 1, for contact 2 (i.e. 

0.07 S/m) (Fig B.2).  With the encapsulation layer conductivity set to 0.07 S/m, 

the implanted DBS system model impedance calculated in Step 3 with contact 2 

set as the working electrode was 1493 Ω.  It should be noted that impedance is a 

misnomer.  Loads from the IPG are not measured at steady state with sinusoidal 
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stimuli and thereby are not impedances.  Nonetheless, dynamic loads measured 

with IPGs are referred to as impedances, so we chose to use the same 

terminology. 

 

B.1.6. Surface mesh processing 

To define the brain and head volumes, we used bet to extract the patient-

specific inner skull surface mesh from the 1.5T T1W image (Fig 2.2A/B), and 

used Seg3D to extract the outer head surface mesh from the MIDA12 volume 

(Section B.1.5).  We ran bet with the fractional intensity threshold that yielded 

the best qualitative extraction of the inner skull surface.  For the patient 

presented in this manuscript, we used a fractional intensity value of 0.4.  This 

tessellated surface mesh typically results in a high number of faces, which would 

cause COMSOL to take a long time to solve.  Therefore, we imported this 

surface mesh into MeshLab and decimated to reduce the number of faces to less 

than 1000.  Specifically, we applied the ‘Quadratic Edge Collapse Decimation’ 

filter three times with the percentage reduction set to 0.5.  After each decimation 

step, we applied the ‘Laplacian smooth (surface preserve)’ filter to maintain a 

uniform distribution of faces.  We registered the tissue-type segmented MIDA12 

brain to the tissue-type segmented patient brain with FLIRT using 12 degrees of 

freedom (Section B.1.5).  We used this transformation to transform the MIDA12 

outer head surface mesh to the patient T1W space.  In MeshLab, we converted 

these triangular meshes to quadratic meshes with the ‘Tri to Quad by 4-8 

subdivision’ filter and exported it as an *.off file.  To ensure there was no overlap, 
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we imported the two meshes into MeshLab.  Because COMSOL cannot import 

quadratic meshes, we converted these meshes to a non-uniform rational basis 

spline (NURBS) file format in MATLAB using the ‘NURBS Toolbox by D.M. Spink’.  

We then imported these meshes into COMSOL to ensure there was no overlap. 

 

B.1.7. Finite element model – Other details 

We defined floating potential boundary conditions of 0 A net current 

through the inactive contacts, and Neumann boundary conditions of 0 A/mm
2
 

along the electrode shaft (except for the contacts) and head surface (except for 

the neck region). 

We created a cube centered around the electrode contacts with a side 

length of 30 mm that was meshed at a higher resolution.  We aligned the 

electrode, encapsulation layer, and cube to the contact coordinates using 

Rodrigues’ rotation formula.  The entire mesh contained 1,429,416 tetrahedral 

elements (head outside brain – 293,054; brain outside 30 mm cube – 834,778; 

brain inside 30 mm cube – 229,580; encapsulation layer – 72,004).  We 

generated a second mesh with increased resolution to ensure solution 

convergence (total – 2,347,048; head outside brain – 293,863; brain outside 30 

mm cube – 1,177,452; brain inside 30 mm cube – 440,303; encapsulation layer – 

435,430). 

 



 169	

B.1.8. Nuclei segmentation 

We performed manual segmentation of subcortical structures (i.e. 

putamen, globus pallidus externus, globus pallidus internus, subthalamic nucleus, 

substantia nigra, and red nucleus) using Seg3D, on the image that provided the 

best contrast for the nuclei of interest in the common coordinate system (Fig 2.4A 

and Table B.3).  Because Seg3D doesn’t permit exporting the files in the NIfTI 

file format, we exported the files in the nearly raw raster data (NRRD) file format, 

and converted to NIfTI in 3DSlicer.  The resulting NIfTI file had an incorrect 

orientation, so we implemented the fslorient -forceradiological and 

fslreorient2std commands to correct this error.  Tools are currently under 

development to automate these subcortical segmentations (Kim et al., 2014). 

Due to a lack of contrast in the 1.5T and 7T T1W images, thalamic 

segmentation was difficult.  Therefore, to define the thalamus, we used the 

Harvard-Oxford subcortical structural atlas distributed within FSL.  Specifically, 

we used Cicerone to fit the thalamus to the 1.5T T1W image with 9 degrees of 

freedom (Miocinovic et al., 2007). 

In the axial view, we used Seg3D to segment the seed and target masks 

used in the tractography algorithm (Fig B.3).  We defined the seed mask as the 

white matter between the thalamus and lenticular nucleus, 1.2 mm superior to 

the STN.  We defined two target masks, one superior to the seed mask and one 

inferior to the seed mask.  We defined the superior target mask as the white 

matter between the thalamus and lenticular nucleus, 10.8 mm superior to the 
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seed mask.  We defined the inferior target mask as the cerebral peduncle of the 

midbrain, 17.2 mm inferior to the seed mask. 

For tractography, we used an exclusion mask that included the ipsilateral 

thalamus, globus pallidus, putamen, CSF, and contralateral hemisphere.  We 

used Freesurfer’s recon-all tool to segment the ipsilateral CSF and 

contralateral hemisphere masks from the 1.5T T1W image.  First, we converted 

the output file from recon-all (aparc+aseg.mgz) to a NIfTI file format with 

Freesurfer’s mri_convert tool.  Next, we used FSL’s fslmaths tool to extract 

the regions of interest from the output file with the threshold flags (-thr, -uthr) 

and subsequently binarized with the -bin flag.  We then used mri_convert –

rl to reslice this image to the original T1W image dimensions. 

 

B.1.9. Probabilistic tractography 

After we segmented the patient-specific subcortical masks, the next step 

was to reconstruct streamlines that would be used to define the axon trajectories.  

We reconstructed two sets of streamlines that represented corticofugal axons of 

the hyperdirect pathway and internal capsule fibers of passage.  We used FSL’s 

bedpostx tool to estimate the parameters for a diffusion model in each voxel 

(Behrens et al., 2007).  Next, we used FSL’s probtrackx tool to perform 

probabilistic tractography from the seed mask, with 100 streamlines generated 

from each seed voxel.  We saved the coordinates of each streamline by passing 

the -V 2 option when running probtrackx.  One constraint was that the 

streamline files were generically named (i.e. particle0, particle1, etc.) for each 
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seed voxel.  Therefore, when more than one seed voxel was run with the same 

probtrackx instance, the files were overwritten with the results for each 

subsequent seed voxel.  To save the streamlines for all voxels within the seed 

mask, for each voxel we ran a separate instance of probtrackx and 

concatenated the streamline files into a single file.  We ran each instance of 

probtrackx, followed by the streamline processing described below, on a 

computational cluster to decrease the computation time. 

We processed the streamlines exported from probtrackx to identify the 

streamlines that originated from the seed mask, intersected both target masks, 

and avoided exclusion masks and the electrode (Fig 2.4B).  First, the streamline 

coordinates exported from probtrackx were in DW space, so we used FSL’s 

img2imgcoord tool and the DW-to-T1W transformation matrix to calculate the 

streamline coordinates in T1W space.  We manipulated the streamline so that it 

formed a continuous path from the superior end of the streamline, through the 

seed voxel, and to the inferior end.  As the streamlines were now in T1W space, 

we scaled the streamlines by the voxel dimensions to convert the streamlines 

from voxel space to millimeter space (Section B.1.4).  Furthermore, we obtained 

the x-axis orientation from the sign of the determinant of the T1W image qform 

matrix.  In our example, we multiplied the x values by -1. 

Next, we checked to determine if a streamline intersected with both target 

masks.  If so, we cropped the streamline between the target masks and if not, we 

excluded it from further analysis.  If the cropped streamline took a trajectory 

above or below the superior or inferior target masks, respectively, we excluded it 
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from further analysis.  Additionally, if the cropped streamline intersected the 

electrode or the exclusion mask, we also excluded it from further analysis.  

Subsequently, we concatenated the processed streamline files for all seed voxels 

into the same file.  In our example, 13,219 streamlines originated from the seed 

mask, terminated in the target masks, and avoided the electrode and exclusion 

mask. 
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B.2. Supplementary tables 

Table B.1.  Imaging parameters.  All MRI scans were acquired pre-operatively 

while the CT scan was acquired post-operatively.  T2W and SW images were 

acquired in both coronal and axial orientations. 

 
 

Table B.2.  Software programs utilized in the scientific workflow. 

 
 

 

 

 

 

S1#Table.##Imaging'parameters.''All'MRI'scans'were'acquired'pre7operatively'while'the'CT'scan'was'acquired'post7operatively.''T2W'and'SW'
images'were'acquired'in'both'coronal'and'axial'orientations.'

#
Image# Sequence# FOV#(mm3)# Matrix# Voxel#resolution#(mm3)# Other#parameters# Acquisition#time#

(minutes)#
1.5T'T1W' 3D'gradient'

echo'MPRAGE'
250x187x176' 256x192x176' 0.98x0.98x1.0' TR'='1650'ms'

TI'='1100'ms'
TE'='3.02'ms'
Flip'angle'='15°'

10'

7T'T1W' 3D'gradient'
echo'MPRAGE'

230x187x153' 312x384x256' 1.0x1.0x1.0' TR'='3100'ms'
TI'='1500'ms'
TE'='3.5'ms'
Flip'angle'='6°'

Acceleration'factor'of'2'(GRAPPA)'along'
the'phase7encoding'direction.'

6.5'

7T'T2W' 2D'turbo'spin'
echo'

200x200x26' 512x512x26' 0.39x0.39x1.0' TR'='9000'ms'
TE'='58'ms'

Flip'angle'='150°'
Acceleration'factor'of'3'(GRAPPA)'along'

the'phase7encoding'direction.'

7.5'

7T'SW' 3D'flow7
compensated'
gradient'echo'

200x200x48' 512x512x60' 0.39x0.39x0.8' TR'='28'ms'
TE'='21'ms'

Flip'angle'='17°'
Pixel'bandwidth'='121'Hz/pixel'

6/8'partial'Fourier'parallel'imaging'using'
an'acceleration'factor'of'2'(GRAPPA)'
along'the'phase7encoding'direction.'

4'

7T'DW' Single'
refocused'2D'
single7shot'spin'
echo'echo'

planar'imaging'

204x204x99' 136x136x66' 1.5x1.5x1.5' TR'='4896'ms'
TE'='56'ms'

Flip'angle'='90°'
Pixel'bandwidth'='1671'Hz/pixel'
Acceleration'factor'of'3'(GRAPPA).'

4.5'

CT' 7' 302x200x302' 512x334x512' 0.59x0.6x0.59' 120'kV'
315'mAs'

Gantry'tilt'='0.0°'

0.5'

'

S2#Table.""Software"programs"utilized"in"the"scientific"workflow.#
!

Software# Version# Website# Citation#
COMSOL"Multiphysics" 5.1" comsol.com/comsol@multiphysics" @"

Python" 2.7.8" python.org" @"
MATLAB" 8.0.0.783" mathworks.com/products/matlab" @"
NEURON" 7.3" neuron.yale.edu" Hines"and"Carnevale,"2001"
FSL" 5.0.7" fsl.fmrib.ox.ac.uk/fsl/fslwiki" Jenkinson"et"al.,"2012"

Freesurfer" 5.3.0" surfer.nmr.mgh.harvard.edu" Fischl,"2012"
Seg3D" 2.3.0" seg3d.org" @"
Cicerone" @" ciceronedbs.org" Miocinovic"et"al.,"2007"
MeshLab" 1.3.3" meshlab.sourceforge.net" @"
3DSlicer" 4.4.0" slicer.org" @"

"
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Table B.3.  Isotropic conductivities for tissue types. 

 
 

Table B.4.  Images and methods for segmenting structures. 

 
  

S3#Table.""Isotropic"conductivities"for"tissue"types."
"

Tissue# Isotropic#conductivity#(S/m)#
Grey"matter" 0.23"
White"matter" 0.14"

Cerebrospinal"fluid" 1.45"
Glial"scar" 0.07"
Muscle" 0.32116"
Tendon" 0.38271"
Bone" 0.020157"
Fat" 0.022405"
Skin" 0.00020006"
Disk" 0.65"
Blood" 0.7"
Air" 1eK12"

"

S4#Table.""Images"and"methods"for"segmenting"structures."
"

Structure# MRI# Method#
Thalamus" 1.5T"T1W" Manual"fitting"
Caudate" 7T"T1W" Manual"segmentation"
Putamen" 7T"T2W"(or"SW)"axial" Manual"segmentation"

Globus"pallidus"externus" 7T"T2W"(or"SW)"axial" Manual"segmentation"
Globus"pallidus"internus" 7T"T2W"(or"SW)"axial" Manual"segmentation"
Subthalamic"nucleus" 7T"T2W"(or"SW)"coronal" Manual"segmentation"
Substantia"nigra" 7T"T2W"(or"SW)"coronal" Manual"segmentation"
Red"nucleus" 7T"T2W"(or"SW)"coronal" Manual"segmentation"

Contralateral"hemisphere" 1.5T"T1W" Automated"segmentation"
Cerebrospinal"fluid" 1.5T"T1W" Automated"segmentation"

"
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B.3. Supplementary figures 

 
Figure B.1.  Equivalent electrical circuit diagram of the implanted DBS system 

for voltage-regulated, monopolar stimulation.  The circuit included 

representations of the blocking capacitors (CBlock), extension wire resistance 

(RExtension), lead wire resistance (RLead), electrode-tissue interface with a double-

layer capacitance (Cdl) and Faradaic resistance (RFaradaic) in parallel, and tissue 

resistance (RTissue).  A ‘parasitic’ capacitance (CParasitic) and ‘parasitic’ resistance 

(RParasitic) were included in parallel with the load of the DBS system.  (A) During 

the cathodic phase the circuit is driven by the voltage source (VApplied) (60 µs).  

(B) During the first portion of the interphase interval the voltage source is 

disconnected from the circuit (10 µs), and (C) during the second portion of the 

interphase interval the parasitic capacitance and parasitic resistance are also 

disconnected (70 µs).  (D) During the passive charge recovery phase the DBS 

system load is connected to ground, and the parasitic capacitance and parasitic 

resistance are connected to each other (3.686 ms). 
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Figure B.2.  Patient-specific definition of the encapsulation layer conductivity.  

The impedance of the finite element model (FEM) (‘Static’, black dashed line) 

and implanted DBS system model (‘Waveform’, black solid line) as a function of 

the encapsulation layer conductivity for contact 2.  To replicate the Medtronic 

clinical impedance measurement (crosshair), we calculated the implanted DBS 

system model impedance at 70 µs into an 80 µs pulse.  The difference between 

the clinical impedance measured with the Medtronic programming device and the 

two model impedances is shown in purple. 
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Figure B.3.  Seed and target masks used by the probabilistic tractography 

algorithm to generate streamlines representing corticofugal axons.  The 

subcortical nuclei outlined on the (A) T1-weighted image and (B) T2-weighted 

coronal image (subthalamic nucleus [STN] - green, substantia nigra – orange, 

red nucleus – red, thalamus – yellow, putamen – purple, globus pallidus externus 

– light blue, globus pallidus internus – dark blue).  The 3 pink lines indicate the 

seed and target masks shown in A2-A4 and B2-B4.  (A2), (B2) The seed mask 

was defined as the white matter between the thalamus and lenticular nucleus, 

1.2 mm superior to the STN.  (A3), (B3) The superior target mask was defined as 

the white matter between the thalamus and lenticular nucleus, 10.8 mm superior 

to the seed mask.  (A4), (B4) The inferior target mask was defined as the 

cerebral peduncle of the midbrain, 17.2 mm inferior to the seed mask. 
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Figure B.4.  Differences between a tractography-generated streamline and a 

smoothing spline fit to a tractography-generated streamline.  (A-C) Based off of 

corticofugal streamline shown in Fig 4C.  (A) Extracellular voltage at the axon 

compartment midpoints along the tractography-generated streamline (blue) and 

spline-based streamline (black).  (B) Extracellular voltage at the nodal 

compartment midpoints along the tractography-generated streamline and spline-

based streamline.  (C) Second nodal differences of the extracellular voltages 

along the tractography-generated streamline and spline-based streamline.  (D) 

Stimulus threshold errors and (E) recruitment curves for the internal capsule 

fibers of passage axon models defined from the tractography-generated 

streamlines and spline-based streamlines. 
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B.4. Supplementary videos 

 

Figure B.5.  Hyperdirect pathway axon model response to stimulation.  In this 

example, the stimulation setting chosen is suprathreshold and thus generates an 

action potential that propagates orthodromically and antidromically (subthalamic 

nucleus –green).  All four images are simultaneously changing over time to show: 

(A) the extracellular voltage distribution generated by the DBS electrode that is 

used to stimulate the model axon; and (B) the change in transmembrane voltage 

in response to stimulation.  The line plots show the change in voltage at the node 

of Ranvier where action potential initiation occurs (black arrow). 
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Figure B.6.  Model predictions for the response of 100 hyperdirect pathway 

axons and 100 internal capsule fibers of passage to the clinically effective 

stimulation setting.  All five images are simultaneously changing over time to 

show (subthalamic nucleus – green; thalamus – yellow): (Left) the extracellular 

voltage distribution generated by contact 2 (red) that is used to stimulate the 

model axons; (Inset) the time course of the stimulus waveform; and (Right) the 

membrane voltage response to stimulation.  For this stimulation setting (contact 2 

[cathode], IPG case [anode], 1.7 V, 60 µs, 130 Hz), 14 hyperdirect pathway 

axons and zero internal capsule fibers of passage generate propagating action 

potentials in response to each stimulus pulse.  
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Appendix C – Supporting information for Chapter 3 
 

C.1. Supplementary methods 

C.1.1. Weights for DF-Peterson 

For a given stimulus pulse width (PW) and axon diameter (D), weights are 

calculated by applying a monophasic intracellular point-source stimulus that is 

PW in duration to a node of Ranvier (NoR).  At a reference NoR, the maximum 

transmembrane voltage (i.e. the maximum Vm,0) reached during or after 

stimulation is calculated.  The middle NoR of a long cable is typically designated 

as the reference NoR, which in the above description (Section 3.2.2.1), 

corresponds to i = 0.  The process is then repeated by applying the intracellular 

stimulus, one at a time, to all other NoR.  wi is the maximum Vm,0 observed over 

time when the stimulus is applied at the i
th
 NoR divided by the same quantity but 

when the stimulus is applied to the reference NoR at i = 0.  w0 is thereby 1, and 

all other wi are between 0 and 1.  For more details on the motivation behind this 

type of weighting, we refer the reader to the work by Warman et al. [1992]. 

 

C.1.2.  Bilinear interpolation 

We used bilinear interpolation to approximate parameters and values used 

in DF-Peterson and VTA-Astrom at combinations of D and PW not reported in 

the respective works.  In DF-Peterson, we are referring to the weights, ;<,>,?@, 

and MDFth (see Section 3.2.2.1); and in VTA-Astrom, we are referring to ET,th 
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(see Section 3.2.3.3, Figure C.2). To approximate the dependent variable of 

interest, y*, we applied the following matrix formula: 

"∗ = 	 1 C∗ DE∗ C∗DE∗ 		

1 CF DEF CFDEF

1 CF DEG CFDEG

1 CG DEF CGDEF

1 CG DEG CGDEG

HF

	

"FF

"FG

"GF

"GG

 (C.1) 

 

, where D* and PW* are the respective independent variables.  D1 and D2 are the 

closest values (inclusive) below and above D*, respectively; PW1 and PW2 are 

the closest values (inclusive) above and below PW*, respectively; and yij is the 

respective value at Di and PWj, for i,j = 1,2.  Note, multiplication of the latter two 

matrices in Equation C.1 yields the coefficients for bilinear interpolation. 

 

C.1.3.  Activation volume tractography 

Activation volume tractography (AVT) was performed by calculating those 

streamlines that originated from the VTA-Chaturvedi ellipsoid and terminated in 

the ventral lateral posteroventral (VLpv) thalamic nucleus (Figure 3.11B).  We 

performed tractography from the voxels with centers within a 1 V VTA-Chaturvedi 

ellipsoid (Figure 3.11B2).  We used 320 seeds per voxel, which was equivalent to 

5,000 seeds per mm
3
.  Those streamlines that intersected the VLpv thalamic 

nucleus and avoided the ipsilateral CSF and contralateral cerebral hemisphere 

were retained (Figure 3.11B3).  This resulted in a total of 37,163 streamlines, or 

16.0% of the streamlines originating from the VTA-Chaturvedi.  We repeated this 

process but also excluded streamlines that passed through the globus pallidus, 

substantia nigra, ventral lateral anterior (VLa) thalamic nucleus, ventral posterior 
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lateral (VPL) thalamic nucleus, and took a trajectory above the VLpv thalamic 

nucleus, totaling 7 exclusion criteria.  This resulted in 31,911 streamlines, or 

13.7% (Figure 3.11B4).  We also performed tractography for a 2 V VTA-

Chaturvedi ellipsoid with all 7 exclusion criteria, which totaled 52,450 streamlines 

or 15.1% (Figure 3.11B5). 
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C.2. Supplementary tables 

Table C.1.  Maximum absolute difference in percent activation between each 

predictor and the FC PAM, for the range of 0-5 Volts.  This analysis is based on 

the data presented in the recruitment curves in Figures 8 and 9.  ‘-’ signifies that 

the predictor was not developed for the pulse width and axon diameter 

combination and ‘X’ signifies that the FC PAM values predicted 0% activation for 

the entire range.  Data is presented for the internal capsule fibers of passage 

(IC), hyperdirect pathway (HDP), and cerebellothalamic tract (CbTT). 

Axon 
diameter 
(μm) 

Pulse 
width 
(μs) 

DF-Peterson VTA-Chaturvedi VTA-Madler VTA-Astrom 

IC HDP CbTT IC HDP CbTT IC HDP CbTT IC HDP CbT
T 

2.0 90 X 3.2 0.7 X 7.1 2.5 

--------- --------- --------- 
X 19.5 1.7

 

5.7 30 4.4 7.7 15.3 
--------- --------- --------- --------- --------- --------- 

22.4 57.0 24.0 

5.7 60 5.6 6.2 6.2 1.9 37.0 5.4
 --------- --------- --------- 

47.1 62.7 38.8 

5.7 90 3.3 2.9 4.0 6.3 28.7 15.8
 

3.7 31.1 13.4 47.2 58.1 34.7 

5.7 120 3.8 6.8 10.3 13.6 32.1 26.9
 --------- --------- --------- 

46.4 55.4 30.7 

10.0 90 53.6 25.9 60.7 11.3 69.1 32.8
 --------- --------- --------- ---------

 
---------

 
---------
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C.3. Supplementary figures 

 
Figure C.1.  Masks for constructing the cerebellothalamic tract with tractography.  

(A) Coronal view of subcortical nuclei overlaid on the 7T T2-weighted (T2W) 

image (subthalamic nucleus—green, substantia nigra–orange, red nucleus–red, 

thalamus–yellow, ventral lateral posteroventral thalamic nucleus–striped pink, 

putamen–purple, globus pallidus externus–light blue, globus pallidus internus–

dark blue).  The pink line indicates the waypoint mask shown in D.  (B) Coronal 

view of the seed mask in the superior cerebellar peduncle (pink) overlaid on the 

7T T1-weighted (T1W) image.  (C) Axial view of the seed mask in the superior 

cerebellar peduncle (pink) overlaid on the 7T T1W image.  (D) Axial view of the 

waypoint mask between the subthalamic nucleus and red nucleus overlaid on the 

7T T2W image. 
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Figure C.2.  VTA-Astrom electric field strength threshold values (ET,th).  We used 

bilinear interpolation of the reported values (black dots) to create a continuous 

function.  PW=pulse width; D=axon diameter. 
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Figure C.3.  Strength-distance relationship of the threshold stimulus amplitudes 
(Vth) for action potential initiation calculated with the FC, DF, and VTA PAMs.  

Thresholds were calculated for the: (A) internal capsule fibers of passage, (B) 

hyperdirect pathway, and (C) cerebellothalamic tract.  The stimulus pulse width 

was 90 μs, electrode configuration was contact 2 (-), case (+), and axon diameter 

was 5.7 μm.  In this plot, we set axons with Vth > 10 V as 10 V, so that all axons 

representing a pathway can be visualized in the field of view.  Note, electrode-to-

axon distance is calculated from the center of the electrode contact. 
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Figure C.4.  Errors in stimulation thresholds and recruitment curves generated 

with the FC, DF, and VTA PAMs using a pulse width of 450 μs.  Recruitment 

curves were calculated for the: (A) internal capsule fibers of passage, (B) 

hyperdirect pathway, and (C) cerebellothalamic tract.  The electrode 

configuration was contact 2 (-), case (+) and axon diameter was 5.7 μm. 
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Figure C.5.  Errors in stimulation thresholds and recruitment curves generated 

with the FC, DF, and VTA PAMs for electrode configurations of monopolar (MP; 

contact 2 [-], case [+]), bipolar (BP; contact 2 [-], contact 3 [+]), tripolar (TP; 

contact 1 [+], contact 2 [-], contact 3 [+]), and quadripolar (QP; contact 0 [-], 

contact 1 [-], contact 2 [-], contact 3 [-], case [+]).  Recruitment curves were 

calculated for the: (A) internal capsule fibers of passage, (B) hyperdirect 

pathway, and (C) cerebellothalamic tract.  The stimulus pulse width was 90 μs 

and axon diameter was 5.7 μm. 
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Figure C.6.  Results for the VTA PAM developed by Astrom et al. [2015] for an 

axon diameter (D) of 3.5 μm.  The FC, DF-Peterson, VTA-Chaturvedi, and VTA-

Madler PAMs were calculated for D=5.7 μm.  The rows denote results for the: (A) 

internal capsule fibers of passage, (B) hyperdirect pathway, and (C) 

cerebellothalamic tract.  (1) Threshold stimulus amplitude (Vth) as a function of 

electrode-to-axon distance.  In this plot, we set axons with Vth > 10 V as 10 V, so 

that all axons representing a pathway can be visualized in the field of view.  

Electrode-to-axon distance is calculated from the center of the electrode contact.  

(2) Vth of the VTA-Astrom (D=3.5 μm) as a function of the Vth of the FC PAM 

(D=5.7 μm).  In this plot, we set axons with Vth > 10 V as 10 V, so that all axons 

representing a pathway can be visualized in the field of view.  (3) Errors in the Vth 

of the VTA-Astrom as a function of electrode-to-axon distance.  (4) Recruitment 

curves calculated with each method.  The stimulus pulse width was 90 μs, 

electrode configuration was contact 2 (-), case (+). 
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