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5. INTRODUCTION 

Heart failure is known as a condition in which heart action is insufficient to meet the needs of 

the body (Oni-Orisan and Lanfear, 2014). Fatigue and shortness of breath are one of several 

symptoms reducing the quality of life of over 23 million patients worldwide suffering from 

heart failure (Bui, et al., 2011). Thus, it is important to promote the research on heart failure 

to improve treatments and to find new therapeutical targets. Comparing the signaling 

pathways that are involved in the compartmentalization of cAMP and cGMP between the 

healthy and failing heart revealed differences (Mika, et al., 2012b). This observation has left 

many questions about the (patho-) physiological significance of cAMP/cGMP 

compartmentalization open. Therefore, this study was aimed to develop a method to answer 

these questions.  

5.1 THE ZEBRAFISH AS A MODEL 

The localization and thus compartmentalization of intracellular messengers such as cAMP 

and cGMP can best be investigated using fluorescent microscopy. Therefore, the zebrafish 

(Danio rerio) was a good animal model to use, because the transparency of the larvae 

enabled in vivo imaging of fluorescence (see Fig 5.1), which is difficult in animals such as 

mice, because skin and other tissue mask fluorescence underneath.  

                 

Figure 5.1 The 
zebrafish as a model 

A 48 hour post fertilization 

(hpf) zebrafish embryo.     

The two-chambered heart 

is shown by the fluorescent 

marker Green Fluorescent 

Protein (GFP).  

(zebrafish line: 

Tg(tbx6l:Cre,myl7:EGFP)). 

1. Atrium 2. Ventricle. 

Scale bar 100 μM. 

 

 

 

Previous studies with fluorescent sensors in zebrafish larvae (which involved assessments of 

sensors for gene expression, ion fluctuations and enzyme activity that are introduced into the 

zebrafish germline by transgenes (Nemtsas, et al., 2010; Weber and Huisken, 2015)) 

confirmed that fluorescent in vivo imaging was possible in the zebrafish. Unlike the four-

chambered heart of humans, zebrafish only have an atrium and a ventricle (see Fig. 5.1). 
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However, the zebrafish has a high genetic and organ system homology to humans, which 

increases the probability that conclusions of this study about cAMP and cGMP can be 

transferred to human (patho-) physiology (Brand, et al., 2002).  

Furthermore, the quick development of zebrafish enables experiments shortly after 

fertilization. The heart, for example, develops after two days, which allows high numbers of 

experiments and thus results (Brand, et al., 2002). Additionally, zebrafish have the ability to 

sufficiently regenerate multiple organs, also the heart (Konantz and Antos, 2014). This 

makes the zebrafish a good model for future investigations, which include regeneration (see 

10.3.1).  

5.2 CAMP IN CARDIAC PHYSIOLOGY 

The heart is a muscular organ that pumps blood through the body to supply all organs with 

oxygen and nutrients and to remove metabolic waste products. The speed of this supply and 

removal is defined by the contraction force (inotropy) and heart rate (chronotropy). Because 

the needs of the body continuously change, inotropy and chronotropy are precisely regulated 

to fill the needs. During stress, the body requires an increased inotropy and chronotropy to 

meet the higher demands for oxygen, nutrients and metabolic waste removal. On a 

molecular level, stress leads to the release of noradrenaline from intracardiac nerve 

terminals. Noradrenaline activates cardiac β-Adrenergic Receptors (βARs). Three subtypes 

of βARs exist. The β3AR has mainly metabolic functions and does not regulate inotropy and 

chronotropy (Wachter and Gilbert, 2012). The β1AR and β2AR promote Gs protein activation 

of adenylyl cyclases. Adenylyl cyclases synthesize the downstream mediator cyclic 

Adenosine 3’, 5’ Monophosphate (cAMP) (Mika, et al., 2012a). cAMP activates the cAMP-

dependent Protein Kinase A (PKA) which then phosphorylates the relevant target proteins, 

such as L-type Calcium (Ca2+) channels and Ryanodine Receptors type 2 (RyR2) (Haj 

Slimane, et al., 2014; Wallukat, 2002). These target proteins implement the functional 

consequences of beta-adrenergic signaling for heart action. Mostly, this happens through 

changes in Ca2+ concentrations: L-type Ca2+ channels enable a Ca2+ influx from extracellular, 

RyR2 cause a Ca2+ influx from the sarcoplasmatic reticulum into the cytosol. Immediate 

responses of Ca2+ signaling include the regulation of inotropy and chronotropy (McConkey 

and Orrenius, 1997). Long lasting responses of Ca2+ signaling are changes in gene 

expression, such as the development of hypertrophy (Bers, 2008).  

5.3 CGMP IN CARDIAC PHYSIOLOGY 

The natriuretic peptides Atrial Natriuretic Peptide (ANP) and Brain Natriuretic Peptide (BNP) 

are released by atrial cardiomyocytes because of increased atrial elongation. Atrial 

elongation can occur in heart failure, when the heart insufficiently pumps blood and 
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congestion occurs. ANP and BNP mediate natriuresis, vasodilatation and renine-aldosteron 

inhibition (Hoffmann and Chen, 2014). Thus, direct effects of ANP/BNP signaling happen 

outside of the heart. In the heart, ANP and BNP are known to have indirect, inhibiting effects 

on inotropy and chronotropy mediated by cAMP (Feil, et al., 2003): ANP and BNP activate 

guanylyl cyclases in the sarcolemma, which then hydrolyze the second messenger cyclic 

Guanosine 3’, 5’ Monophosphate (cGMP). Nitric Oxide (NO) can also increase intracellular 

cGMP by activating soluble guanylyl cyclases. cGMP then influences βARs signaling by 

activating Phosphodiesterases (PDEs) (mainly PDE2, if cGMP concentrations are 

low/moderate) which hydrolyze cAMP (Götz, et al., 2014; Sperelakis, 1994; Zhao, et al., 

2016). Some inhibiting effects of cGMP are also mediated through the cGMP-dependent 

Protein Kinase G (PKG) (Feil, et al., 2003). Because of the natriuretic, vasodilating and 

cAMP-inhibiting effects of natriuretic peptide signaling, ANP and BNP are suspected to have 

a protective effect on the heart during stress and in heart failure (Feil, et al., 2003; Nishikimi, 

et al., 2006).  

While PDEs activated by cGMP hydrolyze cAMP, PDEs can also be activated by cAMP to 

hydrolyze cGMP (mainly PDE2, if cAMP concentrations are low/moderate, and PDE1, 

PDE3). The degradation of cyclic nucleotides by PDEs activated by cAMP and cGMP is 

referred to as cAMP/cGMP crosstalk. Consequently, PDEs communicate between the βARs 

and ANP/BNP/NO pathway, which regulates the synthesis of cAMP and cGMP, respectively 

(Fu, et al., 2014; Zhao, et al., 2016). 

5.4 CAMP/CGMP COMPARTMENTALIZATION 

Evidence indicates that cAMP is not uniformly distributed throughout cardiomyocytes (Leroy, 

et al., 2008; Mika, et al., 2012a; Nikolaev, et al., 2010; Vandecasteele, et al., 2006; Zaccolo, 

et al., 2002). Furthermore, Di Benedetto et al. indicated that the compartmentalization of 

cAMP signaling is necessary for specific responses to hormones. This theory about specific 

hormone response evolved out of the finding that different hormones using the same second 

messenger (cAMP) differentially regulate PKA targets (for PKA targets see 5.2) (Di 

Benedetto, et al., 2008). However, there are still many open questions about the 

mechanisms that cause this cAMP compartmentalization and hormone-specific responses 

(Mika, et al., 2012a; Mika, et al., 2012b). cGMP, too, shows a heterogeneous distribution in 

cardiomyocytes. Especially the crosstalk occurring between cAMP/cGMP varies in different 

subcellular compartments and under different conditions (Stangherlin, et al., 2011; 

Stangherlin and Zaccolo, 2012; Zhao, et al., 2016). In the end, the main factors determining 

the distinct compartmentalization of cAMP and cGMP are thought to be 1.) specific 

membrane structures 2.) the intracellular concentrations of the two cyclic nucleotides cAMP 
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and cGMP, which determines cAMP/cGMP hydrolyzing activity by PDEs (Zaccolo and 

Movsesian, 2007).  

5.4.1 THE ROLE OF SPECIFIC MEMBRANE STRUCTURES  

In mammalian ventricular cardiomyocytes, the sarcolemma folds into what is called a 

transverse tubular network (subsequently referred to as T-tubuli). Most importantly, T-tubuli 

ensure a synchronized Ca2+ release for contraction (Brette and Orchard, 2003). However, T-

tubuli also generate subdivisions that are important for cAMP-compartmentalization:  

Nikolaev et al. showed that β1AR are evenly distributed throughout the sarcolemma, whereas 

β2AR are located in the T-tubuli. While β1AR cAMP signals mediate responses through the 

whole cell, β2AR mediated cAMP signaling remains localized to the T-tubuli (Nikolaev, et al., 

2006; Nikolaev, et al., 2010). Actually, several members of the cAMP pathway were found to 

be localized specifically in the T-tubuli. One member is the adenylyl cyclase (Gao, et al., 

1997; Zaccolo, et al., 2002). Furthermore, the cAMP-PDEs type 3 and 4 (Mongillo, et al., 

2004) and PKA regulatory subunits (Yang, et al., 1998) are found primarily in T-tubuli. PKA 

isoforms are compartmentalized by A Kinase Anchoring Proteins (AKAPs) (Röder, et al., 

2009), which are also localized in the T-tubuli. Consequently, T-tubuli are postulated to be a 

critical element in cAMP compartmentalization. It is most likely that T-tubuli play an important 

role in cGMP compartmentalization, too. 

5.4.2 THE ROLE OF PDES 

A PDE is an enzyme that can break the phosphodiester bond in the cyclic nucleotides cAMP 

and cGMP (Leroy, et al., 2008). Götz et al. described real-time cGMP dynamics in intact 

adult cardiomyocytes. Their results revealed the importance of well-established and also 

potentially novel PDE-dependent mechanisms that regulate cGMP under physiological and 

pathophysiological conditions (Götz, et al., 2014). Fu Q. et al. showed that PDEs play a 

significant role in desensitization effects of beta-adrenergic signaling (Fu, et al., 2014). Thus, 

the use of cAMP and cGMP sensors provided new insights in the role of PDEs mediating 

cAMP and cGMP crosstalk and pointed a different activity of PDEs in different tissues or 

cellular locations out. Furthermore, Nikolaev and Lohse showed that PDE2 hydrolysis of 

cAMP kinetically overcomes cAMP production (even in the continuous presence of adenylyl 

cyclase stimulation) in experiments with exclusive PDE2 isoform expression in adrenal zona 

glomerulosa cells. Therefore, PDE2 is an example of PDE-mediated compartmentalization 

that shapes the local pools of cAMP by hydrolysis (Nikolaev and Lohse, 2006). Additionally, 

PDEs maintain the specificity of the βARs response by decreasing the amount of cAMP 

diffusing from membrane to cytoplasm (Leroy, et al., 2008; Nikolaev and Lohse, 2006; 

Zaccolo, 2006; Zaccolo and Pozzan, 2002) 
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5.4.3 CAMP/CGMP COMPARTMENTALIZATION IN CARDIAC DISEASE 

Nikolaev et al. found that β2AR, who are mainly located in T-tubuli and contribute to cAMP 

compartmentalization, diffusely redistribute throughout the whole sarcolemma in heart failure 

(Nikolaev, et al., 2010). Furthermore, cAMP-PDEs showed malfunction in many cardiac 

diseases (Weber, et al., 2015) and they are downregulated during cardiac hypertrophy (Abi-

Gerges, et al., 2009) and heart failure (Mika, et al., 2012b). Sprenger et al. uncovered the 

existence of a PDE-dependent receptor-microdomain communication. This microdomain 

communication is affected in hypertrophy and causes reduced βARs-cAMP signaling to the 

Sarcoplasmatic/Endoplasmatic Reticulum Calcium ATPase (SERCA) (Sprenger, et al., 

2015), indicating a mishandling of Ca2+ caused by PDE-dependent mechanisms. However, it 

remains unclear whether the redistribution of β2AR and the different activity of cAMP-PDEs 

leads to a disorganization of cAMP compartmentalization and whether this leads to cardiac 

disease (Mika, et al., 2012a). 

5.5 FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) 

Microscopic fluorescent techniques based on Fluorescence Resonance Energy Transfer 

(FRET) allow the observation of biochemical events and second messengers inside intact 

cells (Nikolaev and Lohse, 2006).  

FRET occurs between a fluorescence donor and a fluorescence acceptor when they are in 

molecular proximity (typically 2-6nm) to each other and when the emission spectrum of the 

donor overlaps with the excitation spectrum of the acceptor (Nikolaev and Lohse, 2006). In 

this case, after excitation, the donor’s emission can excite the acceptor by FRET. 

Consequently, FRET results in the quenching of the donor-emitted fluorescence and in the 

increase of the acceptor-emitted fluorescence. To use FRET for tracking molecules of 

interest, FRET-fluorophores can be linked to 5’ and 3’ to the binding site for the molecule 

(referred to as FRET sensor). A binding of the molecule to the FRET sensor causes a 

conformational change. The conformational change affects the distance between donor and 

acceptor. Thus, if the distance of the fluorophores increases, FRET decreases, and vice 

versa (see Fig. 5.2). Therefore, FRET can be used as a tool to monitor molecular 

interactions, such as the formation of amyloid plaques in Alzheimer’s disease (Bacskai, et al., 

2003), research on synaptic transmission (Bosch, et al., 2014) and ion-channel physiology 

(Mies, et al., 2007). The latest research on cAMP/cGMP crosstalk and PDEs by the 

researchers Nikolaev, Fu Q. and Götz (see 5.4.2) was derived from FRET sensors. I also 

used the FRET sensors in this study, because FRET sensors efficiently allow to monitor 

cAMP and cGMP. The sensors had a binding domain for cAMP or cGMP with the donor 

fluorophore Cyan Fluorescent Protein (CFP) and the acceptor fluorophore Yellow 
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Fluorescent Protein (YFP) attached at the N-terminus and C-terminus of the binding domain 

of the respective nucleotide. CFP and YFP are commonly used in FRET-applications, 

because their spectral properties allow FRET (Ponsioen, et al., 2004). As illustrated in Figure 

5.2, in the absence of cAMP or cGMP FRET happens. This is referred to as a high FRET 

efficiency. The consequent conformational change after the binding of cAMP or cGMP 

increases the distance between the CFP and YFP, causing the FRET efficiency to decrease. 

                 

 

Figure 5.2 The FRET-based sensor 

The FRET sensor has two fluorophores attached to a binding site that interacts with cAMP or cGMP. In the absence of cAMP or 

cGMP, the donor fluorophore and the acceptor fluorophore are in close proximity, so efficient FRET can happen. The presence 

of cAMP or cGMP causes a conformational change, which increases the distance between the fluorophores and causes a 

subsequent decreased FRET efficiency. For this thesis, two different sensors for cAMP and cGMP were used. However, the 

general      principle applies to both sensors, which is why both cyclic nucleotides were both labelled in this figure. 

The concentration of cAMP or cGMP can be evaluated by measuring the emitted light at 480 

and 530nm in response to excitation at 440nm. An increase in concentration of the molecule 

is followed by a decrease of FRET and thus of 535nm emitted light together with an increase 

of 485nm emitted light. The ratio of the fluorescence intensity at 480 and 530nm represents 
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the concentration of cAMP or cGMP (Holz, et al., 2006; Landa, et al., 2005). Intensity-based 

FRET relies on this ratio for the analysis. An example is given in Fig. 5.3. 

 
 

Figure 5.3 Intensity-based FRET 

Shown is the diffusion of cGMP through gap junctions in real-time in live follicles from mice, tracked by a FRET sensor. Pictures 

from left to right are taken before, 5 minutes and 10 minutes after treatment with luteinizing hormone. Luteinizing hormone is 

involved in follicles whose effects on cGMP were investigated by Shuhaibar et al.. It is important to note that the pictures are 

pseudo-colored. The legend on the right shows each ratio of the fluorescent emission of the CFP over YFP (the fluorophores of 

the FRET sensor for cGMP) with a given a color, which are represented in the pictures on the left. Due to the conformation of 

the sensor, high concentrations of cGMP cause low FRET and a high emission in the CFP spectra. This is given a red color. It is 

clearly visible that cGMP diffuses over time from the cell surface the oocyte (Shuhaibar, et al., 2015). 

5.5.1 THE CAMP FRET SENSOR EPAC1-CAMPS 

In order to assess cytosolic cAMP in living cells, two types of FRET sensors were developed. 

The two FRET sensors differ in the binding domain that interacts with cAMP: PKA-based 

cAMP FRET sensors contain the binding domain for cAMP from the PKA (for explanation of 

PKA see 5.2), whereas EPAC-based sensors are derived from the cAMP-binding site of the 

guanine nucleotide exchange factor for Rap1, an enzyme that is activated by binding cAMP. 

PKA-based cAMP sensors have slow response times, because they have multiple subunits 

requiring four cAMP molecules to bind to four different sites before the dissociation of the 

catalytic subunits implement the change in FRET (Nikolaev and Lohse, 2006; Ponsioen, et 

al., 2004). EPAC-based sensors have a single cAMP-binding domain, allowing faster kinetics 

and making them more suitable for monitoring rapid intracellular cAMP changes (Mironov, et 

al., 2009). Moreover, the short cAMP-binding sequences in the EPAC-based sensors do not 

contain any catalytic or targeting domains that can interfere with cAMP measurements 

(Nikolaev, et al., 2004). Two isoforms of EPAC exist, EPAC1 and EPAC2. EPAC-based 

sensors derived from EPAC1 and EPAC2 are referred to as EPAC1-cAMP-sensor (EPAC1-

camps) or EPAC2-camp-sensor (EPAC2-camps). In previous studies, the EPAC1-camps 

revealed a significantly larger signal amplitude and activation kinetics when compared to the 

EPAC2-camps (Nikolaev, et al., 2004), which is why I used the EPAC1-camps in this study. 
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The EPAC1-camps sensor has been successfully used in a number of studies. Nikolaev and 

Lohse used it to investigate cAMP and Ca2+ oscillations (with Fura-2-AM) in insulin producing 

cells and thereby revealed a PDE1-involved mechanism in this context (Nikolaev and Lohse, 

2006). EPAC2-camps was used in the study from Leroy et al. to compare cAMP and Ca2+ 

kinetics in cardiomyocytes (results discussed in 5.7) (Leroy, et al., 2008). Subsequent 

studies using EPAC as a sensor for cAMP have shown that the second messenger increases 

under β-AR stimulation preferentially in discrete t-tubular microdomains, and that cAMP 

diffusion is limited by PDE activity (Nikolaev and Lohse, 2006; Zaccolo and Pozzan, 2002). 

However, although recent developments include using the FRET sensors such as EPAC1-

camps in intact cardiomyocytes and also in live samples (this includes follicles (Shuhaibar, et 

al., 2015) and skeletal muscle (Röder, et al., 2009)), there is no record of studies using a 

fluorescent FRET sensor for cAMP in an in vivo context of cardiomyocytes in the heart. 

5.5.2 THE CGMP FRET SENSOR CGI500 

The sensor cGi500 also uses the FRET principle. The sensor contains the tandem cGMP-

binding sites of the bovine cGMP-dependent protein Kinase type 1 (cGKI). Compared to 

other cGMP-FRET sensors, the cGi500 sensor is particularly useful for cGMP imaging, 

because it provides a large fluorescent amplitude and fast reversibility of the cGMP-induced 

FRET change after activation by cGMP. Furthermore, the sensitivity to cGMP is high, while 

cAMP affinity is low, which limits cross-activation by cAMP. It is important to ensure that 

cross-activation by cAMP is not possible, because this alters the interpretation of the data 

(Thunemann, et al., 2013a). Thuneman et al. generated mouse lines carrying the cGMP 

sensor cGi500 in cardiovascular tissues. They visualized cGMP in primary cells and tissues 

isolated from mice, and in blood vessels of live animals. They found out that different types of 

smooth muscle cells had different sensitivities in their cGMP responses to cGMP-elevating 

drugs such as nitric oxide (NO) (Thunemann, et al., 2013b). Götz et al. visualized real-time 

cGMP dynamics and pharmacology in intact adult cardiomyocytes. Their results revealed the 

novel PDE-dependent mechanisms that regulate cGMP (see 5.4.2) (Götz, et al., 2014). 

However, as with cAMP, no studies have been performed using a fluorescent FRET sensor 

for cGMP in vivo in the heart.  

5.5.3 FLUORESCENCE LIFETIME IMAGING (FLIM) -FRET 

Fluorescence Lifetime Imaging (FLIM) was first introduced in 1989 by Bugiel, König and 

Wabnitz (Bugiel, et al., 1989) and is based on the fact that the lifetime of fluorophores in a 

fluorescent sample can vary. The first FLIM module for laser scanning microscopes was 

introduced in 1998 (Becker and Hickl, 2015). Thus, a sample can be repetitively scanned by 

a pulsed laser, while fluorescent decay parameters and the coordinates of each pixel are 
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collected and represented in a photon distribution array (see Fig 5.4). FLIM-FRET can be 

used for monitoring molecular interactions with FRET sensors, because the transfer of 

energy from the donor to the acceptor fluorophore during FRET decreases the lifetime of the 

donor. Therefore, in FLIM-FRET the donor’s lifetime of a FRET sensor is determined.  

 

Figure 5.4 The principle of FLIM 

For FLIM, a FLIM detector is connected to a confocal microscope. The sample is repetitively scanned by a pulsed laser. For 

each pixel fluorescent decay parameters and the coordinates are collected and represented in a photon distribution array 

(Becker and Hickl, 2015). 

The analysis of the FLIM data includes complex mathematical calculations. The Becker and 

Hickl software, which I used in my study, provides the lifetimes of the donor fluorophore in 

certain areas of interest or pixels as numerical data. It is also possible to visualize these 

lifetimes by assigning each lifetime a color. The result is a pseudo-color-coded picture 

showing areas of high lifetimes (low FRET, low concentration of cAMP/cGMP) and areas of 

low lifetimes (high FRET, high concentration of cAMP/cGMP). 

5.6 THE USE OF BLEBBISTATIN, FORSKOLIN AND SNAP 

FLIM-FRET confocal microscopy requires immobile samples, because otherwise the image 

taken is blurred. To inhibit contraction of the zebrafish’s heart, blebbistatin (dissolved in 

DMSO) is a good drug to use. It inhibits cell myosin cycling by binding to the ADP Pi complex 

of myosin. Thus, it uncouples excitation from contraction in the heart. Furthermore, it inhibits 

myocardial contraction without altering action potential morphology or intracellular Ca2+ 

transients (which would alter the results) (Jou, et al., 2010).  

To find out whether under extreme situations compartmentalization events can be still 

observed, the cAMP or the cGMP pathway can be provoked by cAMP or cGMP-elevating 

drugs. For raising the intracellular cAMP levels, forskolin can be used. It activates the 

adenylate cyclase, which produces cAMP. Forskolin has been used to significantly increase 

intracellular cAMP levels in zebrafish larvae (Bovo, et al., 2013; Coutts, et al., 2009), showing 
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that the drug has an effect in zebrafish. For raising the intracellular cGMP levels, S-Nitroso-

N-Acetyl-Penicillamine (SNAP) can be used. SNAP is a NO donor, which activates the NO-

dependent guanylyl cyclase to produce cGMP. SNAP has, depending on the conditions, a 

half-life of 1-5h and is thus more suitable for imaging sessions, because other NO-donors 

decompensate much faster. Furthermore, SNAP has been successfully used in zebrafish 

(Westermann and Meissl, 2008).  

5.7 CALCIUM 

Ca2+ is an important intracellular messenger implementing the functional consequences of 

the βARs and βAR-inhibiting ANP/BNP/NO pathway that regulate intracellular Ca2+ handling: 

immediate responses of Ca2+ signaling regulate contraction and long lasting responses of 

Ca2+ signaling are changes in gene expression (see 5.2). Therefore, Ca2+ can be used as a 

functional readout of the βARs and ANP/BNP/NO pathway. However, only few studies 

compare cAMP as the mediator of the βARs- or cGMP as the mediator of the ANP/BNP/NO 

pathway with Ca2+, and none combines the important crosstalk of cAMP/cGMP with Ca2+. It 

is of great interest to investigate whether compartmentalized cAMP/cGMP also causes 

compartmentalized Ca2+ (and therefore local differences in contraction), or whether functional 

responses are homogeneous throughout the cell. 

Comparing cAMP and Ca2+ kinetics, Leroy et al. found that L-type Ca2+ channel activation 

develops >2-fold slower than membrane cAMP responses, and its return to basal levels 

develops >7-fold slower membrane cAMP responses, suggesting that phosphorylation and 

dephosphorylation are rate-limiting in the β-AR cascade (and not cAMP concentrations). 

Furthermore, Leroy et al. found that in rats, PDE4 is the main PDE subtype modulating β-

AR-induced-cAMP transients and, as a consequence, Ca2+ concentrations after β-AR 

stimulation. Including Ca2+ in the studies thus revealed important regulatory mechanisms for 

Ca2+ handling and indicate the significance of including Ca2+ in investigating cardiac 

regulators (Leroy, et al., 2008). 

To track Ca2+, the sensor GcAMP6 and its previous versions have been used in in vivo 

contexts in the zebrafish. Using light sheet microscopy, Weber and Huisken imaged Ca2+ 

currents in a developing heart in real-time, revealing differences in Ca2+ handling, cardiac 

output and contraction in different parts of the heart (Weber and Huisken, 2015). Weber and 

Huisken thus showed that the GcAMP6 sensor can be used to assess Ca2+, which is why 

GcAMP6 was used in this study.  
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5.7.1 THE CALCIUM SENSORS GCAMP6 AND FLUO-4 AM  

The genetic fluorescent Ca2+ sensor GCaMP6 has been successfully used in in vivo contexts 

by Huisken and Weber (see 5.7), which is why GCaMP6 was used in this study. The reporter 

genes of the GCaMP6 family consist of circularly permuted Green Fluorescent Protein 

(cpGFP), the calcium binding protein Calmodulin (CaM) and CaM-interacting M13 peptide. 

Calcium dependent conformational changes cause increased brightness (Chen, et al., 2013). 

The different variants of GCaMP6 vary in their fluorescent decay. The fluorescence of the 

GCaMP6S variant lasts much longer than the fluorescence of the GCaMP6F variant after 

Ca2+ binding. Thus, the GCaMP6F sensor allows the tracking of immediate changes in Ca2+ 

(implementing fast responses such as contraction, see 5.2, whereas the GCaMP6S sensor 

allows the tracking of changes in sustained Ca2+ levels (Badura, et al., 2014) (implementing 

long lasting responses such as changes in gene expression, see 5.2).  

Additionally, the fluorescent dye Fluo-4 AM was used to track Ca2+, because a dye can easily 

be combined with transgene sensors (such as FRET sensors for cAMP and cGMP) for 

simultaneous measurements if the fluorophores used do not spectrally overlap. Furthermore, 

a dye requires less preparation compared to genetic sensors, which have to be introduced 

into the animal by a time-consuming process (including cloning and microinjection of the 

construct into fertilized oocytes). Fluo-4 AM was used because the dye has been worked 

with extensively in in vitro studies in the past, which generated a large amount of experience 

that was benefitted from in this study.  

Fluo-4 AM exhibits high fluorescent emission after intracellular cleavage of the AM ester and 

following Ca2+ binding (see Fig. 5.5). The AM ester is important for the dye to pass the 

plasma membrane. After cleavage, the dye is trapped into the cell. Because after incubation 

of the sample or injecting the dye into areas of interest the dye shows immediate fluorescent 

response, data analysis is immediately possible. Due to its excitation near 488nm, the 

fluorescence of Fluo-4 AM can be analyzed with an Argon-laser (Gee, et al., 2000). Argon- 

laser based fluorescent microscopes are easily accessible in most institutes. This easy 

access is important for experiments in which quick evaluations about fluorescence must be 

made, for example while establishing a new protocol, which is why Fluo-4 AM was used in 

this study. 
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Figure 5.5 The principle of Fluo-4 AM  

Fluo-4 AM diffuses into the cell, where intracellular esterases hydrolyze the AM ester, resulting in the Fluo-4 being membrane 

impermeable and trapped in the cytosol (notice Fluo-4 AM outside the cell and Fluo-4 without AM ester inside the cell). Upon 

excitation with an Argon laser (488nm), the dye Fluo-4 emits fluorescence at a wavelength of 509nm. The emitted fluorescence 

is significantly higher when Ca2+ is bound to the dye.  
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6. AIM OF THE STUDY 

In cardiac research, the scientific community drives to understand the subcellular distribution 

patterns of cAMP and cGMP in cardiomyocytes, because many open questions remain in the 

context of why cAMP and cGMP show a distinct compartmentalization in cardiomyocytes and 

whether a distorted compartmentalization of cAMP and cGMP leads to the phenotypes of 

cardiac diseases. FRET-methods to track cAMP and cGMP have been used as a tool to 

learn about cAMP and cGMP in real-time and in high spatial resolution. However, the inability 

to optically penetrate the body of most of the animal models mask fluorescence in the heart, 

which significantly complicates in vivo analyses of cAMP and cGMP with FRET sensors 

(Lee, et al., 2012). Because zebrafish are transparent in early stages of development, the 

first aim of this study was to introduce FRET sensors for cAMP and cGMP into zebrafish via 

transgenesis. The second aim was to perform FLIM-FRET as a novel technique to assess 

cardiomyocyte cAMP and cGMP in vivo, because fluorescent lifetime imaging can provide 

accurate, subcellular high-resolution assessment of FRET sensors. It was also aimed to 

introduce the genetic sensor GCaMP6 for assessing Ca2+, because Ca2+ is the intracellular 

messenger implementing the functional consequences (such as contraction) of cAMP/cGMP 

signaling and can therefore be used as a functional readout of these pathways. With the data 

collected, the third aim was to find out whether the same compartmentalization of cAMP and 

cGMP signaling, to which T-tubuli are attributed to significantly contribute in mammals, can 

be observed in zebrafish (which lack T-Tubuli). Also, the cAMP and the cGMP pathway were 

planned to be provoked by cAMP and cGMP-elevating drugs to find out whether under 

extreme conditions compartmentalization events can be still observed.  

 

 

  



7 Material 

 14

7. MATERIAL 

7.1 DEVICES 

All light microscopy applications were performed on devices of the Light Microscopy Facility, 

a core facility of BIOTEC/CRTD at Technische Universität Dresden. 

Name Product name Producer 

Analytical balance MC BA 100 Sartorius 

Autoclave Vakulab HP MMM 

Beveller Kapillarenschleifgerät Typ 462 Bachhofer GmbH 

Centrifuge 

Mini Centrifuge MCF-2360 

Micro centrifuge Ι R 

Heraeus Centrifuge Fresco 21 

Heraeus Megafuge 8R 

Multifuge 4 KS-R 

LMS Co., LTD 

Carl Roth 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Heraeus 

Clean water supply Milli-Q G-Pod Merck Millipore 

Gas burner 
06F125, Gas Lock System C 206 GLS 

Super 
Campingaz 

Gel analyzer Fusion FX Vilber Lourmat 

Gel electrophoresis 

chamber 
SGU-020T-02 C.B.S Scientific Co. 

Gel electrophoresis 

power supply 
PowerPacTM Basic Bio-Rad 

Incubator Unitwist Uniequip 

Micromanipulator Pneumatic PicoPump PV820 World Presicion Instruments, Inc. 

Microscope, Laser 

Scanning Confocal 

Microscope 

Axio Observer LSM 780/FLIM 

Objective: Zeiss C-Apochromat 40X 1,2W, Illumination: 

Laser Argon Multiline 458,488,514nm, Laser Diode 

475nm (pulsed), Transmitted light (Halogen) 

Zeiss 

FLIM dual channel unit from B&H 

Microscope, stereo 

Olympus MVX10 (Fluorescence) 

Olympus SZX10 (Injections) 

Olympus SZX16 (Dechorionation) 

Olympus Corporation 

Microwave HF 22023 Siemens 

Needle puller 

Flaming/Brown P-97 Micropipette Puller 

Settings: 

Heat 537, Pull 250, Vel 150, Time 80 

Sutter Instrument Co. 

PCR cycler Mastercycler nexus (gradient) Eppendorf 

Pipette 2, 20, 200, 1000μl VWR, Eppendorf 

Pipetting helper 

electric 
Multipette® plus Eppendorf 

Sonicator Sonorex RK100H Bandelin 

Spectrophotometer NanoDrop® 1000 Peqlab 
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Speed vac Concentrator 5301 Eppendorf 

Suction CVC 2000 Vacuubrand 

Thermomix 
Thermomixer comfort 

Thermomixer compact 

Eppendorf 

Eppendorf 

Vortexer Vortex-Genie2 Scientific Industries 

 

7.2 SOFTWARE 

Function Name Provider 

Analysis Olympus MVX10 cellSens Dimension Olympus Corporation 

Computer operating system 
macOS 

Windows 2000, Vista, 8 

Apple 

Microsoft Corporation 

Control and analysis gel analyzer Fusion-Capt Vilber-Lourmat 

FLIM  
SPCImage 

SPCM 
B&H 

Laser Scanning Confocal Microscope Zen Black 2011 Zeiss 

Nanodrop NanoDrop 100 3.7.1 Thermo Fisher 

Organization fish database File Maker Pro Advanced FileMaker, Inc. 

Plasmid handling, sequence analysis and 

design 
APE M. Wayne Davis 

Statistical analysis GraphPad Prism 7.0b GraphPad Software, Inc. 

 

7.3 LABORATORY EQUIPMENT 

7.3.1 REUSABLE LABORATORY EQUIPMENT 

Name  Product name Producer Catalog Number 

Beaker FisherBrand® 100, 400ml Thermo Fisher Scientific FB33110, FB33113 

Falcons  Jena Therm 100ml Jena Therm Unknown 

Microinjection mold 

templates 

 

TU-1 (for Ca2+ dye 

injections, 48 hpf), PT-1 

(for Ribonucleic Acid 

(RNA)/DNA injections) 

Adaptive Science Tools (774) 239-6133 

Mouse cage for 

temporary fish collection 

and net inserts for 

spawning 

Own production: redesigned aqua box 24,5*15*13,5 cm with PVC cover, net 

21*10,5*8,5cm with a grid distance of 2mm 

Tweezers 
Tweezers Dumont #5 

11cm Dumoxel 

World Presicion 

Instruments, Inc. 
14099 
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7.3.2 CONSUMABLES 

Name  Product name Producer Catalog Number 

Lysogeny broth plates 

(100 μg/ml Ampicillin) 
Ampicillin 100 

CRTD (Center for 

Regenerative Therapies 

Technische Universität 

Dresden) Dresden 

Ampicillin 100 

Cover slip glued under 

object plate with hole for 

microscopy 

24x60mm, own production 

Disposable pipette Tips  

10μl, 20μl, 100μl, 200μl, 

1250μl extra long 

20μl microloader for 

injections 

5ml, 10ml, 50ml 

Sarstedt 

 

Eppendorf 

 

Corning Incorporated 

Various 

 

0030 001.222 

 

4487, 4488, 4490 

Eppendorf tubes 

1,5ml 

2ml 

1,5ml brown 

PCR tubes 

Sarstedt 

Sarstedt 

Sarstedt 

Eppendorf 

72.706 

72.695.500 

72.706.001 

0030 121.023 

Glass capillaries Glass thin 1.0 mm 
World Precision 

Instruments, Inc. 
TW100 F-3 

Pasteur pipette Pastette® 
Alpha Laboratories 

Limited 
LW4111 

Petri dish Petri dish Greiner bio-one 633180 

Petri dish nunc 
nunclonTM Delta 

Surface  
Thermo Fisher Scientific 150318 

Well plates 6, 24, 96 well plates Corning Incorporated 3506, 3527, 3598 

 

7.3.3 CHEMICALS 

Unless otherwise stated, all chemicals have a per analysis level of purity. 

Name Producer Catalog Number 

agarose Serva 11404.07 

Blebbistatin (sonicated before use) Sigma B0560 

Boric acid VWR chemicals 20185.297 

Calcium chloride Sigma C5670-100G 

DEPC Diethylpyrocarbonat Carl Roth K028.2 

Disodium hydrogen orthophosphate 

dehydrate (Na2HPO4x2H2O) 
Merck  106576 

DMSO Dimethyl sulfoxide Sigma D8418-250ML 

EDTA Merck  K35265018601 



7 Material 

 17

Ethanol absolute VWR chemicals 20821.310 

Ethyl 3-aminobenzoate methanesulfonate 

salt 
Sigma A5040-250G 

Isopropanol VWR chemicals 20842.330 

Magnesiumsulfate heptahydrate  Merck 1.05886.1000 

Methyl cellulose Sigma M0387-100G 

Methylene blue Sigma 03978-250ML 

Potassium chloride Merck 1.04933.0500 

Propan-2-ol VWR 20842.330 

Rnase free H2O Promega P119E 

SNAP (S)-Nitroso-N-acetylpenicillamine Tocris 0598 

Sodium chlorate Sigma 403016-100G 

Tris base Carl Roth 9090.2 

 

7.3.4 BUFFER AND SOLUTIONS 

Name  Composition 

10X TBE 

For 1l 

121,1g Tris base 

61,8g boric acid 

7,4g EDTA 

Fill up with Milli-Q H2O 

E3 

5 mM Sodium chloride,  

0.17 mM Potassium chloride,  

0.33 mM Calcium chloride,  

0.33 mM Magnesiumsulfate heptahydrate,  

0.0002 % Methylene blue 

pH 6.5  

Mesab solution for anesthetization 

For 100ml: 

0,4g Ethyl 3-aminobenzoate methanesulfonate salt 

1g Disodium hydrogen orthophosphate dehydrate 

(Na2HPO4x2H2O) 

100ml DEPC water 

Application: Add 3ml into petri dish with E3 water 

Phenolred 0.2% in 0.25M KCl 

 

7.3.5 REAGENTS 

Function  Name Producer Catalog Number 

DNA Ladder  
GeneRuler 1kb Plus 

DNA ladder 

Thermo Fisher 

Scientific 
SM1331 



7 Material 

 18

DNA Loading dye 6X DNA loading dye 
Thermo Fisher 

Scientific 
R0611 

DNA Stain  HDGreen Plus Intas ISII-HDGreen 

Dye, Ca2+ sensor Fluo-4, AM 
Molecular probes life 

technologies 
F14201 

 

7.3.6 KITS 

 

7.3.7 ENZYMES 

Funktion Name Product name Producer Catalog Number 

Restriction 

enzyme 

AatΙΙ AnzaTM 46 AatΙΙ 
Thermo Fisher 

Scientific 
IVGN0464 

AscΙ AnzaTM 21 SgsΙ 
Thermo Fisher 

Scientific 
IVGN021-4 

BamHΙ AnzaTM 1 BamHΙ 
Thermo Fisher 

Scientific 
IVGN0056 

BgΙΙΙ AnzaTM 19 BgΙΙΙ 
Thermo Fisher 

Scientific 
IVGN0196 

ClaΙ Bsu15Ι(ClaΙ) Fermentas ER0141 

HindΙΙΙ AnzaTM 16 HindΙΙΙ 
Thermo Fisher 

Scientific 
IVGN0166 

KpnΙ AnzaTM 17 KpnΙ Thermo Fisher IVGN0176 

Function Product Name Producer Catalog Number  

Gel Extraction 
QIAquick® Gel Extraction 

Kit (250) 
Qiagen 28706 

Gel extraction/DNA 

purification 

NucleoSpin® Gel and 

PCR Clean-up 
Macherey-Nagel 740609.250 

In vitro transcription 

mMESSAGE 

mMachineTM T7 

mMESSAGE® SP6 

mMACHINE 

Thermo Fisher 

Scientific 

Ambion 

AM1344 

 

AM1340 

 

Plasmid Minis/Midis 

QIAGEN® Plasmid Midi 

Kit (25) 
Qiagen 12143 

SOC Medium for the  

QIAGEN® Plasmid Midi 

Kit (25) 

CRTD (Center for 

Regenerative 

Therapies Technische 

Universität Dresden) 

Dresden 

SOC Medium 
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Scientific 

NheΙ AnzaTM 6 NheΙ 
Thermo Fisher 

Scientific 
IVGN0066 

NotΙ AnzaTM 1 NotΙ 
Thermo Fisher 

Scientific 
IVGN0014 

SalΙ SalΙ 
Fermentas life 

sciences 
ER0641 

SbfΙ  FastDigest SdaΙ 
Thermo Fisher 

Scientific 
FD1194 

SmaΙ AnzaTM 22 SmaΙ  IVGN0226 

XbaΙ XbaΙ 
Thermo Fisher 

Scientific 
ER0681 

XhoΙ XhoΙ 
Thermo Fisher 

Scientific 
ER0691 

Polymerase 
DNA Polymerase 

for PCR 

Pfu DNA 

Polymerase 

Thermo Fisher 

Scientific 
EP0502 

Ligase DNA Ligase T4 DNA Ligase 
New England 

BioLabs®
GmbH  

M0202S 

Phosphatase 
Alkaline 

Phosphatase 

Alkaline 

Phosphatase, Calf 

Intestinal (CIP) 

New England 

BioLabs®
GmbH 

M0290S 

 

7.4 BACTERIAL STRAINS 

Competent cells for bacterial transfection (DH5α strain) were provided by Dr. Antos. 

7.5 PLASMIDS 

Name used in this 

thesis 
Name in database Origin 

cGi500 CAG cGi500 Dr. Nikolaev (Institute of 

Experimental Cardiovascular 

Research) 
EPAC1-camps EPAC-camps 

EPAC1-camps 
564 pcDNA6-YFP-EPAC-CFP-myc-His B for 

FRET 

Dr. Antos (Institute of 

Pharmacology and Toxicology) 

GcAMP6 M/F/S 

565 pTol_ubi_gCampMedi-lensgreen 

566 pTol_ubi_gCampFast-lensgreen,  

567 pTol_ubi_gCampSlow-lensgreen 

Dr. Kizil (CRTD) 

PCS2 30.pCS2gfpN1 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

miniTol2cmlc2 
263. miniTol2cmlc2 TetAGBD P2A 

GFP_final construct 

Dr. Antos (Institute of 

Pharmacology and Toxicology) 
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Transposase 100.pCS-TP 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

 

7.6 ZEBRAFISH LINES 

Name Date of birth Tank number Origin 

615 – 4 Wild Type (WT) WIK 8.10.15 4140 CRTD 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

615 – 5 WT WIK 8.10.15 4141 CRTD 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

615 – 6 WT WIK 8.10.15 4142 CRTD 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

615 – 8 WT WIK 8.10.15 4143 CRTD 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

615 – 9 WT WIK 8.10.15 4144 CRTD 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

615 – 10 WT WIK 8.10.15 4145 CRTD 
Dr. Antos (Institute of 

Pharmacology and Toxicology) 

405 – WT AB 8.3.16 5440 CRTD CRTD 

405 – WT AB 9.2.16 5441 CRTD CRTD 

405 – WT AB 8.3.16 5442 CRTD CRTD 

405 – WT AB 1.12.15 5443 CRTD CRTD 

405 – WT AB 8.3.16 5444 CRTD CRTD 

 

7.7 PRIMERS 

All Primers were synthesized by the company Eurofins Genomics and cleaned in High Purity 

Salt Free (HPSF) quality. 

Function Name of Primer Sequence 5´-3 

Cloning of EPAC1 into TOL2 

forward 
epacYFPfretsbfl 

ATACCTGCAGGAAGCGCAAAGATGCTA

GCATG 

Cloning of EPAC into TOL2 

reverse 
epacCFPfretAscl 

ATAGGCGCGCCCCGGTATGCATATTCA

GATCC 

Cloning of cGi500 into TOL2 

forward 
CGI500Tol2sbf3’ 

TATCCTGCCAGGAGATATCTGCAGCGC

CACCAT 

Cloning of cGi500 into TOL2 

reverse 
CGI500Tol2Asc3’ 

TATGGCGCGCCAGTTACTTGTACAGCTC

GTCC 

Cloning of GCaMP6 into Tol2 

forward 
GCamP6forTol2for 

GGTCCTGCAGGAGTTATATGGGTTCTCA

TCAT 

Cloning of GCaMP6 into Tol2 GCamP6forTol2rev AAAGGCGCGCCGTTGATTTACTTCGCTG
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reverse TCAT 

Cloning of GCaMP6 into PCS2 

forward 
GCamP6forPCS2for 

TGTAAGCTTAGTTATATGGGTTCTCATC

AT 

Cloning of GCaMP6 into PCS2 

reverse 
GCamP6forPCS2rev 

TTTTCTAGAGTTGATTTACTTCGCTGTCA

T 

Sequencing EPAC forward EPACcampSbf1Forw 
CATACCTGCAGGTAGGGAGACCCAAGC

TTATGG 

Sequencing EPAC reverse EPACcamAsclrev 
CATTAGGCGGCGCGCCGGTGACACTAT

AGAATAGGGC 

Sequencing GCaMP6 forward UbiPromoter3’ GGCTAGAACATTGTAGT 

Sequencing GCaMP6 reverse lengreenNtermRev GTTCAGGGGGAGGTGTGG 

Sequencing Tol2 clones forward cmlc2forseqprim GGGACGAACAGAAACACTGC 

Sequencing Tol2 clones reverse Nr. 820 SV40_Seq_1 GCAGCTTATAATGTTACAA 
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8. METHODS 

Unless otherwise stated, molecular biology methods were performed according to 

Sambrook&Russel (Molecular cloning, 3rd edition) or according to the instructions provided 

with the enzymes, reagents and kits provided.  

8.1 CLONING 

Each plasmid which contained the fluorescent sensor EPAC1-camps, cGi500 and GCaMP6 

(see 5.5.1,5.5.2 and 5.7.1)), respectively, was merged with a vector backbone that had all the 

features that were needed for molecular cloning: the Ampicillin resistance (see step 7. on 

page 24), the SV40 Poly A Signal that is necessary for transcription when the cloned gene is 

incorporated into the fish (Li, et al., 2012), the Tol2 transposable element (see 8.2) and the 

cmlc2 promoter (see 8.2). The cloning strategy used is shown in Fig. 8.1. and will be further 

explained in the following. 

 
Figure 8.1 The cloning strategy 

1.) Identification of two unique restriction sites in the vector backbone in between the fluorescent sensor was cloned 2.) PCR for 

gene amplification with designed primers that added the restriction sites identified in 1.) to the PCR product. 3.), 4.) and 5.) 

Restriction of the vector backbone plasmid and the PCR products with the restriction enzymes cutting at the restrictions sites 

identified in 1.), ligation reaction to insert the PCR product into the backbone vector and transfection of bacteria with the ligated 

plasmid. 6.), 7.), 8.) and 9.) bacterial preparation and check if cloning had worked. 

 

vector backbone with features needed plasmid with fluorescent sensor

restriction 
site 1

restriction 
site 2

gene sequence

PCR amplification with 
designed primers that add 
the corresponding 
restriction sites 1 and 2

restriction 
site 1

restriction 
site 2

restriction, ligation and bacterial 
transfection

plasmid with 
features 
needed and the 
fluorescent 
sensor

1.)

2.)

3.), 4.) and 5.)

6.), 7.), 8.) and 9.) did the cloning work?
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Detailed explanation of steps in Fig.8.1:  

1.) The two unique restriction sites in the vector backbone were SbfΙ and AscΙ. 

2.) The primers listed in 7.7 were designed to add the restriction sites identified in 1.) to the 

gene sequence of each fluorescent sensor. Using these primers, a standard Polymerase-

Chain-Reaction (PCR) (Cline, et al., 1996) was performed to amplify the gene. After the 

PCR, gel electrophoresis with 1% agarose gel (1g agarose per 100ml TBE1X) was 

performed with the PCR products (adding 10μl Thermo Fisher Scientific 6X loading dye to 

50μl PCR product) and subsequently purified with the NucleoSpin und PCR Clean-up gel 

purification kit.  

 

 

 

 

 

 

 

 

 

 

3.) The vector backbone plasmid and PCR products were restricted with the restriction 

enzymes cutting at the restriction sites identified in 1.) All restrictions were performed 

according to the instructions provided with the enzymes. After the digestions, the samples 

run on a 1% agarose gel (1g agarose per 100ml TBE1X) to check if the restriction had 

worked. An example is shown in 9.1. Then the band was cut at the desired size and gel 

purified with the NucleoSpin und PCR Clean-up gel purification kit.  

4.) The ligation reaction was performed with the room temperature protocol of the T4 DNA 

ligase (see 7.3.7) to insert the PCR product of 2.) into the backbone vector.  

 

 

PCR components Volume 

EPAC1-camps/cGi500/GCaMP6 10 ng/μl 1μl 

Primer forward Sbf1 50 μM 1μl 

Primer reverse Asc1 50 μM 1μl 

Buffer Pfu Mg+ Polymerase 10X 5μl 

Deoxyribonucleotide Triphosphate (dNTP) 

25mM 

0,5μl 

Nuclease free water 40,5μl 

total 50μl 

PCR 

cycle 

Temperature Duration EPAC1-

camps 

cGi500 GCaMP6 

1 95°C 120sec    

2 35 repeats     

 A.) 95°C 30sec    

 B.) Annealing 

Temperature (AN) 

30sec AN 58°C AN 65°C AN 63°C 

 C.) 72°C Extension Time (ET) ET 120sec ET 135sec ET 135sec 

3 72°C 600sec    
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5.) Then, bacteria from the DH5α strain were transfected with the ligated plasmid. 
 

Reaction Volume Control reaction Volume 

Insert Xng/μl 3μl Insert Xng/μl - 

Backbone vector ½Xng/μl 2μl Backbone vector ½Xng/μl 2μl 

Nuclease free water 12μl Nuclease free water 15μl 

T4 DNA Ligase buffer 10X 2μl T4 DNA Ligase buffer 10X 2μl 

T4 DNA Ligase 1μl T4 DNA Ligase 1μl 

total 20μl total 20μl 
 

Ligation/Transfection protocol  

Incubate reaction mix at room temperature 10min 

Take 5μl and add it to competent bacteria (see 7.4), then let chill  

on ice 

10min 

Heat shock at 42°C  30-40sec 

Let chill on ice 2min 

Add SOC Medium 250μl  

Incubate at 37°C at 950rpm  

Plate the bacteria (Ampicillin 100 plates)  
 

 

6.) After overnight culture (37°C), only bacteria with ampicillin resistance and therefore the 

ligated plasmid grew on the plate. Minipreps with the transfected bacteria were performed. 

The ligated plasmid was isolated according to the instructions provided with the QIAGEN 

Plasmid Midi Kit.  

7.) To check if the cloning had worked, the plasmids were incubated with restriction enzymes 

that gave specific band patterns when the insert was integrated into the backbone vector. 

The digestion reaction was run on a 1% agarose gel (1g agarose per 100ml TBE1X) (an 

example is shown in 9.1).  

8.) Successfully cloned candidates were send for sequencing to Eurofins Genomics.  

9.) After sequencing, midipreps were performed with the QIAGEN Plasmid Midi Kit in order 

to generate a stock of purified new transgene plasmids that were ready to be injected (see 

9.1 for detailed sequencing results and which clones were chosen for midipreps). In vitro 

transcription for mRNA synthesis of the Transposase, that needed to be co-injected with the 

transgene plasmids (see 8.2), was performed with the mMessage Kits from Ambion (see 

7.3.6). 
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8.2 ZEBRAFISH MAINTENANCE AND TRANSGENESIS 

The zebrafish were kept under a 14h light, 10h dark cycle at 28,5°C according to the 

standard conditions as explained in zebrafish: A practical approach (Brand, et al., 2002). 

Several approaches are available for introducing transgenes into zebrafish, from the injection 

of naked DNA (Deoxyribonucleic Acid) to transposon-mediated integration. In particular, the 

Tol2 transposable element from the medaka fish has been shown to create chromosomal 

integrations in the zebrafish genome very efficiently, resulting in the development of 

transgene zebrafish (Kawakami, et al., 2000). Transgene approaches allow the use of tissue-

specific promoters to limit gene expression to cells of interest, such as cardiomyocytes 

(Kawakami, et al., 2016; Suster, et al., 2009). Therefore, the cardiomyocyte-specific cardiac 

myosin light chain 2 (cmlc2) promoter was used in this study. To achieve the introduction of 

EPAC1-camps, cGi500 and GCaMP6 into the zebrafish, a DNA plasmid containing the 

fluorescent sensor was injected into the one-cell stage of a fertilized zebrafish embryo.  

The sensor then was incorporated into the animal’s genome with the help of the Tol2-

Transposase, if transposase-mRNA was co-injected and the plasmid DNA was a transposon 

vector (a vector with two Tol2 sites that the transposase recognizes) (Kawakami, 2005). 

Integration normally happens after the one-cell-stage, because the cell of the zebrafish 

embryos divides rapidly. Therefore, the fish showed a mosaic expression and only a few 

cells expressed the transgene in the injected fish. Because isolated cells expressed the 

transgenic sensor, the evaluation of subcellular dynamics of cAMP, cGMP and Ca2+ in 

individual compartments of the cell could be done without additional marking of cell 

boundaries. If the transgene integrates into the genome of the germ cells, the transgene is in 

the genome of each cell of subsequent generations and a new transgenic line is established. 

The new transgenic line would express the transgene throughout the heart. A transgenic line 

allows the imaging of cAMP, cGMP and Ca2+ dynamics in multiple experiments under 

continuous timescales.  

The Injections of the genetic fluorescent sensors EPAC1-camps, cGi500 and GCaMP6 into 

fertilized zebrafish embryos happened at two different developmental stages: at the one-cell 

stage in order to establish transgene fish lines and after 48 hpf for Fluo-4 AM injections into 

the pericardium. The injection needles were generated by pulling glass capillaries with a 

needle puller. The needles were then carefully broken at a point where their diameter was 

between 0,05mm and 0,15mm with Dumont tweezers under the microscope. This is a 

common protocol for the preparation of injection needles (Brand, et al., 2002). For the 

injections of the Fluo-4 AM dye at 2dpf, another step was added in the preparation of 

injection needles: the needles were beveled, because a bevel facilitated the entrance of the 
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needle into the tissue and reduces damage. The right amount of beveling was achieved 

when the needle starts to bend and water was sucked up by capillary action. The angle of 

the bevel was 50°. 
 

Figure 10.2 The beveller 

1. The tube holding the needle. 

2. The microscope through 

which the needle is shown with 

the appropriate magnification to 

follow the correct bevel of the 

needle. 3. The spinning rubber 

which is covered with water to 

smoothen and cool the surface 

and on which the tip of needle 

was positioned for beveling. 4. 

The pipe along which the water 

drops onto the rubber to 

smoothen and cool the surface. 

 

Zebrafish varied in their quality of eggs and also in the amount of eggs that they laid. To 

maximize the probability to harvest good embryos for the injections, two different Wild Type 

(WT) fish strains for each injection- session were simultaneously used: AB from the WT-

service from the CRTD and WIK type zebrafish from Christopher Antos stocks. The pairing 

and harvesting of embryos itself was carried out according to the protocols described in: 

Zebrafish: A practical approach (Brand, et al., 2002).  

Injections into fertilized zebrafish embryos were easier to perform using a mold in which the 

embryos sunk in to prevent their free movement in the water (see Fig. 10.3, page 30). For 

one-cell injections, embryos were placed in a mold with 150 individual holes (see “B” in Fig. 

10.3, page 30). For pericardial injections, a mold with six grooves was used. Both the 

grooves and the individual holes have steep walls on one side and flat walls on the other to 

facilitate needle approach. For preparing the molds, the following protocol provided by Brand 

et al. was used: 1% agarose in E3 was boiled, cooled for 3minutes, then poured into a petri 

dish with the template for the molds laid on top. If the agarose was solid, the template could 

be removed and the mold was ready to use (Brand, et al., 2002). 

One-cell stage injections 

In order to introduce the genetic fluorescent sensors EPAC1-camps, cGi500 and GCaMP6 

into the zebrafish, the plasmid containing the sensor was injected into fertilized zebrafish 

embryos at one-cell stage. Maximum 60 embryos from each clutch (hold watery in E3) were 

placed onto the corresponding mold and distributed evenly with a long pipette tip. After 

putting the mold under the microscope and ensuring the right settings for the needle position, 

1

2

34
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26

26
26
26
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DNA was injected from the side at the edge between cell and yolk targeting the cell with a 

volume of 1nl. The injection-setup is shown in Fig. 8.3. 

 

Figure 8.3 The injection setup 

A. 1. Petri dish with fertilized embryos in E3 2. The microscope 3. The micromanipulator B. Magnified area depicted in A 4. The 

needle with the injection solution 5. Fertilized embryos on agarose mold C. Calibrating the injection volume as described by 

Brand et al.; A drop of solution at a magnification of 4 that covers 5units on the scale equals 1nl (Brand, et al., 2002)  6. 1nl drop 

8. The needle (due to focus on the 1nl drop, only the shape of the needle is visible) 7. Scale of the microscope D. Magnified 

area from B shows a fertilized embryo (scale bar 0,5mm). 9. Injected cell, visible by reddish color. Rest is yolk. 

A high concentration of the plasmid injected into the 

embryos is toxic for the fish and in low concentrations 

the gene is very poorly expressed. The optimum 

plasmid DNA concentration varies between each 

construct, has to be determined individually and will be 

explained in 9.2. From the protocol shown on the left, 

1 nl DNA are injected into the cell of an one-cell stage 

fertilized embryo (see “D” in Fig 8.3). For RNA injections, 10 nl are injected into the yolk. 

 

DNA injections at one-cell stage 

X μg DNA (concentration with best 

expressing/toxicity ration has to be 

found out for each individual construct) 

300 μg RNA Transposase 

1 μl Phenolred 

Fill up with nuclease free water to 10 μl 
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8.3 MOUNTING AND IMAGING 

After the injections, genetic fluorescent sensor expression was checked at 48 hpf with a 

fluorescence light microscope (Olympus MVX10). Fish expressing the sensor in individual 

cardiomyocytes were then gently dechorionated (“D” in Fig. 8.3 shows cell and yolk, around 

is the chorion) by opening and then removing the chorion with Dumont tweezers under the 

stereo light microscope (Olympus SZX16). Dechorionation was important to facilitate 

Blebbistatin (dissolved in DMSO) (see 5.6) diffusion into the cardiomyocytes for immobilizing 

the heart for the FLIM-FRET-measurements. After blebbistatin and eventual forskolin/SNAP 

incubation (see 5.6), the fish were mounted onto the Laser Scanning Confocal Microscope, 

which was connected to the FLIM-detector. A zebrafish cardiomyocyte is 5 μM long and 

confocal microscopy enabled a spatial resolution up to individual compartments in the cell.  

For mounting, the fish were placed in an aqueous drop (0,05ml) containing the incubation 

solution (blebbistatin with or without forskolin/SNAP) onto a coverslip that was glued 

underneath an object slide with a hole in the middle (see B in Fig 8.4). Then the object slide 

was put onto the mount of the inverse confocal microscope. The objective was a 40X water 

objective. If drifting of the fish within the water droplet occurred, 2% methylcellulose in E3 

solution was used to gently fix the tail of the fish onto the cover slip. 

 

Figure 8.4 The mounting of the zebrafish embryo 

A: 1. The inverse laser scanning confocal microscope. B is the magnified area out of A. 2.) the 40X water objective. 3. The 

coverslip. The black box marks an area that is shown magnified in C. It also indicates the hole under which the cover slip is 

glued. 4. A zebrafish embryo in an aqueous drop on the cover slip. Scale bar 3mm. 
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The confocal microscope was controlled by the Zen Black 2011 software. The excitation 

wavelength was 475nm (Laser Diode, pulsed), and for the detection a dichroic beamsplitter 

matching the spectral properties of the FRET sensors (CFP/YFP) was installed. The zoom 

was fixed to 5, the resolution was 528*528 pixels and the bidirectional scan was used. After 

adjusting the focus to a single sensor expressing cardiomyocyte, FLIM was activated. The 

FLIM software run on a separate computer. The fluorescent probe subsequently appeared 

on the screen of the separate computer with the FLIM-SPCM software. To analyze the donor 

fluorophore, the short wavelength analysis window was selected and the data sent to 

SPCImage. Settings in SPCImage: The Chi value (X2) is the result of a statistical hypothesis 

test performed by SPCImage and represents the accuracy of the fit curve. The best accuracy 

was achieved if X2 equaled 1 (Becker and Hickl, 2015). The shift is a mathematical 

consideration of the instrumental response function, which is the function the FLIM system 

would record when it detects the laser pulse directly. In order to achieve the most accurate 

X2, the shift had to be changed until the closest X2 to 1 is reached (Becker and Hickl, 2015). 

The scatter indicates the amount of scattered excitation light detected and is used to fit data 

in which scattering plays a role, such as second harmonic components in multiphoton FLIM. 

Scattering did not play a role in this study, so the scatter was kept at 0 as recommended by 

Becker and Hickl (Becker and Hickl, 2015).  

8.4 STATISTICAL ANALYSIS 

The data was processed with Microsoft Excel. Graphs and the statistical analysis were 

performed with GraphPad Prism 7.  

Gaussian distribution was checked with the Shapiro-Wilk normality test. The appropriate 

unpaired student T-test was used for evaluating the significance of the means of two 

samples and the one-way Analysis of Variation (ANOVA) Newman-Keuls multiple 

comparisons test for evaluating the significance of the means of more than two samples.  

In the figures depicted in this thesis, the significance is indicated by the p-value according to 

the New England Journal of Medicine style ranging from not significant (n.s) to significant (*: 

p <0.05, **: p <0.01, ***: p <0.001). Numerical data is expressed as mean ± SEM. 
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9. RESULTS 

In this study, I cloned the fluorescent sensors EPAC1-camps, cGi500 and GCaMP6 into a 

backbone vector allowing the introduction of these sensors into zebrafish. Using transparent 

zebrafish larvae expressing the sensors in individual cardiomyocytes, I established a protocol 

to use confocal microscopy combined with FLIM to analyze the subcellular distribution of 

cAMP and cGMP. Moreover, I established a protocol to analyze subcellular Ca2+. I concluded 

with a functional characterization of the sensors and scientific results. 

9.1 THE CLONING RESULTS 

In order to merge the gene for each fluorescent sensor with the vector backbone carrying the 

features needed (see 8.1), I restricted both the vector backbone and the PCR-amplified 

sensor genes with SbfI and AscI. Figure 9.1 shows the restriction reaction for the vector 

backbone cmlc2/Tol2. 

 

Figure 9.1 The plasmid cmlc2/Tol2 restricted with SbfI and AscI 

All band patterns match the expected bands as indicated on the right. Expected bands were determined by the bp and 

subsequent calculation of how many bp lay in between the two restriction sites. 

After the ligation reaction of vector backbone and each of the fluorescent sensor, transfection 

and Minipreps (step 4-6 in 8.1), I incubated the cloned plasmids with restriction enzymes that 

gave specific band patterns when the insert was integrated into the backbone vector: SmaΙ 

and AatΙΙ were unique cutters in the Tol2 + EPAC1-camps construct; SmaΙ cut in the EPAC1-

camps sequence and AatΙΙ in the Tol2 vector backbone region. Run on an agarose gel 

showed 

- a simply linearized plasmid, if EPAC1-camps was not integrated into the vector (as 

SmaΙ could not cut) or 

- two bands, one at 8568bp and one at 2076bp (together 10644bp, the expected 

lengths of the Tol2 vector plus integration of EPAC1-camps), if EPAC1-camps was 

successfully integrated into the Tol2 vector (see Fig. 9.2). 

1kb plus 
DNA 

ladder

5000bp

1500bp

500bp

Expected bands:
1.) 8710bp
2.) 3354bp
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Figure 9.2 The control 
reaction for the EPAC1-
camps ligation 

Four clones are shown in 

separate lanes of the 

agarose gel, in the middle 

DNA ladder. Red arrows 

mark the clones showing a 

band pattern that indicates 

successful cloning (one 

band at 8568bp and one at 

2076bp). 

 

For cGi500 cloning I used EcoRΙ (2 cutting sites). For GCaMP6 cloning I used NHEΙ and 

SalΙ. 

 

After the cloning, the plasmids were sequenced by Eurofins genomics. Then, I blasted the 

nucleotide sequence provided by Eurofins genomics with the nucleotide sequence of the 

genetic sensors in the original plasmids that I used for cloning (see 7.5). Table 9.1 shows the 

clones of each construct that I sent for sequencing, the number of sense mutations I found 

during the blast and the type of sense mutations. All EPAC1-camps clones showed the same 

three sense mutations that were already present in the original plasmid. I chose to inject 

Clone number 4, because it showed no additional mutations to these three sense mutations. 

From the cGi500 and GCaMP6F clones, I chose to proceed with the clones that did not show 

any mutations (Clone 4B for cGi500 and Clone1 for GCaMP6F). In this study, I focused on 

GCaMP6F, because GCaMP6F enables the tracking of fast responses of Ca2+ signaling, 

such as contraction (see 5.7.1). For the investigation of long lasting responses of Ca2+ 

signaling, such as changes in gene expression, GCaMP6M/S can be used in future studies 

(see 10.5). 
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Table 9.1 The sequencing results  

Each of the sensors, EPAC1-camps, cGi500 and GCaMP6 were cloned into the miniTol2cmlc2 vector backbone. The table 

shows each individual clone and number and type of sense mutations. The grey marked clones are the ones used for injections. 

construct Sense mutations: number and type 

EPAC1-camps Clone 1 
5 = Deletion of glutamic acid, Asparagine to Histidine, Lysine to Arginine (+ 

Tryptophan to Tyrosine, Valine to Glycine) 

EPAC1-camps Clone 3 
4 = Deletion of glutamic acid, Asparagine to Histidine, Lysine to Arginine, (+ 

Proline to Alanine) 

EPAC1-camps Clone 4 3 = Deletion of glutamic acid, Asparagine to Histidine, Lysine to Arginine 

cGi500 Clone 4A 2 = Alanine to Threonine, Deletion of Cysteine  frameshift 

cGi500 Clone 4B none 

cGi500 Clone 7 1 = Deletion of Threonine  frameshift! 

GCaMP6F Clone 1 none 

GCaMP6M Clone 1 1 = Lysine to Glutamic acid 

GCaMP6M Clone 2 3 = Lysine to Glutamic acid (+ Glutaminc acid to Lysine, Deletion: of Histidine) 

GCaMP6M Clone 4 2 = Lysine to Glutamic acid (+Threonine to Proline) 

GCaMP6S Clone 1 1 = Lysine to Histidine 

GCaMP6S Clone 2 3 = Lysine to Histidine (+ Arginine to Glutamine, Glutamic acid to Lysine) 

GCaMP6S Clone 3 
4 = Lysine to Histidine (+M to Glycine, Lysine to Serine, Lysine to Glutamic 

acid) 

 

Each of the marked clones is shown graphically and by the sequence of their sensor 

basepairs in the supplement. 

9.2 TRANSGENESIS IN THE ZEBRAFISH: INJECTION CONCENTRATIONS 

In order to introduce the fluorescent sensor into the zebrafish, I injected them into fertilized 

zebrafish embryos (see 8.2). I did an analysis with increasing concentrations of DNA to find 

out how much I should optimally use in order to have a minimal toxic effect and maximal 

gene expression. These experiments revealed that 200 ng should be used for the EPAC1-

camps, 250 ng for the cGi500 and 300 ng for the GCaMP6 constructs (see Figure 9.3, for 

numerical data see 17.4 (supplement)). The protocol, which I used for the injections, is 

shown in 8.2, with “200 ng” for Epac1-camps and the other concentrations, respectively, 

representing “X”. It is a standard protocol that was kindly provided to me by the lab of Dr. 

Caghan Kizil. 
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Figure 9.3 The different DNA injection concentrations 
and their effect on the zebrafish 

Graphs show the ratio of fish expressing EPAC1-camps, cGi500 or 

GCaMP6F over the dead fish with different volumes 

(100/200/250/300 ng) of the sensors used for injections at one-cell 

stage. Dead fish is the number of fish that died at or before 48 hpf, 

including the fish that displayed abnormal development. Columns 

show the mean with SEM (n=8 for all groups). Gaussian distribution 

was checked with the Shapiro-Wilk normality test. The one-way 

ANOVA Newman-Keuls multiple comparisons test was used for 

evaluating the significance of the means of the samples. The 

significance is indicated in the following: *: p <0.05, ***: p <0.001) 

The optimal ratio of fish expressing and fish dying was at 200 ng 

per microliter for EPAC1-camps, 250 ng per microliter for cGi500 

and 300 ng per microliter for GCaMP6F. For the data tables see 

17.4 (Supplement). 

 

9.3 THE SELECTION OF ZEBRAFISH FOR FLIM-FRET 

After the injections, I performed FLIM-FRET at 48 hpf. However, before performing FLIM-

FRET, I checked the fish with a stereo light microscope (Olympus SZX16). Fish that were 

trembling or did not swim actively were excluded from the measurements. Fish were also 

excluded that showed malformations (see Fig. 9.4). 
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Figure 9.4 The zebrafish at 48 hpf and malformations 

A: A healthy 48 hpf zebrafish. 1: the chorion protecting the embryo, 2: the location of the heart, B: A 48 hpf zebrafish suffering 

edema, C: a malformed zebrafish at 48 hpf. The lives of animals showing malformations or sickness as in B/C were humanely 

ended immediately to end potential suffering according to the current protocols available for euthanasia in zebrafish (Murray, et 

al., 2011; Wilson, et al., 2009). Scale bar A,B,C 1mm. 

Then I took the zebrafish with sensor expression in individual cells to perform FLIM-FRET.  

9.4 THE INCUBATION AND MOUNTING FOR FLIM-FRET 

Because heart movement prevented good resolution during the confocal imaging, I used 

blebbistatin to stop the embryo`s heart (see 5.6) for the imaging. Unfortunately, I could not 

use the protocols as described by Jou et al. (Jou, et al., 2010). Jou et al. used a 1-10 μM 

concentration of blebbistatin in their perfused zebrafish hearts. This concentration showed no 

effect in zebrafish 48 hpf embryos in vivo. Instead, the heart rate did not change. I performed 

an experiment treating the zebrafish embryos with an increasing concentration of blebbistatin 

and identified the time it took for the fish until the contraction of the heart was completely 

blocked. I confirmed the immobilization of the heart visually using a stereo light microscope 

(Olympus SZX10). Interestingly, a concentration above 200 μM did not affect the time it took 

for heart immobilization. Thus, I worked with a concentration of 200 μM. However, the time it 

took for each individual embryo to stop heart movement varies significantly. Consequently, I 

applied the following standard: I waited for complete heart immobilization before performing 

the measurements. 
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Blebbistatin is deactivated by light-exposure. This information is provided with the instruction 

manual from Sigma (see blebbistatin in chemicals in 7.3). In my experiments, the laser power 

used by the microscope apparently also deactivated blebbistatin, resulting in a decreased 

time window in which I could perform the measurements. Consequently, I took images only 

for a short period of time until the heart was moving again and then took the next fish. Figure 

9.5 shows an example of how movement of the heart interfered with the measurements. 

 

Figure 9.5 An immobilized and a moving zebrafish heart under the confocal microscope 

A: The atrium of a 48 hpf zebrafish embryo. A cardiomyocyte is labeled through a star (*). It is in the outer layer, the 

myocardium. The inner layer, the endocardium is also clearly visible. Erythrocytes fill the atrium. B shows the same fish and 

atrium as in A, but inactivation of blebbistatin led to significant movement of the heart. Individual cardiomyocytes appear blurry. 

Scale bar 5 μM. 

A standardized protocol must be applied to compare results from different measurements. 

However, the zebrafish organism is very complex and varies between individual organisms. 

To give an example, eight minutes of incubation time with blebbistatin might immobilized the 

heart in one zebrafish, but in another fish heart immobilization takes 25min. Furthermore, 

hatches from different parents vary in terms of egg- and embryo quality, and individual fish 

responded differently to microinjection. Evidently, criteria must be found that ensured the 

well-being of the embryo for data analysis. Fish must not be used for measurements if they 

showed signs of abnormality, because these fish might have had an altered physiology (and 

therefore altered levels of intracellular cAMP and cGMP). Finally, this was the protocol that 

worked best for me:  

I first incubated the fish in a 200 μM blebbistatin in E3 solution. After 8min of blebbistatin 

incubation, I checked in a 5min distance on the microscope if the heart was immobilized. If 

drugs were applied (forskolin for raising cAMP or SNAP for raising cGMP), I added the drugs 
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(for the concentration see 9.8) after the heart was immobilized and then had a two-minute 

incubation time.  

9.5 THE ANALYSIS OF THE FLIM-FRET DATA WITH SPCIMAGE 

The more photons were collected by FLIM-FRET for the measurements, the better was the 

quality of the analysis. The threshold defines a minimum number of photons that are used for 

the decay analysis. This is used to suppress dark pixels and improves the analysis. I used a 

threshold of 5, because data drawn from below 5 photons per pixel is not likely to be 

accurate (Becker and Hickl, 2015). Everything below the threshold was not taken into the 

measurement calculation. This is shown in Fig. 9.6. 

  
Figure 9.6 The threshold in 
SPCImage  

A: cardiomyocytes before 

applying the threshold B: 

threshold eliminates pixels with 

non sufficient number of photons 

for the analysis 

 

 

I defined a region of Interest (one cardiomyocyte), because data from single cardiomyocytes 

were aimed to be generated (see Fig 9.7). I set the legend for the pseudo-colored 

representation of the fluorescent lifetime to cover exactly all values (min-max) collected 

during the experiments but not to exceed this min/max range, because that would dilute 

individual differences in the lifetimes in the pseudo-colored matrix. Subsequently, a range of 

700-200 ps as fluorescent lifetimes for EPAC1-camps and 1200-220 ps for cGi500 was used 

(see Fig. 9.7).  
 

Figure 9.7 The region of 
interest in SPCImage 

A. One 

cardiomyocyte (confocal 

microscopy, analysis with 

SPCImage) B. Drawing 

around the cardiomyocyte C. 

The pseudo-colored image 

(legend underneath) within 

the region of interest. 
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I then performed another check with the confocal microscope used for FLIM-FRET: fish with 

malformations that did not show in the stereo microscope (see Fig. 9.4) were excluded. 

Malformations correlated with increased (auto) fluorescence (see Fig. 9.8), which was also 

detectable with the confocal microscope.  

 
 

Figure 9.8 Autofluorescence in a zebrafish heart 

A: Brightfield confocal image of zebrafish heart. 1: dissolving cell structure, 2: pericardium 3: dissolved cells integrating into 

solution medium, B: fluorescent confocal image of A.. Scale bar 100 μM 

Artificial fluorescence and samples contaminated with autofluorescence existed also without 

abnormal anatomy. These samples had to be eliminated from the analysis, too, not alter the 

results (Becker and Hickl, 2015). The first step was to evaluate the confocal picture for a 

non-specific (auto) fluorescent layer (see “A” in Fig. 9.9). The second and objective step was 

to use the FLIM analysis program SPCImage to detect artificial and altered probes: If the 

long lifetime component (number 2 in “B” in Fig. 9.9) exceeded 2500, the sample was not in 

the physiological range of the sensor, and subsequently not included into the data 

acquisition. 
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Figure 9.9 The detection of artificial fluorescence 

A: confocal image 1: oversaturation indicating artificial fluorescence B: Picture of A analyzed with the FLIM software SPCImage. 

2: long lifetime component furthermore indicates artificial fluorescence 

9.6 THE EFFECT OF DMSO ON THE FLUORESCENT LIFETIME TI 

In order to immobilize the heart, I incubated the zebrafish in a 200 μM blebbistatin solution. 

blebbistatin was dissolved in 100% DMSO, which can be toxic for the fish, because it 

disrupts lipid bilayers of cell membranes. During experiments that involved drug treatment, 

the DMSO percentage I had further increased, because the drugs (forskolin and SNAP, see 

5.6) were also dissolved in 100% DMSO. Therefore, I made an experiment evaluating 

whether an increased DMSO percentage influenced the fluorescent lifetime of the FLIM-

FRET-measurements. This was not the case (see Fig. 9.10). 

Figure 9.10 The effect of DMSO on 
the fluorescent lifetime Ti 

Graphs show the lifetimes of individual 

cells expressing the EPAC1-camps 

sensor. The no DMSP group (n=25 from 

8 with was treated with blebbistatin only. 

The DMSO group (n=15 from 6 fish) was 

treated with blebbistatin and 100% 

DMSO in the same amount that was used 

for 750 μM drug treatment with 

forskolin/SNAP. Columns show the mean 

with SEM. Gaussian distribution was 

checked with the Shapiro-Wilk normality 

test. The one-way ANOVA Newman-

Keuls multiple comparisons test was 

used for evaluating the significance of the 

means of the samples. The significance 

is indicated in the following: ns: not 

significant. 
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In the following, I show the results from the FRET-FLIM measurements. 

9.7 THE LOCALIZATION OF THE CAMP/CGMP SENSOR IN CARDIOMYOCYTES 

Both the EPAC1-camps sensor for tracking cAMP and the cGi500 sensor for tracking cGMP 

showed mosaic expression in cardiomyocytes of the F0 generation of the zebrafish. An 

example is shown in Fig. 9.11. It is important to consider that the images with the confocal 

microscope indicate that the sensor is expressed throughout the cytosol, but not in the 

nucleus (see Fig. 9.11 B). Furthermore, as expected in using the cmlc2 promoter, the sensor 

is expressed specifically in the myocardium and neither in the epi- nor endocardium (Huang, 

et al., 2003). Not all cardiomyocytes could appropriately be used for FLIM-FRET. As seen in 

Fig. 9.12 B/C, sometimes using high resolution confocal microscopy revealed that gene 

expression was actually weak, although in the fluorescent microscope used for sorting 

expressing fish cardiomyocytes showed strong expression. Figure 9.13 shows the 

expression of EPAC1-camps within the different planes of one cardiomyocyte. 

 
 

Figure 9.11 EPAC expressed in one cardiomyocyte 

A shows an 48 hpf embryo before dechorionation with two clear expressing cardiomyocytes. The same cardiomyocyte imaged 

with a confocal microscope reveal all the possibility to distinguish between the fluorophores CFP and YFT. The expression of 

the sensor throughout the cell represents the shape of the cell, indicating the sensor is poorly localized in the nucleus but 

retained in the cytosol. Scale bar in A: 200 μM. Scale bar in B: 5 μM 
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Figure 9.12 cGi500 expressed in cardiomyocytes 

A shows an 48 hpf embryo before dechorionation with several clear expressing cardiomyocytes. The same cardiomyocytes 

imaged with a confocal microscope (B) revealed only diffused expression. In the YFP panel, expression is very weak.  
 

                

Figure 9.13 A Z-
stack of EPAC1-
camps expressed in 
one cardiomyocyte 

1-3 show different z-

stacks of the same 

cardiomyocyte with 

brightfield (on the right) 

and just the fluorescent 

channels (on the left). 

These different planes of 

the cell show that, 

depending on the plane, 

subcellular distributions 

analyzed in this study 

come from different 

areas of the cells. 

Improvements would 

involve taking z – stacks 

from every cell that is 

imaged, or including 

localization signals to 

the cells. Scale bar 2,5 

μM. 
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9.8 CHANGES IN CAMP/CGMP CONCENTRATIONS 

A functional characterization includes the evaluation how the fluorescent genetic sensors 

react to changes in the concentrations of cAMP and cGMP. I treated the fish with increasing 

concentrations of the cAMP-increasing agent forskolin for EPAC1-camps and the cGMP- 

increasing agent SNAP (see 5.6 and 8.3).  

A preliminary screening showed an increased fluorescent lifetime, Ti, under exposure with 

forskolin and SNAP for both FLIM-FRET sensors, with best results using a 750 μM solution 

for incubation (see Fig 9.14 and Fig. 9.15). 

                                    

Figure 9.14 EPAC1-camps response 
to increasing forskolin 
concentrations 

Graphs show the preliminary lifetimes of 

individual cells expressing the EPAC1-

camps sensor under different conditions 

(control: n=11 from 5 fish, 100 μM forskolin: 

n=2 from 2 fish, 750 μM forskolin n=4 from 

2 fish, abnormality (fish showing abnormal 

behavior/anatomy or increased 

autofluorescence): n=11 from 4 fish) 

Columns show the mean with SEM. 

Gaussian distribution was checked with the 

Shapiro-Wilk normality test. The one-way 

ANOVA Newman-Keuls multiple 

comparisons test was used for evaluating 

the significance of the means of the 

samples. The significance is indicated in 

the following: ***: p <0.001) Treatment with 

750 μM forskolin showed the highest 

increase in the lifetime. Note that 

preliminary means that this data was 

collected in trial-and error experiments and 

did not strictly fit the mounting and criteria 

explained in 9.3.1/2. 
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Figure 9.15 The screening 
results of cGi500 with 
increasing SNAP 
concentrations 

Graphs show the preliminary lifetimes 

of individual cells expressing the 

cGi500 sensor under different 

conditions (control: n=10 from 10 fish, 

50 μM SNAP: n=3 from 2 fish, 200 μM 

SNAP: n=5 from 4 fish 750 μM 

forskolin n=5 from 5 fish, abnormality 

(fish showing abnormal 

behavior/anatomy or increased 

autofluorescence): n=6 from 6 fish) 

Columns show the mean with SEM. 

Gaussian distribution was checked 

with the Shapiro-Wilk normality test. 

The one-way ANOVA Newman-Keuls 

multiple comparisons test was used for 

evaluating the significance of the 

means of the samples. The 

significance is indicated in the 

following: *: p <0.05, ****: p <0.0001) 

Treatment with 750 μM SNAP showed 

the highest increase in the lifetime. 

Note that preliminary means that this 

data was collected in trial-and error 

experiments and did not strictly fit the 

mounting and criteria explained in 

9.3.1/2. 

I further validated the preliminary screening results by applying the criteria and mounting 

explained in 9.3-4. Both the EPAC1-camps and the cGi500 sensor reacted significantly to an 

increase of cAMP or cGMP through forskolin and SNAP (both with a concentration of 750 

μM) (see Fig. 9.16) 
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Figure 9.16 The influence of forskolin/SNAP on the fluorescent lifetime Ti 

Graphs show the lifetimes of individual cells expressing the EPAC1-camps/cGi500 sensor under different conditions (control 

EPAC1-camps: n=7 from 4 fish, 750 μM forskolin EPAC1-camps: n=4 from 3 fish/control cGi500 fish n=26 from 6 fish, 750 μM 

SNAP cGi500 n=29 from 4 fish) Columns show the mean with SEM. Gaussian distribution was checked with the Shapiro-Wilk 

normality test. The one-way ANOVA Newman-Keuls multiple comparisons test was used for evaluating the significance of the 

means of the samples. The significance is indicated in the following: ***: p <0.001) Treatment with 750 μM forskolin/SNAP 

showed a significant increase in the lifetime. 

As explained in 9.3-4, fish showing abnormal behaviour/anatomy or increased 

autofluorescence were excluded from the measurements, because they might show altered 

physiology and therefore altered cAMP and cGMP levels. Preliminary sceenings, where I 

seperately measured data from fish showing abnormalities confirm that these fish indeed 

have altered cAMP and cGMP levels: cAMP concentrations are higher and cGMP 

concentrations are is lower. For further validation of this phenomenon, I imaged an individual 

EPAC1-camps and an individual cGi500 expressing cardiomyocyte meeting the criteria for 

abnormality (abnormal behaviour/anatomy or increased autofluorescence) over a period of 

one hour. Over extended times the lifetime of the cAMP sensor EPAC1-camps increases 

(indicating a higher concentration of cAMP) and the lifetime of the cGMP sensor cGi500 

decreases (indicating a decreased concentration of cGMP).  
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9.9 COMPARTMENTALIZATION 

Statistical analysis denied a significant difference in the control group of the EPAC1-camps 

sensor (p value 0,0854). Fig 9.17 shows the distribution of all samples around the mean. In 

the following, a pseudo-colored map of selected cells that represent the numerical pattern in 

Fig 9.18 are shown. 

 

Figure 9.17 The distribution of the lifetimes of control EPAC1-camps expressing cells around the mean 

Graph shows the lifetimes of individual cells expressing the EPAC1-camps sensor. n=19 from 14 fish. The mean is indicated 

with a horizontal bar. Statistical analysis did not confirm a significant difference within the individual lifetimes.  

Figure 9.18 shows individual cells that are representative for the data collected. A-C show 

control cardiomyocytes. Low cAMP concentrations are shown in blue, high cAMP 

concentrations in orange/red (see legend of Fig. 9.18). The pictures indicate that cAMP is not 

uniformly distributed in the cell, instead local pools of high cAMP exist. Due to the threshold 

(see 9.5), not all pixels of the cardiomyocytes were included into the measurements.  Under 

forskolin treatment, the heterogeneous distribution of cAMP was kept, however, the 

cardiomyocytes show an overall increased cAMP concentration (see D, E in Fig 9.18). In the 

situation of abnormality (abnormal behavior/anatomy or increased autofluorescence, see 

9.3), cardiomyocytes showed significantly higher cAMP concentrations, but cAMP remained 

to be heterogeneously distributed (F, G in Fig 9.18). 
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Figure 9.18 EPAC1-camps expressing cells in different conditions 

A, B, C: control cardiomyocytes, blue: area of low cAMP, orange/red: area of high cAMP. C, D: cardiomyocytes of fish that had 

forskolin treatment, arrow: area below threshold (see 9.5) F, G: cardiomyocytes of fish showing signs of abnormality. Every cell 

shows compartmentalized cAMP. 

Statistical analysis also denied a significant difference in the control group of the cGi500 

sensor (p value 0,7754). Fig 9.19 shows the distribution of all samples around the mean. In 

the following, a pseudo-colored map of selected cells that represent the numerical pattern in 

Fig 9.19 are shown. 
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Figure 9.19 The distribution of the lifetimes of control cGi500 expressing cells around the mean 

Graphs show the lifetimes of individual cells expressing the cGi500 sensor. n=49 from 21 fish. The mean is indicated with a 

horizontal bar. Statistical analysis did not confirm a significant difference within the individual lifetimes. 

Figure 9.20 shows individual cells that are representative for the data collected. A-E show 

control cardiomyocytes. Low cGMP concentrations are shown in blue, high cGMP 

concentrations in orange/red (see legend of Fig. 9.20). The pictures show that cGMP is not 

uniformly distributed in the cell, instead local pools of high cGMP exist. Due to the threshold 

(see 9.5), not all pixels of the cardiomyocytes were included into the measurements.  Under 

SNAP treatment, the heterogeneous distribution of cGMP was kept, however, the 

cardiomyocytes show an overall increased cGMP concentration (see F, G in Fig 9.20). In the 

situation of abnormality (abnormal behavior/anatomy or increased autofluorescence, see 

9.3), cardiomyocytes showed significantly lower cGMP concentrations. Although cGMP 

remained to be heterogeneously distributed (H, I in Fig 9.20), cGMP seemed to be more 

homogeneously distributed than in the control or SNAP-treated fish.  
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Figure 9.20 cGi500 expressing cells in different conditions 

A, B, C, D, E control cardiomyocytes, blue: area of low cGMP, orange/red: area of low cGMP, arrow: area below threshold (see 

9.5). F, G: cardiomyocytes of fish that had forskolin treatment, H, I: cardiomyocytes of fish in abnormality. Every cell shows 

compartmentalized cGMP. 

9.10 CALCIUM 

I used two different approaches to track Ca2+ in vivo with fluorescent sensors. The first was to 

use a genetic sensor, GCaMP6. The second was to use the dye Fluo-4 AM (see 5.7.1). 
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9.10.1 GCAMP6F 

In order to assess subcellular Ca2+, I mounted the zebrafish as described in 8.3. For the 

imaging, I used confocal microscopy and an Argon laser to detect the fluorescence of the 

GFP fluorophore of the GCaMPF sensor. As it can be seen in Fig. 9.21, the cardiomyocytes 

express the GCaMP6F sensor. Closer images to depict subcellular resolutions have to be 

done in the future (see 10.5). 

 

Figure 9.21 GCaMP6F expressed in cardiomyocytes 

A: GFP panel. Arrow point towards a cardiomyocyte in focus that expresses the GCaMP6F sensor. B: Brightfield panel with 

GFP panel. Other cells that are not in focus of the confocal microscope but expressed the sensor are indicated in fuzzy green. 

The cells are atrial cardiomyocytes. Scale bar: 5 μM 

9.10.2 FLUO-4 AM 

The aim was to bring the dye Ca2+ sensor Fluo-4 AM (see 5.7.1) into larval cardiomyocytes. 

Fluo-4 AM has been used in cardiomyocytes for a long time in in vitro experiments and in 

perfused zebrafish hearts. All published protocols made use of incubation techniques with 

the dye at 5-10 μM. However, introducing the dye into the living zebrafish heart revealed 

some problems. The zebrafish’s heart is fully developed after 48h. An early injection of the 

dye in the form of injections, as done with the plasmid DNA for the genetic sensors, resulted 

in the degradation of the dye before the heart was developed. A late injection of the dye 

however was not successful, as individual cardiomyocytes are too small to be individually 

targeted and were apparently also too thick to allow dye diffusion into the cytosol. A low 

concentration revealed no or weak results, whereas a high concentration oversaturated the 

cells and surrounding tissue (see Figure 9.22, A). Incubation in E3 with the dye did not work. 

Using the injection technique, low volumes did not allow enough dye to approach the cells 

and a too high volume caused edema in the fish (see Figure 9.22, B). The needle I used for 

plasmid DNA injections caused too much damage, so I had to bevel it to facilitate entry. 

Furthermore, I had to figure the appropriate mounting, as the fish did not fit into the molds I 

used for one-cell stage DNA injections (see 8.3). A summary of the problems I encountered 

is shown in Table 9.2.  
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Figure 9.22 Oversaturation and edema caused by Fluo-4 AM treatment  

A: A 72hpf zebrafish with 500 μM injected Fluo-4 AM dye. 1 indicates the oversaturated pericardium. Cardiomyocytes are not 

visible. B: A zebrafish developing edema (2). Scale bar: 100 μM. 

Table 9.2 Summary of different approaches for introducing Fluo-4 AM into zebrafish cardiomyocytes in 
vivo 

Variable Experiments Comments 

Time point of 

injection 

One-cell-stage Dye does not last until heart is developed 

Aiming at heart field, 24hpf Dye does not last until heart is developed 

48 hpf 1 out of 20 good results 

72hpf Heart too much developed, dye does not get in 

anymore 

Concentration 

of Fluo-4 AM 

5 μM Nothing visible 

10 μM Hardly anything visible 

50 μM 1 out of 20 good results 

500 μM Oversaturation of dye (Figure 9.25) 

1mM Development of edema, oversaturation of dye 

Injection 

volume 

1nl Not enough dye flow 

20nl 1 out of 20 good results 

50nl Too much damage at injection site 

Needle 

Normal diameter as used in 

DNA injections 

Too much damage at injection site 

Beveled needle Works much better, smoother gliding into 

pericardium 

Type of 

injection 

One shot Not enough dye flow 

Multiple perfusions Enough dye flow 

Mounting 

Plane agarose petri dish Fish slip away during injection 

Molded agarose petri dish Difficult to approach with needle 

Agarose petri dish with lanes Works nicely 
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Figure 9.23 Ca2+ release detected with Fluo-4 AM during contraction in the sequence of a heart cycle 

A-D show one heart cycle. Arrow in A indicates the direction of contraction. *: atrium, °: ventricle. Over the course from A-D, the 

Fluo-4 AM dye represents Ca2+ release to initiate contraction, starting from the atrium to the ventricle (D). Scale bar 25 μM. 

Finally, I established a protocol showing satisfactory results (see Fig. 9.23) First, I took 48h 

old WT embryos of either the AB or WT type and anesthetized them with MESAB (see 7.3.4). 

I put 5 embryos on the corresponding mold and placed them in a way that their heart points 

towards the approaching needle. Then, I break through the pericardial sack and guide the 

needle also out of the pericardium so that there are two small incisions. Finally, I perfused 

the pericardium with 15 pushes (each 20nl) with the Fluo-4 AM solution (50 μM) (see Fig. 

9.24). It is important to perfuse, otherwise the dye is trapped in the pericardium and does not 

allow the myocardial cells to be distinguished in the microscope. 

 

Figure 9.24 Pericardial 
perfusion with Fluo-4 
AM in a 48 hpf embryo 

A: Anesthetized 48 hpf 

zebrafish on the agarose 

mold. Scale bar: 3mm. The 

direction for appropriate 

needle approach is 

indicated in the black box, 

which is enlarged in the 

right (Scale bar: 1mm). B: 

the injections procedure. 

Scale bar: 100 μM. Black 

box is enlarged in the right 

(Scale bar: 50 μM). 1: the 

needle. 2: atrium 3: 

ventricle 4: pericardium 

  



10 Discussion 

 51

10. DISCUSSION 

The methods I developed have potential to learn about subcellular cAMP, cGMP and Ca2+ in 

cardiomyocytes in vivo. The sequencing results (see 9.1) showed that the cloning was 

successful. I thereby provide three new constructs to the scientific community, which allow 

the tracking of cAMP, cGMP and Ca2+ in zebrafish cardiomyocytes via fluorescence. 

Furthermore, I injected the constructs into zebrafish fertilized embryos and demonstrated for 

the first time 

a.) EPAC1-camps and cGi500 expression in zebrafish cardiomyocytes. 

b.) successful Fluo-4 AM in vivo application in zebrafish larval heart. 

Moreover, in this study, I established a protocol to mount zebrafish for performing FLIM-

FRET with both the EPAC1-camps and cGi500 expressing zebrafish. First, all previous 

studies were performed in intact cardiomyocytes in vitro or with dissected samples (such as 

perfused hearts or mice follicles), not in vivo. Second, EPAC1-camps or cGi500 were 

analyzed by intensity-based FRET in cardiomyocytes before, but not with FLIM-FRET.  

10.1 THE ADVANTAGES OF FLIM-FRET 

The use of intensity-based FRET in previous studies revealed some problems. The 

concentration of the sensor, the donor and the acceptor fluorophores varies throughout the 

sample. Therefore, intensity-based FRET depends on donor-acceptor intensities, which 

requires calibration measurements with donor-only and acceptor-only samples. Furthermore, 

the FRET-excited acceptor emission is altered by the overlap of the donor-emitted 

fluorescent emission into the acceptor-emission band (donor bleedthrough). Acceptor 

fluorophores can also be excited directly (acceptor signal bleedthrough) (Piston, et al., 2016). 

Consequently, intensity-based FRET analyses require careful calibration, making it drawn to 

error. FLIM-FRET is better for analyzing molecular interactions with FRET sensors, because 

FLIM-FRET does not show the disadvantages of other FRET-analyzing methods and 

provides more accurate results (Becker and Hickl, 2015; Trautmann, et al., 2013). The 

advantage of FLIM-FRET over intensity-based FRET analyses is also that the lifetime of the 

excitation state of the donor fluorophore only depends on whether or not the acceptor 

fluorophore is in close proximity. This enables concentration independent measurements. 

Additionally, FLIM-FRET provides better accuracy than intensity-based FRET for a given 

efficiency of the optical system and detector and a given excitation power (Pelet, et al., 

2006). This is due to the fact a FRET sensor can have two different conformations (see also 

Figure 5.2). 
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1. In the absence of the molecule (non-interacting sensor) FRET occurs, the lifetime of 

the donor fluorophore is short 

2. In the presence of the molecule (interacting sensor) FRET cannot occur, the lifetime 

of the donor fluorophore is long 

FLIM-FRET can distinguish between 1. and 2. by using a double-exponential fitting model 

applied to the collected data to determine the fluorescent lifetime. Because intensity-based 

FRET can only evaluate absolute fluorescent intensities, information about how many 

sensors are interacting and contributing to the fluorescent signal cannot be included into the 

analysis. Furthermore, by showing the different lifetime components of 1. and 2., FLIM-FRET 

provides the possibility to exclude measurements of fluorescence from artifacts or 

autofluorescence (which would show significant longer lifetimes, see 9.5 Figure 9.9).  

10.2 CAMP/CGMP SENSOR CHARACTERIZATION 

My data shows that the cAMP and cGMP sensor represent elevations of cAMP and cGMP 

levels after treatment with cAMP-increasing (forskolin) and cGMP-increasing (SNAP) drugs, 

indicating the sensors are fully functional. In addition, I was able to achieve higher subcellular 

resolution for cAMP and cGMP measurements than previously reported (see Fig. 10.1, 

compare “B” to other panels). Therefore, the in vivo FLIM-FRET method that I developed has 

the potential to greatly improve the temporal and spatial detection of where and how much 

these second messengers accumulate in cardiomyocytes in vivo.  
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Figure 10.1 Different studies using FRET-based sensors 

A. (Shuhaibar, et al., 2015) cGMP diffusion through gap junctions in live mice follicle. B. A zebrafish cardiomyocyte expressing 

the cGMP sensor cGi500 that I analyzed with FLIM FRET. C: (Thunemann, et al., 2013a) live YFP fluorescence of the cGi-600 

sensor and CFP/YFP ratio values S after treatment with Nitrosoglutathione (GSNO, stimulates soluble guanylyl cyclases) D: 

(Leroy, et al., 2008) mice cardiomyocyte before (a) after (c) and during ISO treatment, pseudo-colored picture depicting 

CFP/YFP ratio, of an EPAC sensor  E: (Röder, et al., 2009) cAMP in skeletal muscle mice fibers shown as 1 with the CFP, 2 

YFP panel of the used PKA based FRET sensor and 3. A pseudo-colored image showing CFP/YFP ratio. 

It can be argued that data of the EPAC1-camps sensor might be altered due to the fact that 

three mutations appeared in comparison to the original EPAC1-camps gene on addgene. 

However, the same mutations were in the original sensor that Dr. Nikolaev kindly provided to 

me, and he showed in his publications that these mutations don’t have a significant effect 

(Perera, et al., 2015; Shuhaibar, et al., 2015; Sprenger, et al., 2015). Still, the further 

characterization of the sensors applied in zebrafish larvae should be done in the future. This 

would include the determination of minimal and maximal lifetimes when the sensors are fully 

saturated with the molecule or when no molecule is interacting with the sensor. This would 

also help to evaluate fluctuations in control measurements on different experiments with the 

same sensor expressed by different fish. Moreover, an important step in the future is to 

check whether the fish that I raised harbor the genetic sensors. In this case, a new transgene 

line would have been introduced into the zebrafish community. Working with transgenes 
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would also increase the number of experiments significantly, as the time-consuming process 

of DNA injection and subsequent screening of the F0 generation does not have to be done. 

Drawing data from a higher number of experiments (getting n-numbers higher than 19 for 

EPAC1-camps and 49 for cGi500) would improve the accuracy of my study, because then 

the data is more representable for the population the samples are drawn from.  

10.3 SCIENTIFIC CONTEXT 

My data complements previous findings that cAMP and cGMP are not uniformly distributed 

through the cell (Leroy, et al., 2008; Mika, et al., 2012a; Nikolaev, et al., 2010; 

Vandecasteele, et al., 2006; Zaccolo, et al., 2002). However, a very important fact in this 

context is that the zebrafish is lacking T-tubuli (Bovo, et al., 2013). Although the T-tubuli 

seem to be important for the compartmentalization of cAMP and cGMP signals (see 5.4.1), 

zebrafish still show compartmentalization of cAMP and cGMP despite the apparent lack of T-

tubuli. Even if I pushed the system by forskolin and SNAP, responses were heterogeneous in 

the cells, indicating that other factors play an important role in cAMP/cGMP 

compartmentalization. This would include the role of PDEs (Nikolaev and Lohse, 2006). If, as 

proposed by Mika et al., the different activity of cAMP-PDEs lead to a disorganization of 

cAMP compartmentalization and subsequent phenotype of cardiac disease (Mika, et al., 

2012a), investigation of cAMP/cGMP compartmentalization in cardiac disease in the 

zebrafish would be a promising model to increase our knowledge about pathologic 

mechanisms and potentially new (PDE-dependent)-therapeutic targets. 

10.3.1 REGENERATION 

Apart from investigating cAMP and cGMP distributions in cardiac disease, the zebrafish 

provides a good model to investigate how cAMP and cGMP signaling changes during 

regeneration. The big advantage of the zebrafish is that it can regenerate itself. Experiments 

can be done involving disease, for example after generating cardiac hypertrophy. The human 

myocardium is not able to regenerate. After injury, such as ischemia, cardiomyocytes are lost 

and not replaced. Instead, fibroblasts produce fibrotic matrices at the injury site (Chistiakov, 

et al., 2016; Shinde and Frangogiannis, 2014). Little is known about the involvement of beta-

adrenergic signaling and natriuretic signaling in regeneration. Regeneration experiments 

could also be performed by simply applying a puncture wound with a needle and then do 

FLIM measurements with the fish expressing the FRET sensors at different times after injury.  

 



10 Discussion 

 55

10.4 IMPROVING THE MEASUREMENTS 

Using the sensors in the zebrafish larvae in vivo model revealed some problems: confocal 

microscopy for achieving high subcellular resolution images required immobile samples, 

which contradicts the use of investigations of the heart in vivo model, because the heart blurs 

the image with its movement. I overcame that problem by using blebbistatin, which 

immobilizes the heart without altering action potential morphology or Ca2+ currents (Jou, et 

al., 2010). Therefore, it has to be taken into consideration, that for my protocols, I used a 

very high concentration of blebbistatin. This might interfere with cardiac physiology, because 

experiments that have been done stating that blebbistatin uncouple excitation from 

contraction in the zebrafish heart without altering the action potential morphology/Ca2+ 

currents did not use this high concentration. In general, I solved the problem that zebrafish 

larvae are not very responsive to drug treatment in simply increasing the concentration of the 

drug from 1-10 μM (as used by Jou et al.) to 200 μM (blebbistatin, forskolin and SNAP, 

respectively), but I don’t know whether that interfered with their cardiac physiology. 

Furthermore, the zebrafish organism is very complex and varies between individual 

organisms. To give an example, eight minutes of incubation time with blebbistatin might 

immobilized the heart in one zebrafish, but in another fish heart immobilization takes 25min. 

Additionally, hatches from different parents vary in terms of egg- and embryo quality, and 

individual fish responded differently to microinjection. Evidently, I found criteria that ensured 

the well-being of the embryo for data analysis. Fish must not be used for measurements if 

they showed signs of abnormality, because these fish might have had an altered physiology 

(and therefore altered levels of intracellular cAMP and cGMP). However, I can not be sure to 

have overcome all subjectivities in judging the fish and classifying them as “normal”. To 

overcome this problem, other ways of heart immobilization should be exploited in the future, 

for example the use of cold water. Although that would also scientifically influence 

cAMP/cGMP signaling, it can be another way to characterize and find out more about the 

functionality of the fluorescent sensors and cAMP/cGMP compartmentalization.  

 The presence of fish showing abnormality (abnormal anatomy/behavior or increased 

autofluorescence, see 9.3 and 9.5) indicates that the drug treatment and also the injection 

procedure may have harmed the fish. The data I collected about cAMP/cGMP in the 

condition of abnormality showed increased cAMP levels and decreased cGMP levels, which 

is an indication of stress, because stress increases intracellular cAMP via the β-adrenergic 

pathway (see 5.2). Interestingly, in my study, cGMP levels decreased in the situation of 

abnormality (Fig. 9.20 H/I). Because previous data indicated that cGMP-signaling is 

cardioprotective, especially in stress and cardiac disease (see 5.3), it would be interesting to 

find out whether a stimulation of the cGMP pathway during abnormality (for example by 
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SNAP) would reduce the signs of abnormality (such as edema/Malformation/increased 

autofluorescence). I hypothesize that the situation of abnormality means likely a situation of 

stress for the fish, which results in an increased signaling to adapt to stress (β-adrenergic 

pathway) and a reduced activation of contra regulatory pathways (the ANP/BNP/NO pathway 

with cGMP as second messenger). Although I excluded the fish showing abnormality, stress 

might still have interfered with my cAMP measurements, if it did not show in the form of 

abnormality. The reason why I think stress might have interfered with my cAMP 

measurements is because UV light significantly increases the whole body cortisol levels in 

larval zebrafish heart (Bai, et al., 2016). If UV light has that effect, it is likely that also the 

exposure to laser light increases body cortisol levels. Cortisol is a stress hormone, which is 

released together with other stress hormones, such as catecholamines (Lee, et al., 2015), 

which increases cAMP (see 5.2). Cortisol levels are also generally raised by stress such as 

mounting the fish for microscopy (Tran, et al., 2014). To exclude alterations by stress from 

my measurements with the EPAC1-camps sensor it would be an idea to use a beta-blocker 

in the control and drug-treated experiments, because beta-blockers inhibit the activation of 

βARs. βARs are activated in stress (see 5.2) and result in the increase of intracellular cAMP. 

Therefore, the use of beta-blockers inhibits the increase of cAMP during stress. 

An future step would also be to not limit the imaging that I did to one plane. Z-stacks and 3D 

data would greatly improve the precise assessment of the location of cAMP/cGMP/Ca2+ at 

different locations in the cell (see Fig. 9.13). Because my data provides significant evidence 

that cAMP and cGMP are not uniformly distributed in the cell, it would be an important step to 

get z-stacks and 3D images to investigate cAMP and cGMP in the whole cell, not just one 

plane.  

In the context of localized assessments cAMP/cGMP/Ca2+, another step in the future would 

be the inclusion of localization signals with the FRET sensors. This would allow to investigate 

the specific role of subcellular structures in cAMP/cGMP compartmentalization and heart 

disease. An example for a localization signal is the use of the Protein Connexin 43 (Cx43). 

Cx43 is a main part of myocardial gap junctions. Several reasons make Cx43 a localization 

of interest: Like β2AR, Cx43 is heterogeneously redistributed in the diseased heart (Magda, 

et al., 2012), but why remains unclear. Also, Boengler et al. showed that βAR-induced cAMP 

targets Cx43 (Boengler, 2009). Therefore, assessing cAMP at gap junctions may reveal 

regulatory mechanisms that are unknown until now. Furthermore, an abnormal distribution of 

Cx43 can cause electrical dysbalance, because Gap junctions allow the exchange of ions 

and contributes to electrical propagation (Jalife, et al., 1999), which can be investigated with 

the Ca2+ sensor that I provided with this study. 
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10.5 INCLUDING CALCIUM 

A next step in the future is to relate the distribution patterns of cAMP and cGMP with the 

ones of Ca2+. This relation enables to include a functional meaning to cAMP and cGMP 

signaling. Nikolaev and Lohse combined the EPAC1-camps sensor with Fura-2-AM in the 

context of insulin secretion research (Nikolaev and Lohse, 2006), showing that the 

combination of genetic sensors with dyes can be successfully performed. In order to combine 

an analysis of cAMP/cGMP with the Ca2+ dye, the Fura-2 AM dye should simply be applied 

using the Fluo-4 AM protocol I provide in this study. Fluo-4 AM was very useful during the 

establishment of a protocol that can be used in zebrafish larval heart, because the 

fluorescence of the dye can be analyzed with an Argon laser that allows fast readouts. 

However, for generating valuable data the single-wavelength nature of the dye needs the 

calibration of F/F0. Errors due to washout and photo-bleaching over the course of longer 

experiments are likely to happen. Fura-2 AM however is a dye that is ratiometric, thus it has 

two different excitation wavelengths for the Ca2+ unbound or bound state. This dual-excitation 

with a single emission, and the ratio of fluorescence emitted provides a measure of absolute 

intracellular Ca2+. Expecting that tissue parameters stay constant, Fura-2 AM fluorescence 

from different areas in the heart can be directly compared, as can data across different 

animals. Because the dye is ratiometric, no errors due to indicator leak or photo-bleaching 

can occur (Venkataraman, et al., 2012).  

Also, the GCaMP6F sensor for Ca2+ can be combined with cAMP/cGMP assessment, 

because cAMP/cGMP FRET sensors and the Ca2+ sensor GCaMP6F have different 

fluorophores and can therefore be detected simultaneously with different fluorescent panels. 

A simultaneous detection of cAMP and cGMP with the sensors I cloned would be difficult, 

though, because they have the same FRET-fluorophores. However, as Götz et al. used the 

red GES-DE5 biosensor, which has a cGMP binding domain derived from PDE5 and instead 

CFP and YFP the green (T-sapphire) and red (Dimer2) Fluorophore for FRET (Götz, et al., 

2014), red GES-DE5 might be an alternative that can be used simultaneously with 

GCaMP6F, given that the devices used can distinguish between the cpGFP and T-sapphire. 

Moreover, I not only cloned the GCaMP6F sensor to track contraction but also the 

GCaMP6M and GCaMP6S sensor to track long lasting responses of Ca2+ signaling (see 

5.7.1). The use of GCaMP6M/F can be used in the future to connect changes in gene 

expression with cAMP/cGMP signaling. If used in a disease model with cardiac hypertrophy, 

it can be investigated how significant cAMP/cGMP compartmentalization is for a long lasting 

change in sustained Ca2+ levels, which can result in changes in gene expression and 

therefore also hypertrophy (Bers, 2008). 
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10.6 TRANSFER OF RESULTS DERIVED FROM THE ZEBRAFISH TO HUMANS 

It has to be taken into consideration that the physiology of zebrafish differs from the human. 

Although zebrafish have a high genetic and organ system homology to humans, zebrafish 

have only a two-chamber heart morphology, different kinetics of various depolarizing and 

repolarizing ion channels and they lack T-tubuli (Verkerk and Remme, 2012). The calcium 

signaling in zebrafish differs in such a way that the activation of protein kinase A by forskolin 

had much different effect in zebrafish compared to mammals, something that is greatly 

significant to my studies: in zebrafish, an increased Ca2+ transient by forskolin was entirely 

mediated by augmentation of LTCC current, whereas in mammals, Ca2+ transients are 

mainly mediated through Ca2+-induced Ca2+ release by RyRs and the SR (Bovo, et al., 2013; 

Walker, et al., 2014). This is an indication that excitation-contraction coupling in zebrafish 

cardiomyocytes differs from the mammalian because of such a small contribution of SR Ca2+ 

release to the Ca2+ transient. The reason for this a low sensitivity of RyRs to cytosolic Ca2+ in 

zebrafish (Bovo, et al., 2013). Furthermore, the zebrafish shows differences in gene 

expression: the zebrafish has two genes for the β2AR (Steele, et al., 2011), whereas 

mammals have only one. Consequently, results derived from this study should be tested in 

other animal models and (human) stem cells before drawing conclusions for humans. 

10.7 OPEN QUESTIONS AND CONCLUSION 

With this study, I present the first FLIM-FRET application for assessing cAMP and cGMP in 

zebrafish cardiomyocytes in vivo. The results of this study include evidence that zebrafish 

have other mechanisms that lead to cAMP/cGMP compartmentalization than T-tubuli, which 

keep compartmentalization constant even under extreme cAMP or cGMP increasing drug 

treatment. Furthermore, my method is promising to allow the investigation of cAMP/cGMP 

compartmentalization, cAMP/cGMP crosstalk and Ca2+ in many different conditions, which 

provides a new tool to answer the following open questions in the field: 

- How do zebrafish ensure cAMP/cGMP compartmentalization without T-Tubuli? Are 

there unknown mechanisms leading to cAMP/cGMP compartmentalization that we 

don’t know about? 

- Does a change of cAMP compartmentalization lead to the pathological phenotypes of 

cardiac disease? 

- Does a changed compartmentalization of cAMP in cardiac disease influence Ca2+ 

concentrations and therefore contraction? 

- Can a changed cAMP compartmentalization in cardiac disease be reduced by 

cGMP? 
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- What role does cAMP/cGMP concentrations and subcellular accumulations play in 

regeneration? 

- How do cAMP/cGMP interact at specific subcellular locations, such as gap junctions? 

It is important to note that using the zebrafish as a model combined with FLIM techniques, in 

vivo, real-time investigations can be done. Furthermore, the zebrafish`s ability to regenerate 

heart tissue opens a whole new chapter of what can be researched on in terms of cardiac 

disease and the role of cAMP/cGMP and Ca2+ in cardiac disease, such as heart failure.  
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11. SUMMARY 

Introduction: 23 million patients worldwide suffer from heart failure. These patients depend 

on cardiac research, because cardiac research enables the development of new therapeutic 

strategies and –targets. In cardiomyocytes, the compartmentalization of cAMP and cGMP 

depends on many factors. T-tubuli and PDEs are responsible for the division of cells in 

microdomains in which localized and specific cAMP and cGMP-signaling occurs. The aim of 

this thesis was to develop a method to answer the open questions that remain about the 

physiological and pathophysiological significance of cAMP/cGMP compartmentalization. 

Methods: I used the zebrafish as a model, because the transparency of zebrafish larvae 

enabled non-invasive fluorescent imaging in cardiomyocytes in the living animal. I cloned the 

Fluorescence Resonance Energy Transfer (FRET) sensors EPAC1-camps for cAMP and 

cGi500 for cGMP and injected them into zebrafish fertilized embryos. Then I used the F0 

generation for Fluorescence Lifetime Imaging (FLIM) -FRET-measurements of cAMP and 

cGMP. Ca2+ is an important downstream mediator of cAMP and cGMP, because Ca2+ 

regulates cardiac contraction. Therefore, I also cloned the Ca2+ sensor GCaMP6 and used 

the dye Fluo-4 AM to include intracellular Ca2+ in the imaging. 

Results: The cloned sensors for cAMP, cGMP and Ca2+ were successfully injected into the 

zebrafish and showed expression in individual cardiomyocytes. I developed a protocol to 

mount the living zebrafish embryos and to measure intracellular cAMP and cGMP with FLIM-

FRET in vivo with high spatial resolution. I characterized the sensors in their functionality by 

showing that the sensors react to changes in intracellular concentrations of cAMP and 

cGMP. The results of this study include evidence that zebrafish have mechanisms that lead 

to cAMP/cGMP compartmentalization in the absence of T-tubuli, and these mechanisms 

keep compartmentalization constant even under extreme cAMP or cGMP increasing drug 

treatment. Furthermore, I imaged intracellular Ca2+ by confocal microscopy and developed a 

protocol to use Fluo-4 AM for Ca2+ imaging. 

Conclusion: The method used in this thesis should allow the investigation of subcellular 

cAMP/cGMP compartmentalization and Ca2+ and to subsequently answer open questions in 

the field, for example whether a change of cAMP compartmentalization leads to the 

pathological phenotypes of cardiac disease or if a changed compartmentalization of cAMP in 

cardiac disease influences Ca2+ concentrations and therefore contraction. Additionally, this 

method can be used to learn more about cAMP, cGMP und Ca2+ during regeneration in the 

heart, because the zebrafish cardiomyocytes can regenerate.  
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12. ZUSAMMENFASSUNG  

Einleitung: Weltweit sind mehr als 23 Millionen unter Herzinsuffizienz leidende Patienten auf 

die kardiologische Grundlagenforschung angewiesen, da diese die Voraussetzung für eine 

bessere Versorgung durch adaptierte und neue Behandlungswege schafft. In 

Kardiomyozyten hängt die Kompartimentierung von cAMP und cGMP von vielen Faktoren 

ab. T-Tubuli und PDEs werden unter anderem für die Aufteilung der Zellen in Mikrodomänen, 

in denen lokalisierte und spezifische cAMP- und cGMP-Signalgebung stattfinden kann, 

verantwortlich gemacht. Das Ziel dieser Arbeit war die Etablierung einer Methode, mithilfe 

derer offene Fragen bezüglich der physiologischen und insbesondere der 

pathophysiologischen Relevanz der cAMP- und cGMP Kompartimentierung beantwortet 

werden können. 

Methode: Als Modell diente der Zebrafisch, da die Transparenz von Zebrafisch Embryonen 

eine nicht-invasive Bildgebung von Fluoreszenz in Kardiomyozyten im lebenden Tier 

ermöglicht. Dafür klonierte ich die Förster Resonance Energy Transfer (FRET) -Sensoren 

EPAC1-camps als cAMP-Sensor und cGi500 als cGMP-Sensor und injizierte diese in 

befruchtete Zebrafisch Embryonen. Anschließend benutzte ich die F0-Generation für 

Fluorescence Lifetime Imaging (FLIM) -FRET-Messungen von cAMP und cGMP. Da Ca2+ als 

wichtiger downstream Mediator von cAMP und cGMP die kardiale Kontraktion reguliert, 

klonierte ich außerdem den Ca2+-Sensor GCaMP6 und benutzte den Farbstoff Fluo-4 AM, 

um intrazelluläres Ca2+ darzustellen. 

Ergebnisse: Die klonierten Sensoren für cAMP, cGMP und Ca2+ konnten erfolgreich in den 

Zebrafisch injiziert werden und zeigten alle Expression in einzelnen Kardiomyozyten. Ich 

entwickelte ein Protokoll, dass die Fixierung von lebenden Zebrafisch Embryonen und 

nachfolgender Bildgebung von cAMP und cGMP mit hoher zellulärer Auflösung mit FLIM-

FRET in vivo erlaubte. Ich konnte eine funktionelle Charakterisierung der Sensoren 

durchführen, indem ich zeigte, dass sie auf Konzentrationsänderungen von intrazellulärem 

cAMP und cGMP reagieren sowie zeigen, dass Zebrafische trotz fehlender T-Tubuli eine 

signifikante cAMP- und cGMP Kompartimentierung aufweisen, auch unter extremen 

Bedingungen nach Gabe von cAMP/cGMP stimulierenden Substanzen in hoher Dosierung. 

Ich konnte zudem subzelluläres Ca2+ durch konfokale Mikroskopie bildgebend darstellen und 

entwickelte ein Protokoll, um mit Fluo-4 AM eine schnelle Möglichkeit zu haben, Ca2+ mit in 

die Messungen einzubeziehen.  

Ausblick: Die in dieser Arbeit benutzte Methode bietet eine gute Möglichkeit, subzelluläre 

cAMP- und cGMP-Kompartimentierung und Ca2+ zu untersuchen und damit zum Beispiel die 

Fragen zu beantworten, ob eine veränderte cAMP/cGMP Kompartimentierung zu 
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Herzkrankheiten wie Hypertrophie führt oder ob eine veränderte cAMP Kompartimentierung 

den zellulären Ca2+ Haushalt und damit die kardiale Kontraktion beeinflusst. Darüber hinaus 

kann das von mir etablierte Protokoll dazu genutzt werden, mehr über cAMP, cGMP und 

Ca2+ während der Regeneration im Herzen zu lernen, da der Zebrafisch über ausgeprägte 

Regenerationsfähigkeiten verfügt.  
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17. SUPPLEMENT 

17.1 EPAC1-CAMPS CLONING 

 

Figure 17.1 The EPAC1-camps gene in the Tol2 vector 

The double stranded DNA plasmid with the fluorescent sensor for cAMP, EPAC1-camps, is shown. The EPAC1-camps gene 

consists of a cAMP binding site, which is labeled “EPAC” and indicated in red. The FRET-fluorophores (yellow for CFP, blue for 

YFP) are located left and right from EPAC. EPAC1-camps is embedded by the restriction sites used for cloning, SbfI and AscI. 

The cmlc2 promoter in front of EPAC1-camps ensures cardiomyocyte-specific expression. The two grey MiniTol2 sites define 

the area in between which is incorporated to the zebrafish when injected into the one-cell stage fertilized embryo. EPAC1-

camps is equipped with a PolyA signal, which is important for nuclear export and translation of the protein. The Ampicillin 

resistance, labeled in dark red, is important for the cloning process. The Ampicillin resistance ensures, that only bacteria 

carrying the plasmid grow during ampicillin treatment. 
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The DNA sequence of the EPAC1-camps gene in the Tol2 vector 
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Figure 17.2 The DNA sequence of the EPAC1-camps gene in the Tol2 vector 

The DNA sequence of EPAC1-camps in the Tol2 vector is shown. The EPAC1-camps gene consists of an cAMP binding site, 

which is labeled “EPAC” and indicated in red. The FRET-fluorophores (yellow for CFP, blue for YFP) are located 5’ and 3’ from 

EPAC. EPAC1-camps is embedded by the restriction sites used for cloning, SbfI and AscI. The 3 Mutations that the sequencing 

revealed are marked and explained in purple. 
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17.2 CGI500 CLONING 

 

Figure 17.3 The cGi500 gene in the Tol2 vector 

The double stranded DNA plasmid with the fluorescent sensor for cGMP, cGi500, is shown. The cGi500 gene is indicated in 

orange. It is embedded between the restriction sites used for cloning, SbfI and AscI. The cmlc2 promoter in front of cGi500 

ensures cardiomyocyte-specific expression. The two grey MiniTol2 sites define the area in between which is incorporated to the 

zebrafish when injected into the one-cell stage fertilized embryo. cGi500 is provided with a PolyA signal, which is important for 

nuclear export and translation of the protein. The Ampicillin resistance, labelled in dark red, is important for the cloning process. 
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The DNA sequence of the cGi500 gene in the Tol2 vector 
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Figure 17.4 The DNA sequence of the cGi500 gene in the Tol2 vector 

The DNA sequence of cGi500 in the Tol2 vector is shown. The cGi500 gene is embedded between the restriction sites used for 

cloning, SbfI and AscI. The sequencing did not reveal any mutations. 
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17.3 GCAMP6F CLONING 

 

 

Figure 17.5 The GCaMP6F gene in the Tol2 vector 

The double stranded DNA plasmid with the fluorescent sensor for Ca2+, GCaMP6F, is shown. The GCaMP6F gene is indicated 

in yellow. It is embedded by the restriction sites used for cloning, SbfI and AscI. The cmlc2 promoter in front of GCaMP6F 

ensures cardiomyocyte-specific expression. The two grey MiniTol2 sites define the area in between which is incorporated to the 

zebrafish when injected into the one-cell stage fertilized embryo. GCaMP6F is equipped with a PolyA signal, which is important 

for nuclear export and translation of the protein. The Ampicillin resistance, labelled in dark red, is important for the cloning 

process. 
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The DNA sequence of the GCaMP6F gene in the Tol2 vector 

 

 

Figure 17.6 The DNA sequence of the GCaMP6F gene in the Tol2 vector 

The DNA sequence of GCaMP6F in the Tol2 vector is shown. The GCaMP6F gene is embedded between the restriction sites 

used for cloning, SbfI and AscI. The sequencing did not reveal any mutations. 
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17.4 THE DIFFERENT DNA INJECTION CONCENTRATIONS AND THEIR EFFECT ON THE FISH 
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