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ABSTRACT

The earliest-diverged multicellular animals are decentralized organisms capable of grow-
ing to indeterminate sizes and highly variable morphologies. These organisms must co-
ordinate activity among their constitutive cells at the scale of the organism in order to to
leverage the benefits of multicellularity, and must do so using decentralized mechanisms
that are robust to uncertainty in size and shape. This thesis investigates how coordination
within the Placozoa - arguably the simplest animals - scales with organism size, quantifies
the extent to which different developmental processes affect size regulation, and creates a
framework for measuring morphological variability in what had been considered amor-
phous animals. In Chapter 11 develop a method by which one can measure coordination
and information propagation within an animal’s body plan, and investigate how this prop-
agation is affected by changes in size. I argue that such animals are poised at criticality, with
evidence presented to suggest that this facilitates optimal information transmission, but
that the physical constraints of multicellularity create a size-coordination trade-off in such
decentralized organisms. The presence of size-induced trade-offs brings forth the question
of how size is regulated, which in Placozoa occurs through growth and asexual fission. In
Chapter 2 I investigate whether size is regulated in response to changing environmental
nutrient conditions and find that animals adjust their sizes to match their environments. I
further find that this change comes about primarily due to changing dynamics of growth
rather than fission, and identify that growth is highly dependent on nutrient conditions,
but find evidence that asexual fission could be an emergent phenomenon of poor coordi-
nation beyond certain sizes. Finally, in Chapter 3 I investigate the morphological variability
in Placozoa and find evidence for allometric growth in such animals. In addition, Chapter
3 sets the groundwork for future comparative morphological studies between individuals
and for behavioral stereotyping by developing a size and rotation invariant shape represen-
tation, which I use to identify the presence of idiosyncratic morphologies. I close the thesis
with some remarks regarding future directions in exploring the effects of scaling on coor-
dination, morphology, and behavior in this small yet evolutionarily significant Metazoa

phylum.
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gree increments. The zero value of the 9o-degree rotations suggests all error
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Introduction

0.1 COORDINATION AND THE EVOLUTION OF MULTICELLUARITY

The evolution of multicellularity was a major evolutionary transition that fundamentally
changed the form of life on Earth"*. Understanding the forces and mechanisms that caused
and sustained the evolution of multicellularity is one of the most important goals of evo-

lutionary biology'**"*". It is easy to understand the anthropocentric fascination with this



event: humans are multicellular organisms, as are the vast majority of organisms that we can
see with the naked eye. However, multicellularity is also important because it is arguably
the ultimate form of cooperation and coordination, whereby a cooperative group produces
an emergent individuality at the level of the larger aggregate**. Multicellularity is also
an interesting problem because it is a phenomenon that exists over a tremendous length
scale, with multicellular organisms spanning over sixteen ordrs of magnitude in size*". The
ability of cells to coordinate their activities to produce coherent organism-scale behaviors
over such a wide size range is a feat without equal, and understanding the mechanisms by
which such coordination is maintained can help us develop frameworks and rules for effec-
tive coordination in other biologiocal and social systems ™",

The evolution of multicellularity brought with it numerous benefits to constitutive cells
that found themselves in this new context*“. Some of the advantages are purely physi-

2,99

cal consequences, such as escaping predation *” and becoming a predator of smaller or-
ganisms, division of labor'*»'**"", and improved environmental sensing and decision-
making 7. Harnessing these benefits requires effective coordination among the numer-
ous constitutive cells of the organism. This coordination can be orchestrated with varying
degrees of centralization. At the totally centralized extreme a single cell orchestrates the
behavior of all others, while in the decentralized extreme all cells have equal say in the be-
havuior of the collective. Centralization of the control structures of an organism simplifies
coordination, as it can reduce the number of decision-making cells, naturally reduces the
dimensionality of the coordination problem, and can place decision-making cells in prox-

imity of one another. Hierarchical control structures such as nervous systems and muscu-

lature simplify coordination, and while indeed a multicellular organ like the brain or spinal



cord are decentralized systems their own right”*, such organs still greatly simplify and re-
duce the coordination problem for the whole organism composed of numerous more cells.

Coordination in the earliest multicellular animals, however, was undoubtedly orches-
trated in a decentralized fashion, and therefore understanding how multicellular life was
sustained requires understanding the mechanisms of decentralized coordination. The ear-
liest multicellular animals - Porifera, Placozoa, Ctenophora, and Cnidaria - all lack a cen-
tral nervous system, some lacking neurons entirely ', and many grow in a decentralized or
modular fashion with highly variable body sizes and shapes*°. Organisms with such sim-
plified and unstructured body plans must have been able to coordinate in order to make
multicellular life evolutionarily stable, and therefore we need to understand how effective
coordination of decisions can be achieved in decentralized systems.

Three factors are central to the decision outcome of a collective system: the preferences
of the individual agents, the network structure that defines interacting neighbors, and how
susceptible each agent is to influence by its neighbors. Individual preferences are central to
democratic collective decision-making, as even the idea of a democratic outcome is defined
as one which reflects the biases of the majority (relative or absolute). This outcome is the
typical result ceteris paribus, but there are many conditions under which a democratic de-
cision is unstable, and the group’s decision is no longer representative of the majority. A
well-known case is when the strength of preferences between individuals constituting the
majority and minority are unequal: a strongly-biased minority can overpower a weakly-
biased majority. Several recent empirical and theoretical studies have revealed how adding
unbiased ("uninformed”) individuals to groups can prevent such a takeover by the extrem-

ist minority *>7>'*?. The network structure of interactions in a collective system can also



have a profound effect on the decision outcome. Studies on opinion dynamics across social
and simulated networks have revealed that individuals may exert disproportionate influence
on a group if their neighborhood is composed of easily influenced individuals">***. Finally,
the outcomes and dynamics of collective decision-making are highly dependent on how sus-
ceptible individuals are to their neighbors’ influence. Should individuals be too sensitive,

a collective might never make a decision as noise drives the system outside of any consen-
sus decision state. On the other hand, should individuals be too insensitive, the collective
might never equilibrate to a consensus state, and would be unable respond in a timely fash-
ion to changing environmental stimuli.

The trade-off between stability and sensitivity in collective decision-making implies the
question of whether there is an optimal tuning in sensitivity that allows a group to reach
consensus while remaining responsive to new stimuli, which has inspired the notion that
collective systems are optimally tuned at criticality. In criticality, the parameters that gov-
ern the behavior of individual components - whether cells within an animal or animals in
a group - are tuned such that the collective system resides in a transition region between
ordered and disordered behavior. The idea of criticality derives from the field of statisti-
cal mechanics of equilibrium systems, where it is used to describe the behavior of physical
systems at a critical point in a phase transition. Well-known examples of phase transitions
in physics include matter going from solid to liquid phase or ferromagnets transitioning
to a magnetized state*””. However, very similar phase transitions have also been identified
in collective decisions, whereby a collection of individuals transitions from a disordered
lack of consensus to an ordered consensus state. A well-known example arises in collective

movement, where a phase transition has been characterized between disordered, random



movement and ordered, polarized marching***+*°,

Determining whether a system is at criticality is typically achieved by looking at the statis-
tics and distributions of fluctuations that occur in such a system. Examples of fluctuations
in complex systems include density fluctuations in a fluid at a critical point, clusters of
aligned spins in a ferromagnet, the number of neurons involved in a signaling avalanche
in the nervous system, or the number of animals changing direction in a moving group.

At criticality, the size of these fluctuations occur at all possible length scales, whereby the
observed phenomena sizes create a power-law distribution and the system produces fractal
behavior"”. Other phenomena that occur at a critical point include a slowing of dynamics,
the presence of 1/f-noise and Zipf’s Law **". Remarkably, biological systems ranging from
amino acids to neural networks to flocks of birds exhibit these signatures of criticality *°.
While this could suggest that such systems are indeed poised at criticality, caution is needed
in using this inverse method to infer criticality as such phenomena may have have alterna-
tive explanations5»*>">">. Nevertheless, criticality in complex systems remains a vibrant and
attractive field of study.

The notion that biological organisms are poised at criticality, in the absence of any obvi-
ous external fine-tuning as can be controlled in physical systems, brings forth the question
of how biological organisms acheived this particular state. One hypothesis for how this is
achieved is that of self-organized criticality (SOC)"*. In SOC, the set of parameter values
that position a system at a critical state are a stable attractor in a system’s dynamics'**, al-
lowing a system to evolve to a state of criticality on its own, without needing any external
parameter adjustment'*. The archetypical example of self-organized criticality is a sand pile

that grows in steepness as sand grains are added, and becomes shallower as the added grains



trigger avalanches, with the resultant avalanches exhibiting a scale-free distribution in sizes

and the pile’s steepness stabilizing at a critical slope angle”. The demonstration that critical-
ity can be an emergent phenomenon from the dynamics of a system is particularly attractive
for biological systems, where it was argued that criticality could not only be a self-organized
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phenomenon but that it could also be adaptive . Not only was criticality argued to be
adaptive, but some suggested that any system which could perform computation and was
adaptive would drive itself to the "edge of chaos” in a purely self-organized fashion>7*. The
adaptive significance of criticality on computation and information processing has been
emphasized by a number of recent works in neuroscience and behavioral ecology that have
argued that decision-making is optimal when the system is poised at criticality >,
While the notion of SOC is particularly attractive for biological systems, a requirement
of criticality is that a system can evolve its parameters quickly enough in response to chang-
ing conditions, and it is unknown if the earliest multicellular animals are endowed with
such capabilities. In the classic case of the sandpile model, changing one of the system’s pa-
rameters (e.g. making the sand wet) will change the pile’s critical slope angle, but the sand
pile will develop into its new critical morphology by the dynamics of adding more sand and
the resultant flattening avalanches. In multicellular organisms, criticality can be maintained
because specialized tissues like nerves and muscle can tune their excitability by an obvious
feedback mechanism that allows for entrainment >, Little is known about whether tissues
with similar properties exist in the earliest multicellular animals. Even if such organisms
were to exist in a near-critical state due to adaptation on evolutionary timescales, it is un-

clear if this criticality can be responsively maintained due to changes in size or morphology

that occur on faster, developmental timescales. Furthermore, even being at criticality or be-



ing an SOC system does not exclude the possibility that size could have a detrimental effect

on coordination and collective decision-making.

0.2 PLACOZOA AS A COLLECTIVE SYSTEM FOR INVESTIGATING COORDINATION

Placozoa are an ideal system in which to investigate size-mediated trade-offs for coordi-
nation in the earliest multicellular animals. Placozoa are among the earliest-diverged and
arguably simplest multicellular animals™’. A more complete anatomical description is avail-
able from Smith et al.*” and from Grell**, but approximately Placozoa can be considered
as two-dimensional cellular sheets that are three or four cell layers thick (¢. 20 microme-
ters). It propels itself along surfaces with a ventral layer composed of tens of thousands of
single-ciliated cells. The ventral layer is also embedded with gland cells that contain diges-
tive enzymes which are released when the animal is atop of food, typically unicellular algae
or bacteria. The dorsal layer is composed of similar, larger ciliated cells of unknown func-
tion. Importantly for coordination, the interior and ventral layer is also embedded with
specialzed cells that contain neurotransmitter-like compounds, and also has an internal
syncitium of specialized cells (fiber cells) that have processes resembling neurons or muscle
but that have no known function.

Thought he animal has been known for over a century, it is only recently that the sys-
tem has been revived for the study of animal behavior. Discovered in the late nineteenth
century ", Placozoa were initially dismissed as a larval stage of a hydra species and largely
forgotten until the mid-20th century when the phylum was formally described **. Interest
in the animal revived when new molecular evidence conclusively demonstrated that Placo-

zoa are not derived cnidarians”', and since then interest in Placozoa has focused on using



the organism in order to undertand the genetic and molecular requirements for simple
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multicellularity and to resolve the early animal tree of life HH1¢ A major contribu-
tion to this goal was achieved by the completion of the Trichoplax adbaerens genome in
20087 In contrast to the genetics of Placozoa, its behavior and ecology have been largely
overlooked. At the start of this dissertation in 2012, the most recent study on Trichoplax
behavior was published in 1999 '7* and the last description of Placozoa ecology was a review
article from 2007 '*°. There has been a small resurgent interest in the behavior of Placozoa
as a pre-neural organism, with the goal of identifying how organism behaviors can be co-
ordinated in the absence of neurons“>'*>"”, but no effort has been made to integrate the
present findings into the broader framework of collective behavior.

Placozoa must solve four important coordination problems that are imperative for the

survival of any animal, and must do so in a decentralized fashion:

1. Placozoa must coordinate motility to find suitable habitats, nutrients, and reproduc-
tive partners. Being arguably the simplest and earliest-diverged multicellular animal
with a motile dominant life stage, Placozoa coordinate this motility in the absence of
bilateral symmetry, cephalizaton, or nervous system. These traits are thought to fa-
cilitate directionality and symmetry-breaking in locomotion *>**, and therefore their
absence in a motile organism is an anomaly that undoubtedly complicates the ability

to establish consensus in locomotion.

2. Placozoa must coordinate behaviors involved in heterotrophy, which may include
sensing nutrients, ingestion, and digestion. Feeding in Placozoa involves a well-
characterized pulsing behavior that spans the entire organism’s body ", a behavior

that is achieved in the absence of any known central control. Recent molecular ev-



idence has revealed that this behavior is coordinated by specialized cells embedded
throughout the ventral epithelium of the animal that release neurotransmitter-like
compounds ectopically when near food 7", How this local ectopic signal cascades

into an organism-wide response is largely unknown.

. Placozoa must coordinate growth in order to regulate body size and produce mor-
phologies that permit biological function. There is no evidence of central organiza-
tion or a body plan involved in the growth of Placozoa. The animal has no known
development although there are developmental signaling genes in the 7. adbaerens
genome 7. Up until now, morphological characterization of 7. adhaerens has pro-
gressed little beyond qualitative statements that the animal is disk-like or amoeboid,
though the animal clearly has substantial inter-individual morphological variabil-
ity (see Chapter 3). Nothing is known about any allometric development in Pla-
cozoa, with little theory to allow for hypotheses for what might be expected of a
two-dimensional organism, and any allometry that is discovered may not have any

adaptive significance and may, like SOC, simply be an emergent result.

. Placozoa must proliferate and reproduce. Placozoa exhibit a wide variety of strate-
gies for asexual proliferation, but almost nothing is known about how this process
is regulated. The primary means of proliferation in laboratory conditions is binary
fission, whereby a single Placozoa individual tears itself into two pieces, producing
somatic ramets. Placozoa also has alternative forms of asexual propagation, including
the producing of small spherical buds that disperse pelagically when local conditions
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deteriorate’™". There is also evidence of a sexual life stage for Placozoa’”’, though

sexual reproduction has never been observed under laboratory conditions. Given
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the sparse knowledge on sexual reproduction and budding swarmers, this thesis has
focused on asexual reproduction through fission, which is the exclusive form of pro-
liferation under hospitable conditions (see Chapter 2). It is unknown if this process
is the result of developmental signaling that is driven by metabolic allometries, or if
it is an emergent phenomenon that is produced by growth into sizes and geometries
that are detrimental to coordination and therefore susceptible to fission by decision

conflict™”7?,

Understanding Placozoa as a collective system requires understanding the commonalities
and differences that this system has in relation to other collective systems. All collective sys-
tems can be understood in their most abstract sense as multiple similar component units ex-
pressing behaviors that are the product both of an intrinsic propensity and of the informa-
tion received from a subset (possibly all) of the collective’s other components'***>'?. This
is easiest to appreciate by analyzing the commonalities of some of the well-known models
of collective behavior, including the Ising model”, the XY model %, the Vicsek model**°,
and the Kuramoto synchronization model “**. Below I will describe these common proper-

ties, and how they relate to the context of Trichoplax adhaerens.

1. Collective systems are composed of numerous similar components. At a minimum
the components within a collective system must be similar enough that they are sus-
ceptible to the same forces and environmental factors. In the case of the Ising model,
one expects all components to be somewhat susceptible to magnetic fields and mag-
netic forces exerted by their neighbors. In the case of fish schools or flocks of birds,
the behavior of all members is affected by the same visual, olfactory, and hydrody-

namic cues and signals. For Placozoa, the constitutive cells of the animal are expected
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to respond to chemical cues and signals, as wells as hydrodynamic and tensegrity

forces exerted on the cells.

. The components are coupled to one another. In all of these systems, components
influence each other either through direct interaction or indirectly through stig-
mergy’*. In Dictyostelium amoeba this coupling occurs through chemical signaling®”
while for swimming Bacillus bacteria the coupling occurs through hydrodynamic
forces»7>>. In the case of Placozoa, the necessity of physical contiguity undoubt-
edly makes tensegrity forces on cells the primary method by which their movements
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are coupled to one another, similar to other multicellular systems ™, though a sec-

ondary role may be played by hydrodynamic and chemical cues.

. Collective systems are considered to be at energetic minima when there is consen-
sus among components. As a consequence of the way in which collective behav-

ior models are constructed, an emergent phenomenon in such models is the emer-
gence of consensus in the absence of any external orchestration. In collective motion
these consensus states are exemplified by highly ordered polarized or rotating move-
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ment’>**°, where deviations from these ordered states are caused by noise and fluc-
tuations. In the case of synchronization systems, consensus occurs when all compo-
nents have achieved the same phase, as in synchronizing fireflies”** or ant colonies ™.
In the case of Placozoa, in keeping with other models of collective movement, the
consensus state I use in chapter 1 is that of solid-body movement, the multicellular
mass moves as a crystal composed of equally-spaced cells that minimize the tensegrity

strain on the system. This assumption is consistent with observed inter-individual

spacing in other collective systems that shows the signature of a characteristic spac-
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ing consistent with Lennard-Jones type interactions”**>**". A similar consensus state
could be when the feeding pulsatile behavior is synchronized across the entire animal

body plan, though this type of consensus is not investigated in this thesis.

At the same time, Placozoa can be characterized as a certain subclass of a collective system

based on three fundamental properties:

1. Placozoa are effectively a lattice network collective system. Collectively acting sys-
tems can differ substantially in their network structure which in turn affects the be-
havioral dynamics of such systems>***. Estimating the actual interaction network

in biological collective systems is difficult™*

though different models can be evalu-
ated based on how well they recapitulate observed collective phenomena™'. In the
case of Placozoa, there is little known about the true structure of the interaction net-
work among cells, other than the adhaerens junctions joining adjacent cells in the
epithelia””* and a syncitium of "fiber cells” in the interior of the animal**'*. Given
the dearth of knowledge about this network structure, I assume that such cells form

a lattice-type network on a Voronoi grid, with cells (or cell clusters) communicating

directly only with their nearest neighbors.

2. The interaction network in Placozoa is static on the timescale of decision-making.
In addition to variability in the network structure, collective systems can also vary in
how quickly the network structure changes. In the case of the Ising model the net-
work has a fixed structure, while in the Vicsek model the network structure changes
as component positions are updated and new components find themselves in each

others’ spheres of influence. Placozoa cells lack the tight junctions and basal lamina
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found in later-diverged Metazoa'*" that stabilize the network structure of cellular
tissues, but cells are nevertheless tightly compressed in a solid mass that must exert
considerable steric hindrance. I therefore assume that the network structure of cells
is essentially static on the time scale of decision-making in collective movement in
chater 1, which is also in keeping with time scales for consensus decision-making in
other animal groups"'. Nevertheless, clearly this structure is altered substantially
through the process of asexual fission and growth, and this effect is discussed to some

extent in Chapters 2 and 3.

. Placozoa are homogenous collective systems. Models of collective systems often as-
sume that components are identical and interchangable. This assumption is invali-
dated in many real-world biological systems such as primate social groups that have
clear hierarchies and physiological differences between constitutive individuals ™.
In the case of Placozoa, it is well-known that such animals are composed of several
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cell types'®”, though for many of these cells their function is largely unknown. Due
to the lack of tools that allow the separate visualization of each cell type in vivo and
because at a certain spatial scale the composition of the animal becomes homoge-
nous (see'”), I treat Trichoplax adbaerens as a homogeneous bulk matter in Chapter
1. However, there is some evidence for differentiation between the bulk and bound-

1 157,160,169,117

ary of this anima , which I consider in the allometry study conducted in

Chapter 3.
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Size increases produce coordination

trade-offs in a simple multicellular animal

1.1  ABSTRACT

A fundamental question in collective behavior is how the size of a decentralized system

affects its coordination. This problem is apparent, for example, in the earliest-diverged mul-
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ticellular animals, which must coordinate activity across decentralized body plans of inde-
terminate size. One interesting hypothesis for how such systems can remain coordinated
across such a size range is that components within a collective might tune their respon-
siveness for optimal information propagation at different sizes, a phenomenon known as
criticality. This phenomenon is often detected empirically by measuring how constituent
components within a collective deviate from the group mean, and identifying scale-free
correlations in such deviations. Such measurements, however, have never been performed
simple multicellular animals. Here we present the first analysis of multicellular dynamics
in one of the earliest-diverged and arguably simplest motile animal: the Placozoa. We mea-
sured the correlation structure of movement fluctuations among cells within individuals of
different sizes, identifying scale-free correlations and use simulation models of elastic sheets
to infer that such animals are near criticality. However, Placazoa and the corresponding
critically-tuned model exhibit a substantial decrease in total correlation and collective order
with system size. Thus, for decentralized multicellular animals, being poised at criticality
creates a trade-off between size and coordination that may have important implication for

the evolution of hierarchical structure.

1.2 INTRODUCTION

Coordination in collective systems is an area of active research in disciplines as diverse as

49,67,109,2.01

biophysics, ecology and engineering . One essential property of such systems is the

capability of their components to execute a coordinated response to perturbations. This
capability has been measured in a variety of systems through statistical inference #>"*
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and agent-based simulations***>* '. Coordination was also essential for the evolution
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of multicellularity, as behavior at the scale of the organism is the integration of the behav-
iors of constitutive cells. However, the earliest multicellular organisms were decentralized
(modular) entities, being composed of iterated units - polyps, zooids, ramets™ or single

cells® - arranged in structures of indeterminate size and rnorphologyx"’*“

. An important
question in the evolution and ecology of such organisms is whether they can still coordinate
organism-scale behaviors as the organism increases in size.

The earliest-diverged multicellular animals are of particular interest for investigating the
effect of size on coordination in such decentralized organisms. Although they lack nervous
systems, such organisms nevertheless exhibit organism-scale behaviors °*>*>". Though it has
been argued that pre-neural behaviors lack specificity and directionality *, a number of the
earliest modular organisms show some degree of motility, which requires a directionality
that in such organisms is not intrinsic to their body plans**"**. However, it is notable that
only the smallest of such decentralized animals (e.g. the Placozoa™’) are fully motile, while
larger organisms (e.g. many Porifera species'”) are sessile at their major life stage. Though
this is considered as evidence that modular structure is detrimental to coordination at larger
sizes”, the effect of size on coordination in such systems has not been measured empirically.

Advances in biophysics, inspired by statistical mechanics, have enabled investigations
on the effect of system size on coordination in biological systems. Though these methods
have been applied to quantitatively understand collective behavior in a variety of biological
systems**>*>77>% but similar study has yet been performed on decentralized multicellu-
lar animals, and it is unclear to what extent previous observations are generalizable to this

new context. In general, these methods consider coordination as the product of forces -

whether additive**>"* or not” - exerted between components coupled with some intrinsic

17



noise ">, The strength of these forces and noise are inferred from pair-wise correlations
in fluctuations of a component’s behavior about the collective state, such as deviations in
a cell’s movement from the movement of the whole animal. The strength of these correla-
tions can be influenced by a wide variety of tunable parameters including the spacing™'"”,
speed ™, biases”’, and noise strength**. As these parameters are tuned, a collective system
typically undergoes a phase transition from disorder to a stable ordered state*”', but being
in an ordered state that is too stable also reduces the system’s sensitivity to perturbations,
known as its susceptibility. In highly-ordered systems, an individual component’s fluctua-
tions are overwhelmed by the coherent forces of its neighbors, locking the system into one
stable state ™",

One interesting hypothesis fueled by those previous studies, known as the criticality hy-
pothesis ***'*4  is that biological systems are tuned or poised to be at the phase transition
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between disorder and order”*". Near this critical point the system exhibits fluctuations
that span all length scales and a system’s sensitivity to perturbations - its susceptibility - is
maximized **”". Biological systems might be poised at criticality by having their parame-
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ters - for instance, the synaptic responsiveness of neurons - tuned to this critical point
by evolution, assuming criticality has adaptive value”"°. Alternatively, biological systems
may achieve self-organized criticality *, adjusting its properties through self-reinforcing be-
haviors that drive the system to a critical point. This is a particularly attractive hypothesis
for biological (finite) collectives, in which parameters needs to be continuously adjusted to

1,10

match changes in system size>”. Comparisons of models with empirical data** and direct
measurement of response parameters' have lent support to the criticality hypothesis. The

theory remains controversial however, as the statistical readouts that are often cited as evi-
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dence of criticality, such as power law distributions or scale-free correlations, are also found
in systems without critical tuning*~"”.

In spite of these advances in physical explanations for coordination in biological sys-
tems, very little progress has been achieved in understanding how size affects coordination
in decentralized and modular animals. Studies on coordination problems in rudimentary
colonial organisms, such as phototaxis in Volvox carterii, has revealed that performance di-
minishes strongly with increasing size . While criticality may seem an attractive hypothesis
for how decentralized organisms can coordinate across a wide range of sizes, such organisms
lack specialized tissues with tunable properties such as neurons and muscle cells, both of

which display critical phenomena "

’ and which are found only in later-diverged organ-
isms. Itis therefore an open question whether early-diverged multicellular animals have
the capability to coordinate at larger sizes. In this paper we investigate this question by
studying the behavior of Trichoplax adhaerens, an animal in the early-diverged phylum
Placozoa. 1. adhaerens is anatomically the simplest animal °>****>*>" essentially a decen-
tralized cellular carpet that propels itself across substrates by the collective action of tens
of thousands of ciliated cells*”. It is the only motile animal lacking cephalization, muscle,
and neurons """, In the absence of any known hierarchical organization, 7. adbaerens
is assumed to coordinate cellular behaviors locally through mechanical and chemical com-
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muhnication . We measured the effect of size on coordination by filming freely moving
1. adbaerens individuals that varied in diameter by nearly an order of magnitude. We quan-
tified the movement of ciliated cells in the ventral epithelium, and determined how corre-

lated the velocity fluctuations between cells are at different spatial distances, comparing our

observations to expected values for a system at criticality. We recapitulated our observations
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with simulation models of motile multicellular sheets, revealing the importance of physical

elastic interactions in reproducing our observed spatial patterns.

1.3  REsuLTs

We measured the coordination of cellular movements within 7. adbaerens individuals us-
ing methods derived from statistical mechanics that have been applied to other mobile col-
lectives>*°. These methods quantify the spatial extent of correlations among the velocity
fluctuations of moving components, in this case cells. The thin, flat body plan of 7 ad-
haerens allows us to quantify the general cell movement through non-invasive bright field
microscopy using optical flow (Figure 1.1A). This produces a velocity field approximating
the local movement of cells throughout the animal for every half-second increment (Figure
1.1B). By combining this microscopy setup with an automated stage, we were able to im-
age each of our 84 sampled animals continuously for at least two hours, ensuring that our
measurements accurately capture the statistics of cellular movements within 7. adbaerens.
We extract the velocity fluctuations describing local movement relative to collective mo-
tion by removing the collective modes of movement from the full velocities. We perform
this extraction for every instantaneous velocity field for every animal using a method devel-
oped by Cavagna er al. *° and expanded upon by Attanasi ez al. ', which we elaborate upon
in the Methods section. This method removes the translational, rotational and dilatational
collective modes of movement observed in 7. adhaerens (see Supporting Information). Fig-
ure 1.1C displays the velocity fluctuation fields corresponding to the velocity fields in Figure
1.1B. The fields exhibit large spatial domains of correlated and anti-correlated fluctuations

both in direction and speed that are more than an order of magnitude larger in diameter
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Figure 1.1: Velocity fluctuations have long-range correlations in T. adhaerens. (A) Images of two representative T. ad-
haerens individuals, shown to illustrate size variability. Scale bar is 0.5 mm. (B) The instantaneous local full velocities
within those respective animals. The color map represents the velocity heading while opacity signifies speed. The animal
on the left is rotating while turning whereas the animal on the right is gliding to the upper-right. (C) The instantaneous
velocity fluctuations after subtraction of collective movement. Larger animals exhibit larger correlated domains. For

dynamics see video SI_Fields.avi.

21



than the constituent cells. In the case of our two representative animals, we observe that
the larger animal exhibits larger correlated domains. This suggests the presence of scale-free
correlations, where the size of correlated domains scales with the system size, an often-cited
indicator of self-organized criticality "%,

We measured the strength of pair-wise correlations among velocity fluctuations at dif-
ferent spatial distances in animals of different sizes using equation r.1. This calculates the
correlation between all pairs of local velocity fluctuations #; and #;, separated by a Eu-
clidean distance ;. The summations and Kronecker delta function d(» — 7;) allow for
measurement of the mean correlation for each separation distance C(7). We normalize the
correlations at all pair-wise distances by a constant ¢, such that C(o) = 1. We define the
relationship between the mean correlation between fluctuations and the Euclidean distance
as the correlation profile. Similar equations are used to determine the directional and speed
correlation profiles (see Methods). The range of the correlation profile is bound between 1
(perfect correlation) and —1 (perfect anti-correlation), with o signifying no correlation on

ave rage .
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Figure 1.2A, C, and E show the mean correlation profiles for all animals in our dataset,

Clr) = (r.1)

where each profile is the mean of 100 randomly-selected instantaneous correlation profiles.
By construction, every profile begins at C(o) = 1and, due to the removal of any mean
contribution, integrates to zero*’. The profile must therefore possess domains of both
positive and negative correlation. A correlation profile of random fluctuations would ex-

hibit an arbitrary structure with multiple zero-crossings. Our system, however, exhibits a
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strong spatial pattern, with the velocity (A), directional (C), and speed (E) pair-wise correla-
tions possessing only one positively-correlated domain with correlation strength decreasing
monotonically with increasing distance, with a singular singular zero crossing C(¢) = o.
There is no observable distance beyond which correlations are negligible, but rather the
entire profile shows substantial positive and negative correlation.

The correlation profiles in Figure 1.2 indicate that the zero crossing distance @, referred
to as the correlation length in other studies *>* (though note that correlation does not
asymptotically drop to zero beyond this point), increases with animal size. This propor-
tional increase suggests the presence of scale-free correlations, with characteristic linear
scaling observed for velocity (1.2B), direction (D), and speed (F) fluctuations. This pat-
tern holds for animals varying in diameter by nearly an order of magnitude, comparable
to previous studies***>7>"". Our observations also span the typical size distribution of 7
adhaerens reared in laboratory conditions, which ranges from 200 to 1,000 micrometers in
diameter®. Animal size in this case is a reflection of the cell count within an animal, with
no evidence that cell size or density changes with animal size (Supporting Information and
Smith ez al."*?). We are confident, therefore, that our observations describe how coordina-
tion scales with the number of component cells across the natural size variation.

Although the correlation length scales proportionately with animal size, we find that
the total correlation within an animal decreases systematically with animal size, implying
a decrease in collective order. When we transform the correlation profile of each animal in
a scale-invariant form, K(%) = ((x), we observe that the data do not collapse on a single
generic function, in contrast with other systems exhibiting scale-free correlations *>*>*. In-

stead, K(i) decays faster in larger animals((Figure 1.3A). We quantify this effect by measur-
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Figure 1.2: The spatial range of correlations increases linearly with animal size. The average velocity (A), direction (C),
and speed (E) correlation profiles for all animals, with brightness proportional to animal diameter. All profiles decrease
monotonically to C(cp) = o, where @ is the size of the positively-correlated domain. @ increases linearly with animal
size for all three measures: velocity correlation (B; ﬁ = 0.29,p < 10" 16), directional correlation (D; ﬂ = 0.29,p <
10~ 16), and speed correlation (F; ‘8 = 0.29,p < 10™ 16). Error bars are standard error determined by variability in the
zero-intercept for 100 instantaneous correlation profiles.
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ing the maximal cumulative correlation Q(7), defined in equation 1.2, which is analogous
to its finite-size susceptibility 5 **". Here (7 — ;) is a Heaviside function that is 1 when
ry < rand o otherwise. We find that y; increases sub-linearly with the animal’s diameter
(Figure 1.3B), suggesting that fluctuations are more strongly damped in larger animals (sub-

linear model: % = aD? + ;a0 = 36.6; 8 = 0.296; AICp < 107%).

o(r) = Z uw(r —7y) (1.2)

The sub-linear scaling of susceptibility has two important consequences for the collective
locomotion of T. adhaerens. At the scale of the organism, it becomes increasingly difficult
for larger animals to establish a collective mode of locomotion, with mean collective order
(see Methods) roughly so percent lower in the largest than in the smallest animals (Fig-
ure 1.3C). At the cellular scale, the fraction of kinetic energy in dissipated in fluctuations,
W= Zfil H, doubles between the smallest and largest animals (Figure 1.3D), a direct
result of the sub-linear scaling of susceptibility and the decreased propensity for collective
order. Increasing size in 7. adhaerens therefore has a detrimental effect on ordered collec-
tive locomotion in 7. adhaerens.

It is unclear whether the effect of size on the correlation length, susceptibility, collective
order, and locomotion efhiciency in 7. adhaerens is a generic consequence of the physics
of such cellular sheets, or whether they only occur under in a restricted parameter space.
The presence of scale-free correlations in particular is often argued to be an indicator of

207,130

criticality , though such correlations can also be generated trivially in certain circum-
stances*”". We used a self-propelled particle (SPP) model of collective movement, derived

from a model developed by Szabé et al.”’ to describe the collective migration of cells, to
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Figure 1.3: Collective locomotion in T. adhaerens becomes increasingly disordered at with increasing size. (A) The veloc-
ity correlation profiles of all animals rescaled by their respective zero-intercept with color indicating animal diameter. (B)
Susceptibility ; increases sub-linearly with animal diameter, with the sub-linear fit (black line: )y = ocDﬂ) compared to
the linear model (red line, AIC-based probability of linear model: p < 1077).
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provide corroborating evidence for whether 7. adhaerens is or is not at criticality. Our sim-
ulated system is a two-dimensional sheet of SPP’s coupled by spring-like interactions on a
Voronoi network with some intrinsic noise » that has a constant intensity for all particles
(see Methods). The size and location of our particles approximates the internal fiber cell
network within 77 adbaerens. Figure 1.4A shows an instantaneous snapshot of the velocity
fluctuations of each cell in one simulated animal. We simulated systems that ranged in size
by over an order of magnitude in linear dimension, and for values of » spanning the entire
range for which our simulations were stable. We estimated the critical noise, 7 ., by using

the the Binder cumulant U = 1 — 32::;2 **, where v is the ensemble average velocity for each

system. By plotting U as we systematically vary » for various system sizes L, and estimate
from the common intersection point of these curves™. In the case of our system, 5~ occurs
between 0.3 and o0.35 (Figure 1.4B).

We find that the scaling effects observed for T adhaerens are only recapitulated by sim-
ulations near the critical point 7. Firstly, both the scale-free correlation lengths (Figure
1.4C) and the sub-linear scaling of ; with system size (D) occur for a variety of values of
»; these scaling phenomena are therefore generic to such systems. However, we find that
system size has a substantial effect on the collective order (E) and the relative fluctuation en-
ergy (F) only when the system is poised near # -, which is the range at which a second-order
phase transition occurs between ordered and disordered states of collective movement. Our
simulations thus provide evidence that the size-mediated effects on collective movement in
1. adhaerens are a consequence of such systems being poised at criticality where increasing
the system size - in the absence of any adjustment of a control parameter - naturally pro-

duces more disordered locomotion.
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Figure 1.4: Elastic networks at criticality replicate the scaling phenomena in Placozoa. (A) Snapshot of velocity fluctua-
tions in simulation for a simulated lattice (N = 8,192 particles). (B) The Binder cumulant for systems of varying in size and
7. The intersect of the curves (red highlight) for system of different size occursinthe 0.3 < 5~ < 0.35. (C) The effect of
size and # on the correlation length and (D) susceptibility. Sub-linear model fits shown for » at 0.1, 0.3, and 0.5. (E) Phase
transition in collective order as # is increased (F) Phase transition in @ in simulations at varying noise levels (insets: effect
of size on order and w when 7 is 0.1,0.6,and 7 ).
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1.4 DISCUSSION

The internal dynamics of 7. adhaerens statistically resemble those of systems near critical-
ity, though one where the control parameter does not adjust to match changes in system
size, which has several important consequences for collective locomotion. The sub-linear
increase of susceptibility with animal size implies that such decentralized cellular sheets
face a trade-off between size and responsiveness. This decreased responsiveness is likely the
cause for the more disordered motion of larger animals, where a greater extent of the overal
kinetic energy within the naimal is channeled into fluctuations. Qualitatively these size-
mediated effects result in an increased propensity of larger 7. adhbaerens to deform, as local
perturbations produce fluctuations do not propagate effectively across the animal. 7. ad-
haerens thus faces a trade-off between increasing size and maintaining coherent locomotion.
At the same time, our simulations reveal that scaling patterns such as scale-free correlations
and the sub-linear increase in susceptibility arise generically in elastic sheets, indicating that
caution is needed when relying solely on such measures to infer criticality. It is likely that
such scaling is the consequence of kinetic energy being channeled into the lowest-energy
vibrational collective mode, as demonstrated in previous studies of simulated mobile elas-
tic sheets >, which scales with system size for an elastic sheet. Our analysis expands upon
those previous studies by elucidating how the system size affects the overall structure of the
correlation profiles. Our observations stand in contrast to those on fluid-like collective sys-
tems like flocks of birds*°, schools of fish'”"”*, and swarms of midges ' and provide the first
evidence that decentralized multicellular systems face trade-offs between size and coordina-

tion.
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It may appear counter-intuitive that size has a stronger effect on susceptibility and order
in contiguous animals than in animal groups. This is not surprising however when we con-
sider that both are decentralized systems, with multicellular collective motion representing
a more constrained version of collective movement with fewer parameters that can be tuned
in response to changes in system size. For instance, strong volume-exclusion forces between
cells prevent large local density fluctuations that were identified as an important tunable
parameter in swarms of midges". Cells in multicellular sheets, when compared to animal
groups, are limited both in their sensory capabilities and the repertoire of effectors that can
be used to respond to stimuli. Likewise, inter-cellular junctions in multicellular systems
inhibit neighbor-switching, a phenomenon that could enhance information propagation
in animal groups™ (though see"" for the relevant timescales). The sum total of these capa-
bilities likely help poise animal groups near criticality **, and their absence likely cause the
size-mediated consequences for energetic efficiency (order) and responsiveness (susceptibil-
ity) in multicellular sheets.

Our study has several limitations, however, though these do not compromise the gen-
eralizable nature of our observations. One limitation is our simplified representation of
1. adhaerens as a cellular sheet, abstracting its true but functionally-unknown anatomy.

In particular, it is unclear if the internal fiber cells in 7 adhaerens, whose function and
network structure is unknown, is involved in coordination. Although previous hypothe-
ses that these cells are neural or muscular precursors** were dismissed by more recent

169

anatomical studies'”, there is still too little known about their network structure or process
lengths to discount them having some role in coordination. In the absence of contradic-

tory evidence, we have assumed that the number of such cells increases in proportion to
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the animal’s size with no substantial changes to their network topology or physical char-
acteristics. 7. adhaerens also possesses specialized cells that bind to neurotransmitter-like
molecules®*” that were recently reported to arrest the beating of nearby cilia during feed-

ing bouts'**"”"

. However, nothing is known about their role in guiding locomotion outside
of feeding, which is the context of our study.

We have found evidence that 7. adhaerens are near-critical systems, but currently lack a
theory of these organisms maintain such a state in the absence of clear biochemical feedback
loops as in neurons. One interesting possibility is that the components in a system do not
tune themselves to match the system size but rather that the system size adjusts itself for op-
timal coordination purely from the intrinsic responsiveness of the components“’. Under
this hypothesis, systems that grow beyond an effective coordination size will fragment to
smaller size due to some decision conflict. This is a particularly attractive explanation for
animals such as 7. adhaerens, an organism that reproduces by asexual fission. Nothing is
known about the cause for this reproductive process, though it is expected that such ani-

mals will fission at smaller sizes in nutrient-poor environments '

. One possible mechanism
linking these two phenomena is that starvation effectively agitates the locomotor activity
of constitutive cells in 7. adbaerens, effectively increasing ». This produces increased loco-
motor activity under starvation conditions'”*, decrease the collective order, and allow for
directional conflict within larger animals that results in force-mediated fission.

Our approach extends the knowledge of collective systems to provide insight into the
effect of size variation on coordination in the earliest multicellular animals. We view this

as part of a larger effort to reveal not only how system-wide coordination can be achieved

spontaneously “**", but also to identify the limitations of such decentralized decision-
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making. The detrimental effect of size on coordination in such decentralized animals re-
veals the limitations of such organization and provides a driving force for the evolution of
hierarchical structures. If decentralized animals face a trade-off between increasing size and
coordination, then the need to grow to bigger** while overcoming this trade-oft would have
motivated the evolution of hierarchically-structured specialized tissues such as muscle and

nervous systems.

1.5 MATERIALS AND METHODS

5.1 DATA AcCQUISITION

1. adhaerens were reared in 150 mm diameter petri dishes with 100 mL of artificial seawater
at 35 parts per thousand concentration (35 ppt ASW, Instant Ocean Reef Crystals). Animals
were fed a diet of Rhodomonas salina reared in algae growth media (35 ppt ASW + 1:1000
t/2 Guillard’s growth media). Animals were sampled from exponentially growing cultures,
with fresh cultures seeded every two weeks. Before imaging, animals were washed by succes-
sive transfer into three dishes of sterile ASW and kept isolated from food for 12 hours. Each
animal was transferred to a recording tank containing s mL ASW and imaged under bright
field microscopy at 40x magnification using a Photometrics CoolSnap or a Hammamatsu
ORCA 4.0 monochrome camera. Distances were calibrated with a measurement slide. Im-
ages were acquired at 2 Hz for a duration of at least 2 and at most 8 hours, a time period

that is insufficient for a significant change in starving animals.
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1.5.2 TRACKING AND MEASURING VELOCITY FIELDS

We developed an in-house MATLAB software to segment the animals in each frame, ig-
noring frames where part of the animal was outside of the camera’s field of view or where
the stage was moving. We defined the animal size as the area enclosed within the animal’s
two-dimensional footprint, with the animal diameter defined as the diameter of a circle of
equivalent area. To minimize measurement error in size caused by out-of-plane buckling of
the animal, we only considered frames where the observed area was at least 8o percent of its
maximum observed area. We found no trend of cell size with animal size (Supporting Infor-

mation), in accordance with histological studies'*”

. We computed the optical flow between
frames using software described in”*, keeping only vectors within the animal’s footprint for
further analysis, providing the instantaneous velocity v;() for each 100 square micrometer

region 7 at all times 7.

1.5.3 CALCULATING VELOCITY FLUCTUATIONS.

Vectors within a distance of 10% of the animal diameter from the boundary removed from
further analysis. We isolated the velocity fluctuations from the full velocity vectors by sub-
tracting the translational, rotational, and dilatational collective modes of movement from
each vector. Each cell cluster 7 has a position y; in relation to the center of mass of the ani-

mal as defined in 1.3.

We can use each cell cluster’s relative position, its velocity, and the mean velocity (v) =
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N . . .
% 2k Uk to determine the expected future position of each cell cluster relative to the ex-

pected future center of mass:

y (¢t +dt) =y,(2) + vidr — (v) dr (1.4)

We then determine the velocity fluctuation using equation 1.5 for each cell cluster at any
given time, #;(7), as the difference between the future relative position and the affine trans-
formation of the present position with an optimal rotation matrix R and a dilatation factor
A. We define optimality as the values of R and A that minimize the total positional devia-

tion defined in equation 1.6.

u(2) = y,(t+dt) — ARy (1) (Ls)
= |lyi(e+de) — ARy, (9)]| (1.6)
k=1

In the case of solid-body translation, rotation or expansion, y;(# + dt) is an affine trans-
form of y;(¢) withe = o. The fluctuations of a vector differ from o only if the future
positions of the cell clusters cannot be explained by an affine transform of the present
positions. To further safeguard against trivial sources of correlation through off-center
rotation or sharp turning, we only considered velocity fields recorded at times when the

where the centroid trajectory curvature I'() = % < 0.7. () is dependent on the

ratio of the vector displacement V() Hx ty) — x(1,)||>
L(s) = 3202,

trand £, was sufficient to capture the path curvature.

x(ti1:) — x(2;)||. We considered that a separation of 15 seconds between
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1.5.4 CORRELATION PROFILES

In addition to the velocity correlation function defined in 1.1, we also determine the direc-
tional correlation Cp(7) and the speed correlation Cg(7) defined as
wlea\(r - VZJ)

CD(7’> = J

Zija\(r—rij)

1257780 = 7y)
¢ ZZJ Ir—ry)

Here 4 and ¢, have the same meaning as in equation r.1. w; = v is the unit vector of the

Cs(i") = (18)

velocity fluctuation of cell cluster 7 and ), is its speed fluctuation with respect to the global
d,y, = LN
mean speed, 7, = vl — & 52, il
We measure the slope of the correlation profile at the zero-corssing using the five-point

stencil method, fitting a second-order polynomial to the points closest to the crossing and
then evaluate the slope as the first derivative of the fitted function at the crossing. We mea-
sured the susceptibility (integral) of the correlation profile by applying a cubic spline fit of
the average correlation profile, interpolating 100 evenly-spaced data points across the do-

main, and then integrating using Simpson’s rule.

5.5 COLLECTIVE ORDER

We define three modes of collective movement: polarization P, rotation R, and dilatation
A using equations 1.9-.11. Here N is the number of regions in an animal and 7, is the unit

vector from the animal center of mass to the region, while ; is the unit vector of its velocity.

These three measures can be combined into a Euclidean distance O = /P> + R> + A?,
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which ranges from 1 (movement as a solid crystal) to o (completely uncorrelated movement

across the animal).

LN
P(t) = > b (1.9)
N
R(t) = ]i\[ Z?’ic X 0 (r.10)

Ar) = LNZ |74 - o] (L)

1.5.6 SELF-PROPELLED PARTICLE MODEL

We model indivdual 7. adbaerens as ensembles of N coupled self-propelled particles in two
spatial dimensions, using a modification of the model introduced by Szabo et al.”. The
displacement of each cell 7 is given by an overdamped equation of motion
dr; )
i voVi(2) + 1 Z Fi(r;, 1) (112)
JEN:

with r; being the position vector, v, the self-propulsion speed, v; the unit vector deter-
mining the self-propulsion direction, « the mobility of the focal particle, and F;; the spring-
like attraction-repulsion forces resulting from the coupling to the neighboring cells. The

unit vector of the self-propulsion v; = (cos ¢,, sin ¢,)” is determined by the polar angle ¢ ,
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which evolves according to:

de, o
7 sin(9; — @,) + »,(¢) (r.13)

T

with 9; being the polar angle of the total attraction-repulsion force F; = Y F i =
arctan (F;,/F;.). Thus, ¢, relaxes towards the force direction with a characteristic time 7.
Finally, »,(¢) is Gaussian white noise with vanishing correlations. Each particle interacts
only with its direct Voronoi neighborhood, and we assume a fixed interaction topology
(no neighbor switching). Further model and simulation details are given in the Supporting

Information.
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Size Regulation as an Emergent

Phenomenon in 7. adbaerens

2.1 ABSTRACT

The regulation of growth and size is paramount to any biological organism’s fitness, with

size affecting numerous aspects of an organism’s ecology. While some organisms grow to
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genetically or ontogenetically determined sizes, many of the earliest multicellular animals
have a colonial or decentralized structure that permits growth to indeterminate sizes and
allows for the continuous adjustment of size in response to changing environmental con-
ditions. This responsiveness occurs through growth, degrowth, and vegetative reproduc-
tion through fission. We study the dynamics of population size and size structure of 7.
adbaerens proliferating in environments with differing nutrient conditions, and analyze the
dynamics of growth and asexual fission to understand the processes that result in the ob-
served size structure. We show that growth is regulated in response to nutrient conditions,
but that the propensity to fission at a given size is independent of the nutrient richness of
the environment. These results suggest that asexual fission in Placozoa is an emergent phe-
nomenon, driven by decision conflict at sizes larger than a certain threshold, and the ob-
served size variability across environments is caused by changes in growth rate rather than

the propensity to fission.

2.2 INTRODUCTION

Size is the fundamental determinant of numerous ecological and life history traits for any
organism*“**. For animals, size affects numerous factors includin dator- i-

g ) , g predator-prey associ
ations, energetics'”*, intra- and inter-specific competitiveness, and in some cases even the
sex of an individual (for a comprehensive review, see Ebenman, 1988°”). The regulation of
size is therefore paramount to an organism’s survival and fitness. While most organisms
grow to sizes that are pre-determined either genetically or ontogenetically, known as de-
terminate growth, there is a class of organisms capable of indeterminate growth whereby

they can rapidly adjust their size and growth in response to changing environmental con-
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ditions'*"*". Such indeterminate growth is often facilitated by animals being capable of
substantial growth, degrowth, and asexual reproduction.

The problem of size control is particularly complex when size determines not only an
individual’s survival and metabolic efficiency, but also its fecundity, especially when these
two aspects affect one another directly. If these factors do not interact, it is typical for an
organism to grow to a metabolic optimal size and then invest any energetic surplus into re-
production to the exclusion of further growth'*". This idealized strategy typically does not
occur in animals of indeterminate growth when the optimal size for reproduction differs
from the metabolic growth optimum, which can occur for a variety of reasons (e.g. mate
competition, gonad size limitations, ezc., see Sebens (1987) " and Charnov (2001)** for more
examples). One particularly interesting problem is when asexual propagation involves a
substantial loss of somatic tissue, such that growth and reproduction are directly antago-
nistic processes. In spite of the storied existence of many of the aforementioned ecological
models for indeterminate growth, there has not yet been an empirical study on the interac-
tion of vegetative fission and growth.

The marine colonial organisms, among the earliest examples of multicellularity, are a
good model organism for studying the interaction of these growth and asexual propaga-
tion. These earliest forms of multicellularity grow to indeterminate sizes and, due to their
great regenerative capabilities, can produce asexual propagules by a wide array of mecha-
nisms including fragmentation and fission ***»'**. Additionally, such organisms can rapidly
adjust their growth (and degrowth) rates to match environmental conditions™". Fission and
fusion are typically the dominant processes that determine the size structure of populations

of such species, erasing any correlation between age and size*”. This process also typically
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serves as the major source of local population growth (defined by number of new indi-
viduals)”>”*, such that one clone can quickly dominate a local environment by producing
multiple clonal ramets through asexual fission”. Therefore, understanding how fission is
regulated is essential to understanding fitness and competitive dynamics in benthic marine
ecosystems.

In spite of the importance of fission for a population’s size structure, little is understood
about how this process is regulated is regulated in these early examples of multicelluarity.
Both fragment survival”” and fragment growth rate' are strongly dependent on the initial
fragment size, so the ability to regulate the size of fission products - by the size of the parent
animal and the fraction of that size given to the daughter - has adaptive value. The domi-
nant ecological theory on sessile organisms holds that fission in such benthic organisms is
the reult of extrinsic forces such as storms or tissue degradation ™, though the size the pro-
duced fragments may be biased in an emergent fashion by the geomtry of growth 7%, In
motile organisms, fission may generated by intrinsic forces caused by antagonistic pulling
of different parts of an animal **"*""*7, though little is known about what sorts of environ-
mental conditions instigate this process.

161,162,163

Metabolism is considered the major factor affecting size , but to date no empir-
ical study has been performed on whether fission dynamics are adjusted when such con-
straints are relaxed or exacerbated. While we may be tempted to extrapolate from metabolic
theory of animals with unitary body plans to animals with decentralized construction,

this is often inaccurate . Taking the example of metabolism, which is known to scale

in an allometric fashion in animals with unitary body plans, following a well-known i

power law*”. One could imagine that this rule applies to modularly-constructed or colo-
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nial animals that grow in three dimensions, caused by factors such as nutrient diffusion

00

and self-shading in resource capture’*”. Nevertheless, in the case of filamentous or two-

dimensional colonial growth, there is some evidence that metabolism scales linearly with

82,163,149

colony size . Organisms with such geomtries, including the Placozoa, are the most
likely to exhibit metabolic isometry *, and it is likely that motility further relaxes allometric
constraints on resource acquisition.

We used experimental cultures of the Placozoa species Trichoplax adbaerens to determine
the dynamics of size regulation through growth and fission in response to varying nutrient
conditions. Placozoa are motile multicellular animals that are effectively two-dimensional
cellular sheets with amoeboid shape. They are the morphologically simplest and among the
carliest-diverged multicellular animals7>"*"*°. Placozoa are benthic organisms that graze
on deposited microalgae on hard substrates, ingesting nutrients through their ventral ep-
ithelium. Due to their geometry, the ventral feeding surface of Placozoa scales linearly with
the animal’s overall size. Placozoa reproduce asexually by fission, a phenomenon that has
been known for over a century *" but whose regulation is still unknown. Sparse data on
the animal’s proliferation**7* suggests that animals reach a stable mean individual size in
experimental cultures, but the substantial variability around this mean"” could indicate
that such stability is simply a statistical property of increasing population size, rather than
evidence of regulation. Here we report the first systematic study of size regulation in such
organisms in response to changing nutrient conditions. We record the population dynam-
ics and size structure of clonal ramets under different nutrient conditions, and identify the
causal changes in growth rates and propensity to fission. We further develop a simulation

model to investigate the optimality of the parameters that govern size regulation in 77 ad-
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haerens, and discuss the development of a high-throughput experimental setup that can

allow us to estimate such parameters in Placozoa.

2.3 RESULTS

The first indicator that Placozoa adjust their growth or fission in response to varying nu-
trient conditions is if there is any change in population size or size structure when animals
are grown in different conditions. We cultured 7. adbaerens from clonal ramet popula-
tions that were identical in initial size, growing them in artificial seawater (ASW) seeded
with Rbodomonas salina microalgae at a concentration of either 0.20 or 0.40 optical den-
sity (OD). Animals proliferate under such conditions for one week (Figure 2.1A) before
cultures begin to degenerate, indicated by a decline in the population size. Though we
find that environments richer in nutrients tend to support larger populations of 7. ad-
haerens, this difference is not statistically significant, even when the difference in popula-
tion size between these two conditions is maximal (at 84 hours; Welch Two Sample t-test:

t = —1.53,df = 5.18, p = 0.19). In contrast to the total number of individuals, we find that
the mean size of individual ramets is highly dependent on the nutrient condition in which
these organisms are reared. Though we used founding populations for both conditions
that were identical to each other with regard to the mean ramet size (Figure 2.1B; Welch
Two Sample t-test:t = —o0.58,df = 26.3, p = 0.56), after around three days (84 hours) of
growth in different conditions the mean ramet size between the two conditions was highly
significantly different (Welch Two Sample t-test:t = —5.59,df = o1.7,p < 5 X 1077).
Not only did the size structure of these meta-populations diverge over time, but they also

diverged from their initial size structure (Welch Two Sample t-test: OD o.20: t = 3.30,df =
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41.6, p = 0.002; OD 0.40: t = -1.93, df = 46.6, p-value = 0.06). These results suggest that 7.
adhaerens adjust their proliferation strategy in response to changing nutrient conditions,
which could occur either by changing their growth rate, their rate of asexual fission, or both

of these processcs.
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Figure 2.1: Placozoa proliferation under varying nutrient conditions. (A) Cultures of Trichoplax adhaerens grown in ASW
of either 0.20 or 0.40 OD of R. salina. Measurements are averaged over five simultaneous replicates for each condi-

tion, each culture started with a population of 5 randomly selected ramets. Error bars represent standard error. Error
increases at the end as some cultures suffered population collapse before others. (B) Mean ramet size of the founding
populations under each condition. Error bars represent standard error on the mean value. (C) Mean ramet size for each
condition measured at the time of maximum population size. Error bars are the same as in (B). The final size distributions
are significant different across conditions, and are significantly different from the initial size distributions in their mean

value.
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Identifying which of these two factors - growth and fission - contribute to the observed
size structure requires the ability to track the proliferation fate of individuals of varying
size. We do so by imaging one of the culturing dishes used in the previous experiment over
24 hour time periods at a sufficiently high time resolution to track and maintain the iden-
tity of each animal throughout the entire recording. The largely two-dimensional body
plan of T. adbaerens enables the quantification of animal size through tracing of the ani-
mal boundary. Feeding Placozoa have high dynamic variability in footprint size”*”*, which
we can overcome by measuring the average footprint size of the animal over a 10 minute
interval, or one complete feeding bout. By measuring the initial animal size, determining
whether the animal fissions, and recording the final animal size after 24 hours when fission
did not occur, we can discern how these mechanisms are regulated to produce the observed
population structures.

We measure the growth response to nutrient conditions by considering, for any animal
which did not fission, what was its size at an initial time point of recording and its size af-
ter 24 hours of growth in such conditions (Figure 2.2A). We identify the factors that con-
tribute to the final animal size by linear regression. Because we do not know the response
curve of growth to nutrient condition at all possible animal sizes, we treat the growth con-
ditions as factors in our analysis and observe simply if growth is different between the two
conditions. As expected, the initial animal size has a highly significant effect on the final size
after 24 hours of growth (t = 7.27;p < 5 X 107%). Though nutrient concentration is not
a significant factor (t = —1.84;p = 0.09), the interaction of organism size with nutrient
concentration is significant (t = 3.00; p = o.o1). The predictive strength of this regression,

which contains only the two most essential factors, is striking, with a very high correlation

45



coefhicient and a very high significance of the fit in general (adjusted R* = 0.98;p < 107%°).
Another measure of ecological importance, in addition to the final sizes attained by each
ramet, is each ramet’s production of new clonal biomass or the net growth. We quantify
this value - the difference between the final and initial size - for each animal and find that
nutrient concentration has a very pronounced effect on the total growth output for a given
initial size (Figure 2.2B). In the case of 0.20 OD, a doubling or even tripling in size does not
substantially change the total growth output. In contrast, growth output under o.40 OD
conditions scales nearly one-to-one with initial size of the animal. This significant difference
between the two treatments in their size-dependent growth is undoubtedly a significant

factor in producing larger animal sizes under richer nutirent conditions.
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Figure 2.2: Growth of T. adhaerens of varying sizes under varied nutrient conditions. (A) The final size compared to the
initial size for non-fissioning animals shown size after 24 hours of growth in either 0.20 or 0.40 OD nutrient conditions.
Lines represent linear regressions of best fit for each condition. Shaded area is the 95% confidence interval on the linear
fit. (B) Total biomass added to each individual shown in relation to an individual’s starting size. Line and shaded area
rerpesent the best linear fit to the data and the confidence interval on the fit. Black line: y = x. The slope of the growth
line for 0.40 OD is significantly different from the growth line for 0.20 OD but not from the y = x line.

In additiion to growth, asexual fission plays a critical role in size regulation in 77 ad-

186,175

haerens. Though this organism has multiple modes of sexual and asexual reproduction ,
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these occur primarily under deteriorating environmental conditions. Here we focus on ex-
ponentially growing cultures where the primary method of propagation is asexual binary
fission . Through fission - an example of which is shown in Figure 2.3A - a 7. adbaerens
individual produces two daughter animals roughly equal in size (though note that the rel-
ative size of daughter animals has never been investigated quantitatively). We investigate
the effect of the size of an animal on its propensity to fission within 24 hours of the initial
size measurement. We find that size is a highly significant factor in an animal’s propensity
to fission within this time period (Figure 2.3B). The majority of animals above 1 mm?* in size
fission within this time, compared to no animal below 1 mm?. This size-mediated effect on
fission is highly significant (Mann-Whitney-Wilcoxon test: W = 35,p < 5 X 10°%). One
unexpected result is that the propensity to fission at a given size is not affected by the nutri-
ent richness of the environment. This is evident in the logistic regression model of fission
(2.3C), in which we detect that size has a highly significant effect (z = —2.74,p = 0.006)
while nutrient conditions have no effect (z = o.15, p = 0.88). This provides some support
that a lack of coordination above a certain size, and not metabolic constraints, are resonsible

for inducing fission.

2.4 DEVELOPMENT OF HIGH-THROUGHPUT SYSTEMS

Acquiring longitudinal data on growth and fission is time-intensive both in its acquisition,
and in the need to manually identify and track animals over prolonged times in order to
compare final and initial sizes. The problem of tracking is exacerbated when multiple in-
dividuals are placed in a single dish, as is done above, since collisions can result in swapped

identities that must be manually corrected. To overcome this challenge and enable the ac-
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Figure 2.3: The propensity to fission is dependent on animal size but not on the local nutrient conditions. (A) An example
T. adhaerens undergoing vegetative fission, producing two components of roughly equal size. Scale bar: 0.50 mm. (B) The
distribution of initial animal sizes in both the 0.20 (top) and 0.40 OD (bottom) nutrient conditions. Animals are classified
by whether they undergo fission within a 24 hour time period. Animals are characterized by a threshold size at 1 mmm*™
at which fission is never observed. (C) Logistic regression of the probability to fission given the initial animal size and
nutrient conditions. Points represent the initial sizes of individual animals, categorized by whether the animal underwent
fission (top) or not (bottom). Lines are logistic regression functions of the probability of fission at a given size. Shaded
areas represent 95% confidence intervals on the logistic regressions.
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quisition of data in a high-throughput fashion, I developed a robotic time-lapse photogra-
phy apparatus that enables the monitoring of growth and fission of multiple ramet clones
grown in isolation (Figure 2.4A). This setup enables the recording and tracking of 96 simul-
taneously growing animals at sufficient time resolution to overcome the dynamic time vari-
ability in the animal’s footprint tha toccurs while feeding (Figure 2.4D; see also”>7*). By
varying both the initial size and the initial nutrient conditions in a combinatorial fashion
(Figure 2.4C), and doing so with animals reared in isolation, this mechanism both removes
confounding variables of nutrient consumption by cohabiting animals and greatly simpli-
fies the tracking problem, enabling the quantification of animal size through an automated
image processing pipeline. This setup furthermore allows for non-continuous illumination
of a sample, allowing for brighter illumination to be used when imaging that enables the

visualization of animal feeding tracks across the substrate (2.4C).

2.5 THEORETICAL MODEL FOR SIZE REGULATION IN PLACOZOA

2.5.0  ANALYTICAL MODEL DESCRIPTION

In addition to using empirical data to understand the growth and replication dynamics

of T. adbaerens, we developed an analytical model to investigate the optimality of the ob-
served fission function given the observed size-dependent growth function. In other words,
to Placozoa fission to maximize total biomass growth for a given environmental nutrient
condition? An example model is presented in Figure 2.5 and described below. It is hoped
that this model can be used to provide a more complete analytic solution of the optimum
fission behavior for a given growth function.

We consider a deterministic growth model for an animal of size £ which grows in accor-
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Figure 2.4: High throughput imaging of T. adhaerens growth and proliferation. (A) Robotic system for recording size
information (courtesy of *). (B) Experimental design of varying the starting animal size and initial nutrient conditions. (C)
Image of an animal growing in 0.200 OD. Yellow circle highlights the animal. One can observe darker feeding tracks that
the animal has made in the sedimented microalgae. (D) Representative growth curves for several individuals, shown in
different colors. Faded line represents the direct measurement of the footprint area, with the darker line being a LOESS

regression.

ance to the differential equation == = v) until a certain threshold size &4 at whic
dance to the diff leq £ = G(¢, 1 hreshold size £ at which
point the animal fissions into 7 components of equal size % Of course, the dynamics of
this model are heavily dependent upon the growth function G(&, v) that governs the dif-
ferential equation %, where G is assumed to dependent on the current size £ and on the
environment’s nutrient richness ». The total biomass produced after a certain time period 7°
is dependent on the size at fission £; the daughter animal size £, = 2 and the time required
for an animal to grow from &, to Ef, known as the replication time 74 The optimal growth
and fission function for a clonal organism is considered the one that maximizes the total

clonal biomass, &, produced over some total time 7, where 7' >> 71 The dynamics of this

model are similar to an unbound exponential growth shown in equation 2.1. A graphical
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Figure 2.5: A simple model of growth and proliferation of T. adhaerens. An initial animal of size g grows at arate j—g The

-
animal fissions deterministically when it exceeds the size éfinto m components of equal size, that then continue to grow
following teh same growth function.

schematic of our model is shown in figure 2.5.

Er= Wl%gf (2.1)

We note that for a given deterministic growth equation G(&, v), the time to fission is en-
tirely dependent on the size at fission, which is simply a multiple of the initial ramet size
7Am&,). Substituting this into equation 2.1 produces a function that is no longer depen-

dent on time but only on the initial fragment size.

T 4
gT = m7f<£”> go (2..2)
The optimal or maximal £(&,) occurs where dggiéf”) = oand % < o. Solving these

derivative equations requires an explicit form of 74£,). We consider the simplest possible
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realistic growth function, which is a concave-down quadratic equation.

&

o= —E—1)+g¢ (2.3)

Here, £ is the current size of the ramet and 1 is the nondimensional optimal size at which
growth is maximal. The nondimensional optimal growth rate is given by g, and the two
real roots represent and maximum and minimum viable size. To solve for size as a deter-
ministic function of time, we substitute £ = & — 1, withd8 = dfto produce 2.4,

with the corresponding integral 2.5. This has a known hyperbolic function as a solution

J =% = L tanh™'(¥) + C, which for our specific case is equal to equation 2.6.
d&' 5
E = —El +g (2‘ 4)

g
T—i_g = /d'T (25)

/!
I

%tanhl(%) +C=7+K (2.6)

. . . . /
By letting 8 = K — Cand reversing our substitution & = ¢ — 1wecannowsolve & as a

function of 7.

£ = Jfgtanh(/g(7 + 8)) +1 (2.7)

We must solve for the initial condition of 2.7, where £(¢ = o) = £, and then solve for 14

in terms of &,

£, = /gtanh(,/gB) +1 (2.8)
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8= (2

v v ) (2.9)

Substituting the initial condition back into equation 2.7:

g1

£(7) = /gtanh(y/g7 + tanh™( ) +1 (2.10)

We now solve for the replication time 75 which is the amount of time it takes an organ-
ism from an initial condition side &, to reach a size éf = mé&, at which point the organism
would fission and the replication cycle would repeat. Solving for the replication time as a

function of the replication size produces

I

= i, = Jgranh(yr, + aanh () +4 (21

v

— X (tanh™ e, 1 — tanh ™' (22— 2.12
Tf(fo)—\/g(th(\/g) h(\/g)) (2.12)

At this point, ideally one would substitute this into equation 2.2 and produce the first
and second derivatives of this function using the chain and product rules for integration.
Unfortunately this integral does not have a trivial analytical solution, requiring a numerical

solution instead.

2.5.2  SIMULATION MODEL DESCRIPTION

We used a deterministic agent-based simulation identify the optimal fission strategy for

organisms capable of vegetative proliferation. Our simulations consider Placozoa agents
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that grow according to a simple quadratic growth function (Figure 2.6A), with an optimal

. * . . o1 .
size§" = o.5 where growth is maximal. Fach Placozoa agent grows until its size equals or

&

surpasses the size Ef, at which point the animal fissions into 7 € Z™ fragments of size =
Each simulation began with a single individual with a starting size S, = f—i and is run for a
constant but arbitrary growth time that is much greater than the replication time 7" > 7
The results presented below are not sensitive to our choice of 7.

Our results provide two key insights: firstly that binary fission is a superior reproductive
strategy to fragmentation, and secondly that the optimal fission size does not correspond
to the metabolic optimum (where growth is maximal). Taking into consideration simply
the total biomass produced, which is a good measure of fitness for a clonally propagating
organism’’, binary fission (7 = 2) is the dominant strategy in all cases up until ¢. £ > 0.95
If we consider the maximum biomass & ;% that can be produced for a given 2, we find that
this quantity decreases monotonically with decreasing 7 (Figure 2.6C). As m increases,
the optimal fission size Ef* also increases from roughly 0.7 form = 2too.9form = 9.
This occurs because the optimum growth strategy is for ramets to maximize the amount
of time they spend growing at a size close to the optimal growth size§ = o.5. Asmin-
creases, the parent animal needs to increase to ensure that f—i is still in the neighborhood of
the metabolic optimum. However, this forces each agent to outgrow the optimal size fur-
ther and therefore spend a greater proportion of time in a slow-growth regime.

While these results help us understand why Placozoa have evolved to perform near-equal
binary fission as their main method of asexual propagation, a more empirically-derived
model would be more informative for studying the reproductive behavior of our system.

In particular, using an empirically-derived growth curve instead of our simplified function
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Figure 2.6: Numerical analysis of fission-mediated meta-populations. (A) The quadratic growth function used in our
simulations, with an optimal sizeat § = 0.5, (B) Total amount of biomass produced over a fixed time limit as a function

of the size at fission and the number of fission fragments. (C) The maximum total biomass achievable in a fixed time limit

given a certain number of fragments produced by each fission replication. (D) The optimal fission size.
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in Figure 2.6A would allow the use of such a model to determine the optimal fission size,
Sf*, for m = 2, and compare this optimal size with our data-driven logistic model of fission
discussed in chapter 2. Once this type of measurement is achieved for a given environment,
one could then replicate this experiment in multiple nutrient conditions and determine if
the changing fission dynamics match what would be expected from the given empirically-

observed growth function for each condition.

2.6 DiIscussioN

We have investigated the dynamics of individual and population growth in one of the sim-
plest multicellular animals, 7. adbaerens, in order to determine to what extent such organ-
isms adjust their sizes in response to changing environmental conditions, and identify the
processes that mediate this response. We have identified that 7 adbaerens perform such an
adjustment, primarily by adjusting their growth rate in richer environments rather than by
delaying asexual fission. One curious result is that the total population size of organisms
does not change substantially under such varying conditions. As such, attempting to un-
derstand the population dynamics of this animal by focusing exclusively on ramet count
and ignoring size (as was done in Schleicherova ez al. ") is likely to misrepresent the ecologi-
cally relevant unit of total biomass production.

That propensity to fission is dependent on size but not on nutrient concentrations leaves
open the question of what is driving this process. In particular, it would be interesting to
investigate this phenomenon from the perspective of internation coordination and decision
conflict among cells within an animal. No evidence exists to date of a central organizing

center of activity in Placozoa, and the one study that has analyzed its feeding behavior at
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high spatial and temporal resolution has found that this behavior is locally triggered by the
presence of food causing an ectopic release of neurotransmitters'”'. This local release causes
the Placozoa to not only cease moving but also to adhere tightly to the substratum in order
prevent the loss of digested nutrients trapped beneath the ventral epithelium 7. One pos-
sible cause for fission, then, could be asynchronous feeding by different parts of the animal,
resulting in a motile portion of the animal tearing away from its non-motile remainder. In-
deed, we find that fission is extremely rare in the absence of food (data not shown). Use of
automated tracking coupled with high spatial and temporal resolution recordings, as de-
scribed in Chapter 1, would be the key to testing this hypothesis. Such a study might be able
to place the phenomenon of asexual fission in this animal in the broader studies on group
fission based on decision conflict in animal groups'*>*".

With regard to growth, the nutrient-dependent modulation of this process prompts

162

further investigation of this effect through metabolic theory*. A more comprehensive
dataset of animals whose change in size is measured over a 24-hour period would be useful
for determining the metabolic optimum size for a given nutrient condition. One could
then compare then use such a metabolic model, combined with size-dependent propensity
to fission, to determine if the proliferation strategy of Placozoa is optimal (in the sense of
producing the maximum possible total biomass) at all nutrient conditions. The possibility
that such an optimum size regulation could be an emergent product without tuning the
propensity to fission would itself be a very interesting result.

Our study is limited in its scale, notably in the dearth of data on individually-tracked

ramets that was used to determine growth and fission fates for animals of different sizes,

and therefore follow-up studies should be performed to replicate our current results. This
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limitation is largely due to pragmatism and logistics: using our current setup, acquiring 24
hours of data for one individual is a very laborious and time-consuming endeavor. This
type of analysis is similar to survival analysis in other organisms ", which requires longitu-
dinal observational datasets. We are further limited by our need to image each individual
at relatively high time resolution in order to robustly measure size in the face of the large
dynamic variation in the animal’s footprint while feeding. Given the predictive strength of
our statistical growth model, it is likely that more observations will continue to follow the
very robust trend that we have identified (Figure 2.2). With regard to fission, the nutrient-
invariance of the process is interesting, but the relatively wide confidence intervals resulting
from the dearth of data prompts the need for further replication. The development of a
robotic unit that could allow for the massive screening of clones isolated in controlled envi-
ronments would aid significantly in this endeavor.

Aside from pragmatic considerations, this study is also limited at a conceptual level on
several accounts. Firtly, we considered only the population dynamics that take place un-
der asexual fission, ignoring the full repertoire of reproductive strategies available to 7.
adhaerens. Though fission is the dominant form of reproduction in nutrient-rich environ-
ments, 1. adbaerens also performs asexual reproduction through rapid degeneration into

186

numerous small dispersing buds**, and attempts sexual reproduction when environmental

conditions deteriorate'*®

%, The production of dispersing buds may be particularly impor-
tant for escaping inhospitable conditions and colonizing new patches. Several lines of evi-
dence argue, however, that the major driver of population dynamics should be the asexual

fission we have described. Firstly, in marine benthic species, asexual propagation through

fission and fragmentation is the major driver in recruiting new individuals to patches”,
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and often one asexually-propagating old genet will dominate a habitat to the exclusion of
incoming propagules*°. Secondly, among asexual propagules, it is typical that mortality
increases precipitously with decreasing fragment size, with most surviving ramets being de-
rived from particularly large fragments as produced by fission””. In Placozoa in particular,
there is a strong relationship between size and anti-predator defense ™. Therefore, we ex-
pect the size structure of a population of T adhaerens within one patch to be determined
primarily by production of large fragments through asexual fission, as occurs in other ben-
thic species”".

Here we have produced a quantitative understanding of how growth and fission reg-
ulate the population size structure of Trichoplax adbaerens, one of the earliest-diverged
and simplest multicellular animals. Our discovery that such organisms can rapidly accel-
erate their growth in response to increasing nutrient concentrations suggests that these
organisms may provide an important ecological role in marine coastal ecosystems, buffering

these systems against hazardous algal blooms"*"7*"

. At the same time, our analysis of the
propensity to fission at a given size, and its invariance to nutrient conditions, suggests that
this process may be an emergent result of decision conflict within larger animals as opposed
to a metabolically-regulated developmental process. This study may also help us establish

theoretical models for the proliferation of such animals, enabling the comparison of the

observed proliferation dynamics of Placozoa to a theoretically predicted optimum strategy.

59



2.7 METHODS

2.7.1 ANIMAL HUSBANDRY

1. adbaerens were reared in 150 mm diameter plastic petri dishes filled with 100 mL of artifi-
cial seawater (ASW) at 35 parts per thousand concentration (ppt, Instant Ocean Reef Crys-
tals). The seawater was seeded with Pyrenomonas salina microalgae to a concentration of
0.200 optical density (OD), measured using a spectrophotometer at 6oo nm. Pyrenomonas
salina were reared separately in 1 L ventilated cell flasks filled with algae growth media (35
ppt ASW + r:1000 /2 Guillard’s growth media). Algae cultures were diluted every two
weeks, while Placozoa cultures were started every week with haphazardly-selected animals
from previously established cultures, using ten animals as the founder population for each

new culture.

2.7.2 POPULATION GROWTH MEASUREMENTS

We used the same dishes as were used for culturing animals, filling each dish with so mL

of artificial seawater at a concentration of either 0.20 or 0.40 OD of microalgae. Five an-
imals were washed and transferred into each experimental dish. Starting at the r2th hour
post-seeding, dishes were imaged every 24 hours under red light darkfield microscopy using
a DSLR camera (Panasonic Lumnix DMC-GH3) five times in ten minutes. Animals were
counted in each dish, and the size of each animal was measured in the frame when the ani-
mal’s size was maximal. The censusing effort for each plate was standardized at 2.5 minutes
per dish, with counts performed in Image]. One dish was imaged under the same red light

darkfield conditions every minute for twenty-four hours at t = o, 48, and 96 hours to gener-
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ate data on individual ramet fates. When not being recorded, the dishes were kept under a

constant but weak light conditions in a temperature-controlled room (22 degrees C).

2.7.3 INDIVIDUAL GROWTH AND FISSION FATE MEASUREMENTS

We used the 24-hour recordings of the animal at t = 48 and 96 hours to perform our growth
and fission measurements. Animals were identified at the start of the recording as in the
population growth measurements, their size being measured in the first five frames/minutes
of the recording in Image] using the magic wand tool or manual tracing. Each animal was
then followed throughout the 24 hour recording. If the animal underwent fission be-

fore the recording was completed, it was noted as such and was not used for the final size
measurements. Animals that did not fission had their final sizes recorded in the last five

frames/minutes of the recording with the same method as used for the initial size.

2.7.4 SAMPLE PREPARATION FOR HIGH-THROUGHPUT SYSTEM

Vibrations induced by the motorized system will cause any algae that has not adhered to
the substrate to slowly drift to the center of the well, producing an uneven distribution of
nutrients in the environment over time. To overcome this technical limitation, we pro-
duce produce substrates with uniform algae sedimentation through centrifugation. Firstly,
we match the nutrient concentrations in our 6-well plates to the conditions present in the
larger culturing dishes described in chapter ?2. 5o mL of 0.20 OD (10 OD units) in a 15 cm
diameter dish produces a per-area concentration of 0.05 OD per square centimeter. To
achieve a corresponding nutrient cover in our wells (of 3.5 cm diameter) requires the ad-

dition of 0.54 OD units per well. Half of this biomass content is added to 6 mL of ASW
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to each well, after which the wells are centrifuged at 700 rpm for 10 minutes. The second
half the biomass content is added adn the wells are centrifuged again with their orientation
reversed, to minimize any gradient effect created by the centrifugation process. After this

is performed, animals that were starved for 24 hours are added to each well, and recorded
immediately. Growth data are measured from 24 to 48 hours post-transfer, to ensure that
animals have acclimatized to the new nutrient conditions and removes effects of hysteresis

and inconsistency in culturing conditions.
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Morphological Allometry in

Two-Dimensional Organisms

3.1 ABSTRACT

Morphology is fundamental to ecological function, whose quantification and compara-

tive analysis has been enabled by techniques developed over the past thirty years. In spite
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of these advances, little progress has been made in the morphological analysis of animals
with highly variable, decentralized forms, including the earliest invertebrate animals. Here
we present a quantitative analysis of form and allometry in one such animal, the Placozoa,
using both shape factors and the elliptical Fourier transform. These methods allow us to
represent the shape of such organisms in a rotation and size invariant fashion. Through
these methods we find evidence of allometric growth in this two-dimensional organism,
and provide several explanations for why this allometry should occur. Our EFT-based
method also allows us to identify significant idiosyncratic shape variation in such animals,
and reveals that larger animals are harder to differentiate morphologically due to their high
intra-individual shape variability. We identify several prospective uses for this method, in-
cluding in inter-specific morphological comparisons and using this postural information in

a dynamic framework to create behavioral maps.

3.2 INTRODUCTION

From the beaks of Darwin’s finches to the shape of bacterial cell walls, morphology is fun-
damental to ecology. Morphological variation is one method by which organisms exploit
new resources and partition their niche from competitors. While morphological variation
has been of interest for centuries, it was only in the mid-twentieth century that a quantita-
tive framework for comparing morphology - morphometrics™* - was developed, and only
in the past thirty years that quantitative tools for such morphological investigations were
systematically developed***°. The ability to not only describe but also quantify shape dif-
ferentiation was greatly enabled by the incorporation of multivariate statistics in morpho-

metrics, giving rise to the field of geometric morphometrics*.
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While these advances have enabled the quantification of shape variability among organ-
isms with conserved anatomic structure and fixed landmarks ", relatively little progress
has been made in the systematic classification and quantification of emergent collective
structures . Standard morphometric methods have relied on alignment of different shapes
using conserved identifiable landmarks - joints, appendages, organs - using techniques such
as Procrustes’ alignment, which enables morphological comparisons in a size and rotation-
invariant fashion*”, eliminating variation induced by sample orientation and magnification.
The development of Procrustes’ alignment, thin-plate spline methods, and multivariate
statistics has solved the problem of landmark-based morphometry, with tools that are now
canonical in biology’'. However, there are a large number of organisms and cells that have
no set body plan - such as amoeba, colonial organisms, fungi and bacterial colonies - and
have highly variable shapes lacking any conserved landmarks. Such systems have largely de-
fied quantitative morphological description using standard tools "7,

Two techniques are available for the study of morphology in the absence of conserved
landmarks. The first of these is the use of shape factors, or dimensionless quantities that
are invariant to affine transformations’*. Such shape factors are typically dimensionless ra-
tios of an object’s perimeter, area, diameter, and its convex hull. While shape factors can be
applied generically to any closed two-dimensional shape, from powder grains** to cells'”,
they have two fundamental limitations. Firstly, they are ambiguous quantities, in that two
very different shapes could be well-matched using such measures. As an example, consider
the circularity measure C = 2, where 4 is the area and Pis the perimeter of a shape.

C = 1for a perfect circle and between 1 and o for any other shape. It is entirely possible

for an ellipse, a rectangle, and snaking shape to have very similar values of Cin spite of their
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very obvious morphological differences. Secondly, while one can attempt to deal with this
ambiguity by representing a shape using a combination of shape factors, most shape mea-
sures (e.g. circularity and eccentricity) are strongly correlated. It is therefore very unlikely
one can find a practical set of shape measures that can be used to unambiguously recon-
struct the original shape that they represent.

A more rigorous method of morphological comparison involves decomposing the out-
lines int a series of harmonic trigonometric functions, known as the elliptical Fourier trans-
formation (EFT)'”. The EFT is a powerful method of shape analysis because, like the
aforementioned shape factors, it does not require the identification of any landmarks, and
even enables shape alignment and standardization by simply using the Fourier coefficients
of the first Fourier harmonic (the best-fitting ellipse) *°. A second advantage is that the
EFT is a lossless and reversible transformation, allowing a vector of Fourier harmonics to
unambigously represent a shape in EFT space to any arbitrary level of precision. EFTs also
allow for arithmetic operations on shapes, such as calculating mean shapes and exaggerating
shape characteristics. Finally, EFT’s allow for the compression of shape information with
often negligible information loss, as sequential boundary coordinates from a traced outline
typically have high auto-correlation. One can measure the information loss by this com-
pression through calculating the Fourier power spectra and determining what proportion
of power is stored in each harmonic. These advantages have made EFT’s a tool of choice for
the analysis of shapes without landmarks including amoebas™*, mollusk shells'**, bivalves ™,
hominid crania™, and dipteran wings .

These techniques could also be of considerable utility in quantitative morphological

studies on decentralized and colonial marine animals. Previous morphological studies have
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categorized such organisms into broad "morphological strategies”*°, such as whether an
organism grows as a thin filament, as a two-dimensional sheet, or as three-dimensional
mound or branched structure. Such classification has been useful in finding patterns of
inter-species competitive dynarnics 9937 but suffers from two very signiﬁcant limitations.
Firstly, it has no explanatory power for competition among species using morphologi-

cal strategies in the same category, which is precisely where one would expect to be in the
fiercest competition. Secondly, it is unable to quantify the ontological and idiosyncratic
variation among organisms such organisms, which is necessary for determining the presence
of important ecological phenomena such as allometric growth. As such, this technique has
no explanatory power on the substantial and real size-mediated effects on survivorship”™
and growth”’.

We propose the use of multi-variate shape factors and the EFT to quantify and charac-
terize morphological variability in such organisms, using the Placozoa as our model system.
Placozoa are arguably the simplest and earliest-diverged multicellular animals, fundamen-
tally characterized as two-dimensional mobile cellular sheets” with a largely undifferen-
tiated anatomy that enables considerable variation in size and shape even within the same
individual ™. This combination of simplicity and flexibility has resulted in a relatively am-
biguous "amoeboid” shape classification for these animals™, but this classification poten-
tially obscures systematic shape variability among such animals. This perceived morpho-
logical ambiguity has obscured actual biological variability within this taxa, as Placozoa
have long been characterized as a phylum composed of the singular species, Trichoplax ad-
haerens, but more recent genetic evidence has found that this phylum contains an array of

cryptic species**>'*". The small sizes (< 1 mm in diameter) suggests such organisms should
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be near ubiquitous'“, and worldwide sampling has revealed considerable overlap in the ge-

ographical distributions of different Placozoa strains®>*°

. Morphological variation could
thus be an important method by which this biodiversity is sustained in the absence of any
discernible biogreography.

Like many decentralized animals, Placozoa are capable of considerable size variation,
though it is unclear if they also exhibit a corresponding allometric shape variation as found

#5562 The two-dimensional morphology of Placozoa typically produces

in other systems
metabolic isometry with body size **'**. In the case where allometric shape variation is
found in two-dimensional organisms, such as in encrusting corals, this is typically imposed
by skeletal constraints on growth, whereby only the boundary of the disk-like organism is
capable of further growth””. Placozoa, as soft-bodied two-dimensional invertebrates, lack
this constraint, but there is some evidence that the boundary is differentiated from the bulk
and could contain a preponderance of stem cells"***°. It is therefore unclear 4 priori if Pla-
cozoa grow in an allometric fashion.

In this chapter we investigate the morphological variability among clonal 7. adhbaerens
individuals varying in size by over an order of magnitude. We first demonstrate the validity
of applying shape factors and EFT’s to Placozoa, and then use these methods to determine
if such organisms exhibit allometric shape variation. We then demonstrate how the shape
characteristics of 7. adbaerens are well-represented using the EFT to produce a rotation
and size invariant representation of shape. We use this shape representation to determine if
1. adhaerens have idiosyncratic forms, and evaluate how shape discernability is affected by

the absolute sizes and the relative size difference of animals being compared in a pair-wise

fashion.
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3.3 REsULTs

3.3.1 SHAPE NORMALIZATION

Shape, as defined by Kendall, is the information in an animal’s morphology that is invari-
ant under translation, rotation, and isotropic rescaling”'”. Any morphological compar-
isons based purely on shape requires the production of normalized shapes that remove such
affine transformations. Using the well-established morphometric techniques implemented
in the Momocs R package*’, we develop a shape transformation procedure that allows us
to standardize Placozoa shapes in the absence of any landmarks. Shapes are aligned by the
principal axes, given by the variance-covariance matrix of the Cartesian coordinates of out-
line points, and positioned such that their center of mass is at (0, 0). We rotate the normal-
ized shape in 180 degree increments to ensure that the shape’s area to the left of the y-axis

is greater than the area to the right. This shape is then scaled such that the entire shape

is inscribed in a square with sides of length 2. Once aligned, we digitize our boundary to
standardize the number of boundary points as follows: we define the start position of the
boundary as the point closest to the positive y-axis (to the "North” of the centroid) and
then interpolate evenly-spaced points (in boundary chord length units) along the boundary
in a clockwise fashion.

A good shape representation is insensitive to affine transformations. We quantify our
representation’s sensitivity by considering a sample image of a 7. adhaerens individual (Fig-
ure 3.1A) and digitally altering the image by rotation and re-scaling. These types of trans-
formations will usually produce subtle changes in pixel intensity values, due to the need for

cubic interpolation of new values from the original image’s pixels, and these digitization
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artifacts will have subtle effects on the image binarization and segmentation of the animal.
Because our shape analysis is dependent on the boundary information, it is particularly sus-
ceptible to such artifacts. To measure the error introduced by these artifacts, we binarize
each adjusted image using the same threshold selected for the unaltered image (by Otsu’s
method "), recording the boundary contour for each animal (Figure 3.1B). we then produce
standardized shapes using the protocol described above, attempting to remove the effects
of the affine transformations (Figure 3.1C). This results in some positional error between
any two outlines 4 and B, definedas d 43 = > " ||x.4; — x| where £ is a certain point
along the boundary. Figure 3.1D illustrates the values of 4 45 (black) between the original
and altered shape, as well as the maximum point-wise positional error (red). It is reassuring
that 9o degree rotations, do not produce any digitization artifacts, have no positional er-
ror, suggesting that our numerical method of alignment does not contribute any error. The
remaining tests show error introduced by digitization, with the mean error being roughly
one percent of the normalized maximal radius. This provies a threshold of measurement
error at which we can consider two shapes identical. When we transform these shapes us-
ing an EFT and measure the Euclidean distance between shapes in the EFT vector space
(methods described below; Figure 3.1E) we find that the distance between two shapes in
EFT space and inin Cartesian space correspond well with one another, suggesting that a Eu-

clidean distance measure in Fourier space is a valid measure of shape similarity (Figure 3.1F,

A=B,=11,R =o0.97,p<10 ")
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Figure 3.1: Measurement sensitivity to affine transformations. (A) Original image of an example T. adhaerens. Scale bar

is 0.50 micrometers in length. (B) Digitized boundaries of animals extracted from transformed images. (C) Normalized
shape boundaries plotted on top of each other in Bookstein coordinates, whereby the major axis of teh animal has a radius
of 1. (D) The reconstruction error, measured in RMS average point-wise distance for each Cartesian point that defines the
boundary, comparing normalized boundaries extracted from transformed images to the normalized boundary extracted
from the original image. The transformations enlarged or shrunk the image by a factor of 2, or rotated it in 30 degree
increments. The zero value of the 90-degree rotations suggests all error is induced by digitization. (E) Reconstruction
error as Euclidean distance between the boundary extracted from the original image and the boundary extracted from
the transformed image. The reconstruction error is the distance between the multi-dimensional points in Fourier space
that specify the Fourier parameters that define each boundary. (F) Comparison of the error measurements in Cartesian
and Fourier space, showing that error in Fourier space corresponds well with error in Cartesian space. The line represents
the linear fit of the relating the two error measurements, with the shaded area representing teh 95% confidence interval
of this fit.
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3.3.2 EVIDENCE OF ALLOMETRIC GROWTH USING SHAPE FACTORS

We characterized the shape of each 7. adbaerens individual at any instant in time using six
non-dimensional shape factors (see Methods). We find that these shape factors vary system-
atically with animal size (Figure 3.2A), and also covary extensively with one another. This
suggests that we can reduce the dimensionality of our shape description through a principal
components analysis (PCA). We find that only two principal components are significant
in explaining the shape variability of Placozoa according multiple selection criteria (Kaiser’s
selection criterion, Scree test, 90% variance threshold; Figure 3.2B). When we consider the
loadings of our original shape measures on these PC’s, we find that the first component is
loaded with ratiometric factors of an animal’s minimal and maximal diameters (eccentricity,
aspect ratio, circularity, and compactness), while the second principal component is loaded
heavily by shape factors that involve comparisons between a shape and its circumscribing
convex hull (waviness, solidity). The first PC is thus a measure of elongation while the sec-
ond is a measure of shape complexity.

Two patterns are apparent when we consider the component values for each animal.
Firstly, we find that larger animals exhibit greater variability in these two components
than smaller animals (Figure 3.2D). If we consider a convex hull defined by the five small-
est (blue) and largest (yellow) animals, we find that very small animals occupy a smaller
segment of this shape space than large animals. Both of these components are also sig-
nificantly correlated with animal size (Figure 3.2E), indicative of allomtric growth (PCr:
t = —6.76,p <10 °, R = 038,PC2: t = —9.85,p < 10, R* = 0.56). These two
observations suggest that larger animals have more varied shapes than small animals, and

that the shape difference between two animals will correlate with their size difference.
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Figure 3.2: Shape variability in T. adhaerens is low-dimensional and suggests allometric growth. (A) Variation of six dif-
ferent shape factors (Compactness, Eccentricity, Elongation, Circularity, Roundness, and Solidity with animal size. (B)
Variance explained by principal components of the shape factors. Solid bars represent the proportion of variance ex-
plained by each component. Red dots represent the cumulative variance explained by the first N components. Dotted
black line is the cutoff threshold as defined by Kaiser’s Rule. The red dashed line is the threshold for explaining 90% of the
variance. Only the first two components are considered significant by both criteria. (C) Biplot of the contribution of each
shape factor to first two principal components. The first component is a mixture of values that define how elingated the
animal is in one dimension, while the second value defines boundary complexity. (D) Mean values of first two principal
components for each animal. The error bars on each point represents the variance of each animal in both PC dimensions.
The blue and yellow polygons define the area bounded by the mean principal component values of the largest (yellow) and
smallest (blue) animals. (E) Mean values of both principal components regressed on animal size. The solid lines represent
the best-fit line for a linear regression of each component on size.
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3.3.3 ELLIPTICAL FOURIER TRANSFORM AND STANDARDIZATION

We use the elliptical Fourier transform (EFT) to create a more refined shape representation
that will allow us to evaluate how distinct two animals are from each other in their shape
characteristics. The EFT provides a more precise method of characterizing the morphology
of two-dimensional closed contours, making it ideal for organisms that grow primarily in
two dimensions such as 7. adbaerens. In brief, the EFT converts the Cartesian points that
define a shape’s boundary into harmonic frequencies of elliptical trigonometric functions
(Equation 3.1), where each harmonic function can be defined by four Fourier coefficients
(Equation 3.3). This method is not only a lossless transformation, whereby any combina-
tion of Fourier coefficients maps unambigously to a distinct shape, but by virtue of hav-
ing each coefficient defined by global boundary characteristics, the comparisons between
shapes can also be size and rotation invariant'*>*".

The EFT is defined by the following equations. Any two-dimensional closed contour
can be represnted by an abscissa of length/perimeter 7, where each position 7 (varying from
o to 7) on that boundary defines the Cartesian coordinates x(#) and y(#)). These Cartesian
coordinates are decomposed into N elliptical functions that are multiples of a fundamen-
tal frequency @ = 2%, where N can be arbitrarily large for an arbitrary level of precision.
The resultant 4N Fourier coefficients can then be analyzed using traditional multivariate

statistics to compare shapes.

x(r) = % + Z[d” cos(nwt) + b, sin(nwt)] (3.1)

n=1
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y(2) = C;O + Z[cn cos(nwt) + d,, sin(nwt)] (3.2)

, [T

a, = x(t)?/ x(2) cos(nwt)dt (3.3)
, [T

b, :x(t)?/ x(2) sin(nwt)dt (3.4)

€ = x(t)?/ y(¢) cos(nwr)dr (3.5)

d, = x(t)?/ x(#) sin(nwt)dt (3.6)

One strength of this transformation is that one can significantly compress the num-
ber of coefhicients without introducing significant positional error in the shape repre-
sentation. We use the method proposed by Baylac and Friess™” of transforming the out-
line into a Fourier form first by using an exessively large number of harmonics, and then
performing PCA on those coefhicients and reducing the dimensionality until we reach
the precision threshold identified in the previous section. Each shape is transformed into
N = 128 Fourier harmonics on the normalized boundaries, representing each shape as a
st2-dimensional vector of the coefficients. We then perform a PCA on this vector using the
variance-covariance matrix (without standardization, see Crampton (1995)°' for motiva-
tion). We select a training set of 1,000 randomly-selected shapes from each animal (78,000
shapes in total) determine the appropriate PCA rotation matrix and centering values. We
use those two properties of our PCA to convert any arbitrary 7. adhaerens EFT vector into
this PCA space.

Once we have transformed our shapes into principal component, we can identify the
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appropriate number of components by compressing this shape representation (remov-

ing less-relevant principal components) and measuring the positional error introduced by
this compression. We find that using this criterion tends to be both more conservative and
more justifiable than basing the compression decision is often a decision based on either the
eigenvalue magnitudes of each PC or by using a threshold for the proportion of variance
explained. Neither of these latter two methods are particularly informative. For instance,

if we consider the cumulative proportion of variance explained, we find that this quantity
increases gradually with harmonic number and therefore there is no well-defined threshold
value (Figure 3.3A). In contrast, we can use the positional error (Euclidean distance) be-
tween respective boundary points belonging to the original normalized shape and the shape
that is reconstructed from the data retained in the compressed PC space, and compare this
value to the expected error that would be induced on the same shape after underoing an
affine transform (Figure 3.1). Figure 3.3B provides an example plot of a shape that has been
reconstructed using an increasing number of PC’s. While a low number of PC’s does a poor
job of reproducing the original shape, including only 35 PC’s (7% of the original dimension-
ality) already allows for a rough reconstruction of concavities, while 8o and above captures
nearly the entire shape. We quantify the error of this compression on so randomly-selected
shapes from our dataset, applying varying levels of compression, and measuring the point-
wise positional error. We find that retaining around 8o PC’s recapitulates the shape with
comparable fidelity to errors that would be introduced by an affine transformation (Figure

3.3C). For tractability, we use this reduced PC shape space for the remaining analyses.
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Figure 3.3: Error induced by shape compression after applying a PCA to the EFT shape transforms. (A) The cumulative
variance explained by the first N principal components, attained by performing a PCA rotation on the EFT coefficients
for each shape. Dashed line represents the 95 % cutoff threshold. (B) Outline reconstructions made by taking increasing
subsets of principal components for the PC vector of an arbitrarily-selected shape, performing the inverse PCA rotation,
and then performing the inverse Fourier transform. (C) Outline reconstruction error, measured by comparing the mean
squared error of points in the normalized form of the original digitized boundary to points in the boundary that was
reconstructed using a subset of PC’s. The error was estimated in point-wise fashion between each point in order around
the chord length. The black points and line represents the mean positional error between points in the reconstruction and
the original normalized points. The error bars represent standard error across all 1,000 points for each boundary. The red
line represents the maximum positional error among all boundary points. The dashed black line is the error induced by
digitization. Beyond 80 PC’s the mean positional error is below the expected digitization error.
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3.3.4 MORPHOLOGICAL DISCRIMINATION OF ANIMALS

We sought to understand to what extent size similarity corresponds to shape similarity by
performing a linear discriminant analysis (LDA) between pairs of animals, attempting to
discriminate between them based on only on their shape information. For a given pair of
animals, we sample 2,000 shapes from each animal and use that as a training set for our lin-
ear discriminant function. We then evaluate the separability by predicting the animal of
origin for each shape given it’s LD score, and evaluate the accuracy of this LD-based assign-
ment (percentage of true positives vs. negatives). The separability test is performed on an
independent test set of 2,000 shapes that were not used in training. Figure 3.4A provides
two example results of this analysis, performed respectively on two animals of similar size
(left) and very different sizes (right). These results suggest that the ability to discriminate
between animals based on morphology is dependent on their relative size difference.

We determined that several factors affect discrimination performance in pair-wise com-
parisons between all animals (Figure 3.4B). Firstly, it is interesting that discrimination per-
formance is significantly better than random (o.s) for all animal shapes. This suggests that

even the smallest animals have distinctive shapes. Secondly, as expected, a greater size differ-

2| A — A, |

ence, defined as {4 = 7

corresponds to a better discrimination performance. This ob-
servation buttresses the initial pattern of allometric growth observed in Figure 3.2. Lastly,
and perhaps counter-intuitively, when animals are relatively similar in size, discrimination
performance is worse for larger animals than for smaller animals. This reveals that the flex-
ibility in morphology at larger sizes is sufhicient to compensate for idiosyncratic growth,

though this nevertheless does not compensate for the allometric changes in form. Both of

these effects can be quantified using a logistic regression: the size ratio between the two an-
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imals is highly significant and improves discrimination (8 = 2.64,z = 6.22,ps < 107 ),
while the size of the largest animal has a significant negative impact on discrimination per-
formance (8 = —o0.13,z = —2.02,p = 0.044). The effect of increasing dynamism

in shape at larger sizes can be quantified by measuring the pair-wise distances between all
shapes from the same animal, measured using the mean Euclidean pair-wise distance A be-
tween shapes. We find that A is weakly correlated correlated with animal size in a highly
significant fashion (linear regression: t = 4.196, p < 10~ %, adj. R* = 0.18), suggesting that
small animals are more restricted in their dynamic morphologies, which contributes to their

morphological distinctiveness.

3.4 DISCUSSION

In this chapter we developed a new method for comparing the morphology of simple mul-
ticellular animals in the absence of any anatomical landmarks. We demonstrated that, even
ata coarse-grained level, Placozoa show allometric growth. We then developed a more re-
fined and unambiguous definition of shape through developing a method of shape stan-
dardization and the use of EFT and PCA. We then demonstrated how this shape represen-
tation can be used to evaluate how discernible or distinct animals are in their morphologies.
In addition to determining the presence of allometric growth in such organisms, we have
also revealed that small animals are more easily discerned from one another than large an-
imals. This is largely due to more restricted shape dynamics of smaller animals. Together,
these findings set the groundwork for future studies on taxonomic comparisons in mor-
phology between different strains of Placozoa and for the capability to investigate whether

the shape dynamics of Placozoa have stereotyped patterns or behavior.
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Figure 3.4: Animals are easier to distinguish morphologically when the difference in their sizes is greater or when the
animals are on average smaller. (A) The distribution of linear discriminant values for 100 shapes gathered from two
animals. Left: animals that ahve a small difference in mean size, wherefA = 0.035. Right: animals that have a relatively
large size difference, wherefA = 0.263. Larger size differences result in a smaller overlap in LD values. (B) Pair-wise
discrimination performance between animals organized by their relative size difference. The color represents teh mean
size of the largest animal in the pair-wise comparison.
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The issue of allometry is interesting in a two-dimensional organism, precisely because
such organisms circumvent the traditional volumetric and metabolic arguments that are
used to motivate the occurrence of this phenomenon. It is evident that Placozoa become
more complex in their shapes as they become larger. It is likely that this more complicated
shape has significant detrimental consequences to the coordination of 7. adhaerens, and
investigating the relationship between shape and ordered collective movement is likely
to be a fruitful direction for future studies. Nevertheless, such allometry could also pro-
vide certain advantages for sensing or growth. Recent histological studies revealed that the
boundary of 7. adhaerens is functionally distinct from the bulk of the animal, with a high
concentration of cells that are capable of binding the neurotransmitter RFamide”” and
other neurotransmitter-containing cells 7. It is possible that these cells are responsible
for chemotaxis and sensisng, and that elongating the boundary allows a larger animal to dis-
proportionately improve its sensory capabilities. The animal boundary is also the region
distinct for expressing ancestral growth factors such as 7ivx-2°*, suggesting that this region
of the animal may contain pluripotent stem cells and be especially important for growth,
thereby allowing animals with more complicated shapes to grow more quickly. Such hy-
potheses could be tested by observing chemotaxis performance and growth in different an-
imals both using the natural shape variability of 7. adhaerens and by surgically producing
animals with extreme morphologies.

In this chapter we have investigated shape variability primarily by comparing different
individuals, attempting to discern whether individuals have distinct morphologies, but
these methods could just as easily be applied to study the dynamics of shape within indi-

viduals in an attempt to find temporal patterns and behaviors. Recent advances in compu-
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tational biology have enabled the use of dimension-reduction techniques to quantify and
map the structure of behavior in an unuspervised fashion for a variety of species ranging
from nematodes ”7>"7*"7, flies, and mice**. These techniques have not been easily trans-
ferred to organisms like 7. adhbaerens because they are dependent on identifying axes of
symmetry to be used for alignment of animal body postures observed at different points

in time. It is arguably in organisms such as 7. adbaerens, whose anatomy is so far-removed
from our own, that such unsupervised pattern recognition techniques would provide the
insight above observer intuition. Though some advances have been made in understanding
the behavior of amoeboid organisms by studying the morphology of single-celled amoeba

with regard to their direction of motion’>"**

, these methods rely on the presence of per-
sistent directional motion for alignment, which not only is often not present but it is also
difficult to tune the sensitivity of this method of alignment to ignore the noise in a trajec-

192

tory while remaining sensitive to actual locomotion behavior”*. The shape normalization
method we have used and propose does not share these sensitivities.

In spite of the strength of the elliptic Fourier transform (EFT), it has not become a widely-
adopted tool in morphometrics because there are several closely-related variants of such a
technique and there is no consensus as to which method is most robust”*. Of chief concern
regarding the EFT is that it identifies the majority of the shape information - the informa-
tion that determines the position of a boundary point - as being encoded in the lowest-
frequency harmonics such as the best fitting-ellipse. While at face-value this is true for any
shape, this tendency to emphasize the lowest-order harmonics could obfuscate important

morphological differences that occur only at higher-order harmonics when performing sta-

tistical analyses. One method by which this can be mitigated is to remove the first-order
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(major ellipse) from the analysis entirely, but often the next-lowest components (second,
third, etc.) become the decisive factors of the analysis instead . Another alternative is to
standardize the components before using a PCA, but this could exaggeerate variation in the
highest-frequency components, which might not only be arguably insignificant to the gen-
eral morphology, but also are the most susceptible to digitization noise and smoothing“*"°.
A second issue with the EFT is that it is a quantification of shape information that occurs
at a global scale, with each harmonic acting on the entire boundary of an organism. This
poses a problem when the features that are relevant for comparison occur only locally, such
as defined limbs or other local structures. In the case of Placozoa, the absence of any identi-
fiable anatomical components and any indication that the first-order harmonic is irrelevant
prompted us to use the simplest approach of considering all of the EFT shape information
in my analysis, but care needs to be taken when applying this method to other systems.

It is an exciting time for behavioral sciences as unsupervised methods of quantifying
behavior are being more widely adopted, creating the potential for more refined and unbi-

195

ased classification of behavior™”. These techniques however, rely on the ability to identify
distinct postures. This work demonstrates a method by which one can produce a shape rep-
resentation (posture) for animals with decentralized morphologies. That we have found
persistent inter-individual differences in shape, and that we have found shape variation
with size, suggests that this approach is a valid method by which such shape can be quanti-
fied. Future studies can then use the elementary components of shape or posture identified
with this method, and determine the dynamic relationships between forms, identifying the

components of behavior 7*. From this vantage point, it may become possible to map and

understand the behavioral repertoire available to the ancestors of all animals, and measure
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the complexity of behaviors in one of the world’s simplest animals.

3.5 METHODS

3.5.1 ANIMAL CULTURES

1. adhaerens were reared in 150 mm diameter plastic petri dishes filled with 100 mL of ar-
tificial seawater (ASW) at 35 parts per thousand concentration (ppt, Instant Ocean Reef
Crystals). The seawater was seeded with Pyrenomonas salina microalgae to a known con-
centration, measured as optical density at 6oo nm using a spectrophotometer. Pyrenomonas
salina were reared sep arately in 1000 mL cell culture flasks with vented caps, filled with al-
gae growth media (35 ppt ASW + 1:1000 f/2 Guillard’s growth media). Fresh cultures were
started every two weeks with haphazardly-selected animals from previously established cul-

tures, using ten animals as the founder population for each new culture.

3.5.2 SHAPE REGISTRATION AND FRAME SELECTION

Animals were transferred to individual dishes with sterile ASW and allowed to rest for 30
minutes before filming. We developed an automated stage and microscopy that allowed
us to record videos of each animal’s behavior at 2 Hz frame rate for at least two hours. We
binarized the image and segmented the animal on each frame, measuring the shape factors
of the selected regions. Frames in which the animal was only partially in the field of view
or where the automated stage was moving were discarded from further analysis. curled-
up state, where the footprint area was less than seventy-five percent of the maximal area
observed, were discarded from further analysis. The specifics of the numerical methods

used in the morphological comparisons are described in the results section.
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3.5.3 SHAPE FACTORS

The shape of an object can be quantified by a variety of non-dimensional morphological
measures, also known as shape factors. Such non-dimensional measures are made either

by comparing the properties of a shape amongst themselves, or by comparing the shape’s
properties to equivalent properties for the shape’s convex hull. We used the shape factors of
aspect ratio, eccentricity, circularity C, solidity S, waviness /%, and compactness K to define
each shape using a 7-dimensional vector in this non-dimensional space. The measures we
used are defined in the equations below. In these equations, 4 is the area of the animal’s
footprint and Pis the perimeter, .4 and Pc are the area and perimeter of the shape’s convex
hull, D, is the diameter of a circle of equivalent area, and D, is the caliper (Ferets’) diame-

ter.

C= 4%4 (3.7)
5= 58)
W= P; (3.9)

K= g/; (3.10)

All other morphological methods and statistical tests are explained in the main text of

the results.
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Conclusion

A fundamental goal of evolutionary biologists is understanding the forces that drive and
sustain the major evolutionary transitions that have gradually increased the complexity of
life on Earth"**. Advances in the study of collective behavior have shown how complexity
can arise in a self-organized fashion*”"*. One can understand the driving forces behind

this increase in complexity from two perspectives: either identifying the advantages of com-
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plexity, or the limitations of simplicity. I apply this framework to the specific case of early
multicellular organisms, investigating coordination in such decentralized organisms and
determining the limits imposed on coordination by this decentralized architecture.

In chapter 1T used methods adapted from statistical mechanics to quantify how size
affects coordinated locomotion in Trichoplax adbaerens. I use a fluctuation-correlation
framework to measure how movement information is transmitted across the decentralized
multicellular network, and how the corrleation structure created through this information
transmission is affected by changes in size. Through our measures I identify that not only
do Trichoplax adhaerens show signatures of being at criticality - that is, optimally tuned for
information transmission - but also that even at this special parameter regime, the physical
limitations imposed by simple multicellularity produce size-mediated trade-ofts in coordi-
nation. This provides a general method by which we can estimate information propagation
through such a decentralized system that we can apply to important behavioral phenom-
ena such as emergent changes in travel direction” or how the animal-wide feeding response
propagates throughout the animal 7. These topics would provide promising avenues for
future studies.

Identifying how size imposes limitations on coordination in such systems naturally leads
to the question of whether and how size is regulated. In Chapter 2 I demonstrated that we
can predict, with very high precision, the growth of an animal if we know it’s initial size
and the nutrient conditions over a given time window. One very interesting result is that
asexual fission is rare below a certain size regardless of nutrient conditions. Two important
future directions are opened up by this research, one behavioral and the other ecological.

The size-fission relationship I have discovered implies that there is some physical constraint
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- a diffusion coefficient on information propagation - that is sufficiently large to prevent
fission at small sizes but makes larger animals susceptible to fission. One hypothesis, fueled
by the observation that fission is rare when animals are not feeding (data not shown) is that
the feeding behavior could have a delayed propagation across large animals, and might even
occur asynchronously across very large animals, resulting in force-mediated fission. Ana-
lyzing recordings of high spatial and temporal resolution of this feeding behavior in larger
animals would certainly reveal if there is a dependence on animal-wide behavioral synchro-
nization with animal size. Regarding the ecological consequences of size regulation, more
comprehensive studies with finer time resolution could relate the size at fission to metabolic
theory for such decentralized, modular animals>*****> and identifying whether the combi-
nation of growth and fission poises Trichoplax adbaerens at a metabolically optimum size
fora given nutrient condition.

Our current investigations have primarily focused on size, but network topology - which
in the case of a lattice is effectively shape - is also also very significant for network dynam-
ics and information propagation’. In Chapter 3 I developed a framework by which one
can compare shape between animals in a size and rotation-invariant fashion, and showed
that Placozoa exhibit allometric shape variation. One of the most obvious allometries is the
tendency for increasingly elongated form and more complex boundaries at larger sizes. Eco-
logically, an open question is why this allometry exists when there are several arguments for
why such animals should grow isometrically (see Introduction of Chapter 2). One interest-
ing hypothesis is that, by their benthic exploration, such animals encounter new resources
in proportion to their perimeter and at most with only one half of the perimeter at any

time. By growing in elongated shapes, 7. adhaerens can form a wide, phalanx-like feeding
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front that encounters nutrients at a faster rate than a circular animal. Of course, this benefit
can only accrue if there are not significant coordination trade-offs between shape elonga-
tion (effectively increasing the mean pair-wise distance between cells) and coordination. In
Chapter 11 did not find any effect of shape (circularity) on the correlation structure within
an animal, but this could simply be masked by the fact that shape correlates so strongly
with size (as seen in Chapter 3). A more rigorous test of this effect could be done by taking
advantage of the great regenerative capabilities of Placozoa, surgically producing animals of
different sizes and morphologies, and then measuring both effects independently.

The earliest multicellular animals, in spite of their evolutionary importance, have often
defied our understanding by their ability to grow to highly variable sizes and morpholo-
gies”'”. Such animals must possess behavioral and morphological strategies that enable
them to resolve their important ecological challenges in the face of such uncertainty of
scale. In this thesis I expanded upon and developed methods that allow us to understand
how various properties are affected by scaling in such organisms, including coordination
(Chapter 1), size regulation (Chapter 2), and morphology (Chapter 3). By understanding
the advantages and trade-offs imposed by scaling in arguably the simplest multicellular an-

imal, we can also elucidate the evolutionary forces that led to increasing complexity in the

later-diverged Metazoa.
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Supporting Information for Chapter 1

A.1 MEASUREMENT SENSITIVITY TO NOISE

Our optical flow algorithm is based on the Horn-Schunk method **, which while offering
very good performance in estimating flow for smooth, continuous motion, will introduce
spurious correlations over image discontinuities. To ensure that the range and form of our

correlation profiles are not caused by sensitivity to noise, we measured the sensitivity of our
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optical flow measurement to noise with two controls: a positive control on a scrambled
image, and by measuring the flow field produced by an immobile, dead animal, where any
movement should be caused by measurement noise of the camera sensor.

We produced white noise video by taking recorded images in our datasets and scrambling
the pixels, and then producing a video a from a sequence of such images. Our optical flow
algorithm produces long-range correlation artifacts on such a video (Figure A.1A), as ex-
pected based on the limitations of the algorithm. However, these long-range fluctuations
are ephemeral, being completely uncorrelated between subsequent frames (A.1B). By com-
paring the fluctuations recorded from real data on animal movement (A.1C, top) with the
fluctuations produced by a scrambled animal image (A.1C, bottom), we find that fluctua-
tions observed for real data are stable over long time periods, while those produced by noise
are completely uncorrelated across time. This very different timescale of the noise-derived
fluctuations and the velocity fluctuations from our animal data makes it impossible that
our own measurements are artificially-induced by such noise.

A second control we performed was to take a recording of an animal that perished in the
middle of our recording and had begun to degenerate, and measure the velocity field within
this dead organism. In this case, any correlations that arise should be driven entirely by
noise in the camera sensor and illumination system. We performed the same segmentation
and fluctuation calculation as in our methods, producing a velocity fluctuation field within
the dead animal (Figure A.2A). We find that the range of spatial correlations in the veloc-
ity fluctuations is significantly smaller than those we record in living animals. When we
compare the correlation length of the velocity fluctuations within the dead animal to those

recorded in living organisms (A.2B). Not only is the correlation length for our dead speci-
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men much smaller than what would be expected for an organism of such a given size, but it
is also almost half the size as those recorded in even our smallest individuals. We therefore

are confident that our measurements are outside the range of those inducible by noise.

A.2 MEASUREMENT ERROR INDUCED BY OPTICAL FLOW ESTIMATION PARAMETERS

The effect of spatial distance on the strength of velocity correlation between cells at differ-
ent spatial distances is likely to be influenced by the granularity with which we can measure
local the local velocity of a cell. Using optical flow, the measurement of this velocity is the
result of integrating the movement of a pixel intensity pattern within a certain radius of
the position of the estimated vector. The granularity with which our optical flow field es-
timates the movement in a sequence of frames is influenced by two parameters: averaging
window size A and the polynomial expansion 7; more details on these parameters are avail-
able at*. Increasing these values results in optical flow fields that are more robust to image
noise and allow for detecting faster motion, but results in a smoother motion field. Our
reported results are generated with parameter settings A = 45and n = 7; the rest of the
parameters are the defaults specified at™”.

We tested the effect of varying A and 7 when generating correlation profiles using the
fluctuations on an arbitrarily-selected flow field for our largest (Figure 2?A) and smallest
(2?B) animals. As expected, increasing A does increase the strength of correlations at larger
spatial distances, with only very subtly, and at a more pronounced effect in smaller ani-
mals. This is because, when taken to extremely large values of A that approach the size of
the animal, the motion at any point within the animal is estimated by the movement of a

substantial fraction or all of the animal. Though our results vary with the parameters used,
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we find that such variation is insufficient to explain the strength of the scaling phenomena
we observe on susceptibility . Though x increases by up to 28 percent in our smallest an-
imals and up to 20 percent in our largest animals as we vary A from 15 to 240 (22C), these

increases occur in near-proportion to each other when one uses reasonable values of A that

XL
%s’

are below 100 pixels. In this case, the ratio of these two susceptibility values, changes by
less than 10 percent (2?D), which is insufhicient to explain the much smaller value of @8 for
the fitted sublinear scaling of this observable in our organisms.

In order to establish ground truth regarding our measurement error of these correlations
using the optical flow parameters and our isolation of fluctuations by subtraction of collec-
tive modes, we produced synthetic videos of textures deforming with a known correlation
length. We simulated particles whose movement is determined by a random velocity v;. We
then use a two-dimensional Gaussian kernel smoothing function with varying kernel sizes
k to correlate the velocities of particles across different spatial distances. Calculating the cor-
relations among the particles based on their positions and velocities allows us to establish
a ground truth to the movement’s correlation structure. We test the output of our opti-
cal flow algorithm against this ground truth by making an image sequence of the particles
visualized as large dots that have their positions in each frame updated according to their
respective velocities. This produces a deforming random texture with a known correlation
structure. We ran our optical flow algorithm on these videos and by varying A produce flow
fields with different levels of granularity and smoothness. Figure ??A, provides a snapshot
of the original image, with figure ??B showing the velocity fluctuation of each particle and

22C showing the estimated velocity field of these moving particles using optical flow.

We can compare the correlation profiles calculated from velocity fields generated by mea-
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suring optical flow in videos made of plots of our moving particles, C()5 and compare
these correlation profiles C(), to the ground truth correlation profile based on the actual
particle positions and velocities . The results of this analysis are shown in figure ??. Asis
expected, the correlated domain size increases with the size of Gaussian kernel smoother
(thick black line). When we compare this ground truth correlation profile to the C(7)/pro-
files produced with varying values of A, we find that C(7) gz closely follows C(7),) pro-
vided that A is not excessively greater than k. C(r) 44, only grossly overestimates C(7) )
when A is approximately an order of magnitude greater than k.

We quantify this effect of A on the error in the correlation profile estimation for any
given C(7) () by comparing the ratio of the the cumulative correlation (integral) of the
correlation profiles computed from particles and from the flow field estimation. We find
that error is induced in the flow estimate only when particles are correlated over a relatively
short range by using a small £ (Figure 2?A), and this occurs only when the the averaging
window A far exceeds the actual value of £ (??B). Unfortunately the inability to track cells
within an actual animal precludes a direct estimation of k. However, & has a systematic ef-
fect on the observed correlation length ¢ for a system. We can therefore consider how the
error in estimating ; is affected by the ratio of A utilized in flow estimation with the ob-
served ¢@. We find that X only induces error in our measurement when it grossly exceeds the
observed ¢ (Figure ??C). When we consider the range of % for our animals, we find that at
most the smallest animals may have a slightly overestimated internal correlations, with the
largest animals being unaffected by our chosen value of k. Therefore, the sub-linear scal-
ing of x with animal size is at best underreported in our current results, whereby a more

accurate direct measure of cell movement could only produce an even more exaggerated
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sub-linearity.

A.3 ENSEMBLE AVERAGING

A key problem of applying concepts from statistical mechanics to active matter is under-
standing how to perform ensemble averaging necessary to define statistical quantities.
Many of the previous studies that have looked at such systems have considered only spatial
averages rather than ensemble averages over time ***"*, presumably because such systems
are non-stationary. However, one can assess the validity of this approach by comparing
both spatial and ensemble averages over time. For instance, one can compare the average
correlation length ¢ for each correlation profile C(7) at every point in time £ (¢(C(7), 7))
with the correlation length of the average correlation profile, @((C(7)) ). The error estimate
of the latter quantity we bootstrap this ensemble calculation samples of fifty percent of all
of our data over 100 iterations. A procedure is performed for .

In figure A.7 we see the comparison of averaging these two quantities spatially and as
an ensemble over time for both ¢ (A) and x; (B). We find that these two values correspond
well with each other regardless of the method used. In the case of yx;, the spatial average
systematically overestimates the temporal ensemble average, but it does so systematically at
all sizes and ultimately does not affect the sub-linear scaling that we observe of susceptibility

with size.

A.4 NON-SIGNIFICANT FACTORS ON CORRELATION STRUCTURE

Larger Placozoa have increasingly irregular shapes, deviating substantially from the perfect

disk morphology of smaller specimens. This deviation can be quantified as an organism’s
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circularity, C = % (Figure A.8A). We determined whether such shape deformation has
an effect on the correlation structure within an animal by investigating a dimensionless
quantity, namely the ratio of ¢ to the animal diameter Z, which is between one-quarter to
one-third of the animal diameter in our system. Though there may initially appear to be a
slight correlation between the circularity of an animal and this ration (Figure A.8B), we find
that this relationship is statistically not significant when we account for the effect of L itself
on £ (linear regression: £ = 8 L+ 8.C+:p(B,) = 0.71).

Aside from size, another parameter that could affect the internal correlation structure of
an animal is its speed, or more generally, the magnitudes of the collective modes of move-
ment. For instance, if our animal behaves analogously to the XY-model, then we would
expect fluctuations to be largest in magnitude when the mean field or collective modes are
negligible. In contrast to these systems, we observe no such effect. When we consider the
extent of the correlation length ¢, we find that this quantity has no correlation with the

magnitudes of either the full velocity, the velocity fluctuation, or the collective velocity (de-

fined as w = v — u (Figure ?2?).

A5 CoLLECTIVE ORDER

The ordered forms of collective movement within 7. adbaerens individuals varies substan-
tially and systematically with animal size. In our study we consider a collective mode of
movement to be any transformation in the spatial position of a collective’s components
that can be explain by an affine transform, or a combination of rotation, translation, and
dilatation. These transformations are defined in the Methods section of the main text. We

present Figure A.10A to illustrate the dynamics of these order parameters for a represen-
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tative small animal, with Figure A.10B showing the distribution for these three measures
throughout the entire recording. As is typically for such a small animal, the dynamic range
of dilatational order is quite small when compared to the rotational and polarization or-
der, emphasizing the solid-body like motion of such animals. When we compare our largest
and smallest animals (Figure A.10C), we find that the behavior of the smallest individual

is well-represented by a thin manifold defining a mixture of behaviors ranging from high
polarization to high rotation. Our largest individual exhibits much more disordered loco-
motion, with a greater proportion of time spent in lower rotation and polarization states.
We can consider a general value of collective order, defined as O = P> + R> + A*, we
find that O decreases significantly with increasing animal size. Values of O from five animals
- sampled uniformly across the range of animal sizes - illustrates this decrease in order with

increasing size (Figure A.1o0D).

A.6 CELL SIZE IS INVARIANT TO ANIMAL SIZE

Our arguments about the effect of size on correlation structure require that cell count in-
crease in proportion with animal area. No data on the ultrastructure of 7. adbaerens in-
dicate any change in cell size with animal size*>****. We nevertheless tested against this
assumption by measuring the density of epithelial cells in animals of varying size. We took
measured the diameter of cells within images of an animal’s lower epithelium taken at 200x
magnification under bright field conditions using an inverted microscope. Cells are roughly
visible as dark spots that dot the animal tissue, though it is difficult to identify exact cell
boundaries without staining techniques. We used Image] to perform histogram equaliza-

tion for each image and then use the built-in local minimum detection algorithm in Image]
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to count the number of minima within a selected sub-region of the animal. We do this in
several regions from several arbitrarily-selected frames that we recorded for each animal.
The tolerance for detecting local minima was s intensity values in an image of 8-bit color
depth. As can be seen in ??, though there is substantial variability in cell density for a single
animal, reflecting an animal’s propensity to stretch or contract, there is no systematic effect
on size on cell density. Therefore, we assume cell count increases linearly with animal area

in our experiments.

A.7 NUMERICAL MODEL

The overall microscopic dynamics of moving animals at the level of individual cells, will in
general represent a complex interplay of inter- and intracellular mechanical forces, as well
as possible chemical signaling between neighboring cells. However, despite recent advances
in uncovering the detailed structure of the animal many specific aspects of the microscopic
dynamics remain unknown. Thus, in order to be able to systematically study the large scale

animal dynamics, we use simplified model description, based on three main assumptions:

* interactions between parts of the animal are local, restricted only to the first shell of

neighboring units (Voronoi neighborhood),

* the mechanical interactions can be mapped to an effective “mechanical” spring-like

forces

* each unit is self-propelled with a preferred direction of motion, which on a finite
time scale relaxes towards the average direction of the resulting mechanical force.

Furthermore the heading direction of self-propulsion is subject to fluctuations.
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We model individual Placozoa as an ensemble of coupled self-propelled particles (SPP)
in two spatial dimensions. Each particle corresponds to ‘disc” of toum diameter. This is
the experimentally resolved scale and allows us to parametrize our simulations using exper-
imental data. The dynamics of such an ensemble of N of particles is described by a set of
stochastic differential equation. The motion of each particle i (i = 1,..., N)in2d is de-
scribed by the overdamped equations of motion given by Equation XXX in the main text.

The total force acting on an agent is a sum of two components: repulsion and attraction:

F; = E,rep + E,ﬂtt = Z Mﬂﬁ;}i'g(rji - 7'0> - (U',ep;'}i'g<7‘o - 7]1) (AI)
JEN;

with 7; = 7; — 7. The strength of the different interactions is set by a constant g ... 3(x)
indicates the Heaviside function and 7, the equilibrium distance. Foru , = By = the
attraction repulsion term corresponds to a simple linear restoring force towards 7, with the
spring constant . The general case, u_, # [ corresponds to an asymmetric spring with
different spring constants for attraction and repulsion. Here, we assume « . < Brep which
implies lower compressibility for » < 7,

The interaction neighbors of a focal particle 7, correspond to its Voronoi neighbours.

Here we can distinguish fundamentally between two model variants:

1. dynamic: the interaction network is recalculated at each step, so that particles may

change positions within the network.

2. static: the Voronoi network is fixed after an initial relaxation period, so that particle

maintain their neighbors
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A.8 RESPONSE OF CORRELATION PROFILES TO VARYING INTRINSIC NOISE IN SIMULA-

TIONS

We identify two scaling phenomena We systematically varied the intrinsic angular noise in
our simulations to determine if our results are sensitive to this parameter, repeating our cor-
relation measures under these different noise regimes. The correlation profiles all show the
same characteristic increasing concave decay with increasing system size (Figure A.10) When
we plot the respective susceptibility of these profiles, we observe a sub-linear trend of sus-
ceptibility with system size at all noise levels, with the exception of when noise is extremely

low (Figure A.13).

A.9 MATCHING NOISE LEVELS TO EMPIRICAL DATA

We determined which noise strength from our simulation most closely approximated the
statistical relationship between our full velocity fields and the fluctuation velocity fields for
our animals. We estimated the mean value of the fluctuation contribution { to the velocity
vector as the ratio of the two moduli of the velocity vector v; and the fluctuation vector u,,

where 7 is the identity of the cell cluster.

N
]
(= E (A.2)
= IIvil
Figure ?? reveals that { increases as the strength of noise increases, with a relative sig-
moidal response. We believe the reason for this sigmoidal response is two-fold: firstly, cells

are more likely to deviate from the collective order if their angular noise is hight, and sec-

ondly, excessive angular noise inhibits the creation of collective movement. Both of these
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factors combined will produce the nonlinear response observed. We measure { = o.s1 for
1. adbaerens based on a sample of soo recorded frames taken from all animals. The cor-
responding noise level to produce this { is approximately .31, which is just on the cusp of
this sigmoidal response where noise has a substantial detrimental effect on the collective

modes of locomotion.

A.10 ALTERNATIVE METHODS OF RESCALING

Rescaling 7 by the correlation length ¢ is one possible method of analyzing the size in-
variance of correlation structure, and is the method used in other studies of a similar na-
ture*>*>*, Nevertheless, the poor collapse of the correlation profiles in our system when
using this method prompted us to consider other methods by which we could produce
rescaled correlation profiles. One such method is %* minimization, where the domain of
each profile is rescaled a scalar parameter e, selected in order to minimize the sum of the
squared difference between the two profiles, divided by the uncertainty **. The results of
such a minimization are shown in Figure ??. The correlation profiles again do not collapse
on top of each other in an invariant fashion. By observing the concavity and convexity of

each profile, it is trivial to conclude that no better rescaling is possible.
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Figure A.1: Comparing animal velocity fluctuations to white noise. (A) A full velocity field generate from two subsequent
scrambled images. (B) The velocity field generated for the subsequent scrambled image. (C) Time series comparison of
velocity fluctuations measured from the animal’s movement (top) with those generated by scrambled images (bottom) at
0, 2.5, and 5 seconds of recording.
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Figure A.2: Fluctuation correlations in dead animals are smaller than all live animal measurements. (A) A snapshot of the
velocity fluctuation field for a dead animal, inset: image of the dead animal. Axes are in micrometers. (B) Comparison of
the correlation length of velocity fluctuations from a dead animal in relation to the live measurements. The correlation
length is smaller than that recorded for even our smallest live specimens.
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Figure A.3: Effect of changing the averaging window size of optical flow on the correlation profiles. Velocity correlation
profiles measured with exact particle positions and velocities (solid black line) and estimates of this correlation function
by using optical flow on videos of these moving particles. The Gaussian smoother kernel size has a direct effect on the ac-
tual correlation length and strength among particles. For each kernel size, optical flow was performed on videos, varying
the averaging window size ().
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Figure A.4: Effect of window size on correlation profiles. The correlation profiles generated for two randomly-selected

frames from our smallest (A) and largest (B) animal specimens, measured using the fluctuations of generated vector fields
with different values of \. (C) %, for the small and large animals at varying values of . (D) The ratio of susceptibility of the

large animal in comparison with the smaller animal.

104



Ve

Figure A.5: Optical flow reconstruction of particle simulation. (A) Representative image of a deformable composed parti-
cles moving with correlated velocities. (B) The velocity fluctuations of all of the particles. (C) The velocity field measured
on a video of moving particles (A = 45, k& = s1).
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Figure A.6: Only overestimation of correlations is possible with optical flow, and occurs only when the smoothing win-
dow exceeds the actual correlation length in a system. (A) %fonly diverges from chi[, by overestimation, and only for
when correlations are much shorter than the flow averaging window size. (B) Overestimation dependence on the ratio
between the flow estimation window size and the actual correlation kernel size. (C) Dependence of the in the cumulative
correlation estimation on the ratio between the averaging window size and the observed correlation length (blue line:
ratio of e, for the largest animal relative to the averaging window used in empirical flow fields; red line: similar ratio for
our smallest observed animal).
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Figure A.7: Comparison of averaging methods. The correlation length (A) and susceptibility (B) are not significantly
different regardless of whether one uses ensemble or spatial averaging (line: y = x).
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Figure A.8: Effect of shape on correlation structure. (A) Deviation from perfect circularity with increasing size (dashed
line: perfect circle). (B) Circularity effect on proportional correlation length extent
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Figure A.9: Effect of collective mode magnitude on fluctuation size and intensity. (A) Rank-sorted snapshots of a single
animal by |w| Highlighted regions are highest and lowest ten selected frames for comparison. (B) The distribution of
correlation lengths between the highest and lowest ten frames.
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Figure A.10: Collective modes of locomotion in T. adhaerens. (A) A representative time series of the rotational (R), polar-
ized (P), and dilatational (A) modes of collective order, showing large and high frequency variability in all parameters.
(B) Histograms of the observed values for all three order parameters throughout the entire recording for one arbitrarily-
selected animal. (C) Phase space histograms of the collective rotation and polarization order for the smallest and largest
animals. (D) The collective order for five animals, ranked by their mean size.
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Figure A.11: Cell density is invariant with cell size. Cell counts were measured in 15 sub-regions of the animal for each
animal, with regions ranging ins size from 2000 to 5000 {umz. Error bars represent standard deviation.
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Figure A.12: Size-mediated effects on correlation strength are robust to noise. The correlation profiles for simulated
systems of different sizes, with distances rescaled by their respective correlation lengths. We see that under a variety of
conditions
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Figure A.13: Susceptibility increases sub-linearly with system size for all noise levels, though at low noise this trend
approaches linearity.
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Figure A.14: y;-square minimization does not result in size invariance. The correlation profiles of all T. adhaerens individ-
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