
Tuning coupled electronic and nuclear
dynamics in the nanoscale

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Alan Celestino

geboren am 24.05.1989 in Joinville

Eingereicht am 18. Juli 2017



Eingereicht am 18. Juli 2017

1. Gutachter: Prof. Dr. Jan-Michael Rost
2. Gutachter: Prof. Dr. Gianaurelio Cuniberti



Contents

1 Introduction 1

2 Tuning molecular nonradiative lifetimes via intermolecular interaction 5
2.1 The Hamiltonian of the molecular dimer . . . . . . . . . . . . . . . . . 7
2.2 The monomer and its decay dynamics . . . . . . . . . . . . . . . . . . . 7

2.2.1 Model of the monomer . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 The single harmonic coordinate case . . . . . . . . . . . . . . . 12

2.3 Interacting molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 The model of the dimer . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Single harmonic coordinate in the monomeric units . . . . . . . 17
2.3.3 Consequences to the fluorescence quantum yield . . . . . . . . . 23

2.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Switching between electromechanical regimes in a nanoscale rotor 27
3.1 The dynamics of the mean-field and stochastic equations of motion . . 31

3.1.1 The dynamics of the mean-field equations revisited . . . . . . . 31
3.1.2 Basins of attraction in the case of a symmetric rotor . . . . . . 37
3.1.3 A new dynamical regime . . . . . . . . . . . . . . . . . . . . . . 39
3.1.4 Stochastic equations of motion . . . . . . . . . . . . . . . . . . . 40
3.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 A model of the nanoelectromechanical rotor based on the “orthodox”
theory of single-electron tunneling . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Orthodox theory of single-electron tunneling for a single island . 44
3.2.2 Mechanical equations . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Deriving the stochastic equations of motion from Sec. 3.1.4 . . . 54
3.2.4 Deriving the mean-field equations of motion from Sec. 3.1.1 . . . 54
3.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Single-electron limit: stochastic equations of motion . . . . . . . 60
3.3.2 Continuous-charging limit: mean-field equations of motion . . . 62
3.3.3 Dimensionless parameters from the stochastic and mean-field

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.4 Discussion of some model approximations performed in Sec. 3.2 68
3.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Nanoelectromechanical motor: rotational directionality . . . . . . . . . 71
3.4.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Experimental realization . . . . . . . . . . . . . . . . . . . . . . 73
3.4.3 Rotational directionality in the continuous-charging limit . . . . 75
3.4.4 Rotational directionality in the single-electron limit . . . . . . . 78
3.4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 80



ii Contents

4 Summary and outlook 83
4.1 The molecular dimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 The nanoelectromechanical rotor . . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Damping due to light emission 91

B Mean-field charge dynamics for the case with the gate electrode 93

C Mean-field mechanical dynamics for the case with the gate electrode 97

References 101



Chapter 1

Introduction

Nanotechnology can be defined as science, engineering, and technology conducted at the
nanoscale. This constitutes a huge area of research overlapping with many other science
fields, such as chemistry, biology, physics, material science, and engineering. It is in
general concerned with objects having at least one dimension in the nanoscale regime,
such as most of molecules, some molecular aggregates, buckyballs, carbon nanotubes,
carbon nanosheets, metallic nanoparticles, and quantum dots. These objects often
possess unique electronic and mechanical properties which allow for new functionalities.
For instance, small metallic nanoparticles and quantum dots can exhibit the phenomenon
of Coulomb blockade, where the tunnel current through an electrode is halted due
to the charge on that electrode. This phenomenon led e.g. to the development of
the single-electron transistor1,2. Another example is given by multi-walled carbon
nanotubes, whose mechanical properties are being used to devise a new generation of
practically friction-, wear- and fatigue-free bearings3–5.
In many nanoscale systems, both man-made or existent in nature, electronic and

nuclear degrees of freedom are strongly coupled. This coupling can lead to very
complex dynamics, as in the case of nonradiative decay of an electronic excitation in
molecules6–10 and chaos in nanoelectromechanical systems (NEMS)11–14 ∗ . It can also
be fundamental to a certain functionality, e.g. in molecular motors and switches10,15–26,
to the isomerization of retinal in the processes leading to vision6,7,27,28, and in some
NEMS like the electron shuttle29–34 and charge-tunneling-driven nanorotors35–38.

Typically, the behavior of a system showing complex dynamics is nontrivially depen-
dent on its parameters31,34,36,37. Therefore, a certain functionality or phenomenon is
existent in a specific region of the parameter space, and e.g. in a man-made device one
would like to perform the nontrivial task of tuning the parameters into this region. In
this thesis, we are interested in this kind of nanoscale complex systems, and how to
tune into regions of their parameter space leading to desired dynamics (see Fig. 1.1 for
examples regarded in this thesis).

We focus on the following two systems which are, in many aspects, “complementary”.

The molecular dimer
Molecules are some of the building blocks of nanotechnology, and we study the simplest
assembly constructible out of these blocks: a molecular dimer consisting of identical
molecules. This aggregate is a minimal example from supramolecular chemistry, and is

∗In NEMS, a “mechanical” degree of freedom typically involves a “relevant” nuclear degree of freedom
and many other degrees of freedom which are negligible in the dynamics of interest.
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Figure 1.1: Dependence of various phenomena and functionalities upon the parameters
from the systems studied in this thesis. (a) Schematic representation of the nonradiative
decay (NRD) lifetime of an electronic excitation as a function of the intermolecular-interaction
strength in a dimer. In the figure, the monomeric excited state potential energy surface (blue
curve, insets) is coupled to a dark electronic state (black curve) in a well-localized crossing
region, the NRD channel. Different curves stand for different positions of this channel in
the nuclear space. (b) Time-averaged current across the system as a function of the driving
strength∗ in the nanoelectromechanical rotor identifying its dynamical regimes. The standstill,
oscillatory, rotatory, and chaotic-like regimes are shadowed respectively in red, blue, green,
and yellow. (c) Directionality measure (color) as a function of the parameters β and χ†.
Within the regions in red (blue) the preferred sense of rotation is clockwise (counterclockwise).
Regions in white do not lead to a preferred sense of rotation.

commonly found in nature (e.g. in systems involved in photosynthesis39,40). Molecular
aggregates often show intrinsically quantum behavior, e.g. quantum beating41,42.
The molecular dimer is considered in the context of nonradiative decay (NRD)

dynamics of an electronic excitation. Electronic NRD is critical in a variety of molec-
ular systems. In nature, it is essential e.g. in the isomerization of retinal (vision
process)6,7,27,28, nonphotochemical quenching in photosynthesis8,43,44, and DNA photo-
protection9,45–47. NRD processes have also been exploited in technological applications,
enabling e.g. transfer to long-lived triplet states which are useful in OLEDs48, light-
driven molecular rotary motors49, and light-driven molecular switches10,25,26.
We consider the Born-Oppenheimer approximation not to be valid already in the

monomer: the electronic states are coupled through a well-localized region in the nuclear
space, which we call the “NRD channel”. In this region, the electronic de-excitation
occurs. The aggregated monomers interact via transition dipole-dipole interaction,
which further couples electronic and nuclear degrees of freedom in the dimeric level. Due
to this interaction, the dimer shows distorted and nontrivially coupled PESs conferring
complex decay dynamics on it. We show how this interaction influences the NRD
lifetime.
The influence of the intermolecular interaction upon the NRD lifetime depends

strongly on the system parameters. In Fig. 1.1 (a) we illustrate this dependence upon
the position of the NRD channel. Depending on the position of the NRD channel,
the NRD lifetime can exhibit a completely different dependence on the intermolecular-
interaction strength. In this context, it is important to mention that aggregates can be
formed from various molecules, in a variety of environments (e.g. ultracold, suprafluid
He-nanodroplets50–52), and their geometry can be tuned by many different means
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(e.g. by adding specific side groups53). This great flexibility also implies a great variety
of system parameters and ranges of tunability.

The nanoelectromechanical rotor
We also study a synthetic nanomachine: a nanorotor driven by charge tunneling. It
favors assembly integrating (typically) larger, bulk-like systems such as nanoparticles
and carbon nanotubes. These systems are often “more classical” than molecular dimers:
for example, charge tunneling between nanosized electrodes is often described using rate
equations1,2, and wall rotation in a multi-walled carbon nanotube is often described via
Langevin equations3.
The most intuitive application of the rotor we study in this thesis is yielding work,

as a nanomotor. However, we will see that other applications like as a nanoscale switch
and as a current rectifier are also achievable. These functionalities are fundamental to
the development of nanomachinery and nanocircuits54,55.

The rotor consists of electronic islands linked to a bearing via insulating arms. The
islands can exchange electrons via tunneling with flanking electronic leads. An uniform
electrostatic field brings about the coupling between electronic and mechanical degrees of
freedom. This coupling also leads to varied dynamics, ranging from regular oscillations
and rotations to chaotic-like intermittent dynamics mixing oscillations and rotations.
The type of steady-state dynamics depends on the parameters of the system. This

dependence is exemplified in Fig. 1.1 (b) where four dynamical regimes can be identified
by plotting the time-averaged current across the system as a function of the driving
strength ∗ , and (c) where geometries of the rotor (identified by the parameters β and
χ † ) for which it features a preferred sense of rotation are represented in red and
blue. The system parameters depend on the type of components used to assemble it,
and often they are highly tunable. For example, multi-walled carbon nanotubes can
constitute rotational bearings in the nanoscale3–5. In this case, friction can be tuned by
varying the temperature and interlayer spacing3. The electronic islands can be realized
e.g. using gold nanoparticles, which can be site-selectively attached to carbon nanotubes
using dip-pen nanolithography56,57. The capacitance of the islands is dependent on the
nanoparticle’s size, and this can be further engineered using gate electrodes1,2. Also
electrostatic fields can be spatially controlled in the nanoscale with the present-day
technology58.

Sectioning of this thesis
This thesis is organized as follows.
∗The driving strength is defined as η0 = QvarE`/IΓ2, where Qvar is the maximal charge variation on
the islands, E is the magnitude of the electrostatic field, ` is the distance between the islands’ center
of mass and the axis of rotation, I is the rotor’s moment of inertia, and Γ−1 gives the timescale of
tunneling.

†To introduce a preferred direction of rotation (Sec. 3.4) in the rotor we need to tune the parameters
β and χ appropriately. β is the angle between the arms of the rotor. To tune χ we make Qvar,
E, `, and Γ arm-dependent, thereby driving the arms independently. As a consequence, we have
two driving strengths ηA and ηB, respectively for the arms bearing the islands A and B. χ is then
defined by tanχ = ηA/ηB.
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The Chap. 2 is about the influence of aggregation upon the NRD lifetime in a
molecular dimer. In that chapter we introduce the models of the monomer and of
the dimer. We discuss their NRD dynamics using an example where the monomers
have harmonic PESs along a single nuclear coordinate. The other coordinates, together
with external degrees of freedom, are regarded as a thermal bath using a multilevel
Redfield equation. The decay dynamics of the monomer are trivial due to its harmonic
PESs and simple NRD channel. This allows us to obtain an analytic expression for
the NRD lifetime in the monomer, which serves as a reference for the dimer case. The
dimer shows distorted and nontrivially coupled PESs conferring rather complex decay
dynamics on it. The NRD lifetime in the dimer case is then determined numerically.
We show that the intermolecular interaction can have a strong influence on the NRD
lifetime. Depending on the position of the NRD channel, we find that the NRD lifetime
can exhibit a completely different dependence on the intermolecular-interaction strength
(as one can see in Fig. 1.1 (a)). The extension to larger aggregates and the implications
to the quantum yield of molecular systems are also discussed. Our findings suggest
design principles for molecular systems where a specific fluorescence quantum yield is
desired.

The nanoelectromechanical rotor is considered in Chap. 3. In the literature one can
identify two generic models of this type of rotor36–38, which we refer to as “mean-field”
and “stochastic” models in this thesis. In the mean-field model the system is described
by a set of deterministic differential equations involving the average charge on the
electronic islands, and therefore charge fluctuations are not taken into account. In
the stochastic model the rotor is described by Fokker–Planck equations which fully
take into account the charge fluctuations. We start by showing and comparing the
dynamics of these models. The models show interesting phenomenology and predict
useful functionality to the rotor. However, it is often unclear which assumptions are
made upon the system when using these models. To clarify this matter we derive the
models using the “orthodox” theory of single electron tunneling59. Next, we propose
experimental devices which can be described by these models. The parameter ranges
accessible using these devices are estimated. The interaction between the charge on
the islands and the image charge on the leads poses a hindrance to the experimental
realization proposed in this thesis. Possible workarounds like replacing superconducting
electrodes for the conducting leads are discussed. Turning our attention to motor
functionality, we show that to introduce a preferred direction of rotation one needs to
bend the rotor’s arms and make them uneven (see Fig. 1.1 (c)).

Finally, in Chap. 4 present our conclusions and suggest some new directions stemming
from this work. We also briefly discuss how to recast the system as a current rectifier
and show some preliminary results.



Chapter 2

Tuning molecular nonradiative lifetimes via
intermolecular interaction

The lifetime of a molecular system’s electronically excited state (EES) is determined
by radiative and nonradiative transitions60–63. The radiative transitions stem from
the coupling to the electromagnetic field, are characterized by light emission, and
their typical timescale in individual molecules is several nanoseconds. This timescale
can be changed upon aggregation. A particularly interesting example is given by
molecular aggregates consisting of transition-dipole-dipole-interacting molecules, which
have attracted interest for decades (see e.g. Refs.64–66 and references therein). These
molecular aggregates can feature superradiant emission bringing radiative lifetimes
down to e.g. the picosecond scale67–69. The origin of this phenomenon is the formation
of exciton states coherently delocalized over several molecules.
Nonradiative electronic transitions, i.e. electronic transitions without the emission

of light, can occur in different situations and involve totally different processes. The
timescale of these transitions differs from case to case, but they can occur within
pico- or even femtoseconds. Thus, nonradiative transitions can determine the EES
lifetime in molecular systems. Often these fast nonradiative decay (NRD) processes
are useful. For example, in nature they are involved in the switching between retinal
isomers6,7,27,28, a relevant step of the process leading to vision; nonphotochemical
quenching in photosynthesis8,43,44; and DNA photoprotection9,45–47. NRD processes
have also been exploited in technological applications, enabling e.g. transfer to long-lived
triplet states which are useful in OLEDs48, light-driven molecular rotary motors49,
and light-driven molecular switches10,25,26. NRD processes can also be involved in
singlet fission, a process featured by organic semiconductors whose mechanism remains
uncertain70,71. However, sometimes these NRD processes are unwanted, e.g. in light
harvesting applications72 or where large quantum yields are desirable73,74.
Of particular concern to this thesis are the NRD processes occurring in individual

molecules, and how they are modified upon aggregation. In certain molecules, coupling
between electronic and nuclear degrees of freedom are important, leading to a violation
of the Born-Oppenheimer approximation, and thereby enabling nonradiative transitions
between electronic states. This coupling in the single-molecule level can carry through
upon aggregation, but it is not clear how the intermolecular interaction can change the
nonradiative-transition dynamics. As represented in Fig. 2.1, in this chapter we show
that molecular aggregation can strongly influence the timescale of NRD processes (NRD
lifetime) in molecular systems. As in the case of the radiative lifetime, this influence
arises from excitonic delocalization.
Since molecular aggregates can be formed from a variety of molecules, they can

feature various monomeric potential energy surfaces (PESs). Moreover, the number of
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Figure 2.1: Schematic representation of the nonradiative lifetime of an electronic excitation
as a function of the intermolecular-interaction strength in a dimer. The excitation is created by
a Franck-Condon transition via e.g. a short laser pulse. In the figure, the monomeric excited
state potential energy surface (upper gray curve, see insets) is coupled to a dark electronic
state (black curve) in a well-localized crossing region, the nonradiative decay channel. This
leads to nonradiative decay to the dark state potential energy surface. Notice that this channel
occurs at the monomer level. Different curves stand for different positions of this channel in
the nuclear space (see the insets).

molecules is practically arbitrary. For these reasons we concentrate on understanding
the simplest case possible: a molecular homodimer ∗ whose monomers possess harmonic
PESs. In this way, our work additionally fits naturally in the literature as a follow-up
to many of the previous studies75–80. Moreover, molecular dimers are believed to be
importantly involved in many processes of interest. For example, considering dimers
and trimers is enough to explain the main features of the absorption spectrum of
PTCDA molecules in He nanodroplets51. Molecular dimers are also believed to play an
important role in photosynthesis. For instance, the B820 subunit of the purple bacterial
core antenna LH1 is a dimer of bacteriochlorophyll (BChl)39, and the structure of the
light harvesting complex two (LHCII) of green plants suggests that several pairs of
chlorophyll molecules (Chl-a and Chl-b) are close together40.

We will see that the influence of aggregation upon the NRD lifetime depends strongly
on the system parameters (e.g. transition dipole-dipole interaction, vibrational relaxation,
location of the nonadiabatic coupling region, etc.). In this context, it is important
to mention that aggregates can be formed in a variety of environments, and their
geometry can be tuned by many different means. Traditionally, aggregates are created
via self-assembly in aqueous solution64, where their geometry can be tuned e.g. by
adding specific side groups53 or using DNA as a template81. In recent years, aggregates
have also been created in ultracold, suprafluid He-nanodroplets50–52 and on surfaces, and
the latter can be used as templates to obtain various molecular arrangements82–84. This
great flexibility in the choice of the molecule, environment, and molecular arrangement
also implies a great variety of system parameters. Our approach will therefore be
to extract underlying trends in the parameter space instead of focusing on a specific

∗A dimer constituted by identical molecules.
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situation (and the corresponding parameter set).
This chapter is organized as follows: in Sec. 2.2 we briefly describe the Hamiltonian

of the dimer and introduce the model of its monomeric unit. We also show exemplary
calculations on the monomeric NRD dynamics, focusing on the dependence on the
position of the NRD channel. These calculations will serve as a reference in Sec. 2.3,
where we discuss the dimer. In Sec. 2.3 we introduce the model of the dimer in detail
and show calculations on its NRD dynamics. It will turn out that the intermolecular
interaction can have a strong influence on the NRD lifetime. This influence will be
shown to depend on the position of the NRD channel in the monomeric unit. The
extension to larger aggregates and the implications to the quantum yield of molecular
systems will be discussed. Finally, we wrap this chapter up in Sec. 2.4, where we also
point out some possible new research directions stemming from this work. The work
presented in this chapter was submitted for publication. The respective manuscript can
be found in Ref. [85].

2.1 The Hamiltonian of the molecular dimer
In this chapter we study the decay of an electronic excitation in a molecular homodimer.
The monomeric units interact via their transition dipoles, and the geometry is fixed:
both the distance and the relative orientation of the transition dipoles of the monomers
are held fixed. In the following, we leave aside the electronic spin. Moreover, we consider
that the molecules do not bind covalently, and that they keep their chemical structure.
If this is fulfilled, the Hamiltonian of the dimer can be written as

Hdim = Hmon1
(
~Q1, ~Q

e
1

)
+Hmon2

(
~Q2, ~Q

e
2

)
+Hdip

(
~Q1, ~Q2, ~Q

e
1,
~Qe

2

)
, (2.1)

where Hmon1 and Hmon2 are the Hamiltonians of the monomers (unaltered by the
intermolecular interaction), and they depend respectively on

(
~Q1, ~Q

e
1

)
and on

(
~Q2, ~Q

e
2

)
,

where ~Q1(2) are the nuclear and ~Qe
1(2) the electronic coordinates of monomer 1 (2). The

transition dipole-dipole interaction is noted by Hdip. The Hamiltonian Hdim contains
the kinetic energy of, and the pair Coulomb interaction between all electrons and nuclei
composing the monomeric units. The general form of these terms can be easily found
in textbooks (see e.g. pages 11 and 12 of63). In a real situation, the dimer also interacts
with external degrees of freedom, e.g. from a solvent. We account for these degrees of
freedom using a standard quantum open system approach which will be described in
Sec. 2.2.2.1.

2.2 The monomer and its decay dynamics
In this section we will introduce the model of the monomer and define the electronic de-
excitation process we are considering. We will also make a series of assumptions, notably
(i) that just two electronic states are relevant for the de-excitation processes studied
here and (ii) that the Born-Oppenheimer approximation is violated in a very limited
region of the nuclear space. Then, we focus on an example where the de-excitation
process occurs along a single harmonic nuclear coordinate, which we call “reaction



8 Chapter 2 Tuning molecular nonradiative lifetimes via intermolecular interaction

coordinate”. For example, a single nuclear coordinate is used in Ref. [10] to describe
the nonradiative electronic decay in indanylidene-pyrroline, in the context of molecular
switches. The remaining coordinates, together with external degrees of freedom, will
be considered to effectively damp the dynamics along the reaction coordinate. This
example will serve as a reference for the dimer in Sec. 2.3.

2.2.1 Model of the monomer
Because the ratio of the electronic mass to the nuclear mass in a molecule is mel/M <
10−3, electrons are expected to move much faster than nuclei on average63. This typically
means that the electronic and nuclear dynamics can be treated separately in “some”
sense. The Born-Oppenheimer approximation assumes the extreme case where different
electronic states are completely uncoupled; we will make the weaker assumption that
different electronic states couple only in a limited region of the nuclear space. In
both cases, it is useful to start with the Born-Oppenheimer separation of electronic
and nuclear motion. In this separation we do not perform any further assumption:
we just write the molecular Hamiltonian and wavefunction in a basis suited to the
approximations which will come later on.

2.2.1.1 Born-Oppenheimer separation in the diabatic basis

We start by writing the Hamiltonian of the monomer in the form

Hmon
(
~Q, ~Qe

)
= He

(
~Qe; ~Q

)
+Kn + Vn−n

(
~Q
)
, (2.2)

where Kn is the kinetic energy of the nuclei and Vn−n is the potential energy stemming
from interactions between the nuclei. The electronic Hamiltonian He

(
~Qe; ~Q

)
depends

parametrically on the nuclear coordinates ~Q, and it is given by

He
(
~Qe; ~Q

)
= Ke + Ve−e

(
~Qe
)

+ Ve−n
(
~Qe; ~Q

)
, (2.3)

where Ke is the kinetic energy of the electrons and Ve−e is the potential energy coming
from interaction between the electrons. The (parametric) dependence on the nuclear
coordinates comes about through the potential energy Ve−n, which is the sum of all
possible pair Coulomb interactions involving an electron and a nucleus.
The solutions of the time-independent Schrödinger equation describing the state of

the electrons in the electrostatic field of the stationary nuclei, φa
(
~Qe; ~Q

)
, fulfil

He
(
~Qe; ~Q

)
φa
(
~Qe; ~Q

)
= Ea

(
~Q
)
φa
(
~Qe; ~Q

)
, (2.4)

where Ea is the eigenenergy of the electronic state a. Note the parametric dependence
of the solutions and of the eigenenergies on ~Q. These solutions form the so-called
“adiabatic basis” of the molecular wavefunction (see e.g.63 pp. 13-15). Because of the
parametric dependence on the nuclear coordinates, this basis is not very practical if
one is interested in performing numerical simulations. Therefore, we use a “diabatic
basis” (also known as “crude adiabatic basis”63){

φb
(
~Qe; ~Q = ~Qb

0

)}
, (2.5)
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where ~Qb
0 is an equilibrium nuclear configuration at the electronic state b, to write the

molecular wavefunction ψ, i.e.

ψ
(
~Qe, ~Q

)
=
∑
b

Xb

(
~Q
)
φb
(
~Qe; ~Qb

0

)
. (2.6)

Note that the elements of this diabatic basis are eigenfunctions of He
(
~Qe; ~Q

)
just at

~Q = ~Qb
0. It will be useful in the following to have the definition

∆Vb
(
~Qe; ~Q

)
= He

(
~Qe; ~Q

)
−He

(
~Qe; ~Qb

0

)
. (2.7)

We want to write the Hamiltonian of the monomer Hmon in the basis (2.5). To do that,
we write the time-independent Schrödinger equation of the monomer

Hmon
(
~Q, ~Qe

)
ψ
(
~Qe, ~Q

)
= Eψ

(
~Qe, ~Q

)
(2.8)

using the expression of the molecular wavefunction from Eq. (2.6) (E is the correspondent
eigenenergy) and the definition of Hmon from Eq. (2.2)[

He
(
~Qe; ~Q

)
+Kn + Vn−n

(
~Q
)]∑

b

Xb

(
~Q
)
φb
(
~Qe; ~Qb

0

)
= E

∑
b

Xb

(
~Q
)
φb
(
~Qe; ~Qb

0

)
.

(2.9)
Inserting the definition from Eq. (2.7) into Eq. (2.9) yields∑

b

[
He

(
~Qe; ~Qb

0

)
+ ∆Vb

(
~Qe; ~Q

)
+Kn + Vn−n

(
~Q
)]
Xb

(
~Q
)
φb
(
~Qe; ~Qb

0

)
=

E
∑
b

Xb

(
~Q
)
φb
(
~Qe; ~Qb

0

)
. (2.10)

Now we multiply Eq. (2.10) by φ∗b′
(
~Qe; ~Qb′

0

)
from the left and integrate over all electronic

coordinates, obtaining∫
d ~Qe φ∗b′

(
~Qe; ~Qb′

0

)
Hmon

(
~Q, ~Qe

)
ψ
(
~Qe, ~Q

)
=[

Vb′
(
~Q
)

+Kn
]
Xb′

(
~Q
)

+
∑
b | b6=b′

Ob′,b

(
~Q
)
Xb

(
~Q
)

(2.11)

where the PES of the electronic state b′ is given by

Vb′
(
~Q
)

= Eb
(
~Qb′

0

)
+ Vn−n

(
~Q
)

+Ob′,b′

(
~Q
)
− E , (2.12)

and the coupling between the states b and b′ is given by

Ob′,b

(
~Q
)

=
∫

d ~Qe φ∗b′
(
~Qe; ~Qb′

0

)
∆Vb

(
~Qe; ~Q

)
φb
(
~Qe; ~Qb

0

)
. (2.13)

Defining
φb
(
~Qe; ~Qb

0

)
=
〈
~Qe
∣∣∣b〉 , (2.14)

where
{∣∣∣ ~Qe

〉}
is the basis of the electronic coordinates, we can write the Hamiltonian

of the monomer as

Hmon =
∑
b

[
Vb
(
~Q
)

+Kn
]
|b〉 〈b|+

∑
b,b′ | b6=b′

Ob′,b

(
~Q
)
|b′〉 〈b| . (2.15)
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Figure 2.2: Potential energy surfaces (PESs) and nonradiative decay (NRD) dynamics of
a single molecule. The top row shows sketches of the electronic excitation and relaxation
processes along the PESs. After a vertical Franck-Condon transition, the electronic relaxation
can occur in two different ways: (a) direct relaxation from the electronically excited state e to
the electronic ground state g; (b) relaxation from the optically bright state e to the electronic
dark state d. The black wave packets stand for the nuclear wavefunction after vibrational
relaxation. (c) Ground and first optically excited state harmonic PESs (case considered in
the numerics). qs is the shift between PESs. (d) Time-resolved population decay for different
positions of the NRD channel. The qnr values are illustrated as arrows in (c) according to the
colors and linestyles of the curves in (d).

2.2.1.2 Electronic states and excitation process

The basic features of a monomer are sketched in Fig. 2.2 (a) and (b), where the relevant
PESs are shown as a function of a single nuclear “reaction” coordinate q. Initially the
molecule is in its electronic ground state |g〉, in thermal equilibrium with respect to the
ground state PES. After a vertical Franck-Condon transition (e.g. through a short laser
pulse) to an EES |e〉, which leaves the nuclear wavefunction unchanged62, the nuclear
dynamics and the NRD set in. Vibrational relaxation due to coupling to environmental
degrees of freedom accompanies the coherent motion on the PESs (we describe how we
model vibrational relaxation in Sec. 2.2.2.1).

As depicted respectively in Fig. 2.2 (a) and (b), we consider two different situations:
(a) the NRD is to the ground state and (b) the NRD is to a dark state |d〉. In the
situation (a), the Hamiltonian of the monomer is given by

Hmon =
∑
b=g,e

[
Vb
(
~Q
)

+Kn
]
|b〉 〈b|+

∑
b,b′=g,e | b6=b′

Ob′,b

(
~Q
)
|b′〉 〈b| , (2.16)

and in (b)

Hmon =
∑

b=g,e,d

[
Vb
(
~Q
)

+Kn
]
|b〉 〈b|+

∑
b,b′=g,e,d | b6=b′

Ob′,b

(
~Q
)
|b′〉 〈b| , (2.17)

where in the last case just Oe,d, Od,e, and the diagonal elements of the coupling operator
from Eq. (2.13) do not vanish. The terms Og,e/e,g (Og,d/d,g) vanish because the PESs
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g and e (g and d) are well separated in energy in the region accessible to the nuclear
dynamics.

2.2.1.3 NRD channel

Typically, nonradiative transitions between molecular electronic states involve nuclear
degrees of freedom and occur at points where the respective PESs are close or cross60,86.
In our model, these nonradiative transitions stem from the couplings defined by Eq. (2.13)
(note the dependence on the nuclear degrees of freedom). We assume that these couplings
are just non-vanishing in a localized region in nuclear space. In this region, which we
call “the NRD channel”, the electronic excitation can efficiently leave the electronic
state |e〉 (to either |g〉 or |d〉). Since we do not focus on a particular molecule and we
are mainly interested in qualitative results, we model the NRD channel as an imaginary
potential added to the excited PES. This PES is then given by

Ṽe( ~Q) = Ve( ~Q)− iΓ( ~Q), (2.18)

where we denote Γ( ~Q) as the “decay-function”. This way of modeling the NRD implies
irreversibility of the de-excitation process, it that once the excitation leaves |e〉 it cannot
return.

We emphasize that this NRD channel can occur in any region of the PES, and that
the corresponding decay can occur to the ground state and to dark states. For instance,
in β-Apo-8’-carotenal a NRD channel to a dark state is believed to occur at the vertical
Franck-Condon region87. In Ref. [88], a nearly barrierless decay pathway from the
Franck-Condon region of cytosine to the ground state is described.

The imaginary potential −iΓ( ~Q) implies that Hmon is now non-Hermitian. Therefore,
the norm of the state evolving with Hmon decays in time with a rate which depends on
the nuclear dynamics. Since in the beginning all the population is in |e〉, we interpret
the norm as the population in that state. Due to this modeling of the de-excitation
process, we do not need to include the state where the electronic excitation decays to
(|g〉 or |d〉) in Hmon. In the dimer case (which we will consider later on), the transition
dipole-dipole interaction can promote excitation from |g〉 back to |e〉 and therefore one
needs to keep |g〉 in Hdim. Since our final objective is to model the dimer, we also keep
|g〉 in the Hamiltonian of the monomer:

Hmon =
∑
b=g,e

[
Ṽb
(
~Q
)

+Kn
]
|b〉 〈b| , (2.19)

where

Ṽg
(
~Q
)

= Vg
(
~Q
)
. (2.20)
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2.2.2 The single harmonic coordinate case
As a concrete example, we consider harmonic PESs, i.e.

Vg
(
~Q
)

=
∑
n

(ωg
n)2

(
Qn − Q̃g

n

)2

2Mn

, (2.21)

Ve
(
~Q
)

=
∑
n

(ωe
n)2

(
Qn − Q̃e

n

)2

2Mn

, (2.22)

where Qn and Mn are respectively the position (element of the vector ~Q) and the mass
of the nucleus n, and Q̃g(e)

n and ωg(e)
n are respectively the minimum’s position and the

frequency of Vg(e) along Qn. We define a set of normal mode coordinates {qk} through
the transformation

Qn − Q̃g
n =

∑
k

M−1/2
n Zn,kqk (2.23)

(note that the normal mode coordinates are mass-weighted), where the transformation
coefficients Zn,k are real. With this set we can rewrite the PESs as

Vg
(
~Q
)

=
∑
k

(ω̃g
k)

2 q2
k, (2.24)

Ve
(
~Q
)

=
∑
k

(ω̃e
k)

2 (qk − qs
k)

2 , (2.25)

where we have used the new frequencies ω̃g(e)
k and minimum’s position coordinates qs

k.
Furthermore, we consider that the decay dynamics occur along a single normal mode

coordinate, which we call “reaction coordinate” and denote by q. All other coordinates
qk, together with external degrees of freedom (e.g. from a solvent), are regarded as
forming a bath that brings about vibrational relaxation. Our formal treatment of the
degrees of freedom forming this bath is exposed in Sec. 2.2.2.1.
The PESs Vg (q) and Ve (q) are now functions of a single coordinate q. We assume

them to have identical frequencies ω, but to be shifted with respect to each other in
position by qs and in energy by Ee (see Fig. 2.2 (c)). More precisely, they are given by

Vg(q) = 1
2ω

2q2, (2.26)

Ve(q) = Ee + 1
2ω

2 (q − qs)2 . (2.27)

Here, Ee is the electronic transition energy.
For simplicity, we take the decay-function to be a delta function Γ(q) = λδ (q − qnr)

centered at the position qnr, where λ is the NRD strength. The results in this thesis do
not change qualitatively for a different well-localized decay-function (e.g. a Gaussian
function). The resulting non-Hermitian Hamiltonian of the monomer is

Hmon (p, q) = Hg (p, q) |g〉 〈g|+ (He (p, q)− iΓ (p, q)) |e〉 〈e| , (2.28)

where p is the kinetic energy operator (the commutator [q, p] = i~). Introducing the
bosonic creation operator for the ground and excited state potential energy surfaces,
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respectively a†g =
√
ω/2~ (q − ip/ω) and ae = ag−qs

√
ω/2~89, the nuclear Hamiltonians

Hg and He are

Hg
(
ag, a

†
g

)
= ~ωa†gag, (2.29)

He
(
ae, a

†
e

)
= Ee + ~ωa†eae. (2.30)

We write here Hmon in the second quantization because it will be useful in Sec. 2.2.2.1,
where we describe how we model the vibrational relaxation in the monomer.

2.2.2.1 Vibrational relaxation in the monomer

The monomer we consider here is a molecule interacting with an environment. This
environment, which can be e.g. a solvent or neighboring molecules, possesses degrees
of freedom coupled to those of the monomer. Using the framework of open quantum
systems, we write the total Hamiltonian, including not just the degrees of freedom of
the molecule but also of the environment, as

H
(m)
tot = H(m)

sys +H
(m)
bath +H

(m)
int , (2.31)

i.e. a sum of the “system” part H(m)
sys , the “bath” H(m)

bath, and the interaction between
system and bath H(m)

int . The superscript (m) stands for “monomer” and was introduced
to differentiate these symbols from their “dimer” counterparts, which will appear in
Sec. 2.3.2.1.

We include only the reaction coordinate q in the system degrees of freedom. All the
other normal mode coordinates qk, together with the environmental degrees of freedom,
are considered to compose the bath. The (non-Hermitian) system Hamiltonian is given
by

H(m)
sys (p, q) = Hmon (p, q) . (2.32)

This model, in which a limited number of intra-molecular harmonic modes are implicitly
incorporated in the system part, is often used in the literature (see e.g.89–92) and was
found to be reasonable in many cases (see e.g.51,93).
The bath is a set of harmonic normal modes with frequencies ωλ and creation

(annihilation) operators b†λ (bλ). This leads to the bath Hamiltonian

H
(m)
bath({bλ}) =

∑
λ

~ωλb†λbλ. (2.33)

We consider that the bath is linearly coupled to the system degrees of freedom63,90,94.
As for the system coupling operator (to the bath) we use a model analogous to the one
described in Ref. [89],

L(m)
sys =

(
a†g + ag

)
|g〉 〈g|+

(
a†e + ae

)
|e〉 〈e| . (2.34)

Note that we couple the system to the bath through the dimensionless reaction coordinate√
2ω/~q =

(
a†g + ag

)
in the electronic ground state and to the shifted dimensionless

reaction coordinate
√

2ω/~ (q − qs) =
(
a†e + ae

)
in the electronically excited state. Later

on, when we consider a quantum master equation for the system part, this system
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coupling operator will lead to vibrational relaxation towards the ground state of (i)
Vg(q) in |g〉 and (ii) Ve(q) in |e〉. Our bath coupling operator is the sum of all bath
normal mode coordinates63. The system-bath interaction Hamiltonian is given by

H
(m)
int =

ag + a†g −
√

2ω
~
qs |e〉 〈e|

∑
λ

κλ
(
bλ + b†λ

)
. (2.35)

The weight of the bath coupling to a specific frequency ω̃ is encoded in the bath spectral
density j (ω̃) = ∑

λ κ
2
λδ(ω̃ − ωλ). We have chosen an Ohmic spectral density

j (ω̃) = ~2

π
Θ (ω̃) γω̃e−ω̃/ω0 , (2.36)

where γ and ω0 are real parameters, and the step function Θ(ω̃) guarantees that we
just consider positive frequencies.

Now we aim at obtaining an approximate equation of motion for the “system” alone,
which includes only the degrees of freedom of H(m)

sys . Our procedure follows Ref. [63].
We start from the equation of motion for the density operator of the complete system,
formed by the system and bath degrees of freedom,

∂ρ
(m)
tot (t)
∂t

= − i
~

[
H

(m)
tot ρ

(m)
tot (t)− ρ(m)

tot (t)
(
H

(m)
tot

)†]
. (2.37)

Next, we trace out the bath degrees of freedom, i.e. those which are included in H(m)
bath.

This yields the reduced density operator (system density operator)

ρ(m)
sys = Trbath

{
ρ

(m)
tot

}
=
∑
λ

∑
nλ

〈nλ| ρ(m)
tot |nλ〉 , (2.38)

in which we used the bath eigenbasis {|nλ〉} to represent the trace over bath degrees of
freedom. Then we perform the Born and Markov approximations, obtaining a multilevel
Redfield equation of motion in the energy representation. For simplicity, we perform the
secular approximation and neglect pure dephasing63, obtaining the following equation
of motion:

∂ρ(m)
sys

∂t
= − i

~

[
H(m)

sys ρ
(m)
sys − ρ(m)

sys

(
H(m)

sys

)†]
+ L

[
ρ(m)

sys

]
. (2.39)

L is a dissipator, which can be written in the following Lindblad form

L
[
ρ(m)

sys

]
=
∑
a,b

[
Aa,bρ

(m)
sys A

†
a,b −

1
2
(
A†a,bAa,bρ

(m)
sys + ρ(m)

sys A
†
a,bAa,b

)]
, (2.40)

where we have introduced the eigenbasis {|a〉} of the Hermitian part of H(m)
sys ,

1
2

[
H(m)

sys +
(
H(m)

sys

)†]
|a〉 = ε(m)

a |a〉 , (2.41)

with the correspondent eigenspectrum
{
ε(m)
a

}
, and the double sum in Eq. (2.40) runs

over all eigenstates. The Lindblad operators Aa,b are given by Aa,b =
√
ka→b |b〉 〈a|, with

the transition rates
ka→b = C (ωab)

∣∣∣〈a|L(m)
sys |b〉

∣∣∣2 , (2.42)
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where ωab =
(
ε(m)
a − ε(m)

b

)
/~ and

C (ωab) = 2π
~2 (1 + n (ωab)) (j (ωab)− j (−ωab)) , (2.43)

where
n (ωab) = 1

e~ωab/kBT − 1 (2.44)

is the Bose-Einstein distribution. We set T = 0, and therefore n (ωab) = 0 for ωab > 0.
Using the relation 1 + n (ωab) = −n (−ωab) and Eq. (2.36) one can rewrite C (ωab) as

C (ωab) = 2π
~2 γωabe

−ωab/ω0 , ωab > 0, (2.45)

C (ωab) = 0, ωab < 0. (2.46)

Note that setting pure dephasing to zero implies C (0) = 063.

2.2.2.2 The decay dynamics of the monomer

We simulate the decay dynamics of the monomer solving the multilevel Redfield equation
defined by Eq. (2.39). All numerical results shown here are obtained for the parameter
values qs = 1.5

√
~/ω, γ = 1, ω0 = 10ω/π, NRD strength λ = 0.1~3/2ω1/2, and

temperature T = 0 (because we are not interested in thermal effects). These values of γ,
ω0, and λ guarantee fast vibrational relaxation compared to the timescales of the NRD
and nuclear oscillations. This case applies to many molecules, as vibrational relaxation
typically takes place within a picosecond62.
As a reference for the dimer case later on, we now consider the dependence of the

NRD on qnr for a single molecule. We focus on different locations qnr of the NRD
channel leading to qualitatively different behaviors. These locations are qnr = 0 (at
the vertical Franck-Condon region), qnr = qs (minimum of the excited-state PES of the
monomer), and qnr = 2qs (classical turning point to the right of this minimum). Note
that qnr = 0 and qnr = 2qs enclose the classically accessible region in the nuclear space.

The numerically calculated population in the monomer EES P (t) is shown in Fig. 2.2
(d). Different NRD channel positions qnr are indicated by arrows in Fig. 2.2 (c)
according to the colors and linestyles in Fig. 2.2 (d). P (t) depends sensitively on
qnr, and decays approximately as a monoexponential P (t) ≈ exp

(
−t/τ (mon)

nr

)
because

vibrational relaxation is fast compared to NRD dynamics.
We estimate the monomeric NRD lifetime assuming that the nuclear wavefunction is

in the ground state of Ve(q) at all times (|ψground〉), but with a time-dependent norm
Pest (t):

|ψ (t)〉 =
√
Pest (t) |ψground〉 . (2.47)

The Schrödinger equation for this state (using Hmon) is

d
dt
√
Pest (t) |ψground〉 = − i

~
Hmon

√
Pest (t) |ψground〉 , (2.48)

and we can use it to obtain an equation for the time evolution of the norm,
d
dtPest (t) = d

dt (〈ψ (t)|ψ (t)〉) = −2λ
~
Pest (t) 〈ψground| δ (q − qnr) |e〉 〈e|ψground〉 . (2.49)
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Figure 2.3: Sketch of the geometry (a) and energy levels (b) (vibronic levels suppressed) of
the dimer. (a) The dimer’s geometry is defined by the relative orientation of the transition
dipoles ~µ1 and ~µ2 (θ), and the relative position ~R. (b) The eigenenergies of the ground state
|gg〉, single excitation manifold {|eg〉 , |ge〉} for vanishing J (Ee), and dimer singly excited
states |+〉 and |−〉 (respectively Ee + J and Ee − J) for J < 0.

Substituting the vibrational ground state of Ve(q) times |e〉 for |ψground〉 in Eq. (2.49)
yields

d
dtPest (t) = − 1

τ
(mon)
est (qnr)

Pest (t) , (2.50)

where

τ
(mon)
est (qnr) = τ

(mon)
est (qs) exp

[
ω(qnr − qs)2

~

]
, (2.51)

τ
(mon)
est (qs) =

√
π~3/2

2λω1/2 . (2.52)

We find that τ (mon)
nr (qnr) ≈ τ

(mon)
est (qnr) in the numerical results from Fig. 2.2 (d). Notice

in particular that the closer the NRD channel is to the minimum of the excited-state
PES, the faster the NRD takes place.

2.3 Interacting molecules
To furnish a clear example on how the transition dipole-dipole interaction influences
the NRD lifetime, we treat in this thesis the case of a molecular dimer51,75–78,80 in detail
(see Fig. 2.3).

2.3.1 The model of the dimer
The two monomers are assumed to be sufficiently far apart to neglect overlap between
electronic wavefunctions. However, they interact via long-range Coulomb interaction.
The Coulomb interaction depends on the dimer’s geometry, which is considered fixed
(see Fig. 2.3 (a)). In the point-dipole approximation, which is often appropriate, the
interaction strength can be written as

J ∝ 1
R3

~µ1 · ~µ2 − 3(~R · ~µ1)(~R · ~µ2)
R2

 . (2.53)
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Here, ~R is the distance vector between the centers of the two monomers and we consider
~µ1 and ~µ2 to be the transition dipoles of monomer 1 and 2, respectively. We stress that
the specific form of this interaction is not relevant in the following.
The electronic subspace is spanned by the states |gg〉 = |g〉 ⊗ |g〉, |eg〉 = |e〉 ⊗ |g〉,
|ge〉 = |g〉⊗|e〉, and |ee〉 = |e〉⊗|e〉 (see Fig. 2.3 (b)). For both monomers in the electronic
ground state, the corresponding nuclear Hamiltonian is Hgg( ~Q1, ~Q2) = Hg( ~Q1)+Hg( ~Q2),
where Hg( ~Qj) = Kj + Vg( ~Qj), and Kj is the nuclear kinetic energy for the monomer
j. Consequently, the initial state (before the Franck-Condon vertical transition) is the
same as the thermal equilibrium of two uncoupled monomers. Because of large detuning
in energy, the doubly excited state |ee〉 is not populated and we will not discuss it
further.
In the single excitation manifold, i.e. in the subspace spanned by the degenerate

electronic states |eg〉 and |ge〉, the transition dipole-dipole interaction leads to a coupling
of the form Hdip = J (|eg〉 〈ge|+ |ge〉 〈eg|). The dimer Hamiltonian from Eq. (2.1), in
the single excitation manifold, is then given by

Hex
(
~Q1, ~Q2

)
= Knuc +

(
Ṽe
(
~Q1
)

+ Vg
(
~Q2
))
|eg〉 〈eg|

+
(
Ṽe
(
~Q2
)

+ Vg
(
~Q1
))
|ge〉 〈ge|

+ J (|eg〉 〈ge|+ |ge〉 〈eg|) , (2.54)

where Knuc = K1 + K2, and we note that Hex is non-Hermitian due to the complex
absorbing potential −iΓ

(
~Q1(2)

)
contained in Ṽe

(
~Q1(2)

)
. This absorbing potential makes

the dimer state’s norm decay in time. Since after the Franck-condon transition the
dimer is in the single excitation manifold, we interpret this norm as the population
within that manifold. Moreover, for the decay process we are considering, the dynamics
within |gg〉 is not relevant.

2.3.2 Single harmonic coordinate in the monomeric units
As a concrete example, we consider the monomeric units to have the same PESs and
NRD channels as the single molecule considered in Sec. 2.2.2. A single harmonic
coordinate (the reaction coordinate) is considered per monomer, which we denote q1(2)
for monomer 1 (2). This model directly relates to previous studies of dimers, where NRD
has not been taken into account (see e.g. Refs.51,75–78,80). The resulting Hamiltonian is
given by

Hex (q1, q2) = Knuc +
(
Ṽe (q1) + Vg (q2)

)
|eg〉 〈eg|

+
(
Ṽe (q2) + Vg (q1)

)
|ge〉 〈ge|

+ J (|eg〉 〈ge|+ |ge〉 〈eg|) , (2.55)

where

Vg(qi) = 1
2ω

2q2
i , (2.56)

Ṽe(qi) = Ee + 1
2ω

2 (qi − qs)2 − iλδ (qi − qnr) , (2.57)
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where i = 1, 2 indicate the monomer.
The way we treat the other nuclear coordinates of each monomeric unit, and the

external degrees of freedom, is analogous to the model exposed in Sec. 2.2.2.1, and will
be explained in detail in the following.

2.3.2.1 Vibration relaxation in the dimer

In Sec. 2.2.2.1 we have described the open quantum system approach used to take
into account the other nuclear coordinates (apart from the reaction coordinate) and
the environmental degrees of freedom in the monomer case. In the dimer case, we
assume the same model for its monomeric units: same separation of “system” and “bath”
degrees of freedom; same “sytem” and “bath” Hamiltonians; and the same interaction
between the “system” and the “bath”. We further assume that the monomers and their
respective environments are formed by disjoint sets of degrees of freedom. The bath
spectral densities are the same for the both baths (see Sec. 2.2.2.1). The resulting total
Hamiltonian is given by

H
(d)
tot = H

(m1)
tot +H

(m2)
tot + J (|π1〉 〈π2|+ |π2〉 〈π1|) , (2.58)

where we have used the notation |π1〉 = |e〉 ⊗ |g〉 and |π2〉 = |g〉 ⊗ |e〉, and “m1” refers
to “monomer 1” while “m2” refers to “monomer 2”. Note that the electronic states |gg〉
and |ee〉 do not couple to the single excitation manifold {|π1〉 , |π2〉} and therefore we
no longer take these electronic states into account.

Using the framework of open quantum systems, we can separate the total Hamiltonian
H

(d)
tot into a system part H(d)

sys , a bath part H(d)
bath and a system-bath interaction H(d)

int .
The system Hamiltonian is

H(d)
sys = H(m1)

sys +H(m2)
sys + J (|π1〉 〈π2|+ |π2〉 〈π1|) = Hex, (2.59)

where Hex is given by Eq. (2.55). The dimer bath Hamiltonian is given by H(d)
bath =

H
(m1)
bath +H

(m2)
bath while the dimer system-bath interaction is given by H(d)

int = H
(m1)
int +H

(m2)
int

(all given in Sec. 2.2.2.1).
As in Sec. 2.2.2.1, we aim at obtaining an approximate equation of motion for the

dimer’s system part alone, which includes only the degrees of freedom of Hex. We
follow the same procedure as described in Sec. 2.2.2.1, obtaining the following multilevel
Redfield equation for the dimer’s system density operator ρ(d)

sys:

∂ρ(d)
sys

∂t
= − i

~
[
H(d)

sysρ
(d)
sys − ρ(d)

sys

(
H(d)

sys

)
†
]

+ L1
[
ρ(d)

sys

]
+ L2

[
ρ(d)

sys

]
, (2.60)

with

Lj
[
ρ(d)

sys

]
=
∑
α,β

A(mj)
α,β ρ

(d)
sys

(
A

(mj)
α,β

)†

− 1
2

[(
A

(mj)
α,β

)†
A

(mj)
α,β ρ

(d)
sys + ρ(d)

sys

(
A

(mj)
α,β

)†
A

(mj)
α,β

]. (2.61)
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In Eq. (2.61) we have introduced the eigenbasis {|α〉} of the Hermitian part of H(d)
sys ,

1
2

[
H(d)

sys +
(
H(d)

sys

)†]
|a〉 = ε(d)

α |α〉 , (2.62)

with the correspondent eigenspectrum
{
ε(d)
α

}
, and the double sum in Eq. (2.61) runs

over all eigenstates. The Lindblad operator A(mj)
α,β =

√
k

(mj)
α→β |β〉 〈α| and the transition

rates are given by
k

(mj)
α→β = C (ωαβ)

∣∣∣〈α|L(mj)
sys |β〉

∣∣∣2 , (2.63)

where ωαβ =
(
ε(d)
α − ε

(d)
β

)
/~ and C (ωαβ) was already defined in Eqs. (2.43), (2.45), and

(2.46), where one needs to replace ωab by ωαβ.

2.3.2.2 The decay dynamics of the dimer

In order to simulate the electronic decay dynamics we solve Eq. (2.60) numerically.
As our initial state, we consider the result of a Franck-Condon transition to the first
excited adiabatic electronic state. For J < 0, the case we show here, this corresponds
to |+〉 = (|eg〉+ |ge〉)/

√
2 (for J > 0 it corresponds to |−〉 = (|eg〉 − |ge〉)/

√
2). These

two electronic states are the eigenstates of the system if nuclear degrees of freedom are
neglected (see Fig. 2.3 (b)). The results we discuss here are not fundamentally changed
by choosing a different initial condition within the single excitation manifold, nor by
considering J > 0.
We use the same values of qs, γ, ω0, λ, and T , as in the monomer case discussed in

Sec. 2.2.2.2. To get a feeling for the values of the transition dipole-dipole interaction
strength used below, let us take the vibrational relaxation to occur within some hundreds
of femtoseconds in our model. Then, the largest value of the interaction strength that
we consider in the following, J = −10, corresponds to roughly −1000 cm−1, which is in
the order of magnitude achievable in experiments.

The numerical results for the dimer are shown in Fig. 2.4. From the top to the bottom
row, qnr = 0, qnr = qs, and qnr = 2qs are shown, respectively. In the left column, the
population in the single excitation manifold P (t) is shown for different values of J . As
in the monomer case, P (t) approximately follows a monoexponential decay (see Fig. 2.4
(a)-(c)) and can therefore be written as P (t) ≈ exp

(
−t/τ (dim)

nr

)
. The numerically fitted

NRD lifetime τ (dim)
nr is plotted as a function of J as continuous blue lines in the right

column (Fig. 2.4 (d)-(f)). As one can see from Fig. 2.4 (d)-(f), P (t) depends on J , and
this dependence is different for different values of qnr. For all qnr, the NRD lifetime
τ (dim)

nr varies monotonically with J and it saturates for small J (J < 0) at the value
τ (sat)

nr , which depends on the specific choice of qnr, qs and λ. This saturation value can
be analytically determined to be

τ (sat)
nr (qnr) ≈ τ (sat)

nr (qs/2) exp
[
ω (qnr − qs/2)2

~

]
, (2.64)

τ (sat)
nr (qs/2) ≈ π1/2~3/2

2 λω1/2, (2.65)
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Figure 2.4: Nonradiative decay dynamics for different J and qnr values. (a), (b), and (c):
Population in the single excitation manifold P (t) as a function of time (notice the different
x-axis range in (c)). (d), (e), and (f): NRD lifetime τ (dim)

nr (J) as a function of J (continuous
blue line). The green dashed horizontal line is the NRD lifetime saturation value τ (sat)

nr . For
clarity, the values J = −1 and J = −2 for which we plotted P (t) in (a), (b), and (c) are
indicated by vertical lines matching the colors and linestyles in (a), (b), and (c).

(see discussion about the adiabatic limit in Sec. 2.3.2.3) and is plotted as a dashed
green line in Fig. 2.4 (d)-(f). The value of qnr determines whether τ (dim)

nr increases or
decreases with J . For qnr > 3qs/4 (qnr < 3qs/4), τ (dim)

nr increases (decreases) with |J |.
The transition dipole-dipole interaction can suppress (trigger) fluorescence of (non-

)fluorescent molecules when they form dimers or larger aggregates. Although in the
examples shown in Fig. 2.4 (d)-(f) the NRD lifetime maximally varied over approximately
one order of magnitude (Fig. 2.4 (f)), this is not limited on the range of NRD lifetime
variation. The range of variation of τ (dim)

nr with J is at least the ratio

τ (mon)
nr

τ
(sat)
nr

≈ τ
(mon)
est (qnr)
τ

(sat)
nr

≈ exp
[
ω (3q2

s /4− qnrqs)
~

]
, (2.66)

where τ (mon)
est (qnr) is the NRD lifetime of the monomer estimated in Sec. 2.2.2.2. Since

it depends exponentially on the shift between the monomer PESs qs, the range of
tunability becomes exponentially larger for larger qs.
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2.3.2.3 The adiabatic limit

We stress that the full quantum nonadiabatic dynamics is considered in our numerical
simulations, i.e. the correct dimer PESs, nonadiabatic couplings and excitonic relaxation
is naturally included in the numerics. The analytic expression of τ (sat)

nr we used in the
discussion of our numerical results was derived in the adiabatic limit. In this limit,
namely when

|J | � ~1/2ω3/2qs√
2

, (2.67)

we can consider the nuclear dynamics to be confined within the adiabatic PES associated
with the electronic state |+〉 (|−〉) for J < 0 (J > 0). The corresponding (complex)
PESs are given by

Ṽ±( ~Q1, ~Q2) =
2∑
j=1

1
2
(
Ṽe( ~Qj) + Vg( ~Qj)

)
± J, (2.68)

and non-adiabatic couplings between these PESs are negligible. Notice from Eq. (2.68)
that the coordinates ~Q1 and ~Q2 are not coupled. Thus, for each coordinate the NRD
channel (which appears via Ṽe( ~Qj)) is the same as for the uncoupled monomers. However,
the potential on which the nuclear wavepacket moves has a different shape (and in
particular a different minimum) from the monomer’s excited-state PES.
Considering the PESs from our numerics, we obtain for V±(q1, q2) (the Hermitian

part of Ṽ±(q1, q2)) a well known result79,80,95:

V±(q1, q2) = ±J +
∑
j

ω2 (qj − qs/2)2

2 + ω2q2
s

4 . (2.69)

The adiabatic PESs are thus shifted by qs/2 in each coordinate with respect to the
ground-state PES of the monomer. Using these PESs we can obtain the analytic formula
for the saturated NRD lifetime τ (sat)

nr (given by Eqs. (2.64) and (2.65)). We consider
fast vibrational relaxation compared to the NRD and nuclear oscillations timescale.
As a consequence, most of the NRD occurs after the nuclear wavefunction has already
relaxed to the ground state of V+(q1, q2). Assuming that the wavefunction is always
at the ground state, we obtain the saturated NRD lifetime τ (sat)

nr . Comparing the
analytic formulas for τ (sat)

nr with τ (mon)
est (qnr), one observes that their formulas only differ

by the shift in the nuclear coordinate, qs for the monomer and qs/2 for the saturated
dimer. This is because the minimum of V+(q1, q2) is at (q1 = qs/2, q2 = qs/2), while the
minimum from the excited-state PES of the monomer j lies at qj = qs.

2.3.2.4 Extension to longer aggregates

An extension of the NRD lifetime analysis to longer aggregates can also be performed96,97.
The adiabatic PESs of an N -mer (when the electronic wavefunction is delocalized over
N monomers) can be estimated in the adiabatic limit using perturbation theory. Let us
consider a molecular ring. The Hamiltonian of the aggregate within the single excitation
manifold is given by

Hagg = Hnuc + Ĵ , (2.70)
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where Ĵ is the transition dipole-dipole interaction

Ĵ =
N∑
n=1

J (|πn〉 〈πn+1|+ |πn+1〉 〈πn|) (2.71)

(we consider n mod N in the definition of Ĵ ∗ ), and we have used the notation |πn〉
to indicate that the monomer n is electronically excited while the others are in the
electronic ground state. Hnuc is given by

Hnuc =
N∑
n=1

Hn |πn〉 〈πn| , (2.72)

Hn = Kn + Ṽ (n)
e

(
~Qn

)
+

N∑
m6=n

(
Km + V (m)

g

(
~Qm

))
, (2.73)

where Kn is the kinetic energy of monomer n; V (n)
g

(
~Qn

)
and Ṽ (n)

e

(
~Qn

)
are respectively

the ground and excited state PESs of monomer n, whose nuclear coordinates are
denoted by ~Qn. We stress that the excited state PES Ṽ (n)

e

(
~Qn

)
contains a NRD channel

−iΓ
(
~Qn

)
and is, therefore, a complex potential. In the adiabatic approximation, the

kinetic energy can be neglected:

Hn = Ṽ (n)
e

(
~Qn

)
+

N∑
m6=n

(
V (m)

g

(
~Qm

))
. (2.74)

Now we fix a certain nuclear configuration
{
~Qn

}
=
{
~Q0
n

}
and use perturbation

theory regarding the Hamiltonian of the aggregate. We consider Ĵ as the “unperturbed
Hamiltonian” and Hnuc (after adiabatic approximation) as the “perturbation”. The
eigenstates of Ĵ are (63 pp. 64-66)

|ϕk〉 =
N∑
n=1

ck(n) |πn〉 , (2.75)

where k starts from 0 and

ck(n) = 1√
N

exp
(

2πik
N

n

)
. (2.76)

The corresponding eigenvalues are

εk = 2J cos
(

2πk
N

)
. (2.77)

The state of lowest eigenenergy in the case J < 0 is the non-degenerate k = 0, whose
eigenenergy is ε0 = 2J † . Transformation of Hnuc in the eigenbasis of Ĵ yields

∑
k

|ϕk〉 〈ϕk|Hnuc
∑
k′
|ϕk′〉 〈ϕk′ | =

∑
n

Hn

∑
k,k′

c∗k(n)ck′(n) |ϕk〉 〈ϕk′|
 . (2.78)

∗This is necessary because we are considering a molecular ring.
†Notice that the lowest εk is not the same as in the dimer because the dimer is not an instance of
a molecular ring: while in the ring each molecule has 2 neighbors, in the dimer it has just one
neighbor.
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We are interested in the PES Ṽk=0
({
~Qm

})
of the (non-degenerate) state of lowest

energy. Therefore, we can use the first order correction to the eigenenergy ε0 = 2J

Ṽk=0
({
~Qm

})
= ε0 + 〈ϕ0|Hnuc |ϕ0〉 = 2J + 1

N

∑
n

Hn,

Ṽk=0
({
~Qm

})
= 2J +

∑
n

( 1
N
Ṽe
(
~Qn

)
+ N − 1

N
Vg
(
~Qn

))
. (2.79)

For identical monomers of a single harmonic nuclear coordinate qn, the adiabatic
PESs are harmonic and shifted in all reaction coordinates by qs/N (they are also shifted
in energy):

Ṽk=0 ({qn}) = 2J + ω2∑
n

[
(qn − qs/N)2

2 + q2
s

2N

(
1− 1

N

)]
. (2.80)

Using the same procedure as in Sec. 2.3.2.3, the saturated N -meric NRD lifetime can
be calculated. The ratio between monomeric and saturated N -meric NRD lifetimes
behave as

τ (mon)
nr

τ
(sat,N)
nr

≈ τ
(mon)
est (qnr)
τ

(sat,N)
nr

∼ exp
[
−ωqs (qnr(2N − 2)/N − qs (N2 − 1) /N2)

~

]
. (2.81)

2.3.3 Consequences to the fluorescence quantum yield
Let us finally discuss the consequences of our results for the fluorescence quantum yield
Yfl of an aggregate, which we express as

Yfl = τnr

τfl + τnr
, (2.82)

where τfl and τnr are the fluorescence and the nonradiative lifetime of the aggregate,
respectively. As discussed above, the nonradiative lifetime can change strongly upon
aggregation, compared to the monomeric value. Also the fluorescence lifetime τfl changes
upon aggregation98. There are two important cases: (i) J-aggregates: here bright states
located at the bottom of the exciton band provide the dominant contribution to the
fluorescence lifetime. These states possess an oscillator strength that can be considerably
enhanced compared to that of a monomer. This enhancement depends essentially on the
number of monomers over which the aggregate wavefunction is coherently delocalized
and on the geometrical arrangement of the monomers69,83,99,100. In the extreme case
the fluorescence lifetime can become N times shorter than that of the monomer,
τfl = τ

(mon)
fl /N , where N is the number of monomers. This means that for constant τnr

the quantum yield increases. The mechanism described in Chap. 2 can either increase
Yfl further (as exemplified in Fig. 2.4 (e) and (f)) or it can reduce the Yfl (as exemplified
in Fig. 2.4 (d)). As we have shown, our mechanism can change τnr by several orders of
magnitude and therefore considerably alter the the fluorescence quantum yield.
(ii) H-aggregates. Here the bright states are located at the top of the exciton band.

At typical temperatures only dark states at the bottom of the band are occupied. Here,
no emission occurs, and one does not expect that the change in the nonradiative lifetime
will strongly alter this result.
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Figure 2.5: NRD lifetime τ (dim)
nr (J) as a function of J (continuous blue line) for different

values of qs. The green dashed horizontal line is the NRD lifetime saturation value τ (sat)
nr .

In Fig. 2.4 we have presented the case depicted in (a). Notice that in (b) and (c) the NRD
lifetime features dips (and peaks).

Beside the pure J- and H-aggregates, there exist many cases where the optical selection
rules are not so strict as for ideal J- and H-aggregates (see e.g.101). Here one expects
that the mechanism discussed in Chap. 2 will play an important role.

2.4 Conclusions and outlook
In conclusion, we have shown that molecular aggregation can modify the NRD lifetime.
As a proof of concept, we have considered in detail the simplest molecular aggregate
featuring this phenomenon: a transition-dipole-dipole-interacting dimer with harmonic
monomer PESs. We have shown that the relationship between the NRD lifetime and the
intermolecular-interaction strength depends sensitively on the NRD channel position.
In particular the NRD lifetime can increase with, decrease with, or be practically
insensitive to the intermolecular-interaction strength. This indicates that quantum
yield measurements can, e.g., be exploited for the detection of molecular aggregation;
pinpointing of NRD channel locations in molecules; or to infer the geometry of molecular
aggregates.
We have so far not considered different values of qs and γ. If qs is larger than in

Fig. 2.4, e.g. qs = 3.5
√
~/ω, τ (dim)

nr can feature dips (and peaks) at certain J values —
apart from spanning many (e.g. 4 for qnr = 2qs) orders of magnitude upon varying J .
This can be seen in Fig. 2.5. The reason behind these resonance regions is unclear,
and they appear to get more and more important as qs gets larger. Unfortunately it is
not trivial to perform simulations for values much larger than qs = 3.5

√
~/ω because

the size of the integration basis grows with q4
s . Therefore, it is desirable to obtain a

simplified description of these resonances in order to reach an understanding of the
NRD dynamics at large qs. For γ much smaller than the one used in Fig. 2.4, P (t) shows
oscillations reflecting the underdamped nuclear dynamics, as one can see in Fig. 2.6.
However, the main trends observed in Fig. 2.4 are preserved.

For arbitrary (non-harmonic) monomer PESs, the transition dipole-dipole interaction
can impose more severe modifications to the NRD dynamics. This is because the shape
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Figure 2.6: Population in the single excitation manifold P (t) as a function of time for
different J and qnr values (notice the different x-axis range in (c)). Note that here γ = 0.01
while in Fig. 2.4 γ = 1. For comparison, we plot the time-dependent population obtained
through the the estimated NRD lifetime saturation value τ (sat)

nr (black dashed line).

of the dimer PESs from Eq. (2.68) can differ from the monomer excited-state PES’s
shape. For instance, the dimer’s PESs may present a minimum even if the excited-state
PES of the monomer does not. This can lead to a fundamental change of the nuclear
dynamics in the diabatic case, e.g. stabilizing a photodissociation. Monomer PESs of
different shapes will thus give rise to different changes in the NRD dynamics upon
aggregation.
Finally, let us mention that besides the mechanism discussed in the Chap. 2, the

nonradiative lifetime can also be affected by other means upon aggregation, e.g. steric
hindrance of torsional motion in the monomer. However, we want to emphasize that the
mechanism discussed here should anyway be considered, since it can strongly change the
nonradiative lifetime (and thus the fluorescence quantum yield) despite other coexistent
mechanisms.





Chapter 3

Switching between electromechanical regimes
in a nanoscale rotor

Nanoelectromechanical systems (NEMS) are a class of nanoscale devices integrating
electrical and mechanical functionality, and may thereby surpass the capabilities of
conventional nanoscale devices102,103. Typically in NEMS transistor-like nanoelectronic
subsystems are coupled to mechanical actuators, pumps, or motors. By that means,
NEMS may form physical, biological, and chemical sensors: e.g., NEMS have been
shown to be excellent mass104–109, force and pressure104,110–113, and position Ref. [
111,114] sensors. Besides sensing, NEMS have also been applied to quantum ground-
state preparation and readout in mesoscopic systems114,115, and they hold promise as
building blocks of a new generation of mechanical computers116,117.

New effects inherent to the nanoscale can be used to one’s advantage when designing
novel devices and functionalities. For instance, one can exploit tunneling to strongly
correlate current and position. The Coulomb blockade of current, i.e. the suppression
of tunnel current above a certain charge threshold, can be used to devise transistor-like
circuitry or to attain precise control over the charge in a low capacitance electrode. In
1998, Gorelik, Isacsson, Voinova, Kasemo, Shekhter, and Jonson proposed a NEMS
which combines these effects and thereby enables precise control over current29,30. Their
NEMS, whose basic operation is sketched in Fig. 3.1, consists of a reciprocating metallic
grain shuttling electrons between two flanking leads via tunneling in the Coulomb
blockade regime ∗ . A bias voltage across the device serves both the purpose of giving
directionality to the current and forcing the charged grain. The grain also experiences a
mechanical restoring force pulling it towards the midpoint between the electrodes, and
the motion is damped via coupling to external degrees of freedom. The interplay between
strongly position-dependent charge tunneling † , electrostatic and mechanical forcing,
and dissipation leads to a steady-state shuttling regime with the following interesting
properties: the current that flows through the device is a multiple of a well-defined
mechanical frequency, and the current fluctuations are very small119. These features
have prompted experimentalists to pursue a realization of the shuttle for more than a
decade31–33. Nevertheless, no experiment to date was able to irrefutably demonstrate
∗The Coulomb blockade in the system of Gorelik et al. is the suppression of the lead-grain tunneling
current when the charge in the grain is above a certain threshold. This implies that the grain
can be charged up to ±ne, where n is an integer and e is the elementary charge. n is determined
by the grain capacitance C, since the conditions for the Coulomb blockade are that the single-
electron charging energy Eel = e2/C is much larger than both quantum and thermal fluctuations,
i.e. Eel � ~/RC and Eel � kBT , where R is the smallest tunnel resistance in the system118, kB is
the Boltzmann constant and T is the temperature.

†The situation is similar to a tunneling through a potential barrier, where for large enough barrier
widths the tunneling probability decays exponentially.
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Figure 3.1: Sketch of the basic operation of the electron shuttle from Refs. [29] and [30]. A
cyclic change in the direction of motion is due to the repeated “loading” of electrons near
the electrode with larger chemical potential µL and the subsequent “unloading” at the other
electrode. As a result, the sign of the net grain charge alternates leading to a reciprocating
grain motion.

the original proposal from Refs. [29] and [30].
An interesting question is whether new physics arise if one replaces the reciprocating

grain from the electron shuttle described above with electronic islands (e.g. metallic
grain, quantum dot, molecule, etc.) ∗ mounted on a rotor. Rotary dynamics are
naturally closer to motor functionality than reciprocating dynamics. This is also
reflected on the focus of the first studies on charge-tunneling-driven nanorotors: in 2008,
Wang, Vuković, and Král used molecular dynamics simulations to show that driving
nanoscale rotary motors by electron tunneling is possible35. In the same year, Smirnov,
Savel’ev, Mourokh, and Nori proposed a nanorotor driven by proton tunneling to model
and study the dynamics of biomotors36. A different approach emerged in 2012, when
Croy and Eisfeld aimed at studying the general dynamics of a simple nanorotor driven
by single-electron tunneling37. Their rotor, which is sketched in Fig. 3.2, is composed
of two electronic islands attached to a support shaft via rigid insulating arms. The
stator part of their setup is the same as in the electron shuttle from Gorelik et al.29,30.
Three dynamical regimes were identified in the device from Croy et al. (two of them
are sketched in Fig. 3.3): (i) a standstill regime, (ii) an oscillatory regime, and (iii) a
rotatory regime. In (i) the rotor stays still vertically, and this situation is identical
to a fixed island tunnel-coupled to two flanking leads. (ii) is somewhat similar to the
shuttling regime found in Refs. [29] and [30] — but not identical. While the electron
shuttle from Gorelik et al. has a well-defined mechanical frequency, the frequency in (ii)
was found to get smaller as one increases the bias voltage across the system. As a result,
the conductance decreases in response to a bias increase. In (iii) positive differential
conductance was found and the device can be used as a motor. For the parameter

∗With “electronic island” we mean a physical system which has a charged state in which the excess
charge is well localized in space.
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Figure 3.2: Sketch of the setup from Croy and Eisfeld37 and its main parts. The rotor is
composed of two electronic islands A and B connected to a support shaft via insulating rigid
arms of length `. An uniform electrostatic field E permeates the region occupied by the rotor.
The leads are biased at chemical potentials µL(R).

set explored in Ref. [37] the system’s dynamics depend approximately on just two
quantities: the ratio of the driving strength to the viscosity and the tunneling length.
Exploiting the sensitive dependence of the current on that ratio, one can employ the
system to sense viscosity variations in the rotor’s medium by tuning the voltage such
as to keep a constant current.
These studies did not touch many questions, and the following have motivated

the work presented in this chapter: (a) systems described by nonlinear dynamical
equations, of which the rotor is an instance, may present chaos in some region of the
parameter space. Is it also possible to have chaotic dynamics in a charge-tunneling-
driven rotor? If yes, do these dynamics enable some new functionality? (b) Although
in a “classical picture” the dynamics of the rotor are inherently stochastic (due to
the charge fluctuations on the islands), it is often useful to have an approximate set
of deterministic equations of motion for physical understanding. This is exemplified
by37, where Croy et al. explained different current and rotational regimes using the
corresponding deterministic steady-state trajectories in phase space. However, it is
important to know if, and in which parameter regions these deterministic equations
agree (at least) qualitatively with approaches that take into account charge fluctuations.
(c) Given the interesting phenomenology shown by the deterministic set of equations
introduced in Ref. [37], it would be interesting to obtain a limit in which these equations
are exact. (d) The experimental realizability of parameter regions of interest can just be
fully discussed based on a specific experimental setup. Therefore, it would be desirable
to know whether one can propose a setup with which these regions are accessible. (e)
In the context of rotary motors it is often necessary/useful to have control over the
direction of rotation. This can be achieved e.g. by picking an initial condition that leads
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Figure 3.3: Sketch of the (idealized) rotatory and oscillatory dynamics. (a) and (b) Sketch
of respectively clockwise and counterclockwise rotatory dynamics (half cycle). (c) Sketch of
the oscillatory dynamics (one cycle). The island labels (e.g. 1A) indicate respectively the
time ordering and the electronic island that is being represented. For the sake of clarity, we
represent just the island that is charged at a given moment in time (and the ones involved in
the tunneling events). At time 1 the island A gets charged and the island B gets discharged.
From times 2 to 4 A (B) approaches the right (left) lead. At time 5 A gets discharged and
B gets charged. From times 6 to 8 B (A) approaches the right (left) lead. At time 9 B gets
discharged and A gets charged again, and the cycle is closed.

to the desired direction. However, the experimental preparation of a specific initial
condition can be difficult, imprecise or even inconvenient, depending on the system
scale, suppression of noise-sources, etc. Moreover, fabrication imperfections can also
lead to uncertainty in the direction of rotation. Therefore, it is desirable to somehow
introduce a preferable sense of rotation such that at least most of, and ideally all, initial
conditions rotate in the same sense ∗ . These questions will be addressed in this chapter.

The chapter is organized as follows: in Sec. 3.1 we use two different sets of equations
of motion for the rotor: the (i) “mean-field” equations, where the charge fluctuations
are neglected; and the (ii) “stochastic” equations, where the charge fluctuations are fully
taken into account. The equations (i) were already studied by Croy et al. in Ref. [37]
and we present some of their results. We also show new results using (i), in particular
that a new dynamical regime resembling chaos emerges if one considers larger damping
than in Ref. [37] (thereby addressing (a)). Moreover, we compare results obtained
through equations (i) and (ii) in different parameter regions, thereby addressing (b).
We will show that the agreement between the results obtained via (i) and (ii) can be
very good or inexistent depending on the damping. In Sec. 3.2 we will address (c) by
deriving (i) from the established theory of single-electron tunneling. We also derive (ii).
∗Here we mean sense of rotation in time average: for a specific initial condition the sense may be
inverted from time to time. However, considering times long enough the rotor performs more
rotations in one sense than in the other.
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The set of equations (i) will be shown to be exactly valid in the limit where the product
between the electronic island’s capacitance times the bias voltage is much larger than
the elementary charge. The question (d) will be addressed in Sec. 3.3, where we propose
experimental realizations for the models (from Sec. 3.2) leading to (i) and (ii). We
also discuss the assumptions made in Sec. 3.2 and the difficulties in accessing some
parameter regions based on those proposals. In Sec. 3.4 we show that by changing the
rotor’s geometry it is possible to introduce a preferred direction of rotation in both
models of Sec. 3.2, this is to address (e). The conclusions of each section are given
within that section.

3.1 The dynamics of the mean-field and stochastic
equations of motion

In this section we “showcase” the dynamics of the mean-field and stochastic equations
of motion of the rotor: in Sec. 3.1.1 we present the mean-field equations and discuss the
main results obtained by Croy et al. in Ref. [37] in other parameter regions. In particular,
we extend their conclusions to values of damping two orders of magnitude larger than
in Ref. [37]. Due to the symmetry of the rotor considered here, the rotatory solutions of
the mean-field equations exist in pairs composed of a clockwise and a counterclockwise
solution. Different initial conditions may therefore lead to different senses of rotation,
and this is discussed in Sec. 3.1.2. We will come back to this discussion later on in
Sec. 3.4, where we will break the rotor symmetry to introduce a preferred sense of
rotation. In Sec. 3.1.3 we show that a new dynamical regime resembling chaos emerges
for larger damping than considered in Ref. [37]. In Sec. 3.1.4 we present the stochastic
equations and compare the results obtained using them to those results shown in
Sec. 3.1.1 and Sec. 3.1.3. We will see that the results stemming from stochastic and
mean-field equations can strongly disagree, specially at large values of damping.

The dynamics shown here have motivated us to derive the mean-field and stochastic
equations using the “orthodox” theory of single-electron tunneling (Sec. 3.2) and propose
experimental setups which can be described by them (Sec. 3.3).

3.1.1 The dynamics of the mean-field equations revisited
A sketch of the rotor and its main parts can be seen in Fig. 3.2. The rotor is composed
of two electronic islands A and B connected to a support shaft via insulating rigid
arms of length ` (contrastingly, in Ref. [37] ` is the full rotor’s length). The left/right
lead (L/R) is biased to a chemical potential µL(R). The chemical potential difference
(or, equivalently, the bias voltage ∆VLR = (µR − µL) /(−e), where e is the [positive]
elementary charge) gives rise to a an uniform electrostatic field E permeating the region
occupied by the rotor. The rotor is also coupled to some external degrees of freedom
which damp the rotational dynamics.

The motion of the rotor is characterized by the angle θ and the corresponding moment
of inertia I. The electrons can tunnel between the leads and the electronic islands.
An exponential dependence of the tunneling amplitudes on the lead-island distance
is assumed. For example, the tunneling amplitude from the left contact to island A
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is TL,A ∝ exp (−∆xL,A/λL,A), where ∆xL,A is the distance between the left contact
and island A, and λL,A is the tunneling length. Analogous expressions are used for
the remaining tunneling amplitudes. We express the (inverse) tunneling length by the
dimensionless parameter

ξL(R),A(B) = `

λL(R),A(B)
, (3.1)

which from now on we refer to as inverse tunneling length. The islands are considered
to have very small capacitances, which implies that their charging is determined by
the Coulomb-blockade effect. The Coulomb blockade in this system is the suppression
of the lead-island tunneling current when the charge in the island is above a certain
threshold. Here, it is further assumed that this threshold is a single electron, such that
the island can be either empty or charged with −e. The electrons are considered to be
transferred sequentially and the tunneling rates W are taken from the orthodox theory
of Coulomb blockade59:

WL,A(B)
(
θA(B)

)
= ΓL,A(B)e

−ξL,A(B) cos θA(B) , (3.2)

WR,A(B)
(
θA(B)

)
= ΓR,A(B)e

ξR,A(B) cos θA(B) , (3.3)

where, for example, ΓL,A is defined as the tunneling rate from L to island A when the
rotor is upright (θ = π/2). θA = θ and θB = θ + π. By means of a large-bias limit
assumption37 the tunneling occurs only in one direction: from the left contact to the
islands and from the islands to the right contact.
In the mean-field equations of motion just the average charge is taken into account.

Denoting the electronic population of island A (B) by PA(B) one can write the average
charge of the islands as QA(B) = −ePA(B), where PA(B) varies continuously between
0 and 1. The time evolution of the electronic populations, which is governed by the
tunneling from L and to R, is given by the following rate equation

d
dtPA(B) = WL,A(B)

(
θA(B)

) (
1− PA(B)

)
−WR,A(B)

(
θA(B)

)
PA(B). (3.4)

The first term on the right-hand side describes tunneling from the left lead onto island
A (B) and the second term is responsible for tunneling from the island to the right
lead. When the island A (B) possesses a charge QA(B), it experiences a force −EQA(B)̂ı,
where E is the magnitude of the electrostatic field E and ı̂ is a unit vector (see the inset
in Fig. 3.2). Then, in the mean-field description introduced above, the corresponding
torque acting on the rotor is given by MA(B) = −eEPA(B)` sin θA(B). We will consider
a symmetric setup: ΓL(R),A(B) = Γ and ξL(R),A(B) = ξ (for this reason, we will denote
the tunneling rates WL(R),A(B) simply as WL(R)). The unique Γ can then be used to
introduce a dimensionless time,

τ = Γt, (3.5)
and a dimensionless driving strength,

η0 = eE`

IΓ2 . (3.6)

Considering the dimensionless angular momentum

Λ = L

IΓ , (3.7)
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Table 3.1: Dimensionless quantities used within Sec. 3.1 and their definitions.

Quantity Symbol Formula

Time τ Γt

Charge (population) PA(B) −QA(B)/e

Charge (population) difference ∆P PA − PB

Charging rate wL(R)
(
θA(B)

)
WL(R)

(
θA(B)

)
/Γ

Angular momentum Λ L/ΓI

Driving strength η0 ` [eE/Γ2I]

Viscosity parameter γ γ̃/Γ

the mean-field equation of motion for the angle is
d
dτ θ = Λ, (3.8)

and for the angular momentum,
d
dτ Λ = −η0 sin θ∆P − γΛ, (3.9)

where the population difference ∆P = PA − PB and the coupling to the environmental
degrees of freedom was accounted for through the phenomenological damping term
−γΛ, with γ being the dimensionless rotational viscosity (which we will simply refer to
as “viscosity” within this section). Finally, the population difference dynamics follow
the equation of motion

d
dτ∆P = −2 sinh (ξ cos θ)− 2 cosh (ξ cos θ) ∆P. (3.10)

A definition of the dimensionless quantities used within Sec. 3.1 is given in Tab. 3.1.

3.1.1.1 Quantities of interest

Later on, we will scan over parameters like the η0 and initial conditions, and it will
not be practical to look at every individual trajectory in detail. Therefore, we define
some “quantities of interest”, which are time-averaged scalars that can objectively give
information over the system dynamics. The same strategy was used in Ref. [37], where
the authors employed time averages of the angular momentum and of the current.
Following their definition, the time-averaged angular momentum is

〈Λ〉 = 1
T − τtran

∫ T
τtran

Λ (τ) dτ, (3.11)
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Figure 3.4: Phase portrait of the steady-state dynamics and the time dependence of Λ for for
all types of dynamical regimes. The different regimes are assessed by changing the values of η0.
Note that for every rotatory attractor represented by a curve Λ (θ) in this figure there is another
one −Λ (θ) which is obtained e.g. through the initial condition (θ0,Λ0,∆q) = (−0.4, 0, 0). The
red-shadowed portions of the figures (b), (c), and (d) correspond to the transient dynamics.

where τtran is a typical transient time ∗ and T is sufficiently large to make 〈Λ〉 reach its
stationary value (the same will apply to the time-averaged quantities we will define in
the following). The dimensionless time-averaged current is

〈J 〉 = 1
T − τtran

∫ T
τtran

[wR(θ (τ))PA (τ) + wR(θ (τ) + π)PB (τ)]dτ, (3.12)

where we have used the dimensionless rates (see Tab. 3.1)

wL(R)
(
θA(B)

)
=
WL(R)

(
θA(B)

)
Γ . (3.13)

Note that one also could define the current using the the rates of tunneling from the
left lead to the islands as well:

〈J 〉 = 1
T − τtran

∫ T
τtran

[wL(θ (τ)) (1− PA (τ)) + wL(θ (τ) + π) (1− PB (τ))]dτ. (3.14)

3.1.1.2 Dynamics

Eqs. (3.8)-(3.10) define a dissipative dynamical system. Their trajectories approach an
invariant set in phase space † which is called “attractor”120. The type of asymptotic
∗In deterministic systems it is well known that a dissipative system needs a certain time τtran
(depending on the initial conditions) to reach with a certain precision an asymptotic manifold in
phase space called attractor120. For systems described by stochastic differential equations one still
has the concept of transient-time, although the concept of attractors as asymptotic manifolds in
phase space becomes meaningless121. This will be important later on when we describe the rotor
dynamics using stochastic equations of motion.

†The space formed by the dynamical variables Λ, θ, and ∆P .
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Figure 3.5: Time averages of the current and of the angular momentum as a function of
η0/γ. Time-averaged current 〈J 〉 and of the absolute value of the time-averaged angular
momentum are plotted respectively in the first and second rows. In the first column we plot
a curve for γ = 1 (ξ = 2) alone, in the second we add γ = 0.1 (ξ = 2), and in the third we
plot curves for ξ = 4 (for γ = 0.1 and γ = 1). In (a) the standstill, oscillatory, and rotatory
regimes are shadowed respectively in red, blue and green.

Figure 3.6: Period of the steady-state oscillations/rotations as a function of η0/γ. For the
standstill regime we plot the period as zero. In (a) we plot a curve for γ = 1 (ξ = 2) alone, in
(b) we add γ = 0.1 (ξ = 2), and in (c) we plot curves for ξ = 4 (for γ = 0.1 and γ = 1). In (a)
the standstill, oscillatory, and rotatory regimes are shadowed respectively in red, blue and
green.

dynamics of this system depends, in general, on all system parameters, i.e. upon the
inverse tunneling length ξ, the driving η0, and the viscosity γ. Moreover, it can also
depend on the initial conditions. In Ref. [37] a region of the parameter space was
analysed, where the dependence on η0 and γ can be approximately simplified to a
dependence on the ratio η0/γ only. Upon increasing that ratio gradually from zero, the
asymptotic dynamics goes from standstill to oscillatory and finally to rotatory in this
order. The different types of dynamics can be seen in the steady-state phase portrait in
from Fig. 3.4, where γ = 1, ξ = 2, and η0 is varied (different curves). Note that in Ref. [
37] γ = 0.01, i.e. 100 times smaller than the viscosity considered here. Nevertheless,
the same dynamics are observed.

Fig. 3.4 shows three types of steady-state dynamics: (b) standstill, (c) oscillatory, and
(d) rotatory trajectories. In (a), the attractors for various values of η0 (different colors)
are projected upon the (θ,Λ) plane of the phase space. Different initial conditions lead
to the same attractor, apart from the rotatory case where a clockwise-rotating and a
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counterclockwise-rotating attractor coexist in phase space. This coexistence will be
discussed later on in Sec. 3.1.2. The transient dynamics appear red-shadowed in (b),
(c), and (d), where the time dependence of the angular momentum can be seen.

For η0 small enough, the stationary solution is given by the single (blue) point in
Fig. 3.4 (a), located at θ = π/2 and Λ = 0. Electrons tunnel with the constant rate Γ
to/from the islands from/to the leads and the charges stay still at PA = PB = 0.5. The
charge current is therefore 〈J 〉 = 1 throughout the parameter region correspondent to
the standstill regime,

J = wR(θ)PA + wR(θ + π)PB = 1. (3.15)
This can be seen in Fig. 3.5 (a), where we plot the current as a function of the ratio
η0/γ for γ = 1 (standstill regime is red-shadowed).
Upon increasing η0, the first transition encountered is to a regime where the rotor

oscillates around the position θ = π/2. The trajectories in this regime are concentric
closed curves (centered at (θ,Λ) = (π/2, 0)) in the phase space from Fig. 3.4 (a) (see
also (c) for the time dependence of Λ). This oscillatory regime resembles the self-excited
shuttling from shuttle devices29,30. However, in stark contrast to the conventional
charge shuttle, the period of oscillation for the rotor increases with increasing driving37.
This is shown in Fig. 3.6, where the period of the rotatory and oscillatory attractors is
shown as a function of the ratio η0/γ. In the oscillatory regime, the period of oscillation
spikes at a certain value of η0/γ which depends on γ and ξ. As explained bellow, this
point marks the transition to the rotatory regime.
Upon increasing η0/γ within the oscillatory regime, the period of oscillation gets

larger because the amplitude increases and thereby the rotor spends more time on
the turning points θ = 0 and θ = π. For these points the electrostatic torque is null,
and thereby the rotation is very slow. This also explains the negative differential
conductance ∗ region seen throughout the oscillatory regime in the first row of Fig. 3.5,
since the orientations θ = 0 and θ = π carry the smallest current. The limits of the
oscillatory regime and the corresponding steepness of the current drop in the η0/γ axis
depend on γ and ξ, as one can see in Fig. 3.5 (b) and (c).
For even larger values of η0 rotational motion sets in (e.g. see the purple curve for

η0/γ = 10 in Fig. 3.4). The rotatory regime is characterized by a nonzero value of |〈Λ〉|:
in all other dynamical regimes 〈Λ〉 = 0. This can be seen in in Fig. 3.5 (d), (e), and (f).
We have taken the absolute value because different initial conditions lead to different
stationary senses in the rotatory regime, as we can see in Fig. 3.7 (this figure will be
discussed in Sec. 3.1.2). Deep in the rotatory regime, the dependence of the angular
momentum on η0/γ was estimated analytically in Ref. [37] to be

Λstat ≈
√
c (ξ) η0

γ
− d (ξ), (3.16)

with c = 2I1 (ξ), where In is the nth-order modified Bessel function of the first kind.
The second term is more difficult to evaluate37, but it also gets less and less important
as η0/γ gets larger. We stress that the asymptotic behavior of 〈Λ〉 just depends on η0/γ
and ξ (and not on η0 and γ separately).
∗“Negative differential conductance” is defined here as the decrease of current in response to an
increase of the driving η0 — which in Ref. [37] is proportional to the voltage drop between the
leads.
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Figure 3.7: Time averaged angular momentum (color) 〈Λ〉 as a function of the initial condi-
tions (Λ0, θ0) for PA(τ=0) = PB(τ=0) = 0, ξ = 2.0, γ = 1 and (a) η0/γ = 10.0 (b) η0/γ = 5.0.
Red stands for clockwise (negative 〈Λ〉) and blue for counter-clockwise (positive 〈Λ〉) rotation
direction. These results were obtained using the mean-field equations Eqs. (3.8)-(3.10).

The time-averaged current is independent of the initial condition and, in particular,
of the direction of rotation in the rotatory regime. Numerical results are shown in
Fig. 3.5 (a), (b), and (c). In contrast to the oscillatory regime, the rotatory regime
shows solely a positive differential conductance. In the limit of very large ratio η0/γ,
the stationary current reaches a constant value, which was determined in Ref. [37] to be

〈J 〉stat = I0 (ξ) . (3.17)

We stress that the asymptotic current from Eq. (3.17) depends just on ξ, and, particularly,
gets larger for larger ξ. Analogously, by comparing Fig. 3.5 (e) to (f) we observe that
all structures in these figures get larger in the y axis for larger ξ (notice the different
scale on the y axis).
Now we turn our attention to the dependence of the rotational direction upon the

initial conditions in the rotatory regime. As we have already mentioned, clockwise and
counterclockwise rotatory attractors always coexist, and now we want to determine the
sets of initial conditions converging to a single attractor. These sets are called basins of
attraction.

3.1.2 Basins of attraction in the case of a symmetric rotor
The rotor model discussed in Sec. 3.1.1 is a “symmetric rotor”, in that to every initial
condition leading to a trajectory with Λ(τ) there is another one leading to −Λ(τ). The
most striking consequence of this symmetry is that every clockwise-rotating attractor
coexists with a counterclockwise-rotating one. Although the properties of the initial
condition space were not investigated in Ref. [37], the authors mentioned the bistability
in that space when presenting the curves of 〈Λ〉 as a function of η0/γ (this bistability
prompted them to show |〈Λ〉| instead of 〈Λ〉). Here we determine the origins of this
symmetry as an invariance in the equations of motion Eqs. (3.8)-(3.10). Moreover, we
analyze the properties of the basins of attraction for opposite senses of rotation in the
(θ0,Λ0) projection of the initial condition space. Later on, in Sec. 3.4, we will break
the aforementioned symmetry to avoid needing to have information about the initial
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condition in order to choose a certain sense of rotation. This may be desirable in the
context of nanomotors.

Invariances of the equations of motion Eqs. (3.8)-(3.10)

Solutions of Eqs. (3.8)-(3.10) possess the following invariance: substituting Λ̃ = −Λ
and θ̃ = −θ simultaneously in these equations, i.e. changing the direction of rotation
and reflecting around θ = 0 (θ = π), one obtains the same equation. The same is
achieved by (ii) substituting Λ̃ = −Λ, θ̃ = −θ + π, and ∆̃q = −∆q, i.e. changing the
direction of rotation, the charge difference, and reflecting around θ = π/2 (θ = 3π/2).
Due to these invariances, for every counterclockwise (positive Λ) rotating solution with
initial condition (Λ0, θ0) there is another clockwise (negative Λ) rotating one with initial
condition (−Λ0,−θ0). This invariance will be of fundamental importance in Sec. 3.4
when we consider the time-averaged angular momentum 〈Λ〉, averaged over initial angles
θ0 for a rotor initially discharged (PA(τ=0) = PB(τ=0) = 0) and at rest (Λ0 = 0)

〈Λ〉 = 1
2π

∫ 2π

0
dθ0〈Λ〉. (3.18)

This quantity becomes exactly zero in the presence of this invariance. Our objective in
Sec. 3.4 will be to break this invariance such that 〈Λ〉 6= 0, which indicates that the
rotor possesses a preferred direction of rotation.

Numerical calculation of the basins of attraction in the rotatory regime

Fig. 3.7 is an example on how one can use the time-averaged angular momentum
defined by Eq. (3.11) to obtain information about the dynamics without looking at
the trajectories. Using 〈Λ〉, we determine the basins of attraction of the two rotatory
attractors corresponding to γ = 1, ξ = 2, (a) η0 = 5 and (b) η0 = 10. Red stands for
clockwise (negative 〈Λ〉) and blue for counterclockwise (positive 〈Λ〉) rotation direction.
Throughout the initial-condition space, for both negative and positive 〈Λ〉, one has the
same |〈Λ〉|. Note that in Fig. 3.4 (a), for which γ = 1 and ξ = 2, just one rotatory
attractor per value of η0 appears because we have considered a single initial condition.
In both Fig. 3.7 (a) and (b) one observes intertwined patterns spiraling towards

(θ0 = π/2,Λ0 = 0) and (θ0 = 3π/2,Λ0 = 0). Those points correspond to a standstill
situation (Λ = 0) with the rotor in a vertical orientation. Both locations are fixed
points in phase space: Once the system reaches those states, it stays there forever.
The spiraling pattern around those fixed points can be understood as follows: the
rotor transiently oscillates and as it swings it gains energy until it reaches the rotatory
steady-state. In each half oscillation the rotor has the chance to set into the rotatory
steady-state with a certain rotation direction. If it does not have enough energy, it
performs another half oscillation gaining more energy and having the opportunity to
start rotating in the opposite direction. This process is repeated until the stationary
rotatory state is reached, whose direction depends on the initial condition of the rotor.
For initial conditions closer to the fixed points a larger number of oscillations is required
to reach the steady-state ∗ , and small changes in the initial conditions can lead to a
∗In the vicinity of those fixed points a small charge imbalance builds up, leading to a torque that
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Figure 3.8: Phase portrait of the steady-state dynamics featuring the new dynamical regime.
To generate these plots, we considered an initially discharged rotor and (θ0,Λ0) = (0.4, 0).
Curves of different colors were calculated with a different value of η0. We have plotted the
gray attractor (from the new regime found in this thesis) in an exceptionally thin line for
better visualization of the attractor’s fine structure.

different direction of rotation. This fact causes the complex spiraling pattern seen in
Fig. 3.7. As one decreases the driving strength η0 the rotor gains energy more slowly,
and therefore more and more oscillations are required in order to reach the rotatory
regime. The larger number of oscillations leads to finer spiraling patterns, as seen in
Fig. 3.7 (b) compared to (a).

In Fig. 3.7 one can also see a consequence of the invariance discussed above, namely
an anti-symmetry around (θ0,Λ0) = (0, 0) (also θ0 = π) and (θ0,Λ0) = (π/2, 0) (also
θ0 = 3π/2). That anti-symmetry implies in particular that 〈Λ〉 = 0. In Sec. 3.4 we will
show how one can induce a preferred rotation direction, i.e. how to make 〈Λ〉 6= 0, even
in the case when the angular momentum is initially zero.

3.1.3 A new dynamical regime
Considering the results obtained in Ref. [37], for γ = 0.01 (ξ = 2), and the results
we have shown in Sec. 3.1.1, for γ = 0.1 and γ = 1, the dynamics have not changed
qualitatively over 2 decades of the viscosity parameter: no new dynamical regime has
appeared and the curves of 〈J 〉 and 〈Λ〉 as a function of η0/γ are qualitatively the
same. Notice that none of the dynamical regimes shown until now are chaotic.
A new, apparently chaotic ∗ regime emerges at γ = 10 (ξ = 2). A typical attractor

from this regime can be seen in the steady-state phase portrait from Fig. 3.8 (gray
curve), alongside standstill, oscillatory and rotatory attractors. Surprisingly, this new
regime appears as one increases the driving further away of the rotatory regime.

drives an oscillation. As the time goes on the oscillation is amplified until the rotor starts to rotate.
Notice that the closer one starts from the referred points the smaller the first oscillation amplitude
is, and therefore one needs more oscillations until the rotor starts rotating.

∗We did not perform any formal assessment of the chaoticity of the attractors within this regime
(e.g. calculation of the Lyapunov exponents120).
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Figure 3.9: Time averages of (a) the angular momentum and of (b) the current as a function
of η0/γ featuring the new dynamical regime found in this thesis. In (b) the standstill,
oscillatory, rotatory regimes are shadowed respectively in red, blue and green. The new regime
appears yellow-shadowed.

As one can guess from Fig. 3.8, the attractor depicted in gray has a very small
(possibly zero) value of 〈Λ〉. The time averaged angular momentum as a function of
η0/γ can be seen in Fig. 3.9 (a). The transition from the rotatory to the new regime
found here is characterized by a sudden decrease of 〈Λ〉 ∗ . This transition can also be
seen in Fig. 3.9 (b), where we plot the current 〈J 〉 as a function of η0/γ: when the
dynamics transition to this new regime (yellow-shadowed) a discontinuity in the current
is observed.

3.1.4 Stochastic equations of motion
In the model considered in Secs. 3.1.1-3.1.3 the islands have two charging states: they
are either discharged or charged with a single excess electron. In such a situation, it is
not clear whether/when one can neglect the charge fluctuations on the islands. However
the mean-field approach presented in Sec. 3.1.1 was used throughout Secs. 3.1.1-3.1.3,
and it neglects charge fluctuations. In this section we introduce a new set of equations
which fully takes into account charge fluctuations. Similar approaches were used in
Refs. [36] and [38] for rotors driven by charge tunneling, and in many works for the
electron shuttle (e.g. in Refs. [29] and [30]). We compare then the results for the
time averages of the current and of the angular momentum obtained with this set of
(stochastic) equations to the ones obtained with the mean-field equations (Secs. 3.1.1.2
and 3.1.3).
We start by rewriting Eq. (3.9) as

d
dτ Λ = −η0 sin θ (PA − PB)− γΛ, (3.19)

where PA(B) are the electronic populations on the islands A (B), but now they can
assume just the discrete values 0 (discharged) or 1 (charged with a single excess electron).
The electronic populations are now stochastic quantities, and the transition rates are
given by the dimensionless tunneling rates defined by Eq. (3.13). In other words, the
∗While we could not prove that 〈Λ〉 is exactly zero, it is always very small for all parameter
combinations we evaluated numerically.
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Figure 3.10: Time averages of (first row) the angular momentum and of (second row) the
angular momentum squared as a function of η0/γ for mean-field (red circles) and stochastic
(blue squares) equations of motion. For the stochastic equations we additionally average both
quantities over 1000 realizations, limited the time of integration to T = 200 and discarded a
transient of τtran = 100.

probability of transition from PA(B) = 0 to PA(B) = 1 within the time infinitesimal dτ is

P+
A(B) = wL

(
θA(B)

)
dτ, (3.20)

and from PA(B) = 1 to PA(B) = 0 is

P−A(B) = wR
(
θA(B)

)
dτ. (3.21)

Eq. (3.8) remains the same
d
dτ θ = Λ. (3.22)

Figure 3.11: Time-averaged current as a function of η0/γ for mean-field (red circles) and
stochastic (blue squares) equations of motion. For the stochastic equations we additionally
average the current over 1000 realizations.
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The stochastic equations defined by Eqs. (3.19)-(3.22) are equivalent to a set of de-
terministic equations for the probability density in phase space (θ,Λ) (see Ref. [122],
equation (3.4.22)). Herewith, we refer to these equations as “Fokker-Planck equations”
∗ . They are given by

d
dτ P00 (τ, θ,Λ) =

[(
−Λ ∂

∂θ
− wL (θA)− wL (θB)

)
+ B(Λ)

]
P00+

wR (θA)P01 + wR (θB)P10, (3.23)
d
dτ P01 (τ, θ,Λ) =

[(
−Λ ∂

∂θ
+ η0 sin θ ∂

∂Λ − wR (θA)− wL (θB)
)

+ B(Λ)
]
P01+

wL (θA)P00 + wR (θB)P11, (3.24)
d
dτ P10 (τ, θ,Λ) =

[(
−Λ ∂

∂θ
− η0 sin θ ∂

∂Λ − wR (θB)− wL (θA)
)

+ B(Λ)
]
P10+

wR (θA)P11 + wL (θB)P00, (3.25)
d
dτ P11 (τ, θ,Λ) =

[(
−Λ ∂

∂θ
− wR (θA)− wR (θB)

)
+ B(Λ)

]
P11+

wL (θA)P10 + wL (θB)P01, (3.26)

where Pa,b (τ, θ,Λ) is the probability density in the phase space (θ,Λ) for having PA = a
and PB = b at the time τ , with a, b ∈ {0, 1}; and the operator

B(Λ) = γ
∂

∂ΛΛ = γ

(
1 + Λ ∂

∂Λ

)
. (3.27)

3.1.4.1 Time averages of the current and of the angular momentum

In the first row of Fig. 3.10 we plot the absolute value of the time-averaged angular
momentum as a function of η0/γ, obtained with the mean-field (red circles) and
stochastic (blue squares) equations of motion. In the latter case, we additionally average
〈Λ〉 over 1000 realizations. Notice that in the stochastic case 〈Λ〉 will always vanish
for times long enough because fluctuations can always randomly sum up to invert the
direction of rotation. In our stochastic simulations, we limited the time of integration
to T = 200 and discarded a transient of τtran = 100.
In the second row of Fig. 3.10 we compare

√
〈Λ2〉 (stochastic equations) to |〈Λ〉|

(mean-field equations). Since 〈Λ〉 vanishes in the oscillatory regime and in the new
regime found in this thesis, comparison makes sense only in the rotatory regime. For
(d) γ = 0.1 the results obtained via the mean-field and the stochastic equations agree
very well, but they disagree more and more as we increase the viscosity, first to (e)
γ = 1 and then to (f) γ = 10.
A similar trend is observed for the time-averaged current, which can be seen in

Fig. 3.11. For (a) γ = 0.1 the only strong difference between the mean-field and
the stochastic case is that the latter does not feature a standstill regime (where the
∗The equation (3.4.22) is called “differential Chapman-Kolmogorov equation” in Ref. [122], and it
is named “Fokker-Planck equation” when no jump processes are involved (in our case, electron
tunnelings).
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time-averaged current is constantly equal to 1). All the values agree very well, specially
in the rotatory regime. However, for (b) γ = 1 the region of negative differential
conductance is shifted to smaller values of η0/γ, and the values in the rotatory regime
do not agree so well as in (a). In (c) γ = 10 the curves disagree both qualitatively and
quantitatively. Remarkably, the discontinuity which characterizes the transition to the
new regime we report in this thesis is completely erased by the charge fluctuations.

3.1.5 Conclusions
In this section we have showcased the dynamics of the mean-field and stochastic models.
The mean-field dynamics were already studied in detail in Ref. [37], where Croy et
al. identified three regimes: the standstill, the oscillatory, and the rotatory. They
also suggested possible applications of these dynamics, e.g. for sensing and electron
pumping37.
Our results show that new phenomena can arise for stronger dissipation in the

mean-field equations. In particular, we showed in Sec. 3.1.3 that a new, chaotic-like
dynamical regime emerges. The transition from the rotatory to this new regime is
characterized by a discontinuous change in the time averages of the current and of
the angular momentum. This strong response of the system to a minute variation of
the parameters could be used e.g. to realize a nanoswitch, if there is a system in the
nanoscale which is well described by the mean-field equations of motion within the
parameter region where that new regime appears.

The comparison between mean-field and stochastic equations of motion we presented
in Sec. 3.1.4 shows that their dynamics can differ completely, specially for larger values
of viscosity. In special, our results seem to indicate that, in a system driven by a small
number of electrons, the charge fluctuations erase the aforementioned discontinuity,
thereby frustrating the chances of realizing the nanoswitch.
Because of the discrepancy between the mean-field and stochastic results, it is

important to know which assumptions are made when using which model. Therefore, in
the next section we derive the mean-field and stochastic equations from the “orthodox”
theory of single-electron tunneling.

3.2 A model of the nanoelectromechanical rotor based
on the “orthodox” theory of single-electron
tunneling

In the last section we dynamics of the mean-field and stochastic models. These models
show interesting dynamics which can be used for many purposes: e.g. the transition
from the rotatory regime to the chaotic-like regime in the mean-field model can be
used to realize a nanoswitch. However, the mean-field and stochastic results disagree in
certain parameter regimes (specially for large damping). Therefore, it is desirable to
know which assumptions are made when using which model. With that goal in mind,
in this section we derive these models from the “orthodox” theory of single electron
tunneling developed by Averin and Likharev in 198559.
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Figure 3.12: Band-edge-profile models of the double tunnel junction formed by an island
between two leads. Note that the island is oversized for clarity. On the leads: red stands for
occupied states and white for vacant states. (a) A continuum of states in the island participates
in the electronic transport (blue). The gap (dark gray) corresponds to the charging energy.
(b) A single state in the island (of energy εA(B)) participates in the electronic transport (blue
line).

We consider the same system presented in Sec. 3.1.1, except by the fact that here the
islands A and B can bear more than a single excess electron. Following the orthodox
theory of single-electron tunneling, which is presented in Sec. 3.2.1, we derive expressions
for the the rates of lead-island charge tunneling using golden-rule arguments. We obtain
these rates for the case of a continuous energy spectrum on the island in Sec. 3.2.1.1,
and for a single energy level on the island in Sec. 3.2.1.2. The mechanical equations of
the rotor are discussed in Sec. 3.2.2.

We specialize the tunneling rates obtained in Sec. 3.2.1 for the case where the islands
can be either discharged or charged with a single excess electron in Sec. 3.2.3. The
specialized rates are the same as the ones used in Sec. 3.1.4, and, together with the
mechanical equations discussed in Sec. 3.2.2 (at temperature T → 0), they lead to
stochastic equations of motion of the rotor. We also explore the opposite limit, where
the islands can bear a maximal excess charge much larger than the elementary charge
e in Sec. 3.2.4. This procedure leads to a deterministic set of equations of motion,
i.e. without charge fluctuations. If the “bias energy” (voltage times e) is large compared
to both thermal and “charging” (energy necessary to charge the island with one electron)
energies, these deterministic equations are the same as the mean-field equations.

3.2.1 Orthodox theory of single-electron tunneling for a single
island

The objective of this section is to obtain rates of tunneling between the contacts and a
single island. Our approach is to write down a Hamiltonian which contains the degrees
of freedom of a single island and of the contacts, with the mechanical degree of freedom
being included only parametrically. The degrees of freedom of the other island do not
enter that Hamiltonian because we regard no coupling between the islands. Using
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Switch

Figure 3.13: Circuit representation of the double tunnel junction formed by an island (A or
B) and the leads with the additional gate electrode, which will be introduced later on. Note
that this system is equivalent to a single-electron transistor123.

the coupling between the island and the leads, and with the aid of the golden rule of
quantum mechanics, we derive expressions for the tunneling rates.
In the nanoscale, electronic islands of smaller dimensions tend to feature energy

spectra whose discreteness needs to be taken into account; in contrast, larger islands,
possibly reaching the microscale (see the experimental proposal of Sec. 3.3.2), tend to
show continuous energy spectra in the scale of interest. Therefore, we focus on the two
extreme situations depicted respectively in Fig. 3.12 (a) and (b). In both cases the
island, together with the leads, can be seen as a double tunnel junction. The circuit
sketched in Fig. 3.13 is equivalent to this double tunnel junction if the switch is turned
off. Later on in this section, we will discuss the possibility of coupling a gate electrode
capacitively to the islands in order to overcome the Coulomb blockade of current in the
device we propose in Sec. 3.3.1 (switch turned on). The difference between Fig. 3.12
(a) and (b) is that in (a) the energy spectrum of the island is continuous while in (b)
there is just one energy level in the transport window. This will lead to a fundamental
difference when calculating the total tunneling rate through the junctions: in (a) it
varies linearly with the lead-island voltage drop VL(R) because the number of states
involved in the charge transport is proportional to VL(R); contrastingly, in (b) it is
insensitive to VL(R) because there is just one energy level involved in the transport
regardless of VL(R).
For both cases from Fig. 3.12, the Hamiltonian is124

H = Hisl +Htun +HL +HR +HC, (3.28)

where the island Hamiltonian Hisl = ∑
k,σ εkc

†
k,σck,σ describes noninteracting electrons

with wave vector k and spin σ; c(†)
k,σ is the annihilation (creation) operator for a mode

(k, σ). Similar expressions hold for the Hamiltonians HL(R) of the leads (with wave
vectors kL and kR). Note that since the islands A and B are identical, all the arguments
are valid for both of them and therefore we often drop the notation indicating the island
(A (B)). The Coulomb interaction is assumed to depend only on the charge on the
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island
HC = n̂2e2

2C , (3.29)

where n̂ = ∑
k,σ c

†
k,σck,σ is the number operator of excess electrons on the island,

and C = CL + CR where CL(R) is the capacitance of the left (right) tunnel junction.
Charge-transfer processes are described by the standard tunneling Hamiltonian124

Htun =
∑

k,kL,kR,σ

Mk,kLc
†
k,σckL,σ +Mk,kRc

†
k,σckR,σ + h.c., (3.30)

where Mf,i are the tunnel matrix elements from a state i to a state f . Since these
elements are overlap integrals of states in different electrodes (island/leads), they depend
on the position operator of the island (r̂): Mf,i = Mf,i (r̂).
We determine tunneling rates using golden-rule arguments124, which amounts to

energy conservation within the tunneling process. Tunneling can happen between a
lead and an island: island-island tunneling and lead-lead tunneling are neglected. The
tunneling rate from an initial state of energy εi within an island/lead to a final state of
energy εf within a lead/island is

Wi→f (∆F ) = 2π
~
|Mf,i|2 δ (εi − εf −∆F ) , (3.31)

where ∆F = Ff − Fi is the variation in the Helmholtz free energy of the system. The
Helmholtz free energy here is defined as the maximum useful work extractable from the
device by discharging the island, i.e. n→ 0, where n is the number of excess electrons
on the island ∗ . The total energy stored in the device is given by

Etot = Q2
L

2CL
+ Q2

R
2CR

+ S (n) = CLCR∆V 2
LR + n2e2

2C + S (n) , (3.32)

where QL(R) and CL(R) are respectively the stored charge and the capacitance of the
single junction formed by the island and the lead L (R) (see Fig. 3.13). S (n) is composed
by the Fermi and confinement energies, and they tend to become more important when
the dimensions of the island become smaller. The form of S (n) is not relevant in the
following. In Eq. (3.32) we have considered the following relations: Q = QL−QR = −en
(net charge in the island) † , ∆VLR = VL + VR, QL = CLVL, and QR = CRVR, where the
positive quantity VL (VR) is the voltage drop between L (R)and the island. All these
quantities are represented in Fig. 3.13.

Not all the total stored energy can be transformed into useful work: to discharge the
island one needs to “pay back” some of the work done by the power source in charging
the island. If nL electrons tunnel inside the island from the left lead, the power source
needs to replace these electrons in L. However, the charge variation in the island changes
the voltage drop between L and the island (VL), leading to a change of polarization

∗More precisely, if n > 0 it is the number of electrons on the island; if n < 0 then −n is the number
of holes on the island.

†We neglect any background charge since it can be suppressed in the device with the additional gate
electrode123.



3.2 A model of the nanoelectromechanical rotor based on the “orthodox” theory of
single-electron tunneling 47

charge in the left lead. We can write VL and VR noting that n = nL−nR (see Fig. 3.13):

VL = CR∆VLR − en
C

, (3.33)

VR = CL∆VLR + en

C
. (3.34)

So, the variation in polarization charge in the left lead due to the injection of nL
electrons in the island is ∆V CL = (enL/C)CL, and the total charge to be replaced
by the voltage source is −enL (1− CL/C) = −enLCR/C. Since the voltage in that
lead is −∆VLR, the work done by the power source is ∆VLRenLCR/C. Note that the
polarization charge also changes in the right lead, but the voltage there is 0 according
to the convention adopted here. Similar considerations allow us to calculate the work
done by power source when nR electrons leave the island: ∆VLRenRCL/C. The total
work done by the power source is therefore

Wvolt = ∆VLRe

C
(nLCR + nRCL) . (3.35)

Our definition of the Helmholtz energy is then

F = EC −Wvolt, (3.36)

where EC is the energy stored on the device due to the net charge in the island −en ∗ :

EC = Etot −
CLCR∆V 2

LR
2C = n2e2

2C + S (n) , (3.37)

i.e. the charging energy of an electrode of net charge −en and self capacitance C (plus
S (n)). Substituting Eqs. (3.35) and (3.37) into Eq. (3.36) yields

F (nL, nR) = n2e2 − 2e∆VLR (nLCR + nRCL)
2C + S (n) . (3.38)

We consider sequential tunneling, meaning that a single electron tunnels at a time.
Hence, just transitions n → n ± 1 are allowed and there are four possible tunneling
events, with the following variations in free energy:

∆F±L (n) = F (nL ± 1, nR)− F (nL, nR) = e

C

[
e

2 ± (en−∆VLRCR)
]

+ ∆S±L (n) ,
(3.39)

∆F±R (n) = F (nL, nR ± 1)− F (nL, nR) = e

C

[
e

2 ± (−en−∆VLRCL)
]

+ ∆S±R (n) ,
(3.40)

where

∆S+
L (n) = ∆S−R (n) = S (n+ 1)− S (n) , (3.41)

∆S+
R (n) = ∆S−L (n) = S (n− 1)− S (n) . (3.42)

∗In Ref. [123] the total energy stored in the device Etot is considered instead of EC. However, the
variation in free energy ∆F due to the change of the net charge in the island is the same.
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We will see from the expression of the tunneling rates that, for temperatures small
enough compared to the absolute value of the variations in free energy

∣∣∣∆F±L(R)

∣∣∣, the
only allowed transitions are those for which the variation in free energy is negative.
This defines the Coulomb blockade of current in this system. For certain devices, as
the one we will consider in Sec. 3.3.1, the capacitance of the islands may be very small,
and thereby the energy drop ∆VLReCL(R)/C alone may not be large enough to exceed
the single-electron charging energy Eel = e2/2C. As a result, the tunneling is halted
by the Coulomb blockade. To overcome the Coulomb blockade, we can consider the
addition of a gate electrode capacitively coupled to the island (switch turned on in
Fig. 3.13). In this situation the island, together with the leads and the gate, form
a single-electron transistor59,123,124. In practice, the variations in the Helmholtz free
energy for the tunneling processes from Eqs. (3.39)-(3.40) are altered, such that123

∆F±L = e

C

{
e

2 ± [en−∆VLR (CR + Cg)− VgCg]
}

+ ∆S±L (n) , (3.43)

∆F±R = e

C

{
e

2 ± [−en−∆VLR (CL + Cg) + VgCg]
}

+ ∆S±R (n) , (3.44)

where Vg and Cg are respectively the gate voltage and capacitance, and we redefine
C → CL + CR + Cg. From Eqs. (3.43) and (3.44) it is possible to see that one can use
the gate voltage to overcome the Coulomb blockade of current. There are infinitely
many windows of values of Vg for which this happens, one for each value of n59,123,124

e
(
n+ 1

2

)
−∆VLR (CR + Cg) + C∆S±L (n)

e

Cg
< Vg <

e
(
n+ 1

2

)
+ ∆VLR (CL + Cg)− C∆S±R (n+1)

e

Cg
.

(3.45)
With the help of Eqs. (3.43) and (3.44), one can see that the voltage window 3.45 is
equivalent to a free energy window of width

∆VLRe
(

1 + Cg

C

)
−
(
∆S±L (n) + ∆S±R (n)

)
.

Now we focus on the determination of the tunneling rates for the processes from
Eqs. (3.39) and (3.40) (Eqs. (3.43) and (3.44)). At this point, it is important whether
the island’s energy spectrum is continuous or discrete, and therefore we obtain the rates
for these two situations separately.

3.2.1.1 Tunneling rates for continuous energy spectrum on the island

Following the prescription of the orthodox theory of single electron tunneling59, we
write the total tunneling rate as

W (∆F ) = 2π
~
∑
i

∑
f

fi (εi) (1− ff (εf )) |Mf,i|2 δ (εi − εf −∆F ) , (3.46)

where fi(f)
(
εi(f)

)
is the Fermi-Dirac distribution (Fermi function), which gives the

occupation probability of the energy levels in both electrodes. The index “i” stands
for the “initial side” of the tunnel barrier, i.e. the electrode from which the tunneling
happens, while “f” stands for “final side” of the tunnel barrier, i.e. the electrode to
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which the tunneling occurs. Note that 1 − fi(f)
(
εi(f)

)
is therefore the probability of

finding an unoccupied energy level εi(f) on the electrode i (f). The Fermi function is
given by

fi(f)
(
εi(f)

)
= 1

1 + exp
(
εi(f)−µi(f)

kBT

) , (3.47)

where µi(f) is the chemical potential on the electrode i (f). The concept of density of states
D (ε) can be used to substitute the sums in Eq. (3.46) for integrals over energy, where
D (ε) dε is the number of states with energies lying between ε and ε+dε (not considering
any degeneracies). If the temperature is small enough, the main contribution of the
resulting integral from Eq. (3.46) comes from a narrow, almost rectangular tunneling
window (in energy), which is defined by the product fi (ε) (1− ff (ε− f)). We assume
moreover that the tunnel matrix elements Mf,i and the densities of states for the initial
and final sides of the barrier Di(f) (ε) do not appreciably depend on the energy (nor
momentum) within the this narrow window. Then, the delta function eliminates one of
the integrations in Eq. (3.46), such that

W (∆F ) = s
2π
~
|M |2DiDf

∫ ∞
−∞

dεfi (ε) (1− ff (ε−∆F )) . (3.48)

We have accounted for any kind of degeneracy on the island by multiplying the right-
hand side of Eq. (3.48) by s (the degeneracy on the leads are included on the density of
states).
Since the tunnel junction we are considering here has an Ohmic current-voltage

characteristic, which means that the current through the junction is proportional to the
applied bias voltage across the junction ∗ , the phenomenological quantity “tunneling
resistance” R can be introduced

R = ~
2πe2 |M |2DiDf

. (3.49)

We assume that the tunneling resistance depends exponentially on the lead-island
distance (i.e. on cos θ)

RL
(
θA(B)

)
= RL

0 e
ξ cos θA(B) , (3.50)

RR
(
θA(B)

)
= RR

0 e
−ξ cos θA(B) , (3.51)

where RL(R)
0 is the tunneling resistance for the upright configuration (θ = π/2), ξ = `/λ

where λ is the tunneling length, θA = θ and θB = θ + π. This assumption is typically
done in the context of electron shuttles29,30 and STMs141. Inserting Eq. (3.49) in
Eq. (3.48), and performing the integration, we obtain the following expression for the
tunneling rate

W (∆F ) = s
−∆F

e2R
[
1− exp

(
− ∆F
kBT

)] . (3.52)

∗This is not the case if the island possesses a single state participating in the transport, as we will see
later on in Sec. 3.2.1.2.
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Each different tunneling process is associated with a different free-energy variation (see
Eqs. (3.39) and (3.40)). Therefore, each process has also a different rate

W±
L

(
nA(B), θA(B)

)
= s±L

−∆F±L
(
nA(B)

)
e2RL

(
θA(B)

) [
1− exp

(
∆F±L (nA(B))

kBT

)] , (3.53)

W±
R

(
nA(B), θA(B)

)
= s±R

−∆F±R
(
nA(B)

)
e2RR

(
θA(B)

) [
1− exp

(
∆F±R (nA(B))

kBT

)] (3.54)

where we now indicate the island (A (B)) explicitly on the argument of the free energy.
Moreover, we stress that the degeneracy s±L(R) depends on the direction of tunneling.
To illustrate this we regard spin degeneracy for a system in the Coulomb blockade
regime, with a gate voltage Vg tuned within the window defined by setting n = 0 in
(3.45). In this case, tunneling events to the island involve two electronic states on the
island. However, the island can be maximally charged by a single electron, and therefore
tunneling events from the island just involve one electronic state on the island.
The total rates of tunneling inward and outward the island, respectively “injection”

and “ejection” rates, are given by

Win
(
nA(B), θA(B)

)
= W+

L

(
nA(B), θA(B)

)
+W−

R

(
nA(B), θA(B)

)
, (3.55)

Wout
(
nA(B), θA(B)

)
= W−

L

(
nA(B), θA(B)

)
+W+

R

(
nA(B), θA(B)

)
. (3.56)

Since in experiments in the Coulomb blockade regime the thermal fluctuations typically
do not play a major role (they are much smaller than the free-energy variations of the
system), it is instructive to look at the expressions of the tunneling rates in the limit
T → 0. In this limit,

1
1− exp

(
∆F
kBT

) =
{

1 ∆F < 0,
0 ∆F > 0.

This simplifies the rates from Eqs. (3.53) and (3.54) substantially. For example, let us
consider the first current window obtained from setting n = 0 in 3.45. In this case, just
two tunneling processes have ∆F < 0, namely tunneling from the left lead to the island
and from the island to the right lead. Therefore, the injection and ejection rates (see
Eqs. (3.55) and (3.56)) can be simply expressed as

Win
(
0, θA(B)

)
= W+

L

(
0, θA(B)

)
= s+

L
−∆F+

L (0)
e2RL

(
θA(B)

) , (3.57)

Wout
(
1, θA(B)

)
= W+

R

(
1, θA(B)

)
= s+

R
−∆F+

R (1)
e2RR

(
θA(B)

) . (3.58)

Note that the rates increase linearly with the applied voltage, as can be seen from
Eqs. (3.43) and (3.44). As we will show in the following, this is not the case if the island
possesses only one electronic state participating in the electronic transport.
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3.2.1.2 Tunneling rates for a single energy level in the island

Due to the very small dimensions of the islands in nanodevices, the level spacing ∆ε can
be very large and one can select a single energy level to participate in the tunneling (if
the temperature is small enough). Here we focus on deriving the tunneling rates in the
case of a single energy level on the island. The situation that we consider is sketched
in Fig. 3.12 (b). The only electronic state (possibly degenerate) participating in the
tunneling process has energy εA(B). The temperature is considered to be low enough
so that the energy fluctuations cannot populate other electronic levels, i.e. kBT � ∆ε.
Eq. (3.31) is again taken as valid, i.e. we calculate the tunneling rates using the golden
rule of quantum mechanics (this is formally correct for a single state coupled to a
continuum of states63 — and this is the case that we are dealing with). Therefore, the
tunneling rates between the state of energy εi within the lead and the sole state in the
island are

Wi→A(B) (∆F ) = 2π
~

∣∣∣MA(B),i

∣∣∣2 δ (εi − εA(B) −∆F
)
, (3.59)

WA(B)→i (∆F ) = 2π
~

∣∣∣Mi,A(B)

∣∣∣2 δ (εA(B) − εi −∆F
)
. (3.60)

Note that the index A(B) in the tunnel matrix elements MA(B),i [Mi,A(B)] indicates
tunnel to [from] the island A (B). Notice also that the concept of a “capacitance” is just
well defined for bulky electrodes and may be meaningless for very small nanoparticles
(or other physical system that composes the island, e.g. a molecule). In any case,
the concept of free energy is still meaningful and to each tunneling event there is a
correspondent free-energy variation ∗ . To obtain the total tunneling rate we need to
sum over the electronic states in the lead (i) weighted by their occupation probabilities

WL(R)→A(B) = s
2π
~
∑
i

f (εi)
∣∣∣MA(B),i

∣∣∣2 δ (εi − εA(B) −∆F+(−)
L(R)

(
nA(B) = 0

))
, (3.61)

where now f (εi) is the Fermi function of the lead evaluated at energy εi. Since Coulomb
blockade prevents a double occupation of the island, nA(B) = 0 in the argument of the
Helmholtz free energy. Note that the island cannot be positively charged because this
would require an additional energy level participating in the electronic transport. We
have accounted for any kind of degeneracy on the island by multiplying the right-hand
side of Eq. (3.61) by s (we assume MA(B),i does not change among degenerate states).
Again, using the density of states of the leads Di(ε) (which may include degeneracies)
we can substitute the sums in Eq. (3.61) by integrals over energy, obtaining

WL(R)→A(B) = s
2π
~
Di
(
εA(B) + ∆F+(−)

L(R) (0)
)
f
(
εA(B) + ∆F+(−)

L(R) (0)
) ∣∣∣MA(B),i

∣∣∣2 , (3.62)

where the state i from MA(B),i has energy εi = εA(B) + ∆F . The total tunneling rate
from the island to the lead has an expression analogous to the one from Eq. (3.62),
where we note that the factor s is now absent because just one island state is occupied
∗Note also that we have introduced the energy S (n) in the total stored energy (Eq. (3.32)) to take
some of the discrepancies between bulk electrons and very small nanoparticles formally into account.
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at a time (due to the Coulomb blockade, the island is maximally singly charged)

WA(B)→L(R) = 2π
~
Di

∣∣∣Mi,A(B)

∣∣∣2 (εA(B) + ∆F+(−)
L(R) (1)

) (
1− f

(
εA(B) + ∆F+(−)

L(R) (1)
))
.

(3.63)
Now noting that the tunnel matrix elements Mi,A(B) depend on the angle θA(B) (because
it depends on the island’s position), we define the function (analogous to the tunneling
resistance from Eq. (3.49))

BL(R)
(
θA(B)

)
= ~

2πDi

∣∣∣Mi,A(B)
(
θA(B)

)∣∣∣2 , (3.64)

where we again suppose that the density of states in the leads is constant over the
energy scale of interest (≈ e∆VLR). As in Sec. 3.2.1.1, we assume that the tunnel matrix
elements depend exponentially on the lead-island distance (i.e. on cos θ). Therefore

BL
(
θA(B)

)
= BL

0 e
ξ cos θA(B) , (3.65)

BR
(
θA(B)

)
= BR

0 e
−ξ cos θA(B) , (3.66)

where BL(R)
0 is a real constant, θA = θ and θB = θ + π, and ξ = `/λ where λ is the

tunneling length.
If we take the limit T → 0 in Eqs. (3.62) and (3.63), we obtain the rates

WL(R)→A(B) = s
Θ
(
µL(R) − εA(B) −∆F+(−)

L(R) (0)
)

BL(R)
(
θA(B)

) , (3.67)

WA(B)→L(R) =
Θ
(
−µL(R) + εA(B) + ∆F+(−)

L(R) (1)
)

BL(R)
(
θA(B)

) , (3.68)

where Θ (x) is the Heaviside step function and we have used the definition ofBL(R)
(
θA(B)

)
from Eq. (3.64). It is clear from Eqs. (3.67) and (3.68) that the energy transport window
is

µR −∆F+
R (0) < εA(B) < µL −∆F+

L (0), (3.69)

and within this window the injection and ejection rates, respectively the rates of total
tunneling inward and outward the island, are

Win
(
θA(B)

)
= WL→A(B)

(
θA(B)

)
= s

BL
(
θA(B)

) , (3.70)

Wout
(
θA(B)

)
= WA(B)→R

(
θA(B)

)
= 1
BR

(
θA(B)

) , (3.71)

while the other rates vanish, namely the ones for tunneling from the island to L and
from R to the island.
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3.2.2 Mechanical equations
Herewith we regard the mechanical equations of the rotor, taking into account the
model of the electronic islands presented in Sec. 3.2.1. We consider the potential energy
associated to a single island to be given by

UA(B) = E
A(B)
tot + QA(B)∆VLR

dleads
xA(B), (3.72)

where EA(B)
tot is the total energy stored on the island (defined by Eq. (3.32)), xA(B) is

the projection of the position vector of island A (B) on the horizontal unit vector ı̂
(see inset in Fig. 3.2), and dleads is the distance between the leads. Depending on how
one realizes the rotor, the island capacitances CL(R) may depend on the position of
the island, i.e. on the angle θ. Therefore, EA(B)

tot may feature an angular dependence.
We need to disregard this dependence in order to obtain the mean-field and stochastic
equations of motion presented in Sec. 3.1.
In Eq. (3.72), xA = ` cos (θ) and xB = ` cos (θ + π) = −` cos (θ), where ` is the

distance between the centers of mass of the islands and of the support shaft (“rotor arm
length”), and θ is the angle between the rotor arm of the island A and the horizontal
unit vector ı̂ (see Fig. 3.2). The kinetic energy is

Krot = L2

2I , (3.73)

where L is the angular momentum and I is the moment of inertia of the rotor. These
considerations lead to the following classical Hamiltonian:

Hrot(θ, L, PA, PB) = Krot + UA + UB = L2

2I + `E cos θ (QA −QB) , (3.74)

where E = ∆VLR/dleads is the magnitude of the electrostatic field E. The Hamilton’s
equations of motion for the Hamiltonian of Eq. (3.74) are

d
dtθ = ∂

∂L
Hrot(θ, L, PA, PB) = L

I
, (3.75)

d
dtL = − ∂

∂θ
Hrot(θ, L, PA, PB) = E` sin θ (QA −QB) . (3.76)

The rotor is coupled to environmental degrees of freedom, and this leads to damping and
fluctuations in the angular dynamics. There are many possible dissipation channels for
our rotor, depending on the physical system that is used to realize it. If one describes
the dissipation via a Langevin equation (with the drift term proportional to the angular
momentum), one obtains the mean-field and stochastic equations of motion presented
in Sec. 3.1

dL = (E` sin θ(QA −QB)− γ̃L) dt+
√

2Iγ̃kBTdw, (3.77)
d
dtθ = L

I
, (3.78)

where w denotes a Wiener process and γ̃ is a phenomenological angular-viscosity
parameter.



54 Chapter 3 Switching between electromechanical regimes in a nanoscale rotor

3.2.3 Deriving the stochastic equations of motion from Sec. 3.1.4
In Sec. 3.1.4 we introduced stochastic equations of motion, Eqs. (3.19)-(3.22). There,
we considered that the islands are in the Coulomb blockade regime, and that they
can be either discharged or charged with a single excess electron. This situation can
be described within the theory presented in Sec. 3.2.1 and Sec. 3.2.2. Using a gate
electrode, one can tune Vg within the window defined by the interval (3.45) in the
case n = 0, in which case the islands can be either discharged or occupied by one
electron. In this case, the charge QA(B) fluctuates stochastically between 0 and −e. The
probabilities of charge transition on the islands within the infinitesimal time dτ can be
obtained through the injection and ejection rates, analogously as we did in Sec. 3.1.4.
In order to derive the stochastic equations we need to show that, in some limit, the
injection and ejection rates are the same as the tunneling rates defined by Eqs. (3.2)
and (3.3).
Considering the temperature T → 0 in Eqs. (3.57) and (3.58) for the continuous

energy spectrum on the island, and in Eqs. (3.70) and (3.71) for the single-energy-level
case, the nonvanishing injection and ejection rates are given by

Win
(
0, θA(B)

)
= Win

(
θA(B)

)
= ΓLe

−ξ cos θA(B) , (3.79)

Wout
(
1, θA(B)

)
= Wout

(
θA(B)

)
= ΓRe

ξ cos θA(B) (3.80)

where

ΓL(R) = −s+
L(R)

∆F+
L(R) (n = 0(1))
e2R

L(R)
0

(3.81)

for the case where the island has a continuous spectrum, and

ΓL = s

BL
0
, (3.82)

ΓR = 1
BR

0
, (3.83)

for the case where there is just a single energy level involved in the electronic transport.
Note that no tunneling from an island to the left lead or from the right lead to an island
can occur because the tunneling rates for these processes are zero. As we wanted to
show, the rates from Eqs. (3.79) and (3.80) have the same structure as the tunneling
rates defined by Eqs. (3.2) and (3.3). Considering the symmetric case ΓL = ΓR = Γ and
the dimensionless quantities outlined in Tab. 3.1, one can rewrite Eqs. (3.77) and (3.78)
(with T → 0) in the same form as Eqs. (3.19) and (3.22). Therefore, Eqs. (3.77) and
(3.78) along with the stochastic process defined by the tunneling rates from Eqs. (3.79)
and (3.80) are equivalent to the Fokker-Planck equation defined by Eqs. (3.23)-(3.26),
i.e. we derived the stochastic equations of motion from Sec. 3.1.4.

3.2.4 Deriving the mean-field equations of motion from Sec. 3.1.1
In Sec. 3.1.1 it was assumed that the islands are in the Coulomb blockade regime, and
that moreover they can be either discharged or charged with a single excess electron.
However, considering the theory presented in Sec. 3.2.1 and Sec. 3.2.2, this assumption
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leads to the stochastic equations of motion introduced in Sec. 3.1.4, and not to the
mean-field equations of motion presented in Sec. 3.1.1 (which Croy et al. employed to
study the rotor’s dynamics in Ref. [37]).
In order to obtain the mean-field equations from the theory from Sec. 3.2.1 and

Sec. 3.2.2, we need to regard the case where the islands can bear many electrons
and many holes (it can also be positively charged). Therefore, we do not consider a
single electronic level on the island but rather a continuum of states, as in Sec. 3.2.1.1.
Moreover, we neglect the terms S (n) in the definition of the free energy (Eq. (3.38)),
which tend to be important for islands of very small dimensions.

The typical scale of the charge on the islands is ∆VLRC, and we actually mean with
“many electrons/holes” that the unit of charge transfer e� ∆VLRC. It is convenient to
rewrite the tunneling rates from Eqs. (3.53)-(3.54) using the dimensionless charges

Q̃A(B) = QA(B)

∆VLRC
, (3.84)

∆Q̃ = e

∆VLRC
, (3.85)

obtaining

W±
L

(
nA(B), θA(B)

)
= −

(
1

∆Q̃

) ∆Q̃
2 ±

(
−Q̃A(B) − CR

C

)
CRL

(
θA(B)

) [
1− exp

(
βCB ∓ α

(
Q̃A(B) + CR/C

))] ,
(3.86)

W±
R

(
nA(B), θA(B)

)
= −

(
1

∆Q̃

) ∆Q̃
2 ±

(
Q̃A(B) − CL

C

)
CRR

(
θA(B)

) [
1− exp

(
βCB ± α

(
Q̃A(B) − CL/C

))] ,
(3.87)

where we have not considered any degeneracy. If all degeneracies s±L(R) are the same,
Eqs. (3.86) and (3.87) are just renormalized and all the following discussion/derivation
is still valid. The dependence on the temperature is summarized by the parameters

α = ∆VLRe

kBT
, (3.88)

βCB = e2

CkBT
. (3.89)

The parameters α and βCB represent two different energy scales normalized by the
thermal fluctuations, respectively the power-source and single-electron charging energy
scales. We denote the probability density of the island A (B) being charged with Q̃A(B)

at the time t by p̃
(
Q̃A(B), t

)
, and we define new tunneling rates and injection/ejection

rates, respectively w̃±L(R)

(
Q̃A(B), θA(B)

)
and w̃in/out

(
Q̃A(B), θA(B)

)
, by

w̃±L
(
Q̃A(B), θA(B)

)
= ∆Q̃W±

L

(
nA(B), θA(B)

)
, (3.90)

w̃±R
(
Q̃A(B), θA(B)

)
= ∆Q̃W±

R

(
nA(B), θA(B)

)
, (3.91)

w̃in
(
Q̃A(B), θA(B)

)
= ∆Q̃Win

(
nA(B), θA(B)

)
, (3.92)

w̃out
(
Q̃A(B), θA(B)

)
= ∆Q̃Wout

(
nA(B), θA(B)

)
(3.93)
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(note that injection and ejection rates for a continuous spectrum on the island were
defined before in Eqs. (3.55) and (3.56)). If we “freeze” the mechanical degree of freedom
θ, these rates define the following master equation for the probability density:

d
dt p̃

(
Q̃A(B), t

)
∆Q̃ =w̃out

(
Q̃A(B) −∆Q̃, θA(B)

)
p̃
(
Q̃A(B) −∆Q̃, t

)
+

w̃in
(
Q̃A(B) + ∆Q̃, θA(B)

)
p̃
(
Q̃A(B) + ∆Q̃, t

)
−[

w̃out
(
Q̃A(B), θA(B)

)
+ w̃in

(
Q̃A(B), θA(B)

)]
p̃
(
Q̃A(B), t

)
. (3.94)

In the limit ∆Q̃ → 0, Eq. (3.94) is equivalent to the Fokker-Planck equation (angle
entering as a parameter)

d
dt p̃

(
Q̃A(B), t

)
= ∂

∂Q̃A(B)

{
p̃
(
Q̃A(B), t

) [
w̃in

(
Q̃A(B), θA(B)

)
− w̃out

(
Q̃A(B), θA(B)

)]}
.

(3.95)
This Fokker-Planck equation has no fluctuation term, and therefore it is completely
equivalent to a deterministic equation for the time variation of the charge122

d
dtQ̃A(B)(t) = −w̃in

(
Q̃A(B), θA(B)

)
+ w̃out

(
Q̃A(B), θA(B)

)
. (3.96)

One can write Eq. (3.96) explicitly as

d
dtQ̃A(B)(t) =− Q̃A(B) − CL/C

CRR
(
θA(B)

) 1− ζ cosh
[
α
(
Q̃A(B) − CL/C

)]
(1 + ζ2) /2− ζ cosh

[
α
(
Q̃A(B) − CL/C

)]
−
Q̃A(B) + CR/C

CRL
(
θA(B)

) 1− ζ cosh
[
α
(
Q̃A(B) + CR/C

)]
(1 + ζ2) /2− ζ cosh

[
α
(
Q̃A(B) + CR/C

)] , (3.97)

where ζ = eβCB and we note that all terms proportional to ∆Q̃ vanish in the limit
∆Q̃ → 0. It will be convenient to define the shifted (and normalized) electronic
population on the islands

P̃A(B) = −
(
Q̃A(B) −

CL

C

)
. (3.98)

With this definition, one can rewrite Eq. (3.97) as

d
dtP̃A(B)(t) =

(
1− P̃A(B)(t)

) 1− ζ cosh
[
α
(
1− P̃A(B)(t)

)]
(1 + ζ2) /2− ζ cosh

[
α
(
1− P̃A(B)(t)

)]w̃L
(
θA(B)

)

− P̃A(B)(t)
1− ζ cosh

(
−αP̃A(B)(t)

)
(1 + ζ2) /2− ζ cosh

(
−αP̃A(B)(t)

)w̃R
(
θA(B)

)
, (3.99)

where
w̃L(R)

(
θA(B)

)
= 1
CRL(R)

(
θA(B)

) . (3.100)
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From Eqs. (3.98) and (3.99) one sees that the charge QA(B) on the island can vary
between two well-defined values Qmin and Qmax:

−∆VLRCR < QA(B) < ∆VLRCL. (3.101)

This sums up to a total variation Qmax −Qmin = Qvar = ∆VLRC. An additional gate
electrode changes CR → CR + Cg (1 + Vg/∆VLR) and CL → CL + Cg (1− Vg/∆VLR) in
Eq. (3.101). Considering the new island capacitance C → CL + CR + Cg, the total
variation is Qvar = ∆VLRC + Cg∆VLR. Moreover, the charge is shifted by −VgCg. A
detailed derivation for the case with the gate electrode is given in Appendix B.
Note that although Eq. (3.99) is a deterministic equation of motion for the charge,

it is not identical to the mean-field Eq. (3.4) from Sec. 3.1.1. We will see that the
mean-field equation for the charge emerges from Eq. (3.99) in two limiting cases of the
parameters βCB and α.

βCB � 1 alone

The parameter βCB is the ratio of the single-electron charging energy scale Eel = e2/2C
to the thermal energy kBT . α is a ratio of the scale of the energy supplied by the power
source to tunneling electrons ∆VLRe to kBT . Therefore, if βCB is much larger than 1
while α is not, Eel/∆VLRe� 1, i.e. the bias ∆VLR is not large enough to overcome the
Coulomb blockade. Consequently, all tunneling rates go to zero.

βCB � 1 and α� 1

Substituting in Eq. (3.99) one obtains

d
dtP̃A(B)(t) =

(
1− P̃A(B)(t)

) cosh
[
α
(
1− P̃A(B)(t)

)]
ζ/2− cosh

[
α
(
1− P̃A(B)(t)

)]w̃L
(
θA(B)

)

− P̃A(B)(t)
cosh

(
−αP̃A(B)(t)

)
ζ/2− cosh

(
−αP̃A(B)(t)

)w̃R
(
θA(B)

)
. (3.102)

α� 1 alone

In this case the energy supplied by the power source to tunneling electrons is much
larger than other energy scales in the system. All thermal effects are washed out, and
by substitution in Eq. (3.97) one obtains

d
dtP̃A(B)(t) =

(
1− P̃A(B)(t)

)
w̃L

(
θA(B)

)
− P̃A(B)(t)w̃R

(
θA(B)

)
. (3.103)

Cases where α� 1

In these cases the bias is practically zero and, since there are no charge fluctuations, all
the tunneling rates go to zero as well.
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βCB � 1 alone

In this case one is far away of the Coulomb blockade regime. Substitution in in Eq. (3.97)
yields

d
dtP̃A(B)(t) =

(
1− P̃A(B)(t)

)
w̃L

(
θA(B)

)
− P̃A(B)(t)w̃R

(
θA(B)

)
. (3.104)

It should be noted that this equation is the same as Eq. (3.103) from the case where
α� 1 alone.
In the cases βCB � 1 alone and α� 1 alone we can obtain the mean-field equation

of motion for the charge Eq. (3.4). If we define

ΓL(R) = 1
CR

L(R)
0

(3.105)

the tunneling rates from Eq. (3.100) can be simply written as

w̃L
(
θA(B)

)
= ΓLe

−ξ cos θA(B) , (3.106)

w̃R
(
θA(B)

)
= ΓRe

ξ cos θA(B) . (3.107)

If ΓL(R),A = ΓL(R),B and ξL(R),A = ξL(R),B in Eq. (3.4), this equation is the same as
Eq. (3.103) (Eq. (3.104)). In most part of Sec. 3.1.1 we considered the symmetric case
ΓR = ΓL = Γ, which can also be considered here.

To obtain the mechanical part of the mean-field equations of motion we first note that
QA −QB =

(
P̃B − P̃A

)
∆VLRC, and therefore Eq. (3.77) depends just on the difference

between the populations P̃B − P̃A, analogously to Eq. (3.9). In the limit T → 0 and
with the definition of dimensionless quantities from Tab. 3.2, Eq. (3.77), Eq. (3.78), and
Eq. (3.103) are equivalent to Eqs. (3.8)-(3.10). In other words, we have obtained the
mean-field equations of motion from Sec. 3.1.1. In Appendix C we derive the mechanical
equations of motion in detail for the more general case where the rotor’s arms are tilted
by an arbitrary angle β.

3.2.5 Conclusions
In Sec. 3.2 we used the orthodox theory of single-electron tunneling59 to derive the
stochastic and mean-field equations of motion from Sec. 3.1. While to derive the
stochastic equations we needed to go to a “single-electron limit” (with the help of a gate
electrode), where the islands can be either discharged or charged with a single excess
electron; to derive the mean-field equations of motion we needed to go to a “continuous-
charging limit”, where the scale of the charge on the islands is much larger than the
unit of charge transfer e. In both cases, we needed to neglect thermal fluctuations both
in the mechanical and in the charge equations of motion. Also the angular dependence
of the capacitances was neglected. However, we have accounted for the discreteness of
the energy spectrum in the single-electron limit case by obtaining tunneling rates for a
single energy level on the island’s spectrum.
The derivation of the mean-field and stochastic equations provided a clear set of

assumptions for both models. However, we cannot assess whether these assumptions
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Table 3.2: Dimensionless quantities used in the mean-field equations derived in Sec. 3.2.4
and their definitions.

Quantity Symbol Formula

Time τ Γt

Charge (population) P̃A(B) − QA(B)
∆VLRC

+ CL
C

Angular momentum Λ L
ΓI

Driving strength η0 `
[
QvarE

Γ2I

]
Viscosity parameter γ γ̃

Γ

hold if we do not concretize the rotor model into an experimental proposal. Such a
proposal also makes it possible to estimate the ranges of parameter values which can be
accessed. In the next section, we propose two different devices, each of which is suited
to one of the limits described here.

3.3 Experimental realization
In Sec. 3.1.1 we showcased the dynamics of the mean-field and stochastic models. These
models show interesting dynamics which can be used to obtain certain functionalities
(e.g. the rotor can work as a nanoswitch or electron pump). However, the dynamics of
the mean-field and stochastic models disagree in certain parameter regimes, in particular
for large damping. This discrepancy prompted us to derive these models from the
theory of single electron tunneling in the previous section. Now we have a clear set
of assumptions for these two models, and in this section we are aimed at proposing
experimental devices for which these assumptions hold. Such devices will also allow us
to estimate parameter ranges which can be accessed in an experimental situation.
We propose two devices, one for each set of equations. We estimate the parameters

one can realize considering these two proposals. Clearly, all the elements composing
the rotor, e.g. electronic islands, support shaft, etc. can be designed in a completely
different way (we will briefly discuss some of these ways). However, these proposals
allow us to base our estimates on physical systems (metallic nanoparticles, multi-walled
carbon nanotubes, etc.) for which one can find plenty of experimental data in the
literature. Moreover, with these proposals we show that the rotor can be fabricated
with present-day technology. We stress though that the estimates we do are very rough
and just have two purposes: giving an idea of the dimensions and materials that can be
used to build these devices, and discussing some of the possible challenges involved.

The connection between device and set of equations is established through the theory
presented in the previous section. The most critical assumptions made in Sec. 3.2 are
discussed based on the devices proposed here.
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Figure 3.14: Sketch of the device proposed to realize the stochastic equations of motion. (a)
and (b) represent two different perspectives of the same device.

3.3.1 Single-electron limit: stochastic equations of motion
As we have seen in Sec. 3.2.3, the stochastic equations of motion are obtained in a
“single-electron limit” where the islands can be either discharged or charged with a single
excess electron. A sketch of a possible experimental realization of this limit can be
seen in Fig. 3.14. We consider a rotor composed of a carbon nanotube (support shaft)
decorated with two Au nanoparticles (electronic islands) flanked by two leads. The
Au nanoparticles are deposited on opposite sides of the carbon nanotube, so that their
centers of mass and the nanotube’s axis are aligned. To avoid electronic coupling between
them, the nanoparticles are further separated in the nanotube’s longitudinal direction
(see Fig. 3.14 (b)). Such arrangement of Au nanoparticles deposited on opposite sides
of a carbon nanotube can be experimentally achieved with present-day technology,
using dip-pen nanolithography56,57. This technique allows the site-specific deposition
of Au nanoparticles without the introduction of any structural modification to the
carbon nanotube ∗ . Site-specific functionalization of carbon nanotubes with molecules
(substituting the Au nanoparticles as electronic islands) is also possible via focused

∗Single-electron tunneling in a system where a Au-nanoparticle electronic island is attached to the
outer wall of a carbon nanotube was already achieved experimentally in the context of single-electron
memories125.
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ion beam irradiation126, but it is not suitable for non-destructive modification of the
nanotube56,57 ∗ . The support shaft is the inner wall of a multi-walled carbon nanotube
whose outer walls were removed using the electrical-breakdown technique128,129. The
width of the carbon nanotube can be tailored with precision of a few angstroms using
this technique. Moreover, the multi-walled-nanotube conductance can be tuned down
to zero128. Such a bearing was already realized experimentally for a nanorotor4 † .
Bearings based on multi-walled carbon nanotubes lead to a friction coefficient which
is proportional to the angular velocity, if the velocity is small enough ‡ 3. Moreover,
engineering of this friction coefficient is possible due to its dependence on the temperature
and interlayer spacing § 3. In particular, the friction of this kind of bearings can be
very low3–5, and therefore it imposes a fundamental limit on the friction coefficients
that are obtainable. We will discuss the timescale of this mechanical relaxation channel
in Sec. 3.3.3.3 ¶ . Additional friction can arise from the electronic coupling to the
“image-charges” on the leads131 and from coupling to a surrounding gas. The former
friction coefficient will be estimated in Sec. 3.3.3.3 (the second one can be controlled or
even avoided e.g. by performing experiments in high-vacuum). Moreover, light emission
from the accelerated charge on the island can also (in principle) damp the rotations. We
will show that this effect is negligible for our setup in Appendix A. We note that one
can engineer a nanoscale rotor in other ways, e.g. considering molecules with rotating
parts15,16,132–134, or replacing the metallic nanoparticles by quantum dots, molecules, etc.
The above realization was chosen for the availability of experimental data on carbon
nanotubes and gold nanoparticles, and because it allows for simple estimates.

This device can be designed such that the islands are in the Coulomb blockade regime.
One can show this via a simple estimate of the island charging energy. The boundary
between molecule-like and bulk-like charging of nanoparticles is not very clear135, but
it appears to start in particles of diameters between 1 nm and 2 nm135–137. To estimate
the charging energy of the islands we perform a simple bulk estimation of their self
capacitance considering a spheric geometry. Note that even if the island is so small that
the bulk estimate is wrong137 (or if the geometry deviates from a sphere), it should
at least get the correct order of magnitude of the charging energy. Considering gold
islands of diameter 1.5 nm, our estimate gives

CA(B) ≈ 4πε0rA(B) ≈ 0.5 e/V, (3.108)

where ε0 is the electrostatic permittivity of vacuum and rA(B) = 0.75 nm is the radius of
the islands. Therefore, we obtain a single-electron charging energy EA(B)

el ≈ e2/2CA(B) ≈
1.9 eV. This gives the scale of the energy-level splitting for different occupation numbers
∗If strict control of the modification position is not needed, there is a large experimental freedom on
the type of the deposited particles57,127.

†A slightly different bearing where the outer wall rotates while the inner one is kept stationary is also
possible5.

‡In Ref. [3] it was shown that the friction coefficient is proportional to the angular velocity at least
up to angular velocities of approximately 1 rad/ps−1. As we show in Sec. 3.3.3.2, the timescale of
our system’s dynamics is in the nanosecond regime.

§The presence of impurities, defects, and deformations leads to an enhancement of the friction
coefficient3.

¶Another advantage of multiwall-carbon-nanotube-based bearings is their (presumably perfect) wear
and fatigue resistance5,130.
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inner carbon 

nanotube wall

Figure 3.15: Sketch of a possible realization of the rotor for the continuous charging limit.
The inner carbon nanotube is supported by the ends of the outer tube (not represented). For
better visualization, just part of the inner tube and the nanowires (islands) is represented.

on the island. For comparison, the thermal energy at room temperature is in the scale
of meV. In order to overcome the single-electron charging energy with the bias, one
can couple the islands capacitively to gate electrodes of voltage Vg and capacitance
Cg, as in a single-electron transistor59,123. By tuning Vg within the window obtained
by substituting n = 0 in the interval (3.45), the islands can be either discharged or
charged with a single excess electron. The coupling to a gate electrode can also cure
unpredictable behavior due to the presence of background charges59,123. This electrode
should interact with the island in the same way for all angles θ. An idea on how it could
be accomplished is using the outer wall of the nanotube as a support for a ring-shaped
gate electrode (see Fig. 3.14 (b)). Finally, additional electrodes can be used to control
of the magnitude of electrostatic field driving rotations.
With that we showed that the single-electron limit can be realized experimentally

using present-day technology. This indicates that the dynamics of such a device are
described by the stochastic equations of motion. However, we still need to check whether
the assumptions made when deriving these equations in Sec. 3.2 hold for this device.
This will be done in Sec. 3.3.4. Before that, in Sec. 3.3.3, we will estimate de ranges of
parameter values which can be achieved.

3.3.2 Continuous-charging limit: mean-field equations of motion
We showed in Sec. 3.2.4 that the mean-field equations of motion can be obtained in a
“continuous-charging limit” where the absolute charge on the islands, of scale C∆VLR, is
always much larger the unit of charge transfer e. Additionally, the bias energy ∆VLRe
must be much larger than the single-electron charging energy EA(B)

el = e2/2CA(B) (bulk
limit). A sketch of a possible experimental realization for this limit can be seen in
Fig. 3.15. The main difference in design between this realization and the one from
Sec. 3.3.1 is that now the islands are composed of gold nanowires instead of a single
nanoparticle. This nanowire can be formed by juxtaposition of gold nanoparticles, such
that the electronic wave function is delocalized across the wire138. The formation of
a polycrystalline wire can be achieved e.g. by heating up the deposited nanoparticles,
similarly as in Ref. [139]. For being larger than a single nanoparticle, the wire has also
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a larger capacitance. This capacitance is also scalable: one can in principle attain a
desired capacitance by building a wire with the corresponding length. The maximum
charge stored by the nanowire island is Q0 ≈ CA(B)∆VLR (without gate electrodes). By
extending the longitudinal dimension of the nanowire into the micrometer scale one
eventually reaches the continuous-charging limit. The device proposed here includes
gate electrodes, as the device from Sec. 3.3.1. The gate electrodes can control the
maximal absolute value of the charge that the islands can bear. As in Sec. 3.3.1,
additional electrodes can be used to control the magnitude of the electrostatic field
driving rotations.

In order to get a feeling for the physical numbers, let us consider a 20µm long support
shaft of a diameter of 1 nm. The islands composing the nanowire have a diameter of 1.5
nm. The capacitance of such a device can be estimated considering the self capacitance
of a bulky gold wire140:

Cwire = 2πε0l
Ξ

{
1 + 1

Ξ (1− ln 2) + 1
Ξ2

[
1 + (1− ln 2)2 − π2

12

]
+O

( 1
Ξ3

)}
, (3.109)

where Ξ = ln (l/a), l is the wire length, and a is the wire radius. Plugging in l = 10µm,
a = 0.75 nm, and considering the expansion up to second order yields a capacitance of

CA(B) ≈ 380 e/V, (3.110)

which is equivalent to a single-electron charging energy of EA(B)
el ≈ e2/2CA(B) ≈ 1 meV.

As an example, let us consider the temperature for which kBT = 5 meV. This is
T ≈ 58 K, showing that we are no longer in the Coulomb blockade regime even for
temperatures much lower than the room temperature. If the gate electrodes are all
turned off, the maximum charge on the island is approximately

CA(B)∆VLR ≈ 38 e. (3.111)
As we mentioned before, one can change this charge (and the driving electrostatic field)
through gate electrodes.

With that we showed that the continuous-charging limit can be realized experimentally
using present-day technology. Moreover, this device allows us to go all the way from
the single-electron to the continuous-charging limit. This is possible because we can
extend the electronic islands along the dimension which is not directly involved in
the rotor’s dynamics. Indeed, in the continuous-charging limit this device has two
dimensions sized in the nanoscale and one in the microscale. In order to show that the
mean-field equations describe the dynamics of this device, we need to check whether
the assumptions made when deriving these equations in Sec. 3.2 hold. This will be done
in Sec. 3.3.4. Before that, in Sec. 3.3.3, we will estimate de ranges of parameter values
which can be achieved.

3.3.3 Dimensionless parameters from the stochastic and
mean-field models

The three dimensionless parameters present in the stochastic and in the mean-field
equations of motion are the inverse tunneling length ξ, the driving strength η0, and
the angular viscosity γ. Herewith we analyze which ranges of these parameters are
obtainable in the devices proposed in Sec. 3.3.1 and Sec. 3.3.2.
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3.3.3.1 Inverse tunneling length ξ

For the devices from both Sec. 3.3.1 and Sec. 3.3.2, the inverse tunneling length is
defined as

ξ = `

λ
, (3.112)

where ` is the “arm length”, i.e. the distance between the island’s center of mass
and the axis of rotation, and λ is the tunneling length, which characterizes the scale
at which tunneling occurs. In principle, ` can be as small as ≈ 1 nm (pushing the
nanotube’s and the nanoparticle’s diameters to the extreme). The tunneling length
depends on the tunnel barrier. In the context of STMs, the probability for an electron
in the sample state ψn to present at the tip surface, at a distance x = d from the
sample, is proportional to |ψn(x = 0)|2 e−2kd (x = 0 is at the sample’s surface)141. Here,
k =
√

2melφbar/~, φbar is the hight of the tunnel barrier, and mel is the electronic mass.
The tunneling length in this context is given by

λ = 1
2k = ~

2
√

2melφbar
. (3.113)

The tunnel-barrier value φbar = 1 eV can be easily encountered in the literature,
e.g. in scanning tunneling microscope (STM) experiments141,142; and it is shown to
be reproducible and to persist at least over a tip-sample distance variation of some
angstroms. in Ref. [142], tunnel-barrier values as small as φbar = 0.01 eV were also
reported. Plugging the electronic mass and the tunnel-barrier value φbar = 1 eV in
Eq. (3.113) one obtains λ ≈ 0.98 Å, which leads to ξ in the order of 10. If one uses
φbar = 0.01 eV instead one gets ξ in the order of 1 (which is the scale that we have
explored in Sec. 3.1).

3.3.3.2 Driving strength η0

In the single-electron limit, the driving strength is defined as

η0 = eE`

IΓ2 , (3.114)

where e is the elementary charge, E is the magnitude of the driving electrostatic field
E, I is the moment of inertia of the rotor, and Γ is the tunneling rate for the rotor at
upright configuration (θ = π/2). In the continuous-charging limit η0 is defined as

η0 = QvarE`

IΓ2 , (3.115)

where Qvar is the maximal variation of the charge on the islands (see the discussion in
Sec. 3.2.4). Via additional electrodes, it is in principle possible to engineer the driving
electrostatic field E independently of the bias voltage ∆VLR and the distance between
the leads dleads. This may be an engineering challenge, but one can achieve control
of electrostatic fields in the nanoscale with the present technology. For example, in
Ref. [58] two 4 nm long quantum dots distant 10 nm apart could be electrostatically
controlled independently. However, also the magnitude of the electrostatic field is
limited: if it is too large, the chemical bonds which keep the rotor together may be
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broken. Typical magnitudes required to break chemical bonds are in the scale of 1
V/nm (see e.g.143). Therefore, we consider that a maximum E = 0.1 V/nm can be
safely achieved experimentally considering the devices we have proposed.
The parameter Γ gives the timescale of tunneling. In the following, we focus our

discussion on the device from Sec. 3.3.1. in Ref. [144] the tunneling current through gold
nanoparticles between an STM tip and a gold surface was measured. The nanoparticles
were ligand-stabilized (hexanethiolate), and therefore they were larger than their gold
core. One of the nanoparticles used had a diameter of 3.2 nm, which is equivalent to an
estimated core diameter of 1.8 nm. Moreover, there was a monolayer of hexanethiol
over the gold surface. Although the authors do not say how long these molecules are,
they estimate the length of hexanethiolate to be 0.77 nm ∗ . If we consider that the
hexanethiol monolayer contributed with 0.5 nm (the molecules are not perpendicularly
oriented with respect to the surface and the geometry is not given), the minimum
distance between the gold surface and the nanoparticle’s center of mass was 2.1 nm.
The currents obtained in this experiment (for a voltage large enough to overcome
the Coulomb blockade) were in the nA scale — note that 1 nA is equivalent to 6.25
electrons per nanosecond. This result can be used to estimate Γ: let dleads = 4.2 nm,
the lead-island distance at θ = π/2 is 2.1 nm, and therefore Γ ≈ 6 ns−1 is an estimate
consistent with the experiment from144. Note that this value can be easily tuned down
by making dleads larger.

In theory, one has complete control over the driving strength, because one can decrease
both Γ and E at will. However, the angular viscosity γ also depends (although not
quadratically) on Γ, such that, in practice, these parameters cannot be unlimitedly
tuned independently. For this reason, it is important to check what is the range of η0
that can be varied using E only. Let us consider a 5 nm long support shaft of diameter
1 nm, and islands of diameter 1.5 nm. In order to calculate I we have considered
bulky gold spheres and we have used145 for the nanotube, obtaining I ≈ 100 zg nm2.
Considering maximal E = 0.1 V/nm, Γ = 6 ns−1, and ` = 1.25 nm, we obtain η0 ≈ 5.
Again, one can make this value larger by tuning Γ down. But in this case one needs to
take into account the changes in γ.

For the device proposed in Sec. 3.3.2 we expect one to be able to achieve larger values
of Γ, since now many gold nanoparticles are involved in the charge transport. Moreover,
using gate electrodes one can also control the charge variation Qvar (see Sec. 3.2.4).
However, the minimal moment of inertia I must be inevitably larger (which could be
compensated e.g. with the larger absolute charge on the islands). Since for this device
one has more parameters to control η0 than in the device from Sec. 3.3.1, we also expect
that a larger range of η0 is attainable.

3.3.3.3 Dimensionless angular viscosity γ

The dimensionless angular viscosity, which we have often called “angular viscosity” or
even simply “viscosity” within this thesis, is given by

γ = γ̃

Γ , (3.116)

∗The only structural difference of hexanethiolate compared to hexanethiol is the absence of an
hydrogen atom bound to the S atom at the end of the chain.
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where γ̃ is the “physical viscosity”, which has dimension of one over time. This definition
is valid for the devices from Sec. 3.3.1 and Sec. 3.3.2. Notice that the dimensionless
angular viscosity depends on Γ, which was already discussed in Sec. 3.3.3.2. This
viscosity comes from coupling to different types of environmental degrees of freedom.
These different types lead to different damping channels. Herewith we consider three
damping channels:

1) The friction arising from the interaction between the walls of the double-walled
carbon nanotube which constitutes the support shaft;

2) The mechanical damping arising from the coupling of the charge on the island
with the image charge on the leads;

3) The mechanical damping arising from the coupling between the rotating charges
on the islands and the electromagnetic field.

These damping channels lead to the dimensionless angular viscosity

γ = γbear + γim + γlight, (3.117)

where γbear, γim, and γlight are the dimensionless angular friction “coefficients” from 1),
2), and 3) respectively. Actually, these “coefficients” may depend on the dynamical
variables as well: we will see that 2) leads to an anisotropic damping coefficient and 3)
does not lead to dissipation proportional to the first power of the angular momentum.

While we show in Appendix A that 3) can be neglected, we discuss the more important
1) and 2) here. in Ref. [3] the timescale of 1) for double-walled carbon nanotubes
(4,4)@(9,9) ∗ and (7,0)@(9,9) was determined to be in the nanosecond regime. Although
we cannot directly use these results because the armchair configuration is conducting,
we still expect the lower bound for the damping timescale in our system to lie in the
nanosecond regime. Taking into account the value Γ ≈ 6 ns−1 considered in Sec. 3.3.3.2
(device from Sec. 3.3.1), this suggests that obtaining γbear ≥ 1 may be easy, and possibly
one can reach γbear ≈ 0.1. As mentioned before, for the device from Sec. 3.3.2 we expect
one being able to achieve larger values of Γ, and thereby having more freedom in tuning
γbear.

If the leads are metallic, the channel 2) represents a challenge for the devices proposed
in Sec. 3.3.1 and Sec. 3.3.2. In first order with respect to the velocity of the island visl,
this channel leads to a force −Γimvisl, where

Γim = 2Γimı̂ + Γim̂ + Γimk̂ (3.118)

is the (anisotropic) linear friction coefficient (for a definition of the unit vectors ı̂, ̂,
and k̂ see the inset in Fig. 3.2). As one can see from the expression for Γim, the friction
is twice stronger when the charged island is moving towards one of the leads (direction
±ı̂). Now we focus on the device from Sec. 3.3.1 and, in the end, we comment on
∗The way the graphene sheet is wrapped to form a single-walled nanotube is represented by a pair
of indices (n,m). The integers n and m denote the number of unit vectors along two directions
in the honeycomb crystal lattice of graphene. Since a double-walled nanobube is formed by two
single-walled nanotubes, one needs two pairs of integers to describe them, e.g. (4,4)@(9,9).
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the differences we expect for the device from Sec. 3.3.2. This friction coefficient was
estimated in Ref. [131] (for the case of a single metallic surface) to be ∗

Γim =
√

ε

4π
e

4σcondd3 , (3.119)

where ε is the electric permittivity of the medium (which we consider to be vacuum in
our estimate, i.e. ε = ε0), σcond is the conductivity of the leads, and d is the distance
between the island and the lead. The linear friction coefficient from Eq. (3.119) can be
transformed into the dimensionless angular friction coefficient:

γim = Γim`

ΓI . (3.120)

Now we estimate γim considering dleads = 4.2 nm, which leads to Γ ≈ 6 ns−1 (based on
the experiment from144). As in the discussion of the driving strength, let us consider
a 5 nm long support shaft of diameter 1 nm, and gold islands of diameter 1.5 nm,
leading to ` = 1.25 nm and I ≈ 100 zg nm2. For metals at a temperature T ≈ 50 K,
σcond ≈ 108 S/m. As for the lead-island distance we simply consider 1 nm in our
estimate. Substituting these values in Eq. (3.120) we obtain γim = 2.2× 1015! Through
cooling the system down to temperatures T ≈ 1 K one gets σcond one order of magnitude
larger. Supposing that the moment of inertia I can be changed at will (by using
a longer nanotube and attaching heavy objects to it), one can in principle decrease
γim. To decrease γim by a factor 1015 one needs to increase I by the same factor. For
comparison, this moment of inertia would correspond to a solid gold particle whose
radius is ≈ 1.3µm. However, this would make the driving be too small, and one would
need to change Γ, which inevitably changes γim. Since η0 depends quadratically on Γ,
one may be able to obtain ratios η0/γ as we have used in the simulations from Sec. 3.1,
but it would be very difficult to realize the same values of γ.

A somewhat more elegant workaround is to replace superconducting electrodes for the
metallic leads (and possibly islands). For all superconductive electrodes, if the Josephson
coupling energies † Ej � EC (single-electron charging energy EC = e2/2C), then the
Josephson effects are suppressed146,147 and one can describe the system approximately
with the theory we presented in Sec. 3.2. We note that considering the Josephson effects
can bring about new physics: e.g. the charge carriers in the superconductive case are
Cooper pairs and quasiparticles, and one needs to account for the superconducting
energy gap 2∆. Considering normal metal islands and superconducting leads can
also lead to new phenomena, as the Andreev current148,149. If these effects cannot be
neglected, the theory presented in Sec. 3.2 does not describe the dynamics of the rotor.

Finally, notice that in the device from Sec. 3.3.2 one has to substitute the larger island’s
charge QA(B)(t) for e in Eq. (3.119). The scale of QA(B)(t) is given by Qvar = nconte,
where ncont is a positive integer. To keep the same η0, ξ, and Γ, Icont = ncontIsing, where
Ising and Icont are the moment of inertia of the devices from respectively Sec. 3.3.1 and
Sec. 3.3.2. This means that the scale of the dimensionless angular friction coefficient
defined by Eq. (3.120) is expected to be approximately the same for both devices.
∗Note that we have transformed the equations in Ref. [131] from cgs to SI units.
†The Josephson coupling energy is Ej = ~IS/2e, where IS is the maximal supercurrent. Typically, the
tunnel resistance R is large enough so that IS = π2∆/4R, where 2∆ is the superconducting gap146.
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Figure 3.16: Sketch of the image charges induced on the leads by a charge on the island A.
The island B is not represented in the figure.

3.3.4 Discussion of some model approximations performed in
Sec. 3.2

In Sec. 3.2 we have performed some approximations to derive the stochastic and
mean-field equations of motion. In this section, we discuss the most critical of these
approximations based on the experimental proposals of Sec. 3.3.1 and Sec. 3.3.2.

3.3.4.1 Neglecting the image-charge conservative torque

In Sec. 3.2.2, we have neglected the angular dependence (through the capacitance) of the
total energy stored on the islands. This angular dependence gives rise to a conservative
torque, and we consider it here. To estimate this torque (“image-charge torque”), we
take the Coulomb interaction between the charge on the islands and the induced image
charges on the leads. We just regard the polarization on the leads coming as a response
to the charge on the islands, neglecting the lead-lead interaction. Herewith, we only
explicitly consider the device from Sec. 3.3.1. In the end, we comment on the differences
we expect for the device from Sec. 3.3.2.

We will compare the image-charge torque to the “driving torque”, i.e. the torque
arising from the driving electrostatic field. For island A charged and island B discharged,
the driving torque as a function of θ is given by

MA (θ) = −Ee` sin θ. (3.121)

For island B charged and A discharged the driving torque is simply

MB (θ) = −MA (θ) . (3.122)

Note that if the two islands are charged the driving torque is zero.
The interaction between the charge on the island and the image charge on the leads

can be understood as the situation depicted in Fig. 3.16. The electric field on the
position of the charged island A generated by the image charge from the left lead is

EL = 1
4πε

e

(dleads + 2` cos θ)2 ı̂, (3.123)

and from the right lead is

ER = − 1
4πε

e

(dleads − 2` cos θ)2 ı̂, (3.124)
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Figure 3.17: Ratio of the image-charge torque to the bias torque for the rotor of Sec. 3.3.1
in the case where just one island is charged. (a) is the result for the reference E = 0.02 V/nm,
arm length ` = 1.25 nm, and dleads = 5 nm. In the other panels we change (b) dleads = 10 nm,
(c) ` = 0.75 nm, (d) E = 2 V/nm. Note that in (d) it is unclear whether the rotor’s structure
can resist such a strong electrostatic field.

where ε is the electric permittivity of the medium (we consider the value in vacuum for
our estimate) ∗ . The total image-charge torque impinged on the rotor is

Mim = − (ERe− ELe) ` sin θ, (3.125)

where EL(R) is the magnitude of EL(R). The image-charge torque obtained for the case
where the island B is charged while island A is discharged is the same (with the same
sign) as from Eq. (3.125). The image-charge torque is zero at θ = 0 (θ = π) and θ = π/2
(θ = 3π/2) configurations, and it tends to stabilize the θ = 0 (θ = π) configuration.
Moreover, this torque does not vanish for the case where the both islands are charged —
but this state decays quickly to the singly charged state when θ = 0 or θ = π.

From Eqs. (3.121) and (3.125) (together with Eq. (3.122)) we can obtain the ratio of
the image-charge torque to the driving torque:

Mim (θ)
MA (θ) = −EL − ER

E
, (3.126)

Mim (θ)
MB (θ) = EL − ER

E
, (3.127)

We plot Mim (θ) /MB (θ) in Fig. 3.17 for different values of the parameters. In (a) we
have E = 0.02 V/nm, arm length ` = 1.25 nm, and dleads = 5 nm. In this situation, the
∗A more appropriated formula for the image-charge interaction is given in Refs. [150] and [151].
However, for many metals, this formula does not differ appreciably from the one used in this thesis
for lead-island distances in the order of nanometers.
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image-charge torque can get up to approximately 10 times larger than the driving torque
depending on the angle θ. Increasing the distance between the leads to dleads = 10 nm
(b), or decreasing the arm length to ` = 0.75 nm (c), can reduce the magnitude of
the ratio Mim (θ) /MB (θ). However, the image-charge torque is still strong for these
parameters. In Fig. 3.17 (d) we consider E = 2 V/nm, and one sees that in this situation
the magnitude of the ratio Mim (θ) /MB (θ) does not get larger than 10% for any θ.
However, it is not clear whether the rotor’s structure can resist such strong electrostatic
field. Indeed, typical magnitudes required to break chemical bonds are in the scale of 1
V/nm (see e.g. Ref. [143]).

In the device from Sec. 3.3.1 the larger charge is spread over a long island. Taking
the same timescale Γ−1 for the devices from Sec. 3.3.1 and Sec. 3.3.2, the length of
the island in Sec. 3.3.2 needs to scale linearly with Qvar in order to obtain the same
dimensionless parameters. This also implies the same dleads and `, and therefore the
electrostatic field due to the image charges EL(R) should be the same for the both
devices. The physical constraint imposed to the driving electrostatic field E, namely it
cannot be strong enough to break the chemical bonds keeping the rotor together, does
not change from one device to another. Moreover, both the image-charge torque and
the driving torque scale linearly with the charge. These considerations indicate that
the analysis performed here considering the device from Sec. 3.3.1 is also valid for the
device from Sec. 3.3.2.

3.3.4.2 Assuming a single energy level on the electronic island

In Sec. 3.2.1.2 we have considered that the electronic island has a single energy level.
The tunneling rates obtained in that section were later on used to derive the stochastic
equations of motion in Sec. 3.2.3. In this section we base the discussion of this approxi-
mation on islands realized with gold nanoparticles. Experimental characterization of
the energy spectrum of gold nanoparticles can be found in the literature. For instance,
in Ref. [135] it was determined that the average level spacing of Au55 is 170 meV. The
fact that such a measurement can be done at T = 7 K shows that this temperature is
small enough to resolve well single electronic levels in the nanoparticle.

The level spacing must also be much larger than the quantum fluctuations, which are
maximized for θ = 0 (θ = π) in the device from Sec. 3.3.1. Following152, we determine
that the fluctuations are in the order of ~Γ exp (ξ cos (θ = 0, π)) = ~Γ exp (ξ). Plugging
in the values ξ = 8 (larger than used everywhere in this thesis) and Γ = 6 ns−1 (from144),
we obtain 12 meV, which is more than 10 times smaller than the measured energy level
spacing in Au55.

3.3.5 Conclusions
In Sec. 3.3 we have discussed two experimental proposals: the first one, presented in
Sec. 3.3.1, is meant to realize the stochastic equations of motion in a “single-electron
limit”, where the islands can be either discharged or charged with one electron; the
second one, presented in Sec. 3.3.2, is meant to realize the mean-field equations of motion
in a “continuous-charging limit”, where the absolute value of the charge on the islands
is typically much larger than the elementary charge. These proposals, together with
the theory presented in Sec. 3.2, were used to unveil some of the challenges involved in
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building a device to realize the nanoelectromechanical rotor from Sec. 3.1 in the regimes
of interest (single-electron limit, continuous-charge limit, and parameter regions).
Our estimates indicate that the parameter regions whose dynamics was explored

in Sec. 3.1 are accessible with the devices proposed in Sec. 3.3. However, the image
charges induced on the leads can spoil the system through (i) dissipation on the leads
and through (ii) a conservative torque impinged on the rotor. While (i) may be cured
by replacing superconducting electrodes for the metallic leads, (ii) may restrict the
parameter regions and/or operation timescale of the system.
We reiterate that our choice for gold nanoparticles and carbon nanotubes to realize

the rotor was motivated by the amount of experimental data found in the literature.
The physical systems composing the islands, rotor arms, and the bearing can be a
completely different than the systems proposed here, and this may solve some of the
problems we found in Sec. 3.3.

3.4 Nanoelectromechanical motor: rotational
directionality

One of the intuitive applications of the nanoelectromechanical rotor we discuss in this
thesis is yielding work, i.e. recasting it as a motor. Rotary motors are paradigmatic
devices which transform input energies in controlled rotations. These rotations can
be employed e.g. to power a nanomachine153,154. In the microscale these devices have
been assembled with nanowires155,156 and microfabricated gears157. Since the advent of
the first synthetic molecular motor15,16, many different designs for nanoscale motors
were proposed37,38,132,158–161 and realized17–24. Significant steps towards application of
rotary motors have been made: for instance, they have been used to propel a molecule
in a Cu(111) surface162, rotate microscale objects163, and control chemical reactions164.
These devices can be driven in many different ways, using e.g. light15,19,157, chemical
energy16,133, electronic current20,23,24 and electric fields18,155. Here, as in Ref. [37], Ref. [
161], Ref. [38], and throughout this Chap. 3; we consider charge tunnelling to drive a
nanoelectromechanical rotor.

The charging and discharging tunneling processes depend fundamentally on the size
of the islands, and consequently on the size of the device. For nanoscale devices where
the Coulomb blockade plays a role, as the device proposed in Sec. 3.3.1, the islands
can only host a small number of electrons (in the extreme case only one). In this case,
charge fluctuations caused by the stochastic nature of the tunnelling process lead to
torque fluctuations on the rotor. For rotors with “macroscopic” islands ∗ , as the device
proposed in Sec. 3.3.2, charge fluctuations are typically irrelevant because they are
very small compared to the scale of the charge on the islands. The charge dynamics is
therefore well captured by a mean-field approach, as the one described in Sec. 3.2.4.
Similarly, torque noise arising from thermal fluctuations is typically negligible compared
to the other torques acting upon a macroscopic rotor. Moreover, this torque can be
controlled via the temperature.

∗With “macroscopic” here we mean with at least one dimension much larger than one nanometer.
For example, the electronic islands of the rotor from Sec. 3.3.2 spans micrometers in one direction.
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For many applications it is crucial to attain control over the directionality of the
rotations of the motor. One possible way of achieving this is picking a specific initial
condition which leads to rotations predominantly in the desired direction. The initial
condition is characterized by the initial angular momentum L(t = 0) = L0, the initial
angle θ(t = 0) = θ0, and the initial electronic charges QA(t = 0) and QB(t = 0) on the
islands. However, the experimental preparation of a specific initial condition can be
difficult, imprecise or even inconvenient, depending on the system scale, suppression of
noise-sources, etc. Moreover, imperfections in the rotor fabrication, e.g. in the length
of its arms, angle between them, capacitances of the islands, etc. could also lead to
uncertainty in the rotational direction. Another way of attaining rotational directionality
is to make a rotation direction “preferable”. With “preferred direction” we mean that
most of, or even all initial conditions lead to rotations in this direction. This was
achieved e.g. in the context of molecular motors133, where the sense of rotation can be
controlled by the choice of chemical reactants that power the motor. In the context
of rotors driven by electron tunneling, a spatially asymmetric arrangement of source
and drain electrodes was also proposed38. If there is no much freedom on arranging the
source and drain contacts one can introduce a preferred rotation direction by tailoring
the rotor’s geometry. For a perfectly symmetric rotor, as we have regarded until here,
it is intuitively clear that no directionality is achieved: for each initial condition leading
to a certain rotation direction there exists another one leading to the opposite direction.
This gives rise to the question which symmetries of the rotor one has to break in order
to achieve directionality of the rotatory motion.

In this section we show that a rotor with tilted, uneven arms can feature a preferred
direction of rotation. We start by introducing the modified mean-field and stochastic
equations of motion of that rotor in Sec. 3.4.1. The experimental realization of these
equations is discussed in Sec. 3.4.2. In Sec. 3.4.3, we use the mean-field equations to
show that in the continuous-charging limit tilting the arms or making them uneven
alone does not suffice to introduce a preferred rotational direction: one needs to do
both. Moreover, we define a measure of asymmetry which allows us to explore the
parameter space of the mean-field equations introduced in Sec. 3.4.1. This is to assess
the impact of fabrication imperfections in the rotor. For some areas in the parameter
space all initial conditions end up rotating in the same direction and with the same
time-averaged angular momentum. It means that no control over initial condition is
required to achieve a desired sense of rotation. In Sec. 3.4.4 we show that one can
also introduce a preferred direction of rotation in the single-electron limit using the
stochastic equations of motion. The parameter space is also investigated, and it shows
large areas of rotational directionality. Finally, we wrap this section up in Sec. 3.4.5.
The work presented in this section was published in Ref. [165].

3.4.1 Equations of motion

The equations of motion employed in Sec. 3.1 describe the dynamics of a symmetric
rotor: it was shown in Sec. 3.1.2 that there is no preferred sense of rotation due to the
invariances of the equations of motion. Although the argument in Sec. 3.1.2 was given
for the mean-field equations, this invariance also persists in the stochastic equations of
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motion ∗ . In order to break this symmetry, we bend the rotor’s arms, such that θA = θ
but now θB = θ + β, where β 6= π. We will see that this alone is not enough to break
the rotor’s symmetry and we will need to make the arms uneven. This can be achieved
by splitting the parameter η0 into two different parameters ηA and ηB. The mechanical
equations of motion, in both mean-field and stochastic approaches, are given by

d
dτ Λ = −ηA sin θAPA − ηA sin θBPB − γΛ, (3.128)
d
dτ θ = Λ, (3.129)

where in the stochastic case PA(B) are discrete stochastic variables which can acquire the
values 0 and 1 and in the mean-field case PA(B) vary continuously between 0 and 1. Both
parameters ηA and ηB contain both the strength of the driving and the “unevenness” of
the arms. We can rewrite these parameters such to assign each property to a single
parameter. We define χ and redefine η0 such that ηA =

√
2η0 sinχ and ηB =

√
2η0 cosχ.

Notice that if χ = π/4 the arms are even and we recover the symmetric equations
of motion (with η0 having the same definition as in Sec. 3.1). With this definition,
Eq. (3.128) can be rewritten as

d
dτ Λ = −η0

√
2 (sinχ sin θPA + cosχ sin (θ + β)PB)− γΛ, (3.130)

where now we have used the definitions θA = θ and θB = θ + β.
The dimensionless charging rates used here have the same definition as in Sec. 3.1,

wL
(
θA(B)

)
= e−ξ cos θA(B) , (3.131)

wR
(
θA(B)

)
= eξ cos θA(B) . (3.132)

While in the mean-field approach they enter the deterministic equations of motion

d
dτ PA(B) =

(
1− PA(B)

)
wL

(
θA(B)

)
− PA(B)wR

(
θA(B)

)
, (3.133)

in the stochastic approach they compose the transition probabilities form Eqs. (3.20)
and (3.21).

3.4.2 Experimental realization
While in Sec. 3.4.1 we have based our discussion of the equations of motion we use in
Sec. 3.4 on alterations of the mean-field and stochastic equations presented in Sec. 3.1,
it is not clear whether these alterations “make sense” from an experimental point of
view. Herewith we discuss changes to the devices from Sec. 3.3.1 (single-electron limit)
and Sec. 3.3.2 (continuous-charging limit) in order to realize the equations of motion
introduced in Sec. 3.4.1.
∗To see that, make the changes of variables suggested in Sec. 3.1.2 in the Fokker-Planck equations of
motion given by Eqs. (3.23)-(3.26).
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Figure 3.18: Sketch of possible alterations of the rotor in order to obtain uneven (χ 6= π/4),
tilted (β 6= π) arms. (a) The arm lengths `A 6= `B, (b) the tunneling timescales Γ−1

A 6= Γ−1
B ,

(c) the magnitude of the driving electrostatic fields EA 6= EB, and (d) the maximal charge
variations QA

var 6= QB
var.

3.4.2.1 Tilting the rotor’s arms: β 6= π

To attain β 6= π in the devices from Sec. 3.3.1 and Sec. 3.3.2 one needs to attach the
gold nanoparticles/nanowires angle-selectively on the support shaft (carbon nanotube),
as illustrated in Fig. 3.18. This may be yet beyond reach experimentally, specially
considering the minute radius of the carbon nanotubes needed to obtain the values of ξ
in the order of 1. We stress that one could devise the rotor in a completely different
way. For example, a chiral molecule could compose the entire rotor. From now on, we
consider that it is in principle possible to engineer β with a certain precision. Later on,
we will access which precision is needed in order to obtain rotational directionality in
the rotor.

3.4.2.2 Making the arms uneven: χ 6= π/4

The definition of the parameter ηA(B) depends on the device. For the device from
Sec. 3.3.1,

ηA(B) = e`A(B)EA(B)

Γ2
A(B)I

, (3.134)

and for the device from Sec. 3.3.2,

ηA(B) = QA(B)
var `A(B)EA(B)

Γ2
A(B)I

. (3.135)
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In the definitions we have already denoted the parameters which can in principle be
made arm-dependent with “A (B)”.
For example, one can have lengths `A 6= `B (a), as illustrated in Fig. 3.18 (a). This

can be achieved e.g. by realizing the islands with nanoparticles/nanowires of different
diameters. This procedure also produces islands of different capacitances, but this can
be corrected via gate electrodes. However, (a) also requires the tunneling lengths to be
different for different islands, otherwise ξ will be island-dependent (see the definition
given by Eq. (3.112)).
Another way of making the arms uneven is through ΓA 6= ΓB (b), as depicted in

Fig. 3.18 (b). This can be achieved e.g. by using different materials to build the
islands. However, this procedure changes the equations of motion of the charges, in
that the timescale of charging is not the same for different islands. In other words, the
dimensionless charging rates from Eqs. (3.131) and (3.132) acquire different prefactors
ΓA(B).

Making the magnitude of the driving electrostatic field island dependent, i.e. EA 6= EB
(c), has the advantage of not altering other dimensionless parameters (see Fig. 3.18 (c)).
This can be achieved in the devices from Sec. 3.3.1 and Sec. 3.3.2 because the islands
can be well separated along the support shaft’s axis.

Finally, in the continuous-charging limit one can also use the gate electrodes to make
QA

var 6= QB
var (d). This situation is illustrated in Fig. 3.18 (d). Notice that (d) just

applies to the device from Sec. 3.3.2, while (a), (b), and (c) apply to the devices from
both Secs. 3.3.1 and 3.3.2.

3.4.3 Rotational directionality in the continuous-charging limit
In this section we investigate how one can obtain a preferred rotational direction by
breaking the rotor’s symmetry in the continuous-charging limit using the mean-field
equations from Sec. 3.4.1. As described in Sec. 3.1.2, invariances of the equations of
motion can lead to coexistence of attractors in phase space which rotate in opposite
senses. We are interested in obtaining information over the basin of attraction of
those attractors, and therefore we use the time-averaged angular momentum defined by
Eq. (3.11). In particular we are interested in obtaining 〈Λ〉 6= 0 (defined by Eq. (3.18)),
which is equivalent to attaining a preferred direction of rotation. In Sec. 3.4.3.1 we show
that alterations of β or χ alone do not lead to rotational directionality. In Sec. 3.4.3.2 we
show how one should alter both parameters simultaneously to maximize directionality.

3.4.3.1 Changing either β or χ: no directionality of the rotatory motion

As mentioned before, individual alterations of the parameters β or χ (e.g. just β 6= π)
do not lead to a preferred rotation direction. This occurs because in that case, the
mean-field equations of motion from Sec. 3.4.1 also possess an invariance: for every
counterclockwise-rotating solution (θ(t),Λ(t)) there is a clockwise-rotating solution
(θ̃ = −θ(t)+φ, Λ̃ = −Λ(t)), where φ is a fixed angle. Therefore, 〈Λ〉 = 0. Although those
individual changes in the parameters do not introduce a preferred rotation direction, it
is instructive to understand the effects of changing β and χ in the initial-condition space.
Examples can be seen in Fig. 3.19, where 〈Λ〉 is plotted as a function of the initial
conditions (Λ0, θ0). Red stands for clockwise (negative Λ) and blue for counter-clockwise



76 Chapter 3 Switching between electromechanical regimes in a nanoscale rotor

Figure 3.19: Time averaged angular momentum (color) 〈Λ〉 as a function of the initial
conditions (Λ0, θ0) for ξ = 2.0, γ = 1, η0 = 10 and P̃A(τ=0) = P̃B(τ=0) = 0. In (a) χ = 0.7
and β = π. Marked with white lines is the width of several regions with the same 〈Λ〉. In
(b) χ = π/4 and β = 2 (notice the shifted θ0-axis). The color coding is as in Fig. 3.7. These
results were obtained using the mean-field equations from Sec. 3.4.1.

(positive Λ) rotational direction. These two colors also indicate the basins of attraction
of the two rotatory attractors that coexist in phase space. Notice that although 〈Λ〉
changes sign across the initial-condition space, its absolute value is constant. In Fig. 3.19
(a) one sees the case χ 6= π/4 and β = π, while in (b) the case χ = π/4 and β 6= π is
shown. The Fig. 3.19 (a) looks qualitatively similar to Fig. 3.7 (a) and (b). Again, one
has fixed points (the same as for the symmetric rotor) and a patterned structure that
spirals towards them. Nevertheless, the point anti-symmetry around the fixed points
θ = π/2 and θ = 3π/2 (Λ = 0) is no longer present. This can be seen by comparing the
lengths of the line segments 1 and 2 (3 and 4) in Fig. 3.19 (a), which are the widths of
regions with the same 〈Λ〉 measured symmetrically with respect to the aforementioned
fixed points. The point anti-symmetry around the fixed points θ = 0 and θ = π is
preserved though. Fig. 3.19 (b) presents other differences when compared to Fig. 3.7 (a)
and (b): Two fixed points disappear and other two are localized at different positions,
namely θ = 2π − β/2 and θ = π − β/2. Nevertheless, the initial-condition space is still
point anti-symmetric with respect to the fixed point positions, and therefore again one
has 〈Λ〉 = 0. The complete breakage of these point anti-symmetries is just possible by
setting both χ 6= π/4 and β 6= π, and it is exactly this symmetry-breaking that will be
exploited to generate directed rotational motion in the next section.

3.4.3.2 Changing both β and χ: directionality of the rotatory motion

In order to obtain a preferred rotational direction one needs to set χ 6= π/4 and β 6= π
simultaneously. The resulting set of equations of motion does not feature pairs of
solutions (θ(t),Λ(t)) and (θ′(t),Λ′(t)) such that θ′(t) = −θ(t) + φ and Λ′(t) = −Λ(t).
Since this invariance is no longer present in the equations of motion, one expects
directionality to emerge. However, we are not just interested in showing that for certain
values of the parameters one obtains directionality; we also want to obtain the regions of
directionality in the parameter space. Moreover, we want to know what is the “degree
of directionality” in these regions, i.e. a measure of how many initial conditions lead to
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the same rotation sense. In the following we define a directionality measure, which will
be used later on in parameters scans in order to pursue the aforementioned objectives.

Directionality measure in the initial-condition space

To quantify the directionality of the rotatory motion we define a directionality measure
in the initial-condition space

M = 〈Λ〉√
〈Λ〉2

, (3.136)

where the overbar was defined in equation (3.18). Note that M is zero when 〈Λ〉 = 0.
For the case where all the θ0 lead to rotation in the same direction (and with the same
time-averaged angular momentum) one has M = ±1. By changing from negative to
positive values of M (or vice-versa), we just change the direction of rotation. The
possible values of M and their meanings can be summarized as

M = 1: All initial angles lead to steady-state counterclockwise rotations with the same
〈Λ〉;

M = −1: All initial angles lead to steady-state clockwise rotations with the same 〈Λ〉;

0 < M < 1: The ensemble of trajectories obtained through an uniform distribution over
the initial angle θ0 rotates counterclockwise on average in the steady-state, but
not with the same 〈Λ〉;

−1 < M < 0: The ensemble of trajectories obtained through an uniform distribution
over the initial angle θ0 rotates clockwise on average in the steady-state, but not
with the same 〈Λ〉;

M = 0 The ensemble of trajectories obtained through an uniform distribution over the
initial angle θ0 is standstill on average.

Notice that the cases where |M | 6= 1 may include standstill, oscillatory, and rotatory
regimes for different initial angles.

In the following, we use the directionality measure defined here to assess directionality
over a large set of parameters.

Numerical evaluation of M in the parameter space

The Fig. 3.20 shows M as a function of the parameters β and χ. White indicates
no rotational directionality, while from white to blue (red) an increasing value of the
directionality measure is found, with a positive (negative) 〈Λ〉. In Fig. 3.20 we set
the parameter γ = 1 and vary η0 (in (a) to (c)). Along the two lines β = π and
χ = π/4 we have M = 0, as expected. The M values are also anti-symmetric about
those lines and, consequently, point-symmetric with respect to (χ = π/4, β = π). This
point-symmetry steams from the analytic form in which the parameters χ and β appear
into the mean-field equations from Sec. 3.4.1, and therefore it is present independently
of the chosen γ and η0 (and ξ). In Fig. 3.20 (a) (η0/γ = 5) and (b) (η0/γ = 10) there
are regions with |M | = 1, in which a total rotational directionality is achieved. For



78 Chapter 3 Switching between electromechanical regimes in a nanoscale rotor

Figure 3.20: Directionality measure M defined in equation (3.136) as a function of the
parameters (χ, β), for ξ = 2 and γ = 1. These results were obtained using the mean-field
equations from Sec. 3.4.1.

instance, the point C in Fig. 3.20 (b) has M = 1. In this case all the initial conditions
lead to the same direction and magnitude of rotation (even for large |Λ0|). However, in
Fig. 3.20 (a) almost all the parameter space presents M = 0, since for such small ratio
η0/γ the rotor has 〈Λ〉 = 0 for most of the (χ, β) values. Regions where |M | < 1 are
also displayed in Fig. 3.20 (b) and (c) (η0/γ = 30). Interestingly, Fig. 3.20 (c) presents
no |M | = 1 regions, although larger extensions of the parameter space have |M | > 0.
No significant changes in these figures are verified when ξ = 1 or ξ = 4.
Examples for the cases 1 > |M | > 0 are the points A and B. For these points we

generate the initial-condition space of Fig. 3.21. In Fig. 3.21 (a)((b)) we plot 〈Λ〉 in
the initial-condition space for the same parameters as in the point A(B) of Fig. 3.20.
There, we find M = 0.47(M = 0.88). The white line is drawn in Fig. 3.21 just with the
purpose of indicating the locus where the average over initial conditions is performed.
By comparing the segments of the white line which are inside regions with positive
and negative 〈Λ〉 in both Fig. 3.21 (a) and (b), and noting that |〈Λ〉| is the same for
both red and blue regions, one can understand why the point B presents a stronger
rotational directionality than point A in Fig. 3.20 (b). We do not show a figure with
〈Λ〉 as a function of the initial conditions for the same parameters as on the point C
of Fig. 3.20 (b) because all the initial conditions lead to the same 〈Λ〉 value (even for
Λ0 6= 0).

3.4.4 Rotational directionality in the single-electron limit
If the size of the rotor (in particular the islands) is shrunk, such that only single electrons
are transferred, the mean-field description used in Sec. 3.4.3 (and presented in Sec. 3.4.1)
is not suitable. The charge fluctuations can be of the order of the mean values and it
is more appropriate to consider the (dis)charging of the islands as a hopping process.
The stochastic equations of motion presented in Sec. 3.4.1 are suited to describe the
extreme situation where the islands can bear a maximal charge −e (single-electron
limit). Herewith, we use these equations to show that one can introduce a preferred
direction of rotation in the rotor within the single-electron limit. For the sake of clarity,
we consider that torque noise stemming from thermal fluctuations is negligible compared
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Figure 3.21: The averaged angular momentum 〈Λ〉 as a function of the initial conditions
(Λ0, θ0) for the set of parameters correspondent to (a) point A (χ = 0.7, β = 4.2), (b) point B
(χ = 0.55, β = 4.3) in Fig. 3.20 (b) . The color coding is as in Fig. 3.7. Along the white line
in the figures the directionality measure was calculated, as (a) M ≈ 0.47 and (b) M ≈ 0.88.
These results were obtained using the mean-field equations from Sec. 3.4.1.

to that one coming from charge fluctuations.
In Sec. 3.4.4.1 we introduce a new directionality measure suited to the stochastic

equations. By means of this measure, we scan the parameter space of the stochastic
equations for regions of strong directionality in Sec. 3.4.4.2.

3.4.4.1 Directionality measure for the stochastic equations

In order to assess how precise one needs to fabricate the rotor to obtain rotational
directionality, we will calculate directionality measure as a function of the parameters
(χ, β). However, since in the present model the tunneling is a stochastic process, one
needs to redefine the directionality measure. Instead of considering 〈Λ〉 and 〈Λ〉2,
we consider their average over the realizations 〈〈Λ〉〉re and 〈〈Λ〉〉2re, such that the new
directionality measure is

Mstoch = 〈〈Λ〉〉re√
〈〈Λ〉〉2re

, (3.137)

where 〈...〉re is an average over realizations and the overbar the same average over
initial conditions as in equation (3.136). The directionality measure Mstoch = 0 when
〈〈Λ〉〉re = 0. For Mstoch = ±1 one has all initial conditions leading to net rotations in
the same direction with the same 〈〈Λ〉〉re, such that the sign just indicates the direction
of rotation. It must be noted that the sign of Λ(t) within a single trajectory can change
with time, even though we have Mstoch = ±1.

Moreover, for the parameters we have used in our simulations, all dependence on
the initial conditions is quickly erased and one just needs to average over realizations.
Therefore values 0 < Mstoch < 1 and −1 < Mstoch < 0 are not observed.

3.4.4.2 Numerical evaluation of Mstoch in the parameter space

As we have done in Sec. 3.4.3.2 in the continuous-charging limit, we calculate Mstoch
numerically in the parameter space. Fig. 3.22 shows Mstoch as a function of the
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Figure 3.22: Directionality measure Mstoch defined in equation (3.137) as a function of the
parameters (χ, β), for ξ = 2 and γ = 1 (same parameter set and color coding as in Fig. 3.20).
These results were obtained using the stochastic equations from Sec. 3.4.1.

parameters β and χ for the same γ, η0 and ξ as in Fig. 3.20. White indicates no
rotational directionality, while an increasing value of the directionality measure is
indicated by a transition from white to blue (red), with a positive (negative) 〈〈Λ〉〉re.
Mstoch presents the same symmetry in the parameter space as M does. Along the two
lines β = π and χ = π/4 we have the expected Mstoch = 0 value. The Mstoch values are
also anti-symmetric about those lines and, consequently, point-symmetric with respect
to (χ = π/4, β = π). Again, this symmetry is independent of the chosen η0 and γ. The
Fig. 3.22 features extensive regions of total rotational directionality, namely in the red
and blue areas (as mentioned before, we did not observe the cases −1 < Mstoch < 0
and 0 < Mstoch < 1). This represents a striking difference to the results obtained
through the mean-field equations (Fig. 3.20). The results also do not depend on η0/γ
so sensitively as in the mean-field case (compare Fig. 3.22 with Fig. 3.20). Nevertheless,
the |〈〈Λ〉〉re| achieved are smaller than the typical |〈Λ〉| from the mean-field case. This
can be partially explained by the fact that Λ(t) can change its sign within a single
trajectory.

3.4.5 Concluding remarks
In the present section we have studied how to control the rotational direction of an
electromechanical rotor. We considered two different limits: the continuous-charging
limit, whose dynamics were described using the mean-field equations of motion; and
the single-electron limit, whose dynamics were described using the stochastic equations
of motion. The continuous-charging limit is suited to systems where the islands are big
objects which can bear many electrons (and wholes). The single-electron limit is suited
to nanoelectromechanical devices where the Coulomb blockade effect is relevant and
whose islands are maximally occupied by a single elementary charge.

In the continuous-charging limit, the sense of rotation can be controlled in two
different ways: one can either select the rotational direction via choosing an appropriate
initial condition, or one can break the symmetry of the rotor to introduce a preferred
rotational direction. In order to experimentally perform the first method, the precision
of the initial condition preparation must be high enough to resolve structures in the
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initial-condition space. While our mean-field calculations show that increasing the
ratio η0/γ also increases the initial-condition space size of the structures, through
the hopping process calculations one sees that charge fluctuations can destroy the
dependence of the system on the initial condition. This means that an initial-condition
preparation scheme may fail for a real nanoelectromechanical rotor (with nanoscale
islands). Apart from that, fabrication imperfections can also spoil the attempts of
selecting a specific initial condition which leads to a certain direction of rotation. In
contrast, our numeric simulations show that, by breaking the rotor’s symmetry, most
or even all initial conditions lead to the same rotational direction. For this reason, we
focused on the symmetry-breaking procedure.
We have shown that one needs to change the system’s parameters χ and β simul-

taneously in order to break the symmetry of the rotor. The parameter β is tuned by
setting a tilting angle between the two rotor’s arms. There are many ways of tuning
χ, e.g. impinging electrostatic fields of different magnitudes on the islands A and B or
(in the continuous-charging limit) having islands with different maximal charges QA(B)

max .
The parameter space of both mean-field and stochastic equations features areas where
a total rotational directionality is present. In these areas, initial-condition space scans
indicate that the same 〈Λ〉 (〈〈Λ〉〉re) in the mean-field (stochastic) equations is obtained
independently of the chosen initial condition. The symmetry-breaking procedure works
for large sections of the parameter space. In an experimental realization of our equations,
imperfections in the rotor fabrication within the limits of these sections would not spoil
the symmetry-breaking. As shown in Sec. 3.4.4, the directionality is not fundamentally
linked to determinism, as a preferred rotational direction still exists although charge
fluctuations completely erase the dependence on the initial conditions. When compared
to the mean-field simulations, our stochastic simulations feature large regions in the
parameter space leading to rotational directionality. Thus, this procedure may work
specially well for nanoelectromechanical rotors.





Chapter 4

Summary and outlook

In this thesis we investigated coupled electronic and nuclear (mechanical) dynamics in
the nanoscale, and we focused on their dependence upon the system parameters. As
discussed in the introductory Chap. 1, this coupling can lead to complex dynamics
nontrivially dependent on the system parameters. As a consequence, a specific function-
ality/phenomenon exists in a limited region of the parameter space. In this thesis, we
were interested in this kind of nanoscale complex systems, and how to tune into regions
of their parameter space leading to desired dynamics. We considered two systems which
are “complimentary” in many aspects.

In Chap. 2 we considered a minimal example from supramolecular chemistry commonly
found in nature39,40: a molecular dimer composed of identical molecules. This system
favors a quantum description in that it can display intrinsically quantum phenomena
(e.g. quantum beating41,42).

In Chap. 3 we considered a synthetic nanomachine: a nanorotor driven by charge
tunneling. It favors assembly integrating (typically) larger, bulk-like systems such as
nanoparticles and carbon nanotubes. These systems are often “more classical” than a
molecular dimer: for example, charge tunneling between nanosized electrodes is often
described using rate equations1,2, and wall rotation in a multi-walled carbon nanotube
is often described via Langevin equations3.

In the following, we summarize our main findings and discuss some of the new research
directions stemming from the present work.

4.1 The molecular dimer

4.1.1 Summary
In Chap. 2 we investigated the nonradiative decay (NRD) dynamics in molecular
aggregates, focusing on their dependence upon the intermolecular interaction. Electronic
NRD is critical in a variety of molecular systems. In nature, it is essential e.g. in the vision
process6,7,27,28, photosynthesis8,43,44, and DNA photoprotection9,45–47. In technological
applications, it is important in the context of e.g. OLEDs48, light-driven molecular
rotary motors49, and light-driven molecular switches10,25,26.

As a proof of concept we considered the simplest aggregate featuring the mechanism
we are interested in: a dimer formed by identical monomers interacting via transition
dipole-dipole interaction. Typically, photoemission in molecular systems occurs from
the lowest excited state of a given multiplicity (Kasha’s rule62). Therefore, we consider
two electronic states in the monomer model. The electronic excited state can decay
nonradiatively. We consider the typical situation (e.g. via conical intersections) where
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the NRD occurs in a limited (well-localized) region of the monomeric nuclear space
(NRD channel).

Since molecular aggregates can be formed from a variety of molecules, they can
feature various monomeric potential energy surfaces (PESs). For simplicity, we consider
here harmonic, shifted PESs. This model directly relates to previous studies of dimers,
where NRD has not been taken into account (see e.g. Refs.51,75–78,80). A single nuclear
coordinate is considered explicitly in each monomer. The influence of the other coordi-
nates upon the dynamics is treated via a standard quantum open systems approach.
Explicit consideration of an additional coordinate would introduce numerical difficulties
and provide no further insight into the mechanism we are interested in. By solving
the resulting multilevel Redfield equation of motion we showed that the dimer has a
different NRD lifetime than its monomer. The magnitude of this difference depends on
the strength of the intermolecular interaction. Remarkably, the way the intermolecular
interaction influences the NRD dynamics depends on the position of the NRD channel:
we found that the NRD lifetime can increase, be practically insensitive, or decrease
with increasing interaction strength. The range of NRD lifetime variation depends
exponentially on the shift between the monomeric PESs.
The intermolecular interaction we considered here is often relevant in molecular

aggregates64–66. Hence, our results show that molecular aggregation can lead to signifi-
cant changes in the NRD lifetime. The influence of molecular aggregation upon the
radiative lifetime has been extensively studied67–69, and it is well understood e.g. in J-
and H-aggregates. Our results expand this picture considerably by showing that also
the nonradiative component of the lifetime is changed by aggregation. Our mechanism
just requires transition dipole-dipole interaction and well-localized monomeric NRD
channels. These requirements are commonly met by aggregates/molecules, and therefore
this mechanism will be present in a variety of molecular aggregates.
A direct consequence of our mechanism is to the fluorescence quantum yield of

molecular aggregates. We showed an examplary calculation where the NRD lifetime
can be tuned over 4 orders of magnitude by varying the interaction strength, and the
tunability is not limited to that value. This can considerably alter the fluorescence
quantum yield, specially in (but not limited to) J-aggregates, where bright states are
located at the bottom of the exciton band. Our results also indicate that quantum
yield measurements can, e.g., be exploited for the detection of molecular aggregation,
pinpointing of NRD channel locations in molecules, and to infer the geometry of
molecular aggregates.

4.1.2 Outlook
Consideration of real molecules/aggregates would make it possible to quantitatively test
the mechanism introduced here against experimental results. This is a clear next research
step. In practice, this means one needs to substitute PESs suited to specific molecules for
the ones considered here. This may include more than one reaction coordinate and non-
harmonic PESs, as exemplified by retinal7,27. The numerical simulation performed here
cannot account for more than two reaction coordinates. To include more coordinates,
one can e.g. determine the dimer PESs via Born-Oppenheimer approximation and
use surface hopping to simulate the dynamics? ? . For arbitrary monomer PESs, the
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transition dipole-dipole interaction can impose more severe modifications to the NRD
dynamics. This is because the shape of the dimer PESs can differ from the monomer
excited-state PES’s shape even in the adiabatic limit. For instance, the dimer’s PESs
may present a minimum even if the excited-state PES of the monomer does not.
This can lead to a fundamental change of the nuclear dynamics in the diabatic case,
e.g. stabilizing a photodissociation.
In the end of Sec. 4.1.1 we discussed the consequences of our mechanism to the

fluorescence quantum yield. Actually, it is well known that fluorescent molecules
can become non-fluorescent when in the aggregate state. This phenomenon is called
aggregation-caused quenching (ACQ), and is a hindrance to solid state devices where one
is interested in a large quantum yield (e.g. in OLEDS)166,167. In ACQ, the electronic ex-
citation of the aggregate quickly decays via nonradiative pathways. It is also known that
aggregation can also make non-fluorescent molecules become fluorescent. This is known
by aggregation-induced emission (AIE), and has long been attributed to restriction of
rotational motion in the monomer166,167. Our mechanism can decrease/increase the
NRD lifetime over many orders of magnitude and therefore can also lead to ACQ/AIE.
In some molecules for which AIE occurs, the distortion of the aggregate’s PESs induced
by intermolecular interaction may be responsible for the restriction of intramolecular
rotational motion. If confirmed, this would link the previous explanation of AIE with
our mechanism.
A very exciting question stemming from our work is whether our mechanism is

involved in singlet exciton fission. In organic semiconductors, a spin-singlet exciton
may convert into a pair of spin-triplet excitons residing on different chromophores,
entangled in an overall spin-zero state. This process is called singlet exciton fission,
and it has long commanded interest as an exceptionally fast channel to generate triplet
excitons. It may find application in the area of single-junction solar cells: by converting
high-energy photons into two low-energy excited states, singlet fission offers a means
to overcome thermalization losses. The mechanism behind this phenomenon is as-yet
unknown. Recently, it has been suggested that NRD processes can also be involved
in singlet fission. Some theoretical studies propose a conical intersection between a
photoexcited singlet state and an intermediary dark state in the monomer level to
be involved in the singlet fission mechanism — see e.g. Ref. [71], whose findings are
supported by Ref. [70]. Through aggregation this dark state, which is not accessible to
the excited-state dynamics of the monomer, becomes populated. Since our mechanism
accounts for such situation, it may lead to singlet fission.

4.2 The nanoelectromechanical rotor
In Chap. 3 we investigated the dynamics of nanoscale rotors driven by charge tunneling.
The rotors are composed of electronic islands linked to a shaft via insulating arms. The
electronic islands can exchange electrons with flanking leads. A driving electrostatic
field couples electronic and mechanical degrees of freedom. These systems integrate
electronic and mechanical functionality, being able to work e.g. as a sensor, switch,
current rectifier, charge pump, and motor. Functionalities like these are fundamental to
the development of nanomachinery and nanocircuits54,55.
We showed that the typical amount of charge on the islands, which is regulated by
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Figure 4.1: Sketch of the current rectifier and its main parts. The rotor is composed of an
electronic island connected to a support shaft via insulating rigid arm. A time-dependent
uniform electrostatic field E(τ) permeates the region occupied by the rotor. The leads
are biased at time-dependent chemical potentials µL(R)(τ). The timescales Γ−1

L and Γ−1
R of

tunneling from/to the island to/from respectively the left and the right lead are in general
different.

their capacitance, is critical to the rotor’s dynamics (and thereby functionality). The
capacitance depends on the size of the islands, and hence it is crucial in a nanoscale
device. Generic models of the rotor were already introduced in the literature36–38,
but hitherto not linked to the island’s capacitance. We established this link. We
proposed experimental realizations of the rotor based on materials and techniques which
are available nowadays. Thereby we showed that the rotor can be fabricated with
the present-day technology. Finally, we showed that rotational directionality can be
achieved, which is important in the context of motors.
In the following, we provide a more detailed account of our achievements.

4.2.1 Summary
Mean-field and stochastic approaches can lead to different dynamics

In the literature one can identify two generic models of this type of rotor36–38, which we
refer to as “mean-field” and “stochastic” models in this thesis. In Sec. 3.1 we showcased
the dynamics of the mean-field model, and compared them to the dynamics of the
stochastic model. The mean-field dynamics had already been analyzed in detail in Ref. [
37], but we showed the existence of a new, chaotic-like regime. The transition between
this regime and the rotatory regime is characterized by a discontinuous change in the
current through the system. Therefore, one can use this regime to realize a switch in
the nanoscale.
We showed that the mean-field and stochastic approaches can lead to completely

different dynamics, specially for large dissipation (which typically can be easily attained
experimentally). For example, the aforementioned discontinuity in the current is not
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Figure 4.2: Charge accumulated on the right lead δQR as a function of time τ for various
values of the ratio ΓL/ΓR. ωv is the frequency of the voltage across the leads and of the
driving electrostatic field (in phase). Note that no rectification is observed for the symmetric
case ΓL/ΓR = 1.

observed in the stochastic model. This means that the mean-field and stochastic
approaches predict different functionalities for the same set of parameters. Therefore, it
is important to know under which conditions one can use which model.

The capacitance of the islands determines the approach to use

In Sec. 3.2 we derived the mean-field and stochastic models from the “orthodox” theory
of single electron tunneling59. This provides a clear set of conditions under which the
models are valid. We showed that the stochastic model is valid in a “single-electron
limit”, where the islands are either discharged or charged with a single excess elementary
charge (e). This was expected because an analogous model had already been derived
for the electron shuttle30. We also showed that the mean-field model is valid in a
“continuous-charging limit”, where the typical amount of charge on the islands is much
larger than e. Since in this limit the charge fluctuations are negligible compared to
the average charge on the islands, deterministic equations of motion were expected.
However, the exact form of those equations was unclear before the derivation. The
typical amount of charge on the islands is regulated by their capacitance, and hence the
capacitance determines which approach is valid. As already mentioned, the capacitance
is size-dependent and therefore crucial in a nanoscale device. In this context, an
important question is whether one can reach the capacitance values needed to access
the aforementioned limits in a real device.

The rotor can be realized with the present-day technology

In Sec. 3.3 we proposed experimental realizations of rotors to be assembled with materials
which are extensively studied: gold nanoparticles and multi-walled carbon nanotubes.
The bearing4,5 and the necessary site-selective attachment of gold nanoparticles on
carbon nanotubes56,57 were already realized experimentally. The interaction between the
charge on the islands and the image charge on the metallic leads poses a hindrance to our
experimental realization. The most promising workaround is replacing superconducting
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electrodes for the conducting leads.
Our proposals realize rotors in the single-electron and continuous-charging limits.

Moreover, they “connect” the two limits. This is possible because the rotor dynamics
is essentially confined to two dimensions, which need to be sized in the nanoscale. So
one can use the third dimension to extend the islands and consequently increase their
capacitances. Indeed, in the continuous-charging limit the device proposed here has
two dimensions sized in the nanoscale and one sized in the microscale.
Our findings indicate that it is possible to achieve the dynamics and functionalities

showcased in Sec. 3.1 in experiments.

Rotational directionality can be achieved

In the context of nanomotors it is often desirable to have control over the sense of
rotation. For some rotors driven by charge tunneling this can be achieved via control
over the initial condition. However, charge fluctuations (among other noise sources)
and fabrication imperfections can spoil this strategy. A more robust alternative is to
introduce a preferred direction of rotation.

In Sec. 3.4 we showed how to achieve rotational directionality via a symmetry-breaking
principle working in both the single-electron and continuous-charging limits. To break
the symmetry, we need to set an angle β 6= π between the rotor’s arms and also
make χ 6= π/4. There are many ways of tuning χ, e.g. impinging electrostatic fields
of different magnitudes on the islands A and B or (in the continuous-charging limit)
having islands with different maximal charge variations QA(B)

max . We showed that this
symmetry-breaking procedure works for large sections of the rotor’s parameter space in
both limits. In an experiment, imperfections in the rotor fabrication within the borders
of these sections would not spoil the symmetry-breaking.

4.2.2 Outlook
Maybe the most appealing feature of nanoscale rotors driven by charge tunneling is
their versatility: the same device can function as a sensor, a switch, and a motor. In
other words, these rotors concentrate many functionalities which are fundamental to the
development of nanomachinery and nanocircuitry54,55 in a single device. This is possible
because one can access all different dynamical regimes by tuning parameters not fixed
by the fabrication of the device (e.g. the driving electrostatic field or the voltage across
the leads). We can show that the rotor can also function as a current rectifier, which
is one of the fundamental elements of electrical circuits. We use the same strategy
as the one employed in Ref. [34] to recast the electron shuttle from Gorelik et al.29,30
as a current rectifier. We consider AC voltage (and AC driving) between the leads,
and (for simplicity) a rotor of a single arm. To break the left/right symmetry and
induce a net current to one of the sides, we let the (inverse) timescale of tunneling Γ be
lead-dependent: ΓL 6= ΓR. This can be achieved e.g. by displacing the rotor towards
one of the leads, such that it is not exactly in the middle (as represented in Fig. 4.1).
In Fig. 4.2 we plot mean-field results for the total charge transferred to the right lead
δQR

∗ as a function of time for some values of the ratio ΓL/ΓR. A nonvanishing net
∗In units of −Qvar, where Qvar the maximal charge variation on the island.
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current through the system arises for ΓL 6= ΓR. We stress that the mechanical motion
is fundamental for the rectification mechanism described here, as a fixed island does not
lead to current rectification.
The simulations presented in this thesis had the purpose of showing principles. For

example, we used them to show that obtaining rotational directionality in charge-
tunneling-driven rotors is possible, and that chaotic-like dynamics may arise even
if charge fluctuations are negligible (continuous-charging limit). When proposing
experimental realizations, we showed that it is possible to fabricate a rotor with present-
day technology, whose estimated parameters have the same values as those used in our
simulations. The next step is to simulate the proposed devices using schemes which
account for the specific materials to be used in the fabrication. In particular, this should
involve molecular dynamics simulation of the multi-walled carbon nanotube forming
the bearing (as in Ref. [3]), and calculation of the electrostatic potential generated
by the induced charge distribution on the leads via the Poisson’s equation. More
sophisticated techniques for the simulation charge transport168 may also be used. These
simulations can show in detail how the rotor should be fabricated in order to reach a
desired dynamics/functionality, and thereby motivate experimentalists to pursue this
fabrication.





Appendix A

Damping due to light emission
Herewith we consider in detail the coupling between the rotating charges on the islands
and the electromagnetic field, item 3) from Sec. 3.3.3.3. Because of this coupling, the
rotor emits light, and therefore the ensuing power loss should be in principle taken into
account. We will show now that the power radiated by the rotor can be neglected in
the timescale of the system dynamics.

We can estimate the emitted power by modeling the singly-charged rotor as a rotating
point dipole

p = p0 (cos Ωt̂ı + sin Ωt̂) , (A.1)
where ı̂ and ̂ are unit vectors (see inset in Fig. 3.2). In Eq. (A.1) p0 is the magnitude
of the dipole and Ω is the angular velocity of the rotation. In the following, we consider
the device from Sec. 3.3.1. In the end, we comment on the differences one can find
for the device from Sec. 3.3.2. For the estimate of the radiated power, we consider
idealized rotations, whose dynamics are depicted in Fig. 3.3 (a) and (b). Within these
rotations, the rotor is always singly charged and the dipole moment generated by the
rotor’s charge distribution at the point r is

p(r) = −e (rQ − r) , (A.2)

where the position of the excess charge rQ = `û. We take then p as the average value
of p(r) over the rotor:

p = 1
`

∫ `

−`
drp(r), (A.3)

where the variable r runs over the rotor’s length (see Fig. 3.14). We obtain p0 = −e` in
Eq. (A.1). The power radiated by a rotating point dipole is

Prad = µp2
0Ω4

6πc , (A.4)

where µ is the electric permeability of the medium (vacuum in our estimate) and c is the
light velocity. We consider an extreme angular velocity: the outer wall of the double-
walled nanotube rotates at the critical velocity vc at which the nanotube collapses3.
The angular velocity is then Ω = vc/Rsh = Ωc = 8 rad/ps, where Rsh = 0.5 nm is the
radius of the support shaft nanotube. Plugging in the the numbers in Eq. (A.4) gives

Prad ≈ 5.8× 10−31 J/s, (A.5)

while the critical rotational energy is

Ecr = I2Ω2
c

2I = 1.3× 10−14 J, (A.6)



92 Appendix A Damping due to light emission

where to estimate the rotor’s moment of inertia I we have considered a support-shaft
nanotube 5 nm long and we have used Ref. [145]. If the rotor is given an initial energy
Ecr, it will take more than 6 hours to entirely convert this energy into light. For
comparison, the period of a single rotation at critical angular velocity is ≈ 0.8 ps!

The device from Sec. 3.3.2 has a larger moment of inertia and a larger absolute value
of the charge Qvar. While the moment of inertia contributes linearly to the rotational
energy Ecr, the charge contributes quadratically to the radiated power through p0. If
we consider a factor 103 in I (for extending the nanotube’s length into the micrometer
scale) and Qvar = 103e (to keep η0), our former estimate of 6 hours gets smaller by a
factor 103, i.e. ≈ 20 s. Still, this is very long compared to both the critical angular
velocity and the timescale of item 1) from Sec. 3.3.3.3 (nanosecond).
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Mean-field charge dynamics for the case with
the gate electrode
We rewrite the tunneling rates from Eqs. (3.53)-(3.54) (now using the free energies for
the case with the gate electrode, Eqs. (3.43) and (3.44)) using the dimensionless charges

Q̃A(B) = QA(B)

∆VLRC
, (B.1)

∆Q̃ = e

∆VLRC
, (B.2)

where here C = CR + CL + Cg, obtaining

W±
L

(
nA(B), θA(B)

)
= −

(
1

∆Q̃

) ∆Q̃
2 ±

(
−Q̃A(B) − CR+Cg

C
− VgCg

∆VLRC

)
CRL

(
θA(B)

) [
1− exp

{
βCB ∓ α

[
Q̃A(B) + CR+Cg

C
+ CgVg

∆VLRC

]}] ,
(B.3)

W±
R

(
nA(B), θA(B)

)
= −

(
1

∆Q̃

) ∆Q̃
2 ±

(
Q̃A(B) − CL+Cg

C
+ VgCg

∆VLRC

)
CRR

(
θA(B)

) [
1− exp

{
βCB ± α

[
Q̃A(B) − CL+Cg

C
+ VgCg

∆VLRC

]}] ,
(B.4)

where we have not considered any degeneracy. If all degeneracies s±L(R) are the same,
Eqs. (B.3) and (B.4) are just renormalized and all the following discussion/derivation is
still valid. The dependence on the temperature is summarized by the parameters

α = ∆VLRe

kBT
, (B.5)

βCB = e2

CkBT
. (B.6)

The parameters α and βCB represent two different energy scales normalized by the
thermal fluctuations, respectively the power-source and single-electron charging energy
scales. We denote the probability density of the island A (B) being charged with Q̃A(B)

at the time t by p̃
(
Q̃A(B), t

)
, and we define new tunneling rates and injection/ejection

rates, respectively w̃±L(R)

(
Q̃A(B), θA(B)

)
and w̃in/out

(
Q̃A(B), θA(B)

)
, by

w̃±L
(
Q̃A(B), θA(B)

)
= ∆Q̃W±

L

(
nA(B), θA(B)

)
, (B.7)

w̃±R
(
Q̃A(B), θA(B)

)
= ∆Q̃W±

R

(
nA(B), θA(B)

)
, (B.8)

w̃in
(
Q̃A(B), θA(B)

)
= ∆Q̃Win

(
nA(B), θA(B)

)
, (B.9)

w̃out
(
Q̃A(B), θA(B)

)
= ∆Q̃Wout

(
nA(B), θA(B)

)
(B.10)
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(note that injection and ejection rates for a continuous spectrum on the island were
defined before in Eqs. (3.55) and (3.56)). If we “freeze” the mechanical degree of
freedom, these rates define the following master equation for the probability density:

d
dt p̃

(
Q̃A(B), t

)
∆Q̃ =w̃out

(
Q̃A(B) −∆Q̃, θA(B)

)
p̃
(
Q̃A(B) −∆Q̃, t

)
+

w̃in
(
Q̃A(B) + ∆Q̃, θA(B)

)
p̃
(
Q̃A(B) + ∆Q̃, t

)
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w̃out
(
Q̃A(B), θA(B)

)
+ w̃in

(
Q̃A(B), θA(B)

)]
p̃
(
Q̃A(B), t

)
. (B.11)

In the limit ∆Q̃ → 0, Eq. (B.11) is equivalent to the Fokker-Planck equation (angle
entering as a parameter)

d
dt p̃

(
Q̃A(B), t

)
= ∂

∂Q̃A(B)

{
p̃
(
Q̃A(B), t

) [
w̃in

(
Q̃A(B), θA(B)

)
− w̃out

(
Q̃A(B), θA(B)

)]}
.

(B.12)
This Fokker-Planck equation has no fluctuation term, and therefore it is completely
equivalent to a deterministic equation for the time variation of the charge122

d
dtQ̃A(B)(t) = −w̃in

(
Q̃A(B), θA(B)

)
+ w̃out

(
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)
. (B.13)

One can write Eq. (B.13) explicitly as

d
dtQ̃A(B)(t) =−
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(B.14)

where ζ = eβCB and we note that all terms proportional to ∆Q̃ vanish in the limit
∆Q̃ → 0. It will be convenient to define the shifted (and normalized) electronic
population on the islands

P̃A(B) = −
(
Q̃A(B) −

CL + Cg

C
+ VgCg

∆VLRC

)
C

C + Cg
. (B.15)

With this definition, one can rewrite Eq. (B.14) as

d
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where
w̃L(R)

(
θA(B)

)
= 1
CRL(R)

(
θA(B)

)C + Cg

C
. (B.17)
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From Eqs. (B.15) and (B.16) one sees that the charge QA(B) on the island can vary
between two well-defined values Qmin and Qmax:

−∆VLR (CR + Cg)− VgCg < QA(B) < ∆VLR (CL + Cg)− VgCg. (B.18)

This sums up to a total variation Qmax −Qmin = Qvar = ∆VLRC + Cg∆VLR.





Appendix C

Mean-field mechanical dynamics for the case
with the gate electrode

In Sec. 3.2.2 we have derived the mechanical equations of motion of the rotor in the
case where the angle β between the arms is π. Here we generalize this to arbitrary β.
Moreover, we write these equations using dimensionless quantities and we specialize
them to the mean-field case where each island has an independent gate electrode.

Following Sec. 3.2.2, we consider the potential energy associated to a single island to
be given by

UA(B) = E
A(B)
tot + QA(B)∆VLR

dleads
xA(B), (C.1)

where EA(B)
tot is the total energy stored on the island (defined by Eq. (3.32)), xA(B) is

the projection of the position vector of island A (B) on the horizontal unit vector ı̂ (see
Fig. 3.2), and dleads is the distance between the leads. In the following, we neglect any
dependence of EA(B)

tot on the angle.
In Eq. (C.1), xA = ` cos (θ) and xB = ` cos (θ + β), where ` is the distance between

the centers of mass of the islands and of the support shaft (“rotor arm length”), and
θ is the angle between the rotor arm of the island A and the horizontal unit vector ı̂.
The kinetic energy is

Krot = L2

2I , (C.2)

where L is the angular momentum and I is the moment of inertia of the rotor. These
considerations lead to the following classical Hamiltonian:

Hrot(θ, L, PA, PB) = Krot + UA + UB = L2

2I + `E (cos θQA + cos (θ + β)QB) , (C.3)

where E = ∆VLR/dleads is the magnitude of the electrostatic field E. The Hamilton’s
equations of motion for the Hamiltonian of Eq. (C.3) are

d
dtθ = ∂

∂L
Hrot(θ, L, PA, PB) = L

I
, (C.4)

d
dtL = − ∂

∂θ
Hrot(θ, L, PA, PB) = E` (sin θQA + sin (θ + β)QB) . (C.5)

The rotor is coupled to environmental degrees of freedom, and this leads to damping
and fluctuations in the angular dynamics. There are many possible dissipation channels
for our rotor, depending on the physical system that is used to realize it. Again, as
in Sec. 3.2.2, we describe the dissipation via a Langevin equation (with the drift term
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proportional to the angular momentum),

dL = (E` (sin θQA + sin (θ + β)QB)− γ̃L) dt+
√

2Iγ̃kBTdw, (C.6)
d
dtθ = L

I
, (C.7)

where w denotes a Wiener process and γ̃ is a phenomenological angular-viscosity
parameter.
In the following, we consider the limit T → 0, the dimensionless time

τ = Γt, (C.8)

where Γ−1 gives the timescale of tunneling, and the dimensionless angular momentum

Λ = L

IΓ . (C.9)

This allows us to rewrite the Eqs. (C.6) and (C.7) as

d
dτ Λ = E`

Γ2I
(sin θQA + sin (θ + β)QB)− γΛ. (C.10)

Now we focus on the mean-field case. In the Appendix B we have defined the shifted,
normalized electronic population on the islands

P̃A(B) = −
(
Q̃A(B) −

CL + CA(B)
g

CA(B)
+
V A(B)

g CA(B)
g

∆VLRCA(B)

)
CA(B)

CA(B) + C
A(B)
g

, (C.11)

where CA(B)
g and V A(B)

g are respectively the gate capacitance and voltage, and CA(B) is
the island’s capacitance. Note that Eq. (C.11) generalizes the terms involving the gate
(CA(B) also involves the gate capacitance) in Eq. (B.15) to be dependent on the island.
The dimensionless charge on the island Q̃A(B) is defined as

Q̃A(B) = QA(B)

∆VLRCA(B)
. (C.12)

We can rewrite Eq. (C.10) with the populations defined in Eq. (C.11). Using the
island-dependent driving strengths

ηA(B) = E`QA(B)
var

Γ2I
, (C.13)

where QA(B)
var is the absolute value of the maximal charge variation on the island,

QA(B)
var = ∆VLR

(
CA(B) + Cg

)
, (C.14)

we rewrite Eq. (C.10) as

d
dτ Λ = −ηA sin θ

(
P̃A −GA

)
− ηB sin (θ + β)

(
P̃B −GB

)
− γΛ, (C.15)
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where
GA(B) =

CL + CA(B)
g

CA(B) + C
A(B)
g

−
V A(B)

g CA(B)
g

∆VLR
(
CA(B) + C

A(B)
g

) . (C.16)

Note that each gate provides two parameters CA(B)
g and V A(B)

g . In the case β 6= π we
can use one of these parameters (in each electrode) to make

GA(B) = 0. (C.17)

If β = π and if the gates for the different islands have the same voltage and capacitance,
GA and GB cancel each other. In both cases we obtain

d
dτ Λ = −ηA sin θP̃A − ηB sin (θ + β) P̃B − γΛ. (C.18)
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