
Learning Sequential Skills for
Robot Manipulation Tasks
Lernen von sequentiellen Fähigkeiten für Roboter-Manipulationsaufgaben
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von M.Sc. Simon Manschitz aus Erbach (Odenwald)
Tag der Einreichung: 18.10.2017, Tag der Prüfung: 19.12.2017
Erscheinungsjahr: 2018
Darmstadt — D 17

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Aude Billard
3. Gutachten: Dr.-Ing. Jens Kober, Assistant Professor

Department of Computer Science
Intelligent Autonomous Systems

Learning Sequential Skills for Robot Manipulation Tasks
Lernen von sequentiellen Fähigkeiten für Roboter-Manipulationsaufgaben

Genehmigte Dissertation von M.Sc. Simon Manschitz aus Erbach (Odenwald)

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Aude Billard
3. Gutachten: Dr.-Ing. Jens Kober, Assistant Professor

Tag der Einreichung: 18.10.2017
Tag der Prüfung: 19.12.2017

Darmstadt — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-71850
URL: http://tuprints.ulb.tu-darmstadt.de/7185

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/

Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 18. Oktober 2017

(Simon Manschitz)

Abstract

Most people’s imagination about robots has been shaped by Hollywood movies or novels, resulting in the
dream of having robots as assistants or household helpers in our homes. However, there is still a large
gap between this dream and the actual capabilities of robots. One underlying reason is that every home
is unique and largely unstructured, making it impossible to pre-program a robot for all the challenges it
might face in such an environment. For instance, floor plans and furniture differ from home to home.
Humans and pets walk around, potentially getting in the robot’s way and making the environment non-
static. Hence, a pre-programmed robot deployed in such an environment will undoubtedly face problems
that it cannot solve with its existing knowledge. In order to cope with this issue, researchers started to
equip robots with learning capabilities. Ideally, such capabilities allow a robot to adapt skills to new
or changing situations or even to learn completely new tasks. Also humans learn new skills over time
and are able to adapt them if needed. Therefore, such learning capabilities seem natural to us. If we
are not able to master a specific task, we usually would ask another person to demonstrate it or to
give instructions on how to perform it. In robotics research, the field of “Learning from Demonstration”
tries to mimic this behavior by learning new skills from demonstrations of a task. By applying machine
learning techniques, the data perceived from a single or multiple demonstrations are exploited to learn
a mapping from perception to the action of a robot.

In this thesis, we concentrate on important Learning from Demonstration aspects that have not gotten
so much attention in the research community so far. In particular, we focus on learning methods for
robot manipulation tasks. These tasks have two important characteristics. First, they can be naturally
decomposed into a set of subtasks and, therefore, can be mastered by performing the individual subtasks
in the correct sequential order. Second, they involve physical contact between the robot and objects in
its environment. One aim of this thesis is developing methods which allow for learning skills for robot
manipulation tasks that generalize well to unknown situations. For instance, a learned skill should also
be applicable if positions and orientations of objects differ from those seen in a demonstration.

In the first part of the thesis, we focus on the “sequential” aspect of manipulation tasks. Many ap-
proaches assume that subtasks are executed in a purely sequential manner or that the human always
demonstrates the same sequence of subtasks. We propose an approach that does not have this as-
sumption. Based on the demonstrations, a graph is generated which connects the subtasks with each
other. Each subtask is associated with a movement primitive, a basic elementary movement necessary
to perform the subtask. Depending on the environmental conditions, different sequences of movement
primitives are executed, allowing the robot to perform tasks which for instance require an arbitrary
number of repetitions (e.g., unscrewing a light bulb).

As we concentrate on the sequential aspects of a task in the first part of the thesis, we assume the
demonstrations are labeled with the correct movement primitives over time. Additionally, the movement
primitives are predefined. In the second part of the thesis, these two assumptions are relaxed. We
first present an approach which decomposes the demonstrations into a set of meaningful movement
primitives by inferring the underlying sequential structure of the task. The decomposition is based on
a probability distribution we call Directional Normal Distribution. By utilizing the distribution, our
method infers if a movement should be performed relative to an object in the scene and if a force
should be applied in certain directions or not. Forces are especially important when interacting with
the environment, for example if the robot has to manipulate objects. By defining movements relative to
objects in the scene, the robot is likely to generalize better to new situations, for instance if the object
positions differ from the demonstrations. Our task-decomposition method allows for inferring the most
likely movement primitives over time and replaces the process of manually labeling the demonstrations.
By combining the method with the sequencing concept presented in the first part of the thesis, complex
skills can be learned from scratch without further human supervision. Such a learning scheme is an

i

essential requirement for domestic robots, as not every human teacher might be able or willing to do the
tedious labeling of the data.

In both the decomposition and the sequencing part of the thesis, we assume that the teacher performs
point-to-point movements and stops between two successive movements. While these assumptions lead
to an approach which can learn skills for fairly complex tasks, it also restricts the class of tasks for which
the approach can be used. In the third part of the thesis, we therefore introduce the Mixture of Attractors
movement primitive representation. Here, a movement is modulated by continuously changing the
activations of a set of simple attractors over time. We present a learning algorithm for the representation
which learns both the attractors and their activations. An important property of the representation is that
the attractors can be defined in different coordinate frames. The continuous activations and the attractors
defined in different coordinate frames allow the system to learn movements of arbitrary shape and to
generalize them to different object positions. In addition, the transitions between successive movements
are smooth. This property reflects an important behavior of humans who often tend to co-articulate
between successive movements. In contrast to many existing approaches, movements are learned by
solving a convex optimization problem that does not rely on a good initial estimate of parameters.

In summary, the contribution of this thesis to the state-of-the-art in Learning from Demonstration is
two-fold. The first contribution is a framework which is able to learn sequential skills for robot ma-
nipulation tasks from a few demonstrations. In contrast to other approaches, our method incorporates
object-relative movements and force information directly into the skill learning framework. The sec-
ond contribution is the Mixture of Attractors movement primitive representation. The representation
supports co-articulated movements represented in different coordinate frames and outperforms existing
movement primitive representations in terms of accuracy and generalization capabilities. Both contri-
butions are evaluated on a wide range of tasks in simulation and on a real single arm robot with seven
degrees of freedom. Altogether, this thesis aims at bringing us closer to the dream of having autonomous
robots in our homes.

ii

Zusammenfassung

Die menschliche Vorstellung von Robotern wurde überwiegend von Hollywood-Filmen oder Büchern
geprägt. Daraus entstand der Wunsch, Roboter als Assistenten oder Haushaltshelfer in unseren Wohnun-
gen einzusetzen. Auch nach Jahren der Forschung besteht jedoch weiterhin eine Diskrepanz zwischen
diesem Wunsch und den tatsächlichen Fähigkeiten von Robotern. Ein Grund für diese Diskrepanz ist,
dass Wohnungen einzigartig und überwiegend unstrukturiert sind. So unterscheiden sich beispielswei-
se Grundrisse und Raumaufteilungen von Haus zu Haus. Des Weiteren bewegen sich Menschen und
Haustiere frei innerhalb der Wohnung und erzeugen durch ihr Verhalten eine komplexe, dynamische
Umgebung. Deshalb ist es quasi unmöglich Roboter so zu programmieren, dass sie allen Anforderungen
in der realen Welt gewachsen sind. Es ist sehr wahrscheinlich, dass ein Roboter mit fest programmiertem
Verhalten irgendwann auf ein Problem stoßen wird, welches er mit seinem vorhandenen Wissen nicht
lösen kann. Aus diesem Grund versuchen Wissenschaftler seit geraumer Zeit, Roboter mit Lernfähig-
keiten auszustatten. Im Idealfall ermöglichen solche Fähigkeiten das Anpassen eines Verhaltens an sich
ändernde Anforderungen oder sogar das Erlernen von komplett neuen Aufgaben. Menschen besitzen
ebenfalls ausgeprägte Lernfähigkeiten, weshalb es uns sehr natürlich erscheint, diese auch auf Roboter
zu übertragen. Wenn ein Mensch eine ihm unbekannte Aufgabe nicht lösen kann, so fragt er oftmals
eine andere, erfahrenere Person, ob sie ihm die Lösung zeigen kann. In der Robotikforschung beschäftigt
sich das Feld „Learning from Demonstration“ damit, wie ein Roboter anhand von Demonstrationen eine
Aufgabe erlernen kann.

In dieser Arbeit konzentrieren wir uns auf wichtige „Learning from Demonstration“-Aspekte, die bis-
lang nicht so sehr im Fokus der Forschung standen. Insbesondere konzentrieren wir uns auf Lernmetho-
den für sequentielle Roboter-Manipulationsaufgaben. Solche Aufgaben haben zwei Charakteristika, die
in unserem Kontext relevant sind. Zunächst lassen sie sich üblicherweise in Teilaufgaben zerlegen, die in
der richtigen Reihenfolge abgearbeitet werden müssen, um die Gesamtaufgabe erfolgreich zu erledigen.
Des Weiteren erfordern Manipulationsaufgaben eine direkte Interaktion des Roboters mit den Objekten
in seiner Umgebung. Ein Ziel der Arbeit ist es Methoden zu entwickeln, die es erlauben, generalisierba-
re Fähigkeiten für Roboter-Manipulationsaufgaben zu lernen, die beispielsweise auch anwendbar sind,
wenn Position und/oder Orientierung von Objekten von den Demonstrationen abweichen.

Im ersten Teil der Arbeit konzentrieren wir uns auf den „sequentiellen“ Charakter vieler Aufgaben.
Eine Grundannahme vieler Ansätze in diesem Bereich ist, dass Teilaufgaben immer in der gleichen
Reihenfolge demonstriert werden, auch wenn diese für das Durchführen der Aufgabe nicht entschei-
dend ist. Unser Ansatz geht nicht von dieser Annahme aus. Anhand der Demonstrationen wird eine
Graph-Repräsentation der Aufgabe erzeugt, die die Teilaufgaben miteinander in Verbindung bringt. Jede
Teilaufgabe wird durch en Bewegungsprimitiv repräsentiert, eine simple, elementare Bewegung, von der
wir annehmen, dass das Ausführen der Bewegung die Teilaufgabe löst. In Abhängigkeit des aktuellen
Zustandes des Roboters und dessen Umgebung werden unterschiedliche Sequenzen von Bewegungspri-
mitiven ausgeführt, sodass Aufgaben gelöst werden können, die beispielsweise eine beliebige Anzahl von
Wiederholungen benötigen, wie das Herausschrauben einer Glühbirne.

Da wir uns im ersten Teil der Arbeit auf das Sequenzieren von Bewegungen konzentrieren, nehmen
wir an, dass die Demonstrationen durch den Benutzer vor dem Lernprozess vorverarbeitet werden müs-
sen. So muss der Benutzer beispielsweise die Demonstrationen in logische Segmente unterteilen und
jedem Segment ein dazugehöriges Bewegungsprimitiv zuweisen. Außerdem gehen wir davon aus, dass
die einzelnen Bewegungsprimitive unserem System bereits bekannt sind. Im zweiten Teil der Arbeit
präsentieren wir einen Ansatz, der diese Vorverarbeitungsschritte ersetzt. Unsere Methode erlaubt das
automatische Extrahieren von einzelnen Bewegungsprimitiven aus den Demonstrationen und kann je-
dem Teil einer Demonstration das wahrscheinlichste Bewegungsprimitiv zuweisen. Basierend auf einer
von uns „Directional Normal Distribution“ genannten Wahrscheinlichkeitsverteilung kann für jedes Be-

iii

wegungsprimitiv entschieden werden, ob die Bewegung relativ zu einem Objekt ausgeführt werden soll
und ob der Roboter eine Kraft aufbringen muss. Durch das Erlernen von objekt-relativen Bewegungen
können die erlernten Fähigkeiten auf beliebige Positionen und Orientierungen von Objekten angewendet
werden, auch wenn diese sich von den Demonstrationen unterschieden. Durch die Kombination dieser
Methode mit dem Sequenzierungskonzept aus dem ersten Teil der Arbeit können komplexe Fähigkeiten
anhand von Demonstrationen erlernt werden, ohne dass der Benutzer in den Lernprozess eingreifen
muss.

In den ersten beiden Teilen der Arbeit nehmen wir an, dass eine Demonstration einer Aufgabe aus
einer Sequenz von Punkt-zu-Punkt Bewegungen besteht und das zwischen zwei demonstrierten Bewe-
gungen eine kurze Pause gemacht werden muss. Auch wenn mit den vorgestellten Methoden Fähigkeiten
für komplexe Aufgaben erlernt werden können, so schränken diese Annahmen doch die Menge von Pro-
blemen ein, auf denen sie angewendet werden können. Im dritten Teil der Arbeit präsentieren wir daher
eine neue Bewegungsprimitivbeschreibung, die wir „Mixture of Attractors“ nennen. Hierbei wird eine
Bewegung erzeugt, indem kontinuierlich die Aktivierungen von mehreren simplen Attraktoren gemischt
werden. Wir präsentieren einen Lernalgorithmus für die Primitivbeschreibung, die sowohl die Position
der Attraktoren als auch deren Aktivierungen anhand von Demonstrationen lernt. Eine wichtige Eigen-
schaft der Beschreibung ist, dass die Attraktoren in verschiedenen Koordinatensystem definiert werden
können. Durch das kontinuierliche Verändern der Aktivierungen solcher Attraktoren können komplexe
Bewegungen in Relation zu Objekten in der Umgebung gelernt werden. Des Weiteren wird automa-
tisch auch ein fließender Übergang zwischen zwei aufeinanderfolgenden Bewegungen gelernt. Solch ein
fließender Übergang wird Koartikulation genannt und kann auch beim Menschen beobachtet werden.
Im Gegensatz zu anderen Methoden ist der Lernvorgang als konvexes Optimierungsproblem formuliert,
weshalb die Qualität der Lösung nicht von einem Schätzwert der Parameter abhängt.

Zusammenfassend sind die Hauptbeiträge dieser Arbeit zum Stand der Forschung im Gebiet „Learning
from Demonstration“ folgende. Der erste Beitrag ist ein Framework welches es ermöglicht, komplexe
sequentielle Fähigkeiten für Manipulationsaufgaben anhand weniger Demonstrationen zu erlernen. Im
Gegensatz zu vielen bereits existierenden Methoden konzentrieren wir uns dabei auf die Unterscheidung
von Positions- und Kraftkontrolle sowie die Entscheidung ob eine Bewegung relativ zu einem Objekt aus-
geführt werden soll. Der zweite Beitrag ist die „Mixture of Attractors“ Bewegungsprimitivbeschreibung,
die das Erlernen von komplexen, koartikulierten, objekt-relativen Bewegungen ermöglicht. Die in der
Arbeit präsentierten Methoden werden anhand von Simulationsergebnissen und realen Roboterexperi-
menten mit einem Roboterarm mit sieben Freiheitsgraden evaluiert und validiert. Das Gesamtziel dieser
Arbeit ist es, einen Betrag zu leisten, der uns einen Schritt näher an das Ziel bringt, lernfähige und
vielseitig einsetzbare Roboter in unseren Alltag zu integrieren.

iv

Acknowledgment

I am very grateful to all the people who contributed in one or the other way to this thesis. First of
all, I would like to thank Michael Gienger for his supervision and guidance during my time as a PhD
student and the Honda Research Institute for making this thesis possible in the first place. I really liked
the working atmosphere and research environment there. Jens Kober supervised me as a postdoctoral
researcher at Honda and later stayed in contact with me and provided feedback after leaving the institute
for becoming an Assistant Professor in Delft. Thank you very much! Next, I thank Jan Peters for his advice
and support throughout the four years I had the pleasure of working with him, as well as Aude Billard for
agreeing to be my external committee member and investing her valuable time into reviewing my thesis.
Your feedback is greatly appreciated. Similarly, I would like to thank the other members of my thesis
committee, Iryna Gurevych, Oskar von Stryk and Kristian Kersting, without whose time investment the
defense of the thesis would not have been possible. I would also like to thank my office mates Manuel,
Fabio, Andre and Aki for constructive feedback and lots of discussions and suggestions, as well as Martin
Heckmann for being my friendly advisor at Honda and providing me with valuable feedback. I further
thank all members of the Intelligent Autonomous Systems group. I really liked the time we spent together
at conferences and on other occasions. Lastly, I would not have been able to write this thesis without the
support of my family, my friends and my beloved wife Maren. Thank you very much!

v

Contents

List of Symbols x

1. Introduction 1
1.1. Imitation Learning Challenges . 2

1.1.1. Whom to Imitate? . 2
1.1.2. What to Imitate? . 2
1.1.3. How to Imitate? . 3
1.1.4. When to Imitate? . 3
1.1.5. Open Challenges . 4

1.2. Main Contributions . 5
1.2.1. Learning to Sequence Movement Primitives with Sequence Graphs 5
1.2.2. Probabilistic Task-Decomposition based on the Directional Normal Distribution . . 5
1.2.3. Object-Relative Movement Generation with Mixture of Attractors 6

1.3. Outline . 7

2. Learning to Sequence Movement Primitives 8
2.1. Introduction . 8

2.1.1. Related Work . 9
2.1.2. Overview of our Proposed Approach . 12
2.1.3. Utilized Controller Framework . 14

2.2. Learning Movement Primitive Parameters . 14
2.2.1. Approximating Segments with Linear Functions 15
2.2.2. Goal Learning . 17

2.3. Sequence Graph Generation . 18
2.3.1. Local Sequence Graph . 20
2.3.2. Global Sequence Graph . 20
2.3.3. Graph Construction . 20

2.4. Learning the Transition Behavior . 22
2.5. Evaluations and Experiments . 23

2.5.1. Moving an Object . 24
2.5.2. Unscrewing a Light Bulb . 27
2.5.3. Grasping Objects with Error Recovery . 29

2.6. Conclusion . 31
2.6.1. Summary of this Chapter . 31
2.6.2. Epilogue . 31

3. Probabilistic Decomposition and Skill Learning for Sequential Robot Manipulation Tasks 33
3.1. Introduction . 33

3.1.1. Related Work . 34
3.1.2. Learning Sequential Force Interaction Tasks . 39

3.2. Proposed Task-Decomposition Approach . 41
3.2.1. Segmentation . 41
3.2.2. Clustering the Segments . 42
3.2.3. Extraction of MPs . 42

vi

3.3. Measuring Convergence with the Directional Normal Distribution 42
3.3.1. Parameter Learning . 44
3.3.2. Extension for Orientations . 46

3.4. Movement Primitive Sequence Learning . 47
3.5. Evaluation of the Approach . 49

3.5.1. Box Flipping . 49
3.5.2. Box Stacking . 52
3.5.3. Light Bulb Unscrewing . 55
3.5.4. Discussion of the Experiments . 57

3.6. Conclusion . 58
3.6.1. Summary of this Chapter . 58
3.6.2. Epilogue . 59

4. Mixture of Attractors: A Novel Movement Primitive Representation for Learning Com-
plex Object-Directed Movements 60
4.1. Introduction . 60

4.1.1. Related Work . 61
4.1.2. Properties of the Mixture of Attractors Representation 65

4.2. Mixture of Attractors . 66
4.2.1. Trajectory Tracking . 66
4.2.2. Parametrizing the Activations . 68
4.2.3. Support for Multiple Coordinate Frames . 69

4.3. Using Mixture of Attractors for Robot Control . 69
4.3.1. Choosing the Number of Attractors and their Goals 70
4.3.2. Learning the Importance of the Coordinate Frames 71
4.3.3. Choosing the Hyperparameters . 71
4.3.4. Final Algorithm . 72

4.4. Evaluation of the Approach . 72
4.4.1. Handwriting Evaluation . 72
4.4.2. Robot Handwriting Evaluation . 74

4.5. Conclusion . 77
4.5.1. Summary of this Chapter . 77
4.5.2. Epilogue . 78

5. Conclusion 80
5.1. Summary of the Contributions . 80
5.2. Open Problems for Future Research . 81

5.2.1. Extracting Relevant Task-Spaces from Demonstrations 81
5.2.2. Transferring Knowledge to new Tasks . 82
5.2.3. Improving Performance over Time . 82
5.2.4. Recovering from Bad Demonstrations . 82
5.2.5. Integration of Transition Learning into Task-Decomposition 82
5.2.6. Planning Ahead . 83
5.2.7. Bi-Manual Manipulation . 83
5.2.8. Cause and Effect of Robot Interaction . 83

5.3. Publications . 84
5.3.1. Journal Papers . 84
5.3.2. Conference Papers . 84

A. Curriculum Vitae 85

vii

B. Derivation of Constants 86
B.1. Constants for EM-algorithm . 86
B.2. Constants for Orientations . 86

B.2.1. Axis Angle Derivation . 87

List of Figures 89

List of Algorithms 90

List of Tables 91

Bibliography 92

viii

List of Symbols

The following tables give an overview of the notation and list most of the variables used throughout the
thesis. Symbols that only pertain to a specific section are defined where they are used. Due to the vast
amount of variables, sometimes a symbol may be overloaded. In that case, the correct meaning should
be apparent from the context.

Notation Description
x Scalar
ẋ Time derivative
x̂ Estimate of x
X = {x1, x2, . . . , xn} Set of elements x1, x2, . . . , xn
x = [x1, x2, . . . , xn]T Vector of elements xi
xi Element i of vector x
xi:j Series of j − i+ 1 vectors xi through xj

X =

X1,1 . . . X1,M
...

. . .
...

XM,1 . . . XM,M

 Matrix X with elements Xi,j

X i Column i of X
X i:j Series of j − i+ 1 matrices X i through Xj

XT Transpose of matrix
X−1 Matrix inverse
R Real numbers
| · | Absolute value, `1-norm, Cardinality of a set
‖·‖p p-norm

Variable Description
τ A trajectory
J A cost function of any kind
t Time
R Rotation matrix
T Transition matrix
f Features
g Goal of an attractor
q Joint angles
x Task-space data
v , ẋ Velocity

ix

Acronym Description
DMP Dynamic Movement Primitive
GMM Gaussian Mixture Model
LfD Learning from Demonstration
MP Movement Primitive
MoA Mixture of Attractors
ProMP Probabilistic Movement Primitive

x

1 Introduction

According to the World Robotics Report 2016, an estimated number of 31 million robots will be deployed
in households worldwide by the year 2019 [International Federation of Robotics, 2016]. Despite an
extensive predicted growth of the sales (see Figure 1.1), domestic robots are still restricted to a relatively
small number of mass-market products: lawn mowers, floor cleaning and edutainment robots. In fact,
96 percent of the domestic robot sales are accounted by vacuum and floor cleaning robots. These robots
are built for a single specific purpose and have limited interaction capabilities. Therefore, it is possible to
pre-program most of their behaviors. For more sophisticated tasks, pre-programming is infeasible. The
programmer cannot take into account all possible environmental conditions and tasks the robot will face
in domestic homes. Loading a dish washer, for instance, requires handling objects of different size, shape
or texture. Some objects might be fragile, while others can be handled with less care. In addition every
dishwasher is different, even if they are manufactured by the same company. The variety of challenges a
robot might face even increases if it is not built for a single purpose.

It is likely that at some point, a robot deployed in the real world will face a task it cannot solve with
its existing knowledge. Current robots do not have the ability of learning new tasks autonomously as
their behavior is usually fixed when leaving the factory. As such, we are still far away from universal
housekeeper robots or robot butlers depicted in movies and novels. In this thesis, we refer to a skill as
the ability of performing a task. For equipping robots with the ability of learning skills for previously
unknown tasks, two main research directions exist: Reinforcement Learning and Imitation Learning. The
field of Reinforcement Learning deals with learning new tasks autonomously via trial and error [Deisen-
roth et al., 2013, Kober et al., 2013]. A reward function evaluates the success of a trial and the robot’s
behavior is adapted to maximize the expected reward. In order to not harm the robot and increase
learning speed, reinforcement Learning algorithms usually need a good initial behavior on which they
can improve upon. Imitation Learning can be a means to find such an initialization [Argall et al., 2009,
Chernova and Thomaz, 2014, Hussein et al., 2017]. The idea of Imitation Learning is to imitate the
behavior of others. Such a learning scheme appears natural to us, as it is one way humans and many
other mammals transfer knowledge from one generation to the next. For instance, Meltzoff and Moore
[1977] showed that babies at the age of 12 days are already able to imitate manual gestures. In robotics,
Learning from Demonstration emerged as a subfield of Imitation Learning. In Learning from Demon-
stration, a teacher demonstrates a task to a robot. While Imitation Learning refers to all possible kinds
of learning by imitating others, in Learning from Demonstration the teacher always is aware that he or

Household robots Entertainment and leisure robots
0

10,000

20,000

30,000

3,400
1,300

3,700
1,700

30,800

11,000’0
00

of
un

it
s

2014 2015 2016 − 19

Figure 1.1.: Unit sales of service robots for personal/domestic use according to International Federation of Robotics
[2016]. Sales 2014 and 2015, and forecast for 2016-2019.

1

she is demonstrating a task. Therefore, the teacher might emphasize certain aspects of a task or might
perform it at low speed in order to simplify the learning problem. The term Learning from Demonstra-
tion is not used consistently throughout the literature. Common synonyms are (Robot) Programming by
Demonstration, (Robot) Learning by Demonstration, Guiding and sometimes also Imitation Learning. In
this thesis, Learning from Demonstration is the preferred term.

In contrast to Reinforcement Learning methods, Learning from Demonstration allows for rapid learn-
ing of a skill. If the essence of a task is captured, only one demonstration of a task can be sufficient
for learning. Still, most existing learning algorithms either need many demonstrations for learning or
result in skills which fail to generalize to situations different from the demonstrations. This thesis aims
at developing methods which allow for learning skills with good generalization capabilities from a few
demonstrations. For instance, a learned skill should also be applicable if positions and orientations of
objects differ from those seen in a demonstration. We concentrate on skill learning methods for robot
manipulation tasks. These tasks have two important characteristics. First, they may involve physical
contact between the robot and objects in its environment, a property which is often neglected in learn-
ing approaches. Second, they can be naturally decomposed into a sequence of subtasks. The following
sections will give an overview of the main contribution of this thesis and describe how our methods
address the aforementioned topics.

1.1 Imitation Learning Challenges

Nehaniv and Dautenhahn [2001] summarized the main Imitation Learning challenges in four questions:
Whom to imitate? What to imitate? How to imitate? When to imitate? In the following, we will
briefly describe these questions and comment on our contribution to answering them. After describing
the general challenges in the field of Imitation Learning, we will discuss some important open research
problems in Section 1.1.5 which are specifically tackled in this thesis.

1.1.1 Whom to Imitate?

If multiple persons are present in a scene, it is often not clear who the person to imitate is. While
answering this question is an interesting research problem, it is out of the scope of this thesis. Throughout
the thesis, demonstrations are performed kinesthetically. In a kinesthetic demonstration, a human takes
a gravity compensated robot by its arm and guides it through a task, similar to a tennis teacher teaching a
task to a student. Such a way of demonstrating a task has two main benefits. First, it allows for recording
the robot’s joint angles directly. It is therefore easier to find a connection between the perceived state
and the desired output of the robot. It also circumvents the correspondence problem [Nehaniv and
Dautenhahn, 2002]. Due to the different kinematic structures of humans and robots, learning from non-
kinesthetic demonstrations requires finding a relation between the movements of the human body and
those of the robot. The relation determines which robot joint angle trajectories will produce movements
that are similar to those of the human teacher. Second, if the robot is equipped with an appropriate
sensor, kinesthetic demonstrations allow for recording the forces and/or torques directly at the robot.
With such data, a decision can be made in which phase of a task the robot has to apply forces or
torques. Due to the kinesthetic demonstrations, we do not have to decide whom to imitate. Instead, we
concentrate on contributing to the three remaining questions.

1.1.2 What to Imitate?

What to Imitate relates to inferring what the human teacher wants the robot to do. Without knowledge
about a task, it is often not obvious which aspects of a demonstration are to be imitated. For a box
stacking task, it is important to properly grasp the box. Therefore, the alignment of the fingers and

2

the position of the teacher’s hand are essential for the task, whereas for instance the exact pose of the
elbow is not really important. In contrast, the elbow position may be important when playing tennis,
as it allows for generating more powerful strokes. In addition, some environmental conditions might be
irrelevant for a task, while others might be crucial. For the tennis example, the color of the ball is of
much less importance compared to the ball’s velocity and spin.

In order to learn a skill that goes beyond pure copying of the teacher’s actions, the essential aspects
of a task have to be extracted from the demonstrations. Several months old children already understand
human intentions [Rao et al., 2007]. Instead of over-imitating human movements (imitating everything),
they start to imitate object-related movements. Hence, they learn to generalize a skill to novel object
positions or even new objects. In order to equip a robot with similar abilities, one of the core questions to
be answered is what are subgoals to be reached in order to master a given task. In this thesis, we tackle
this question on different levels of abstraction. On the highest level of abstraction, we try to infer the
semantic structure of a task from the kinesthetic demonstrations. Some of the main problems here are:
What are the subtasks to be mastered? Do they have to be reached in a certain order or is the ordering
arbitrary? On an intermediate level we try to infer the composition of the subtasks. Does a subtask
involve an object-related movement? Does the robot have to apply a force or should it be controlled
kinematically? On the lowest level, we connect the sensory input of the robot to the corresponding
subtasks. When does the robot perform which subtask? What movement is necessary to perform a
specific subtask? These two questions are discussed in the following two sections.

1.1.3 How to Imitate?

Knowing the semantic structure of a task (e.g., the individual subtasks and their orderings) is not suf-
ficient for performing the task. Instead, one also has to know how to perform the individual subtasks.
Therefore, movement representation and movement generation are essential aspects of skill learning. In
robotics research, a common assumption is that a subtask can be performed by executing an elemen-
tary movement called movement primitive (MP). A MP could for instance correspond to a tennis hitting
movement. Based on a small number of parameters (e.g., the current position, velocity and spin of the
ball), the MP can generate a trajectory which will allow the robot to hit the ball. Often, MPs are a
means for compactly describing a movement without considering the specific embodiment of a robot.
Hence, they can be easily be transferred between different robots or end-effectors. Such a description
is supported by findings in biology which suggest that the human brain also encodes movements inde-
pendently of the embodiment [Wing, 2000]. As a result, humans can for instance write the letter s with
their hand, but also with a foot in the sand. In robotics, the field of Operational Space Control deals
with emulating such a behavior [Khatib, 1987, Nakanishi et al., 2008]. By introducing task-spaces and
coordinate frames, movements can be easily transferred between different kinematic structures and can
be performed relative to objects in the scene.

In this thesis, we present an algorithm which extracts a set of MPs from the kinesthetic demonstrations
of a task in an unsupervised fashion. In order to make the MPs reusable in more situations and to
increase the generalization capabilities of the system, they are represented in different task-spaces and
coordinate frames. In addition, we introduce a novel MP representation we call “Mixture of Attractors”.
The evaluation will show that this representation outperforms existing MP representations in terms of
accuracy and generalization capabilities.

1.1.4 When to Imitate?

The when to imitate question can be summarized as monitoring and coordinating task execution. It is of
high importance when executing a skill on a real robot. Here, the system has to decide when to perform
which subtask. It has to monitor if a (sub)task is completed or if an error occurred. Throughout task

3

execution, it has to make decisions which determine the robot’s behavior. The basis for the decision
are the sensory input of the robot as well as the decision history. Depending on the environmental
situation, the system may change the current behavior, for instance to avoid an obstacle. Most MP
representations come with some sort of adaptation capabilities (e.g., a movement can be adapted to a
changing goal position). Still, these capabilities are rather limited and usually not sufficient (and not
meant) for reacting to a completely new situation. Therefore, a system which monitors task execution
can be seen as a higher level system which coordinates the individual MPs. We present an algorithm
which continuously coordinates the individual MPs. At every point in time, the system decides which MPs
to activate. Based on the sensory input, the system may stop a MP and start to activate a new one.

1.1.5 Open Challenges

While the main Imitation Learning challenges can be summarized with the four aforementioned ques-
tions, we would like to point out three important challenges which are specifically tackled in this thesis.
The interested reader is also referred to Section 5.2, where we discuss further open research problems
which are out of the scope of this thesis.

Learning Sequential Skills
Most real-world tasks can be naturally decomposed into a sequence of subtasks. As they are usually

rather complex, dividing them into multiple subtasks can help simplifying the overall learning problem.
Finding such a decomposition is not straightforward. We present an algorithm which aims at decom-
posing a task given a set of unlabeled kinesthetic demonstrations of a task. In contrast to many other
approaches, we do not assume that the sequence of subtasks demonstrated by the teacher is the same for
all demonstrations. In addition, movements may be stopped prematurely, enabling the system to detect
and react to errors.

Learning Force Interaction Skills
One main purpose of a robot is to interact with its environment. Even though this interaction leads

inevitably to physical contact, force data is often ignored in Learning from Demonstration approaches.
Forces can be useful in two different ways. First, measured forces can be useful for detecting contacts or
contact changes. Second, some tasks require the robot to actively apply forces. An example is the task
of cleaning a window. For this task, it is beneficial to push against the window while swiping from left
to right, as it ensures contact with the window throughout the task. Therefore, it is often not sufficient
to learn a kinematic plan of a task. While many approaches neglect the force information, others focus
only on forces, for instance by learning desired force profiles. These approaches neglect that for many
tasks the physical contact with the environment is restricted to certain phases of the task. For instance
when approaching the window in the cleaning task, the robot is not in contact with an object. Hence,
for many tasks a decision has to be made when to apply forces. In the remainder of the thesis, we refer
to such tasks as force interaction tasks. For these tasks, we present a concept for deciding when to apply
forces.

Learning from a few Demonstrations
The practical applicability of many approaches is limited as they require more demonstrations for

learning a skill than a typical user is willing to provide. Ideally, only one demonstration should be
sufficient for learning. For realistic tasks, it is not sufficient to just replay a demonstrated behavior.
Instead, a skill has to capture the essential aspects of a task to ensure the system is able to generalize to
novel situations such as varying object positions. Without additional information (e.g., voice commands
or task knowledge), it is often not possible to capture these essential aspects from a single demonstration.
Therefore, we aim at learning from as few demonstrations as possible. We present two approaches
that try to extract as much information as possible from the demonstrations. Our task-decomposition

4

method extracts a set of point-to-point MPs from the demonstrations and chooses proper task-spaces and
coordinate frames for them. Additionally, we present the Mixture of Attractors MP representation which
allows for generating movements of arbitrary shape in relation to objects in the environment.

1.2 Main Contributions

In this thesis, we present several methods which contribute to the field of Learning from Demonstration.
In this section, we outline the main contributions and comment on if and how they benefit from each
other.

1.2.1 Learning to Sequence Movement Primitives with Sequence Graphs

Many manipulation tasks cannot be mastered by simply executing a completely pre-planned movement
on a robot. For instance, when unscrewing a light bulb, the unscrewing movement has to be performed
until the light bulb is loose. Here, the number of unscrewing repetitions cannot be planned in advance,
as it is not clear how firmly the light bulb is screwed in before actually touching it. Therefore, in order
to be able to perform such a task, the system has to be able to react dynamically to changes in the
environment and adapt its behavior accordingly.

In this thesis, we address this problem by presenting a method which allows for learning to coordinate
a set of MPs in order to perform a sequential robot manipulation task. When executing a learned skill
on a robot, the system decides at each point in time which of the MPs to activate. This decision is made
based on the state of the environment and therefore the system is able to adapt its behavior dynamically.
The method is based on a graph representation we call sequence graph. In a sequence graph, each node
corresponds to a MP and is associated with a classifier. The task of such a classifier is to decide when to
switch between MPs that are connected in the graph. In contrast to many existing approaches, we do
not assume that the sequence of demonstrated movements is the same in all demonstrations.

1.2.2 Probabilistic Task-Decomposition based on the Directional Normal Distribution

The sequence graph concept allows for performing a sequential robot manipulation task by coordinating
the execution of a sequence of MPs. One assumption of the approach is that the MPs have to be known
to the system. In order to bypass the tedious process of defining the MPs by hand, we further present
a method that automatically decomposes a task into a set of its generating MPs. Here, we concentrate
on tasks that can be represented by a sequence of point-to-point movements. In contrast to state-of-
the-art methods, we explicitly incorporate force information and object-relative movements into the
decomposition.

The task-decomposition method is mainly based on a novel probability distribution we call Directional
Normal Distribution. In the context of the task-decomposition, the distributions allows for deciding if
a movement should be performed relative to an object in the scene or if the robot is supposed to apply
forces. In this thesis, we show that these decisions greatly improve the generalization capabilities of the
learned skill. In general, the Directional Normal Distribution is a probability distribution over a point
and its velocity vector. The density function of the distribution is large if the velocity vector of a point
is pointing towards the mean of the distribution and small if it is pointing away from the mean. In this
thesis, we introduce the distribution and present an Expectation-Maximization algorithm for learning its
parameters from data.

In this thesis, we also combine the task-decomposition method with the aforementioned sequence
graph concept. While applying the task-decomposition method results in a decomposition of a task into
a set of MPs, the sequence graph concept can be utilized for learning to sequence the resulting MPs. By
combining both methods, skills for sequential manipulation tasks can be learned from scratch without
further human supervision.

5

Chapter 1: Introduction

Chapter 2: Learning to Sequence Movement Primitives

Demonstrations Labeled
MP Representation Point-to-Point Attractors (Predefined)
Methods Sequence Graphs
Focus Sequence Graph generation

Movement Primitive transition learning

Chapter 3: Probabilistic Task-Decomposition

Demonstrations Unlabeled
MP Representation Point-to-Point Attractors (Learned)
Methods Sequence Graphs

Probabilistic Task-Decomposition
Directional Normal Distribution

Focus Task-Decomposition
Movement Primitive learning

Chapter 4: Mixture of Attractors

Demonstrations Unlabeled
MP Representation Mixture of Attractors (Learned)
Methods Mixture of Attractors
Focus Co-Articulated Movements

Chapter 5: Conclusion

Figure 1.2.: Outline of the thesis. Chapter 4 can be read independently of the previous two chapters, as it concen-
trates on different skill learning aspects.

1.2.3 Object-Relative Movement Generation with Mixture of Attractors

The third major contribution of this thesis is a novel MP representation we call Mixture of Attrac-
tors (MoA). In contrast to the MP representation used within our task-decomposition framework, the
movements generated by MoA can be of arbitrary shape. Hence, MoA allows for learning skills for tasks
that cannot be represented by a sequence of point-to-point movements. Moreover, it is an important
property of the MP representation that the shape of a movement is learned in relation to objects in the
scene. Therefore, MoA allows for learning complex skills for tasks that involve interacting with multiple
objects. By demonstrating a task multiple times with varying object positions, the system learns automat-
ically which object is important in which phase of the task and transitions smoothly between different
task phases.

The basic idea behind MoA is to represent a movement as weighted sum of simple attractors. By
continuously changing the weights of the attractors over time, a movement of arbitrary shape can be
generated by the system. The attractors can be defined in different coordinate frames, leading to move-
ments which are conditioned on the position and orientation of objects. We show that learning a skill
with this framework can be formalized as a convex optimization problem. Due to the convexity, the
optimization result does not depend on a good initial estimate for the parameters of the representation.
Instead, the importance of a coordinate frame emerges automatically from the optimization process and

6

can change over time. In addition, the optimization leads to smooth movements and smooth transi-
tions between different object-relative movements. To the best of our knowledge, MoA is the first MP
representation which has all of the aforementioned properties.

1.3 Outline

The individual chapters of this thesis can be read largely independently. Still, we recommend to read
them in order. Excerpts of the presented research have led to various publications. This section presents
the outline of the thesis and clarifies how the individual contributed to the chapters. Figure 1.2 depicts
an overview of the thesis.

Chapter 2 introduces sequence graphs. These graphs represent the semantic structure of a task and
are utilized to learn sequential skills in a supervised fashion. The method(s) presented in this chapter
are based on Manschitz et al. [2014a,b, 2015b].

Chapter 3 introduces our probabilistic task-decomposition method. The method extracts a set of MPs
from the demonstrations and finds their most likely composition (e.g., attractor goal and coordinate
frame). For sequencing the resulting MPs, the sequence graph concept from the preceding chapter is uti-
lized. Therefore, we recommend to read these two chapters in order. The chapter is based on Manschitz
et al. [2016, 2017a,submitted].

Chapter 4 introduces the Mixture of Attractors framework, a novel MP representation. The represen-
tation can be used for generating object-relative movements of arbitrary shape. The MP representation
relaxes some limitations of the movement primitive representation used in the two preceding chapters,
which requires the teacher to demonstrate point-to-point movements. The content of this chapter is
based on Manschitz et al. [2017b,accepted] and can be read independently of the two preceding chap-
ters.

Chapter 5 concludes the thesis, gives an overview of open problems and discusses some future direc-
tions.

7

2 Learning to Sequence Movement Primitives

In this chapter, we address the skill learning problem from a higher level perspective. The particular
focus is to learn the coordination of a set of MPs, in order to realize complex sequential movement be-
havior. An illustrative example is the replacement of a light bulb: mastering this task requires performing
movements such as reaching towards a lamp, aligning the fingers with the bulb, grasping the bulb or
turning it in the thread. A sequential skill coordinates these MPs with a flexible arbitration scheme: It
needs to maintain the causal order of the MPs (e.g. reach, pre-shape, grasp), while coordinating the tim-
ing of the MP. In case of larger disturbances, the skill may need to adapt the sequential flow to account
for the changed situation (e.g. pick up bulb if it drops out of the hand). The chapter is mainly based on
the work presented in Manschitz et al. [2015b].

Most previous work on learning sequential skills has focused on tasks that do not require a flexible
arbitration scheme. In that case, it is often sufficient to decide when to stop a current MP and start a new
one. It is not required to make decisions on which MP to start next. We present an approach for learning
such sequential robot skills through kinesthetic teaching. From the demonstrations, a graph representa-
tion reflecting the potential MP orders is extracted. Finding the transitions between consecutive MPs is
treated as multiclass classification problem. We show how the goal parameters of linear attractor MPs
can be learned from manually segmented and labeled demonstrations and how the observed MP order
can help to improve the movement reproduction. The improvement is achieved by restricting the clas-
sification result to the currently activated MP and its possible successors in the graph representation of
the sequence. The approach is validated with three experiments using a Barrett WAM robot.

2.1 Introduction

Arguably, one of the key elements for robots to become more autonomous is the ability of adapting skills
to new situations. Instead of pre-programming the way a robot handles unknown situations, Learning
from Demonstration (LfD) can be utilized for learning how to adapt to them. The idea is to demonstrate
the essential aspects of a task by showing a robot some variations of the task. For instance, demonstrating
the same task with different object positions allows for inferring which object may be important in which
phase of the task. Or, demonstrating a repetitive task multiple times allows for learning when to stop the
repetitions. While demonstrating all kinds of variations is infeasible, demonstrating only a few variations
can be sufficient for learning skills that can be adapted to a wide range of situations.

Many approaches in the LfD domain focus on learning single movement skills. Hence, they cannot
learn skills for repetitive tasks or tasks which require to handle different situations (e.g., error recovery).
One way of mastering these tasks is to sequence single movements. In this chapter, we refer to the
ability of sequencing movements in order to perform a complex task as a sequential skill. Learning such
sequential skills is still an open research topic. These skills are particularly useful in two cases. First,
there are tasks which are not representable in a non-sequential way at all. As an example, consider a
robot standing in front of a door. Without any additional knowledge, the system does not know whether
the robot has to open the door or if the robot just closed it. The reason is that the same state is per-
ceived for both options. This problem is often referred to as perceptual aliasing [Whitehead and Ballard,
1991]. Dissolving perceptual aliasing requires either the previous movement history to be encoded in
the perceived state or a policy which activates movements based on the history of movements. Second,
even though a task may be representable using a single movement, it may be beneficial to decompose it
into smaller (sub-)tasks first. Such a decomposition bounds the complexity of each (sub-)task and the
resulting movements are often more intuitive and easier to learn.

In this chapter, we aim at learning sequential skills where the currently activated movement cannot be
solely determined from the perceived state, but may also depend on the history of movements. The goal

8

Kinesthetic Demonstration Reproduction & Generalization

Figure 2.1.: The system is supposed to learn how to unscrew a light bulb from kinesthetic demonstrations. We
evaluate our approach on this example using a real seven degrees of freedom (DoF) Barrett WAM
robot with a four DoF hand.

is to learn when to activate each movement, based on kinesthetic demonstrations. Kinesthetic teaching
is a widely used teaching method in robotics. Here, a teacher guides a robot through movements by
physically moving the robot’s arm, similar to parents teaching tasks to their children (see Figure 2.1).

2.1.1 Related Work

Various approaches exist which aim at learning skills for sequential tasks. Often, these approaches
are fundamentally different in their assumptions about the tasks or demonstrations or aim at different
learning aspects. In this section, we review other approaches, classify them into different categories and
contrast our approach to this prior work.

Segmenting Demonstrations into Sequences of Movement Primitives

Single elementary movements are often modeled as MPs in literature [Flash and Hochner, 2005]. By
chaining or blending a set of MPs, complex tasks can be performed. In order to avoid tedious pre-
programming of MPs, it is an interesting research problem to learn MPs from demonstrations of a task.
Many approaches in this domain therefore concentrate on the analysis of human demonstrations and
aim at finding reoccurring patterns in the time-series data resulting from the demonstrations. For in-
stance, Chiappa and Peters [2010] cluster individual demonstrations using Bayesian mixtures of linear
Gaussian state-space models. Their method clusters full demonstrations and hence does not segment
demonstrations into smaller building blocks. Meier et al. [2011] assume a MP library is given and use
it for movement recognition. Their approach is able to segment a demonstration into its most likely
sequence of generating MPs, even if movements are only partially observed. Lioutikov et al. [accepted]
additionally learn the MP library from demonstrations. Recently, an extensive survey on segmentation
approaches has been published by Lin et al. [2016]. The authors categorize the methods based on their
definition of a segment, how the data is collected, what the requirements are, the actual segmenta-
tion method and how the method is verified. The survey provides a general overview of segmentation

9

approaches and is not restricted to LfD and robotics. Among others, also methods from physical reha-
bilitation [Houmanfar et al., 2016, Karg et al., 2015], activity tracking [Krishnan et al., 2008, Li et al.,
2013] or human movement recognition [Ahad et al., 2008, Lara and Labrador, 2013] are discussed.

In general, many segmentation approaches focus on movement analysis and not on movement gener-
ation. The approaches try to come up with a set of MPs which may have generated the demonstrations,
but do, for instance, not reason about the observed ordering of MPs or the reason for starting a new
movement. For these approaches, movement generation often serves as proof of concept for the segmen-
tation. Therefore, the sequence of executed MPs is chosen randomly (e.g., in Kulić et al. [2012]) or is the
same as in the demonstrations [Maeda et al., 2014]. The transition behavior between MPs is also either
deterministic (e.g., the succeeding movement depends only on the previous movement) or not learned
at all [Grollman and Jenkins, 2010].

Learning MPs from demonstrations of a task is an important aspect of skill learning. The main advan-
tage of segmentation methods is that they allow for learning skills in an unsupervised fashion, making
the tedious pre-programming of the required movements superfluous. Yet, in order to learn a skill, also
the temporal and spatial correlations of the MPs have to be learned. One way of modeling these corre-
lations is a higher-level task representation. Such a representation connects the individual MPs. Hence,
it represents potential MP sequences and determines when to perform which of the movements. In this
chapter, we exactly aim at extracting such a representation from the demonstrations of a task. As we
concentrate on this aspect, we assume the demonstrations are already segmented into a set of MPs. In
the succeeding chapter, we will then introduce our own segmentation method. Therefore, segmentation
and task-decomposition methods will be discussed in Chapter 3 in more detail.

Sequencing Movement Primitives

While there exists a vast amount of methods for segmenting demonstrations into a set of MPs, only a
few approaches aim at sequencing these MPs in order to perform a complex task. Traditionally, methods
from this field are inspired by the subsumption architecture [Brooks, 1986]. Here, the behavior of a
system is represented by a hierarchy of sub-behaviors. A sequential skill can be composed by a two-
level hierarchy, whereby the lower-level MPs are activated by an upper-level sequencing layer. There are
various ways of modeling the sequencing layer. Among the options are graph structures Kroemer et al.
[2014], Kulić et al. [2008], Finite State Machines (FSMs, [Niekum et al., 2013, Riano and McGinnity,
2012, Sullivan and Luke, 2012]) or Petri nets ([Chang and Kulić, 2013a,b]). Usually, the activation of
a new MP is interpreted as discrete event in a continuous system [Chang and Kulić, 2013b, Pavlovic
et al., 2000, Peters, 2005]. An alternative view is treating the overall system as continuous entity. For
example, Luksch et al. [Luksch et al., 2012] model a sequence with a recurrent neural network. In that
architecture, MPs can be concurrently active and inhibit each other. Therefore the sequence is defined
implicitly. Although this structure leads to very smooth movements, the model is hard to learn and has
to be defined mostly by hand. Levine et al. [2016] present a method which learns a complex skill using
a deep neural network. Due to large number of parameters of the network, the method is very data-
intensive. As we aim at learning skills from only a handful demonstrations, the method is not applicable
in our context.

Pastor et al. [2012] use a nearest neighbor classifier for deciding which MP to activate when the
current movement has finished. Kappler et al. [2015] extended this approach by adding an online
decision-making process which decides when to stop a MP and which MP to start next. Butterfield
et al. [2010] use a hierarchical Dirichlet process hidden Markov model as classification method for
determining the next MP based on the sensor information and current MP. Niekum et al. [2013] segment
a demonstration with a beta process auto-regressive hidden Markov model in a set of MPs and build a
FSM on the sequential level. The transition behavior is learned with k-nearest neighbor classification.
The focus of our work lies on incorporating several demonstrations with varying MP sequences into one

10

model of a task and learning the transition behavior between succeeding MPs. Basis for learning are the
manually segmented and labeled sensor data traces from a set of kinesthetic demonstrations.

Learning Skills with Planning Methods

Planning methods are an extensively studied field in robotics. Traditional movement planning meth-
ods aim at finding a path which reaches a desired goal under consideration of a given set of con-
straints [Schwartz and Sharir, 1988] (e.g., avoiding obstacles and joint-limits). Planning is typically
done offline using a given model of the environment and the robot. Depending on the problem, finding
a globally optimal plan can be very complex, even when no uncertainty is taken into account. Sampling-
based methods can be a means for dealing with this complexity [Elbanhawi and Simic, 2014].

In the context of sequential skill learning, planning methods can be utilized for finding a sequence
of MPs which is able to perform a task. Kallmann et al. [2004] present such a planning approach. The
authors assume that each MP can only be started in a subspace of the robot’s configuration space. The
execution of a MP then again results in a change of the robot’s configuration. The planner generates a
tree which connects the MPs (and their start and goal configurations) with each other until a desired
goal configuration is reached. Yet, it is assumed that the MPs are given and no uncertainty is consid-
ered. An approach that explicitly takes uncertainty into account is that of Konidaris et al. [2015]. The
authors present a probabilistic planning method in which the symbols are not discrete but represented
using probability distributions. The low-level sensor and actuator space of an agent are described by a
fully observable, continuous-state semi-Markov decision process. They evaluate their approach on a 2D
navigation task and it is not clear how the approach would scale to more complex problems.

A generated plan is usually fixed after the optimization process. For instance, a resulting path may
be comprised of a sequence of joint angles which the robot tracks when executing the task. Meth-
ods for planning under uncertainty often model the world as Partially Observable Markov Decision
Process (POMDP, [Kaelbling et al., 1998]). A POMDP models the system dynamics as Markov Deci-
sion Process. The underlying state cannot be directly observed and therefore a probability distribution
over the set of possible states is maintained. While being general enough to model a large variety of
real-world problems such as moving dirty dishes into a dishwasher [Pajarinen and Kyrki, 2017], the
complexity of the models often limits their practical applicability. In addition, solving a POMDP is NP-
complete [Littman, 1996] and they usually require a lot of data for learning an optimal policy. As our
aim is to learn a skill from only a few demonstrations of a task, we cannot utilize them for our approach.

A different view on task planning is taken by Dantam and Stilman [2013]. The authors adopt methods
from the field of formal language theory and present Motion Grammar, a grammar for representing and
generating movements. Due to the formal definition as a language, results from language and automata
theory are directly applicable. For instance, it is possible to prove completeness and correctness of the
language. Yet, it is not clear how the individual tokens, symbols and syntax of the language could be
learned from demonstrations of a task.

Learning Task Constraints

Many tasks have sequential constraints on their subtasks. While some subtasks can be performed in an
arbitrary order, others are dependent on each other. For instance, before slicing a vegetable, a knife has to
be grasped first. Various approaches aim at learning or extracting such constraints from demonstrations
of a task. The main difficulty is that it is not straightforward to see if a varying sequential subtask
order means the ordering is arbitrary or if, for instance, the difference can be traced back to different
environmental conditions.

Pardowitz et al. [2005] extract a Task Precedence Graph (TPG) from demonstrations of a task. A TPG
encodes the precedence relations between the subtasks (e.g,. subtask A has to be completed before
subtask B may be executed). It can be learned incrementally from labeled demonstrations. Additionally,

11

the authors provide a metric for measuring the similarity of subtasks. The metric is utilized to evaluate if
different subtasks are used across the demonstrations. Two subtasks are considered to be equivalent if the
object relations before starting the subtasks and after their completion are similar. The main downside of
the approach is that it cannot handle cyclic tasks (e.g., unscrewing). Tenorth and Beetz [2012] present a
software framework for extracting and modifying high-level task descriptions. The idea is to construct a
task plan by reasoning about object transformations resulting from actions. The authors state that their
methods is mainly inspired by two other approaches, namely STRIPS [Fikes and Nilsson, 1971] and
Hierarchical Task Networks (HTN, [Erol et al., 1994]). While STRIPS is a plan language for describing
the pre- and postconditions of actions, HTN can be utilized for describing the hierarchical composition
of the actions. Given an incomplete action description, their method aims at detecting and filling the
knowledge gaps of the description.

Hayes and Scassellati [2014] present an approach where an initial graph structure is learned from
demonstrations. This graph structure represents potential subtask orders and can subsequently be re-
fined via active learning. Based on a query strategy, the system asks for additional user input where
desired. For example, the system may ask the teacher if sugar may be added before adding butter in a
cake recipe. The teacher then can respond positively or negatively to such a query, resulting in a change
in the graph structure by adding or removing edges between the subtasks. Additionally, a case-study is
presented where the authors investigate whether it is preferable to let a single teacher demonstrate the
same task multiple times or if it is beneficial to have multiple teachers. Their main finding is that in
order to capture more variety of a task, multiple teachers are beneficial.

Task constraints are an intuitive way of describing the relations between the individual subtasks. These
relations can often be parsed into a task plan in a standard language such as the Planning Domain
Definition Language (PDDL, [McDermott et al., 1998]). As such, these methods are closely related to the
approaches presented in the previous task planning section. Still, most approaches in this domain rely
on predefined assumptions about the tasks. If these assumptions do not fully apply, they are likely to bias
the system towards suboptimal decisions. Task learning is often performed on a high level of abstraction
and it is not clear how to connect symbolic task descriptions with the lower level movement generation.
The approach presented in this chapter aims at learning the coordination of a set of lower-level MPs
based on the perceptual input of the system. Therefore, it can be seen as a means for connecting a
high-level task representation with the low-level control signals.

2.1.2 Overview of our Proposed Approach

The aim of our approach is to learn the coordination of a set of MPs, in order to realize complex sequential
movement behavior. For mastering a task, our system has to activate a set of MPs in the correct order
and has to decide when to stop the current MP and which MP to start next. This decision is made
based on a feature state f , which is comprised of the state of the robot and the environment. Therefore,
learning a skill requires finding a mapping from this feature state to a MP activation vector a which
indicates the active MP. As we concentrate on the sequencing aspect in this chapter of the thesis, we
assume the demonstrations are already labeled with the active MPs over time. A demonstration of
length N is therefore comprised of the triplets τ = {(x1,f1,a1), (x2,f2,a2), . . . , (xN ,fN ,aN)} =
{(xi,f i,ai)i=1:N}. Here, xi is the robot state in task-space coordinates, f i is the feature state and ai
is the MP activation vector. Similar to most other approaches, the transition behavior between MPs is
considered to be discrete in this chapter. Therefore, only one MP is active at a time and given K MPs, ai
is a K-dimensional unit vector indicating the active MP.

The feature state f i can be comprised of arbitrary features such as positions and orientations of objects
or the state of the end-effector of the robot. Learning a skill requires finding a mapping from the current
feature state to the correct active MP. A straightforward way of applying machine learning methods to this
problem would be to train a single classifier h with the labeled demonstrations, resulting in a function
h(f i) → ai+1. The skill could be subsequently reproduced by choosing the classification result for the

12

MP Library

[
gx
gy

]
=

[
2
3

] [
gx

]
=
[
1
]

[
gα

]
=
[
0◦]

Goal Learning Sequence Graph Switching Behavior

1 2 3

Figure 2.2.: Overview of the learning approach. The approach starts with a predefined movement primitive (MP)
library. All parameters of each MP in the library (such as the coordinate frames) are known, but the
attractor goals such as a position x/y or an angle α are not. From the kinesthetic demonstrations, first
these goals ¶ are learned. Next, a graph representation of the demonstrated sequences · is built. We
call the graph representation sequence graph. A sequence graph determines possible successors of a
MP during reproduction. Finally, the transition behavior is learned by training one local classifier for
each node in the graph ¸.

current feature values as next activated MP for time-step i+1. Nevertheless, complex skills involve many
different MPs and it is often not possible to find a unique mapping from feature state to MP activations.
Due to this perceptual aliasing, the classification may yield unsatisfying results. One remedy for this
issue would be to consider also the history of features and MP activations for the prediction. Training
an out of the box time-series classifier h(f1:i,a1:i) → ai+1 such as a Recurrent Neural Network with
the additional information is theoretically possible. Yet, these methods are data-intensive and often
suffer from over-fitting when being trained on only a few demonstrations. Therefore, we take a different
approach. Instead of training a single classifier, we first build a graph structure where a node corresponds
to the activation of a single MP. Each node j in the graph is connected to a classifier hj whose task is to
decide when to transition to a succeeding node in the graph, leading to the activation of a different MP.
Doing so, the overall classification problem is split into smaller problems which are easier to solve. In
addition, the feature set is not global. Instead, features are assigned to the individual MPs. The graph
structure allows for training each classifier only on the features assigned to the connected MPs in the
graph which further reduces the perceptual aliasing problem, hj(f

(j)
i)→ ai+1.

In this chapter, we assume a predefined set of K MPs is given, whereas the individual MPs are denoted
with index k. A MP is a dynamical system (DS) with a linear attractor behavior

ẍ(k) = α
(
β(g(k) − x(k))− ẋ(k)

)
, (2.1)

where α and β are controller parameters. Each MP has a goal g(k) in task space coordinates x(k) ⊆ x
that should be reached if it is activated. In theory, a goal can be a desired position of a robot body,
joint angle, force or a combination thereof and can be defined relative between bodies using coordinate
frames. Throughout this chapter, a single MP will always control the position/force and orientation of
the robot’s end-effector (in world coordinates or relative to an object in the scene) as well as the joint
angles of the robot’s hand. MPs may be terminated before their goal is reached, for example, if a sensor
reading indicates to the system that an obstacle is close to the robot. All parameters of each MP in
the library (such as the coordinate frames) are known, but the attractor goals are not. A description
of the underlying controller framework is provided in the next section. Please note, however, that the
sequencing method (graph structure and classifiers) is kept general and should be applicable to arbitrary
MP frameworks and feature sets.

Our proposed approach consists of three stages, as depicted in Figure 2.2. In the first stage, the
attractor goals of the individual MPs are learned from the demonstrations (Section 2.2). In the second

13

stage, a representation of the demonstrated sequences is constructed by connecting the observed MPs
in a graph (Section 2.3). Each node in the graph corresponds to a MP and each transition leads to a
potentially succeeding MP. In the final stage, the MP transition behavior is learned (Section 2.4). One
classifier is linked to each node in the graph. The task of the classifier is to decide when to transition to
a new state in the graph during the reproduction of a skill, resulting in an activation of a different MP.
An experimental validation of the approach is presented in Section 2.5, followed by a conclusion of the
chapter in Section 2.6.

2.1.3 Utilized Controller Framework

For controlling the robot, we use a hybrid position-force controller based on task-level inverse dynamics.
The controller as well as the utilized MP representation were initially presented by Luksch et al. [2012]
and also used by Kober et al. [2015]. The (desired) joint torque T is given by

T = MJ#S
(
ex − J̇ q̇

)
+ JT (I − S)ef

+MJ#(I − S)
(
ed − J̇ q̇

)
−M

(
I − J#J

)
ξ + g + h. (2.2)

Here, J is the task Jacobian and J# its pseudo-inverse. Vector ξ accounts for joint speed damping and
joint limit avoidance and is projected into the null space of the movement. M , h and g denote the
mass matrix, Coriolis forces and gravity, respectively. The MPs enter the equation via ef and ex. Vector
ef contains the concatenated desired forces of the individual MPs. Vector ex is the output of a PID
controller which tracks the desired task-space accelerations of all MPs. If a MP is composed of task-
variables controlling force and position of a robot body (e.g., Cartesian x and y position of end-effector
and force along z component in a certain coordinate frame), the individual variables are split up and
assigned to ef or ex according to what they control. S is a diagonal selection matrix which enables
selecting either kinematic or force components of a task variable and ed is a task-level damping term.
Based on the activations of the individual MPs, the pseudo-inverse is scaled with a weighting matrix. In
theory, the weighting matrix allows for continuously modulating the contributions of the individual MPs,
but in this chapters only one MP is active at the same time. As a consequence, only the activated MP
influences the robot’s movement, while the desired paths of the other MPs are ignored.

In this thesis, all real robot experiments are conducted using a Barrett WAM robot. The robot has
seven degrees of freedom (DoF) and is equipped with a three fingers hand as end-effector. The hand
has four DoF. In all chapters, we assume a controller such as (2.2) is given and allows for controlling the
robot in task-space. In order to transfer the presented approaches also to other robots, one would have
to implement such a controller first. Additionally, the robot should allow for kinesthetic teaching. If a
task does not require a robot to apply forces, also other teaching methods would be conceivable (e.g., a
data glove if the robot has five fingers).

2.2 Learning Movement Primitive Parameters

In this chapter, we assume that most MP parameters are known beforehand. For instance, the number
of MPs and their coordinate frames are known, but their attractor goals are not. By learning these goals
from the demonstrations, the teacher has some freedom when demonstrating a task. For instance, if the
task is to grasp an object, he or she could grasp it from the top or the left. If the attractor goals were
predefined, the teacher would have to closely follow an expected behavior, which is difficult as the goals
cannot be seen during the teaching process.

As we assume the demonstrations are labeled with the active MP over time, we can split the demon-
strations into segments and assign the segments to the individual MPs. Given the segments, each MPs
attractor goal can be learned independently. In the following, we will therefore show how the attractor

14

0 100 200 300
1.2

1.4

1.6

Time

Ta
sk

St
at

e
x

(a) Trajectory

0 0.1 0.2 0.3
1.2

1.4

1.6

Normalized Time

Ta
sk

St
at

e
x

(b) Normalization

0 0.2 0.4 0.6 0.8
1.2

1.4

1.6

Normalized Time

Pr
ed

ic
te

d
St

at
e
x̂

(c) Approximation and Predic-
tion

1.2 1.4 1.6
0

2

4

6

8
·10−2

Predicted State x̂

C
os

ts
J
(x̂

)

(d) Goal Learning

Figure 2.3.: Goal learning overview. The trajectories (a) are velocity normalized (b) and approximated by linear
functions (solid red lines, c). For each trajectory, the goal is expected to lie on its future path (red
dashed lines), which is predicted using the linear functions. The goal (thick black line) is then found
by minimizing the cost function (d), which arbitrates between all expected goals. Note that the cost
function is zero for the entire gray area. Therefore the center of the interval is chosen as goal of the
MP. The thin black line shows the mean of the trajectory end points for a comparison.

goal of one individual MP can be learned. We assume that the MP has been active M times, resulting
in M segments

τm =

{(
x
(m)
i ,f

(m)
i ,a

(m)
i

)
i=1:Nm

}
, (2.3)

with m = {1, . . . ,M} and varying length Nm. The attractor goal g of the MP is learned from the task-
space data x(m)

1:Nm
of the segments assigned to it. Note that task state x and feature state f are different.

The task state represents the state controlled by the system and is used for learning the MP goals. The
feature state instead is decoupled from the controller and can represent anything, such as the state of
the environment. It will be used for learning the transition behavior in Section 2.4.

Even when segmenting and labeling demonstrations manually, extracting the goals is often not
straightforward. One reason is that the same movements do not always reach the same goal. For
example, in a reaching movement that has to be stopped due to a collision with an obstacle, the seg-
ment’s end point can be far away from the movement’s goal. If the attractor goals are not known
beforehand, it is often not clear from the demonstrations whether a movement was stopped as the goal
was reached or for any other reason. Hence, a simple solution such as taking the mean of all segment
end points is often insufficient for learning the goals. In general, there are two possible ways of handling
such incomplete movements.

1. Ignore them for goal learning.

2. Predict the goal regardless of completeness.

The first approach requires a method for detecting incomplete movements, e.g., by clustering the end
points of the segments and detecting outliers. Clustering usually requires a lot of data. Our goal is
to learn from as few demonstrations as possible, as we do not want to overload the demonstrator by
requiring tens of demonstrations. Therefore, we take the more sample efficient second approach and
predict the goal without detecting and discarding incomplete movements. We argue that even if a
movement is stopped prematurely, the movement up to that point still roughly points towards the MP’s
attractor goal. Our approach utilizes this information as follows. First, all segments are approximated
by linear functions of time. For each segment, the goal is expected to lie on its future path, which is
predicted using the linear functions. The goal is subsequently found by arbitrating between all expected
goals and finding the best compromise between them. In the following sections, we will first show how

15

a segment is approximated and then how the goal is learned. An overview of the goal learning is shown
in Figure 2.3.

2.2.1 Approximating Segments with Linear Functions

Within our system, each dimension of the goal g is learned independently. We have observed that one-
dimensional goal learning is reflecting the behavior of a human teacher more naturally. As an example,
consider a teacher moving a gravity compensated robot end-effector to a desired 3D-position. The
teacher will start by approaching the goal position. Due to an imperfect movement, not all dimensions
of the goal position will be reached at the same time. Instead, the teacher may recognize that the desired
x-position is already reached, but y- and z-position are not. Therefore, while trying to reach the desired
overall position, the end-effector is moved along the yz-plane while the x-position is kept constant.
The resulting trajectory will differ from the desired linear attractor behavior of the robot. For a real
demonstration, the teacher also has to control the orientation of the end-effector and the hand of the
robot. As it is difficult to reach the desired goal state all at once, humans seem to concentrate on a few
dimensions first. Therefore, demonstrations usually do not really match the attractor behavior of a real
robot movement. To compensate for this mismatch, we learn the goal per dimension. In the following,
we therefore use a scalar notation for the task space. We will also drop the m index for indicating the
segment, as every segment is approximated in the same way.

We focus on tasks where the velocity of a movement is irrelevant. Therefore, the time does not
correspond to the real time axis of the demonstrations, but is computed by normalizing the velocity

ti = ti−1 + (xi − xi−1)2 , t1 = 0, (2.4)

as illustrated in the two left plots in Figure 2.3. As model for the approximation of a segment, a simple
linear function is used

r(ti) = αti + β = x̂i. (2.5)

Here, x̂i is the predicted state of the MP at time ti and α and β are the parameters of the model.
Although a linear function is a simple model, it is notable here that it matches the demonstrations of
single attractor movements quite well, as they can be seen as point-to-point movements in task space.
We focus on tasks that have such linear characteristics, e.g., pick-and-place tasks. The assumption of
a linear model usually does not apply for the transition between two MPs. During demonstration and
reproduction of a sequence, a transition can occur with a non-zero velocity. As a consequence, the start
of a MP may be influenced by its predecessor. The resulting segment will contain arcs or edges and
is an example for a segment that cannot be well represented using a straight line. Nevertheless, note
that there is no need to approximate the whole segment well in our approach. Instead, the line only
has to pass through the real goal at some future time point. The method has to find the parameters of
Equation (2.5) to ensure this property.

Therefore, we chose to use weighted least squares regression (WLSR, Carroll and Ruppert [1988])
for learning the parameters α and β. Compared to least squares regression, WLSR additionally allows
for weighting the importance of each data point. By weighting the data points at the end of a segment
stronger than at the beginning, it is possible to minimize the influence of the preceding movement, while
still matching the overall segment well. The parameters are found by minimizing the weighted sum of
squared differences between the sampled states xi and predicted states x̃i from Equation (2.5), resulting
in the cost function

J(α, β) =
1

2

N∑
i=1

wi (xi − x̂i)2 . (2.6)

16

Time

Ta
sk

St
at

e
x

State x

D
is

ta
nc

es
d j

State x

C
os

ts
J(

x)

Time

Ta
sk

St
at

e
x

State x

D
is

ta
nc

es
d j

State x

C
os

ts
J(

x)

Time

Ta
sk

St
at

e
x

State x

D
is

ta
nc

es
d j

State x

C
os

ts
J(

x)

Figure 2.4.: Three goal learning cases and their resulting distance and cost functions. In general, segments may
converge (top), diverge (center) or point in the same direction (bottom). The black dashed lines show
the goal of the MP.

Here, N is the number of samples and wi are the weights. We suggest to use wi = i2/(
∑N

i=1 |wi|),
as the quadratic weights minimize the influence of the preceding MP at the start of a segment and
focus on the data points closer to the goal. Cubic or even larger weights focus on few data points at
the end of a segment and therefore become sensitive to noise. Minimizing the error function (2.6) is
straightforward (see Carroll and Ruppert [1988]) and leads to

[
α
β

]
= A#b, A =

N∑
i=1

wi

[
t2i ti
ti 1

]
, b =

N∑
i=1

wixi

[
ti
1

]
, (2.7)

where A# is the left pseudo-inverse of A.

2.2.2 Goal Learning

Approximating each of the M segments results in M linear functions rm(t) = αmt + βm with m =

{1, . . . ,M} and the normalized time steps t(m)
1:Nm

. Figure 2.3(c-d) shows an overview of our goal learning
approach. As already mentioned, the basic idea is that for each segment m, the goal is expected to lie on
its future path. The future path is predicted using the linear function rm, which allows us to formulate

17

the expected goal in terms of the slope parameter αm and the predicted state um at the final time of the
trajectory

um = rm(tNm) = αmtNm + βm. (2.8)

If the slope is positive, the expected goal is equal or greater than um. If it is negative, the expected
goal is equal or less than um. For finding the best compromise between all trajectories, we construct a
cost function which penalizes deviations from each expected goal. As a first step, we define the distance
between a state x and the expected goal of a segment m as

dm(x) =

0, if am > 0 and x ≥ um,

0, if am < 0 and x ≤ um,

|x− um| , otherwise.

(2.9)

Then, the attractor goal of one particular dimension of a MP can be defined as the point g where the
squared sum of distances becomes minimal

J(x) =

M∑
m=1

d2m(x), (2.10)

g = min
x
J(x). (2.11)

Figure 2.4 shows some trajectories and their resulting distance and cost functions as an example. For
finding the solution g, we first calculate the derivative of the cost function (2.10). Due to Equation (2.9),
the cost function is non-differentiable at each threshold um. Therefore, we sort the intervals in ascending
or descending order and compute the derivative for each interval [um, um+1] separately. The derivative
is given by

d

dx
J(x) = 2

∑
m∈D

(x− um). (2.12)

Here, D is the set of functions for which Equation (2.9) is non-zero. Setting the derivative equal to zero
and rearranging for s results in

g =
1

|D|
∑
m∈D

um, (2.13)

where |D| is the number of elements in D. The solution g may lie outside of the interval. In that case,
it is clipped to the closest interval border. If there exists an interval for which D is empty, the error will
become zero and hence any value in this interval is a possible solution. In that case, the center of the
interval is chosen as goal. The final equation therefore is

g =

(um + um+1)/2 if |D| = 0,

um if |D| 6= 0, g < um,

um+1 if |D| 6= 0, g > um+1,

g otherwise.

(2.14)

The goal g is computed for every interval [um, um+1] and subsequently inserted into Equation (2.10).
The goal resulting in the lowest value of this cost function is then chosen as final goal of the MP.

Due to the quadratic dependency of Equation (2.10) on the expected goals, overshoots may shift the
goal away from the desired value. However, our experience is that if a teacher recognizes that the
goal was not hit accurately, he/she usually corrects his/her mistake, so that in the end the real goal
is approximately reached. If a MP is stopped prematurely, overshoots also do not lead to problems.
Additionally, the trajectory approximation with WLSR leads to some robustness against overshoots.

18

0 25 60 85 110 140 175 220 250
0

0.2

0.4

0.6

0.8

1

Sample

Fe
at

ur
e

Va
lu

e

(a)

25 60 85

110

140175220

(b)

25

220

60,110

175 85,140

(c)

25 60,110

175

85,140

220

(d)

Figure 2.5.: Overview of the graph generation. First, the labeled data from a set of demonstrations (a) is taken
to extract the MP sequence (b). This sequence can then be used to generate a sequence graph. We
investigate two different sequence graph types. A compact local sequence graph (c) and a more
sophisticated global sequence graph (d). The numbers on the transitions correspond to the transitions
points (TPs, see upper left figure). A TP is a point in time at which a transition between MPs occurs.

2.3 Sequence Graph Generation

In the previous section, the parameters of the individual MPs have been acquired. In this section, we
propose an approach for generating a graph representation of the demonstrated sequences which we call
sequence graph. In a sequence graph, every node is linked to a MP. During reproduction, the graph de-
termines which MP may be activated next. A missing transition in the graph might prevent an activation
of the correct MP, while too many outgoing transitions might lead to the activation of a wrong MP due
to perceptual aliasing. It is therefore crucial to find a good structure for a given set of demonstrations.

Figure 2.5 shows an overview of the graph generation based on a simple toy example with only three
different MPs, that will be used throughout this section. The MPs are indicated by different colors.
They are chosen arbitrarily and have no further meaning, but show the essential characteristics of our
approach. First, we perform at least one kinesthetic demonstration. In general, we assume that M
demonstrations have been collected. For each demonstration, we get a labeled (background colors in
Figure 2.5a) set of features (black lines). The features are utilized for learning the transition behavior
and will be explained in Section 2.4. For generating a sequence graph, only the observed MP sequence
is used, as shown in Figure 2.5b. The graph representation will be explained in detail in the following
section, where we also present two different types of sequence graphs, both showing different ways of
incorporating the sequences into the representation.

A sequence graph is a directed graph G = (N ,T) with a set of nodes N and a transition matrix
T indicating the connections between the nodes. Each node Ni is linked to a MP. This mapping is
not injective which means a MP can be linked to more than one node. During reproduction, a MP is
activated if a linked node is considered active. Transitions in the graph lead to succeeding MPs that can
be activated if the current MP has finished. A transition Tk,l is connecting the node Nk with Nl. Each
transition is linked with the corresponding transition points (TP) at which it was observed during the
demonstration (black vertical lines in Figure 2.5a). As the same transition can be observed multiple
times, multiple TPs are possible. Having |N | nodes in a graph, we use a |N | × |N | transition matrix T
with elements Tk,l to describe one sequence graph. As a MP is usually activated for more than one time
step, the transition Tk,k exists for all k.

19

In order to generate a sequence graph, we assume M demonstrations have been performed. For
each demonstration m, we start by constructing one directed acyclic graph Gm = (N (m),T (m)) from the
observed MP sequences (see Figure 2.5b). The main step is now to combine multiple of these graphs into
one representation of the skill, which can be a difficult problem as the algorithm has to work solely based
on the observations. As an example, consider the task of baking a cake. Here, it does not matter if milk
or eggs are put in the bowl first. Still, the task may be demonstrated one time with the sequence milk-
eggs and one time with the sequence eggs-milk. From an algorithmic point of view it is often not clear
if a sequence is arbitrary for a skill or if the differences can be linked to some traceable sensor events.
Hence, there are different ways of building the graph structure for a skill. We show two possibilities
by investigating two different kinds of sequence graphs. The local graph presumes a sequence to be
arbitrary and is not considering it in the representation, while the global graph is trying to construct a
more detailed skill description.

2.3.1 Local Sequence Graph

The local sequence graph assigns exactly one node to each activated MP and hence the number of nodes
and MPs is equal. The graph is initialized with one node per MP and without transitions. For each
observed pair of MPs a transition is added to the graph. As only pairs and no history are considered,
it is irrelevant at which point in the sequence a transition occurs. The corresponding graph for the toy
example is shown in Figure 2.5c.

The graph contains only three nodes, one for each activated MP. When reproducing the movement,
a transition from the -MP to the -MP one is always possible at this level of the hierarchy and it is
up to the classifier to prevent such incorrect transitions. The major drawback of this representation is
the strong requirement on the feature set, as it has to be sufficiently meaningful to allow for a correct
classification independent of the history of activated MPs.

2.3.2 Global Sequence Graph

The global sequence graph attempts to overcome this issue by constructing a more detailed skill descrip-
tion. One essential characteristic of the global sequence graph is that there is no one to one mapping
between MPs and graph states. Instead, a MP can appear multiple times in one representation as de-
picted in the global sequence graph of the toy example (Figure 2.5d). Here, two nodes are linked to
the -MP because the sequence was considered to be in two different states when they were activated.
The repeated appearance of the → transitions (see Figure 2.5a) is represented by only two nodes
as in the local graph. The reason is that consecutive sequences of the same MPs are considered to be
a repetition which can be demonstrated and reproduced an arbitrary number of times. Repetitions are
also advantageous when describing tasks with repetitive characteristics, such as unscrewing a light bulb.
Here, the unscrewing movement has to be repeated several times depending on how firm the bulb is in
the holder. As the number of repetitions is not fixed for each single demonstration, the algorithm has to
conclude that different numbers of repetitions of the same behavior appeared in the demonstrations and
incorporate this information into the final representation of the task.

Note that even if a skill requires a fixed number of repetitions, both presented sequence graphs will
contain a cycle in the representation. The system is then only able to reproduce the movement properly
if the classifier would find the transition leading out of the cycle after the correct number of repetitions.
While an improvement is not possible here for the local graph, a fixed number of repetitions can be
modeled with the global graph by skipping the search for cyclic transitions.

20

Algorithm 1 Graph Folding

Require: Initial transition matrix T
1: repetition = findRepetition(T);
2: while repetition.found do
3: T f = ∅;
4: repetition.l = repetition.end − repetition.start + 1;
5: for i = repetition.start to repetition.end do
6: mergeNodes(T (i+ repetition.l),T (i));
7: T f = T f ∪ T (i);

8: repetition = findRepetition(T);
9: if !repetition.found then

10: tail = findTail(T , repetition.end + 1);
11: if tail .found then // Found incomplete cycle
12: for i = tail .start to tail .end do
13: mergeNodes(T (i+ r),T (i));
14: T f = T f ∪ T (i);

15: T = T \ T f ; // Remove merged nodes from graph

16: return Final transition matrix T f

2.3.3 Graph Construction

The local sequence graph is created by adding one node for each observed MP and one transition for
every observed MP pair. If a MP pair is observed multiple times, only one transition is added to the
graph. For creating a global sequence graph, three steps have to be performed.

1. Create one acyclic graph Gm = (N (m),T (m)) for each demonstration m.

2. For each graph Gm, replace repetitions of MPs with cyclic transitions (Folding).

3. Combine updated graphs to one global representation G = (N ,T) of the skill (Merging).

The first step is straightforward as the acyclic graph represents the MP sequence directly observed in
the demonstrations. We call the second point folding and its pseudo code is shown in Algorithm 1.
The algorithm starts by calling the method findRepetition, which is searching for repetitions of length
l = b|N (m)|/2c in a graph Gm with |N (m)| nodes. The method starts by comparing the MPs of the
nodes {N (m)

0 , N
(m)
1 , . . . , N

(m)
l } with {N (m)

l+1 , . . . , N
(m)
2l+1}. If both node chains match, the node pairs

{N (m)
0 , N

(m)
l+1 } . . . {N

(m)
l , N

(m)
2l+1} are returned. If the chains do not match, the indices are incremented

by one and the method starts from the beginning with node N (m)
1 as starting point. The shifting process

continues until the end of the list is reached. Next, l is decremented by one and all previous steps are
repeated. Thus, longer repetitions are preferred over shorter ones. The method terminates if the cycle
size is one, which means no more cycles can be found.

If a repetition is found, the corresponding nodes are merged to a single node. When merging two
nodes NA and NB, the input and output transitions of node NB become input and output transitions
of NA. If an equal transition already exists for NA, only the associated TPs are added to the existing
transition. Note that a cyclic transition is introduced when merging the nodes N (m)

0 and N
(m)
l+1 , as

the input transition T
(m)
l,l+1 is being rerouted to T (m)

l,0 . After each iteration of the algorithm, the nodes
of the latter chain are not connected to the rest of the graph anymore and can be removed from the
representation. To allow escaping a cycle not only at the end of a repetition, the algorithm also searches
for an incomplete cycle after a found repetition. This tail is considered to be part of the cycle and is also

21

Algorithm 2 Graph Merging

Require: Ga = (V(a),T (a)) and Gb = (V(b),T (b))
1: U (a) = getUniquePaths(T (a)); // Set of unique paths
2: U (b) = getUniquePaths(T (b));
3: for all U (b) ∈ U (b) do // Iterate over each unique path
4: cmax = 0;
5: for all U (a) ∈ U (a) do
6: c = compare(U (a),U (b)); // Compute number of matching nodes
7: if c > cmax then
8: cmax = c;

9: V(b,max) = U (b)
1:c ; // First c nodes

10: V(a,max) = U (a)
1:c ;

11: for all V (a) ∈ V(a), V (b) ∈ V(b) do // Iterate over all nodes
12: if V (b) ∈ V(b,max) then // Nodes match
13: mergeNodes(V (a), V (b));
14: else // Node V (b) has to be added to Ga

15: addNode(Ga, V
(b));

16: return merged graph Ga

merged into the cyclic structure (Algorithm 1, lines 11-15). The toy example also contains an incomplete
cycle, as the → repetitions end incompletely with the -MP.

We call the final step of creating a global sequence graph merging, as several separate graphs are
merged into one representation. Algorithm 2 merges two graphs and thus gets called M − 1 times for
M demonstrations. The algorithm steps through the graphs simultaneously, starting at the initial nodes,
merging equal nodes and introducing branches whenever nodes differ. The algorithm starts by extracting
the unique paths from both graphs. A unique path is a path which starts with a node that has no input
transition and ends with a node that has either no output transition or only output transitions to nodes
that were already visited. The toy example has two unique paths, → → and → → →

(see Figure 2.5d). Next, the algorithm compares the paths of both graphs with each other from left to
right, searching for the longest equal subpath. Two nodes are considered as equal if the columns of the
corresponding transition matrices are equal, which means both nodes use the same underlying MP and
have the same input transitions. Finally, the nodes of the longest equal subpath are merged, whereas all
other nodes of graph T B are added to TA. By searching for the longest subpath, branches are introduced
at the latest possible point in the combined graph. Once branched, both branches are separated and do
not get merged together at a later point in the sequence.

2.4 Learning the Transition Behavior

After creating the graph representation, the next step is to train the classifiers – one for each node in
the graph. If a node is active during reproduction, its associated classifier decides when to transition
to a possible successor node. This multiclass classification problem has the active node and all of its
neighbor nodes in the graph as classes. Hence, the classifier corresponding to node Nj can be defined
as hj(f

(j)
t)→ at+1. The feature vector f (j)

t is composed of the features assigned to the MPs of node Nj

and its successors in the graph. The activations of all MPs which are not linked to one of these nodes
are constrained to be zero. Restricting the number of classes often increases the accuracy of the system
as transitions not observed in the training data are prevented. A reduction of the feature vector can be
seen as an implicit dimensionality reduction where unimportant features used by uninvolved MPs are no

22

60 85 110
0

0.2

0.4

0.6

0.8

1

Sample
Fe

at
ur

e
Va

lu
e

110 140 175

Sample

85,140

60 85 110
0

0.2

0.4

0.6

0.8

1

Sample
Fe

at
ur

e
Va

lu
e

110 140 175

Sample

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Feature Predecessor ()

Fe
at

ur
e

Su
cc

es
so

r
(

)

(b)

Figure 2.6.: One classifier is created for each node in the graph. The training is performed by using the data
around the transitions between the connected MPs (a). The data is projected into feature space and
the classifier learns a separating border between the MPs, as indicated by the background color in
(b). As soon as the current feature state crosses such a border during reproduction, a transition in the
graph is triggered, leading to the activation of a different MP.

longer considered for the decision. In this chapter, MPs are exclusively activated. Therefore, the MP to
be activated at time t is the one with the largest activation arg maxj at.

Figure 2.6a depicts the data used for training a classifier as an example. After the demonstrations,
each transition in the acyclic graph is linked to one TP in the sampled data. During the merging and
folding process of the global sequence graph or the pair search for the local graph transitions are merged
together, resulting in potentially multiple TPs for each transition. For each TP, the data points between
the previous and next TP in the overall data are taken from the training and labeled with the MP that was
active during that time. As all transitions have the same predecessor for one classifier, the first part of
the data will always have the same labels, while the second part may differ depending on the successor
node of the transition.

The classifiers learn from the labeled training data how to separate the MPs in feature space (Fig-
ure 2.6b). During the reproduction of the MP, the current feature state of the robot is tracked and as
soon as it crosses a border between the classes, the corresponding successor will be activated, leading to
a transition in the graph and a switch to another classifier. Any classifier is applicable to our method. We
evaluated support vector machines (SVMs, [Cortes and Vapnik, 1995]), logistic regression (LR, [Bishop,
2006]), kernel logistic regression (KLR, [Cortes and Vapnik, 1995]), import vector machines (IVMs, a
certain type of sparse kernel logistic regression, [Zhu and Hastie, 2001]), and Gaussian mixture mod-
els (GMMs, [Bishop, 2006]).

2.5 Evaluations and Experiments

For evaluating our approach, we performed three different experiments. In Section 2.5.1, we evaluate
the goal learning on a task where a robot has to move an object in its workspace. In Section 2.5.2, we
evaluate the overall performance of the system, including the two sequence graph representations and
different classifiers. In the experiment, a robot has to unscrew a light bulb. In Section 2.5.3, the system
has to learn to grasp different objects. Additionally, an error recovery strategy for unsuccessful grasps
is demonstrated. With the third experiment, we evaluate the system performance on a more complex
feature set. All experiments are evaluated using a real seven degrees of freedom (DoF) Barrett WAM
robot with an attached four DoF hand. For the first and third experiment, also some simulation results
are presented.

23

Figure 2.7.: In the first experiment, the robot has to move an object to a certain position. The robot starts in an
initial position (), moves to the object () and grasps it (). Subsequently, it moves the object to
another position (), opens its hand () and moves to the final position ().

2.5.1 Moving an Object

The aim of the first experiment was to evaluate the goal learning algorithm we describe in Section 2.2.
Therefore, we chose a rather simple sequence of movements, which does not differ between individual
demonstrations. The task is to start in an initial position, move to an object and grasp it. Subsequently,
the object has to be moved to another position, it has to be released and finally, it is required to move
back to the initial position (see Figure 2.7 for an illustration). As the sequence of movements always is
the same and does not include any repetitions or specific patterns of movements, the local and global
sequence graph algorithms return the same structure. A MP may control the position and/or orientation
of the end-effector as well as the joint angles of the fingers. If an entity is not controlled by a MP, the
movement results from the null space criteria (e.g., joint limit avoidance) of the underlying task space
controller. Six different MPs have been defined to perform the task, as shown in Table 2.1.

Before the experiments on the real robot are presented, the goal learning is evaluated in simulation
first. As kinesthetic teaching is not possible in simulation, we predefine the demonstrated sequence with
a state machine and the transition behavior between MPs using thresholds. For realism and variation,
Gaussian noise is added to the thresholds. Every time a new MP is activated, new thresholds are com-
puted. The attractor goal of each MP k is set to desired values g(k) and perturbed with additive noise
N (0, σ2I) for each demonstration. The intention of this experiment is to evaluate the robustness and
accuracy of the goal learning by disturbing the transition behavior and MP goals. We perform eight
demonstrations with a fixed σ and learn the goals ĝ(k) of every MP k after each demonstration with the
data of all demonstrations that have been performed up to this point. For each learning instance, an
error is computed according to

e =
1

K

K∑
k=1

∥∥ĝ(k) − g(k)∥∥
1
, (2.15)

MP Position Orientation Fingers Next MP
Initial - -

A Fixed Open
Hold Fixed Closed

B Fixed Closed
Hold Fixed Open
Final - - -

Table 2.1.: MPs for the object movement experiment.

24

1 2 3 4 5 6 7 8

2

4

6

8

·10−2

Number of Demonstrations

Er
ro

r
σ = 0.05 σ = 0.03 σ = 0.01

Figure 2.8.: Goal learning error for the simulated toy example. The error degrades when demonstrating a task
multiple times. The background color shows the hull of one standard deviation.

which is the mean of the `1-norm of the difference between predefined and learned attractor goals of
all K MPs. The experiment is repeated with three different values for σ 20 times, so that in total 480
demonstrations are performed. We summarize the results for all learning instances according to the
number of demonstrations they have been trained with and compute the mean and standard deviations
of the errors. The results are plotted in Figure 2.8. In general, the error decreases slightly for more
demonstrations, but is always consistent with the amount of noise added to the system.

For the experiments with the real robot, we performed three kinesthetic demonstrations. In order to
label the demonstrations, we indicated a movement as complete by pressing a key. Opening and closing
of the hand was also initiated by pressing a key. The labeling is performed based on the indicated transi-
tions. Next, the transition behavior was learned with SVMs as classifier and the task was reproduced on
the real robot. A one-dimensional feature f (k)t is assigned to each MP k according to the equation

∆t = g(k) − x(k)
t , (2.16)

f
(k)
t = 1− exp(−1

2
(∆T

t Σ
−1
k ∆t)). (2.17)

Here, x(k)
t ∈ R11×1 is the current state of the robot in the task space coordinates controlled by the MP. Σk

is a 11×11 diagonal matrix with positive parameters. In this chapter, all MPs defined in the experiments
control the end-effector position, orientation and the 4 DoFs of the robot’s hand. Therefore, the dimen-
sion of the task-space is 11 (orientations are represented with quaternions). Equation (2.17) depends
on the absolute difference between the state of the robot and the MP’s attractor goal. Hence, the feature
can be seen as progress indicator and is called goal distance [Luksch et al., 2012]. It is intrinsically in the
range [0, 1] and makes further data scaling superfluous. In addition, the variation of the feature around
the MP goal can be shaped with the parameters of Σk. To get expressive features, we find the parameters
by minimizing the variance of the feature values while constraining the minimum and maximum values
to be as close to zero and one as possible.

Figure 2.9 shows the resulting trajectories for some selected MP transitions. The learned goals are
consistent with the directions of the movements. If trajectories are constant or diverge slightly, the goal
is averaging over the trajectories (Figures 2.9b,c). If all trajectories point in the same direction as it is
the case for Figure 2.9a, the goal lies in this direction as well, without conflicting with the trajectories.

The first example also illustrates the difference between the goal state of a MP and the state at which
a new MP is activated. A new MP is activated as soon as the classification border is crossed, which is the
case when the feature state reaches the value of the first transition. Note that such an early transitioning
strategy is only triggered if it was also demonstrated. Therefore, behaviors such as opening or closing a
gripper prematurely should not occur unintentionally.

25

0.9 0.95 1 1.05 1.1

1.06

1.08

1.1

1.12

1.14

Normalized Time

Po
si

ti
on

z

Active MP

(a)

2.6 2.8 3 3.2 3.4
1.08

1.1

1.12

1.14

Normalized Time

Po
si

ti
on

y

Active MP

(b)

3.6 3.8 4 4.2 4.4
1.55

1.6

1.65

1.7

Normalized Time

O
ri

en
ta

ti
on

Eu
le

r
β

Active MP

(c)

Figure 2.9.: Comparison of trajectories from kinesthetic demonstrations () and reproduction (). The dashed
lines show the learned MP attractor goals. All trajectories are aligned in time, so that each MP activa-
tion takes the same (normalized) time. The learned goals and the transition behavior are consistent
with the demonstrations.

2.5.2 Unscrewing a Light Bulb

In the second experiment, the system had to learn how to unscrew a light bulb. The focus of this experi-
ment was on evaluating the overall performance of the learning system, including the goal learning, the
graph representations and the transition behavior. The task is to approach a light bulb, unscrew it and
to put it into a box afterwards. For the representation of the skill, we chose seven different MPs. The
detailed task flow and the MPs are illustrated in Figure 2.10.

We choose to unscrew the light bulb by caging it. Here, the robot encloses the bulb with its hand
and grasps it below the point with the largest diameter. All MPs control the end-effector’s Cartesian
position, its orientation as well as the DoFs of the robot’s hand. In addition to a global world frame, a
coordinate frame is attached to the light bulb holder and the box. These coordinate frames are used for
positioning the robot. When opening, closing or rotating the hand, either the three DoFs of the fingers
or the angle of the wrist joint are controlled by the MP. The unscrewing MP (rotating the closed hand
counterclockwise) additionally applies a force in upward direction to the robot’s hand to ensure contact
with the bulb. Again, the goal distance feature is assigned to each MP. The goal distance of the -MP can
be used to detect if the light bulb is still in the holder. As a force is applied in upward direction during
unscrewing, this force leads to an acceleration of the robot’s arm as soon as the light bulb gets loose.
As a consequence, the arm moves away from the MP’s goal, resulting in an increasing value of the goal
distance.

The system has to learn that an increase of this goal distance should lead to an immediate stopping
of the unscrewing MP and a transition to the branch in the graph that puts the light bulb into the bin.
As the light bulb is not represented in the feature set and the unscrewing stopping criterion depends
implicitly on the height of the end-effector, a slipped light bulb can not be detected. As no slip happened
during our experiments, we did not integrate the state of the light bulb into the feature set.

We performed three kinesthetic demonstrations and vary the position of the light bulb holder for
each demonstration. For all following experiments, the system is trained separately with the data of
each single demonstration, all pairs of demonstrations and all demonstrations. Every time the system
is trained, the task is reproduced and the success rate of each MP transition is evaluated. A transition
is considered successful, if the system activates the correct successor at the correct state. Incorrect,
premature or too late transitions are considered failures. For unsuccessful transitions, we restart the
movement, trigger the transition manually and continue with the reproduction from there.

We first evaluated the graph representations by comparing the local and global sequence graph with a
baseline graph, which has one node for each MP and is fully connected, as shown in Figure 2.11. Hence,
the system is allowed to transition to any MP at every point in time. All graph types are trained with LR
as classifiers. The reproduction results are shown in Figure 2.12a. Both presented graph representations

26

(a) Illustration of a successful task execution.

MP Description X Y Z Orientation Fingers Next MP
Approach Initial Position Initial Position Initial Hold ,

Approach Light Bulb Light Bulb Hold Spread
Close Hand (Grasp) Light Bulb Hold Closed

Unscrew Bulb Bulb Force Rot. Wrist Closed ,
Open Hand (Release) Light Bulb Hold Spread ,

Rotate Wrist Clockwise Light Bulb Rot. Back Spread
Approach Boxes Garbage Hold Closed

(b) Task-space composition of the individual MPs

Figure 2.10.: Illustration and description of MPs for the light bulb experiments. The robot starts in an initial
position () and first moves towards the bulb (). Then it repeats the unscrewing movement
(, , ,) until the bulb loosens () and subsequently, the bulb is put into a bin () and the
robot returns to its initial position ().

27

(a) Fully connected Baseline Graph

Initial

(b) Global Sequence Graph

Initial

(c) Local Sequence Graph

Figure 2.11.: Graph representations of the light bulb task. We compare the global and local graph with a fully
connected baseline graph. Compared to the global graph, the local graph merges several nodes.
The merging creates potential paths in the graph which were not demonstrated. An example is the
sequence marked as red which leads to a misbehavior of the robot if reproduced.

are clearly better suited than the baseline graph. Due to the reduced number of outgoing transitions for
each node, the effect of perceptual aliasing gets reduced, which in turn improves the performance of the
classifiers. This effect is also the reason why the global sequence graph slightly outperforms the local
sequence graph. The local sequence graph contains paths which have not been demonstrated and lead
to misbehavior if reproduced. An example is the red path in the figure. Here, the robot returns to its
initial position with the bulb in its hand and immediately goes back to the bulb holder while opening its
hand instead of going to the bin.

In a second set of experiments, we evaluated the performance of different classifiers. In addition to
LR, we evaluated GMMs, SVMs and IVMs (see Section 2.4). All classifiers were trained using the global
sequence graph, as it was the overall winner of the first experiments. The reproduction results for the
different classifiers are shown in Figure 2.12b. The results indicate only a slightly better performance of
the kernel methods compared to LR and GMMs. When being trained on all demonstrations, the average
success rate of SVMs and IVMs is 97.6%, while LR reaches only 92.9%. The main reason for failing is
the unscrewing movement, where the system sometimes failed to generalize from the demonstrations.
When the light bulb gets loose at the beginning of the unscrewing movement during demonstration,
the system is expected to be in a similar state when the light bulb gets loose during reproduction. If
both states are different, the system tends to fail triggering the transition to the succeeding MP properly.
This effect is reduced if more demonstrations are performed, as different wrist orientations are observed
for each transition and therefore this feature becomes irrelevant for the decision. In general, a feature
selection method may be helpful for further improving the performance.

28

1 2 3

0

50

100

Number of Demonstrations

Su
cc

es
s

/
M

P
Baseline Local Global

(a) Graph Comparison

1 2 3

0

50

100

Number of Demonstrations

Su
cc

es
s

/
M

P

LR GMM SVM IVM

(b) Classifier Comparison

Figure 2.12.: Experimental results for the light bulb task. The left plot shows the comparison of the three different
graph structures: A fully connected graph used as baseline and the local and global sequence graph.
All graphs were trained with Logistic Regression (LR) as classifiers. The right plot shows the evalua-
tion of different classifiers: LR, Gaussian Mixture Models (GMMs), Support Vector Machines (SVMs),
and Import Vector Machines (IVMs). Here, the global sequence graph has been used. The bars in
both plots indicate the minimum, average and maximum success rate of each MP transition during
reproduction of the task.

2.5.3 Grasping Objects with Error Recovery

In a third experiment, the system had to learn to grasp and lift three cylinders with different lengths
using different grasps. The intention was to evaluate the approach on a more complex feature set com-
pared to the goal distance features used in the first two experiments. The task was demonstrated as
follows (see Figure 2.13). A cylinder was put randomly on a table, with arbitrary position and orien-
tation (e.g., standing or lying). The teacher took the gravity compensated robot by its arm and moved
the end-effector to an initial position. Next, it was moved to a pre-grasp position close to the cylinder.
Subsequently, the cylinder was grasped and lifted. Depending on the length of the cylinder and its orien-
tation, different grasps and pre-grasps were used for solving the task. If the cylinder was standing, it was
grasped from the top. If it was standing upside down, it was grasped at its bottom. We demonstrated
the task with three different cylinders of varying lengths, 8, 16 and 24 cm. If the cylinder was lying and
had a length of 8 or 24 cm, it was grasped using a power grasp. If the 16 cm cylinder was lying, it was
grasped using a pinch grasp. Pinch and power grasp could be performed with two different wrist angles
as shown in Figure 2.14. During the final lifting step, the cylinder could slip. In that case, the lifting was
immediately stopped. The end-effector was moved to the initial position and the task was demonstrated
from the beginning. Note that even when such an error recovery strategy is demonstrated, the system
has no explicit notation of an error when reproducing the task. Instead, a slipped cylinder is supposed
to lead to a MP transition which is treated just as any other MP transition. The immediate triggering of
an error recovery is also a typical example for a MP that is stopped before reaching its goal state when
reproducing the task.

Feature Dimension
Cylinder Length 1

Cylinder Inclination 1
Cylinder Rotation 1

End-Effector Position 3
Strain Gauges 3

Finger Joint Angles 4

Table 2.2.: Feature set for grasping task.

29

Top

Pow
er

Pinch

Initial / Reset

Reset

Figure 2.13.: Task flow of the grasping task. The robot starts in an initial position (top). Depending on the size
of the cylinder and its orientation, the system approaches the cylinder with different orientations
and finger configurations. Subsequently, the cylinder is grasped and lifted. If the contact with the
cylinder is lost during lifting, the system has to re-start the task.

Table 2.2 summarizes all features for this task. The position of the end-effector is defined relative to
the cylinders. Inclination and rotation are angles that represent the orientation of the cylinders. Both
features are illustrated in Figure 2.14. Orientation and position of the cylinder are measured using a
six DoF magnetic field tracking sensor system with precisions of approximately 1 cm and 0.15°. The
strain gauges measure the tension in each finger. Together with the finger joint angles, they allow for
detecting successful grasps or a slipped cylinder.

Similar to the previous experiments, we trained the system incrementally after each demonstration.
Each training was followed by an execution of the learned skill. A successful reproduction of the task
requires grasping and lifting the cylinder, as well as successfully detecting a slipped cylinder. Figure 2.15
shows the success rate of the reproduction for all 17 demonstrations. We evaluated the system on
the local sequence graph and trained the classifiers with LR in simulation and with SVMs on the real
robot. The results indicate that the system was able to learn the task completely, even though more
demonstrations had to be performed compared to the light bulb task. The increased number of required
demonstrations is not surprising, as the resulting graph has six outgoing transitions for the initial node.
The transitions for the lying cylinder depend non-linearly on the cylinder length. The logistic regression
models fail to cover this non-linearity. As a result, usually the power grasp is performed when the cylinder
is lying. Even though such a strategy might also lead to a successful grasp, it is not the behavior that
was demonstrated for the medium-length cylinder and is therefore considered a failure. The experiment
shows that the system works well when using positions or joint angles instead of the MP goal distances
as features. It also shows that it is easy to integrate arbitrary other features into our framework. The
only requirement of our system is that the features are meaningful enough, so that successive MPs can
be separated well in feature space.

30

α

Top View

x

y

(a) Rotation

β

β

Side View

x

z

(b) Inclination

Figure 2.14.: The rotation feature (a) is the angle between the shown axes of the lying cylinder (red) and the
hand (green). For avoiding unnecessary rotations of the end-effector, we define two pre-grasp MPs
that approach the cylinder with different orientations (top and bottom). Depending on the angle α,
the MP that is closer to its target orientation should be activated. The feature is shown for the pinch
grasp, but is used for the power grasp in the same manner. The inclination feature (b) is the angle
between the negative gravity vector (black) and the shown cylinder axis (blue). It indicates if the
cylinder is standing (β = 0), lying or standing upside down (β = π).

2.6 Conclusion

This section provides a brief summary of our proposed approach and will highlight the main contri-
butions. Finally, an epilogue will cover some suggestions for future work and discusses some open
problems.

2.6.1 Summary of this Chapter

In this chapter, we proposed a method for learning sequential skills. In our case, a skill is comprised of
a set of MPs and the ability to sequence them in order to perform a complex task. We showed how the

6 8 10 12 14 16
0%

20%

40%

60%

80%

100%

Demonstrations

Su
cc

es
s

R
at

e

LR (simulation)
SVM

Figure 2.15.: Reproduction results for the grasping task. While an accuracy of 100% can be achieved using SVMs,
the logistic regression (LR) models fail to cover the non-linear dependency on the length of the
cylinder.

31

parameters of single linear attractor MPs as well as the transition behavior between them can be learned
from labeled kinesthetic demonstrations of a task.

The observed MP sequences are incorporated into a graph representation we call sequence graph. A
sequence graph has the individual MPs as nodes. It connects the MPs with each other and uses local
classifiers for modeling the transition conditions between them. When executing a learned skill on a
robot, the classifiers trigger transitions between the nodes, leading to a change of the activated MP. The
major advantage of the graph structure is that it allows for splitting the overall decision of which MP to
activate into multiple smaller classification problems.

The approach was validated in three experiments using a real seven DoF Barrett WAM robot with a
four DoF hand. Here, we evaluated two different sequence graph structures and different classifiers for
their applicability in our skill learning framework. The evaluation shows that our system is able to learn
complex skills from a few demonstrations. One important insight from the experiments is that splitting
the overall classification problem into many smaller problems helps to reduce the effect of perceptual
aliasing.

2.6.2 Epilogue

Even though our system was able to learn skills for fairly complex tasks, some aspects of our proposed
approach can be improved in future work. First of all, the approach relies on labeled demonstrations
and a set of predefined MPs, which is a strong restriction and limits its practical applicability. In order to
alleviate these limitations, we developed an approach which extracts a set of MPs from the demonstra-
tions and labels the demonstrations automatically without further human supervision. This method will
be presented in the next chapter.

In Section 2.3.3, we presented two different variants of the sequence graph and algorithms for gen-
erating them from labeled demonstrations. Compared to the global sequence graph, the local sequence
graph is comprised of fewer nodes. In the experiments, it contained paths in the graph which were not
demonstrated and lead to misbehavior. Therefore, the local graph could not be utilized for successful
skill learning in all experiments. Even though the global sequence graph performed better for the con-
ducted experiments, its generation still relies on a deterministic algorithm and there may be tasks for
which the generated graph is suboptimal. Therefore, an important open problem for future research is
finding an optimal sequence graph from a set of demonstrations which does not rely on a deterministic
approach. Here, the main difficulty is that often, an optimal sequence graph cannot be derived from
the limited amount of data acquired from only a handful demonstrations. In order to resolve ambigui-
ties (e.g., which representation is optimal), either more demonstrations have to be provided or a method
for interactive corrections has to be used. A conceivable alternative is to find the optimal sequence graph
representation via trial and error, e.g., by expanding the most compact representation until the skill can
be successfully executed on the real robot.

32

3 Probabilistic Decomposition and Skill Learning for Sequential Robot Manipulation Tasks

In the previous chapter, we presented an approach for learning sequential skills from kinesthetic demon-
strations of a task. For the approach, our main assumption was that a robot is already equipped with
a repertoire of (partially) predefined MPs and we focused on learning to sequence them properly. In
order to learn a skill, the demonstrations had to be labeled with the active MPs over time. This labeling
process is tedious and time-consuming and may prevent the method from being deployed in real-world
application scenarios.

Therefore, in this chapter, we present a method for automatically decomposing a task into a set of MPs
sufficient for performing a task. The approach is based on a probability distribution which we call
Directional Normal Distribution (DND). The distribution allows to infer the MP’s composition (coordinate
frames, control variables, attractor goal) from the demonstrations in a principled manner and permits
to determine an appropriate number of MPs for a task via model selection. Additionally, the method
makes the process of manually labeling the demonstrations superfluous, as it allows for inferring the
sequence of most likely MP activations directly from the demonstrations. In contrast to most state-of-
the-art approaches, we explicitly deal with force data and do not assume that the sequence of movements
performed by the human teacher is the same in all demonstrations.

While the focus of the chapter is the task-decomposition method, we also combine the method with
the sequence graph concept presented in the previous chapter in order to learn how to sequence the
resulting MPs. Combining both methods allows for learning a skill directly from the demonstrations
without further human supervision. We evaluate the approach on three different tasks, unscrewing a
light bulb, box stacking and box flipping. All tasks are kinesthetically demonstrated and then reproduced
on a Barrett WAM robot. The evaluations will show that our approach allows for learning skills for
fairly complex tasks from only a few demonstrations and that the skills can be generalized to situations
which were not demonstrated. This chapter is mainly based on the work presented in Manschitz et al.
[2017a,submitted].

3.1 Introduction

As robots are increasingly being used for many tasks just a few times instead for the same task a million
times, it becomes impossible to pre-program them for all situations they may encounter. Learning meth-
ods can reduce the programming effort. By generalizing existing task knowledge to new situations, they
even have the potential to allow the realization of tasks with higher complexity than just by program-
ming alone. Therefore, learning manipulation tasks from human demonstrations has many potential
application domains ranging from service robotics to industrial applications.

The contribution of this chapter is a concept for improving the human-to-robot skill transfer. Our
particular aim is learning skills for tasks that have the following characteristics. First, the task can be
represented by a sequence of point-to-point movements. Hence, the particular shape and execution
speed of a movement are not relevant, but the target of a movement is. Examples for targets are de-
sired positions or orientations of an end-effector, or a desired grasp. Second, the task involves a direct
interaction with objects in the environment. In phases where the robot interacts with an object, it may
have to actively apply a force, for instance it may have to push an object. Therefore, movements are not
restricted to the kinematic domain. Instead, a target may also be comprised of a desired force or torque.
We refer to tasks that have the aforementioned properties as sequential force interaction tasks.

Learning a skill for such tasks requires learning the individual point-to-point movements necessary to
perform the task and the composition of the movements (e.g., if a force should be applied or not). In
order to be able to perform the task on a real robot, additionally the possible sequential orders of the
movements and transition conditions that allow for switching between them have to be learned. Our

33

particular aim is learning skills that generalize well to situations which were not demonstrated. Hence,
the skill should be independent of global positions, such that it can be generalized to object locations
which were not demonstrated to the robot. Therefore, we demonstrate a task a couple of times with
varying object positions. From these demonstrations, the system learns the individual movements and
decides for each movement if it should be performed relative to an object and if a force should be applied
or not. After learning, we execute the resulting skill on a real robot with a different setup and, therefore,
evaluate the generalization capabilities of the skill.

Throughout this chapter, we will refer to the individual movements as movement primitives (MPs).
The focus of the chapter will be on the process of extracting attractor MPs representing the single point-
to-point movements from the demonstrations. This process will be referred to as task-decomposition. In
order to represent the robot’s movements relative to objects in the scene, we use a hybrid position-force
task-space controller (see Section 2.1.3). A task-space is composed of a controlled entity (e.g., end-
effector), control variables (e.g., position or force) and a coordinate frame which allows for controlling
the robot relative to an object. We predefine a set of task-spaces which are sufficient for performing
a wide range of tasks. Applying our proposed task-decomposition method to the demonstrations then
results is a set of MPs, whereas for each MP an appropriate task-space is selected and the most likely
attractor goal is found. Basis of our approach is a novel probability distribution we call Directional Nor-
mal Distribution. In the chapter, we present the distribution and an Expectation-Maximization algorithm
for inferring its parameters from data. After decomposing a task, we utilize the sequence graph concept
presented in the previous chapter for learning to sequence the resulting MPs. By combining the task-
decomposition method with the sequence graph concept, the system learns a reactive behavior which
allows for performing the task autonomously on setups which were not demonstrated to the robot.

In summary, our system covers the whole process from the acquisition of the demonstrations to the
execution of a learned skill on a real robot. The content of this chapter is based on previously published
work. Our task-decomposition method was first presented by Manschitz et al. [2016]. The method
was later combined with the sequence graph concept by Manschitz et al. [2017a,submitted], where
additionally a more in-depth evaluation of the task-decomposition method was provided. Therefore, this
chapter is mainly based on this paper.

3.1.1 Related Work

We classify approaches that aim at learning sequential skills into four different categories, depending on
their focus:

1. Movement segmentation

2. Coordinate frame selection

3. Choosing control variables

4. Sequence or transition learning

Task-Decomposition

Movement segmentation deals with extracting and/or identifying MPs from a set of demonstrations. At
the core, methods from this field aim at finding reoccurring patterns in time-series data. Coordinate
frame selection methods try to infer if a movement is supposed to be performed relative to an object.
This knowledge is important as it allows for generalizing a skill to undemonstrated object positions.
Choosing the proper control variables is crucial for many tasks. Manipulation tasks are often comprised
of phases where the robot has to apply forces, for instance when pushing a button or turning a valve.
In other phases, it may only have to move the end-effector to a current position. In order to learn
skills for such tasks, it is crucial to properly switch between these control variables. In this chapter, we
focus on finding the decomposition of a task. In our case, such a decomposition is comprised of a set of
generating MPs and their potential sequential orders. Sequence or transition learning approaches were

34

presented in the previous chapter and are therefore not discussed here. The interested reader is referred
back to Section 2.1.1. In the following, we review other approaches, classify them into one of the first
three fields and contrast them to our approach.

Movement Segmentation

Learning MPs from and identifying them in demonstrations is an important research problem, as it allows
for reusing the same movements in multiple, potentially different situations. Among the aforementioned
research fields, movement segmentation may be the one which has received the most attention so far.
An extensive survey of such segmentation methods is provided by Lin et al. [2016]. The survey reviews
various segmentation approaches from different fields (e.g., robotics, rehabilitation, motion analysis).
The authors concentrate on detecting segmentation points between successive movements and present
different metrics for evaluating the performance of a segmentation algorithm. In this section, we discuss
some important segmentation approaches in the domain of robotics.

Time Window Segmentation
Segmenting demonstrations into smaller reoccurring patterns requires the detection of boundaries be-

tween successive movements and clustering of the individual segments based on a similarity measure.
One way of dealing with the complexity of the overall problem is to first split the demonstrations into
segments of fixed length. The resulting segments can subsequently be clustered by for instance inter-
preting them as single data points (e.g., by concatenating the individual data points of the segments to a
single vector). Encapsulating the time-series character of the segments in a single data point allows for
modeling the individual segments using non time-series models. Besides the computational advantages,
downsides of time window approaches are that they usually require to specify the window size by hand
and that the window size is often fixed over the entire demonstration.

Barbič et al. [2004] introduce and compare three different methods for segmenting high-dimensional
motion capture data into single movements. The methods make use of Principal Component Anal-
ysis (PCA), Probabilistic Principal Component Analysis (PPCA), and Gaussian Mixture Models, respec-
tively. The two underlying ideas of the two PCA methods are that first, during a movement, the individual
joint angles are highly correlated with each other. Second, this correlation differs between movements.
Hence, by capturing the intrinsic lower-dimensional subspaces of the data, individual movements can be
discriminated from each other. Their method computes the PCA for fixed time windows and introduces
segmentation points between successive movements when the projection error increases. Taylor et al.
[2007] use a Restricted Boltzmann Machine (RBM) for modeling human movements. The authors use
a predefined fixed number of past observations as input for the RBM and can learn higher-level move-
ments by stacking several layers of the model. Takano and Nakamura [2006] split demonstrations of
human whole-body movements into short sequences of fixed length. Each short sequence is modeled
with a HMM. A higher-level HMM is then trained to model the sequences of HMMs and to abstract from
the fixed sized data sequences. A similar approach is proposed by Kulić et al. [2008], where a HMM
models data partitioned into multiple sliding windows. Their algorithm can be used for online segmen-
tation and the movements can be clustered into different groups representing similar movements. Kulić
et al. [2012] extend this approach by incrementally learning the relationships between MPs. These re-
lationships are modeled with a graph representation which can be utilized for the generation of longer
behaviors. Pais et al. [2013] split the demonstrations into windows of fixed length. Segmentation points
between successive MP are restricted to appear at the border between two segments. A segmentation
point is added if either the most likely coordinate frame of the current movement or the variable of
interest (e.g., force or position control) changes. No clustering of segments has to be performed as the
authors assume the demonstrated sequence of MPs is the same for all demonstrations.

35

Changepoint Based Segmentation
Some approaches assume initial guesses for potential cuts between the segments. The aim is then

to prune out false positives cuts and to find the true positives. Often, such cut candidates are found
by analyzing the zero velocity crossings (ZVCs) of the demonstrations. These kind of approaches are
supported by Flanagan et al. [2006], who showed the relevance of ZVCs for dexterous manipulation
from a biological point of view. The intuition behind ZVCs is that a pause is a natural separation between
two movements.

Lioutikov et al. [2015] prune out false positive cuts in a probabilistic manner using an Expectation-
Maximization algorithm. A distribution over cut candidates is maintained and treated as latent variable.
In the Expectation step of the algorithm, the parameters of the MPs are fixed and the distribution over
the cut candidates is updated. In the Maximization step, the distribution is fixed and the MP parameters
are updated. An extended version of this approach is presented by Lioutikov et al. [accepted]. Konidaris
et al. [2012] present a concept for statistical online changepoint detection based on Hidden Markov
Models. Segmenting a single demonstration results in a skill chain, namely a sequence of goal-directed
movements. Multiple demonstrations are merged into a skill tree. Their model can also be used in the
context of Reinforcement Learning, where a robot actively generates its own demonstrations. Kober
et al. [2015] align demonstrations represented in different coordinate frames in time using Dynamic
Time Warping (DTW). Subsequently, their approach finds the ZVCs of the demonstrations and extract
one MP for each resulting segment. Similar ideas to analyzing the ZVCs are to add segmentation points
based on the joint acceleration [Guerra-Filho and Aloimonos, 2007] or angular jerk [Yamamoto et al.,
2006]. All of these concepts have in common that pausing a movement results in a logical segmentation
point.

Utilizing ZVCs for detecting potential cuts between successive segments is supported by findings from
biology and has proven to work well in practice [Calinon and Billard, 2004, Guerra-Filho and Aloimonos,
2007]. Therefore, our approaches also incorporates them into the segmentation process. Compared to
many other approaches, our approach allows for learning object-directed movements without requir-
ing that the demonstrated movement sequences are the same for all demonstrations. Therefore, the
demonstrations do not have to be aligned in time.

Data-Driven Segmentation
Even though most of the previously mentioned segmentation approaches make use of data-driven

machine learning methods, they either assume the demonstrations are pre-segmented or pre-segment the
demonstrations using heuristics (e.g., ZVCs). Such heuristics, even though they work well in practice,
may not be appropriate for all tasks. Other approaches therefore segment the demonstrations in a
purely data-driven way, using as few assumptions as possible about the task or the structure of the
demonstrations.

Grollman and Jenkins [2010] partition the demonstrations incrementally using the Chinese Restaurant
Process. For each cluster, a Gaussian Process Regressor learns a policy which maps the perceived state
to a continuous action of the robot. However, when reproducing a task, the algorithm requires using
a hand coded mechanism for selecting the correct cluster at each time step. Butterfield et al. [2010]
overcome this issue by also learning the transition behavior between the individual clusters. For this
purpose, they use a Hierarchical Dirichlet Process Hidden Markov Model. Alvarez et al. [2011] model
single movements with Latent Force Models (LFMs, [Alvarez et al., 2009]). A LFM can be thought of
as a set of spring-mass-damper systems being driven by a function sampled from a Gaussian process. A
skill is then composed by a set of LFMs and the ability to properly switch between them. The authors
present a method for learning a skill from demonstrations which requires to specify the number of LFMs
as a hyperparameter. Chiappa et al. [2009] present a Bayesian approach for clustering movements based
on Mixtures of Linear Gaussian State-Space Models (LGSSMs). As a Bayesian treatment of LGSSMs is
intractable, they introduce a clustering method based on variational Bayes. Their model is generative and
thus can also be utilized for generating movements. Yet, no transition conditions between the movements

36

are learned and therefore, it is only shown that the generated movements for single clusters are similar
to those who have been demonstrated. Endres et al. [2011] use Bayesian binning for segmenting human
Taekwondo movements into single actions. Actions are modeled as fixed order polynomials. The author’s
also focus on the segmentation process and not on the actual generation of movements. One downside of
their approach is that the individual bins corresponding to the movement are independent of each other
and are represented in a singly connected factor graph. Therefore, if the same movement is demonstrated
twice in a sequence, it is not considered to be the same movement. Niekum et al. [2012, 2013, 2015b]
segment demonstrations using a Beta Process Autoregressive Hidden Markov Model (BP-AR-HMM, [Fox
et al., 2009]). After segmenting the demonstrations and assigning the segments to clusters, each cluster
is considered a single movement that is subsequently modeled with a DMP. Therefore, the method can
also be utilized for reproducing a learned skill on a real robot. Their method does not require specifying
the number of MPs beforehand and is able to learn skills from demonstrations with varying movement
orders. Medina and Billard [2017] represent single movements with Linear Parameter Varying (LPV)
Systems encoded as Gaussian Mixture Models. Movement sequences are encoded with HMMs, where
the individual states are represented with LPVs. Each single movement is guaranteed to have a unique
global attractor and they also learn the termination conditions of the individual movements.

The segmentation of most of the aforementioned approaches is based on modeling the individual seg-
ments. In that case, a segmentation point is implicitly defined as a point were the likelihood of a model
corresponding to the current segment decreases and the likelihood of another model increases (hence,
the most likely model changes). Another idea is to directly detect the changes between the physical
relationships of objects in the environment. Niekum et al. [2015a] do so by using Bayesian online
changepoint detection. An example for a physical relationship is one where two objects move together
as a rigid body (e.g., two boxes are stacked together and moved from one position to another). Baisero
et al. [2015] have similar aims. Their approach is based on Conditional Random Fields [Lafferty et al.,
2001], but requires labeled demonstrations.

Recently, also Inverse Reinforcement Learning (IRL) methods have been frequently used in the context
of movement segmentation and skill identification. Instead of directly extracting MPs from demonstra-
tions, IRL methods try to infer reward functions corresponding to the goals of the individual sub-tasks.
Once found, the reward functions can be utilized for learning a set of MPs which achieve the goals of
the sub-tasks. If the reward functions capture the essence of the sub-tasks, the resulting MPs are likely
to generalize well to previously unknown situations. Despite these advantages, one downside of IRL
methods is that they are data-intensive, making them impractical for our purpose. Ranchod et al. [2015]
present an approach for segmenting trajectories using IRL. They adapt the Beta Process Autoregressive
Hidden Markov Model (BP-AR-HMM) by replacing the Vector Autoregressive Process as emissions with a
Markov Decision Process (MDP). The MDP allows for learning a reward function and the corresponding
policy that maximizes the reward for each segment. All model parameters have to be estimated with
Monte Carlo methods, which is why the method is computationally very expensive and the evaluations
are carried out on simple toy examples. A similar IRL method is proposed by Michini [2013], who use a
nonparametric Chinese Restaurant Process for inferring the number of sub-tasks from the demonstrations
in a non-parametric way.

In summary, completely data-driven approaches have the ability to learn a skill with very few assump-
tions about the task or the structure of the demonstrations. However, they are often data-intensive, as
they require too many demonstrations for learning a skill. Additionally, the resulting MPs do not nec-
essarily describe meaningful movements in the context of a task (e.g., grasp an object) as they do not
incorporate knowledge about robotics or the task itself. As a consequence, the MPs usually explain the
demonstrations, but the generalization capabilities of the resulting skill may be limited. In order to learn
generalizable skills from a few demonstrations our proposed approach makes use of ZVCs.

37

Identifying Movement Primitives from a Library
If a system is already equipped with a repertoire of MPs, the segmentation problem reduces to iden-

tifying these MPs in the demonstrations. Meier et al. [2011] propose an approach for online movement
recognition and segmentation based on a library of predefined MPs. For each new data point, they es-
timate the open parameters of all MPs in the library and compute the likelihood of the corresponding
models. The currently active MP is the one corresponding to the highest likelihood. If all likelihoods
fall below a threshold, a new MP is added to the library. This approach is extended by Meier et al.
[2012], where segmentation candidates are added by analyzing the velocity profiles of the movements.
These candidates allow for segmenting data offline and make the hand-tuning of the threshold param-
eter superfluous. A similar approach is proposed by Lemme et al. [2014b]. Here, a MP library is built
incrementally, given only a single initial MP (corresponding to a simple point to point movement) and
a set of kinesthetic demonstrations. The demonstrations are segmented into a sequence of trajectory
chunks. Each chunk is assigned to the MP which most likely produced it. The robot then executes the
sequence and co-articulates between successive movements. Due to the co-articulation, combining two
point to point movements may result in a smooth curved movement. Subsequently, the chunks from
the previous demonstration are pairwise combined to form new MPs. The new MPs are added to the
library and are again used for segmenting the new trajectory. This process is repeated until the repro-
duced trajectory matches the kinesthetic demonstrations well. By combining and refining existing MPs,
the approach can learn movements of arbitrary shape. The movement identification is based on the
geometrical shape of the movements. Therefore, it is not possible to distinguish movements of similar
shape but different dynamics. Additionally, it is not clear if the approach can be applied to more than
three-dimensional movement spaces. Gräve and Behnke [2012] model individual MPs with HMMs and
assume that these MPs have been previously learned. Given a demonstration, their approach tries to
find segmentation borders between successive segments and assigns each segment to one of the exist-
ing MPs. A segmentation border is defined as the best compromise between the most likely end point of
the current segment and the start point of the succeeding segment.

Coordinate Frame Selection

Introducing coordinate frames allows for representing and generating object-directed movements, po-
tentially leading to increased generalization capabilities of a skill. Therefore, various approaches aim
at learning in which coordinate frame a MP should be represented. Niekum et al. [2015b] segment
demonstrations using an Auto-Regressive Hidden Markov Model. Each state of the model corresponds
to a MP. After the segmentation, the end-points of the segments assigned to a MP are clustered in dif-
ferent coordinate frames. The goal of the MP is then defined in the frame corresponding to the largest
cluster. In contrast to this approach, our method integrates the coordinate frame selection directly into
the segmentation. Another approach that explicitly deals with coordinate frames is that of Rozo et al.
[2016]. The authors use a task-parametrized Gaussian mixture model (TP-GMM, [Calinon et al., 2012])
as trajectory representation. A TP-GMM is a hierarchical GMM with two layers. While on the upper layer
each mixture corresponds to a MP, the lower layer represents the joint probability of the trajectory (and
the velocity) in different coordinate frames. In addition to learning a task-representation in different
coordinate frames, they learn to vary the controller stiffness dynamically. As a result, their approach
enables a robot to physically interact with a human co-worker. While human-robot collaboration is an
interesting research domain, our approach focuses on tasks where the robot is operating autonomously.

Pais et al. [2013], Ureche et al. [2015] extract the coordinate frames and control variables based on the
variance of the data. If the variance of a variable is large within a time window for all demonstrations,
they consider it to be significant for the task. The reason is that the variable changes its value and
does that in a systematic way across all demonstrations. Kober et al. [2015] showed that under certain
circumstances this assumption leads to an over-segmentation of the data. Therefore, they suggested
to incorporate the convergence behavior of the movement as well. Compared to our method, many

38

approaches (e.g., Kober et al. [2015], Mühlig et al. [2009], Pastor et al. [2012], Reiner et al. [2014],
Ureche et al. [2015]) require demonstrations with identical sequential ordering of the employed MPs.
Our approach is instead capable of decomposing a task if the demonstrated MP sequences vary across
demonstrations. An example are demonstrations of a light bulb unscrewing task. Here, the number of
unscrewing repetitions may vary over demonstrations depending on how firmly the light bulb is screwed
in. Furthermore, our approach is able to simultaneously infer all possible MP sequences as well as the
composition of the MPs. We will show that decomposing kinesthetic demonstrations of a force interaction
task with our approach leads to meaningful and intuitive MPs.

Choosing Control Variables

Only a few approaches incorporate force information into the decomposition of the task. For instance,
Abu-Dakka et al. [2015] adapt the dynamic movement primitives (DMPs, Ijspeert et al. [2002]) frame-
work so that the robot follows a desired force profile. Yet, they predefine if an MP is position or force-
controlled. Steinmetz et al. [2015] learn a desired position and force profile with a DMP from a single
demonstration. They present a control framework that is able to transition between phases of pure
impedance control and force control based on the measured external force. The approach is not able to
handle multiple demonstrations or sequences of MPs. Rozo et al. [2016] learn to modulate the stiffness
factor, which is important for collaborative tasks. Ureche et al. [2015] as well as Kober et al. [2015] ex-
plicitly choose between position and force control based on the variance of the data and the convergence
properties of the segments, respectively. As these approaches worked well in practice, we adopt some of
the ideas of the aforementioned papers and integrate them into our approach.

3.1.2 Learning Sequential Force Interaction Tasks

This section provides an overview of the presented method and the structure of this chapter, Additionally,
the notation of this chapter is introduced. In order to learn a skill, two main steps are performed. First, a
set of MPs is extracted from the demonstrations. Second, the system learns to sequence the resulting MPs.
Our method operates on the data recorded during a set of kinesthetic demonstrations of the task

τm =

{(
q
(m)
i ,ft

(m)
i ,f

(m)
i ,o

(m,1)
i , . . . ,o

(m,No)
i

)
i=1:Nm

}
. (3.1)

Each demonstration m of varying length Nm with a robot that has Nj joints results in a time-series
of joint angles q(m)

1:Nm
∈ RNj×1, forces and torques ft(m)

1:Nm
∈ R6×1, as well as the 3D positions and

3D orientations of all No objects in the scene o(m,o)1:Nm
∈ R6×1. Here, o(m,o)1:Nm

contains the positions and
orientations of the oth object for demonstration m. Each object and the world are associated with a
coordinate frame. The forces and torques are measured at the wrist of the robot. The teacher is required
to touch the robot above of the wrist such that he or she does not distort the force measurements. The
joint angles include the joints of the robot arm and the joints of the robot’s hand.

In a first step, the demonstrations are projected onto a set of predefined task-spaces. For our tasks (as
well as many household and/or industrial tasks), it is sufficient to control the position and orientation
of the end-effector and the joint angles of the robot’s hand. These three entities (position, orientation,
fingers) can be controlled largely independently. Therefore, we define the following task-spaces: We use
task-spaces representing the position and force of the end-effector in the world frame and relative to
every object in the scene. To represent the orientation and torque of the end-effector, also task-spaces
are used for the world frame and all other coordinate frames. The fingers of the robot are controlled
in joint-space. Therefore, one additional task-space is used to describe the finger joints. The projection
results in the task-space data x(m,k)

1:Nm
. Here, the time-series x(m,k)

1:Nm
∈ RNk×1 corresponds to the data of

39

Kinesthetic Demonstrations

Forces & Torques FTJoint Angles Q Objects O Features F

Compute Task-Space Data

XOrientation/TorqueXPosition/Force XHand

Decomposition Decomposition Decomposition

MPs MP Activations AP/F MPs MP Activations AO/T MPs MP Activations AH

MP1

MP2MP3 MP4

aO/TaP/F aH

(a)
O

bservations

(b)
D

ecom
position

(d)
R

eproduction

(c) Training (with labels AP/F, AO/T, AH)

Figure 3.1.: Overview of our approach. From the kinesthetic demonstrations (a), we record the joint angles of
the robot, the measurements of the force-torque sensor, the positions and orientations of all objects
in the scene, and features over time. The observations are then projected onto a set of predefined
task-spaces. The task-spaces are split according to what they control (b). The resulting data is used to
decompose the demonstrated task, yielding a set of MPs, and their activation probabilities over time.
For reproducing the task on the robot, a graph with local classifiers is responsible for setting the MP
activations (d). For training the classifiers (c), the features and MP activation probabilities are used.

the mth demonstration represented in the kth task-space. Note that the number of dimensions Nk can
vary for the individual task-spaces.

The next step is to extract a set of MPs from the task-space data. For understanding this step, some
insights into our controller and MP framework are beneficial. We use the same hybrid position-force
task-space controller for controlling the robot as in the previous chapter (see Section 2.1.3), as well as
the same MP representation. Hence, a MP is a dynamical system with a linear attractor behavior

ẍ(k) = α
(
β(g − x(k))− ẋ(k)

)
, (3.2)

where g is the attractor goal of the MP and x(k) are the coordinates of task-space k. The controller
parameters α and β determine the dynamical behavior of the movement. For each MP, our method has
to select an appropriate task-space k ∈ {1, . . . ,K} and has to infer its most likely attractor goal g.
Note that the controller parameters α and β are predefined in this chapter, as learning them is out of
the scope of this thesis. We consider it an interesting research problem to learn them from the demon-
strations as well. Our control framework allows the activation of multiple MPs at the same time. As,
position, orientation and fingers can be controlled largely independently, we usually activate three MPs
at the same time when controlling the robot. The advantage is that this co-activation greatly simplifies
our MPs. For instance, we can reach different positions with a constant orientation by changing only
the MP controlling the position of the end-effector. To integrate this property into the decomposition, we
split the task-space data into three distinctive sets according to what the controlled entity is (position,
orientation or fingers). We apply our task-decomposition method to each of these sets, as illustrated in
Figure 3.1. Therefore, the task-decomposition results in three independent sets of MPs, one for each
controlled entity. The decomposition method is introduced in the following Section 3.2. The core of the
method is the Directional Normal Distribution, a probability distribution which is introduced in detail in
Section 3.3.

After decomposing a task into MPs, our system learns to sequence the MPs in order to master the
overall task. When executing a learned skill on a real robot, the MPs are activated in a reactive manner

40

based on a feature set f ∈ RNF×1. Here, NF is the dimension of the feature space. In theory, the
feature space can be comprised of arbitrary measurable values (e.g., camera images). However, in
this chapter, it will be usually comprised of the robot’s state in task-space coordinates. As such, the
feature state implicitly contains the positions and orientations of all objects in the scene, as each object
is associated with a coordinate frame. In order to learn a mapping from features to MP activations, we
record the features during the demonstrations f (m)

1:Nm
∈ RNF×1, as well. The sequencing method is based

on sequence graph concept presented in the previous chapter. In Section 3.4, we adopt the concept to
account for the required synchronization of the otherwise independently controlled MPs of the three
different entities. One important difference to the previous chapter is that the task-decomposition can be
used for labeling the demonstrations with the most likely MPs over time. Therefore, the decomposition
method replaces the tedious process of manually labeling the demonstrations.

After learning to sequence the MPs, the resulting skill can be executed on a real robot. In Section 3.5,
we evaluate the proposed approach on three different real robot experiments: box stacking, box flip-
ping and light bulb unscrewing. Finally, we discuss the results and some remaining open problems in
Section 3.6.

3.2 Proposed Task-Decomposition Approach

The task-decomposition approach consists of three steps. First, the demonstrations are split into smaller
segments. Second, a HMM is trained to cluster the segments. Segments are assigned to the same cluster
if they can be represented by the same attractor movement in one of the task-spaces. Finally, the MPs
are extracted from the parameters of the resulting clusters. The three steps will be explained in detail in
the following subsections. The explanations are accompanied by a simple toy example that is using only
position and force data. The reader can imagine the toy task as follows. The task is to first approach an
object, subsequently push against the object and then move to a fixed final position. Figure 3.2 depicts
an overview of the toy example in the context of our task-decomposition method. As discussed earlier,
the same method is used for the individual decompositions of the three controlled entities (position,
orientation and fingers)1.

3.2.1 Segmentation

As a first step, we split the demonstrations into smaller segments by finding the zero-velocity cross-
ings (ZVCs) of the individual task-spaces. Hence, a segment is added if the robot gets into or looses
contact with an object or if a controlled entity stopped and starts to move again. For each demon-
stration m, the time-indices of the ZVCs are stored in a time-ordered vector z(m). Based on z, the
demonstrations are split into sequences of segments x(m,k)

zl:zl+1 , where l corresponds to the lth segment.
Figure 3.2b depicts the segmentation of the toy example.

3.2.2 Clustering the Segments

After the segmentation, we assume the data is over-segmented, as multiple segments may correspond
to the same movement. Therefore, we cluster the individual segments based on a similarity measure.
As we concentrate on learning skills for tasks that can be represented by a sequence of point-to-point
movements, we argue that segments converging to the same target (in one of the task-spaces) should be
assigned to the same cluster. This convergence property of the segments can be measured by a probability
distribution which we call Directional Normal Distribution (DND). This distribution is based on the
normal distribution and has two parameters, a mean µ and a Covariance matrix Σ. The difference to a

1 Handling orientations needs some adaptions that are explained in Chapter 3.3.2

41

0

0.5

1

Fo
rc

e
x

Frame 1

−1 −0.5 0 0.5 1

0

0.5

1

Position x

Fo
rc

e
x

Frame 2

(a) Demonstrations

Frame 1

−1 −0.5 0 0.5 1

Position x

Frame 2

(b) Segmentation

50%

50%

50%

Frame 1, it=0

−1 −0.5 0 0.5 1

50%

50%

50%

Position x

Frame 2, it=0

71%

90%

71%

90%

Frame 1, it=2

−1 −0.5 0 0.5 1

77%77%

Position x

Frame 2, it=2

98%

99%

98%

99%
Frame 1, it=6

−1 −0.5 0 0.5 1

92%92%

Position x

Frame 2, it=6

(c) Hidden Markov Model

Figure 3.2.: Overview of the presented task-decomposition approach using a simple 1D toy example. Plot (a)
shows two demonstrations (black and gray) in two different coordinate frames. Our approach first
segments the data by finding zero-velocity crossings and contact changes (b). The different segments
are illustrated using different colors. Subsequently, the segments are clustered by using a Hidden
Markov Model (HMM) (c). Here, we use mixtures of Directional Normal Distributions (DNDs) as state
emissions of the HMM. DNDs allow for clustering the segments based on their convergence properties.
If two segments are converging to the same attractor in one of the task-spaces corresponding to the
coordinate frames, they are more likely assigned to the same cluster. After training, a MP is defined for
each resulting cluster, and its coordinate frame, control variables and attractor target can be inferred
from the parameters of the cluster. The attractor goals of the MPs are marked in the plot and the
uncertainty about their position is shown with ellipsoids. The goals are only shown in the most likely
coordinate frame of the MP. For instance, the -MP will be position-controlled in the second frame
(with a certainty of 92%), as the target force is close to zero and the segments assigned to the MP
converge best in this frame.

Normal Distribution is the meaning of the µ parameter. While Σ can also be interpreted as an uncertainty
parameter, the mean is defined as an attractor goal. For a given segment, the distribution yields a
probability that indicates how well the segment is converging towards the attractor goal. Therefore, the
distribution can for instance be utilized for determining if two or more segments converge to the same
attractor goal. In Section 3.3, we present an algorithm which allows for learning the parameters of the
distribution from data. For this section, it is sufficient to know that we can estimate the most likely target
to which a set of segments converge in a probabilistic manner by using DNDs.

For clustering the segments, we integrate the DND as state distribution into a Hidden Markov
Model (HMM). More precisely, as our data is represented in different task-spaces and we want to mea-
sure the convergence for each task-space and segment, we use a mixture of DNDs for each HMM state.
One advantage of using such a probabilistic model is that we can perform model selection to choose
the optimal number of clusters for the demonstrations. For this step, we use the Bayesian Information
Criterion (BIC), a standard model selection criterion for probabilistic models [Schwarz, 1978].

The HMM training process is illustrated in Figure 3.2c. We initialize the parameters of the model by
setting each DND mean to an end-point of a randomly selected segment. The covariance matrices are
initialized with that of an isotropic Gaussian Σ = σ2I. The transition matrix is initialized randomly
with a small bias on self-transitions. Subsequently, the segments are assigned to the clusters based
on their convergence properties by maximizing the log-likelihood of the model with the Baum-Welch
algorithm [Welch, 2003].

3.2.3 Extraction of MPs

The HMM training assigns segments to the same cluster if they converge to the same attractor goal in
one of the task-spaces. We argue that these segments can be represented by the same MP. The parameters

42

of each resulting MP can be inferred from the parameters of the corresponding cluster. For each cluster,
the largest mixture weight of the DND mixture indicates in which of the task-spaces the MP can be
represented best. The target of the MP is then defined as the mean of the mixture with the largest
weight. Finally, if the assigned task-space of an MP is composed of forces and positions along the same
axis, we explicitly decide whether force or position are chosen as control variable. Here, we use a simple
heuristic. Force is only chosen if the desired attractor force of the MP is higher than a threshold and the
velocity mean of the segments assigned to this MP is below a threshold. Thus, if a force was measured
along a certain axis and the robot was not moving in this direction, we assume the teacher wanted the
robot to apply a force. For an illustrative example of the parameter extraction, the reader is referred to
Figure 3.2c.

3.3 Measuring Convergence with the Directional Normal Distribution

We introduce the DND as an instrument for measuring the convergence of the individual segments. The
distribution has two parameters Θ = {µ,Σ}. The mean µ corresponds to an attractor goal, while the
covariance matrix Σ indicates the uncertainty about the location of µ. In order to be used for our pur-
pose, the distribution has to fulfill two properties. First, given a segment x1:N the probability p(x1:N |Θ)
should be large if the segment is converging to the target µ, and small otherwise. Second, given a single
or multiple segments, we need a method for estimating the most likely parameters of the distribution.
In this section, we present the idea behind the distribution and its density function. In Section 3.3.1, we
then derive a method for estimating the parameters from data with a maximum likelihood approach.

For deriving the density function, we assume the following statement to hold. If a segment is con-
verging to a given target, then on average, the velocity vector v i corresponding to a data point xi from
the segment should roughly point towards the target. Thus, the probability of a segment is computed as
joint probability of the points from the segment

p ([x1:N , v 1:N]|Θ) =

N∏
i=1

p
(
[xi, v i]

∣∣Θ) .
Here,N is the number of points of the segment and xi and v i are the individual points from the segment.
We usually compute the velocity by approximating the gradient v i ≈ (xi − xi−1)/h with step-size h. In
that case, the equation can also be written as

p (x1:N |Θ) = p (x1)

N∏
i=2

p
(
xi
∣∣xi−1,Θ) .

In the following, we will stick to the notation which makes use of the velocity vector v . Given a single
data point x and its velocity vector v , the density function of a DND is defined as

p
(
[x, v]

∣∣t,µ,Σ) =
e−

1
2 (x+tv−µ)

TΣ−1(x+tv−µ)√
(2π)d |Σ|

, (3.3)

The scalar parameter t projects the point along its velocity vector. The idea is to choose the parameter so
that the distance between the projection and the mean of the distribution becomes minimal. If pointing
away from the mean, a data point should be assigned a low probability. Therefore, the parameter is
restricted to t ≥ 0. By rearranging (3.3), it can also be written as a normal distribution of t

p
(
t
∣∣µt, σ2

t

)
= Zce

− (t−µt)2
2σ2t , (3.4)

43

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

it = 0

−1 −0.5 0 0.5 1

x

it = 1, E-step

−1 −0.5 0 0.5 1

x

it = 1, M-step

−1 −0.5 0 0.5 1

x

it = 5

Figure 3.3.: Illustration of the EM algorithm. The black arrows correspond to data points and their velocity vectors.
The data points are drawn uniformly from the shown grid. The velocity vectors are determined by
drawing points from the black normal distribution and scaling the difference vector to the data points
to a fixed value. The EM algorithm iteratively finds a target on the grid that fits best to all data points
and the corresponding velocity vectors. The red ellipsoid shows the initial and current guesses for
the target. In the E-step of the algorithm, for each data point a projection along the velocity vector is
computed that fits best to the current estimate of the target (blue dashed lines). In the M-step, a new
estimate for the distribution parameter is found.

with normalization constant Zc. Due to the constraint t ≥ 0, we can assume that the posterior of t is
distributed to a truncated normal distribution

p
(
t
∣∣ [x, v] ,µ,Σ

)
=

1√
(2π)σt

1

1− Φ(−µt
σt

)
e
− (t−µt)2

2σ2t , (3.5)

µt =
vTΣ−1(µ− x)

vTΣ−1v
, (3.6)

σt = (vTΣ−1v)−
1
2 . (3.7)

Here, Φ is the cumulative distribution function of a normal distribution with standard deviation one and
mean zero. To avoid running into numerical issues, we set µt to zero and σt to one if the norm of the
velocity is below a threshold. The joint probability of the data point and its projection is defined as

p ([x, v] , t|µ,Σ) = p
(
[x, v]

∣∣t,µ,Σ) p (t∣∣µ,Σ) . (3.8)

When learning the parameters of the distribution, we are not interested in the projection itself. Instead,
we want to integrate it out, as it depends on the (unknown) parameters of the distribution. Given a
segment [x1:N and v 1:N], the complete log-likelihood function is defined as

log p
(
[x1:N , v 1:N]

∣∣µ,Σ) =

N∑
i=1

∫ ∞
0

log p
(
[xi, v i] , ti

∣∣µ,Σ) dti. (3.9)

Here, we assumed that the values ti are independent of each other. We justify this assumption by the
fact that given a fixed µ and Σ, the ti’s can be computed independently of each other. We would also
like to point out that the individual points xi all come from a continuous trajectory with a continuously
changing velocity vector v i. Therefore, the projections xi + tiv i will automatically be close nearby for
succeeding data points. In order to infer the parameters of our distribution, we want to maximize the
log-likelihood function. The required integrations over ti is intractable as the variables are restricted
to the range [0,∞]. Therefore, in the following section, we derive an Expectation-Maximization (EM)
algorithm to get an iterative update scheme for the parameters of the distribution.

44

3.3.1 Parameter Learning

In the context of the task-decomposition, the aim is to find the best attractor goal for a given set of
segments when learning the parameters of the distribution. As the probability is defined as the joint
probability of the individual points from the segments, it does not matter if the parameters are learned
for a single or multiple segments. Therefore, the notion of a segment is omitted in this section.

The principle of the EM algorithm is depicted in Figure 3.3. In the Expectation step of the algorithm,
we use the current parameter values θold = {µold,Σold} for estimating the posterior distribution of the
latent variables p(t

∣∣x1:N , v 1:N ,θ
old). Here, t = [t1, t2, . . . , tN]T is the concatenation of all projections.

As the ti’s are independent of each other, the estimation can be done for each data point separately as
in (3.5). Intuitively, the E-step projects each data point as close as possible to the current mean of the
distribution. In the Maximization step, we get new estimates for our parameters θnew by maximizing the
expectation of the complete-data log-likelihood under the posterior of the latent variables

θnew = arg max
Θ
Et
[
log p

(
[x1:N , v 1:N] , t

∣∣θ,µt,σt)] ,
= arg max

Θ

N∑
i=1

∫ ∞
0

p
(
ti
∣∣ [xi, v i] ,θ

)
log p

(
[xi, v i] , ti

∣∣θ, µ(i)
t , σ

(i)
t

)
dti. (3.10)

As the integral is evaluated for each data point separately, we omit the indices for the solution of the
integral in the following. The integral evaluates to∫ ∞

0

p
(
t
∣∣ [x, v] ,θ

)
log p

(
[x, v] , t

∣∣θ, µt, σt) dt
=

∫ ∞
0

c1e
− (t−µt)2

2σ2t
(
c2(Θ)t2 + c3(Θ)t+ c4(Θ)

)
dt

= c1 (c2(Θ)d2 + c3(Θ)d3 + c4(Θ)d4) . (3.11)

The values of the constants can be found in Appendix B.1. Note that c2, c3, and c4 are constants only for
the integration, as they depend on the parameters µ and Σ which we want to estimate. Upon evaluating
this integral, the parameters can be obtained using (3.10). As the constants c2 to c4 depend on the
parameters, we compute the derivatives of (3.11) with respect to µ and Σ−1 and set them to zero. Now
we work again on the entire data set, so we will use the indices again.

∂Et
[
log p

(
[x1:N , v 1:N] , t

∣∣θ,µt,σt)]
∂µ

=

N∑
i=1

c
(i)
1

(
d
(i)
2

∂c
(i)
2

∂µ
+ d

(i)
3

∂c
(i)
3

∂µ
+ d

(i)
4

∂c
(i)
4

∂µ

)

= Σ−1
N∑
i=1

c
(i)
1

(
d
(i)
3 v i − d(i)4 µ+ d

(i)
4 xi

)
= 0.

Multiplying by Σ from the left and rearranging leads to the solution

µ =

∑N
i=1 c

(i)
1 d

(i)
4 xi + c

(i)
1 d

(i)
3 v i∑N

i=1 c
(i)
1 d

(i)
4

. (3.12)

Note that the cumulative distribution function Φ is closely related to the error function erf by the relation

Φ

(
−µt
σt

)
=

1

2

(
1− erf

(
µt√
2σt

))
.

45

Algorithm 3 EM-algorithm for DND

Require: data x1:N , velocities v 1:N , initial mean µ, initial cov Σ
1: while not converged do
2: for all data points xi, v i do // Start E-step
3: compute constants c(i)1 and d(i)2 , ..., d

(i)
4 (B.1)

4: compute new mean µ(c1,d3,d4) (3.12) // Start M-step
5: compute new covariance matrix Σ(c1,d2,d3,d4) (3.13)

6: return mean µ, covariance matrix Σ

Therefore, the constants c(i)1 d
(i)
3 and c

(i)
1 d

(i)
4 could be further simplified. For instance, c(i)1 d

(i)
4 equals

one (proof skipped here) and so (3.12) can also be written as

µ =
1

N

N∑
i=1

(
xi + c

(i)
1 d

(i)
3 v i

)
.

For estimating the covariance matrix Σ, we compute the derivative with respect to its inverse Σ−1.

∂Et
[
log p

(
[x1:N , v 1:N] , t

∣∣θ,µt,σt)]
∂Σ−1

=

N∑
i=1

c
(i)
1

(
d
(i)
2

∂c
(i)
2

∂Σ−1
+ d

(i)
3

∂c
(i)
3

∂Σ−1
+ d

(i)
4

∂c
(i)
4

∂Σ−1

)

=
1

2

N∑
i=1

c
(i)
1

(
− d(i)2 v iv

T
i + d

(i)
3 v i(µ− xi)T

+ d
(i)
3 (µ− xi)vT

i − d
(i)
4 (µ− xi)(µ− xi)T + d

(i)
4 Σ
)

= 0.

Rearranging then leads to the solution

Σ =
1

N

N∑
i=1

c
(i)
1

(
d
(i)
2 v iv

T
i − d

(i)
3 v i(µ− xi)T − d(i)3 (µ− xi)vT

i + d
(i)
4 (µ− xi)(µ− xi)T

)
. (3.13)

In summary, the parameters of the distribution can be estimated iteratively by first computing the c and
d constants for each data point according to Appendix B.1 (E-step). Second, a new estimate for the
parameters of the distribution can be found by computing µ and Σ according to (3.12) and (3.13) (M-
step). The algorithm is summarized in Algorithm 3.

3.3.2 Extension for Orientations

The Euclidean distance measure used in (3.3) is not suitable for 3D orientations. In this section, we
show that by making some reasonable approximations, we can make our algorithm applicable also for
orientations.

In order to be applicable, we have to define a projection x+ tv and a difference vector for orientations
that can be written in the form x+ tv −µ. We define the target orientation in the inertia frame with the
rotation matrix RFI. The matrix RVI(t) = RVS(t)RSI represents the start orientation rotated with the
angle t around the angular velocity axis. The rotation matrix is also given in the inertia frame. Hence,
the projection parameter t has a different meaning than for Euclidean task-spaces. Instead of projecting

46

a position along its velocity vector, it rotates an orientation by an angle around the angular velocity axis.
By writing the matrices as vectors r ∈ R9×1, we can define a difference vector with

rVI(t)− rFI = d cos(t) + e sin(t) + f − rFI (3.14)

≈ d(cos(α)− sin(α)(t− α))

+ e(sin(α) + cos(α)(t− α)) + f − rFI,
= x+ tv − µ,

x = α cos(α)(−d− e)

+ α sin(α)(−d+ e) + f ,

v = cos(α)(d+ e) + sin(α)(−d+ e),

µ = rFI.

The values of the constants d, e and f can be found in Appendix B.2. Now our difference vector can be
written in the form x + tv − µ and we can estimate the target orientation with the same algorithm as
in the previous section. Still, some details have to be taken care of. First, we approximated the sine and
cosine terms with a first-order Taylor approximation around α. We therefore have to evaluate how good
the approximation is. Second, the approximation introduced the parameter α and it is not clear how to
choose it. Third, estimating the parameters of the distribution with our standard algorithm will result
in a value for µ which does not describe a proper orientation. Therefore, after applying our standard
decomposition method, we reshape the target vector to a matrix and find the closest true rotation matrix
to our matrix using the approach of Higham [1989].

In the following, we introduce an intuitive way of choosing α. A natural way of measuring the differ-
ence between two orientations is the axis angle θ(t) of the relative transformation RFV = RFI(RVI)

T

θ(t) = cos−1
(

1

2
(Tr(RFV)− 1)

)
= cos−1

(
1

2
(a cos(t) + b sin(t) + c− 1)

)
. (3.15)

The constants a, b and c can be derived straightforwardly. For further details, see B.2.1. In order to
project the current orientation as closely as possible to the target orientation, we compute the derivative
of (3.15) with respect to t and set it to zero

∂θ

∂t
=

0.5a sin(t)− 0.5b cos(t)√
1−

(
1
2 (a cos(t) + b sin(t) + c− 1)

)2
= 0 ⇒ t = atan2(b, a). (3.16)

Hence, if we knew the target orientation without any uncertainty, we could compute a distance measure
between the current orientation and the target in closed form. For the Taylor approximation, we can
therefore make use of a trick. If we neglect the uncertainty Σ, we can set the target orientation to the
current estimate of the mean µ. Subsequently, we compute t̃ according to (3.16) and use it for the Taylor
approximation α = t̃. Therefore, we get a good approximation by developing the Taylor series about
a value close to the true t. The approximation allows us to integrate orientations in our method in a
straightforward way.

3.4 Movement Primitive Sequence Learning

In the previous sections, we introduced our task-decomposition method. Applying the method results in
a set of MPs and a HMM which reflects potential sequential orderings of the MPs. In fact, we apply the

47

HMMP/F

HMMO/T

HMMH

(a) Independent HMMs

H

O/T

P/F

Time

M
P

(b) Most likely MPs over time

Classifier1 Classifier2 Classifier3 Classifier4

Sequence Graph

(c) Combined Sequence Graph

Figure 3.4.: Illustration of the sequence learning. The three HMMs (a) resulting from the task-decomposition are
used for labeling the demonstrations with the most likely MPs (different colors) over time (b). The
labeled demonstrations are compiled into a single sequence graph representing potential MP orders
(c). Local classifiers are responsible for transitioning between successive MPs when executing the skill
on a real robot.

method three times with data from different task-spaces, as the MPs controlling the position/force of the
end-effector, its orientation and the joint angles of the fingers are learned independently of each other.
While extracting the MPs of these three different entities independently of each other simplifies learning
and leads to simple reusable MP, the MPs cannot be treated independently of each other when executing
a skill on a real robot. For instance, the end-effector may only be allowed to move after an object has
been grasped. Therefore, the decision when to execute which MP for one entity has to be conditioned
on the state of the two other entities.

In order to account for the necessary synchronization of the MPs, we utilize the sequence graph concept
presented in the previous chapter and adapt it for our purpose. Our overall aim is to learn a skill that
has a reactive behavior. Instead of following a pre-computed path, the system is supposed to decide
online when to stop a movement and which movement to start next. Thus, it has to decide when to
activate which of the MPs based on the current state of the robot and the state of the environment (e.g.,
current positions of objects in the scene). For a successful execution of a learned skill, the MPs have to
be activated at the correct time points and in the correct order. The decision has to be made based on
the feature state f ∈ RNf×1, where Nf is the dimension of the feature space. In theory, this feature
state can be comprised of arbitrary values, but in this chapter, it will be equivalent to the task-space data
x. Thus, it implicitly encodes the state of the robot in relation to all objects in the scene (including the
forces) and contains the joint angles of the fingers as well as the measured forces.

In the standard formulation of the sequence graph, a node corresponds to a MP and each node is
associated with a local classifier. When executing a skill, one node in the graph is considered active and
the associated classifier decides when to transition to a succeeding node, leading to the activation of
another MP. In order to synchronize the activations of the MPs of the three different entities, we use a
single sequence graph where the active node activates three MPs, one for each controlled entity. This
process is depicted in Figure 3.4. First, we use the HMMs resulting from the task-decomposition for
labeling the demonstrations with the most likely MPs over time. From these labels, we generate the
sequence graph representing the sequential structure of the MPs. Finally, we train the local classifiers for
each node, where a classifier maps the feature state to three activation vectors f → {aP/F, aO/T, aH},
one for each controlled entity. Therefore, when executing a learned skill on a robot, a transition leads
to the activation of (up to) three new MPs. We use Logistic Regression for training, but in general

48

any classifier can be used. Note that there are also alternative more sophisticated ways to synchronize
the sequences (e.g., generate three graphs and couple their transitions), but finding the best way to
synchronize the controlled entities is beyond the scope of this thesis.

3.5 Evaluation of the Approach

For evaluating our approach, we performed kinesthetic demonstrations on a gravity compensated seven
degree of freedom (DoF) Barrett WAM robot with a four DOF hand. We performed three different tasks:
box flipping, box stacking and unscrewing a light bulb. For all tasks, we evaluate the decomposition
and reproduction of the task. The purpose of the first task is to evaluate if our method is able to
distinguish between position and force control. For the box stacking task, the focus is on finding the
correct coordinate frames. The light bulb unscrewing task is a longer and more complex task which
requires both, i.e., performing movements relative to multiple objects as well as distinguishing force
from position control. For the box stacking task, we also compare our decomposition method to a
baseline method and a state-of-the-art method.

For simplicity, we predefined the MPs controlling the fingers of the robot for all tasks, despite that
teaching grasps is possible with our approach. During the demonstrations, we activated these MPs
manually by pressing a key on a keyboard. Note that we predefined the MPs only for simplifying the
teaching process. We still applied our task-decomposition to the resulting finger joint angles data. The
kinesthetic demonstrations were recorded with 200Hz. As the force-torque measurements are quite noisy,
we filtered the data using a Hann filter with a window size of 100. Due to the noisy force sensor and
the different units (Newton vs. meters) the force data was additionally scaled by the factor 1/40, so that
4 N difference correspond to a position difference of 10 cm. For all experiments, force was chosen as
control variable for a dimension of a task-space if the target force was above the threshold of 5.0 N and
the effector was not moving. An effector was considered to be not moving if the average velocity was
below the threshold of 10−3 m/s (see Section 3.2.3).

3.5.1 Box Flipping

For the box flipping task, the sequence of subtasks demonstrated by the teacher is shown in Figure 3.5.
In order to flip the box, the teacher first pushed it against the obstacle. Then, he flipped it by pushing
the box against the obstacle while rotating it. We demonstrated the task five times with slightly varying
starting positions of the box. Two coordinate frames relative to the obstacle were defined for the task-
decomposition. A Cartesian frame and a cylindrical coordinate frame whose axis was aligned with the
long side of the obstacle, as shown in Figure 3.6. Kober et al. [2015] evaluated their approach on
a similar box flipping task. They also used a cylindrical coordinate frame as it works very well for
rotatory movements such as opening a door. Additionally, they stated that it is very robust with respect
to inaccuracies in the rotation axis which is important when using force control. In contrast to their
approach, we did not have to align the demonstrations in time to decompose the task. The orientation
of the end-effector and the fingers were held constant throughout the demonstrations and are therefore
neglected here.

Our task-decomposition algorithm resulted in four MPs. Three of the five demonstrations and the cor-
responding results are depicted in Figure 3.7. The results show that the decomposition is consistent over
all demonstrations, even though the demonstrations are slightly over-segmented. The MPs closely re-
semble the behavior of the teacher (see Table 3.1). Initially, the -MP approaches the box. Subsequently,
the -MP pushes the object against the box. Then, the -MP flips the box and the -MP moves the end-
effector to its final position. For the first two MPs, the algorithm chose the Cartesian frame, while for
the latter two, it chose the Cylindrical frame. The frame choices can be better understood when looking
at the demonstrations plotted spatially (see Figure 3.7b). The box flipping resulted in a (blue) curved

49

Figure 3.5.: Illustration of teaching and reproduction of the box flipping task. The task was to initially move the
end-effector to a position close to the box. Subsequently, the box was pushed against the obstacle.
Then, the box was flipped. Finally, the end-effector was moved to its final position.

Obstacle

Box
x

yz

(a) Cartesian Frame

Obstacle

Box
r

φ

z

(b) Cylindrical Frame

Figure 3.6.: The two coordinate frames of the box flipping task shown from the side. The origin of the Cartesian
frame is at the lower edge of the obstacle. The z-axes of both frames are identical and correspond to
the lower edge of the obstacle (indicated by a black dot). Here, the origin is at the center of the lower
edge. Note that the frames are attached to the obstacle and not to the box.

line in Cartesian space and a straight line in the cylindrical space, which is why the algorithm choose the
cylindrical frame for the -MP. For the remainder of the task, the teacher tried to move the end-effector
in a straight line. Still, the algorithm chose the cylindrical frame for the final -MP. As shown in the
plots, the final positions slightly varied over the demonstrations and the teacher did not really move
the end-effector in a straight line. The low confidence of 51.5% shows that the demonstrations seem to
converge slightly better to a desired attractor goal in the Cylindrical coordinate frame.

Only for the box flipping MP (), the algorithm chose force control for one dimension of the coordinate
frame. The reason is that while this MP was active, the radial distance to the origin of the coordinate
frame was constant and hence the corresponding task coordinates did not change. As the target force of
the MP along the radial axis of the coordinate frame exceeded the predefined threshold of 5.0 N and no
velocity was measured, force control was chosen for this dimension of the task-space.

MP Description Frame Confidence Force
Approach Box Cartesian 95.2% -

Push Box Cartesian 58.3% -
Flip Box Cylindrical 98.4% Radial

Approach Final Position Cylindrical 51.5% -

Table 3.1.: Resulting description, coordinate frame and force selection for each MP of the box flipping task. Only
the MP that is active when flipping the box is applying a force along the radial axis of the cylindrical
coordinate frame. The confidence corresponds to the mixture weight of the winner frame.

50

−0.4
−0.2

0
0.2

Po
si

ti
on

C
ar

t.
[m

]
Demonstration 1 Demonstration 2 Demonstration 3

x
y
z

−20

0

Fo
rc

e
C

ar
t.

[N
]

x
y
z

0

1

2

3

Po
si

ti
on

C
yl

.
[m

] r

φ
z

−10

−5
0

5

Fo
rc

e
C

yl
.

[N
] r

φ
z

0 200 400 600

P/F

A
ct

iv
e

M
P

0 200 400 600 0 200 400 600

(a) Demonstrations and task-decomposition over time.

0.1

0.2

0.3

0

2

·10−2

xy

z

Cartesian Position [m]

0.0

15.0

-20.0

0.0

-1.0

2.0

xy

z

Cartesian Force [N]

0.4
2

2.5

3

−2

0

2

·10−2

rφ

z

Cylindrical Position [m]

-10.0

5.0

0.0

3.0

-1.0

2.0

r
φ

z

Cylindrical Force [N]

(b) Demonstrations and task-decomposition in 3D space.

Figure 3.7.: Experimental results for the box flipping task. The MP plot shows the active MP in different col-
ors. It can be seen from the plots that the decomposition of the task is consistent throughout all
demonstrations.

51

Figure 3.8.: Experimental setup for the box stacking task (top) and pictures from the reproduction (bottom). The
four boxes were put to random initial positions for each demonstration and the reproduction. They
were tracked using AR markers.

After decomposing the task and learning to sequence the MPs, the learned skill was successfully repro-
duced on the real robot. The found MPs were sufficient for performing the necessary movements and the
transitions between MPs were triggered at the correct states. For the sequence learning, the following
features were used: The end-effector position in the cylindrical frame and the Cartesian frame as well as
the data from the force sensor at the wrist of the robot.

3.5.2 Box Stacking

The goal of the second task is to stack four boxes on top of each other. Position and orientation of
the boxes are tracked with Augmented Reality (AR) markers using the ArUco library [Garrido-Jurado
et al., 2014]. We performed three demonstrations of the task. For each demonstration, the initial
positions and orientations of the boxes were chosen randomly. The stacking sequence was the same for
all demonstrations. First, the green box was put on the yellow box. Then, the red box was put on the
green box and finally, the blue box was put on the red box. Figure 3.8 shows a demonstration of the task.
For a successful stacking of the boxes, it is important that all MPs use the correct coordinate frames. The
task does not require any force control and therefore the force data is omitted here.

As an example, Figure 3.9 depicts the data of one demonstration and the corresponding sequence
of most likely MP activations resulting from the task-decomposition. In total, our algorithm extracted
seven position MPs, four orientation MPs and the two hand MPs corresponding to the ones we defined
for grasping and opening the fingers. The MPs can be described as follows. In the beginning, the end-
effector approaches the green box () with opened fingers (). During this phase, the orientation is
also controlled relative to the green box. After grasping the box (), the end-effector is moved to a
position above of the yellow box (), with the orientation also aligned to the yellow box. Subsequently,
it is lowered a few centimeters () and the box is released. To avoid overturning the box stack, the end-
effector is then moved up again () before moving on to the next box. This scheme is continued until
the task is complete. Three of the seven position MPs approach the different boxes that are supposed
to be stacked on the yellow box. The remaining four MPs all represent positions above of the yellow
box with different heights. The different heights result from the growing size of the box stack and are
consistent with the data.

52

M
P

0

0.5

1

1.5

Po
si

ti
on

[m
]

x
y
z

M
P

−2

0

O
ri

en
ta

ti
on α

β
γ

M
P

0 5 10 15 20 25 30 35 40 45 50 55

0.8

1

Time [s]

Jo
in

t
[R

ad
]

Finger 1
Finger 2
Finger 3

Figure 3.9.: One demonstration (in the world frame) and resulting task-decomposition for the box stacking task.

For the box stacking task, we also compared our method against three other approaches. As baseline,
we clustered the end-points of the segments using a HMM with GMMs as state emissions. Thus, in
contrast to our approach, this approach does not take into account the entire segment and its direction.
The second approach is the TP-GMM, introduced by Calinon et al. [2012] and for instance used by Rozo
et al. [2016]. The TP-GMM is a hierarchical Gaussian Mixture Model with two layers. On the higher layer,
each mixture represent an MP. On the lower layer, the mixtures represent the trajectory in the different
task-spaces. The main difference to our approach is the semantic of an MP. While in our approach
an MP describes a goal-directed movement, the TP-GMM models a joint distribution of the position and
velocities. By conditioning on the current position, the model can also be used to generate desired
velocities, allowing the model to be used for the reproduction directly. The third approach is the BP-
AR-HMM utilized by Niekum et al. [2015b] for decomposing a task into a set of MPs. Their approach
uses the Beta-Process Autoregressive HMM for segmenting the demonstrations in the world frame. After
training, they cluster the end-points of all segments assigned to a single MP in each coordinate frame.
The cluster with the minimum variance is chosen as coordinate frame for the MP. In contrast to our
approach, the baseline and the TP-GMM, the authors first segment the demonstrations in the world
frame and later assign coordinate frames to the resulting MPs. For both approaches, we did our best to
tune the parameters of the corresponding methods. We did not implement the methods ourselves, but
instead used the well-tested code the authors provide on their website. The TP-GMM is implemented in
the PbDlib2. The Matlab code for the BP-AR-HMM is provided by Scott Niekum3.

The decomposition resulted in a total of 13 MPs for our approach and the baseline approach, 9 MPs
for the BP-AR-HMM and 65 MPs for the TP-GMM (for position, orientation and hand). The number
of MPs for our approach, the baseline method and the TP-GMM has been determined using the Bayesian
Information Criterion. For the BP-AR-HMM, we changed the hyperparameters of the method until we
were satisfied with the results. A comparison of the resulting decompositions for all approaches is shown
in Figure 3.10. While our approach clearly discriminates the steps the teacher performed for stacking
the boxes (e.g., align green box over yellow box before stacking), the baseline approach merges some
of these steps to a single MP. Even though the resulting MPs are similar to the MPs of our approach,

2 http://www.idiap.ch/software/pbdlib
3 http://www.cs.utexas.edu/~sniekum/code.php

53

http://www.idiap.ch/software/pbdlib
http://www.cs.utexas.edu/~sniekum/code.php

0 0

0.1

0.2

0.3

x y

z

Our Method

0 0

0.1

0.2

0.3

x y
z

Endpoint Method

0 0

0.1

0.2

0.3

x y

z

TP-GMM

(a) In this snippet of the box stacking task decompositions, the green box was stacked on the yellow box. The decomposi-
tions are shown spatially in the coordinate frame of the yellow box. The colors correspond to the colors from Figure 3.9.
Compared to our approach, the baseline approach merges the red and green MP to a single MP. The TP-GMM in gen-
eral needs more MPs, as it models a path instead of MP targets. As it is difficult to visualize the parameters of the
auto-regressive model, the BP-AR-HMM is not shown here.

0 50 100

0.2

0.4

0.6

0.8

1

Time [s]

Fr
am

e

Our Method

0 50 100

Time [s]

Endpoint Method

0 50 100

Time [s]

TP-GMM

0 50 100

Time [s]

BP-AR-HMM

(b) For one full demonstration, the most likely coordinate frames over time are shown in the lower plots. The colors
indicate the active coordinate frame (frame of the yellow, green, red or blue box). Our approach clearly distinguishes
between phases of getting the different boxes and stacking them on the yellow box. The other approaches either do not
separate the phases in such a clear way or (TP-GMM) or pick the wrong coordinate frame in some task phases (baseline
and BP-AR-HMM).

Figure 3.10.: Comparison of our method with a baseline approach and two state-of-the-art approaches. For the
baseline approach, we clustered the end-points of each segment using a HMM with GMMs as state
emissions. Further discussions of the results can be found in Section 3.5.2.

they cannot be used for reproducing the task properly. The green box will not be stacked on the yellow
box, but will rather be released above the yellow box. In addition, it may not be aligned properly. The
green box may land correctly on the yellow box, but success will be rather random. The results show
that it is not sufficient to cluster the end-points of the segments, as it becomes harder to assign the
proper coordinate frames to the different segments. By incorporating the convergence properties of the
segments, our approach yields better results compared to the baseline approach. The TP-GMM results
in significantly more MPs compared to our approach for two reasons. First, as it models the whole
trajectory instead of only the attractor goals, more MPs are needed in general. Second, if for instance
an object is approached from two different directions, the two trajectories will be very different (even in
the coordinate frame of the object), but their target position will be the same. Therefore, our approach
is able to model such movements with fewer MPs compared to the TP-GMM. While the TP-GMM has the
advantage of being able to model arbitrarily non-linear trajectories, the coordinate frame assignments
made by our model better resemble the natural structure of the demonstrated task (see Figure 3.10b)).
We consider it future work to combine the advantages of both models. The BP-AR-HMM results in the
fewest number of MPs. While the resulting coordinate frame assignments in Figure 3.10b look promising
at first, the phase where the red box is stacked on the yellow box is represented in the wrong coordinate
frame. The reason is that the demonstrations are segmented in the world frame before assigning the

54

(a) (b) (c)

Figure 3.11.: The three different experimental setups for the light bulb unscrewing task. For each setup, the light
bulb holder and box were put to different locations on the two tables.

MP Description Frame
Approach Light Bulb Light Bulb
Pull Bulb (Force in z) Light Bulb

Lift Bulb Light Bulb
Approach Box Box

Approach Final Position Box
Screw World

Unscrew World
Open Fingers -
Close Fingers -

Table 3.2.: Resulting coordinate frame and description for each MP. Only the MP that is active during unscrewing
applies a force, as the teacher was pulling the light bulb during this phase of the task. Two MPs control
the orientation of the end-effector and the fingers, respectively.

coordinate frames to the individual MPs. As a result, segments which could be assigned to the same MP
may be assigned to different MPs, as they are dissimilar in the world frame. Therefore, we believe that
the coordinate frame assignment should be integrated into the segmentation process.

As a proof of concept, we reproduced the task on the real robot on a setup that was not demonstrated
to the robot (see Figure 3.8). The reproduction showed that the robot can reproduce the task correctly.
All MPs are represented in the correct coordinate frame and sequenced in the correct order. The boxes
were successfully stacked on top of each other, even though they were not stacked as accurately as in the
demonstrations. Most likely, the reason for the small displacement (approx. 0.5 cm to 1.0 cm) was due
to the imprecision of the Kinect sensor used for tracking the objects.

3.5.3 Light Bulb Unscrewing

For the unscrewing task, the human teacher demonstrated the following sequence of subtasks. First, he
approached the light bulb with the end-effector. Subsequently, the robot’s hand was closed. Next, the
teacher rotated the wrist of the robot arm in order to turn the bulb. During this movement, he also
pulled the light bulb (by applying a force along the z-axis), to test whether it is still in its holder. After
turning the light bulb, the fingers were opened and the wrist was rotated back. This unscrewing cycle
was repeated until the light bulb got loose. Next, the light bulb was pulled out of the holder and the
end-effector was moved to a box where the hand was opened again. For the demonstrations, we put the
light bulb holder and the box to three different positions and performed three kinesthetic demonstrations
for each setup. The setups are depicted in Figure 3.11. Two objects were tracked in the scene, the light
bulb holder and the box.

55

0

0.5

1

1.5

Po
si

ti
on

[m
]

x
y
z

−4

0

4

8

Fo
rc

e
[N

]

x
y
z

−2

0

2

A
xi

s
Ve

ct
or α

β
γ

0.4
0.6
0.8
1

1.2

Jo
in

t
an

gl
e

[r
ad

]

Spread Angle
Finger 1
Finger 2
Finger 3

0 1,000 2,000

Fingers

Orientation

Position

Time Step

A
ct

iv
e

M
P

Figure 3.12.: Task-decomposition over time for one of the nine demonstrations. From the top, the plots show the
position of the end-effector, the measured forces at the wrist, the orientation of the end-effector and
the finger joint angles, respectively. The dashed lines indicate the zero-velocity crossings and contact
changes. The plot on the bottom shows the most likely MP for each point in time. All MPs can be
associated with a meaningful description (see Table 3.2).

Our method extracted nine MPs from the demonstrations, as shown in Table 3.2. Four MPs control the
position of the end-effector and one MP controls the position of the end-effector along the x- and y-axes,
while applying a force along the z-axis. Additionally, two MPs control the orientation of the end-effector
and two MPs the finger configuration. Figure 3.12 depicts the most likely MP for each point in time for
one of the nine demonstrations. Except for small time gaps between changes of position, orientation
and/or finger MPs, the MP sequences exactly reflect the subtask sequence the teacher performed and
thus we can associate each MP with a meaningful description in Table 3.2. Note that the time gaps are
not incorrect but instead reflect the behavior of the teacher. For instance, it is not possible to unscrew
the bulb before closing the fingers. Therefore, the teacher usually waits for a short moment until he or
she is sure the fingers are closed before starting to unscrew, causing the aforementioned time gaps in the
data.

Even though the number of unscrewing repetitions varied over the demonstrations, all demonstrations
were decomposed in a similar way. We illustrated this in Figure 3.13, which shows all demonstrations
spatially. As all subtasks performed by the teacher can be described relative to either the light bulb or
the box, the world frame was not chosen for any MP controlling the position of the end-effector. During
the demonstrations, the teacher was standing at a fixed position and aligned the orientations equally
for all demonstrations. However, the objects and thus also their corresponding coordinate frames were
rotated for the different setups. As a result, our algorithm chose the world frame for all orientation MPs.

56

0
0.2 −0.5

0
0

0.2

0.4

x
y

z

(a) Positions Light Bulb Frame

−0.6 −0.4 −0.2 0 −0.2
0

0

0.2

0.4

x y

z

(b) Positions Box Frame

0

2 −3

−2

−1
0

0.5

x
y

z

(c) Orientations World Frame

0.6 0.65 0.7

0.5

1

1.5

Spread Angle

Fi
ng

er
Jo

in
t

A
ng

le

(d) Fingers World Frame

Figure 3.13.: Task-space trajectories for all nine demonstrations of the light bulb unscrewing task. Plots (a) and
(b) show the end-effector positions in the light bulb coordinate frame and box coordinate frame,
respectively. The colors indicate to which MP each segment is assigned to. The markers correspond
to the mean µ of the MP targets and the ellipsoids indicate their covariance matrices Σ. Note that
the position target of the blue MP is hard to see because it coincides with the target of the red MP.
The targets are only plotted in the coordinate frame that was assigned to each MP. Plots (c) and
(d) show the orientations of the end-effector and the finger configurations, respectively (both in the
world frame). As for this task all three fingers were aligned equally, only the joint angle of one finger
is shown in (d).

The MPs controlling the DoFs of the hand are not associated with a coordinate frame as they directly
control the joints.

For all position MPs, the resulting target forces are depicted in Table 3.3. Only for the -MP the
target force along the z-axis is large enough so that the MP is force-controlled along this axis. The MP
corresponds to the teacher pulling the light bulb while unscrewing. When reproducing the task, this
force leads to an acceleration of the robot’s arm as soon as the light bulb gets loose, enabling the system
to detect the loose bulb without any external sensors. The drawback is that we cannot detect whether
the light bulb is still in the hand of the robot or if it slipped during reproduction.

For the reproduction of the task, we set the light bulb holder to five different positions and performed
two trials for each position. In all ten trials, the robot was able to unscrew the light bulb and successfully
put it in the container box.

3.5.4 Discussion of the Experiments

The experimental results show that our method segments the demonstrations properly and finds a mean-
ingful decomposition for all tasks. The reproduction showed that our system can learn to perform the
tasks from scratch in an unsupervised fashion. Still, the method has some properties that need to be
discussed and some limitations that need further research.

57

MP x y z

0.08 -1.43 -0.51
-1.08 0.30 7.12
1.08 -1.35 0.02
0.06 0.01 -0.17
-0.24 -0.85 -0.88

Table 3.3.: Resulting target forces in Newton in the corresponding frames of the position MPs. Only the -MP is
force-controlled along the z-axis because the desired force is large enough.

As already mentioned, we scaled the force data before training to compensate for the noisy sensor
and the different units (Newton vs. meters). Additionally, the scale factor reflects an important issue
occurring in kinesthetic demonstrations. While it is easy to guide a gravity compensated robot to a
desired position, applying desired forces is difficult. For instance, in the light bulb task we tried to pull
the bulb always with the same force. Still, the forces were roughly in a range of 5 to 15 N. Without
scaling the force data, the method may incorrectly assign two pulling segments to different MPs, as
they converge to very different force targets. We evaluated different scale factors and observed that the
decomposition is the same for a broad range of values (1/20 to 1/80 yield the same results). Hence,
there does not seem to be a need for fine-tuning the scale parameter for different tasks. Still, we state
that from the force data of a kinesthetic demonstration, it is usually only clearly distinguishable whether
the teacher wanted to push or pull in a certain direction or did not apply a force at all.

One limitation of the system is that the teacher has to know at least a little bit about the assumptions
we make about the demonstrations. The teacher should be aware that he or she should pause between
successive movements instead of co-articulating between them. The reason is that the decomposition
relies on the segmentation, which uses ZVCs. Hence, no segments will be found if the end-effector does
not stop between successive movements. Second, our MPs represent point-to-point movements in task-
space. There is no need to move the end-effector in completely straight lines, but the teacher should at
least roughly perform point-to-point movements. While this requirement seems to be very restrictive, a
broad range of tasks can be performed using our framework.

3.6 Conclusion

To conclude this chapter, we will briefly summarize our proposed approach. Then, an epilogue will
discuss some open problems and cover suggestions for future work.

3.6.1 Summary of this Chapter

In this chapter, we presented an approach for learning sequential skills from unlabeled kinesthetic
demonstrations of a task. In order to learn a skill, the proposed approach decomposes the task into
a set of MPs. Subsequently, the system learns to sequence these MPs such that the task can be repro-
duced on a real robot. While the sequence learning is based on the sequence graph idea presented in
the last chapter, the focus of this chapter was on finding a set of MPs which adequately represent the
demonstrations.

We assume a MP has a goal in task space coordinates that should be reached if it is activated. A goal
can be a desired position of a robot body, joint angle, force or a combination thereof and can be defined
relative between bodies using coordinate frames. From the demonstrations, these parameters (control
variables, coordinate frames, attractor goal) are found without supervision for each MP. The core of the
decomposition method is the Directional Normal Distribution (DND). The probability distribution allows
to simultaneously determine the most likely sequence of MPs as well as their composition, i.e., their

58

coordinate frames, control variables and target coordinates from the demonstrations. Determining the
control variables allows to distinguish phases of force from position control, enabling a robot to explicitly
apply forces only when needed. The resulting MP sequences resemble very closely the natural structure
of the task.

We evaluated our approach on three different tasks: box flipping, box stacking and light bulb unscrew-
ing. The evaluation showed that our method successfully learns to perform these tasks from very few
demonstrations. Additionally, we compared our method to a baseline method, the Task-Parametrized
Gaussian Mixture Model (TP-GMM, [Calinon et al., 2012]) and the Beta-Process Autoregressive Hidden
Markov Model (BP-AR-HMM, [Niekum et al., 2015b]). In contrast to these approaches, our method
correctly learned in which coordinate frame the robot should be controlled throughout all task phases.
This property is essential as it ensures that the learned skill can be generalized to object positions and
orientations which differ from the demonstrations.

3.6.2 Epilogue

Most sections of this chapter are based on a paper which is currently under review in the Robotics &
Autonomous Systems Journal [Manschitz et al., 2017a,submitted]. This paper in turn is based on an
earlier conference paper [Manschitz et al., 2016]. Certain aspects of the proposed approach could be
improved or extended, as discussed in this section.

In order to model the segmented demonstrations, we make use of HMMs and learn the parameters of
the model by using the Baum Welch algorithm. This algorithm only finds a local maximum of the log-
likelihood function and therefore relies on a good initialization of the parameters. In our experiments, we
ran the algorithm multiple times with different initializations and then picked the resulting model which
yielded the highest likelihood. For more complex tasks, many initializations may be necessary for finding
a good parameter set, resulting in a time-consuming optimization process. Spectral learning algorithms
for HMMs (e.g., [Song et al., 2010]) might be a remedy for this issue, as they do not rely on heuristics for
finding a good initial estimate of the parameters. Another idea is to evaluate the quality of all possible
segmentations instead of just a few of them. While this idea sounds computationally expensive, Lioutikov
et al. [2015, accepted] proposed an approach which reduces the algorithmic complexity and makes the
problem tractable.

Pre-segmenting demonstrations by finding the ZVCs or by using other heuristics can help to reduce the
complexity of the learning problem. Additionally, a pre-segmentation often leads to more meaningful
segments in the context of robotics. Still, such heuristics may not be appropriate in all situations and
might lead to wrong segmentations. Therefore, it is an important research problem to integrate robotic
priors such as the ZVCs into the segmentation in a purely data-driven way [Jonschkowski and Brock,
2015]. Ideally, the priors should bias the system towards segmentations which are more likely in the
context of robotics. If the data contradicts the prior knowledge, the segmentation should be adapted
such that it still results in meaningful segments which allow for reproducing the task.

Our approach is specifically tailored to point-to-point movements. The evaluations showed that a wide
range of tasks can be performed with these kind of movements. If the teacher is aware of this property
and performs the demonstrations accordingly, our approach finds a meaningful set of MPs which can be
utilized for reproducing the task on a real robot. Still, due to this constraint, our system can for instance
not follow a desired force profile or generate movements of arbitrary shape. An important problem
therefore is to extend the approach to support these kind of movements. Similar to TP-GMMs, one idea
for such an extension is to mix the activations of multiple MPs instead of explicitly deciding which MP to
activate for each point in time. In fact, this idea is picked up in the following chapter and will lead to a
novel MP representation we call Mixture of Attractors.

59

4 Mixture of Attractors: A Novel Movement Primitive Representation for Learning Complex
Object-Directed Movements

In the previous two chapters, we presented a framework for learning sequential skills from unlabeled
kinesthetic demonstrations of a task. In order to be able to learn a skill successfully, the teacher had
to consider two constraints of our approach when demonstrating a task. First, he or she had to pause
between successive movements so that the algorithm could later identify them as individual movements.
Demonstrating a task in this way sometimes feels unnatural. As an example, consider the task of writing
the word “hello”. Here, there is no need to stop between writing the individual letters. In fact, it even
feels more natural to blend smoothly between writing the letters. The phenomenon of blending smoothly
between successive movements will be referred to as co-articulation throughout this chapter. Second,
the teacher was only allowed to perform point-to-point movements. Due to these constraints, a skill
could not be learned if a task involved movements of arbitrary shape. In addition, the dynamics of the
demonstrations were ignored. Hence, no skills could be learned for tasks that for instance require the
robot to slow down or speed up in different task phases.

In this chapter, we introduce Mixture of Attractors, a novel movement primitive (MP) representation,
which allows for learning such skills from a few demonstrations. The representation allows for learning
object-directed movements of arbitrary shape and smooth blending between successive movements. Ad-
ditionally, it inherently supports multiple coordinate frames, enabling the system to generalize a skill to
unseen object positions and orientations. In contrast to most existing approaches, neither a heuristic nor
a good initialization of parameters is needed to choose the coordinate frames. Instead, a skill is learned
by solving a convex optimization problem. The approach is evaluated and compared to other MP repre-
sentations on data from the Omniglot handwriting data set and on real demonstrations of a handwriting
task. The evaluations show that the presented approach outperforms other state-of-the-art concepts in
terms of generalization capabilities and accuracy. This chapter is mainly based on the work presented
in Manschitz et al. [2017b,accepted].

4.1 Introduction

Despite impressive results in the recent years, some of the main challenges in the Learning from Demon-
stration domain remain unsolved. For instance, learning complex tasks usually requires more demonstra-
tions than a user would be willing to provide. One reason for the large number of required demonstra-
tions is that learning a skill requires finding a mapping of a potentially large input space (e.g., camera
input), to a potentially large output space (e.g., desired joint positions). Depending on the task and
robot, such a mapping can become highly non-linear and almost arbitrarily complex. If only a few
demonstrations of a task are performed, then only a small fraction of the input space is covered with
data. Learning an input to output mapping from this sparse data often results in skills that are able to
perform a task if the environmental conditions are about the same as in the demonstrations. Yet, it is
often not clear how the system will generalize to unseen situations.

Different approaches exist for improving the data efficiency of the algorithms and to increase the
generalization capabilities of a skill. Many approaches have in common, that they either aim at reducing
the dimension of the input and/or output space or change the parametrization of the input to output
mapping. A third option is to limit an approach to a certain class of problems. This limitation allows for
using task or problem knowledge to bias a system towards decisions which are beneficial for the desired
class, but may prevent the method from being applicable in a more general context.

Our method aims at learning skills for tasks that require handling multiple objects. We assume a task
is demonstrated a few times with varying object positions and orientations, as depicted in Figure 4.1.

60

Demonstrations

Reproduction & Generalization

20 40
0

0.2

0.4

0.6

0.8

1

Time [s]

A
ct

iv
at

io
n

MP Activations

Figure 4.1.: The system learns a handwriting skill from kinesthetic demonstrations by learning a set of attractors
and their continuous activations over time. The attractors can be defined in different coordinate
frames, enabling the system to generalize the learned skill to unseen whiteboard positions. The plot
shows the learned attractor activations for the handwriting task (thin lines). Blue lines correspond to
attractors represented in the world frame, red in the IAS frame and yellow the HRI frame. The thick
lines show the sum of the attractors defined in the individual coordinate frames.

From these demonstrations, the system is supposed to learn a skill which generalizes to unseen positions
and orientations of the involved objects.

The main contribution of the chapter is a novel MP representation, which we call Mixture of At-
tractors (MoA). MoA represents movements in multiple coordinate frames. When learning a skill, a
weighting of the coordinate frames is learned that explains the demonstrations well. For instance, in a
task phase where the robot is supposed to manipulate an object, the weights of the coordinate frame
attached to this object will be large, allowing the robot to manipulate the object at arbitrary positions.
Moreover, a continuous representation of the weights is learned, allowing the robot to smoothly blend
between successive movements. The proposed learning algorithm for MoA is formalized as convex op-
timization problem. Therefore, it does not rely on a good initialization of the parameters, nor on any
heuristics on choosing the coordinate frames.

4.1.1 Related Work

MPs are a tool for increasing the data efficiency of skill learning algorithms. They are basic reusable
building blocks that can be used for generating complex movements. By using MPs, the movement gen-
eration can be parametrized which leads to a complexity reduction of the learning problem. Over the last
decade(s), many different MP representations have been proposed. Among the most prominent ones are
Dynamic Movement Primitives (DMPs, [Ijspeert et al., 2002, 2013]), Gaussian Mixture Models (GMMs,
[Calinon and Billard, 2007]), Stable Estimator of Dynamical Systems (SEDS, [Khansari-Zadeh and Bil-
lard, 2011]), Interaction Primitives [Amor et al., 2014] or Probabilistic Movement Primitives (ProMPs,
[Paraschos et al., 2013]). In the following section, we discuss some of the approaches utilizing MPs
for learning skills from demonstrations. With the approach presented in this chapter, we aim at con-

61

tributing to three important aspects in the learning from demonstration domain: learning from few
demonstrations, coordinate frame selection and co-articulated movements.

Movement Primitives

Discussing the pros and cons of all or even only the most important MP representations is out of the
scope of this thesis. Still, we would like to briefly review DMPs and GMMs, as they are closely related to
our approach. A benchmark on some of the aforementioned MP representations is provided by Lemme
[2014]. In the benchmark, the author evaluates the generalization capabilities and robustness against
perturbations of DMPs, GMMs, ProMPs, Control Lyapunov Function-based Dynamic Movements (CLF-
DMs, [Khansari-Zadeh and Billard, 2014]) and Neural imprinted Vector Fields (NiVFs, [Lemme et al.,
2013, 2014a]).

DMPs represent a one-dimensional movement with the Dynamical System (DS)

τ ẍ(t) = αx(βx(g − x(t))− ẋ(t)) + f(z), (4.1)

where τ is a time constant and αx and βx are control parameters. If the forcing term f equals zero,
the DS corresponds to a stable spring-mass-damper system with an unique attractor g. The forcing term
can be used for shaping the movement. The movement is driven via the canonical system

τ ż(t) = −αzz(t), (4.2)

where z is a phase variable which is set to one at the start of a movement and converges to zero for
t→∞. Given K basis functions Ψk, the forcing term is expressed as

f(z) =

∑K
k=1 Ψk(z)wk∑K
k=1 Ψk(z)

x(g − x0), (4.3)

Ψk(z) = exp

(
− 1

2σ2
k

(z − ck)
)
, (4.4)

where σk is the width of the basis function and ck its center. If a movement is more than one-dimensional,
each dimension is modeled with a DMP and the individual movements are coupled with each other by
driving them with the same canonical system. The parametersw = [w1, w2, . . . , wK] can be learned from
data using locally weighted regression. We would like to point out one interesting property of DMPs here.
First, the movement is conditioned on the difference between the start and desired goal position of a
movement. Hence, the MP representation allows for adapting a movement to varying initial and final
positions. If start and end position are the same, the forcing term vanishes and the DMP degrades to
a point attractor. This problem occurs for instance if a rhythmic should be performed. In that case, a
different type of forcing function has to be used, as shown by Ijspeert et al. [2013]. DMPs have been
used for learning skills for tasks such as table-tennis [Muelling et al., 2013], pancake flipping [Kormushev
et al., 2010] or the game of ball-in-a-cup [Kober and Peters, 2009]. MoA also represents a movement
with a DS and uses a formulation similar to (4.1). In contrast to DMPs, MoA can represent arbitrary
movements without changing the formulation of the DS (e.g., rhythmic and non-rhythmic movements).
In addition, the different dimensions of a movement are coupled directly with each other.

GMMs have also been extensively used as MP representation, for instance to learn skills for mini-
golf [Kronander et al., 2011], floor sweeping [Silvério et al., 2015] or ball hitting [Calinon et al., 2010].
The underlying idea is to model the data with a joint distribution over positions x and velocities v

z =
[
xT , v T

]T
,

p(x, v) =

K∑
k=1

πkp(x, v |θk) =

K∑
k=1

πkN (z|µk,Σk) . (4.5)

62

Subsequently, a movement can be generated via Gaussian Mixture Regression, by conditioning the ve-
locity on the current position

v̂ ∼ p (v |x) . (4.6)

The parameters of the GMM, the mixture prior π and the means and covariance matrices of the in-
dividual Gaussian distributions µk and Σk with k = 1, . . . ,K, can be learned with an Expectation-
Maximization (EM) algorithm which maximizes the log-likelihood of the model. GMMs have been
mainly used for learning reactive time-invariant behaviors where the velocity is directly conditioned
on the current position. If the state x is augmented with time information, a movement can also be
modulated temporally (e.g., [Calinon and Billard, 2008, Mühlig et al., 2012]). GMMs allow for gen-
erating smooth movements and due to their probabilistic formulation an optimal number of mixtures
can be estimated directly from the data via model selection methods. One drawback of GMMs is that
the EM algorithm only finds a local optimum of the parameters. For complex tasks, the algorithm often
has to be run multiple times with different initializations in order to find a good set of parameters. In
contrast, MoA learns a skill by solving a convex optimization problem and therefore does not rely on a
proper initialization of the parameters. In addition, we do not assume that the individual data points
from a trajectory are independent. Instead, we integrate the temporal dependency of succeeding data
points directly into the cost function.

Learning from few Demonstrations

One of the main challenges in learning skills from demonstrations is to extract as much information
as possible from the demonstrations. A human teacher usually is not willing to provide tens or hun-
dreds of demonstrations. Ideally, only a handful demonstrations should be sufficient to learn a skill.
Lee et al. [2015] use Principal Component Analysis for reducing the dimensionality of the input data
before segmenting the demonstrations into a set of MPs. A similar approach is proposed by Drumwright
et al. [2004] who use Isomaps for reducing the dimensionality. This idea is picked up by Melchior and
Simmons [2010]. The authors propose a method for embedding robot trajectories in a low-dimensional
space by extending Isomap with a neighbor-finding technique which is better suited for the time-series
data resulting from human demonstrations. Chebotar et al. [2014] learn an expected tactile trajectory
from demonstrations and integrate it into the execution of a skill. Reducing the dimensionality of the
tactile feedback allows for learning from fewer demonstrations.

Extracting a set of MPs from the demonstrations is a frequently used technique for decomposing the
overall learning problem into smaller parts which might be easier to learn (e.g., [Akgun and Thomaz,
2016, Hangl et al., 2016, Huang et al., 2016, Manschitz et al., 2016]). Kappler et al. [2015] learn to
activate MPs based on sensory input which may be high-dimensional. Yet, they assume the MPs are
learned at a previous stage. Kim et al. [2013] learn a skill from few potentially inaccurate demonstra-
tions. Tanwani and Calinon [2016] introduce the semi-tied GMM and use it for learning a skill from
demonstrations. One main difference compared to a normal GMM is the decomposition of the covari-
ance matrix into two terms: a common latent feature matrix shared by all mixtures and a mixture-specific
diagonal matrix. As not a full covariance matrix is estimated for each mixture component, the overall
dimensionality is reduced. Colomé and Torras [2014] learn skills with DMPs and introduce a coordina-
tion matrix which allows for coupling the otherwise independent dimensions of the representation. As
the authors show, the coordination matrix increases the data-efficiency as fewer independent parameters
have to be learned.

The movements generated by many of the aforementioned MP representations are usually modulated
temporally (e.g., DMPs or ProMPs). In that case, the input dimension is inherently reduced to one,
which simplifies the learning process. In this chapter, we also modulate the movements temporally. The
reason why our approach is able to learn complex tasks from only a handful demonstrations is the way
coordinate frames are integrated into the learning process.

63

Coordinate Frame Selection

When controlling a robot in task-space, the generalization capabilities of a system can be greatly im-
proved if the MPs operate in task-spaces which are defined relative to objects. If each object is associated
with a coordinate frame and a task-space which controls the robot relative to this coordinate frame, the
system is inherently able to generalize the movements to setups which have not been seen in the demon-
strations. As the teacher usually does not want to specify which MP performs a movement relative to
which object, this parameter also has to be learned from the demonstrations. As we also dealt with
coordinate frame selection methods in the previous chapter, the following paragraphs will be similar to
those of Section 3.1.1.

In the approach presented by Cederborg et al. [2010], a movement can be performed relative to
an object, relative to a starting position or in a robot frame. A movement is modeled with a GMM
which is trained incrementally. One GMM is trained in each of these coordinate frames and the robot is
controlled in the frame which yields the lowest training error. The coordinate frame is fixed throughout
task execution and therefore it is not possible to learn skills which require switching between the frames
such as picking up an object and moving it to another location. A more general approach is proposed
by Dong and Williams [2011, 2012]. Here, demonstrations are first segmented into smaller parts based
on contact information. Next, the segments are clustered based on the similarity of relevant movement
variables at the beginning and end of the segments (e.g., distance between end-effector and an object).
The segments corresponding to a single cluster are aligned in time using Dynamic Time Warping and the
corresponding movement is then represented using a probabilistic flow field. When executing a task, a
movement is selected based on the similarity between the current and expected state of the movement
variables at the beginning of the segments assigned to a cluster. Akin to this approach, Niekum et al.
[2015b] also extract a set of MPs from the demonstrations and select an appropriate coordinate frame
for each MP. The end-points of the segments assigned to an individual MP are clustered in each frame
and the coordinate frame leading to the lowest inter-cluster distance is chosen as winner.

One common idea shared by the aforementioned approaches is that the importance of a variable of
interest correlates with its precision (inverse variance) across different demonstrations. For instance,
if a teacher grasps an object, the distance between his or her hand and the object will be consistently
approximately zero in all demonstrations. Kober et al. [2015] picked up this idea and assign segments
to MPs based on a score function which rewards convergence (similar end-points but different starting
points) and penalizes divergence of the individual segments. The authors do not only pick proper coor-
dinate frames for all MPs, but also choose the control variables for them. For instance, a MP may control
the velocity or position of an end-effector or control the applied force. Ureche et al. [2015] propose
a similar score function which compares the variance of a variable over a time-window with the vari-
ance over all trials. They postulate a variable is significant for a task if it changes its value significantly
within a single demonstration and systematically across demonstrations. Mühlig et al. [2009] also take
additional criteria other than the variance into account. For instance, they consider a kinetic criterion
which incorporates effort and discomfort into the selection of a task-space. They show the advantage
of this criterion in a bi-manual manipulation task where the teacher demonstrates one phase of the task
only with one arm. In this phase, the second arm is not moving, yielding low variance. The authors
state that the movement of the arm is irrelevant for this task phase and their criterion ensures that it is
not considered as important. Such task-space selection mechanisms are out of the scope of this chapter.
Instead, we concentrate on selecting the proper coordinate frames throughout task execution.

The aforementioned approaches explicitly decide in which coordinate frame the robot should be con-
trolled for each segment or point in time. An exception is the approach proposed by Mühlig et al.
[2009]. Here, a task blending matrix continuously weights the frames over time. The advantage of such
a representation is that a smooth transition can be ensured when switching between different coordi-
nate frames. A similar behavior is achieved by the Task-Parametrized Gaussian Mixture Model TP-GMM,
which was introduced by Calinon et al. [2012]. It generalizes the GMM to support multiple coordinate

64

frames and is for instance used by Rozo et al. [2015]. Here, a probability distribution over the coordinate
frame weights is learned which varies over time. Our approach also does not select the coordinate frames
explicitly. Instead, it learns to activate a set of attractors represented in different coordinate frames over
time in a way which is most consistent with the demonstrations. Estimating the activations is formulated
as convex optimization problem which does not rely on a good initialization of the parameters, which
for instance is the case for the TP-GMM.

Co-Articulated Movements

When performing a sequence of movements, humans tend to co-articulate between successive move-
ments, in particular if a task has to be performed at high speed or with low accuracy [Sosnik et al.,
2004]. In the context of skill learning, co-articulation renders the problem of movement identification
more difficult, as the start and end of movements becomes less obvious. Approaches which rely on
heuristics such as zero velocity crossings for detecting transitions between MPs may suffer from such co-
articulated movements. If no transition is detected between two successive movements, such approaches
would interpret them as a single movement. The resulting MP may be unusable in different situations,
especially if the two movements were supposed to be performed relative to different objects.

In the latter case, also the movement generation becomes more difficult. If two MPs are defined in
different coordinate frames and are supposed to be executed in a sequence, it is often not clear how to
transition between them. The same is true if the MPs come from a library and for instance their initial
conditions (e.g., acceleration) are different. Nemec and Ude [2012] extend the DMP formulation such
that two consecutive MPs can be joined together in a continuous way. Muelling et al. [2010, 2013] use a
gating network which allows for mixing a set of MPs. They do not use their approach for sequencing MPs,
but for generalizing table-tennis strikes to unknown situations. Ewerton et al. [2015] present the Mixture
of Interaction Primitives framework, which can also be utilized for generalizing from a set of MPs.

Two MP representations which explicitly support co-articulated movements are GMMs and SEDS.
Calinon and Billard [2007] encode a movement as joint probability distribution over the positions and
velocities by using GMMs. A movement is generated by conditioning the velocity on the current position.
SEDS also makes use of GMMs, but additionally guarantees convergence to a desired target at the cost of
a larger computational effort. Both representations support co-articulated movements as the movements
generated by them are generally smooth. ProMPs can also blend between two successive MPs. Yet,
it is not clear how to learn a blending factor from demonstrations. Our approach learns to activate
a set of attractors so that the generated movement follows the demonstrated behavior. If the human
teacher transitioned smoothly between two successive movements, the resulting MP activations will
change slowly, leading to the same behavior.

4.1.2 Properties of the Mixture of Attractors Representation

MoA combines many of the advantages of other existing representations. The system learns to contin-
uously activate a set of attractors over time by solving a convex optimization problem. The attractors
can be represented in different coordinate frames and therefore allow for generalizing a movement to
arbitrary object locations. The learned attractor activations closely resemble the demonstrations. If a
human teacher co-articulates between successive movements, the activations will reflect this behavior
and will lead to a smooth transition when executing the skill on a real robot. Altogether, our system
is able to learn complex skills from only a few demonstrations and is able to generalize a skill to novel
setups. To the best of our knowledge, MoA is the first MP representation which can represent complex
object-directed movements and does not rely on a good initial parameter estimation.

The remainder of the chapter is organized as follows. In Section 4.2, the MoA MP representation is
introduced formally. Next, Section 4.3 shows how the representation can be used for robot control. The

65

approach is then evaluated in Section 4.4 before concluding and giving a short outlook on future work
in Section 4.5.

4.2 Mixture of Attractors

The basic idea behind MoA is to represent a movement as composition of very simple Dynamical Sys-
tems (DS). We refer to an attractor as a spring-mass-damper system of the form

ẍ(t) = α(β(g − x(t))− ẋ(t)), (4.7)

where α and β are positive controller parameters. The parameters can be set to guarantee the stability
of the DS (β = α/4, see Ijspeert et al. [2013]). In that case, the DS converges to its attractor goal g
for t → ∞. In this chapter, x corresponds to the Cartesian position of the robot’s end-effector. Instead
of having a single attractor, we assume that a movement is generated by a linear combination of K
attractors

ẍ(t) =

K∑
k=1

ak(t)α(β(gk − x(t))− ẋ(t)). (4.8)

Hence, MoA defines a movement by a set of K attractor goals gk and their activations ak(t). Note
that the activations explicitly depend on the time which allows for shaping the trajectory and generate
complex movements. We assume the activations of each time-step sum up to one and therefore, the
equation can also be written as

ẍ(t) = α(β(Ga(t)− x(t))− ẋ(t)), (4.9)

where the attractor goals are summarized in the matrix G = [g1, . . . , gK] and the attractor activations
of one time step are summarized in the vector a(t). In the following sections, we show how the attractor
goals and activations can be learned from demonstrations and discuss some of the properties of the MP
representation.

4.2.1 Trajectory Tracking

We introduce the learning method by assuming we want to follow a desired trajectory. Later, we focus on
learning skills which go beyond pure replaying of a demonstration and extend the approach to support
multiple coordinate frames. The first step is to time-discretize (4.9) using

ẍi ≈
xi − 2xi−1 + xi−2

h2
and ẋi ≈

xi − xi−1
h

, (4.10)

where h is the step-size and i ∈ N is the time step. Inserting (4.10) in (4.9) leads to

xi =
2 + αh

1 + αh+ αβh2︸ ︷︷ ︸
c1

xi−1−
1

1 + αh+ αβh2︸ ︷︷ ︸
c2

xi−2 +
αβh2

1 + αh+ αβh2︸ ︷︷ ︸
c3

Gai

= c1xi−1 + c2xi−2 + c3Gai, (4.11)

where c1, c2 and c3 are constants to keep the equation compact. We want to learn the parametersG and
ai, so that we track a demonstrated trajectory τ = {y1,y2, . . . ,yN} as closely as possible. Here, N is
the length of the demonstration. In this section, we assume to know the goals G and want to estimate

66

the movement primitive activations ai. In order to track the trajectory, we minimize the mean squared
error (MSE) over time between the demonstrated trajectory and the trajectory generated by MoA

J =

N∑
i=1

(xi − yi)
T (xi − yi) . (4.12)

The aim of this section is to minimize the cost function with respect to the activations ai. Note that our
system is fully determined by the attractor goals, their activations over time and the start points x1 and
x2. Therefore, as a first step xi is expressed in terms of these variables

xi = λtx2 + µtx1 +

N∑
j=1

γi,jGaj . (4.13)

The scalar constants λi, µi and γi,j can be specified recursively

λi = c1λi−1 + c2λi−2, λ1 = 0, λ2 = 1,

µi = c1µi−1 + c2µi−2, µ1 = 1, µ2 = 0,

γi,j = c1γi−1,j + c2γi−2,j + c3δi,j , γ1,j = 0, γ2,j = 0,

where δ is the Kronecker delta with δi,j = 1 for i = j and δi,j = 0 otherwise. Given a trajectory τ , we
can compute the constants, set x1 = y1, x2 = y2 substitute ŷi = yi − λix2 − µix1 and plug this term
into the cost function

J =

N∑
i=1

(
N∑
j=1

γi,jGaj − ŷi

)T (N∑
j=1

γi,jGaj − ŷi

)
. (4.14)

If we concatenate all movement primitive activations in a single vector a =
[
aT1 , . . . ,a

T
N

]T
and concate-

nate Ĝi = [γi,1G, . . . , γi,NG], then (4.14) can be rearranged to

J =

N∑
i=1

(
Ĝia− ŷi

)T (
Ĝia− ŷi

)
= aT

(
N∑
i=1

Ĝ
T

i Ĝi

)
︸ ︷︷ ︸

0.5H

a− 2

(
N∑
i=1

ŷTi Ĝi

)
︸ ︷︷ ︸

−fT

a+

N∑
i=1

ŷTi ŷi︸ ︷︷ ︸
const

=
1

2
aTHa+ fTa+ const , (4.15)

which can be minimized via Quadratic Programming (QP). For the optimization, constraints have to be
added to ensure the individual activations are in the range [0, 1] and the activations for each time step i
sum up to one. Therefore, the overall minimization problem is

min
a

1

2
aTHa+ fTa, such that

{
‖ai‖1 = 1,

0 ≤ a ≤ 1.
(4.16)

The optimization problem (4.16) can now be solved using an out of the box standard QP solver. Please
note that the matrix H is a sum of the form

∑
Ĝ
T

i Ĝi. Therefore, the matrix is positive semi-definite

67

and a standard QP solver is guaranteed to find a global minimum. In order to proof this, we show that
aTHa ≥ 0 is true for all a

aT

(
N∑
i=1

Ĝ
T

i Ĝi

)
a =

N∑
i=1

aT Ĝ
T

i Ĝia =

N∑
i=1

(
Ĝia

)T
Ĝia (4.17)

=

N∑
i=1

zTi zi =

N∑
i=1

NK∑
d=1

z2i,d ≥ 0, (4.18)

where we used zi = Ĝia and NK is the length of vector a.

4.2.2 Parametrizing the Activations

So far, the optimizer could freely choose the activations for each point in time. This freedom may lead
to jumps in the activations, potentially resulting in jerky movements. In order to generate more natural,
smooth movements, the activations can be parametrized. In that case, the optimizer is only allowed to
change the activations at fixed points in time (e.g., every 50ms). We call these points support points. In
between support points, the activations are interpolated. If we summarize all activations of the support
points in a matrix S ∈ RK×NS , where NS is the number of support points and K the number of
attractors, the activations at time-step i are interpolated according to

ai = Swi. (4.19)

Here, wi is a weight vector for time-step i. It determines how the activations will be interpolated. In
order to generate smooth movements, we use normalized Radial Basis Functions (RBFs)

wi,s =
e−γ

2(ti−ts)2∑NS
j=1 e

−γ2(ti−tj)2
, (4.20)

where wi,s is the sth value of vector wi, ti is the time at time step i and ts is the (temporal) center of
the RBF. The bandwidth γ of the RBF is a hyperparameter that determines how smoothly the weights
change over time.

Our aim is now to reformulate the cost function (4.15), so that we can find the support point activa-
tions by again solving a QP. In order to do so, we first rewrite the matrix of the support point activations S
as a vector s by concatenating the rows of the matrix. Reformulating (4.19) in terms of s results in

ai =

wT
i 0T 0T

0T
. . . 0T

0T 0T wT
i

 s = W is. (4.21)

Next, we plug (4.21) into (4.14)

Ĵ =

N∑
i=1

(
N∑
j=1

γi,jGW js− ŷi

)T (N∑
j=1

γi,jGW js− ŷi

)
(4.22)

=

N∑
i=1

(Λis− ŷi)
T (Λis− ŷi) , (4.23)

Λi =

N∑
j=1

γi,jGW j , (4.24)

68

and rewrite the equation to emphasize the similarity to (4.15)

Ĵ = sT

(
N∑
i=1

ΛTi Λi

)
︸ ︷︷ ︸

0.5Ĥ

s− 2

(
N∑
i=1

ŷTi Λi

)
︸ ︷︷ ︸

−f̂T

s+

N∑
i=1

ŷTi ŷi︸ ︷︷ ︸
const

,

=
1

2
sTĤs+ f̂

T
s+ const . (4.25)

The modified cost function can now be minimized via Quadratic Programming

min
s

1

2
sTĤs+ f̂

T
s, such that

{
‖sj‖1 = 1 ∀ j = {1, . . . , Ns},
0 ≤ s ≤ 1.

(4.26)

where sj are the activations of the jth support point (jth column of S). Note that these activations are
spread over the activation vector s as we constructed it by concatenating the matrix S row-wise. The size
of the matrix Ĥ is KNS ×KNS , while the matrix H from the original formulation in (4.16) has a size
of KN ×KN . As NS < N , parametrizing the activations does not only lead to smoother movements,
but also reduces the computational costs and memory requirements of the optimization. As the form of
Ĥ =

∑N
i=1 ŷ

T
i Λ

T
i Λiŷi is equivalent to that of H , proof (4.18) still holds and the QP is convex.

4.2.3 Support for Multiple Coordinate Frames

In the previous sections, the goal matrix G was constant over time. In order to support multiple coor-
dinate frames, we can relax this assumption. An attractor can be defined in a coordinate frame which
is not the world frame. In that case, its attractor goal can be transformed into the world frame for each
time-step. Hence, the goal matrix at time-step i becomes Gi, where the columns of the matrix corre-
spond to the attractor goals transformed into the global world frame. The only change in the formulation
of the QP has to be made for (4.24), where G is replaced with the time-indexed matrix Gj

Λi =

N∑
j=1

γi,jGjW j . (4.27)

Changing the fixed goal matrix G to a matrix which varies over time does not change the fact that the
quadratic matrix Ĥ is positive semi-definite. The reason is that it is still constructed by the term

Ĥ =

N∑
i=1

ΛTi Λi. (4.28)

Therefore, the problem can still be solved in a globally optimal manner. Support for multiple coordinate
frames can also be added to the non-parametrized formulation of MoA. Here, only the time-indexed
goal matrices have to be inserted into Ĝi = [γi,1G1, . . . , γi,NGN]. We would like to point out that
the QP has to be solved only once. In a real-world task, if a coordinate frame is associated with an
object, the attractor goals defined in this frame automatically move together with this object. Therefore,
a movement which is defined relative to these attractors is automatically adapted to changing object
positions and orientations without solving the QP again.

69

x

y

Frame 1

Time

p

Precision

x

y

Frame 2

Time

a

Frame Activations

Figure 4.2.: Toy example to illustrate the MoA optimization. On the left, two demonstrations (black and blue) are
shown in two different coordinate frames. The demonstrations start at the same position in the first
frame, approach a target in this frame and then approach a target in the second frame. The attractor
goals are marked with an x. On the top right, the ratio of the precision (reciprocal of the variance)
in the two coordinate frames is shown over time. The frame activations resulting from the MoA
optimization (bottom right) are akin to the precision.

4.3 Using Mixture of Attractors for Robot Control

So far, we introduced the MoA framework and showed how the activations can be learned to track
a demonstrated trajectory. In this section, we show how MoA can be used for learning a skill from
demonstrations of a task. To do so, we discuss two aspects that were not covered in this chapter so far.
First, we show how the number of attractors and their goals can be learned from demonstrations of the
task. Second, we discuss how many attractors should be defined in which coordinate frame. At the end
of the section, we present the final skill learning algorithm.

First of all, we would like to point out that a skill is learned using multiple demonstrations of a task.
So far, the attractor activations were learned by minimizing the MSE between a trajectory generated
by MoA and a single demonstration. For learning a skill, the MSE of M demonstrations add up to

J =

M∑
m=1

N∑
i=1

(
x
(m)
i − y(m)

i

)T (
x
(m)
i − y(m)

i

)
, (4.29)

where we assumed that all demonstrations have the same length N . As the MSE of the different demon-
strations simply add up, the form of the QP does not change when minimizing J . Therefore, for M
demonstrations, we can compute M independent QPs and then compute the sum of all Ĥ ’s and f̂ ’s to
form a single QP which has the same form as (4.26).

4.3.1 Choosing the Number of Attractors and their Goals

No matter how many attractors are chosen, the points Ga generated by MoA will always lie within
the convex hull of their attractor goals, as the activations sum up to one. For two linearly independent
attractors, the system would generate points on a line. For three linearly independent attractors points
within a triangle. A generic solution to estimate the number of attractors in a D dimensional space
is to choose it so that any trajectory within this space can be generated by the system. Therefore, we

70

propose to use 2D attractors, where D is the dimension of the space the MPs operate on1. We propose
to choose the attractor goals by computing the minimum and maximum values for each dimension
of the demonstrations. The attractor goals then build the corner points of the bounding box of the
demonstrations. If multiple coordinate frames are used, 2D attractors are chosen for each coordinate
frame independently. The attractor goals are illustrated in Figure 4.2 for a simple 2D toy example.

4.3.2 Learning the Importance of the Coordinate Frames

When learning a skill, we associate the world and each object in the scene with one coordinate frame.
The attractor activations should be learned in a way that yields the best generalization performance.
For instance, if a task requires approaching an object, the activations of the attractors which control the
robot in the coordinate frame of this object should be large during this phase of the task. The approach
presented in this section inherently ensures this property. A common approach for choosing coordinate
frames is to compare the variance of the data over multiple demonstrations in the individual coordinate
frames (e.g., Kober et al. [2015], Ureche et al. [2015]). For a certain task phase, the movement will
be represented in the frame that has the lowest variance. Our approach leads to similar results without
relying on a heuristic to decide which coordinate frame to choose for which phase of a task. Instead, the
optimization converges to a solution where the activations of the attractors represented in a coordinate
frame will be large if the variance is low.

Our main assumption is that the demonstrations are aligned in time and the movement will be mod-
ulated temporally. For aligning the demonstrations, we use Dynamic Time Warping (DTW). As the
demonstrations are represented in different coordinate frames, it is not straightforward to align them
temporally. As cost function to measure the distance between two points xi and x̂i from different
demonstrations we measure the Euclidean distance in each frame k and use the overall minimum as cost
term

DTW(i, j) = min
k

∥∥∥x(k)
i − x̂

(k)
j

∥∥∥
2

, (4.30)

where x(k)
i is the ith data point of a demonstration represented in the kth coordinate frame. After align-

ing the demonstrations in time, the attractor goals are computed for each frame separately according
to the previous section and subsequently transformed into the world frame for all non-world frames.
The 2D attractor goals of frame k at time step i will be noted as G(k)

i . The attractor goals of the frames
are stacked together, resulting in a single goal matrix

Gi =
[
G

(1)
i , . . . ,G

(K)
i

]
(4.31)

for each time step. Now, the attractor activations can be computed according to (4.26). The process
of estimating the activations is illustrated in Figure 4.2 by using a simple toy example. The optimizer
can freely choose the attractor activations over time, but has to explain all demonstrations with the same
sequence of activations. As it is not possible to do so in a single coordinate frame, the optimizer converges
to a solution where the frame activations (sum of attractor activations represented in the same frame)
vary over time. Therefore, when learning a skill with MoA, our system never explicitly selects coordinate
frames for different phases of a task. Instead, by defining the attractors in different coordinate frames,
the importance of the individual coordinate frames emerges automatically as a result of the optimization
process.

1 In general, a set D+1 attractors can be found which covers the demonstrations. For instance, for a 2D space, a triangle
can be found which cover the demonstrations. We use a 2D bounding box as it is more intuitive and we represent
movements only in 2D and 3D space in this chapter.

71

Algorithm 4 MoA Learning Algorithm

Require: M Trajectories τ (m) =
{
x
(m)
1 , . . . ,x

(m)
N

}
, K Coordinate Frames

Hyperparameters: Number of support points NS , bandwidth γ, DS parameters α and β
1: Align trajectories using DTW (4.30)
2: Compute support point weights w1:N (4.20)
3: for each Frame k do
4: Compute attractor goals G(k) (Section 4.3.1)
5: Ĥ = 0, f̂ = 0
6: for each Trajectory m do
7: for each Frame k do
8: Convert goals to world frame G(k)

1:N

9: Concatenate goal matrices to single matrix for each time-step G1:N (4.31)
10: [Ĥ, f̂] += generateQP

(
x
(m)
1:N ,w1:N ,G1:N

)
(4.26)

11: Solve QP(Ĥ, f̂) to find support point activations S
12: return Attractor goals G, Support point activations S

4.3.3 Choosing the Hyperparameters

When using the suggested bounding box method for choosing the positions and numbers of the attrac-
tors goals, the only hyperparameters a user has to choose are the number of support points and the
bandwidth γ of the corresponding RBF. In all experiments presented in this chapter, the bandwidth of
each RBF was set so that the function evaluates to a value α = 0.1 at the center’s of the neighboring
RBFs. The numbers of support points were chosen by increasing the number until we were satisfied
with the results. In future work, we plan to develop a method for optimizing the hyperparameters in a
principled manner.

4.3.4 Final Algorithm

The MoA learning algorithm is summarized in Algorithm 4. Input to the algorithm areM demonstrations
and the coordinate frames. The only hyperparameters that have to be set are the parameters of the
Dynamical System α, β, the number of support points NS and the bandwidth of the RBFs. Usually, α
is set to achieve a desired stiffness of the system and β is set to α/4 so that the DS is stable. First, the
demonstrations are aligned in time using DTW. Next, the weights of the support points are computed
for each time-step. The attractor goals are computed for each frame separately. Then, the goals of the
frames are transformed into the world frame for each time-step and demonstration. Finally, the QP is
generated and solved. The learned skill is composed of the resulting support point activation matrix S,
and the attractor goals G.

4.4 Evaluation of the Approach

For evaluating MoA, we performed two experiments.
The aim of the first experiment was to compare some of its properties to Dynamic Movement Primi-

tives (DMPs) and Gaussian Mixture Models (GMMs). These MP representations have similar properties
to MoA, which allows for a fair comparison. The comparison is carried out on letters from the Omniglot
handwriting data set. In a second experiment, we evaluated the generalization capabilities of the system
on a real robot handwriting task. The task is demonstrated kinesthetically and later reproduced on a
real seven degrees of freedom (DoF) Barrett WAM robot. Additionally, we compare the generalization
capabilities with two state-of-the-art approaches.

72

−1

−0.5

0

0.5

1
y

Demo DMP GMM MoA MoA-S

−1

−0.5

0

0.5

1

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1

x

−1 −0.5 0 0.5 1

x

−1 −0.5 0 0.5 1

x

−1 −0.5 0 0.5 1

x

(a) Written letters.

100 200
0

0.2

0.4

Time Step

M
SE

Letter a

100 200

Time Step

Letter e

100 200

Time Step

Letter s

MoA-S
MoA
GMM
DMP

(b) Mean squared error over time.

Figure 4.3.: Results on the Omniglot handwriting data set. The upper plots show the demonstrations and repro-
duced trajectories in 2D space for two letters of the data set. For MoA, additionally the attractor goals
are shown. All methods except for MoA-S are time-dependent. For the time-independent MoA-S, the
gray lines show the attractor landscape. Here, the movements converge to the gray dots. The lower
plots show the corresponding mean squared error over time (average and ± one standard deviation).

4.4.1 Handwriting Evaluation

The Omniglot data set was introduced by Lake et al. [2015] as a 2D data set for one-shot learning.
It contains over 1500 different handwritten characters from 50 different alphabets. Each character was
drawn online using Amazon’s Mechanical Turk by 20 different people. The images come with stroke data
as sequences of 2D coordinates associated with time information t. We use the data set to compare MoA
with DMPs. Both MP representations are trained on characters from the Latin alphabet. Before training,
we removed all characters that were not drawn continuously (e.g., more than one stroke was used as the
participant lifted the pen). The remaining characters were preprocessed as follows. First, we shifted each
character so that the mean of the image is at [0, 0]. For each character, we computed the average standard
deviation from the mean and subsequently scaled each image to have the same standard deviation. As
a last preprocessing step, we aligned the trajectories in time using DTW. The preprocessing of the data
was the same for all methods.

For a fair comparison, the movements generated by all methods were modulated temporally. For
the GMM approach, a joint probability p(t, v) was learned. The movements were then generated by con-
ditioning the current velocity on the time p(v |t). For MoA and DMPs, the basis functions were activated
temporally. We did our best to tune the hyperparameters of all methods. For the GMM approach, we in-

73

−0.8 −0.6 −0.4 −0.2 0 0.2
−1

−0.5

0

0.5

x

y
Letter a

−0.4 −0.2 0 0.2 0.4 0.6

x

Letter e

−0.2 0 0.2 0.4 0.6

x

Letter s

Figure 4.4.: Letters drawn by MoA if start and desired end point are set to the same value. In contrast
to DMPs, MoA allows for generating such movements without any special treatment.

creased the number of Gaussians to 15 until the Mean Squared Error (MSE) between the generated and
demonstrated movements did not increase anymore. For MoA and DMPs we used the method suggested
in Section 4.3.3, which resulted in 20 support points. In contrast to MoA, the movements generated
by DMPs are conditioned on a desired start and end point. To add this property to our MP representa-
tion, we associated a coordinate frame with the start and end points of each demonstration, respectively.
As these points vary over the demonstrations, the attractor goals (transformed into the world frame) are
automatically shifted together with the origins of the coordinate frames. As the MPs represent move-
ments in 2D space, four attractors where used for each coordinate frame. The locations of the attractor
goals were set according to the bounding box method suggested in Section 4.3.1. In addition to the
aforementioned MP representations, we also trained a second variant of MoA, where the weights of the
basis functions were not conditioned on time, but on the current spatial position xt. We will refer to this
variant as MoA-S. Here, we also used 20 support points. The centers of the basis functions were found
by clustering the demonstrations with kMeans and choosing the centers of the clusters as centers of the
basis functions.

The results for three exemplary characters from the Latin alphabet are shown in Figure 4.3. The MSE
between the drawn characters and the ones generated by the different time-dependent MP representa-
tions are in the same range with MoA slightly outperforming the other representations. DMPs perform
worst for the letter ‘a’. The reason is that the letter is not drawn very consistently. As DMPs depend
linearly on the difference between start and end point, they do not seem to be robust against movements
that have similar start and end points, but different shapes. The time-independent variant MoA-S has
the largest average error of all MP representations. While the generated movements reflect the general
shape of the letters, they either converge to a spurious attractor (‘a’) or enter a cycle (‘e’ and ‘s’). Please
note, however, that the focus of this chapter are time-dependent movements. Therefore, the intention
of MoA-S was to evaluate if it is in principle possible to learn time-independent movements with our MP
representation. We consider it future work to investigate in more detail MoA’s applicability for learning
and representing time-independent movements, for instance by analyzing important properties such as
asymptotic stability (e.g., Medina and Billard [2017], Perrin and Schlehuber-Caissier [2016]). The con-
clusion from the Omniglot experiment is that the sequences of MP activations resulting from the MoA
optimization process lead to movements which closely follow the demonstrations.

One interesting property of MoA which was not discussed so far is that it allows for generating move-
ments where start and point are equivalent such as drawing a circle. DMPs shape a movement with a
forcing function of the form f(z) = g(x,w)(g − x0) (see (4.3)), where w are the parameters, x is the
state of the system, x0 is the initial state and g is the attractor goal. If attractor goal and initial state
are the same, this forcing function evaluates to zero. In that case, another forcing function can be used
[Ijspeert et al., 2013], but the type of forcing function has to be chosen beforehand. Hence, it is not
possible to train a MP with the standard forcing function and then perform a movement with equivalent
start and end points. To illustrate that MoA does not have this limitation, we took the activations result-
ing from the MoA-F variant, placed the coordinate frames of both start and point at the same arbitrary

74

1

2

3

4

5

6

(a) Demonstration Setups

(b) Reproduction Results

Figure 4.5.: Pictures of the six setups used for demonstrating the handwriting task (left). On the right, the setup
for the reproduction is shown. For the demonstrations, we used a red pen and for the reproduction a
green pen. The differences between the demonstrations and reproduction can be explained with the
utilized controller and are not a result of the learning process.

location and simulated the resulting movement. Figure 4.4 depicts the movements generated by MoA.
The main conclusion from the Omniglot experiment is that the sequences of MP activations resulting
from the MoA optimization process lead to movements which closely follow the demonstrations.

4.4.2 Robot Handwriting Evaluation

In a second experiment, we demonstrated a handwriting task on a Barrett WAM robot via kinesthetic
teaching. As end-effector, a pen was attached to the robot, as shown in Figure 4.1. The task was to first
write “IAS” on one whiteboard and subsequently write “HRI” on a second whiteboard. The intention of
the experiment was to evaluate the generalization capabilities of our method. Therefore, the whiteboards
were placed at different locations on the table for each demonstration (see Figure 4.5). The learned skill
was then reproduced on a setup which was not seen in the demonstrations. Each whiteboard was
associated with a coordinate frame. During the demonstrations, we recorded the 3D position of the tip
of the pen in world coordinates and relative to each whiteboard. In order to generalize the skill to unseen
whiteboard positions, the system has to learn to control the tip of the pen in the correct coordinate frame
in each phase of the task. For instance, when writing “IAS”, the pen has to be controlled in the coordinate
frame of the corresponding whiteboard.

Overall, we performed six demonstrations of the task. The data was recorded with a frequency of
40 Hz. Before training, the demonstrations were aligned in time using DTW. The movement generated
by our system was modulated temporally by the activation of 75 equally distributed support points. First,
we trained our system using all six demonstrations. Subsequently, we put the whiteboards to positions
which were different from the demonstrations and executed the skill on the real robot. The results are
shown in Figure 4.5b. The robot was able to generalize to the unseen setup and mastered the task for
the new whiteboard positions. The system learned to control the pen in the correct coordinate frame
for each phase of the task and therefore was able to generalize the skill to the new situation. During
execution, the orientation of the end-effector was determined by a predefined null-space configuration,
as we focus on learning Cartesian positions in this chapter.

75

0 20 40
0

0.2
0.4
0.6
0.8
1

Time [s]

MoA: Demonstrations 2,4,5

0 20 40

Time [s]

MoA: All Demonstrations

0 20 40

Time [s]

TP-GMM: All Demonstrations

0 20 40

Time [s]

VAR-DMP: All Demonstrations

xy

z

xy

z

xy

z

xy

z

xy

z

xy

z

xy

z

xy

z

Fr
am

e
A

ct
iv

at
io

ns
D

em
on

st
ra

ti
on

2
Te

st
Se

tu
p

Figure 4.6.: Comparison of MoA with two other approaches. The upper plots show the frame activations over
time. The colors correspond to the individual coordinate frames (world frame, first whiteboard,

second whiteboard). The remaining plots show the predicted 3D paths for the one demonstra-
tion (second row) and the test setup (third row). The colored rectangles correspond to the two
whiteboards. For the plots on the left, we trained MoA with a combination of demonstrations which
did not lead to a proper discrimination of the coordinate frames. Therefore, the skill cannot be gen-
eralized to the test setup. The other representations were able to generalize the skill to the test
setup. Compared to VAR-DMP, MoA and TP-GMM also learn to blend smoothly between successive
movements.

Next, we trained two state-of-the-art methods on all demonstrations and evaluated their generaliza-
tion capabilities in simulation. The first method is the TP-GMM [Calinon et al., 2012]. The method
uses Gaussian distributions to model the data spatially in the different coordinate frames. For a fair
comparison with our approach, we augmented the state-space with time. When reproducing a skill, we
conditioned the desired position on the current time, so that the movement was also modulated tem-
porally. We used 75 Gaussians for training, as more Gaussians did not lead to an improvement of the
results anymore. The second method is an approach by Ureche et al. [2015]. Here, the authors explicitly
choose the coordinate frames over time based on the variance of the demonstrations. For a fixed time
window and each frame, they compare the variance in this time window to the variance of the entire
demonstration. The frame with the lowest value of the corresponding cost function is chosen as winner.
For each resulting segment, we use DMPs to represent the movements in the corresponding frames. In
the following, this approach will be referred to as VAR-DMP. Figure 4.6 shows the resulting coordinate
frame selections of all three approaches. Additionally, the generated trajectories for one demonstration
setup and the test setup are shown. The resulting frame activations of all three approaches look quite
similar and all approaches generalize the learned skill to the test setup. VAR-DMP successfully writes
the two words, but does not learn the transition phase when changing the coordinate frame. As a conse-
quence, the generated movement is less smooth and sometimes points in the wrong direction for a short
period of time (e.g., in the beginning or after writing the S of IAS). TP-GMM performs slightly worse
compared to MoA. One reason why MoA follows the shape of the movement more accurately is that it
takes the attractor activation recursively into account, whereas TP-GMM treats successive data points as
they were independent.

In order to evaluate if our system can learn the handwriting skill from fewer demonstrations, we
additionally trained it individually on all 63 possible subsets of demonstrations (e.g., demonstration 1,
2, and 4) and evaluated the generalization capabilities of the learned skill in simulation. Figure 4.6

76

1 2 3 4 5 6

0.4

0.6

0.8

1

Demonstrations

Sp
ar

si
ty

MoA
TP-GMM

Figure 4.7.: Comparison of the sparsity of the frame activations for MoA and TP-GMMs. The solid lines show the
mean of the sparsity, while the marks show the results for the individual combinations of the demon-
strations. With an increasing number of demonstrations, the discrimination of the coordinate frames
becomes better. We observed that a sparsity of at least 0.9 (dashed line) is required to generalize to
the test setup.

shows the frame activations and generated trajectory for one exemplary subset. While some of the
learned skills were able to reproduce the task for the test setup, others were not. All skills were able
to reproduce the task on the setups they were trained on. For the handwriting task, a good metric for
quantifying the generalization capabilities is to measure the sparsity of the individual coordinate frame
activations. Ideally, the pen should be controlled in the world frame in the beginning of the task, as the
robot always started from the same initial joint configuration. When writing the two words IAS and HRI,
the pen has to be controlled in the corresponding coordinate frames of the whiteboards. Except for the
transition phases between these three task phases, the activations of the coordinate frames should be
constant. Therefore, we measure the average sparsity of the activations as metric for the generalization
capabilities for the handwriting task

Jsparsity =
1

N

N∑
i=1

K∑
k=1

∥∥∥a(k)
i

∥∥∥2
1

, (4.32)

where a(k)
i are the activations of the attractors which are represented in coordinate frame k. In our

case, K = 3. A fully sparse solution would result in Jsparsity = 1, while an equally distributed solution
would result in Jsparsity = 1/K. Figure 4.7 shows the average sparsity for all training instances. The
solutions become sparser if the skill is trained on more demonstrations. Depending on how dissimilar
the whiteboard positions are in each demonstration, two demonstrations can be sufficient for learning
a solution which is as sparse as the solution for all six demonstrations. We consider it future work to
investigate why certain combinations lead to more sparse solutions than others and why the variance of
the sparsity is larger compared to the TP-GMM.

4.5 Conclusion

This section summarizes this chapter and highlights its main contributions. The chapter will be concluded
by an epilogue which discusses some open problems and gives suggestions for future work.

4.5.1 Summary of this Chapter

In this chapter, we presented the Mixture of Attractors (MoA) movement primitive representation. Due
to its integration of multiple coordinate frames, MoA can be utilized for learning complex object-directed

77

skills from only a handful demonstrations. The resulting skills generalize well to unseen object positions
and orientations. In addition, the system blends smoothly between successive movements. Learning a
skill is formalized as convex optimization problem. Therefore, in contrast to most other approaches, no
heuristic is needed for choosing the coordinate frames and the quality of the skill does not depend on an
initial estimate of parameter values.

We evaluated our approach in simulation and on a real robot. In a first experiment, we trained MoA
on handwritten letters from the Omniglot dataset. Here, the attractor activations resulting from the
MoA optimization process led to movements which closely resemble the demonstrations. MoA outper-
formed DMPs, a widely used state-of-the-art MP representation, in terms of the MSE. In a second experi-
ment, we evaluated the generalization capabilities of MoA on a kinesthetically demonstrated handwriting
task. The learned skill was executed on a real Barrett WAM robot on a setup which was not demonstrated.
From only a few demonstrations, MoA learned the important aspects of the task and outperformed two
state-of-the-art approaches in terms of accuracy and/or generalization capabilities.

4.5.2 Epilogue

As shown in this chapter, MoA is a promising MP representation with many advantageous benefits com-
pared to other representations. The evaluation on the Omniglot handwriting dataset revealed that the
movements generated by MoA are very similar to those generated by DMPs. Due to MoA’s support of
multiple coordinate frames, movements can be conditioned on a desired start or end point or can be
performed relative to objects in a scene, resulting in better generalization abilities compared to DMPs. In
addition, MoA is able to represent cyclic or rhythmic movements where start and end points are equiva-
lent without the need of changing the formulation. On the other hand, DMPs have other advantages such
as convergence to a desired goal position for t→∞. While this property could also be enforced for MoA
by adding a constraint to the QP (4.26), a detailed comparison of both approaches might reveal other
properties which demarcate both representations. More general, a comparison of other prominent MP
representations with MoA is yet to be made.

Certain aspects of the proposed method could be improved or extended in future work to scale to
larger domains or improve learning performance. For example, A manipulation task is often comprised
of phases where a teacher has to closely follow a desired path (e.g., when writing a letter), as well
as phases where such an accurate tracking is not required (e.g., when lifting the pen between writing
two letters). So far, this characteristic is not reflected in the DS we use for generating a movement.
One interesting direction for future work therefore is to integrate noise into the formulation. If we add
Gaussian distributed noise with mean zero and variance Σi for time step i to (4.9), we can assume a
movement is generated by

xi = c1xi−1 + c2xi−2 + c3Giai + εi, εi ∼ N (0,Σi) . (4.33)

Hence, the noise introduces a stochastic dependency of data point xi on the previous two data points
and the attractor activations

p(xi|xi−1,xi−2,ai) ∼ N (c1xi−1 + c2xi−2 + c3Giai,Σi) . (4.34)

Instead of minimizing the MSE between the generated movement and the demonstrations, the activa-
tions can now be estimated by maximizing the log-likelihood

logL(a1:N |x1:N) = log p(x1:N |a1:N) = log

(
p(x1)p(x2)

N∏
i=3

p(xi|xi−1,xi−2,ai)

)
(4.35)

= const− 1

2

N∑
i=3

(xi − µi(ai))
T Σ−1i (xi − µi(ai)) , (4.36)

78

where we used µi(ai) = c1xi−1 + c2xi−2 + c3Giai. The similarity of the log-likelihood (4.36) with the
original MSE cost function (4.12) is apparent. The log-likelihood formulation (4.36) has two interesting
properties compared to the original MSE formulation. First, the variance of the demonstrations Σi can
be considered in a natural way. Second, it may pave the way for future research. For instance, placing a
prior on the attractor activations might allow for learning the importance of the coordinate frames from
a single demonstration.

We mentioned before that the memory footprint of the QP optimization is mainly determined by the
quadratic matrix Ĥ in (4.26) whose size depends on the number of support points and the number of
attractor goals. While the number of attractor goals depends on the dimension of the task-spaces and
is therefore task-independent, the number of support points grows with the length and complexity of a
task. In order to scale MoA to larger domains, we therefore consider it future work to find a different
optimization method which is less memory demanding. One idea would be to replace the activations
with a softmax function. As the cost function is differentiable, gradient descent could be used for finding
the activations. Introducing the softmax function also allows for removing the hard constraints on the
activations, as the outcome of the function is between zero and one for all attractors and the activations
inherently sum up to one. Another idea would be to exploit the convex hull of the attractor goals. By
applying Radon’s theorem [Tverberg, 1966], the problem may be decomposed into multiple smaller
problems that can be solved more efficiently.

One downside of MoA is that in order to learn a weighting of the coordinate frames, the demon-
strations have to be aligned in time using DTW. Such an alignment is only possible if the sequence of
movements is the same for all demonstrations, which is not necessarily the case for a wide range of
tasks. For instance, in repetitive tasks a movement may be repeated a couple of times until a a goal
is achieved (e.g., unscrewing a light bulb). Another example are tasks where the subtask order is not
important. When preparing a salad, it does not matter if the cucumber or the tomatoes are chopped first.
If the teacher is not aware of the underlying assumptions we made, he or she might demonstrate such a
task in a way which makes the time-alignment impossible. It is notable here that this issue is not specific
to MoA. It applies to all approaches which take the variance of the data in different coordinate frames
into account (e.g., [Ureche et al., 2015]). We consider it future work to either extend DTW to support
such demonstrations or to make the required time alignment superfluous.

Even though we did not use MoA for directly controlling the joints of the robot in this chapter, we
would like to mention one interesting property of MoA when using it for joint control. For a robot with
one degree of freedom, two attractors are sufficient to represent any movement. If these attractors are
set within the joint limits of the robot, the movements generated by the system never violate these joint
limits if the dynamical system is stable. This statement is also true for an arbitrary number of degrees
of freedom. In addition, it may be possible to add constraints to the optimization process which ensure
that certain undesired joint configurations are not reached. We consider it future work to evaluate MoA’s
suitability for robot joint-control.

79

5 Conclusion

This thesis contributes to the state-of-the-art in the domain of Learning from Demonstration. Our spe-
cific focus was on learning sequential skills for robot manipulation tasks. In the following section, we
summarize our contributions to the state-of-the-art and discuss open problems which were either out of
the scope of the thesis or are directly related to the proposed methods presented in the thesis.

5.1 Summary of the Contributions

The individual chapters of this thesis treat different aspects of sequential skill learning. In Chapter 2 we
looked at the skill learning problem from a high-level perspective. We dealt with the question of how to
coordinate a set of single MPs in order to perform a sequential task. For this purpose, we introduced the
concept of a sequence graph. In a sequence graph, each node is associated with a MP and a classifier.
When executing a learned skill on a robot, the task of a classifier is to decide when to transition to a
succeeding node in the graph, leading to the activation of a different MP. Hence, the task of the classifiers
is to orchestrate the individual MPs. In the chapter, we evaluated different sequence graph structures and
evaluated the performance of various types of linear and non-linear classifiers in simulation and in real
robot experiments. One important insight from the experiments was that finding a good graph structure
for a task is crucial for the overall quality of a skill. While in general a compact structure is beneficial, it
also increases the chances of perceptual aliasing. This phenomenon occurs if it is not possible to find a
unique mapping from the perceptual input to a corresponding movement. The evaluations showed that
our approach can learn fairly complex tasks such as light bulb unscrewing from labeled demonstrations.
In addition, the approach can also be utilized for teaching an error recovery strategy to the robot.

In Chapter 2, we concentrated on the coordination of the individual MPs. For this purpose, we as-
sumed the individual MPs were known beforehand. In Chapter 3, this assumption was relaxed. We
presented our probabilistic task-decomposition method which extracts a set of MPs from kinesthetic
demonstrations of a task. For each MP, the method chooses an appropriate coordinate frame and the
control variables (e.g., position or force) for all dimensions of the task-space associated with the coor-
dinate frame. The number of MPs is not known beforehand and estimated via model-selection. At the
core, the method is based on a probability distribution we call Directional Normal Distribution (DND).
In the chapter, we presented the distribution and an Expectation-Maximization algorithm for inferring
its parameters from data. In the context of skill learning, the mean of a DND can be interpreted as
the most likely attractor goal of a MP and the covariance matrix as the uncertainty about the mean.
For learning a skill, we combined the task-decomposition method with the sequence graph concept pre-
sented in the previous chapter. Instead of labeling the demonstrations manually with the active MPs, the
task-decomposition method allows for computing the most likely sequence of MPs. Hence, the demon-
strations are labeled automatically with the most likely MPs and subsequently fed into the sequence
learning approach, resulting in the final skill. We evaluated the approach on three different tasks: box
stacking, box flipping and light bulb unscrewing. The evaluations showed that our approach can effi-
ciently learn skills from only two to six demonstrations and can generalize them to setups which were
not demonstrated to the robot. They also showed that the resulting MPs are meaningful in a sense that
each of them can be associated with a meaningful description (e.g., grasp an object). This insight is
supported by the fact that the sequences of most likely MP activations for the light bulb unscrewing task
are very similar to the manual labels used for the light bulb experiment in Chapter 2. In contrast to many
other state-of-the-art methods, our task-decomposition approach does not require a time-alignment of
the individual demonstrations. Therefore, it allows for learning skills for tasks where the demonstrated
movement sequences differ between the demonstrations.

80

In the first chapters of the thesis, movements were represented by simple point attractors. While the
sequencing graph concept is independent of the underlying MP representation, the task-decomposition
approach presented in Chapter 3 can only be applied to those tasks which can be represented with point-
to-point movements. Therefore, in Chapter 4, we presented the Mixtures of Attractors (MoA) MP repre-
sentation. In contrast to the MP representation used in the preceding chapters, MoA allows for learning
complex object-directed movements of arbitrary shape. The basic idea is to generate a movement by
continuously changing the activations of a set of attractors over time. Object-directed movements can
be generated by defining these attractors in different coordinate frames. We showed that learning the
attractor activations with MoA can be formalized as convex optimization problem. Therefore, the opti-
mization does not depend on a good initial estimate of the parameters. It is a unique characteristic of
our approach that the importance of the individual coordinate frames emerges automatically from the
optimization process without relying on a heuristic for choosing the frames. The sequence of attractor
activations resulting from the optimization lead to smooth movements and smooth transitions between
different object-directed movements. We evaluated MoA on a handwriting dataset and with a real robot
experiment. The evaluations on the handwriting dataset showed that the movements generated by MoA
closely resemble the demonstrations. We compared MoA to Dynamic Movement Primitives (DMPs) and
found that the movements generated by MoA lead to smaller errors and better generalization capabilities
compared to DMPs. For the real robot experiment, we demonstrated a handwriting task to a seven de-
grees of freedom Barrett WAM robot with a pen as end-effector. The evaluations showed that our system
was able to learn the task from only two to six demonstrations and to generalize the learned skill to a
setup which was not demonstrated to the robot. We compared our approach to two other approaches.
Here, MoA outperformed one method in terms of generalization capabilities. The second method could
be utilized for successful skill learning, but generated movements which were less smooth compared to
those generated by MoA.

In summary, we tackled different skill learning aspects in a top-down manner. Starting from the high-
level coordination of single movements, we moved on to learning the composition of the individual
movements (e.g., coordinate frame and control variables). Finally, we also learned the shape of the
movements in relation to objects in the scene. Altogether, the methods presented in this thesis contribute
to bringing us closer to the dream of having autonomous robots in our homes.

5.2 Open Problems for Future Research

While we tackled many aspects of skill learning for sequential robot manipulation tasks, some other
aspects were left untouched and can be considered open research problems. In addition, our research
also raised new interesting questions that will be briefly described in the following section. Please note
that some open problems which are directly related to our approaches were already discussed in the
epilogue sections of the preceding chapters.

5.2.1 Extracting Relevant Task-Spaces from Demonstrations

In all the experiments presented in this thesis, we controlled the robot’s end-effector in task-space co-
ordinates. The reason is that for many tasks, the exact position of the other body parts of the robot
are not relevant for task success. Therefore, they are usually not consistent over the demonstrations
and considering them would render the learning problem more difficult. For the task-decomposition
approach presented in Chapter 3, we predefined a pool of possible task-space candidates from which the
algorithm could choose the best match for each MP. These candidates controlled either the position/force
or the orientation of the end-effector, or the degrees of freedom of the robot’s hand. While this pool of
task-spaces was sufficient for our experiments, other tasks may for instance require moving the robot’s
elbow to a desired position. We consider it future work to expand the pool of possible task-spaces. In

81

addition, a method is needed which allows for deciding if certain task-spaces are relevant for a task or if
they should be removed from the possible pool of task-spaces.

5.2.2 Transferring Knowledge to new Tasks

So far, new skills were learned completely from scratch and no knowledge was transferred between
different tasks. Transferring such knowledge may help to reduce the necessary number of demonstrations
for a new skill or may even improve learning performance in general. As an example, consider the
handwriting task from Chapter 4. If we demonstrated a similar task where we wrote two different words
on the two whiteboards, the knowledge about the importance of the individual coordinate frames of the
handwriting task might be transferable to the new task. Transferring knowledge between tasks might
also allow for refining skills if necessary. If only one small aspect of a task changes, it is conceivable that
either only this aspect is demonstrated or that a full demonstration is provided, but the existing skill is
reused and adapted.

5.2.3 Improving Performance over Time

Currently the behavior of the system is fixed after learning. Such a system is problematic for two reasons.
First, learning a skill perfectly from demonstrations is often impossible. Even humans have to practice
skills first, e.g., for instance to find out what forces to apply. Especially the direct interaction with objects
is difficult, as important properties such as friction or mass distributions cannot be visually observed.
Kinesthetic demonstrations alleviate this issue but do not resolve it, as the data (e.g., forces) resulting
from an interaction are rather noisy. One logical next step would be applying reinforcement learning (RL)
methods, as they allow for learning or improving a skill via trial and error. Even though RL methods
were out of the scope of this thesis, we believe that it should be at least relatively straightforward
to use the Mixtures of Attractors MP representation for RL. MoA’s attractor activations are inherently
in the range [0, 1] and, therefore, can be approximated using softmax functions. The parameter of
these softmax functions are differentiable, enabling for instance the use of policy gradient methods.
In fact, Kormushev et al. [2010] already applied RL to a Dynamical System formulation which is very
similar to that of MoA and therefore their work might serve as a basis for further research. Another
possible application of RL is the improvement of a learned sequence graph, e.g., by adding or removing
connections between the individual nodes or by refining the parameters of the individual classifiers
which determine the transition behavior between MPs. Applying RL methods in this context is less
straightforward and requires hierarchical models [Daniel et al., 2012, 2013, Sutton et al., 1999].

5.2.4 Recovering from Bad Demonstrations

Learning skills from kinesthetic demonstrations does not only require good algorithms for learning from
data. It also requires the teacher to perform good demonstrations. Ideally, the demonstrations should
provide the system a desired behavior under certain environmental conditions. The more the demonstra-
tions deviate from what the teacher expects the robot to do, the more likely the system is to reproduce
an undesired behavior. In order to be more robust against bad demonstrations, a method for detecting
and discarding outliers might be helpful. It is also conceivable that the method can be combined with an
approach for interactive corrections we mentioned earlier.

5.2.5 Integration of Transition Learning into Task-Decomposition

In Chapter 3, a skill was learned by first applying the proposed task-decomposition method to extract a
set of MPs. Subsequently, the sequence graph concept presented in Chapter 2 was applied for learning

82

when to transition between the individual MPs. One issue we observed in our experiments was that
the task-decomposition resulting from maximizing the log-likelihood of our model is not necessarily
optimal for learning the transition behavior. For instance, the task-decomposition method may indicate
a transition between two MPs prematurely, in which case the classifier resulting from the transition
learning may not find a proper separating border between the two classes in the feature space anymore.
In order to improve the overall skill quality, one idea would be to feed the quality of the sequence graph
back into the task-decomposition and to optimize both methods in alternating order until convergence.
We consider it an important research problem to develop such a method.

5.2.6 Planning Ahead

The purely reactive behaviors learned in the first part of the thesis are not necessarily optimal. Often,
it is beneficial to decide which movement to perform based on potential succeeding movements. For
instance, if an object has to be grasped and moved somewhere else, a human would pick a grasp and
orientation dependent on the desired final position of the object and not just based on the object’s current
position. Such a decision requires to plan ahead at least a few steps. In order to equip our system with
such an ability, planning methods have to be taken into account. While it is usually not possible to plan
an entire behavior in advance, some planning might help for learning skills with better generalization
capabilities. Therefore, two key questions to answer are how to balance learning and planning, and how
far to plan ahead.

5.2.7 Bi-Manual Manipulation

Throughout the thesis, our focus was on learning skills for single arm robots. In order to use one of
the presented methods for bi-manual manipulation tasks, further considerations have to be taken into
account. In Chapter 3, we learned the MPs controlling the position and orientation of the end-effector
independently of each other. One benefit of the independence is that the individual MPs are reusable in
more situations. For instance, it is possible to approach the same object using the same position MP but
with different orientation MPs. We already picked up this independence idea and proposed an approach
where a set of MPs is learned independently for each arm, resulting in two sequence graphs [Bied,
2017]. In a succeeding step, the sequence graphs are coupled with each other such that MPs from the
different graphs can be started at the same time if necessary. While the independence assumption is
a straightforward way of extending the task-decomposition approach to bi-manual manipulation tasks
it clearly neglects the fact that the arms have to interact with each other during some task phases.
Therefore, it can be seen only as one step in the direction of learning bi-manual skills and we consider it
future work to fully support learning such skills with our framework.

5.2.8 Cause and Effect of Robot Interaction

Many problems in robot learning arise from the fact that robots directly interact with the environment.
Decisions such as activating or deactivating a MP are usually made based on the robot’s state and that of
the environment, which in turn is directly affected by the robot’s actions. Without further context (just by
inspecting the data without knowledge about the task), it is often unclear if a change in the environment
is caused by the robot or by an external stimulus. As an example, consider an increasing magnitude of a
force signal measured at the robot’s wrist during a kinesthetic demonstration. Without knowledge about
the task or the intention of the human teacher, it is not clear if the force is actively generated by the
teacher or for instance by a second person which is pushing an object against the robot. Resolving such
causality issues requires a fundamental understanding of task and environment, which is out of the scope
of this thesis. In order to acquire such an understanding, physics simulations may be of importance, as
they could allow for rejecting physically implausible decisions.

83

5.3 Publications

Excerpts of the research presented in this thesis have led to the following publications.

5.3.1 Journal Papers

S. Manschitz, M. Gienger, J. Kober, and J. Peters. Mixture of attractors: A novel movement primitive rep-
resentation for learning motor skills from demonstrations. IEEE Robotics and Automation Letters (RA-L),
2017b,accepted

S. Manschitz, M. Gienger, J. Kober, and J. Peters. Learning sequential force interaction skills. Robotics
and Autonomous Systems, 2017a,submitted

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning movement primitive attractor goals and
sequential skills from kinesthetic demonstrations. Robotics and Autonomous Systems, 74:97–107, 2015b.
ISSN 0921-8890. doi: http://dx.doi.org/10.1016/j.robot.2015.07.005

5.3.2 Conference Papers

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Probabilistic decomposition of sequential force interac-
tion tasks into movement primitives. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2016

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Probabilistic progress prediction and sequencing of
concurrent movement primitives. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2015a

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning to sequence movement primitives from
demonstrations. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2014a

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning to unscrew a light bulb from demonstra-
tions. In ISR/ROBOTIK 2014, 2014b

84

A Curriculum Vitae

Research Interests
Learning from Demonstrations
Learning of Sequential Skills
Movement Generation

Research Description
The particular focus of my Ph.D. project is to learn sequential skills for robot manipulation tasks. By
coordinating basic elementary movements, complex sequential and parallel movement behaviors can be
achieved. An illustrative example is the replacement of a light bulb: The robot’s movement skill can
be composed of elementary primitives, such as reaching towards the lamp, aligning the fingers with the
bulb, grasping the bulb or turning it in the thread. The sequential skill is coordinating these primitives
with a flexible arbitration scheme: It needs to maintain the causal order of the primitives (e.g., reach,
pre-shape, grasp), while coordinating the timing of primitives that are active in parallel (co-articulation
of left and right hand for bi-manual skills). In case of larger disturbances, the skill needs to adapt the
sequential flow to account for the changed situation (e.g., pick up the bulb if it drops out of the hand).

Educational Background
Since 2014 Technische Universität Darmstadt / Honda Research Institute Europe, Offenbach
Ph.D. student, Department Intelligent Autonomous Systems (Prof. Jan Peters)

2011 - 2014 Master of Science in Information Systems Technology
Technische Universität Darmstadt
Final Grade: 1.0
Master’s thesis: “Learning Sequential Skills for Robot Manipulation Tasks”

2007 - 2011 Bachelor of Science in Information Systems Technology
Technische Universität Darmstadt
Final Grade: 1.2
Bachelor’s thesis: “Automated Conversion of Matlab Simulink Models into a Hardware Synthesizeable
Form”

1997 - 2006 Abitur (A-Levels) at Ernst-Göbel-Schule, Höchst im Odenwald
Final Grade: 1.4
Major subjects: Mathematics, English, Computer Science

85

B Derivation of Constants

This chapter contains the derivations of some constants used within the task-decomposition approach
presented in Chapter 3.

B.1 Constants for EM-algorithm

For deriving the EM-algorithm, the integral∫ ∞
0

p
(
t
∣∣ [x, v] ,θ

)
log p

(
[x, v] , t

∣∣θ, µt, σt) dt
has to be evaluated, which leads to

=

∫ ∞
0

c1e
− (t−µt)2

2σ2t
(
c2(Θ)t2 + c3(Θ)t+ c4(Θ)

)
dt

= c1 (c2(Θ)d2 + c3(Θ)d3 + c4(Θ)d4) ,

where we used the constants

c1 =
1√

(2π)σt

1

1− Φ(−µt
σt

)
, c2 = −1

2
vTΣ−1v − 1

2σ2
t

,

c3 =
1

2
vTΣ−1(µ− x) +

1

2
(µ− x)TΣ−1v +

µt
σ2
t

,

c4 = −1

2
log
(
(2π)d+1σ2

t |Σ|
)
− log

(
1− Φ

(
−µt
σt

))
− 1

2
(µ− x)TΣ−1(µ− x)− µ2

t

2σ2
t

d2 = µtσ
2
t e
− µ2t

2σ2t +

√
π

2
σt
(
µ2
t + σ2

t

)(
1 + erf

(
µt√
2σt

))
,

d3 = σ2
t e
− µ2t

2σ2t +

√
π

2
µtσt

(
1 + erf

(
µt√
2σt

))
,

d4 =

√
π

2
σt

(
1 + erf

(
µt√
2σt

))
.

For more information, the reader is referred to Section 3.3.1.

B.2 Constants for Orientations

The start orientation rotated with an angle t around the angular velocity axis a = [ax, ay, az]
T , given in

the inertia frame can be defined as

RVI(t) = RVS(t)RSI,

86

where the entries of the matrix RVS(t) are

R
(0,0)
VS (t) = (1− a2x) cos(t) + a2x,

R
(0,1)
VS (t) = −axay cos(t) + az sin(t) + axay,

R
(0,2)
VS (t) = −axaz cos(t)− ay sin(t) + axaz,

R
(1,0)
VS (t) = −axay cos(t)− az sin(t) + axay,

R
(1,1)
VS (t) = (1− a2y) cos(t) + a2y,

R
(1,2)
VS (t) = −ayaz cos(t) + ax sin(t) + ayaz,

R
(2,0)
VS (t) = −axaz cos(t) + ay sin(t) + axaz,

R
(2,1)
VS (t) = −ayaz cos(t)− ax sin(t) + ayaz,

R
(2,2)
VS (t) = (1− a2z) cos(t) + a2z,

with R(i,j)
VS (t) being the entry of the ith row and jth column. The matrix can be written in the form

RVS(t) = D cos(t) +E sin(t) + F with

D =

1− a2x −axay −axaz
−axay 1− a2y −ayaz
−axaz −ayaz 1− a2z

 ,

E =

 0 az −ay
−az 0 ax
ay −ax 0

 ,

F =

 a2x axay axaz
axay a2y ayaz
axaz ayaz a2z

 .

Therefore, we can write

RVI(t) = RVS(t)RSI

= (D cos(t) +E sin(t) + F)

= DRSI cos(t) +ERSI sin(t) + FRSI.

The values of the constant vectors d, e and f used in (3.14) can then be found by multiplying the
matrices and vectorizing the resulting matrices.

B.2.1 Axis Angle Derivation

The axis angle between the rotated coordinate system and the target coordinate system is defined as

θ(φω) = cos−1
(

1

2
(Tr(RFV)− 1)

)
(B.1)

= cos−1
(

1

2

(
Tr(RFS(RV S)T)− 1

))
(B.2)

87

We are only interested in the trace of the resulting transformation matrixRFV = R
(0,0)
FV +R

(1,1)
FV +R

(2,2)
FV ,

which can be written as follows

R
(0,0)
FV = RFS(0, 0)(a

2
x(1 − cos(t)) + cos(t))

+ RFS(0, 1)(axay(1 − cos(t)) − az sin(t))

+ RFS(0, 2)(axaz(1 − cos(t)) + ay sin(t)),

R
(1,1)
FV = RFS(1, 0)(axay(1 − cos(t)) + az sin(t))

+ RFS(1, 1)(a
2
y(1 − cos(t)) + cos(t))

+ RFS(1, 2)(ayaz(1 − cos(t)) − ax sin(t)),

R
(2,2)
FV = RFS(2, 0)(axaz(1 − cos(t)) − ay sin(t))

+ RFS(2, 1)(ayaz(1 − cos(t)) + ax sin(t))

+ RFS(2, 2)(a
2
z(1 − cos(t)) + cos(t)).

The terms can be sorted and rearranged

R
(0,0)
FV = a0 cos(t) + b0 sin(t) + c0,

R
(1,1)
FV = a1 cos(t) + b1 sin(t) + c1,

R
(2,2)
FV = a2 cos(t) + b2 sin(t) + c2.

Here, we used

a0 = R
(0,0)
FS (1− a2x)−R

(0,1)
FS axay −R(0,2)

FS axaz,

a1 = R
(1,1)
FS (1− a2y)−R

(1,0)
FS axay −R(1,2)

FS ayaz,

a2 = R
(2,2)
FS (1− a2z)−R

(2,0)
FS axaz −R(2,1)

FS ayaz,

b0 = R
(0,1)
FS az −R(0,2)

FS ay,

b1 = R
(1,2)
FS ax −R(1,0)

FS az,

b2 = R
(2,0)
FS ay −R(2,1)

FS ax.

c0 = R
(0,0)
FS a2x +R

(0,1)
FS axay +R

(0,2)
FS axaz

c1 = R
(1,0)
FS axay +R

(1,1)
FS a2y +R

(1,2)
FS ayaz

c2 = R
(2,0)
FS axaz +R

(2,1)
FS ayaz +R

(2,2)
FS a2z

Using a = a0 + a1 + a2, b = b0 + b1 + b2 and c = c0 + c1 + c2, the axis angle becomes

θ(t) = cos−1
(

1

2
(a cos(t) + b sin(t) + c− 1)

)
.

This axis angle representation is used in Section 3.3.2 to compute a minimum angle t for the current
estimate of the parameters.

88

List of Figures

1.1. Unit sales of service robots for personal/domestic use . 1
1.2. Outline of the thesis . 6

2.1. From demonstrations to reproduction . 9
2.2. Overview of the sequence learning approach . 13
2.3. Overview of the goal learning process . 15
2.4. Overview of the three goal learning cases . 17
2.5. Overview of the sequence graph generation process . 19
2.6. Overview of the classifier training . 23
2.7. Box moving experiment . 23
2.8. Goal learning error for simulated toy example . 25
2.9. Comparison of trajectories from demonstrations and reproduction 25
2.10.Illustration and description of MPs for the light bulb experiments 26
2.11.Graph representations of the light bulb unscrewing task 27
2.12.Experiment results for the light bulb task . 28
2.13.Task flow of the grasping task . 29
2.14.Explanation of the rotation feature . 30
2.15.Reproduction results for the grasping task . 31

3.1. Overview of skill learning framework . 39
3.2. Overview of proposed task-decomposition approach . 41
3.3. Illustration of the EM algorithm . 44
3.4. Illustration of the sequence learning . 48
3.5. Pictures from teaching process and reproduction of box flipping task 50
3.6. Illustration of the two coordinate frames for the box flipping task 50
3.7. Experimental results for the box flipping task . 51
3.8. Pictures of experimental setups and reproduction for the box stacking task 52
3.9. One demonstration of the box stacking task . 53
3.10.Comparison of our method with state-of-the-art approaches 54
3.11.Experimental setups for the light bulb unscrewing task 55
3.12.Task-decomposition over time for one of the nine demonstrations 56
3.13.Task-space trajectories for all nine demonstrations of the light bulb unscrewing task . . . 57

4.1. Overview of the Mixture of Attractors framework . 61
4.2. Toy example for illustrating the MoA optimization process 70
4.3. Results on the Omniglot handwriting data set . 73
4.4. Letters drawn by MoA if start and desired end point are set to the same value 74
4.5. Pictures of experimental setups and reproduction of the handwriting task 75
4.6. Comparison of MoA with state-of-the-art approaches . 76
4.7. Comparison of the sparsity of the frame activations for MoA and TP-GMMs. The solid

lines show the mean of the sparsity, while the marks show the results for the individual
combinations of the demonstrations. With an increasing number of demonstrations, the
discrimination of the coordinate frames becomes better. We observed that a sparsity of at
least 0.9 (dashed line) is required to generalize to the test setup. 77

89

List of Algorithms

1. Graph Folding . 21
2. Graph Merging . 22

3. EM-algorithm for DND . 46

4. MoA Learning Algorithm . 72

90

List of Tables

2.1. MPs for the object movement experiment . 24
2.2. Feature set for grasping task . 30

3.1. Resulting description and variable selection for each MP of the box flipping task 50
3.2. Resulting coordinate frame and description for each MP 55
3.3. Resulting target forces in Newton in the corresponding frames of the position MPs 58

91

Bibliography

F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu, N. Krüger, and A. Ude. Adaptation of
manipulation skills in physical contact with the environment to reference force profiles. Autonomous
Robots, 39(2):199–217, 2015. ISSN 1573-7527. doi: 10.1007/s10514-015-9435-2.

M. A. R. Ahad, J. K. Tan, H. S. Kim, and S. Ishikawa. Human activity recognition: Various paradigms. In
Int. Conf. Control, Automation and Systems, pages 1896–1901, Oct 2008. doi: 10.1109/ICCAS.2008.
4694407.

B. Akgun and A. Thomaz. Simultaneously learning actions and goals from demonstration. Autonomous
Robots, 40(2):211–227, 2016. ISSN 1573-7527. doi: 10.1007/s10514-015-9448-x.

M. Alvarez, D. Luengo, and N. Lawrence. Latent force models. In Artificial Intelligence and Statistics,
pages 9–16, 2009.

M. A. Alvarez, J. Peters, B. Schölkopf, and N. D. Lawrence. Switched latent force models for movement
segmentation. In Advances in Neural Information Processing Systems, pages 55–63, 2011.

H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters. Interaction primitives for human-
robot cooperation tasks. In IEEE Int. Conf. Robotics and Automation, pages 2831–2837, 2014. doi:
10.1109/ICRA.2014.6907265.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 57(5):469–483, 2009.

A. Baisero, Y. Mollard, M. Lopes, M. Toussaint, and I. Lutkebohle. Temporal segmentation of pair-wise
interaction phases in sequential manipulation demonstrations. In IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, 2015.

J. Barbič, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S. Pollard. Segmenting motion
capture data into distinct behaviors. In Proceedings of Graphics Interface, pages 185–194, 2004.

M. Bied. Learning sequential skills for bi-manual manipulation tasks. Master’s thesis, TU Darmstadt,
2017. URL http://www.ausy.tu-darmstadt.de/uploads/Site/EditPublication/Bied_Msc_2017.
pdf.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., 2006. ISBN
0387310738.

R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation,
2(1):14–23, Mar 1986.

J. Butterfield, S. Osentoski, G. Jay, and O. Jenkins. Learning from demonstration using a multi-valued
function regressor for time-series data. In IEEE-RAS Int. Conf. Humanoid Robots, 2010.

S. Calinon and A. Billard. Stochastic gesture production and recognition model for a humanoid robot.
In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, volume 3, pages 2769–2774, Sept 2004. doi:
10.1109/IROS.2004.1389828.

S. Calinon and A. Billard. Active teaching in robot programming by demonstration. In IEEE Int. Symp.
on Robot and Human, 2007.

92

http://www.ausy.tu-darmstadt.de/uploads/Site/EditPublication/Bied_Msc_2017.pdf
http://www.ausy.tu-darmstadt.de/uploads/Site/EditPublication/Bied_Msc_2017.pdf

S. Calinon and A. Billard. A probabilistic programming by demonstration framework handling skill
constraints in joint space and task space. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages
367–372, September 2008.

S. Calinon, E. Sauser, A. Billard, and D. Caldwell. Evaluation of a probabilistic approach to learn and
reproduce gestures by imitation. In IEEE Int. Conf. Robotics and Automation, pages 2381–2388, An-
chorage, Alaska, USA, May 2010.

S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell. Statistical dynamical systems for
skills acquisition in humanoids. In IEEE Int. Conf. Humanoid Robots, 2012.

R. J. Carroll and D. Ruppert. Transformation and Weighting in Regression. Chapman & Hall, Ltd., 1988.

T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer. Incremental local online gaussian mixture regression
for imitation learning of multiple tasks. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages
267–274, 2010.

G. Chang and D. Kulić. Robot task error recovery using petri nets learned from demonstration. In IEEE
Int. Conf. Advanced Robotics, 2013a.

G. Chang and D. Kulić. Robot task learning from demonstration using petri nets. In IEEE Int. Symp. Robot
and Human Interactive Communication, 2013b.

Y. Chebotar, O. Kroemer, and J. Peters. Learning robot tactile sensing for object manipulation. In IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, 2014.

S. Chernova and A. L. Thomaz. Robot learning from human teachers. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 8(3):1–121, 2014. doi: 10.2200/S00568ED1V01Y201402AIM028.

S. Chiappa and J. Peters. Movement extraction by detecting dynamics switches and repetitions. In
Advances in Neural Information Processing Systems, 2010.

S. Chiappa, J. Kober, and J. Peters. Using bayesian dynamical systems for motion template libraries. In
Advances in Neural Information Processing Systems, 2009.

A. Colomé and C. Torras. Dimensionality reduction and motion coordination in learning trajectories with
dynamic movement primitives. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2014.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995. ISSN
0885-6125.

C. Daniel, G. Neumann, and J. Peters. Learning concurrent motor skills in versatile solution spaces. In
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages 3591–3597, 2012.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Learning sequential motor tasks. In IEEE Int. Conf.
Robotics and Automation, 2013.

N. Dantam and M. Stilman. The motion grammar: Analysis of a linguistic method for robot control. IEEE
Transactions on Robotics, 29(3):704–718, 2013. ISSN 1552-3098. doi: 10.1109/TRO.2013.2239553.

M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics. Foundations and
Trends in Robotics, 2(1–2):1–142, 2013. ISSN 1935-8253. doi: 10.1561/2300000021.

S. Dong and B. Williams. Motion learning in variable environments using probabilistic flow tubes. In IEEE
Int. Conf. Robotics and Automation, pages 1976–1981, May 2011. doi: 10.1109/ICRA.2011.5980530.

93

S. Dong and B. Williams. Learning and recognition of hybrid manipulation motions in variable environ-
ments using probabilistic flow tubes. International Journal of Social Robotics, 4(4):357–368, Nov 2012.
ISSN 1875-4805. doi: 10.1007/s12369-012-0155-x.

E. Drumwright, O. C. Jenkins, and M. J. Mataric. Exemplar-based primitives for humanoid movement
classification and control. In IEEE Int. Conf. Robotics and Automation, volume 1, pages 140–145, 2004.

M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review. IEEE Access, 2:56–77,
2014. ISSN 2169-3536. doi: 10.1109/ACCESS.2014.2302442.

D. Endres, A. Christensen, L. Omlor, and M. A. Giese. Emulating human observers with bayesian binning:
Segmentation of action streams. ACM Trans. Applied Perception, 8(3):16:1–16:12, 2011. ISSN 1544-
3558.

K. Erol, J. Hendler, and D. S. Nau. Htn planning: Complexity and expressivity. In Nat. Conf. Artificial Intel-
ligence, pages 1123–1128, Menlo Park, CA, USA, 1994. American Association for Artificial Intelligence.
ISBN 0-262-61102-3.

M. Ewerton, G. Neumann, R. Lioutikov, H. Ben Amor, J. Peters, and G. Maeda. Learning multiple col-
laborative tasks with a mixture of interaction primitives. In Int. Conf. Robotics and Automation, pages
1535–1542, 2015.

R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to problem
solving. In Int. Joint Conf. Artificial Intelligence, pages 608–620. Morgan Kaufmann Publishers Inc.,
1971.

J. R. Flanagan, M. C. Bowman, and R. S. Johansson. Control strategies in object manipulation tasks.
Current Opinion in Neurobiology, 16(6):650–659, 2006.

T. Flash and B. Hochner. Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobi-
ology, 15(6):660 – 666, 2005.

E. Fox, M. I. Jordan, E. B. Sudderth, and A. S. Willsky. Sharing features among dynamical systems with
beta processes. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems, pages 549–557. Curran Associates, Inc., 2009.

S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez. Automatic generation
and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6):2280–
2292, 2014. ISSN 0031-3203. doi: http://dx.doi.org/10.1016/j.patcog.2014.01.005.

K. Gräve and S. Behnke. Incremental action recognition and generalizing motion generation based on
goal-directed features. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2012.

D. Grollman and O. Jenkins. Incremental learning of subtasks from unsegmented demonstration. In
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2010.

G. Guerra-Filho and Y. Aloimonos. A language for human action. Computer, 40(5):42–51, May 2007.
ISSN 0018-9162. doi: 10.1109/MC.2007.154.

S. Hangl, E. Ugur, S. Szedmak, and J. Piater. Robotic playing for hierarchical complex skill learning. In
Int. Conf. Intelligent Robots and Systems, 2016.

B. Hayes and B. Scassellati. Discovering task constraints through observation and active learning. In
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2014.

N. Higham. Matrix nearness problems and applications. In Applications of Matrix Theory, pages 1–27.
Oxford University Press, 1989.

94

R. Houmanfar, M. Karg, and D. Kulić. Movement analysis of rehabilitation exercises: Distance metrics
for measuring patient progress. IEEE Systems Journal, 10(3):1014–1025, Sept 2016. ISSN 1932-8184.
doi: 10.1109/JSYST.2014.2327792.

B. Huang, M. Li, R. L. De Souza, J. J. Bryson, and A. Billard. A modular approach to learning manipula-
tion strategies from human demonstration. Autonomous Robots, 40:903–927, 2016. ISSN 1573-7527.
doi: 10.1007/s10514-015-9501-9.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods. ACM
Computing Surveys, 50(2):21:1–21:35, 2017. ISSN 0360-0300. doi: 10.1145/3054912.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical systems in
humanoid robots. In IEEE Int. Conf. Robotics and Automation, pages 1398–1403, 2002. doi: 10.1109/
ROBOT.2002.1014739.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement primitives:
Learning attractor models for motor behaviors. Neural Computation, 25(2):328–373, 2013. ISSN
0899-7667. doi: 10.1162/NECO_a_00393.

International Federation of Robotics. 31 million robots helping in households worldwide by 2019. In
Press Release, 2016. URL https://ifr.org/downloads/press/02_2016/2016-DEC_20_IFR_press_
release_service_robots_2019_FINAL_QS.pdf.

R. Jonschkowski and O. Brock. Learning state representations with robotic priors. Autonomous Robots,
39(3):407–428, 2015. ISSN 0929-5593. doi: 10.1007/s10514-015-9459-7.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1-2):99–134, 1998.

M. Kallmann, R. Bargmann, and M. Mataric. Planning the sequencing of movement primitives. In Int.
Conf. Simulation of Adaptive Behavior, 2004.

D. Kappler, P. Pastor, M. Kalakrishnan, M. Wuthrich, and S. Schaal. Data-driven online decision making
for autonomous manipulation. In Proceedings of Robotics: Science and Systems, 2015.

M. Karg, W. Seiberl, F. Kreuzpointner, J. P. Haas, and D. Kulić. Clinical gait analysis: Comparing explicit
state duration hmms using a reference-based index. IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, 23(2):319–331, March 2015. ISSN 1534-4320. doi: 10.1109/TNSRE.2014.
2362862.

S. Khansari-Zadeh and A. Billard. Learning stable non-linear dynamical systems with gaussian mixture
models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function to ensure stability of dynamical
system-based robot reaching motions. Robotics and Autonomous Systems, 62(6):752 – 765, 2014.

O. Khatib. A unified approach for motion and force control of robot manipulators: The operational space
formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.

B. Kim, A.-m. Farahmand, J. Pineau, and D. Precup. Learning from limited demonstrations. In Int. Conf.
Neural Information Processing Systems, pages 2859–2867, 2013.

J. Kober and J. Peters. Policy search for motor primitives in robotics. In Advances in Neural Information
Processing Systems, volume 22. MIT Press, 2009.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. International Journal
of Robotics Research, 32(11):1238–1274, 2013.

95

https://ifr.org/downloads/press/02_2016/2016-DEC_20_IFR_press_release_service_robots_2019_FINAL_QS.pdf
https://ifr.org/downloads/press/02_2016/2016-DEC_20_IFR_press_release_service_robots_2019_FINAL_QS.pdf

J. Kober, M. Gienger, and J. Steil. Learning movement primitives for force interaction tasks. In IEEE Int.
Conf. Robotics and Automation, 2015.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by construct-
ing skill trees. Int. Journal of Robotics Research, 31(3):360–375, 2012.

G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. Symbol acquisition for probabilistic high-level plan-
ning. In Int. Conf. Artificial Intelligence, pages 3619–3627. AAAI Press, 2015. ISBN 978-1-57735-738-4.

P. Kormushev, S. Calinon, and D. G. Caldwell. Robot motor skill coordination with em-based reinforce-
ment learning. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages 3232–3237, Oct 2010. doi:
10.1109/IROS.2010.5649089.

N. C. Krishnan, D. Colbry, C. Juillard, and S. Panchanathan. Real time human activity recognition using
tri-axial accelerometers. In Sensors, signals and information processing workshop, pages 3337–3340,
2008.

O. Kroemer, H. van Hoof, G. Neumann, and J. Peters. Learning to predict phases of manipulation tasks
as hidden states. In IEEE Int. Conf. Robotics and Automation, pages 4009–4014, 2014. doi: 10.1109/
ICRA.2014.6907441.

K. Kronander, M. S. M. Khansari-Zadeh, and A. Billard. Learning to control planar hitting motions in a
minigolf-like task. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages 710–717, Sept 2011.
doi: 10.1109/IROS.2011.6094402.

D. Kulić, W. Takano, and Y. Nakamura. Combining automated on-line segmentation and incremental
clustering for whole body motions. In ICRA, pages 2591–2598, 2008.

D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura. Incremental learning of full body motion primitives
and their sequencing through human motion observation. Int. Journal of Robotics Research, 31(3):330–
345, 2012.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Int. Conf. Machine Learning, 2001.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015. ISSN 0036-8075. doi: 10.1126/science.
aab3050.

O. D. Lara and M. A. Labrador. A survey on human activity recognition using wearable sensors. IEEE
Communications Surveys Tutorials, 15(3):1192–1209, 2013. ISSN 1553-877X. doi: 10.1109/SURV.
2012.110112.00192.

S. H. Lee, I. H. Suh, S. Calinon, and R. Johansson. Autonomous framework for segmenting robot tra-
jectories of manipulation task. Autonomous Robots, 38(2):107–141, 2015. ISSN 1573-7527. doi:
10.1007/s10514-014-9397-9.

A. Lemme. Bootstrapping movement primitives from complex trajectories. PhD thesis, Bielefeld University,
2014.

A. Lemme, K. Neumann, F. Reinhart, and J. J. Steil. Neurally imprinted stable vector fields. In European
Symposium on Artificial Neural Networks, pages 327–332, 2013.

A. Lemme, K. Neumann, R. Reinhart, and J. Steil. Neural learning of vector fields for encoding stable
dynamical systems. Neurocomputing, 141(Supplement C):3–14, 2014a. ISSN 0925-2312. doi: 10.
1016/j.neucom.2014.02.012.

96

A. Lemme, R. F. Reinhart, and J. J. Steil. Self-supervised bootstrapping of a movement primitive li-
brary from complex trajectories. In IEEE-RAS Int. Conf. Humanoid Robots, 2014b. doi: 10.1109/
HUMANOIDS.2014.7041443.

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection. In ArXiv, 2016.

Z. Li, Z. Wei, W. Jia, and M. Sun. Daily life event segmentation for lifestyle evaluation based on multi-
sensor data recorded by a wearable device. In Int. Conf. IEEE Engineering in Medicine and Biology
Society, pages 2858–2861, July 2013. doi: 10.1109/EMBC.2013.6610136.

J. F. S. Lin, M. Karg, and D. Kulić. Movement primitive segmentation for human motion modeling: A
framework for analysis. IEEE Transactions on Human-Machine Systems, 46(3):325–339, 2016. ISSN
2168-2291. doi: 10.1109/THMS.2015.2493536.

R. Lioutikov, G. Neumann, G. Maeda, and J. Peters. Probabilistic segmentation applied to an assembly
task. In Int. Conf. Humanoid Robots, 2015.

R. Lioutikov, G. Neumann, G. Maeda, and J. Peters. Learning movement primitive libraries through
probabilistic segmentation. International Journal of Robotics Research (IJRR), accepted.

M. L. Littman. Algorithms for Sequential Decision-making. PhD thesis, Brown University, Providence, RI,
USA, 1996.

T. Luksch, M. Gienger, M. Muehlig, and T. Yoshiike. Adaptive movement sequences and predictive deci-
sions based on hierarchical dynamical systems. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2012.

G. Maeda, M. Ewerton, R. Lioutikov, H. Amor, J. Peters, and G. Neumann. Learning interaction for
collaborative tasks with probabilistic movement primitives. In Int. Conf. Humanoid Robots, 2014.

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning to sequence movement primitives from
demonstrations. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2014a.

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning to unscrew a light bulb from demonstrations.
In ISR/ROBOTIK 2014, 2014b.

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Probabilistic progress prediction and sequencing of
concurrent movement primitives. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2015a.

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning movement primitive attractor goals and se-
quential skills from kinesthetic demonstrations. Robotics and Autonomous Systems, 74:97–107, 2015b.
ISSN 0921-8890. doi: http://dx.doi.org/10.1016/j.robot.2015.07.005.

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Probabilistic decomposition of sequential force interac-
tion tasks into movement primitives. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2016.

S. Manschitz, M. Gienger, J. Kober, and J. Peters. Learning sequential force interaction skills. Robotics
and Autonomous Systems, 2017a,submitted.

S. Manschitz, M. Gienger, J. Kober, and J. Peters. Mixture of attractors: A novel movement primitive
representation for learning motor skills from demonstrations. IEEE Robotics and Automation Letters
(RA-L), 2017b,accepted.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins. Pddl-the
planning domain definition language. In Technical Report CVC TR98003/DCS TR1165, Yale Center for
Computational Vision and Control, 1998.

97

J. R. Medina and A. Billard. Learning stable task sequences from demonstration with linear parameter
varying systems and hidden markov models. In Conference on Robot Learning, 2017.

F. Meier, E. Theodorou, F. Stulp, and S. Schaal. Movement segmentation using a primitive library. In
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages 3407–3412, 2011.

F. Meier, E. Theodorou, and S. Schaal. Movement segmentation and recognition for imitation learning.
Journal of Machine Learning Research, 22:761–769, 2012.

N. A. Melchior and R. Simmons. Dimensionality reduction for trajectory learning from demonstration.
In IEEE Int. Conf. Robotics and Automation, pages 2953–2958, 2010.

A. Meltzoff and M. Moore. Imitation of facial and manual gestures by human neonates. Science, 198
(4312):75–78, 1977. ISSN 0036-8075.

B. Michini. Bayesian Nonparametric Reward Learning from Demonstration. PhD thesis, Massachusetts
Institute of Technology, Department of Aeronautics and Astronautics, Cambridge MA, August 2013.

K. Muelling, J. Kober, and J. Peters. Learning table tennis with a mixture of motor primitives. In IEEE-RAS
Int. Conf. Humanoid Robots, pages 411–416, 2010.

K. Muelling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking movements in
robot table tennis. Int. Journal of Robotics Research, 32(3):263–279, 2013.

M. Mühlig, M. Gienger, J. J. Steil, and C. Goerick. Automatic selection of task spaces for imitation learn-
ing. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2009. doi: 10.1109/IROS.2009.5353894.

M. Mühlig, M. Gienger, and J. J. Steil. Interactive imitation learning of object movement skills. Au-
tonomous Robots, 32(2):97–114, 2012.

J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal. Operational space control: A theoretical and
empirical comparison. The International Journal of Robotics Research, 27(6):737–757, 2008. doi:
10.1177/0278364908091463.

C. L. Nehaniv and K. Dautenhahn. Like me? measures of correspondence and imitation. Cybernetics &
Systems, 32(1-2):11–51, 2001.

C. L. Nehaniv and K. Dautenhahn. The correspondence problem. Imitation in animals and artifacts, 41,
2002.

B. Nemec and A. Ude. Action sequencing using dynamic movement primitives. Robotica, 30:837–846, 9
2012.

S. Niekum, S. Osentoski, G. Konidaris, and A. Barto. Learning and generalization of complex tasks from
unstructured demonstrations. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2012.

S. Niekum, S. Chitta, A. Barto, B. Marthi, and S. Osentoski. Incremental semantically grounded learning
from demonstration. In Robotics Science and Systems, 2013.

S. Niekum, S. Osentoski, C. G. Atkeson, and A. G. Barto. Online bayesian changepoint detection for
articulated motion models. In IEEE Int. Conf. Robotics and Automation, 2015a.

S. Niekum, S. Osentoski, G. D. Konidaris, S. Chitta, B. Marthi, and A. G. Barto. Learning grounded finite-
state representations from unstructured demonstrations. International Journal of Robotics Research, 34
(2):131–157, 2015b.

98

A. L. Pais, K. Umezawa, Y. Nakamura, and A. Billard. Learning robot skills through motion segmentation
and constraints extraction. HRI Workshop on Collaborative Manipulation, 2013.

J. Pajarinen and V. Kyrki. Robotic manipulation of multiple objects as a pomdp. Artificial Intelligence,
247(Supplement C):213 – 228, 2017. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2015.
04.001. Special Issue on AI and Robotics.

A. Paraschos, C. Daniel, J. Peters, and G. Neumann. Probabilistic movement primitives. In Advances in
Neural Information Processing Systems, 2013.

M. Pardowitz, R. Zollner, and R. Dillmann. Learning sequential constraints of tasks from user demon-
strations. In IEEE-RAS Int. Conf. Humanoid Robots, 2005.

P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards associative skill memories. In IEEE-RAS
Int. Conf. Humanoid Robots, 2012.

V. Pavlovic, J. M. Rehg, and J. Maccormick. Learning switching linear models of human motion. In
Advances in Neural Information Processing Systems, volume 13. MIT Press, 2000.

N. Perrin and P. Schlehuber-Caissier. Fast diffeomorphic matching to learn globally asymptotically stable
nonlinear dynamical systems. Systems & Control Letters, 96(Supplement C):51 – 59, 2016. ISSN
0167-6911.

J. Peters. Machine learning of motor skills for robotics. USC Technical Report, pages 05–867, 2005.

P. Ranchod, B. Rosman, and G. Konidaris. Nonparametric bayesian reward segmentation for skill dis-
covery using inverse reinforcement learning. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2015.

R. P. N. Rao, A. P. Shon, and A. N. Meltzof. A bayesian model of imitation in infants and robots. Im-
itation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative
Dimensions, pages 217–247, 2007. doi: 10.1017/CBO9780511489808.016.

B. Reiner, W. Ertel, H. Posenauer, and M. Schneider. Lat: A simple learning from demonstration method.
In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2014.

L. Riano and T. M. McGinnity. Automatically composing and parameterizing skills by evolving finite state
automata. Robotics and Autonomous Systems, 60(4):639–650, 2012.

L. Rozo, D. Bruno, S. Calinon, and D. G. Caldwell. Learning optimal controllers in human-robot co-
operative transportation tasks with position and force constraints. In Int. Conf. Intelligent Robots and
Systems, 2015.

L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, and C. Torras. Learning physical collaborative robot
behaviors from human demonstrations. IEEE Transactions on Robotics, 32(3):513–527, 2016. ISSN
1552-3098. doi: 10.1109/TRO.2016.2540623.

J. Schwartz and M. Sharir. A survey of motion planning and related geometric algorithms. Artificial
Intelligence, 37(1):157 – 169, 1988. ISSN 0004-3702. doi: 10.1016/0004-3702(88)90053-7.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978. ISSN
00905364. doi: 10.2307/2958889.

J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell. Learning bimanual end-effector poses from demon-
strations using task-parameterized dynamical systems. In Int. Conf. Intelligent Robots and Systems,
pages 464–470, 2015.

99

L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola. Hilbert space embeddings of hidden
markov models. In Int. Conf. Machine Learning, 2010.

R. Sosnik, B. Hauptmann, A. Karni, and T. Flash. When practice leads to co-articulation: the evolution
of geometrically defined movement primitives. Experimental Brain Research, 156(4):422–438, 2004.

F. Steinmetz, A. Montebelli, and V. Kyrki. Simultaneous kinesthetic teaching of positional and force
requirements for sequential in-contact tasks. In IEEE-RAS Int. Conf. Humanoid Robots, 2015. doi:
10.1109/HUMANOIDS.2015.7363552.

K. Sullivan and S. Luke. Learning from demonstration with swarm hierarchies. In Int. Conf. Autonomous
Agents and Multiagent Systems, pages 197–204, 2012.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

W. Takano and Y. Nakamura. Humanoid robot’s autonomous acquisition of proto-symbols through motion
segmentation. In IEEE-RAS Int. Conf. Humanoid Robots, pages 425–431, 2006.

A. K. Tanwani and S. Calinon. Learning robot manipulation tasks with task-parameterized semi-tied
hidden semi-markov model. IEEE Robotics and Automation Letters, 2016.

G. W. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion using binary latent variables. In
P. B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems
19, pages 1345–1352. MIT Press, 2007.

M. Tenorth and M. Beetz. A unified representation for reasoning about robot actions, processes, and
their effects on objects. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2012.

H. Tverberg. A generalization of radon’s theorem. Journal of the London Mathematical Society, s1-41(1):
123–128, 1966. doi: 10.1112/jlms/s1-41.1.123.

A. Ureche, K. Umezawa, Y. Nakamura, and A. Billard. Task parameterization using continuous constraints
extracted from human demonstrations. IEEE Transactions on Robotics, 31(6):1458–1471, 2015. ISSN
1552-3098. doi: 10.1109/TRO.2015.2495003.

L. R. Welch. Hidden markov models and the baum-welch algorithm. IEEE Information Theory Society
Newsletter, 53(4):10–13, 2003.

S. D. Whitehead and D. H. Ballard. Learning to perceive and act by trial and error. Machine Learning, 7
(1):45–83, 1991. ISSN 0885-6125. doi: 10.1023/A:1022619109594.

A. M. Wing. Motor control: Mechanisms of motor equivalence in handwriting. Current Biology, 10(6):
R245 – R248, 2000. ISSN 0960-9822. doi: https://doi.org/10.1016/S0960-9822(00)00375-4.

M. Yamamoto, H. Mitomi, F. Fujiwara, and T. Sato. Bayesian classification of task-oriented actions based
on stochastic context-free grammar. In Int. Conf. Automatic Face and Gesture Recognition, pages 317–
322, April 2006. doi: 10.1109/FGR.2006.28.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. In Journal of Computa-
tional and Graphical Statistics, pages 1081–1088, 2001.

100

	List of Symbols
	Introduction
	Imitation Learning Challenges
	Whom to Imitate?
	What to Imitate?
	How to Imitate?
	When to Imitate?
	Open Challenges

	Main Contributions
	Learning to Sequence Movement Primitives with Sequence Graphs
	Probabilistic Task-Decomposition based on the Directional Normal Distribution
	Object-Relative Movement Generation with Mixture of Attractors

	Outline

	Learning to Sequence Movement Primitives
	Introduction
	Related Work
	Overview of our Proposed Approach
	Utilized Controller Framework

	Learning Movement Primitive Parameters
	Approximating Segments with Linear Functions
	Goal Learning

	Sequence Graph Generation
	Local Sequence Graph
	Global Sequence Graph
	Graph Construction

	Learning the Transition Behavior
	Evaluations and Experiments
	Moving an Object
	Unscrewing a Light Bulb
	Grasping Objects with Error Recovery

	Conclusion
	Summary of this Chapter
	Epilogue

	Probabilistic Decomposition and Skill Learning for Sequential Robot Manipulation Tasks
	Introduction
	Related Work
	Learning Sequential Force Interaction Tasks

	Proposed Task-Decomposition Approach
	Segmentation
	Clustering the Segments
	Extraction of MPs

	Measuring Convergence with the Directional Normal Distribution
	Parameter Learning
	Extension for Orientations

	Movement Primitive Sequence Learning
	Evaluation of the Approach
	Box Flipping
	Box Stacking
	Light Bulb Unscrewing
	Discussion of the Experiments

	Conclusion
	Summary of this Chapter
	Epilogue

	Mixture of Attractors: A Novel Movement Primitive Representation for Learning Complex Object-Directed Movements
	Introduction
	Related Work
	Properties of the Mixture of Attractors Representation

	Mixture of Attractors
	Trajectory Tracking
	Parametrizing the Activations
	Support for Multiple Coordinate Frames

	Using Mixture of Attractors for Robot Control
	Choosing the Number of Attractors and their Goals
	Learning the Importance of the Coordinate Frames
	Choosing the Hyperparameters
	Final Algorithm

	Evaluation of the Approach
	Handwriting Evaluation
	Robot Handwriting Evaluation

	Conclusion
	Summary of this Chapter
	Epilogue

	Conclusion
	Summary of the Contributions
	Open Problems for Future Research
	Extracting Relevant Task-Spaces from Demonstrations
	Transferring Knowledge to new Tasks
	Improving Performance over Time
	Recovering from Bad Demonstrations
	Integration of Transition Learning into Task-Decomposition
	Planning Ahead
	Bi-Manual Manipulation
	Cause and Effect of Robot Interaction

	Publications
	Journal Papers
	Conference Papers

	Curriculum Vitae
	Derivation of Constants
	Constants for EM-algorithm
	Constants for Orientations
	Axis Angle Derivation

	List of Figures
	List of Algorithms
	List of Tables
	Bibliography

