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Abstract
Abstract

Modern financial system is complex, dynamic, high-dimensional and often possibly
non-stationary. All these factors pose great challenges in measuring the underlying
financial risk, which is of top priority especially for market participants. High-
dimensionality, which arises from the increasing variety of the financial products, is
an important issue among econometricians. A standard approach dealing with high
dimensionality is to select key variables and set small coefficient to zero, such as
lasso. In financial market analysis, such sparsity assumption can help highlight the
leading risk factors from the extremely large portfolio, which constitutes the robust
measure for financial risk in the end. In this paper we use penalized techniques
to estimate the econometric measures of financial risk in high dimensional, with
both low-frequency and high-frequency data. With focus on financial market, we
could contrcut the risk network of the whole system which allows for identification
of individual-specific risk.

In Chapter 1, we conduct network analysis for limit order books (LOB) across
stocks for a better understanding of market impact, and show how network for LOB
can be constructed in the presence of microstructure noise and non-synchronous
trading. This paper contributes to directed network estimation through penalized
Vector autoregressive (VAR) approach. The connectedness table is directly derived
from generalized impulse response function with attractive property of order invari-
ance, by way of bootstrapping techniques. The directional connectedness "from" and
"to" are associated with the forecast error variation for specific order book across
various stocks when the arising shocks transmit from one stock to the others. To
balance the sparsity and estimation accuracy, a moderately tuning parameter in pe-
nalized VAR is determined by Bayesian information criterion (BIC), and we apply
ordinary least squares (OLS) post-Lasso for our estimator, which can be configured
to reduce finite-sample bias and ensure better model performance. With large scale
or high-dimensionality in this study, we introduce prescreening based on graphical
lasso which filters out less relevant variables. Moreover we look for the short-horizon
large portfolio allocation decisions, and provide novel empirical evidence using high
frequency data trading in NASDAQ market.

Chapter 2 studies the German power derivative market, we could be able to iden-
tify the relevant risk drivers from the portfolio that are unknown to the power market
investors. The selection of important market drivers via iterated-SIS algorithm en-
ables us to investigate a ultra high-dimensional portfolio, since the the number of
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parameters to estimate increases quadratically in the number of variables included
in the context of VAR estimation. In our paper, the network of interest follows
the Dieboldt-Yilmaz tradition. With the wide range of power derivative contracts
trading in the German electricity market, we are able to identify, estimated the risk
contribution of individual power contract, this helps us to have a better understand-
ing of the German power market functioning and environment.

In Chapter 3, we aim to estimate the financial risk arising from bond market.
As we all know, inflation expectation is acknowledged to be an important indica-
tor for policy makers and financial investors. To capture a more accurate real-time
estimate of inflation expectation on the basis of financial markets, we propose an
arbitrage-free model across different countries in a multi-maturity term structure,
where we first estimate inflation expectation by modelling the nominal and inflation-
indexed bond yields jointly for each country. The Nelson-Siegel model is popular
in fitting the term structure of government bond yields, the arbitrage-free model
we proposed is the extension of the arbitrage-free dynamic Nelson-Siegel model pro-
posed by Christensen et al. (2011). We discover that the extracted common trend
for inflation expectation is an important driver for each country of interest. More-
over, the model will lead to an improved forecast in a benchmark level of inflation
and will provide good implications for financial markets.

Keywords : limit order book, high dimension, generalized impulse response, high
frequency, financial risk, market impact, large VAR, macroeconomic risk, financial
risk measures
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Zusammenfassung

Das moderne Finanzsystem ist komplex, dynamisch, hochdimensional und oftmals
nicht stationär. All diese Faktoren stellen große Herausforderungen beim Messen des
zugrundeliegenden Finanzrisikos dar, das speziell für Marktteilnehmer von oberster
Priorität ist. Hochdimensionalität, die aus der ansteigenden Vielfalt an Finanzpro-
dukten entsteht, ist ein wichtiges Thema für Ökonometriker. Ein Standardansatz,
um mit hoher Dimensionalität umzugehen, ist es, Schlüsselvariablen auszuwählen
und kleine Koeffizientenen auf null zu setzen, wie etwa Lasso. In der Finanzmarkt-
analyse kann eine solche geringe Annahme helfen, die führenden Risikofaktoren aus
dem extrem großen Portfolio, das letztendlich das robuste Maß für finanzielles Risiko
darstellt, hervorzuheben. In dieser Arbeit nutzen wir penalisierte Verfahren, um die
ökonometrischen Maße für das finanzielle Risiko in hoher Dimension zu schätzen, so-
wohl mit nieder-, als auch hochfrequenten Daten. Mit Fokus auf dem Finanzmarkt,
können wir das Risikonetzwerk des ganzen Systems konstruieren, das die Identifizie-
rung individualspezifischen Risikos erlaubt.

In Kapitel 1 führen wir eine Netzwerkanalyse für Limit Order Books (LOB) über
Aktien zum besseren Verständnis der Marktwirkung durch und zeigen, wie ein Netz-
werk für LOB in Anwesenheit von Mikrostruktur-Noise und nicht synchronem Han-
del konstruiert werden kann. Diese Arbeit leistet einen Beitrag zur gerichteten Netz-
werkschätzung durch einen penalisierten Vektorautoregressiven (VAR) Ansatz. Die
Vernetzungstabelle ist direkt aus verallgemeinerten Impulse-Response Funktionen
mit anziehender Eigenschaft von Order Invarianz, mittels Bootstrapping-Techniken.
Die gerichteten Vernetzungen "vonünd ßußtehen im Zusammenhang mit der Vor-
hersagefehlervariation für spezifische Orderbücher über verschiedene Aktien, wenn
die aufkommenden Schocks von Aktie zu Aktie transmittiert werden. Um Einfach-
heit und Schätzgenauigkeit zu balancieren, wird ein moderater Tuningparameter in
penalisierten VAR durch das Bayessche Informationskriterium (BIC) bestimmt und
Ordinary Least Squares (OLS) post-Lasso für unseren Schätzer angewandt, der so
konfiguriert werden kann, dass endliche Stichprobenverzerrungen reduziert werden
und eine bessere Modell-Performance gesichert wird. Mit großen Umfängen oder
Hochdimensionalität in dieser Studie führen wir Prescreening basiert auf graphi-
schem Lasso ein, das weniger relevante Variablen herausfiltert. Des Weiteren unter-
suchen wir kurzfristige große Portfolio Allokationsentscheidungen und geben neue
empirische Evidenz, indem wir hochfrequente Handelsdaten im NASDAQ-Markt
nutzen.

Kapitel 2 untersucht den deutschen Energiederivatemarkt. Wir haben die Mög-
lichkeit die relevanten Risikotreiber aus dem Portfolio identifizieren, die den Ener-
giemarktinvestoren unbekannt sind. Die Auswahl wichtiger Markttreiber mittels
iterated-SIS Algorithmen ermöglicht uns ein ultra-hochdimensionales Portfolio zu
untersuchen, da die Anzahl der Schätzparameter quadratisch mit der Anzahl an
Variablen, die im Kontext der VAR-Schätzung inkludiert sind, ansteigt. In unserer
Arbeit folgt das Interessennetzwerk der Dieboldt-Yilmaz Tradition. Mit dem brei-
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ten Spektrum an Energiederivaten, die im deutschen Elektrizitätsmarkt gehandelt
werden, ist es uns möglich, den Risikobeitrag eines einzelnen Energiederivats zu
identifizieren. Dies hilft uns die Funktionsweise und Umwelt des deutschen Energie-
markts besser zu verstehen.

In Kapitel 3 zielen wir darauf, das finanzielle Risiko ausgehend vom Anleihe-
markt zu schätzen. Wie wir wissen, ist die Inflationserwartung ein wichtiger Indi-
kator für politische Entscheidungsträger und Finanzinvestoren. Um eine akkuratere
Echtzeitprognose der Inflationserwartung auf Basis der Finanzmärkte einzufangen,
schlagen wir ein arbitragefreies Modell über verschiedene Länder in einer multi-
Fälligkeitslaufzeitstruktur, in dem wir zuerst durch gemeinsame Modellierung der
nominalen und inflations-indexierte Anleiherenditen die Inflationserwartungen für
jedes Land schätzen. Das Nelson-Siegel Modell ist populär darin die Laufzeitstruk-
tur der Renditen von Staatsanleihen zu fitten, das arbitragefreie Modell, das wir
vorstellten, ist die Erweiterung des arbitragefreien dynamischen Nelson-Siegel Mo-
dell, vorgeschlagen von Christensen (2011). Wir stellen fest, dass der extrahierte
gemeinsame Trend für die Inflationserwartung ein wichtiger Treiber für jedes Land
von Interesse ist. Des Weiteren wird das Modell zu einer verbesserten Prognose auf
Benchmarkniveau der Inflation führen und gute Implikationen für Finanzmärkte be-
reitstellen.

Schlüsselwörter : Limit Order Book, hochdimensional, verallgemeinerte impulse-
response, Hochfrequenz, Finanzrisiko, Markteinfluss, large VAR, makroökonomi-
sches Risiko, Maße für Finanzrisiko
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1 Measuring the Information Contect of
Limit Order Books

1.1 Introduction
Advancements in trading technologies allow an extremely rapid placement of buy and
sell orders. These rapid-fire trading algorithms can make decisions in milliseconds. The
changing of high frequency (HF) limit order book (LOB) gives us more insights into the
market behavior. In an LOB shown in Figure ??, the order book contains a quantity
of limit orders and the corresponding price at which you would issue a "buy" or "sell"
limit order. When an investor places an order to purchase or sell a stock, there are two
fundamental execution options: place the order "at market" or "at limit." The market
ones are orders of purchase or sale at the best available quote. On the other hand the
limit orders are not immediately executed since they are placed at a quote which is
less favorable than the best quote, e.g. the second level bid/ask order. The schematic
representation of an LOB reflects the local decisions and interactions between thousands
of investors, it generates a high dimensional dynamic and complex system, which then
results in the pricing of assets. Here we provide insights into this highly dynamic LOB
by dimension reduction techniques in combination with generalized impulse response
analysis. In order to do so the raw HF data has to be prepared.
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However empirical evidence on the actual market impact of limit order placements
across stocks is virtually not existent, many questions of interest to regulators and
traders are unsolved: i) How does the order flows interact with price dynamics? ii)
How to measure the impact of an incoming limit order quantitatively? iii) Are the
impacts on return responds to incoming ask and bid limit orders widely symmetric?
iv) If not symmetric, how does the heterogeneous market impact caused by bid and
ask order for various stocks affect the whole market? To address the arising questions,
in this paper we provide a comprehensive study on the interaction between price and
bid/ask order sizes in terms of vast network system. LOB provides a more complicated
scenario that inspires us to construct a high-dimensional object using both price and
several levels of depth of order sizes with historical order flow. This may help us to
understand how information is impounded into price. The underlying assumption is
that there exists a sparse representation of the data. The orders posted on the selected
order levels that induce significant price impact would be treated as price drivers. In
this way, investors’ decision-making can be addressed by making trading price driven by
order flows. Of particular interest is vast directed network analysis based on the con-
structed high-dimensional object. The motivation to construct a network of LOB stems
from both the lack of theoretical setup, and the market impacts caused by size imbalance.

To do so the VAR model is without doubt one of the most useful tools that allows us
to capture in a simple fashion their dynamic evolution. However it imposes challenges of
high dimensionality when we incorporating a variety of time series, particularly where the
vector observed at each time is high dimensional relative to the time period. Researchers
have developed various penalized estimators to filter out less relevant variables, such as
the Lasso estimator of Tibshirani (1996a), SCAD of Fan and Li (2001), adaptive Lasso
of Zou (2006), elastic net estimator of Zou and Hastie (2005), Dantzig selector of Can-
des and Tao (2007). This paper focuses on building up the network connectivity, where
the connectedness table is directly derived from generalized impulse response function.
There has been a large literature discussing acquiring sparse VAR estimation by adding
different penalty terms. For instance, Negahban and Wainwright (2011) imposed sparse
dependence assumption on the transition matrix of VAR model and studied the theoret-
ical properties. Kock and Callot (2015a) discussed theoretical properties of LASSO and
adaptive Lasso in VAR model that may reveal the correct sparsity pattern asymptoti-
cally. Basu et al. (2015) investigated theoretical properties of Lasso-type estimators for
high-dimensional Gaussian processes. Wu and Wu (2016) studied the systematic theory
for high-dimensional linear models with correlated errors. The Lasso-type estimators
penalize the regression coefficients with the model size via a shrinkage procedure. Bel-
loni et al. (2012) and Belloni et al. (2013) studied the post-model selection estimator
that apply OLS to the first-step penalized estimators to alleviate shrinkage bias.

Diebold and Yılmaz (2014) proposed connectedness measures built from generalized

2
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forecast error variance decomposition (GFEVD) based on VAR systems, where the
GFEVD is developed by Pesaran and Shin (1998) and Koop et al. (1996) with an in-
trinsic appeal to order-invariance. However the contributions of shares of forecast error
variation in various locations do not add to unity, and it is restricted to Gaussian inno-
vations. To solve this, we use the new GFEVD has been recently proposed by Lanne and
Nyberg (2016). They proposed a simple modification that, the proportions of the rela-
tive contributions to the h-period impact of the shocks sum to unity. The LN-GFEVD
is thus economic interpretable, and can be implemented to both Gaussian and non-
Gaussian models. This paper contributes to network estimation through penalized VAR
approach. To keep the sparsity structure of VAR estimation, we apply bootstrap-based
method rather than moving-average (MA) transformation which is often done in fixed
dimensional cases. Besides, bootstrapped GFEVD relies neither on the ordering of the
variables nor on the distribution of the innovations. Hence, the new connectedness table
is obtained by bootstrapping from the estimated innovations, using generalized impulse
response function. The directed connectedness "from" and "to" are associated with the
forecast error variation for specific order book across various stocks when the arising
shocks transmit from one stock to the others.

We progress by focusing on the models that capture the dynamics of LOB and their
influence over time. We aim to mimic the LOB trading mechanism to find out significant
market impact. Our primary finding is that order imbalance general exists across stocks,
bootstrapped market impacts can be quantified. With our methodology, we identify the
significant market impact caused by the arrival of a large limit order, and several robust
risk transmission channels and risk clusters. The financial institutions are connected
more closely compared with the firms come from other industry. The estimation results
of LN-network are also compared and studied.

The rest of the paper is organized as follows. Section 1.2 introduces NASDAQ LOB
market and the non-synchronous LOB data, we then elaborate the data preparation
process. In Section 1.3 we present the theoretical framework for high-dimensional VAR
estimation, and discuss the connectedness estimator based on our setting. Section 1.4
reports the novel evidence on market impact using bootstrapped estimator. Section 1.5
presents the robust risk channels and risk clusters. The network study will be illustrated
in Section 1.6. Section 1.7 concludes, while more technical details are relegated to the
Appendix.

3
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1.2 Description of the Market and Data Preparation
1.2.1 NASDAQ Limit Order Book Market
In this paper, our sample consists of intraday trading data for selected NASDAQ stocks
for the sample period spanning 1st, June 2016 to 30th, July of 2016. These data come
from the LOBSTER academic data, which is powered by NASDAQ’s historical To-
talView using very detailed event information. The industry breakdown of NASDAQ
market is technology of 57.18%, consumer service of 21.27% and Health Care of 12.38%
(as of 01.09.2016).

The sample is stratified by market capitalization and industry sector. We consider a
sample portfolio with 9 assets listed in Table 1.1, together with their first three levels
of limit orders, which attracts the majority of trading activity, therefore becoming our
research interest.

Industry Stock Company MktCap (billion $)
Technology IBM International Business Machines Corp. 171.72

MSFT Microsoft Corporation 499.35
T AT&T Inc. 257.53

Healthcare JNJ Johnson & Johnson 328.91
PFE Pfizer Inc. 206.69
MRK Merck & Co. Inc. 181.56

Finance JPM JP Morgan Chase & Co. 326.04
WFC Wells Fargo & Company 293.39
C Citigroup Inc. 168.06

Table 1.1. Sample data. MktCap is the market capitalization by Feb 25th, 2017.

We present the summary statistics of sample dataset in Table 1.2. The data is col-
lected for the normal trading day, which runs from 9:30 a.m to 4 p.m ET. To avoid
erratic effects during the market opening and closure, our sample period covers only the
continuous trading periods between 9:45 and 16:00.

The basic structure of LOB is shown in Figure 1.1. The sample file has one time-
stamped record for every order entered for each stock throughout the trading day. Trades
are time stamped up to the nanosecond and signed to indicate whether they were initi-
ated by a buyer or seller by the "Direction" ticker. The ticker of "Event Type" indicates
the trading type, for example, 1: Submission of a new limit, 2: Cancellation (partial
deletion of a limit order), 3: Deletion (total deletion of a limit order) etc. Another
important feature of this dataset is that each quote has been associated with trading
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NumObs AvgTrd AvgAP1 AvgBP1 AvgAS1
(∗103) (∗103) (in $) (in $) (100 shrs)

IBM 118.25 5.82 153.07 153.04 1.92
MSFT 584.55 25.91 52.28 52.26 24.19

T 223.45 6.67 38.75 38.74 36.36
JNJ 172.77 8.17 113.99 113.98 4.11
PFE 427.51 12.49 34.83 34.82 41.96
MRK 188.84 5.82 56.70 56.68 7.43
MDT 173.96 10.30 82.45 82.43 4.22
JPM 414.35 11.49 65.48 65.46 9.47
WFC 275.29 10.91 50.90 50.89 18.02
BAC 308.53 7.55 14.87 14.86 359.94
C 472.90 12.19 46.82 46.81 14.19

AvgBS1 AvgAS2 AvgBS2 AvgAS3 AvgBS3
(100 shrs) (100 shrs) (100 shrs) (100 shrs) (100 shrs)

IBM 2.17 1.95 2.26 2.09 2.26
MSFT 24.53 28.12 31.06 33.90 35.37

T 33.76 43.63 41.96 55.53 63.67
JNJ 3.62 5.86 4.44 7.74 4.90
PFE 42.29 48.07 48.09 50.94 55.68
MRK 7.36 14.34 11.30 24.20 13.87
MDT 3.99 5.12 4.94 6.08 5.79
JPM 9.45 13.10 11.82 17.41 15.09
WFC 17.01 20.68 17.72 23.58 19.05
BAC 341.64 456.38 489.76 373.91 345.64
C 12.97 18.58 16.48 22.23 19.60

Table 1.2. Summary statistics of selected stocks. NumObs denotes the average number of observa-
tion. AvgTrd is the average number of execution trades of a limit order. AvgAP1 gives the average
ask price for the first order, and AvgAS1 represents the corresponding ask size.
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information and limit order book. To be more specific, the k-th row in the "message"
file (upper panel of Figure 1.1) describes the limit order event causing the change in the
limit order book from line k − 1 to line k in the "orderbook" file (lower panel).

Figure 1.1. Structure of LOBSTER data

The main challenge in dealing with HFT data is the presence of microstructure noise
arising from market frictions, where the noise-induced bias at very high sampling fre-
quencies contaminates the observed price. Whereas infrequent sampling frequency leads
to imprecise estimates, optimal sampling frequency is needed to acquire bias-variance
tradeoff, see Bandi and Russell (2006), Aït-Sahalia et al. (2005), Bandi and Russell
(2008). In particular, several main approaches to improve the RV estimator include the
preaveraging estimator of Jacod et al. (2009), the realized kernel estimator of Barndorff-
Nielsen et al. (2008), the two scales estimator of Zhang et al. (2005) and multiscale
estimator of Zhang et al. (2006) and Zhang (2011). The aim of this paper is to give
more insights to the covariance structure in limit order markets, in order to match
the size of the limit orders with the corresponding bid/ask prices, we implement pre-
averaging approach introduced in subsection 1.2.2. Subsection 1.2.3 summarizes the
data preparation procedure for high-dimensional statistical setting.

1.2.2 Pre-averaging estimation
Suppose that we observe non-synchronous noisy data Yt following,

Yt = Xt + εt, t ≥ 0 (1.1)
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with efficient log price Xt is latent. The error term εt represents microstructure noise
and is assumed to be independent and identically distributed with

E(εt) = 0, E
(
ε2
t

)
= ψ (1.2)

The price processXt follows a semi-martingale form, Delbaen and Schachermayer (1994),

Xt = X0 +
∫ t

0
asds+

∫ t

0
σsdWs (1.3)

where (as)s≥0 is a càdlàg drift process, (σs)s≥0 is an adapted càdlàg volatility process,
(Ws)s≥0 is a Brownian motion. In addition, we assume Xt and εt are independent, i.e.

E(εt | X) = 0 (1.4)

If one can only observe Y n
i at discrete times t, i indexes the time points with interval

length ∆n, the returns ∆n
i Y is thus defined as,

Y n
i = Yi∆n , ∆n

i Y = Y n
i − Y n

i−1, i = 1, . . . , n (1.5)

A pre-averaging is conducted to alleviate microstructure noise and solve non-synchronicity,
we follow the notations originally used by Jacod et al. (2009). The basic idea is to con-
struct smoothing functions to diminish the impact of the noise induced by εt. Specifically,
there is a sequence of integers denoted as kn which satisfies,

∃θ > 0, kn
√

∆n = θ + O
(

∆
1
4
n

)
(1.6)

and a continuous weight function g : [0, 1] 7→ R. g is piecewise C1 with a piecewise
derivative g′ , g(0) = g(1) = 0, and

∫ 1
0 g

2(s)ds > 0. Furthermore, the following real-
valued numbers and functions are associated with function g on R+,

ψ1 =
∫ 1

0
{g′(u)}2du, ψ2 =

∫ 1

0
{g(u)}2du

Φ1(s) =
∫ 1

s
g
′(u)g′(u− s)du, Φ2(s) =

∫ 1

s
g(u)g(u− s)du

Φij =
∫ 1

0
Φi(s)Φj(s)du, i, j = 1, 2, u ∈ [0, 1] (1.7)

Here we choose g(x) = x∧(1−x), as in Podolskij et al. (2009), Christensen et al. (2010b)
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and Hautsch and Podolskij (2013). Therefore we have

ψ1 = 1, ψ2 = 1
12 , Φ11 = 1

6
Φ12 = 1

96 , Φ22 = 151
80640 (1.8)

The pre-averaged returns Y n
i associated with the weight function g are given as,

Y
n
i =

kn−1∑
j=1

g

(
j

kn

)
∆n
i+jY

= −
kn−1∑
j=0

{
g

(
j + 1
kn

)
− g

(
j

kn

)}
Y n
i+j , i = 0, . . . , n− kn + 1 (1.9)

The window size kn defined in equation (1.6) is chosen of O
(√

1
∆n

)
, balance the noise

εni = Op
(√

1
kn

)
and the efficient price Xn

i = Op
(√

kn∆n

)
.

1.2.3 Data Preparation for High-dimensional Statistical Setting
This section is firstly devoted to the construction of covariance estimates. It follows that
the sizes of the book at which limit orders are submitted are driving the price. In con-
trast to a moderate interval for price to remove the microstructure noise, the interval for
the size should be smaller enough to capture the large orders submitted by the market
trader, and yet detect the price-size interconnection.

Inspired by these, we propose size intensity S̃tj as

S̃tj = Stj (tj+1 − tj) (1.10)

where tj denotes the time stamp of jth LOB, and Stj is the corresponding tick size. By
size intensity can be summed up over a given time interval and therefore, matched with
returns over a moderate time interval. We can provide valuable information and access
to a new angle on the covariance structure.

In the following we shall illustrate how to explicitly proceed data preparation subject
to the given LOB. For ease of illustration, it can be divided into four steps,

1. Set equally-spaced time intervals starting at time T0

T0 + k∆T, k = 0, 1, 2, . . . ,K

8



1 Measuring the Information Contect of Limit Order Books

2. Define the price and size at time T0 + k∆T as

P̃T0+k∆T = Ptm , tm = max{tj ; tj ≤ T0 + k∆T}
S̃T0+k∆T =

∑
T0+(k−1)∆T≤tj≤T0+k∆T

Stj (tj+1 − tj)

3. The changes of the log values are

∆pT0+k∆T = log P̃T0+k∆T − log P̃T0+(k−1)∆T

∆sT0+k∆T = log S̃T0+k∆T − log S̃T0+(k−1)∆T

4. Pre-averaging both ∆pT0+k∆T and ∆sT0+k∆T by

∆p̃T0+k∆T =
J∑
j=0

gj∆pT0+j∆T

∆s̃T0+k∆T =
J∑
j=0

gj∆sT0+j∆T

where gj ≥ 0 and
∑J
j=0 gj = 1.

Cleaning data in this way can help alleviate microstructure noise, match the price to
the size in a moderate interval and solve the problem of non-synchronicity. In our setting
based on a 3-level order book, we take the mid price ∆p̃t on the first level, the bid and
ask sizes (∆s̃at , ∆s̃bt) on the first 3 levels, i.e.,

y
(n)>
t = [∆p̃(n)

t , ∆s̃a1(n)
t ,∆s̃a2(n)

t ,∆s̃a3(n)
t ,∆ñb1(n)

t ,∆s̃b2(n)
t ,∆s̃b3(n)

t ] (1.11)

where ∆s̃aj(n)
t stands for the preaveraged jth level of ask order for stock n, whereas

∆s̃bj(n)
t stands for the jth level of bid order for stock n. For each stock we divide the

trading period into 1-minute intervals and pre-average both ∆p̃(n)
t , ∆s̃bj(n)

t and ∆s̃aj(n)
t

to reduce microstructure noise over 15-min, yielding 375 observations per day.

Note that a critical assumption imposed to ensure the consistency of estimator is the
observations are weakly dependence. Here we define the large vector Y >t to estimate as

Y >t = [y(1)>
t , y

(2)>
t , . . . , y

(N)>
t ] (1.12)

by stacking the vector XT
t for different N stocks together.
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1.3 Methodology
1.3.1 High-dimensional VAR estimation
Statistically, the large VAR model facilitates consistent estimation and better finite-
sample performance. Economically, estimation results derived from sparse assumption
help explain the economic intuition. By incorporating the lags terms in the penalized
VAR model, we aim to show the "sluggished" price adjustments caused by limit orders.

The standard VAR(p) model, Lütkepohl (2005) is,

Yt = A1Yt−1 +A2Yt−2 + · · ·+ApYt−p + ut

= (A1, A2, . . . , Ap)
(
Y >t−1, Y

>
t−2, . . . , Y

>
t−p

)>
+ ut (1.13)

where Yt = (y1t, y2t, . . . , yKt)> ∈ RK is a random vector, t = 1, . . . , T . Ai are fixed
(K ×K) coefficient matrices. p is the lag and ut = (u1t, u2t, . . . , uKt)> ∈ RK is the i.i.d
innovation process. In our LOB setting, dimension of K = 7N with N is the number of
stocks in the portfolio.

Assumption 1. Assume (2.1) satisfies that,

1. The roots of |IK −
∑p
j=1Ajz

j | = 0 lie outside unit circle.

2. ut are i.i.d innovations with fourth moment condition.

3. ‖Σu‖2 <∞ and
∑p
j=1‖Aj‖2 <∞.

In practice, the coefficients A1, . . . , Ap are unknown and has to be estimated from
{Yt}Tt=1. The multiple time series data will be partitioned into sample and pre-sample
values to facilitate the following thoughts. Define,

Y = (Y1, Y2, . . . , YT ) A = (A1, A2, . . . , Ap)
Zt = (yt, yt+1, . . . , yt−p+1)> Z = (Z0, Z1, . . . , ZT−1) (1.14)

Then equation (2.1) reads,

Y = AZ + U (1.15)

with U = (u1, u2, . . . , uT ). The compact form (1.15) is equivalent to

y = (Z> ⊗ IK)β + u = xβ + u (1.16)
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where the length of the parameter vector β is pK2, the number of observations is KT .
In practice, the ration Kp

T could be large due to high dimensionality, which deteriorates
the accuracy of final estimate. Worse still, if Kp > T , the coefficients to be estimated
increases quadratically in terms of the number of lags p, therefore the model cannot
identified with traditional methods such as OLS. Therefore we introduce variable selec-
tion techniques, such as LASSO, to estimate the model because only a subset of the pK2

parameters might be non-zero. For multiple time series data, especially high dimensional
time series, it is preferred to use elastic net approach rather than pure Lasso to remedy
potentially strong correlation among regressors. Besides, under normal assumption of
error term, the upper bound of estimated error is positively correlated in log(K2p)

T , part
of oracle inequality. The methodologies introduced in the proceeding paragraph are of
great importance in the sense that the true underlying model has a sparse representation.

The penalized VAR estimates β by minimizing the objective function,

arg min
β

(
‖y− xβ‖22 + α1,T ‖β‖1 + α2,T ‖β‖22

)
(1.17)

which is equivalent to,

arg min
A1,A2,...,AP

T∑
t=1
‖Yt −

P∑
j=1

AjYt−j‖22 + α1,T

P∑
j=1
‖vec(Aj)‖1 + α2,T

P∑
j=1
‖vec(Aj)‖22 (1.18)

where Aj is the (K ×K) coefficient matrices of interest. α1,T and α2,T are the penalty
parameters. Note that the notation ‖M‖p depends on whetherM is a vector or a matrix.
To avoid confusion, we use vec(M) here to tranform the object within ‖‖p into a vector.

We choose a sequence of decreasing positive numbers α1,T and α2,T to control the
regularization. In the case of regularization parameter is large, setting it too high will
throw away useful information, whereas the estimated graph is not sparse when the αT
is small. To balance the sparsity and estimation accuracy, we choose a moderately small
tuning parameter using Bayesian information criterion (BIC). In addition, we apply OLS
post-model selection estimator to the first-step penalized estimator (1.17) or (1.18) to
reduce shrinkage bias and ensure better model model performance.

1.3.2 Network Construction
Following Pesaran and Shin (1998) and Lanne and Nyberg (2016), they assume shocks
hitting only one equation at a time rather than all the shocks at time t. The generalized
impulse response function (GIRF) is denoted as GI, when there is a shock δjt hits on

11
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j-th equation of yt at horizon l,

GI(l, δjt, ωt−1) = E(yt+l|ujt = δjt, ωt−1)− E(yt+l|ωt−1) (1.19)

E(yt+1|ujt = δjt, ωt−1) represents the expectation conditional on the history ωt−1 and a
fixed value of j-th shock on time t. ωt−1 consists of the information used to compute
the conditional expectations based on equation (2.1).

The LN-GFEVD denoted as λij,ωt−1(h) is defined by j-th shock hitting i-th variable
at time t,

λij,ωt−1(h) =
∑h
l=0GI(l, δjt, ωt−1)2

i∑K
j=1

∑h
l=0GI(l, δjt, ωt−1)2

i

, i, j = 1, . . . ,K (1.20)

where h is the horizon, ωt−1 refers to the history. Therefore λij,ωt−1(h) ∈ [0, 1], measur-
ing the relative contribution of a shock δjt to the j-th equation in relation to the total
impact of all K shocks on the i-th variable in yt after h periods, and these contributions
sum to unity.

To measure the persistent effect of a shock on the behaviour of a series, we aim to
acquire the population connectedness table. Compared with the connectedness table in
Diebold and Yılmaz (2014), this simple modification of GFEVD allows the proportions
of the relative contributions to the h-period impact of the shocks sum to unity. The
LN-GFEVD is thus economic interpretable, and can be implemented to both Gaussian
and non-Gaussian models. Upon the penalized VAR estimation in equation (1.17) and
(1.18), we acquire the sparsity structure that filters out less relevant variables. Instead
of transforming into MA process, which is often done in fixed dimensional cases, we
apply bootstrap-based method to produce Table 1.3. Besides, bootstrapped GFEVD
relies neither on the ordering of the variables nor on the distribution of the innovations.

The details for computation steps can be found in Appendix A.1. In particular,
the numerical techniques for conditional mean forecast from nonlinear models for more
than one period ahead are implemented in this paper, we use bootstrap to calculate
GI(l, δjt, ωt−1), see more details in Terasvirta et al. (2010).

We then have the directional connectedness "from" and "to" associated with the fore-
cast error variation λbij(h) for a specific order book across various stock when the arising
shocks transmit from one stock to the others. These two connectedness estimators can
be obtained by adding up the row or column elements. Hence the pairwise directional
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1 Measuring the Information Contect of Limit Order Books

x1 x2 . . . xK From others

x1 λb
11(h) λb

12(h) . . . λb
1K(h)

∑K
j=1 λ

b
1j(h), j 6= 1

x2 λb
21(h) λb

22(h) . . . λb
2K(h)

∑K
j=1 λ

b
2j(h), j 6= 2

...
...

...
...

...
xK λb

K1(h) λb
K2(h) . . . λb

KK(h)
∑K

j=1 λ
b
Kj(h), j 6= K

To
∑K

i=1 λ
b
i1(h)

∑K
i=1 λ

b
i2(h) . . .

∑K
i=1 λ

b
iK(h) 1

K

∑K
i=1,j=1 λ

b
ij(h)

others i 6= 1 i 6= 2 i 6= K i 6= j

Table 1.3. Connectedness table of interest, estimated by bootstrap-based methods.

connectedness from j to i can be written as,

CHi←j = λbij(h) (1.21)

Furthermore, the total directional connectedness "from" Ci←· (others to i) is defined as

Ci←• =
K∑
j=1

λbij(h), i 6= j (1.22)

and the total directional connectedness "to" C·←j (j to others) is defined as

C•←j =
K∑
i=1

λbij(h), i 6= j (1.23)

The corresponding net total directional connectedness is given by

Ci = Cto − Cfrom = C•←i − Ci←• (1.24)

1.3.3 Prescreening - Graphical Model
In high dimensional setting, the denominator of LN-GFEVD connectedness measure
might be unnecessarily large due to accumulated noise caused by the large amount of
irrelevant variables. Therefore we introduce Graphical Lasso as prescreening step to
reduce the number of variables summed up in the denominator. Graphical Lasso dis-
cussed in this subsection helps reveal the stocks, whose prices and sizes have significant
correlation with others. This allows us to construct a reduced estimation framework for
the network (graph) between prices and limit orders.

Here the thresholding technique is implemented for consistent high dimensional covari-

13



1 Measuring the Information Contect of Limit Order Books

ance estimation by bounding the small eigenvalues from zero. At first the thresholded
covariance matrix Σ̂0 is defined by,

Σ̂0 = {SijI|Sij |>u0}; S = 1
T

T∑
t=1

X̄tX̄
>
t

where matrix S is the sample covariance matrix. X̄>t is the large vector of interest in
equation (1.12). However, in finite sample, some of its eigenvalues could be close to or
smaller than zero, thus we introduce a positive-definitization-version Σ̂n,

Σ̂n =
m∑
j=1

(η̂j ∨ λ)q̂j q̂>j ; Σ̂0 =
m∑
j=1

η̂j q̂j q̂
>
j (1.25)

where λ ∈ Λ is the sequence to control the regularization.

In graphical model, the edges Ê are identified by non-zero partial correlations we in-
troduced in the previous section. Thus far we have the basic setup for the undirected
connectedness measure.

The details for the graphical model are summerized in Appendix A.2. In particular,
the partial correlation between two nodes of X(j) and X(k) given X(V\{j,k}) is defined
as,

ρjk|V\{j,k} = −
Σ−1
jk√

Σ−1
jj Σ−1

kk

(1.26)

where Σ−1 is the sparse concentration matrix estimated by graphical Lasso via the
penalized concentration matrix given by,

Σ̂−1
n (λ) = arg min

Ψ�0
{tr(ΨΣ̂n)− log det(Ψ) + λ|Ψ|1} (1.27)

where Σ̂n is the thresholded estimator for covariance matrix. |Ψ|1 denotes the sum of the
absoulute values of Ψ, and λ is a tuning parameter controlling the amount of l1 shrinkage.

Consistency of the estimator is proved by Chen et al. (2013). Therefore the estimated
graph model is,

Ê(λ) = {(j, k) ∈ V × V; Σ̂−1
jk (λ) 6= 0} (1.28)

14



1 Measuring the Information Contect of Limit Order Books

In high dimensional setting, the p-dimensional covariance matrix Σ is assumed to satisfy,

Gq(M) =
{

Σ|max
j≤p

σjj ≤ 1; max
1≤k≤p

p∑
j=1
|σjk|q ≤ M̃

}
(1.29)

where 0 ≤ q < 1 to ensure Σ is sparse. M̃ is constant or C0(p). By setting the small
off-diagonal elements to zero, we obtain the sparse covariance matrix Σ̂n, and therefore,
sparse precision matrix Σ̂−1

n by graphical lasso based on eqution (1.27).

1.4 Bootstrapped Market Impact
In this section we aim to characterize the dynamic links between uncertainty, price and
size (trading volume) across stocks in a high dimensional penalized VAR system.

When a large market order to buy a stock arrives, the limit orders with the lowest
ask prices will automatically execute, this causes a temporary market impact. We will
answer the following questions proposed in the very beginning, i) How does the order
flows interact with price dynamics? ii) How to measure the impact of an incoming limit
order quantitatively? iii) Are the impacts on return responds to incoming ask and bid
limit orders widely symmetric? iv) If not symmetric, how does the heterogeneous market
impact caused by bid and ask order for various stocks affect the whole market?

1.4.1 Price and Order Flows
To check whether shocks of order flows affect price dynamics and whether the impacts
identified by our model are temporary or robust over time, we resort to generalized im-
pulse response analysis based on bootstrapped estimation of GI.

Here we follow the VAR literature and interpret the shock as the market shock. In
particular, the market impacts of the order flows to price factors are quantified by
equation (1.19), when the shock δjt is treated as one of the size factors (∆s̃a1(i)

t , ∆s̃a2(i)
t ,

∆s̃a3(i)
t , ∆s̃b1(i)

t , ∆s̃b2(i)
t , ∆s̃b3(i)

t ) hitting on the jth equation for stock i. The response
of price factor ∆p̃(i)

t is given by,

GI(l, δjt, ωt−1) = E(yt+l|ujt = δjt, ωt−1)− E(yt+l|ωt−1)

where E(yt+1|ujt = δjt, ωt−1) represents the expectation conditional on the history ωt−1
and a fixed value of j-th shock on time t. ωt−1 consists of the information used to com-
pute the conditional expectations based on equation (2.1).
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Figure 1.2. The bootstrapped market impact of WFC (Wells Fargo) on 25th of July, 2016.
hfhd_marketimpact
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1 Measuring the Information Contect of Limit Order Books

With a moderate sparse structure selected by BIC, we could successfully identify the
existence of significant market impact. Figure 1.2 depicts the estimated market impacts
of limit orders for a single trading day for WFC (Wells Fargo). We observe a negative
correlation between the magnitude of WFC’s first-order ask size factor and its price fac-
tor. For orders posted deeper in the book, the market impacts are not as significant as
the first-level. It is normal for financial market in the sense that the investors will start
marking down their bid price when there is a wave of sell orders coming into the order
book. As expected, the price (average of bid and ask quotes) factor tends to decrease
significantly after the arrival of a large ask limit order. The impact can last for almost 32
minutes before the price shifts back, this gives the HF investors enough time of reaction
to arbitrage opportunities.
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Figure 1.3. The bootstrapped market impact of C (Citigroup) on 1st of June, 2016.
hfhd_marketimpact

Figure 1.3 and 1.4 show the market impacts from second-level bid factor for Citigroup
on two separate trading days. This implies the positive pile-on effect where larger bid
order may further perpetuating a price increase, the orders may not necessarily set at
the current market price of the stock (i.e. they are not market orders, they are limit
orders). The estimated market impact lasts for almost 20 minutes, the price goes down
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Figure 1.4. The bootstrapped market impact of C (Citigroup) on 20th of June, 2016.
hfhd_marketimpact
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1 Measuring the Information Contect of Limit Order Books

after 10 minutes because the market investors may sell trades picking up the posted
volume or by cancellations on the bid side.

1.4.2 Order Imbalance
As discussed above, the bid/ask sizes of the limit order book will be affected when mar-
ket investors submit limit orders to buy/sell. Hence the order imbalance, that caused
by difference between the bid and ask sizes, would allow us to further understand the
direction of the upcoming price changes. To quantify the investors’ trading intention,
we calculate the relative weights for different levels of depth of limit order with different
orders of lag. In this way we will investigate if there is a link between net size (ask
trading volume minus bid trading volume) and price changes, based on our model setup
and undirected network estimation.

Figure 1.5 shows the net market impact of size factors to the price factor for three
continuous trading days for JPM (JP Morgan). Generally, when there is a strong sell
pressure induced by huge sell volume queued on the ask side, all three levels of net ask
size factors have negative impacts affect the price factor in a negative pattern and the
deeper orders posted in the book, the weaker impacts they have.

According to Figure 1.6, the history information shows which stock is stable in the
price-size relations and thus robust for statistical arbitrage, see Hautsch and Huang
(2012). All these three financial institutions exhibit robust impacts from net sizes, with
WFC performs best among them. Based on our methodology, the ’gap’ between the
impacts from ask and bid size factors is quantified and could serve as a strong signal for
market investors.

1.5 Transmission Channels of Risk
Our model has implied that in an LOB market, the huge sell/buy volume queued on the
ask/bid side could induce strong sell/buy pressure on the market and therefore changing
the price. In this section, our aim is to gain some insights into the details of the price
formation by estimating the cross-sectional dynamics of returns (price factor).

1.5.1 Risk Channel & Risk Cluster
To check the shock persistence and asymmetric effects of shocks derived from the gener-
alized impulse response function, we first visualize the cross-sectional impact of returns
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Figure 1.5. The bootstrapped market impacts from net size factors for JPM from 23rd of June to
27th of June.
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Figure 1.6. The bootstrapped net market impact from 1st level net size (blue), 2nd level net size(red)
and 3rd level net size (grey), for three financial institutions over 42 days, from 1st, June of 2016 to
29th, July of 2016.
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1 Measuring the Information Contect of Limit Order Books

in Figure 1.7 and 1.8. The impulse response estimates for the companies from the same
industry sector to the whole system are presented for financial institutions and Health-
care companies respectively.

The estimation results indicate that the transmission of shocks within the companies
from the same industry sector. In particular, we observe the risk transmission channels
of JPM -> C -> WFC for finance institutions, and the risk cluster PFE -> MRK -> JNJ
-> PFE. With respect to the response of the financial companies, the positive impact
dies out very slowly.

To sum up, impulse responses show that risk transmission is more likely to happen
within the same type of companies. Our evidence suggests that the stocks within the
same industry are a more potent channel of risk sharing. The bootstrapped GIRF al-
lows us to provide novel evidence on robust risk channels and risk clusters, with focuses
on the NASDAQ market to examine the way risk arises endogenously and how shocks
propagate within one industry sector.

1.5.2 Robustness
To confirm and quantify the robustness of all the above statements, we summarize the
significant pairwise impacts in a time-varying pattern in Figures 1.9, 1.10 and 1.11. They
plot the interactions between two companies, separately for each industry sector. For
instance, the upper panel of Figure 1.9 consists of vertical parallel bars that show the
impacts of "T-> MSFT" (dark gray bars, impact from left to right as shown in subfigure
title) and "MSFT -> T" (light gray bars, impact from right to left). Moreover, we observe
some clusters of significant pairwise impacts, e.g., the "MSFT->IBM" lasting from 09th
trading day to 16th trading day (i.e., 13th to 22nd of June, 2016), "MSFT->T"(light
grey) from 27th to 34th trading day (i.e., 8th to 19th of July, 2016), the "WFC -> JPM"
from 24th to 30th trading day (i.e., 05th to 13th of July, 2016) and the "JPM ->C"
from 12th to 18th trading day (16th to 24th of June, 2016). In general, the clusters
of the significant pairwise impacts indicates the dependence structure of cross-sectional
impacts over time, the lag is normally at least 6 trading days.

For the Technology companies in Figure 1.9, we find that the pairwise companies does
not exhibit a particular strong pattern on their mutual interactions. For both MSFT
and IBM, they have strong effects on T. IBM, on the other hand, effects MSFT as well.
These findings suggest that when the risk(shock) of IBM arises, the shocks will transmit
to T via MSFT. From 9th of June to 34th of June 2016, the impact of MSFT->IBM
went through two smaller cycles, during which it moved within the 12-20 range.
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Figure 1.7. The transmit of for three financial institutions on 28th, June of 2016.
hfhd_risktran
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Figure 1.8. The transmit of for three financial institutions on 28th, June of 2016.
hfhd_risktran

24

https://github.com/QuantLet/HFHD


1 Measuring the Information Contect of Limit Order Books

Figures 1.10 and 1.11, which show the cross-sectional direct and indirect impacts for
financial institutions and healthcare companies, reinforces the analysis. The impacts
for financial institutions are stronger than the heathcare, which suggests that financial
sector might be a useful leading indicator of risk, and the previous empirical literature
lends support to this conjecture. Furthermore, we find some robust risk transmission
channels based on the estimation, e.g. "MRK->JNJ->PFE", "MRK->PFE" and "JPM-
>C->WFC". The general message is similar, when looking at the the at the bank
level. We identify the JPM, WFC are strongly correlated, which contains information
as sources of systemic risk.
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Figure 1.9. The time-varying pairwise impacts for three technology companies.
hfhd_rob

1.6 Network Analysis
The network in this study consists of the stocks with limit order books which are ne-
glected in current literature. Specifically, we study the complex system in terms of not
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Figure 1.10. The time-varying pairwise impacts for three healthcare companies.
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Figure 1.11. The time-varying pairwise impacts for three financial companies.
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only the dynamic links across stocks but also the market impacts of limit orders across
stocks.

1.6.1 Static Full-sample Connectedness
In accordance with the discussion in section 1.3.2, we randomly select one day and depict
the sparse full sample directional connectedness Table 1.3 in Figure 1.12. Figure 1.13
shows the connectedness between different stocks. The price factor and size factors that
belong to the same company appear in the same color, the width of edges between two
nodes represents the connectedness.

Figure 1.12. The full sample network plot on 1st of June, 2016.

Table 1.4 summarizes LN-GFEVD full sample connectedness Table 1.3, we report
the directional connectedness estimators "from" and "to" associated with the forecast
error variation λbij(h) for a specific order book across various stock when the arising
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Figure 1.13. The full sample network plot on 1st of June, 2016.
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shocks transmit from one stock to the others. As discussed before, the element in the
connectedness table measures the total impact of all K shocks on the i-th variable,
and these contributions sum to unity, which suggests the "from" estimator is unity. The
strong positive and negative impacts are marked in red and blue respectively. In general,
the price factors are more sensitive to the shocks than the size factors.

MSFT T IBM
from to net from to net from to net

price 1.00 0.76 -0.24 1.00 0.72 -0.28 1.00 0.88 -0.12
1st ask 1.00 0.98 -0.02 1.00 1.28 0.28 1.00 1.20 0.20
1st bid 1.00 0.78 -0.22 1.00 0.58 -0.42 1.00 1.09 0.09
2nd ask 1.00 1.26 0.26 1.00 0.82 -0.18 1.00 1.52 0.52
2nd bid 1.00 0.90 -0.10 1.00 0.99 -0.01 1.00 1.07 0.07
3rd ask 1.00 0.79 -0.21 1.00 0.88 -0.12 1.00 0.92 -0.08
3rd bid 1.00 0.95 -0.05 1.00 0.72 -0.28 1.00 1.15 0.15

JNJ PFE MRK
from to net from to net from to net

price 1.00 0.46 -0.54 1.00 1.14 0.14 1.00 0.94 -0.06
1st ask 1.00 1.17 0.17 1.00 1.50 0.50 1.00 1.15 0.15
1st bid 1.00 0.77 -0.23 1.00 1.19 0.19 1.00 1.14 0.14
2nd ask 1.00 0.95 -0.05 1.00 0.93 -0.07 1.00 1.66 0.66
2nd bid 1.00 1.13 0.13 1.00 0.89 -0.11 1.00 1.35 0.35
3rd ask 1.00 0.94 -0.06 1.00 0.62 -0.38 1.00 1.24 0.24
3rd bid 1.00 0.97 -0.03 1.00 0.94 -0.06 1.00 0.74 -0.26

JPM WFC C
from to net from to net from to net

price 1.00 0.48 -0.52 1.00 1.39 0.39 1.00 0.88 -0.12
1st ask 1.00 1.53 0.53 1.00 1.17 0.17 1.00 1.18 0.18
1st bid 1.00 1.10 0.10 1.00 0.90 -0.10 1.00 0.90 -0.10
2nd ask 1.00 1.05 0.05 1.00 1.11 0.11 1.00 0.86 -0.14
2nd bid 1.00 1.18 0.18 1.00 0.91 -0.09 1.00 0.85 -0.15
3rd ask 1.00 0.87 -0.13 1.00 0.72 -0.28 1.00 0.93 -0.07
3rd bid 1.00 0.76 -0.24 1.00 1.16 0.16 1.00 1.02 0.02

Table 1.4. Summary of the full connectedness table on 1st of June, 2016, based on h=30 (30
minutes/steps ahead forecasts).

Figure 1.14 shows the sparse network graph of six continuous trading days, from 21st
of June to 28th of June, 2016. It is interesting that the estimated graph on 27th of
June (first trading day after Brexit on 24th of June) is more sparse than the other
trading days. This is, perhaps because idiosyncratic shocks have always hit individual
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companies and these shocks have been transmitted to more other companies. Hence the
averaged shock transmitted to others is smaller and therefore generating a more sparse
graph. These results, on the other hand, suggest the companies are expected to be
less interconnected during important event because the companies tend to react more
independently to important event than usual.

1.6.2 Time-varying Connectedness
With our analysis, the network we estimate can be exhibited in a time-varying pattern.
In this way, we identify several connections which remain quite stable over time.

Figures 1.15, 1.16, 1.17 and 1.18 establish the time-varying impacts for the limit order
book of MSFT. In total, each factor of MSFT limit order book can be effect by 63 kinds
of shocks, here we select top two risk contributors. The time varying network for the
other 8 companies are plotted in Appendix A.3.

1.7 Conclusion
In this study, we conduct network analysis for limit order books (LOB) across stocks for
a better understanding of market impact, and show how network for LOB can be con-
structed in the presence of microstructure noise and non-synchronous trading. This pa-
per contributes to directed network estimation through penalized Vector autoregressive
(VAR) approach. The connectedness table is directly derived from generalized impulse
response function with attractive property of order invariance, by way of bootstrapping
techniques. We progress by focusing on the models that capture the dynamics of LOB
and their influence over time. We aim to mimic the LOB trading mechanism to find out
significant market impact. Our primary finding is that order imbalance general exists
across stocks, bootstrapped market impacts can be quantified. With our methodology,
we identify the significant market impact caused by the arrival of a large limit order, and
several robust risk transmission channels and risk clusters. The financial institutions are
connected more closely compared with the firms come from other industry. The estima-
tion results of LN-network are also compared and studied.
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1 Measuring the Information Contect of Limit Order Books

Figure 1.14. The full sample network graph of six continuous trading days, from 21st of June to
28th of June, 2016. 25th and 26th of June are Saturday and Sunday.
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Figure 1.15. The time-varying network for price factor of MSFT, and 1st level ask size factor of
MSFT.
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Figure 1.16. The time-varying network for 1st level bid size factor of MSFT, 2nd level ask size factor
of MSFT.
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Figure 1.17. The time-varying network for 2nd level bid size factor of MSFT, 3rd level ask size
factor of MSFT
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Figure 1.18. The time-varying network for 3rd level bid size factor of MSFT.
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2 Sparsity Analysis of Energy Price
Forecasting

2.1 Introduction
Affordable and reliable energy supply is essential for our industrial growth. Achieving
these in times of growing demand, raw materials shortage and climate change poses
great challenges for us all. It is essential for us to keep ahead in future power supply.
Germany’s electricity supply is undergoing radical change. At present, conventional en-
ergy sources generate approximately 74% of Germany’s electricity. However, the ongoing
expansion of renewable energy and the phase-out of nuclear energy for power generation
will change the composition of the electricity mix, which in return, will generate the
pricing signal that affects the electricity trading. Therefore a study on the electricity
derivative market, especially in the forward market can be a way to hedge against the
risk appeared in the electricity market. Based on these insights, energy companies may
decide to invest both electricity spot and derivatives markets for portfolio risk manage-
ment. However the number of relevant factors may be huge, subset selection methods
could be a useful tool to select important power contracts to capture the energy market
risk.

High-dimensional statistical problems arise from diverse fields of scientific research and
technological development, including energy market. The traditional idea of best subset
selection methods is computationally too expensive for many modern statistical appli-
cations. Variable selection techniques have been successfully developed in recent years
and they play a pivotal role in contemporary statistical learning and scientific discover-
ies. Researchers have proposed various penalized estimators, for example, least absolute
selection and shrinkage operator (lasso) of Tibshirani (1996b) is famous for its simulta-
neous model selection and estimation. Besides, it has sound statistical properties and is
efficient to implement. In recent years, lasso has been extended to high-dimensional case,
one typical work is Bickel et al. (2009). There are many other popular methods con-
tribute to the literature, such as smoothly clipped absolute deviation (SCAD) estimator
of Fan and Li (2001), adaptive Lasso of Zou (2006), elastic net estimator of Zou and
Hastie (2005), Dantzig selector of Candes and Tao (2007). In a ultra high-dimensional
case where the dimensionality of the model is allowed to grow exponentially in the sample
size, it is helpful to begin with screening to delete some significantly irrelevant variables
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from the model. Fan and Lv (2008) introduce a method called sure independence screen-
ing (SIS hence-after) for this goal. Even when the regularity conditions may not hold,
Fan et al. (2009) extend the iterated-SIS method to work by iteratively performing fea-
ture selection to recruit a small number of features.

The German power derivative market is an interconnected world, with a wide range
of electricity derivative contracts. In this paper we build up a ultra high-dimensional
network in which nodes represent power contracts and links represent the magnitude
of connectedness. To better understand the interaction between power contracts, the
iterated-SIS methods combined with penalized estimators are applied to estimate the
sparse web of connections. Our network of interest is constructed in the context of time
series based on vector autoregressions (VAR), the iterated-SIS methods are of much
use when building VAR models since the number of parameters to estimate increases
quadratically in the number of variables included. In addition, asymptotic properties
of lasso for high-dimensional time series have been considered by Loh and Wainwright
(2011), Wu and Wu (2016). Kock and Callot (2015b) establish the high-dimensional
VAR estimation with focus on lasso and adaptive lasso. Basu et al. (2015) investigate
the theoretical properties of regularized estimates in sparse high-dimensional time se-
ries models when the data are generated from a multivariate stationary Gaussian process.

To quantify the associations between individual power contract and energy exchange
market, the network we constructed is obtained from the forecast error variance decom-
position (FEVD) based on VAR estimates in the framework of Koop et al. (1996) and
Pesaran and Shin (1998). This kind of connectedness measure is proposed by Diebold
and Yılmaz (2014) for conceptualizing and empirically measuring weighted, directed net-
work at a variety of levels. However one may confront the dimensionality problem while
nevertheless remaining squarely in the Diebold-Yilmaz connectedness traditon, Demirer
et al. (2017) use lasso method to select, shrink and estimate the high-dimensional net-
work. Related empirical work are with more focus on financial banking contexts, for
examples see Acharya et al. (2012), Acharya et al. (2017), Giglio et al. (2016), Hautsch
et al. (2014). While estimates of the network yield the qualitative links between power
contracts, individual impact from specific contract can be estimate and speculate ac-
cordingly. Hence the risk contribution from the market component can be identified
clearly, this will help us to learn more about the German power market functioning and
environment.

The rest of the paper proceeds as follows. Section 2 introduces the structure of elec-
tricity market in Germany. In section 3, we discuss the econometric methodology used in
the variable selection. The technical details are in the Appendix. The empirical results
are shown in Section 4. Finally section 5 concludes.
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2.2 Overview of Energy Market
2.2.1 German Electricity Derivative Market
The German electricity market is Europe’s largest, with annual power consumption of
around 530 TWh and a generation capacity of 184 GW. As a net energy exporter, the
export capacity of Germany is expected to continue to grow as planned interconnec-
tions expand cross-border transmission capacity with several neighbouring countries.
Germany has significant interconnection capacity with neighbouring EU member states
as well. It is interconnected with Austria, Switzerland, the Czech Republic, Denmark,
France, Luxembourg, the Netherlands, Poland, and Sweden. To maintain stable and
reliable supply of electricity, the so-called Transmission system operators (TSOs) keep
control power available. Primary control, secondary control, and tertiary control reserve
are procured by the respective TSOs within a non-discriminatory control power market
in accordance with the requirements of the Federal Cartel Office. Demand for control
energy is created when the sum of power generated varies from the actual load caused
by unforeseeable weather fluctuations in the case of renewable energies.

Electricity is traded on the exchange and over the counter. Standardised products
are bought and sold in a transparent process on the exchange, which, for Germany, is
the European Energy Exchange EEX in Leipzig, the European Energy Exchange EPEX
SPOT in Paris and the Energy Exchange Austria (EXAA) in Vienna. The European
Energy Exchange (EEX) is the leading energy exchange in Europe. It develops, op-
erates and connects secure, liquid and transparent markets for energy and commodity
products. Contracts on power, coal and CO2 emission allowances as well as freight and
agricultural products are traded or registered for clearing on EEX. EPEX SPOT, Pow-
ernext, Cleartrade Exchange (CLTX) and Gaspoint Nordic are also members of EEX
Group. The German wholesale electricity market is broadly made up of three elements,
a forward market, a day-ahead market and an intra-day market. These submarkets
generate the pricing signal which electricity production and consumption align to. The
objective of this paper is to analyse the interaction of different future contracts traded
in the forward market, whether forward market is influenced by market power of spot
prices traded in EPEX market.

Electricity providers and electricity purchasers submit their bids in their national
day-ahead market zones. The exchange price on the day-ahead market is determined
jointly for coupled markets. Electricity providers and electricity purchasers submit their
bids in their national day-ahead market zones. In an iterative process, the demand for
electricity in the market zone is served by the lowest price offers of electricity from all
the market areas until the capacity of the connections between the market zones (cross-
border interconnectors) is fully utilised. As long as the cross-border interconnectors
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have sufficient capacity, this process aligns the prices in the coupled market areas. On
account of market coupling, the national power demand is covered by the international
offers with lowest prices. The upshot is that on the whole less capacity is required
to meet the demand. As shown in Figure 2.1, Phelix Future, as the product traded
in Germany, is a financial derivatives contract settling against the average power spot
market prices of future delivery periods for the German/Austrian market area.

Figure 2.1. The distribution of European power derivatives in EEX market. Source: EEX website

2.2.2 Phelix Futures
Electricity supply deliveries in the forward market can be negotiated up to seven years
in advance, but for liquidity reasons typically only look out three years, and in fact
most futures trading focuses one year ahead. The Phelix Future is a financial derivatives
contract referring to the average power spot market prices of future delivery periods of
the German/Austrian market area.

As the most liquid contract and benchmark for European power trading, the underly-
ing of these future contracts is the Physical Electricity Index determined daily by EPEX
Spot Exchange for base and peak load profiles. To be more specific, the Phelix Base
contract is average price of the hours 1 to 24 for electricity traded on spot market, while
the Phelix Peak is the average price of the hours 9 to 20 for electricity traded on spot
market. EEX offers continuous trading and trade registration of financially fulfilled Phe-
lix Futures, with Day/Weekend Futures, Week Futures, Month Futures, Quarter Futures
and Year Futures available.
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In addition, the Phelix market is also successfully connected to other European power
markets. The products of Location Spread enables members to trade price differences
between markets, thus enabling participants to benefit from improved liquidity and
tighter spreads, for instance, Phelix / French Power, Italian / Phelix Power, Phelix /
Nordic Power and Phelix / Swiss Power. For the empirical work of this paper, we use
the Phelix Future data to find price drivers and important variables in the big system
we construct. The decision-making mechanism of energy companies will also be explored.

2.3 Theoretical Framework
2.3.1 Model Description
We have access to spot prices, trading prices of different future contracts. An interesting
question is the how all these prices interact with each other? Which variables are crucial
for the whole system? To answer this question, we are going to build a Vector Au-
toregressive Model. However, due to the large number of variables in the system, some
sparsity assumption must be imposed for the sake of an accurate estimate. Sparsity will
also help find out the most important variables. Large dimension comes from two parts:

1. varieties of power derivative products;

2. large lag in VAR model to avoid the correlation of error terms.

The VAR(p) model (VAR model of order p) is constructed according to Lütkepohl
(2005),

yt = ν +A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut

= ν + (A1, A2, . . . , Ap)
(
y>t−1, y

>
t−2, . . . , y

>
t−p

)>
+ ut (2.1)

where yt = (y1t, y2t, . . . , yKt)> is a (K × 1) random vector consisting K prices we have
at time t, t from 1 to T . Ai are fixed (K ×K) coefficient matrices. ν is a (K × 1) vector
of intercept terms, p is lag and ut = (u1t, u2t, . . . , uKt)> is a K-dimensional innovation
process.

The coefficients ν,A1, . . . , Ap are assumed to be unknown in the following. The time
series data y1, y2, . . . , yT of the y variable is available and will be used to estimate the
coefficients. The multiple time series data will be partitioning into sample and presample
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values to facilitate the following analysis. Define

Y = (y1, y2, . . . , yT )
B = (ν,A1, A2, . . . , Ap)
Zt = (1, yt, yt−p+1)>

Z = (Z0, Z1, . . . , ZT−1) (2.2)

Hence for multivariate case, the model described in equation (2.1) can also be rewritten
as

Y = BZ + U (2.3)

where U = (u1, u2, . . . , uT ). The compact form (2.3) is equivalent to

vec(Y ) = (Z> ⊗ IK)vec(B) + vec(U) (2.4)

If the vector of intercept terms ν is assumed to be zero, we can thus conclude that the
total dimension of the model to be estimated is pK2 and the total number of observa-
tions is KT .

The ration Kp
T could be large due to the reasons mentioned earlier, which deteriorates

the accuracy of final estimate. Worse still, if Kp > T , the model is not identified with
traditional method. Therefore, we use variable selection technique, such as lasso, to
estimate the model. Besides, under normal assumption of error term, the upper bound
of error in estimation is positively correlated in log(K2p)

T , part of oracle inequlity. the
estimation results can be further developed by adding one more step of sure indepen-
dence screening (SIS hence-after) before variable selection step. Another advantage of
SIS is that it could mitigate the problem caused by multicollinearity, which is common
in time series setting. The methodologies introduced in the proceeding paragraph are of
great importance in the sense that the true underlying model has a sparse representation.

2.3.2 Penalized Least Square and Variable Selection
Variable selection is an important tool for the linear regression analysis. A popular
method is the lasso estimator of Tibshirani (1996b), which can be viewed to simulta-
neously perform model selection and parameter estimation. Related literature includes
bridge regression studied by Frank and Friedman (1993) and Fu (1998), the least angle
regression of Efron et al. (2004) and adaptive lasso proposed by Zou (2006). Another
remarkable example is a smoothly clipped absolute deviation (SCAD) penalty for vari-
able selection proposed by Fan and Li (2001), they proved its oracle properties.
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Let us start with consider model estimation and variable selection in a linear regression
model,

y = Xβ + ε (2.5)

where y = (y1, . . . , yn)> is an n× 1 response vector, X = (x1, . . . , xp) is an n× p matrix
with xj = (x1j , . . . , xnj)>, j = 1, . . . , p. β̂ denotes the coefficient estimator produced by
the fitting procedure. ε = (ε1, . . . , εn)> is an n× 1 vector of iid random errors.

The least square estimate is obtained via minimizing ‖y −Xβ‖2, where the ordinary
least squares (OLS) gives nonzero estimates ω = X>y to all coefficients. Normally best-
subset selection are implemented to select significant variables, but the traditional idea
of best subset selection methods is computationally too expensive for many statistical
applications. Therefore the penalized least square with a penalty term that is separable
with respect to the estimated parameter β̂ is considered here. In this paper we consider
two popular estimators, lasso and SCAD.

The lasso is a regularization technique for simultaneous estimation and variable selec-
tion. Its estimate is defined as,

β̂LASSO = arg min
β
‖y −Xβ‖2 + λ

p∑
j=1
|βj | (2.6)

= arg min
β
‖y −

p∑
j=1

xjβj‖2 + λ
p∑
j=1
|βj |

where λ is a tuning parameter. The second term in equation (2.3.2) is known as the
`1-penalty. The idea behind lasso is the coefficients shrinks toward 0 as λ increase. When
λ is sufficiently large, some of the estimated coefficients are exactly zero. The estimation
accuracy comes from the trade-off between estimation variance and the bias.

To sum up, lasso is the penalized least square estimates with the `1 penalty in the
general least squares and likelihood settings. Furthermore, the `2 penalty results in a
ridge regression and `p penalty will lead to a bridge regression. In the setting of bridge
regression, the penalty term is of `p norm.

We proceed to a brief introduction of the SCAD method. In the present context, the
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SCAD estimator is given by,

β̂SCAD =


sgn(ω)(|ω| − λ)+ when |ω| ≤ 2λ
{(a− 1)ω − sgn(ω)aλ}

a− 2 when 2λ < |ω| ≤ aλ
ω when |ω| > aλ

(2.7)

where a > 2 is an additional tuning parameter. The continuous differentiable penalty
function for SCAD estimator is defined by,

p
′
λ(β) = λ

{
I(β ≤ λ) + (aλ− β)+

(a− 1)λ I(β > λ)
}

for a > 2 and β > 0 (2.8)

Both estimators are members of this penalized likelihood family. LASSO has better
performance when the noise to signal ratio is large, but this approach creates bias. SCAD
can generate variable selection results without generating excess biases.

2.3.3 Iterated-SIS Estimation
Fan and Lv (2008) proposed a SIS method to select important variables in ultra high-
dimensional linear models. The proposed two-stage procedure can perform better than
other methods in the sense of statistical learning problems. The SIS method is based
on the concept of sure screening, is defined as the correlation learning which filters out
the features that have weak correlation with the response. By sure screening, all the
important variables survive after variable screening with probability tending to 1.

Fan et al. (2009) improve iterated-SIS to a general pseudo-likelihood framework by
allowing feature deletion in the iterative process. Fan et al. (2010) further extend the
SIS model and consider an independent learning by ranking the maximum marginal
likelihood estimator or maximum marginal likelihood itself for generalised linear mod-
els. Here we combine the VAR(p) model and SIS algorithm to find out the key elements
in a big system. The basic idea of SIS is introduced in the following.

Let ω = (ω1, ω2, . . . , ωp)> be a p-vector that is obtained by componentwise regression,
i.e.,

ω = X>y (2.9)

where y is n vector of response and X is a n× p data matrix. ω is a vector of marginal
correlations of predictors with the response of predictors with the response variable,
rescaled by the standard deviation of the response.

When there are more predictors than observation, LS (least square) estimator is noisy,
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that’s why ridge regression is considered. Let ωλ = (ωλ1 , . . . , ωλp )> be a p−vector obtained
by ridge regression, i.e.,

ωλ = (X>X + λIp)−1X>y (2.10)

where λ > 0 is a regularization parameter. Obviously, when λ → 0, ωλ → β̂LS and
λ → ∞, λωλ → ω. The componentwise regression is a specific case of ridge regrerssion
with λ =∞.

The iterated-SIS algorithem applied for estimating the V AR(p) model is,

1. Apply SIS for initial screening, reduce the dimensionality to a relative large scale
d;

2. Apply a lower demensional model selection method (such as lasso, SCAD) to the
sets of variables selected by SIS;

3. Apply SIS to the variables selected in the previous step;

4. Repeat step 2 and 3 until the set of selected variables do not decrease.

2.3.4 Connectedness Measure
The interactions between the variables, i.e., the directional connectedness measure θij(q)
is calculated by the generalized impulse response analysis using the sparse estimation of
VAR(p) models. With interated-SIS algorithm to estiamte the sparse VARs structure,
we can acquire its moving average (MA) transformation,

yt =
∞∑
i=0

Biut−i (2.11)

The coefficient matrices Bi obey Bi =
∑iy
j=1Bi−jAj , withB0 = IK and Aj = 0 for j > p.

Aj , j = 1, 2, . . . , p is the coefficient matrices of VAR(p) model.

Denoting the GFEVD by θij(q),

θij(q) =
σ−1
jj

∑Q−1
q=0

(
e>i B̂qΣej

)2

∑Q−1
q=0

(
e>i B̂qΣB̂>q ei

) (2.12)

where q is the lag order, ei is an pK2 × 1 selection vector with unity as its ith element
and zeros elsewhere. Σ = E

(
utu
>
t

)
, is the covariance matrix of the non-orthogonalized

VAR(p) in equation (2.1). σjj is the corresponding jth diagonal element of Σ. The
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matrics B̂l are the estimated coefficient matrices of equation (2.11).

To measure the persistent effect of a shock on the behavior of a series, we aim to acquire
the population connectedness table 2.1, according to Diebold and Yılmaz (2014).

x1 x2 . . . xn From others
x1 θ11(q) θ12(q) . . . θ1n(q)

∑n

j=1 θ1j(q), j 6= 1
x2 θ21(q) θ22(q) . . . θ2n(q)

∑n

j=1 θ2j(q), j 6= 2
...

...
...

...
...

xn θn1(q) θn2(q) . . . θnn(q)
∑n

j=1 θnj(q), j 6= n

To others
∑n

i=1 θi1(q), i 6= 1
∑n

i=1 θi2(q), i 6= 2 . . .
∑n

i=1 θin(q), i 6= n
1
n

∑n

i=1,j=1 θij(q), i 6= j

Table 2.1. Connectedness table of interest.

The rightmost column gives the "from" effect of total connectedness, and the bottom
row gives the "to" effect. In particular, the directional connectedness "from" and "to"
associated with the forecast error variation θij for specific power contract when the
arising shocks transmit from one stock to the others. These two connectedness estimators
can be obtained by adding up the row or column elements, the pairwise directional
connectedness from j to i is given by,

CQi←j = θij(q) (2.13)

The total directional connectedness "from" Ci←· (others to i), "to" C·←j (j to others)
and the corresponding net connectedness are defined as

Ci←• =
n∑
j=1

θij , i 6= j

C•←j =
n∑
i=1

θij , i 6= j

Ci = Cto − Cfrom = C•←i − Ci←• (2.14)

2.4 Empirical Study
2.4.1 Data
As introduced in Section 2.2, EEX offers continuous trading data of Phelix Futures. The
available load profiles are base, peak and off-peak. The available products with differ-
ent maturities have five kinds, Day/Weekend Futures, Week Futures, Month Futures,
Quarter Futures and Year Futures. Nevertheless the products of Day/Weekend Futures
and Week Futures only have the off-peak load data, for all other contracts base and
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peak only. Here we recall the underlying of the Phelix Futures data, the Phelix Base
contract is average price of the hours 1 to 24 for electricity traded on spot market, while
the Phelix Peak is the average price of the hours 9 to 20 for electricity traded on spot
market. Therefore we involve the products of spot prices as well. The contracts of spot
prices are diversified in Hours from 00-01h up to 23-24h, and in Blocks of Base Monthly,
off-peak 01-08, off-peak 21-24, Peak Monthly. The dataset we constructed is provided by
Bloomberg, we have 90 kinds of contracts in total. The time span is from 30.09.2010 to
31.07.2015. All the contracts are listed on Table 2.2 with detailed information in Table
2.3

Kind Contract Types
GI GI1.Comdty GI2.Comdty GI3.Comdty GI4.Comdty

GI5.Comdty GI6.Comdty GI7.Comdty
GT GT1.Comdty GT2.Comdty GT3.Comdty GT4.Comdty

GT5.Comdty GT6.Comdty GT7.Comdty
HP HP1.Comdty HP2.Comdty HP3.Comdty HP4.Comdty

HP5.Comdty HP6.Comdty
GJ GJ1.Comdty GJ2.Comdty GJ3.Comdty GJ4.Comdty

GJ5.Comdty GJ6.Comdty GJ7.Comdty
HI HI1.Comdty HI2.Comdty HI3.Comdty HI4.Comdty

HI5.Comdty HI6.Comdty HI7.Comdty
NE NE1.Comdty NE2.Comdty NE3.Comdty NE4.Comdty

NE5.Comdty NE6.Comdty
POA POA1.Comdty POA2.Comdty POA3.Comdty POA4.Comdty

POA5.Comdty POA6.Comdty POA7.Comdty
PDA PDA1.Comdty PDA2.Comdty PDA3.Comdty PDA4.Comdty

PDA5.Comdty PDA6.Comdty PDA7.Comdty
PBA PBA1.Comdty PBA2.Comdty PBA3.Comdty PBA4.Comdty

PBA5.Comdty PBA6.Comdty
LPXBHR LPXBHR01.Index LPXBHR02.Index LPXBHR03.Index LPXBHR04.Index

LPXBHR05.Index LPXBHR06.Index LPXBHR07.Index LPXBHR08.Index
LPXBHR09.Index LPXBHR10.Index LPXBHR11.Index LPXBHR12.Index
LPXBHR13.Index LPXBHR14.Index LPXBHR15.Index LPXBHR16.Index
LPXBHR17.Index LPXBHR18.Index LPXBHR19.Index LPXBHR20.Index
LPXBHR21.Index LPXBHR22.Index LPXBHR23.Index LPXBHR24.Index

LPXBHxx LPXBHBMI.Index LPXBHOP1.Index LPXBHOP2.Index LPXBHPMI.Index
LPXBHRBS.Index LPXBHRPK.Index

Table 2.2. The contracts we use for estimation.

47



2
Sparsity

A
nalysis

ofEnergy
Price

Forecasting
Name Detailed Info
GI1.Comdty - GI7.Comdty Phelix Base Month Option

and the respective next six delivery months
GT1.Comdty - GT7.Comdty Phelix Base Quarter Option

and the respective next six delivery quarters
HP1.Comdty - HP6.Comdty Phelix Base Year Option

and the respective next five delivery years
GJ1.Comdty - GJ7.Comdty Phelix Peak Month Future

and the respective next six delivery months
HI1.Comdty - HI7.Comdty Phelix Peak Quarter Future,

and the respective next six delivery quarters
NE1.Comdty - NE6.Comdty Phelix Peak Year Future

and the respective next five delivery years
POA1.Comdty - POA7.Comdty Phelix Off-Peak Month Future

and the respective next six delivery months
PDA1.Comdty - PDA7.Comdty Phelix Off-Peak Quarter Future

and the respective next six delivery quarters
PBA1.Comdty - PBA6.Comdty Phelix Off-Peak Year Future

and the respective next five delivery years
LPXBHR01.Index - LPXBHR24.Index EEX Day-ahead Spot Market with Bid Type from 00-01 to 23-24h,

e.g. LPXBHR14.Index is EEX Day-ahead Spot price based on bid hours from 13 -14.
LPXBHRxx.Index EEX Day-ahead Spot Market with different Bid Types:

LPXBHB.Index is Base Monthly 00-14h;
LPXBHOP1.Index is Off Peak1 01-08h;
LPXBHOP2.Index is Off Peak2 21-24h;
LPXBHP.Index is Peak Monthly 08 - 20h;
LPXBHRB.Index is Baseload;
LPXBHRP.Index is Peakload.

Table 2.3. The detailed information of the selected contracts, summersized from the file "Products 2016" provided by European
Energy Exchange AG.
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2 Sparsity Analysis of Energy Price Forecasting

To remove the redundant variable, we apply screening technique to select variables
using the Phelix Futures consisting of different contracts and over different maturities.
To implement the VAR model, first order difference of the data in Figure 2.2 is needed
to transform non-stationary data to stationary time series. The contour plot of the con-
structed dataset are depicted in Figure 2.3.

In the market of Phelix Futures, final settlement at negative prices is also possible.
There are some missing values after transforming the original data to stationary time
series by first order difference. To deal with the missing data in dataset, some quick fixes
such as mean-substitution may be fine in some cases. While such simple approaches
usually introduce bias into the data, for instance, applying mean substitution leaves the
mean unchanged (which is desirable) but decreases variance, which may be undesirable.
In our paper, we impute missing values with plausible values drawn from a distribution
using an approach proposed by Van Buuren and Oudshoorn (2000).
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Figure 2.5. Pattern of imputed data.
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2 Sparsity Analysis of Energy Price Forecasting

The patterns of missing data for the original dataset and imputation dataset are
compared in the Figure 2.5. The distributions of the variables are shown as individual
points, the imputed data for each imputed dataset is showed in magenta while the
density of the observed data is showed in blue. The distributions are expected to be
similar based on the assumption. We can observe that the shape of the magenta points
(imputed) matches the shape of the blue ones (observed). The matching shape tells
us that the imputed values are indeed plausible values. With the imputed dataset of
interest, we proceed to the estimation results derived from the iterated-SIS methodology.

2.4.2 Variable selection
With iterated-SIS, we can show the consistency of variable selection. Besides, with only
a small set of relevant variables in the final model after iterated-SIS with lasso, the final
estimate can be shown to be normally distributed.

Each curve corresponds to a variable. It shows the path of its coefficient against the
l1-norm of the whole coefficient vector as λ varies. The estimation results are plotted in
Figure 2.6, while the iterated-SIS-SCAD output is shown in Figure 2.7.

To estimate the accuracy of forecasting behaviour concerning the model selected, the
observations yt is partitioning into sample and presample values. In this paper we select
the presample as 30.09.2010 - 28.11.2014, and the rest is treated as the sample from
31.12.2014 to 07.12.2015. The variable selected by the algorithm is,

Yt = 1.7730 + 0.4982Yt−92 + 0.3252Yt−104 + ut

= 1.7730 + [0.4982, B0.3252][Y ′t−92, Y
′
t−104]′ + ut (2.15)

Once the VAR model has been estimated, we are interested in causal inference, fore-
casting and diagnosing the empirical model’s dynamic behavior, i.e., impulse response
functions (IRF) and forecast error variance decomposition. The impulse response anal-
ysis is based upon the Wold moving average representation of a VAR(p) process. It is
used to investigate the dynamic interactions between the endogenous variables. The (i,
j)th coefficients of the matrice

The tuning parameter used to adjust the penalty of glmnet estimation is Bayesian in-
formation criterion (BIC). As far as we acquired the estimated VAR model, the impulse
response technique can be implemented to find the variables that accounts for most varia-
tion of dataset. For the continuous-time system, the impulse response analysis quantifies
the reaction of every single variable in the model on an exogenous shock to the model.
We assume all effects of omitted variables are assumed to be in the innovations. If
important variables are omitted from the system,this may lead to major distortions in
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Figure 2.6. iterated-SIS-LASSO estimation results.
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Figure 2.7. iterated-SIS-SCAD estimation results.
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the impulse responses and makes them worthless for structural interpretations. Here we
construct a systerm yt with VMA representation, . . . The impulse response function for
VAR model here is the orthogonal Impulse-Response function. The results derived by
IR analysis are as follows,. . .

The tuning parameter used to adjust the penalty of glmnet estimation is Bayesian
information criterion (BIC). As far as we acquired the estimated VAR model, the impulse
response technique can be implemented to find the variables that accounts for most
variation of dataset. For the continuous-time system, the impulse response analysis
quantifies the reaction of every single variable in the model on an exogenous shock to the
model. We assume all effects of omitted variables are assumed to be in the innovations.
If important variables are omitted from the system, this may lead to major distortions
in the impulse responses and makes them worthless for structural interpretations.

2.4.3 Lag Length Selection
We use different lags for estimating the VAR(p)model. The lag length for the VAR(p)
model may be determined using model selection criteria. General approach is as follows,

• Fit the VAR(p) models with different lags p = 0, . . . , pmax,

• Choose the value of p which minimizes some model selection criteria.

Model selection criteria for VAR(p) can be written as,

IC(p) = log |Ĥ(p)|+ ϕ(K, p)cT (2.16)

where ϕ(K, p) is a penalty function. cT is a sequence indexed by the sample size T . The
residual covariance matrix without a degrees of freedom correction is defined as,

Ĥ(p) = 1
T

T∑
t=1

u>t ut (2.17)

Rewrite equation 2.16 with different penalty functions, the three most common informa-
tion criteria are the Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ),

AIC = log |Ĥ(p)|+ 2
T
pK2 (2.18)

HQ = log |Ĥ(p)|+ 2 log log T
T

pK2 (2.19)

BIC = log |Ĥ(p)|+ log T
T

pK2 (2.20)

The model selection results are shown in Table 2.4.
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Model AIC HQ(C) BIC
iterated-SIS-lasso, p = 1 4.5686 4.7249 5.7864
iterated-SIS-lasso, p = 2 4.5006 4.6426 5.6076
iterated-SIS-lasso, p = 3 7.7034 8.3143 12.4637
iterated-SIS-lasso, p = 5 7.0839 8.1209 15.1652

iterated-SIS-SCAD, p = 1 4.5714 4.7277 5.7892
iterated-SIS-SCAD, p = 2 6.1043 6.1043 9.5782
iterated-SIS-SCAD, p = 3 7.2559 7.6820 10.5770

Table 2.4. The three most common information criteria: the Akaike (AIC), Schwarz-Bayesian (BIC)
and Hannan-Quinn (HQ) are compared.

Lag iterated-SIS-lasso iterated-SIS-SCAD
p = 1 0.0697 0.0697
p = 2 0.0670 0.0701
p = 3 1.9598 0.1413
p = 5 0.1397 -

Table 2.5. MSE of out-of-sample forecasting during 31.12.2014 - 31.07.2015

Recall equation ??, the VAR(p) model,

yt = ν +A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut

= ν + (A1, A2, . . . , Ap)
(
y>t−1, y

>
t−2, . . . , y

>
t−p

)>
+ ut

We select the in-sample dataset as 30.09.2010-28.11.2014, the out-of-sample dataset
used to measure model performance is from 31.12.2014 to 31.07.2015. We roll each
model through the out-of-sample data set one observation at a time while each time
forecasting the target variable one month ahead. By rolling window. The mean squared
errors (MSE) for different models are calculated and reported in Table 2.5. VAR(2) with
iterated-SIS-lasso technique performs best.

2.5 Network Analysis
We estimate VAR models using the iterated-SIS algorithm as described in previous
section. Then we compute variance decompositions and corresponding connectedness
measures at horizon H = 10, using the estimated VAR parameters.
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2.5.1 Full-sample connectedness
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Figure 2.8. The graph for full-sample energy market network, across 11 different kinds with in total
90 contracts.

The graph of our full-sample energy market network is depicted in Figure 2.8. We
observe the cluster phenomena in this graph, which motivates us to study the connect-
edness between contracts within and across 11 different kinds of energy contracts. In
general, the contracts that belong to the same type tend to appear inside the same clus-
ter. We find out several pairs of strong connections between different types of contracts,
for example, the upper-left area reveals that the LPXBHR-type and LPXBHxx-type are
massively connected. In addition, a cluster consisting of HP-type (Phelix Base Year Fu-
ture), NE-type (Phelix Peak Year Future) and PBA-type (Phelix Off-Peak Year Future)
indicates the closer relationship among these contracts, this implies the year futures are
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closer to each other while the week future and quarter future remain distinct.

GI GT HP GJ HI NE POA PDA PBA LPXBHR LPXBHxx From
GI 1.75 0.46 0.86 1.46 0.44 0.71 1.48 0.48 0.80 0.15 0.15 8.74
GT 0.46 2.33 0.98 0.58 2.41 0.93 0.42 2.03 0.84 0.30 0.41 11.70
HP 0.73 0.84 5.27 0.63 0.51 4.78 0.70 1.21 4.19 0.06 0.03 18.95
GJ 1.46 0.58 0.73 1.80 0.63 0.64 1.09 0.51 0.65 0.13 0.13 8.36
HI 0.44 2.41 0.60 0.63 2.65 0.63 0.37 1.92 0.49 0.34 0.48 10.96
NE 0.61 0.79 4.78 0.55 0.54 5.09 0.55 1.05 3.34 0.08 0.12 17.52

POA 1.48 0.42 0.81 1.09 0.37 0.64 1.60 0.48 0.79 0.19 0.18 8.04
PDA 0.48 2.03 1.42 0.51 1.92 1.23 0.48 1.99 1.27 0.26 0.32 11.91
PBA 0.68 0.72 4.19 0.56 0.42 3.34 0.67 1.09 3.88 0.20 0.12 15.88

LPXBHR 0.80 1.24 0.50 0.67 1.35 0.50 0.90 1.12 1.01 7.86 9.81 25.79
LPXBHxx 0.13 0.35 0.03 0.11 0.41 0.12 0.16 0.28 0.13 2.70 3.86 8.28

To 9.03 12.18 20.17 8.59 11.65 18.62 8.41 12.16 17.38 12.28 15.63 146.12
Net 0.29 0.48 1.22 0.23 0.70 1.10 0.37 0.25 1.50 -13.50 7.35

Table 2.6. Population connectedness table for 11 kinds of contracts.
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Figure 2.9. The graph for network across 11 different contract types.

Table 2.6 summerizes the full-sample connectedness of German power market across 11
different power contract types, with the own effects equal to the diagonal elements. We
observe the contracts that have significant impacts are the "From" impact of "LPXBHR"-
type and "To" impact of "HP"-type. The strongest link is the impact of LPXBHxx-type
on the LPXBHR, however the inverse impact does not exist. Furthermore, HP-type
contracts have stronger links from and to the other contract types. We can also con-
clude that the total impacts are mainly distributed among three types of contracts, i.e.,
HP-type, NE-type and PBA-type. The main risk of the whole market is mainly caused
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by LPXBHxx-type, HP-type and NE-type. This is potentially interesting because, al-
though HP-type, NE-type are important for the whole market as shown in Figure 2.9,
their net connectedness are negligible, with 4.52% and 4.08% of the total market power
contracts.

2.5.2 Determining Significant Market Component
In terms of magnitude for individual power contract reported in Table 2.6, the net
directional connectedness from others is distributed rather tightly, in total 77.21% of
"LPXBHR"-type and "LPXBHxx"-type.

We start with directional connectedness across 24 contracts of "LPXBHR"-type in
Table ??. Some blocks of high connectedness are detected, especially for the trading
hours ranging from 9-13h and 16-19h. Table 2.8 provides the "from", "to" and "net"
effects for 24 contracts in descending order of importance. Our finding clearly shows
that, the impact from day-ahead spot power contracts that bidding between 9am and
13am are more relevant to the stability of the German power market.
The pairwise directional impacts between "LPXBHR"-type and "LPXBHxx"-type are

plotted in Figure 2.10, we find a risk cluster of "LPXBHR10", "LPXBHR11", "LPXBHR11",
"LPXBHR12", "LPXBHRP", "LPXBHRB" and "LPXBHB", the graph exhibits strong
mutual links between some of the spot contracts. The "LPXBHB" (Base hours 00:00
- 24:00) has significant impacts on the spot contracts from hours 09 to 13, while the
impacts from "LPXBHP" (Peak Hours 08:00 - 20:00) is negilitable. In addition, both
"LPXBHRB" (Baseload) and "LPXBHRP" (Peakload) exhibits strong interconnected-
ness with the spot contracts from hours 09 to13. However only the "LPXBHRP" af-
fects the spot prices from hours 16h to18h. We can infer that the Base spot contract
"LPXBHB" is the largest risk contributor due to the strong linkage to the other spot
contracts.

The network graph in Figure 2.11 illustrates the directional connectedness between
"HP"-type and "NE"-type power contracts. Compared with Figure 2.8, we can see that,
the links between these two types are obviously very strong. "NE" contracts are the
Year Futures with maturities up to six years, the underlying of these contracts is the
average price of hours 9 to 20 for electricity traded on the spot market. "HP" contracts
are the European style options on the Phelix Base Future provided by EEX, the under-
lying of Phelix Base is the average price of the hours 1 to 24 for electricity traded on
the spot market. It is calculated for all calendar days of the year as the simple aver-
age of the Auction prices for the hours 1 to 24 in the market area Germany / Austria.
This figure shows the similar connectedness pattern between "HP1" and "NE1" contracts.
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LPXBHR01 LPXBHR02 LPXBHR03 LPXBHR04 LPXBHR05 LPXBHR06 LPXBHR07 LPXBHR08

LPXBHR01 1.00 0.71 0.52 0.35 0.53 0.43 0.13 0.14
LPXBHR02 0.42 0.59 0.47 0.36 0.31 0.18 0.06 0.07
LPXBHR03 0.27 0.41 0.54 0.42 0.36 0.23 0.12 0.12
LPXBHR04 0.19 0.32 0.41 0.53 0.38 0.25 0.21 0.15
LPXBHR05 0.25 0.24 0.30 0.33 0.47 0.37 0.19 0.15
LPXBHR06 0.18 0.12 0.18 0.18 0.34 0.41 0.22 0.23
LPXBHR07 0.10 0.08 0.13 0.20 0.22 0.29 0.45 0.40
LPXBHR08 0.10 0.08 0.13 0.14 0.18 0.30 0.45 0.54
LPXBHR09 0.11 0.08 0.14 0.15 0.18 0.35 0.58 0.70
LPXBHR10 0.25 0.23 0.23 0.33 0.49 0.66 0.46 0.49
LPXBHR11 0.27 0.28 0.26 0.35 0.50 0.61 0.42 0.46
LPXBHR12 0.26 0.29 0.23 0.30 0.42 0.48 0.28 0.31
LPXBHR13 0.23 0.30 0.24 0.30 0.39 0.45 0.21 0.27
LPXBHR14 0.16 0.15 0.17 0.23 0.26 0.30 0.13 0.13
LPXBHR15 0.22 0.18 0.17 0.19 0.22 0.27 0.14 0.13
LPXBHR16 0.07 0.06 0.10 0.13 0.19 0.34 0.36 0.41
LPXBHR17 0.13 0.13 0.18 0.22 0.35 0.51 0.29 0.36
LPXBHR18 0.13 0.11 0.15 0.20 0.32 0.47 0.24 0.27
LPXBHR19 0.15 0.11 0.12 0.24 0.32 0.45 0.33 0.30
LPXBHR20 0.10 0.07 0.08 0.17 0.24 0.38 0.32 0.28
LPXBHR21 0.06 0.07 0.05 0.12 0.17 0.28 0.27 0.25
LPXBHR22 0.11 0.13 0.11 0.12 0.19 0.31 0.23 0.26
LPXBHR23 0.10 0.12 0.06 0.07 0.11 0.18 0.12 0.14
LPXBHR24 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

LPXBHR09 LPXBHR10 LPXBHR11 LPXBHR12 LPXBHR13 LPXBHR14 LPXBHR15 LPXBHR16
LPXBHR01 0.16 0.25 0.27 0.26 0.23 0.13 0.08 0.03
LPXBHR02 0.07 0.15 0.19 0.20 0.21 0.07 0.04 0.03
LPXBHR03 0.10 0.13 0.14 0.13 0.14 0.07 0.05 0.05
LPXBHR04 0.12 0.21 0.23 0.20 0.20 0.11 0.10 0.15
LPXBHR05 0.12 0.24 0.25 0.22 0.21 0.11 0.08 0.11
LPXBHR06 0.20 0.29 0.27 0.23 0.22 0.13 0.12 0.15
LPXBHR07 0.38 0.27 0.26 0.20 0.16 0.09 0.09 0.16
LPXBHR08 0.53 0.28 0.27 0.19 0.17 0.08 0.08 0.09
LPXBHR09 0.73 0.33 0.31 0.22 0.19 0.10 0.11 0.09
LPXBHR10 0.45 0.98 0.94 0.82 0.70 0.43 0.37 0.43
LPXBHR11 0.43 0.94 0.98 0.92 0.81 0.44 0.37 0.43
LPXBHR12 0.31 0.84 0.94 1.00 0.90 0.46 0.36 0.44
LPXBHR13 0.27 0.71 0.83 0.90 1.00 0.62 0.51 0.43
LPXBHR14 0.13 0.39 0.41 0.41 0.54 0.83 0.77 0.27
LPXBHR15 0.14 0.31 0.32 0.30 0.40 0.67 0.71 0.27
LPXBHR16 0.41 0.39 0.38 0.34 0.32 0.22 0.26 0.59
LPXBHR17 0.33 0.68 0.72 0.72 0.78 0.50 0.51 0.65
LPXBHR18 0.24 0.66 0.66 0.65 0.70 0.48 0.50 0.71
LPXBHR19 0.27 0.63 0.63 0.60 0.63 0.48 0.47 0.62
LPXBHR20 0.26 0.64 0.61 0.58 0.52 0.34 0.32 0.49
LPXBHR21 0.24 0.56 0.54 0.53 0.44 0.25 0.22 0.35
LPXBHR22 0.24 0.51 0.47 0.42 0.35 0.17 0.14 0.32
LPXBHR23 0.14 0.40 0.41 0.44 0.39 0.22 0.17 0.27
LPXBHR24 0.00 0.03 0.04 0.07 0.07 0.02 0.01 0.03

LPXBHR17 LPXBHR18 LPXBHR19 LPXBHR20 LPXBHR21 LPXBHR22 LPXBHR23 LPXBHR24
LPXBHR01 0.13 0.13 0.15 0.10 0.06 0.11 0.10 0.00
LPXBHR02 0.08 0.07 0.08 0.07 0.14 0.17 0.22 0.38
LPXBHR03 0.09 0.08 0.07 0.06 0.11 0.12 0.15 0.42
LPXBHR04 0.16 0.16 0.18 0.15 0.17 0.16 0.18 0.36
LPXBHR05 0.17 0.15 0.16 0.14 0.19 0.18 0.22 0.50
LPXBHR06 0.22 0.20 0.21 0.19 0.25 0.24 0.27 0.55
LPXBHR07 0.20 0.19 0.23 0.22 0.20 0.18 0.16 0.17
LPXBHR08 0.20 0.16 0.18 0.18 0.21 0.20 0.17 0.20
LPXBHR09 0.24 0.17 0.20 0.19 0.17 0.18 0.10 0.00
LPXBHR10 0.67 0.65 0.61 0.63 0.55 0.50 0.39 0.04
LPXBHR11 0.71 0.65 0.62 0.60 0.53 0.46 0.40 0.05
LPXBHR12 0.72 0.65 0.61 0.58 0.53 0.42 0.43 0.08
LPXBHR13 0.78 0.70 0.63 0.52 0.44 0.35 0.39 0.08
LPXBHR14 0.42 0.41 0.41 0.30 0.22 0.16 0.21 0.07
LPXBHR15 0.38 0.37 0.36 0.25 0.18 0.13 0.15 0.05
LPXBHR16 0.46 0.46 0.42 0.36 0.28 0.26 0.20 0.02
LPXBHR17 1.00 0.93 0.74 0.62 0.46 0.36 0.27 0.02
LPXBHR18 0.93 1.00 0.83 0.68 0.46 0.38 0.30 0.02
LPXBHR19 0.74 0.83 1.00 0.81 0.59 0.45 0.46 0.05
LPXBHR20 0.62 0.68 0.81 1.00 0.82 0.64 0.56 0.08
LPXBHR21 0.46 0.46 0.59 0.82 1.00 0.82 0.71 0.27
LPXBHR22 0.36 0.38 0.45 0.64 0.82 1.00 0.81 0.23
LPXBHR23 0.27 0.30 0.46 0.56 0.71 0.81 1.00 0.38
LPXBHR24 0.03 0.03 0.06 0.08 0.22 0.19 0.31 0.82

Table 2.7. Population connectedness table for LPXBHR contracts.

60



2 Sparsity Analysis of Energy Price Forecasting

LPXBHR01 LPXBHR02
LPXBHR03

LPXBHR04

LPXBHR05

LPXBHR06

LPXBHR07

LPXBHR08

LPXBHR09

LPXBHR10

LPXBHR11

LPXBHR12

LPXBHR13

LPXBHR14
LPXBHR15LPXBHR16LPXBHR17

LPXBHR18

LPXBHR19

LPXBHR20

LPXBHR21

LPXBHR22

LPXBHR23

LPXBHR24

LPXBHB

LPXBHOP1

LPXBHOP2

LPXBHP

LPXBHRB
LPXBHRP

LPXBHR
LPXBHxx
LPXBHR
LPXBHxx

Figure 2.10. The network graph for "LPXBHR"-type and "LPXBHxx"-type power contracts.
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Figure 2.11. The network graph for "HP" and "NE"-type power contracts.
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Power Contract From To Net
LPXBHR11.Index 12.48 11.08 -1.40
LPXBHR10.Index 12.27 10.83 -1.45
LPXBHR12.Index 11.83 10.55 -1.27
LPXBHR13.Index 11.55 10.28 -1.27
LPXBHR17.Index 11.46 10.05 -1.41
LPXBHR19.Index 11.27 10.05 -1.23
LPXBHR18.Index 11.06 9.79 -1.27
LPXBHR20.Index 10.61 9.73 -0.88
LPXBHR21.Index 9.51 9.31 -0.19
LPXBHR22.Index 8.77 8.51 -0.26
LPXBHR23.Index 7.80 8.48 0.68
LPXBHR14.Index 7.48 8.16 0.68
LPXBHR16.Index 7.02 7.16 0.14
LPXBHR15.Index 6.51 7.15 0.64
LPXBHR01.Index 5.99 6.99 0.99
LPXBHR09.Index 5.64 6.54 0.90
LPXBHR06.Index 5.60 6.42 0.83
LPXBHR05.Index 5.35 6.30 0.94
LPXBHR04.Index 5.28 6.19 0.91
LPXBHR08.Index 5.13 5.65 0.52
LPXBHR07.Index 5.04 4.98 -0.06
LPXBHR02.Index 4.66 4.87 0.21
LPXBHR03.Index 4.36 4.85 0.49
LPXBHR24.Index 2.07 4.84 2.77

Table 2.8. Summary of "From", "To" and "Net" effects across "LPXBHR" contracts bidding from
0h to 24h.

2.6 Conclusion
By comparing our empirical findings, we could be able to identify the relevant risk drivers
from the portfolio that are unknown to the power market investors. The selection of
important market drivers via iterated-SIS algorithm enables us to investigate a ultra
high-dimensional portfolio, since the the number of parameters to estimate increases
quadratically in the number of variables included in the context of VAR estimation. In
our paper, the network of interest follows the Dieboldt-Yilmaz tradition. With the wide
range of power derivative contracts trading in the German electricity market, we are able
to identify, estimated the risk contribution of individual power contract, this helps us to
have a better understanding of the German power market functioning and environment.
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3 Inflation Co-movement across Countries
in Multi-maturity Term Structure: An
Arbitrage-Free Approach

3.1 Introduction
Today most economists favour a low and steady rate of inflation because it facilitates
real wage adjustments in the presence of downward nominal wage rigidity. Hence one of
the major objectives of modern monetary policy is to bring inflation expectation under
control, which is considered to be the first step in controlling inflation. Meanwhile, hedg-
ing the risk around the inflation forecast becomes more attractive in financial markets,
as many investors rely on the stability and predictability of future inflation levels. More-
over, price stability is of immense importance to sustain social welfare, job opportunities
and economic upturn. The objective of price stability refers to the general level of prices
in the economy which implies avoiding both prolonged inflation and deflation. Inflation
expectation that is involved in a contemporary macroeconomic framework anticipates
future economic trends, will further affect monetary decisions. Since there is large de-
mand on having reasonable estimates of inflation expectation levels, a large amount of
literature has focused on analysing the government conventional and inflation-indexed
bonds, which can implicitly provide a vast amount of information about the expectations
of nominal and real interest rates obtained from the market. Such estimates are known
to be an important complement to the estimates provided from the survey data. Despite
the fact that inflation indexed bonds have been more frequently and widely issued in
recent times, one would still have great difficulties in integrating the market information
from multiple countries to get individual level estimates of the inflation expectation.
The major problems lie in the relative short period of data availability and the existence
of a lot of missing values. While the existing literature’s focus is mainly on specific
country, we would like to consider an estimation framework that allows us to analyse
the co-movement of inflation expectation for multiple countries, and also provide the
country specific estimates of inflation expectation(IE) and the inflation risk premium
(IRP).
The starting point of our research is to analyse the break-even inflation rate (BEIR),

which is known to be the difference between the yield on a nominal fixed-rate bond and
the real yield on an inflation-linked bond of similar maturity and credit quality. The
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Figure 3.1. BEIR for five industrialized European countries - U.K.(red dotted line), Germany(blue
dashed line), France(black line), Italy(orange dot-dashed line) and Sweden(grey line).

MTS_BEIR

BEIR can generally indicate how the inflation expectations are priced into the market.
However they are not a perfect measure for IEs, as they may also encompass inflation
risk premium, liquidity premium and "technical" market factors. We show the BEIR for
five European countries - U.K., Germany, France, Italy and Sweden in Figure 3.1, which
exhibits some degree of co-movement. This facilitates the following study in a multiple
country framework. It is known that the euro-zone annual inflation rate was recorded at
-0.2 percent in December of 2014 which matches, but are slightly higher than the overall
BEIR shown in Figure 3.1. A fall in consumer prices first only appears since September
2009 due to a drop in energy costs. This motivates us to extract a joint time-varying
structure of IEs estimated from individual (country-specific) BEIR.
The modelling of BEIR requires a model for the joint dynamics of the nominal and the

real yields. For instance, Härdle and Majer (2014) investigated the yield curves using
a Dynamic Semiparametric Factor Model (DSFM). To adopt a real time approach to
help access the term structure of nominal and inflation-linked yields, in this study we
consider a three-factor term structure model originally from Nelson and Siegel (1987).
The attractiveness of factor models of the Nelson-Siegel type is due to its convenient
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linear functions and good empirical performance. Diebold and Li (2006) extend the
original Nelson-Siegel model to a dynamic environment. Theoretically, the Nelson-Siegel
(NS) model does not ensure the absence of arbitrage opportunities, as shown by Bjork
and Christensen (1999). Christensen et al. (2011) further develop the NS model to
an AFNS model by imposing the arbitrage-free hypothesis, which reflects most of the
real activities of financial markets. With arbitrage-free pricing, financial institutions
apply arbitrage conditions to prices that are observable in financial markets in order
to determine other prices that are not. The standard approaches for pricing forwards,
swaps are all derived from such arbitrage arguments for both complete and incomplete
markets. In our paper, we will use an AFNS model for the dynamics of the nominal and
the real yield respectively, and combine the two models later on.
Based on the joint dynamics of the nominal and the real yields, a sizable amount

of literature has analysed how to isolate IE and IRP from BEIR. Earlier work mainly
focuses on U.K. data because the U.K. was one of the first developed economies to issue
inflation-indexed bonds for institutional investors. Since the 1981 launch of the original
U.K. index-linked gilts, various developments have occured in the international markets.
Barr and Campbell (1997) estimated market expectations of real interest rates and
inflation from observed prices of U.K. government nominal and inflation-linked bonds.
Joyce et al. (2010) developed an affine term structure model to decompose forward rates
to obtain IRP. Notably, Christensen et al. (2010a) used an affine arbitrage-free model of
the term structure to decompose BEIR that captures the pricing of both nominal and
inflation-indexed securities. A four-factor joint AFNS model was achieved by combining
the AFNS models for nominal and inflation-linked yields, which proved efficient for
fitting and forecasting analysis. Unlike Christensen et al. (2010a), we align the four
factor models over different maturities to make the factors consistent over maturities.
With the AFNS model for the joint dynamics on hand, we proceed with our European

country analysis. Most of the existing literature mentions little about the story of
multiple countries. Diebold et al. (2008) are the first to consider a global multiple
country model for nominal yield curves. There are a few European central bank reports,
which focus on household and expert inflation expectation and the anchoring of inflation
expectations in the two currency areas before and during the 2008 crisis.
Here we would like to look into five industrialised European countries by constructing

a joint model of country-specific IEs. We construct an AFNS model in multi-maturity
term structure for modelling nominal and inflation-indexed bonds simultaneously, we
also propose a joint model of IE dynamics over European countries, which discovers
the extracted common trend for IE is an important driver for each country of interest.
Then we conduct an analysis to explore the estimated common factor by decomposing
the variation into parts driven by common effect variation and macroeconomic effect
variation.
The rest of the paper proceeds as follows. Section 2 estimates the joint AFNS model

in multi-maturity term structure for estimating yields on nominal and inflation-linked
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bonds and also covers the decomposition method of BEIR. In section 3, we discuss the
econometric methodology used in the joint modelling of IE dynamics. The technical de-
tails are in the Appendix. The empirical results are shown in Section 4. Finally section
5 concludes.

3.2 Preliminary Analysis
In this section, we introduce the methodology to obtain the model-implied BEIR. Sub-
section 3.2.1 briefly introduces the Nelson-Siegel model, and sub-section 3.2.2 constructs
the joint AFNS structure for modelling nominal and inflation-indexed bonds. Sub-
section 3.2.3 introduces the joint AFNS model across countries in a multi-maturity term
structure. In the last sub-section 3.2.4, we describe the decomposition method of BEIR.

3.2.1 A factor model representation
The classic Nelson-Siegel (NS) yield curve model for fitting to static yield curves with
simple functional form,

y(τ) = β0 + β1

(
1− e−λτ

λτ

)
+ β2

(
1− e−λτ

λτ
− e−λτ

)
(3.1)

where y(τ) is a zero-coupon yield with τ months to maturity, and β0, β1, β2 and λ are
parameters. This model is popular because it is simple and tractable. For a fixed value
of parameter λ the remaining three βs can be estimated by the OLS method. Maturity
τ determines the decay speed of parameters.
The aforementioned dynamic version of Nelson-Siegel (DNS) model enables institu-

tional investors and policy makers to understand the evolution of the bond market over
time, the DNS model can be written as,

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
(3.2)

where yt(τ) denotes the continuously zero-coupon yield of maturity τ at time t. the time-
varying parameters are defined as level Lt, slope St and curvature Ct. Such choice of the
latent factors is motivated by principal component analysis, which gives us three princi-
pal components corresponding to the latent factors. For instance, the most variation of
yields is accounted for by the first principal component - level factor Lt.
By incorporating the theoretical restriction of arbitrage-free, the AFNS model bridges

the best of the Nelson-Siegel model and the AF model. Thus, the AFNS model consists
of two equations by taking the structure of the DNS model and the real-world dynamics
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(under P-measure) equation derived from the AF model respectively,

yt(τ) = X1
t +X2

t

(
1− e−λτ

λτ

)
+X3

t

(
1− e−λτ

λτ
− e−λτ

)
− A(τ)

τ

dXt = KP (θP −Xt)dt+ ΣdWP
t

(3.3)

where X>t = (X1
t , X

2
t , X

3
t ) is a vector of latent factors, A(τ)

τ
is an unavoidable yield-

adjustment term and only depends on maturity. KP and θP correspond to drifts and
dynamics terms, and both are allowed to vary freely. Σ is identified as a diagonal
volatility matrix.

3.2.2 A joint factor model
The AFNS structure is a useful representation for term structure research. Christensen
et al. (2010a) employed and conducted a separate AFNS model estimation of nominal
and inflation-linked Treasury bonds respectively. Here we construct an extended AFNS
structure for modelling nominal and inflation-indexed bonds simultaneously without
exploring the estimated correlation of separate AFNS models.
The separate AFNS model of nominal and inflation-indexed type for a specific country

i can be written as,

yNit (τ) = LNit + SNit

(
1− e−λτ

λτ

)
+ CNit

(
1− e−λτ

λτ
− e−λτ

)
− ANi (τ)

τ

yRit (τ) = LRit + SRit

(
1− e−λτ

λτ

)
+ CRit

(
1− e−λτ

λτ
− e−λτ

)
− ARi (τ)

τ

To explore the relationship between nominal and inflation-indexed bond yields within
a country, we need combine two types and model them jointly.
To work with a simplified version of the yield curve, we assume the correlation between

the latent factors of nominal and inflation-indexed bonds as follows,

SRit = αSi S
N
it

CRit = αCi C
N
it

(3.4)

The assumption will be justified by the performance of the joint model illustrated in
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sub-section 3.4.2. The yield curve of the joint AFNS model is:

(
yNit (τ)
yRit (τ)

)
=

 1 1− e−λiτ

λiτ

1− e−λiτ

λiτ
− e−λiτ 0

0 αSi
1− e−λiτ

λiτ
αCi (1− e−λiτ

λiτ
− e−λiτ ) 1




LNit
SNit
CNit
LRit



+
(
εNit (τ)
εRit(τ)

)
−


ANi (τ)
τ

ARi (τ)
τ

 (3.5)

where yNit and yRit represent the nominal and inflation-linked yields for country i at time
t. The real-world dynamics (under P-measure) equation takes the form of,

dXt = KP (θP −Xt)dt+ ΣdWP
t

where the state variable X>it =
(
LNit , S

N
it , C

N
it , L

R
it

)
evolves dynamically.

3.2.3 Multiple Yield Curve Modelling
Diebold et al. (2008) extend the DNS model to a global version by modelling a potentially
large set of country yield curves in a framework that allows for both global and country-
specific factors. The model proposed here employs the joint AFNS model introduced in
sub-section 3.2.2 and we further extend it to a multiple-maturity case.
For a specific country i, we first assume the state variable X>it introduced in sub-

section 3.2.2 is a common state variable for the yield curves across different maturities.
The multiple yield curve model may very well lead to efficient estimation. As in the
following analysis examined, the small size of model residual represented in sub-section
3.4.4 accounts for the overall good fit of the model. More specifically, the joint AFNS
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yield curve in multi-maturity term structure is,
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(3.6)

where yNit (τn) and yRit (τn) represent the nominal and inflation-linked yields for country
i at time t with maturity τn. The real-world dynamics equation is in the same form as
before,

dXP
t = KP (θP −Xt)dt+ ΣdWP

t

where state variables X>it =
(
LNit , S

N
it , C

N
it , L

R
it

)
evolves dynamically.

The methodology used to obtain the estimates of yield curves is the Kalman filtering
technique. The technical details are in Appendix A.4.
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3.2.4 BEIR decomposition
In order to find a more appropriate measure of expected inflation, it is necessary to
understand the components of the bond yields intuitively and economically, for both
nominal and inflation-linked types. A sizable amount of literature has adopted a pa-
rameterized approach for modelling the term structure of interest rates to estimate the
IE and risk premia using data from both nominal and indexed bonds. Adrian and Wu
(2009), Campbell and Viceira (2009), Pflueger and Viceira (2011) decomposed the yield
of an inflation-linked bond into current expectation of a future real interest rate and
a real interest rate premium. The yield on a nominal bond can be decomposed into
parts of the yield on a real bond, expectations of future inflation and IRP. Therefore the
spread between both yields, the BEIR, reflects the level of IE and IRP.
In the environment of an arbitrage-free model, there are no opportunities for investors

to make risk-free profits, the bonds can be priced by basic pricing equations according
to Cochrane (2005),

Pt = Et
{
β
u
′(ct+1)
u′(ct)

xt+1

}
(3.7)

where the price is denoted by Pt, the value ct at time t has a payoff xt+1, β is the
discount factor. We break up the basic consumption-based pricing equation and get the
stochastic discount factor (SDF) Mt+1 at time t+ 1,

Mt+1 = β
u
′(ct+1)
u′(ct)

(3.8)

Then the prices of the zero-coupon bonds that pay one unit measured by the consumption
basket at time t with maturity τ are formed as follows,

PNt (τ) = Et
(
MN
t+1M

N
t+2 · · ·MN

t+τ

)
PRt (τ) = Et

(
MR
t+1M

R
t+2 · · ·MR

t+τ

) (3.9)

where the nominal and the real (for inflation-linked bond) SDFs at time t are denoted by
MN
t and MR

t . PNt and PRt represent the prices of nominal and real bonds respectively.
The price of the consumption basket, which is known as the overall price level Qt has
the following link with SDFs given the assumption of no arbitrage,

MN
t

MR
t

= Qt−1
Qt

(3.10)
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Converting the price into the yield by the equation of yt(τ) = −1
τ

logPt(τ),

yNt (τ) = −1
τ

log Et
(
MN
t+1M

N
t+2 · · ·MN

t+τ

)
= −1

τ
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(
logMN
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N
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)
− 1

2τ Vart
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N
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t+τ

)
yRt (τ) = −1

τ
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R
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)
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τ
Et
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R
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t+τ

)
− 1

2τ Vart
(
logMR
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R
t+2 · · ·MR
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)
Therefore,

yNt (τ)− yRt (τ) = −1
τ

Et
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log
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t+τ

)
+ 1
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, logMR
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R
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Given the log inflation is πt+1 = log Qt+1
Qt

and the relationship between SDFs according
to equation (10), the BEIR can be defined as,

yNt (τ)− yRt (τ) = 1
τ

Et (log πt+1πt+2 · · ·πt+τ )− 1
2τ Vart (log πt+1πt+2 · · ·πt+τ )

+ 1
τ

Covt
(
log πt+1πt+2 · · ·πt+τ , logMR

t+1M
R
t+2 · · ·MR

t+τ

)
(3.11)

that is,
BEIRt(τ) = yNt (τ)− yRt (τ) = πt(τ) + ηt(τ) + φt(τ) (3.12)

where πt(τ) is the IE, ηt(τ) is the corresponding convexity effect and φt(τ) is IRP. To
link the BEIRt(τ) with the estimated state variable mentioned in sub-section 3.2.3, we
assume that the P-dynamics equations of the SDFs are,

dMN
t

MN
t

= −(rNt − rNt−1)dt− (ΓNt − ΓNt−1)dWP
t

dMR
t

MR
t

= −(rRt − rRt−1)dt− (ΓRt − ΓRt−1)dWP
t

(3.13)

where rt is the stochastic risk-free rate and Γt represents the corresponding risk premium;
their dynamics can be connected to the underling state variable X>t in equation (6),
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details are given in Appendix A.5. Hence the dynamics of the overall price level is,

d log
(
Qt−1
Qt

)
= −(rNt − rRt )dt+ (rNt−1 − rRt−1)dt

d log (Qt) = (rNt − rRt )dt
(3.14)

The IE is given by,

πt(τ) = −1
τ

log EPt
[
exp

{
−
∫ t+τ

t
(rNs − rRs )ds

}]
(3.15)

which can be solved by a system of ODEs with a Runge-Kutta method, see Appendix
A.5. The convexity effect can be written as,

ηt(τ) = −1
τ

EPt
[
log exp

{
−
∫ t+τ

t
(rNs − rRs )ds

}]
(3.16)

Then the IRP can be easily calculated out by equation (12).

3.3 Econometric Modelling of Inflation Expectation
Diebold et al. (2008) extended the dynamic Nelson-Siegel (DNS) model proposed by
Diebold and Li (2006) to a global version by modelling a potentially large set of country
yield curves in a framework that allows for both global and country-specific factors. As
far as we have obtained the country-specific estimates of IE, we can tell a story of multiple
countries in this section. We aim to investigate the country-specific idiosyncratic factors
to load on a common time-varying factor and country-specific factors. The dynamics of
an extracted common trend is also evaluated.
The model without a macroeconomic factor is structured as follows, the idiosyncratic

factors π̂eit for each country i at time t, to load on a common time-varying latent factor
Πt,

π̂eit = mi + niΠt + µit (3.17)

The dynamics of common factor,

Πt = p+ qΠt−1 + νt (3.18)

where m, n, p and q are unknown parameters. The errors µit and νit are assumed to be
i.i.d white noise.
Since there is a dynamic interaction between macro-economy and the yield curve as ev-

idenced by Diebold et al. (2006), and in Figure 3.1 we can observe that the decrease of the
BEIR appears around 2012 due to the European sovereign debt crisis. A straightforward
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extension of the joint modelling equation (16) is adding a proxy of the macroeconomic
factor - default risk factor. The model with a macroeconomic factor is,

π̂eit = mi + niΠt + lidit + µit (3.19)

where dit is the default risk factor varying over time and m, n, p, l and q are unknown
parameters. The noises µit and νit are assumed to be i.i.d. The dynamics of the common
factor is the same form as in (18).

3.4 Empirical Results
We now turn to the analysis of the results obtained using the model proposed. Sub-
section 3.4.1 describes the data, we then discuss the fitting performance of the multiple
yield curve modelling, setting up a brief discussion on the estimation results of the
preliminary analysis in sub-section 3.4.2. Sub-section 3.4.3 establishes the estimated
IE for each country, and sub-section 3.4.4 discusses the common trend extracted from
the joint modelling of country-specific IEs. The results of the cross-sectional forecast is
shown in sub-section 3.4.5.

3.4.1 Data
Monthly nominal and inflation-linked yield data of zero-coupon government bonds used
for model estimation are taken from Bloomberg and Datastream. The research databases
are supported by the Research Data Center (RDC) from the Collaborative Research
Center 649, Humboldt Universität zu Berlin. The time series for a specific country
are estimated using data from the same source. We consider five samples from the
industrialized European countries - United Kingdom (U.K.), France, Germany, Italy
and Sweden, all member states of European Union (EU). It should be noted that, even
though two of the selected five European countries are outside the euro-zone - U.K.
and Sweden, they have their own currencies therefore independent central banks and
monetary policy, the inflation co-movement can be observed across the selected countries
in sub-section 3.4.4. This also motivates our analysis to extract a joint time-varying
structure of country-specific IEs.
The lack of short-maturity inflation-linked bonds of the sample countries indicates that

inflation-linked yield at short-maturity tends to be less reliable and accessible, so the
shortest maturities we could get access for each country are limited. We therefore selected
three maturities for each country to ensure that enough observations are available. The
sample period involves the subprime crisis in 2008 and is sightly different for each country
due to the integrity of the data. The surfaces of the yield data are plotted in Figure 3.2.
The blank areas in the Figure are for missing values and not zeros. Summary statistics
are depicted in Table 3.1.
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Figure 3.2. Term structures of nominal and inflation-linked bond yields across five European coun-
tries.
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Period Maturity Type Min Mean Max SD

U
K

30.06.2006 3 nominal 0.16 2.20 5.69 1.73
inflation-indexed -2.87 -0.14 5.35 1.81

— 4 nominal 0.35 2.44 5.62 1.59
inflation-indexed -2.62 -0.04 4.74 1.64

31.12.2014 5 nominal 0.57 2.66 5.56 1.48
inflation-indexed -2.37 0.11 4.27 1.49

Sw
ed
en

30.04.2007 3 nominal 0.18 1.80 4.67 1.27
inflation-indexed -0.71 0.15 1.83 0.54

— 5 nominal 0.58 2.33 4.71 1.11
inflation-indexed -0.84 0.51 2.33 0.79

29.08.2014 10 nominal 0.88 2.59 4.61 1.03
inflation-indexed -0.30 0.98 2 29 0.64

Fr
an

ce

30.06.2006 3 nominal -0.02 1.86 4.74 1.46
inflation-indexed -1.19 0.43 2.75 1.29

— 5 nominal 0.06 2.10 4.80 1.37
inflation-indexed -1.29 -0.40 1.06 0.60

31.12.2014 10 nominal 0.18 2.34 4.80 1.28
inflation-indexed -1.09 1.03 2.66 1.03

G
er
m
an

y 30.06.2009 5 nominal -0.07 0.90 2.38 0.77
inflation-indexed -1.39 -0.35 1.00 0.54

— 7 nominal 0.05 1.37 2.85 0.86
inflation-indexed -1.16 0.05 1.36 0.65

31.12.2014 10 nominal 0.39 1.94 3.29 0.84
inflation-indexed -0.53 0.33 1.67 0.67

It
al
y

30.06.2007 3 nominal 0.55 2.94 7.37 1.33
inflation-indexed -0.34 1.51 8.21 1.46

— 5 nominal 0.95 3.53 7.54 1.20
inflation-indexed 0.20 2.00 7.84 1.29

31.12.2014 10 nominal 1.89 4.45 7.11 0.93
inflation-indexed 1.02 2.77 6.72 1.06

Table 3.1. Descriptive statistics of the monthly bond yields data. SD is standard deviation.
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3.4.2 Estimates of Yield Curve Modelling
We assess the performance of the previously discussed multiple yield curve model by con-
ducting Kalman filtering, whose recursion is a set of equations allowing for an estimator
to be updated once a new observation yt is available; more technical details can be found
in Appendix A.4. The objective is to see if the yields of nominal and inflation-linked
bonds are suited to the model proposed in sub-section 3.2.3. Figure 3.3 shows the model
residuals over different maturities for all five European countries.
While the model residuals have jumps for short periods, it is not entirely surprising as

the jumps can be identified as the occurrence of extreme events. The outliers observed
in the sub-figure of Italy happened to be the financial default crisis of Italy in 2012.
We can also observe a jump around September 2008 for the U.K. and Sweden due to
the well-known subprime crisis. Basically the overall small size of the model residuals
indicates the good fit of the joint multiple yield curve model. The summary statistics
of the model fit is represented in Table 3.2. Again, the value of the mean and RMSE of
the model residuals are smaller due to the outliers in Figure 3.3.
The country-specific state variables are plotted in Figure 3.4, with four underlying

latent factors LNit , SNit , CNit , LRit presented. We observe that the level factors LNit , LRit are
significantly positive, which in turn verifies the previously discussed choice of latent
factors in sub-section 3.2.1. That is, the choice of the latent factors is motivated by
principal component analysis, which gives us three principal components corresponding
to the latent factors Lit, Sit, Cit. For instance, the most variation of yields is accounted
for by the first principal component from principal component analysis - level factor Lt.

3.4.3 IE
We started by fitting the multiple yield curve modelling, where the model residuals are
used to indicate the efficiency of the four-factor AFNS model over different maturities.
We then conducted the decomposition of BEIR, as already described in sub-section 3.2.4,
into parts of IE, the convexity effect and IRP to facilitate the following analysis. Figure
3.5 compares the estimated three-year and five-year forecasts of IE for each European
country.
Figure 3.5 observes a decrease of the expected inflation for the U.K., which is also

seemingly present in the other countries. To illustrates the similar trend among the
five European countries, we present the country-specific three-year IE in Figure 3.6 to
facilitate the following study of the similarity and difference among these five countries.
Because the model-implied inflation expectation is on the three-year basis, the difference
existing between the realized inflation level is understandable. We still find that the
estimated IEs using the multiple AFNS model show similar trends as the realized levels.
For instance, the realized inflation level of Sweden has two fluctuations in magnitude
around the second half of the years 2008 and 2011, which is consistent with our finding.
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Figure 3.3. The model residuals of multiple yield curve modelling over different maturities (τ1 <
τ2 < τ3). The nominal type with τ1 is the red line and the real type is the blue dotted line. The
nominal and real types with τ2 are the black long-dashed and green dot-dashed lines. For maturity
of τ3, the nominal type is grey and real type is an orange dashed line.
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Maturity Type Mean RMSE
U
K

3 nominal 0.12 0.10
inflation-indexed 0.10 0.22

4 nominal -0.10 0.08
inflation-indexed -0.09 0.18

5 nominal 0.13 0.08
inflation-indexed 0.12 0.17

Sw
ed
en

3 nominal 0.06 0.12
inflation-indexed 0.06 0.04

5 nominal -0.07 0.11
inflation-indexed -0.20 0.51

10 nominal 0.02 0.12
inflation-indexed 0.18 0.03

Fr
an

ce

3 nominal 0.01 0.08
inflation-indexed 0.01 0.05

5 nominal -0.15 0.07
inflation-indexed -0.12 -0.06

10 nominal 0.02 0.06
inflation-indexed 0.04 0.05

G
er
m
an

y 5 nominal 0.14 0.08
inflation-indexed 0.02 0.08

7 nominal -0.22 0.05
inflation-indexed -0.25 0.09

10 nominal 0.23 0.08
inflation-indexed 0.12 0.14

It
al
y

3 nominal 0.07 0.40
inflation-indexed 0.01 0.50

5 nominal -0.25 0.27
inflation-indexed -0.18 0.40

10 nominal -0.02 0.13
inflation-indexed 0.24 0.22

Table 3.2. Summary statistics of the model fit using the multiple yield curve model. RMSE is a root
mean square error.
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Figure 3.4. The estimated four latent factors of state variable Xt = (LN
it , S

N
it , C

N
it , L

R
it) for each

European country - the nominal level factor LN
it (red), the real level factor LR

it (blue), the nominal
slope factor SN

it (purple) and the nominal curvature factor CN
it (black). The preidicted state variables

are presented as line type and the filtered state variables are dashed.
MTS_afns_uk, MTS_afns_de, MTS_afns_fr, MTS_afns_it, MTS_afns_sw
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Figure 3.5. The model-implied IE for each European country. The 3-year IE is the red line and the
5-year IE is dashed blue.
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Figure 3.6. Model-implied inflation expectation for different countries - U.K.(red dotted line),
Germany(blue dashed line), France(black line), Italy(green dot-dashed line) and Sweden(grey line)
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3.4.4 Common Inflation Factor
Based on the methodology proposed in section 3.3, we can built the relationship among
idiosyncratic countries to find out the similarities and differences for the model-implied
IEs. The common inflation factor is extracted from the joint time-varying structure of
IE dynamics and depicted in Figure 3.7. To be more specific, the estimated parameters

2008 2010 2012 2014

−1
0

1
2

3
4

Figure 3.7. Common inflation factor in the red. The grey lines are the country-specific IEs. The
predicted Πt is the red line and the filtered Πt is the blue dashed line.

MTS_comexpinf

for the joint modelling of IE dynamics are presented in the Table 3.3.
We conduct a variance decomposition to split the variation in model-implied IE into

parts driven by the estimated common factor and the corresponding idiosyncratic factor.
The variance equation is listed,

Var(πeit) = β2
i Var (Πt) + Var (µit) (3.20)

The variations explained by the common inflation factor are shown in the Table 3.4.
The common inflation factor explains the least variation in the U.K., which can be
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Country-specific equations
UK πe

1t(τ) = 0.166 + 0.576Πt

France πe
2t(τ) = −0.022 + 0.665Πt

Italy πe
3t(τ) = −0.347 + 0.822Πt

Sweden πe
4t(τ) = −0.057 + 0.665Πt

Germany πe
5t(τ) = 0.008 + 0.644Πt

Common Effect equation
Πt = 0.588 + 0.651Πt−1

Table 3.3. Estimates for the dynamics of IE.

U.K. France Italy Sweden Germany
Common effect 24.91 30.66 40.32 30.65 29.32

Country-specific effect 69.34 50.69 69.35 58.50 70.68

Table 3.4. Variations explained in percentage

explained by the U.K. being outside the euro-zone and having its own currency, therefore
being independent of European central bank and monetary policy. Even though Sweden
is also outside the euro-zone, we find out it has closer relationships with other European
countries compared with the U.K.. The international interaction among countries can
also be observed through the estimation results.
To illustrate the efficiency of joint modelling of country-specific IEs, the model resid-

uals are reported in Figure 3.8. The small size of the model residuals represents the
overall good fit of the joint modelling of IE dynamics. However the model residuals are
relatively high, around 2012, due to the European sovereign debt crisis including Italy’s
default. To eradicate this, we try to incorporate one more macroeconomic factor- default
risk proxy to improve the model performance. By applying the method using the equa-
tions (18) and (19) proposed in section 3.3, we assess the joint model of IE dynamics by
checking the model residuals in Figure 3.10 and the estimation results listed in Table
3.6.
The data we implement is the three-year CDS of Italy, the extracted common inflation

factor derived from the joint model of IE dynamics with default proxy is presented
in Figure 3.9, and successfully captures the decrease of IE caused by the subprime
crisis. The estimated parameters for the joint modelling of inflation dynamics with
macroeconomic factors - default proxy are presented in Table 3.5.
We also conduct a variance decomposition to split the variation in model-implied IE

into parts driven by the estimated common factor Πt and the default proxy dt. The
variations explained by the common inflation factor and default factor are reported in
Table 3.6. The default factor explains the most variation in Italy and least variation
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Figure 3.8. Model residual for modelling of inflation expectation dynamics over different countries -
U.K.(red line), Germany(grey line), France(blue dashed line), Italy(black dotted) and Sweden(green
dot-dashed).

MTS_comexpinf

Country-specific equations
UK πe

1t(τ) = −0.358dt + 0.798Πt

France πe
2t(τ) = 0.085dt + 0.714Πt

Italy πe
3t(τ) = 1.078dt + 0.531Πt

Sweden πe
4t(τ) = −0.621dt + 0.805Πt

Germany πe
5t(τ) = 0.045dt + 0.700Πt

Common Effect equation
Πt = 0.382 + 0.976Πt−1

Table 3.5. Estimates for the dynamics of IE.
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Figure 3.9. Common inflation factor with default proxy. The predicted estimation of common factor
Πt is the red line and the filtered Πt is the blue dashed line.

MTS_comexpinf_cds
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3 Inflation Co-movement across Countries in Multi-maturity Term Structure: An
Arbitrage-Free Approach

U.K. France Italy Sweden Germany
Common effect 36.08 33.59 11.54 31.87 32.84

Country-specific effect 56.66 65.88 40.92 49.17 67.02
Default risk effect 7.26 0.53 47.55 18.96 0.14

Table 3.6. Variations explained in percentage

in Germany, which can be explained by the stability of the economy because Germany
is generally considered to be the benchmark in the European financial system. It is
generally known that the European sovereign debt crisis including Italy’s default hap-
pened around 2012, the 47.55% variation explained by the default factor for Italy is
understandable.
The model residuals are presented in Figure 3.10 to illustrate the efficiency of the

joint model of IE dynamics with a default factor. Even though the model residuals
with a default factor remain unchanged compared with Figure 3.8, we discover that
the extracted common trend for IE is an important driver for each country of interest.
Table 3.6 reports that the variation explained by the common inflation factor accounts
for more than 30% of almost all the sample countries.

3.4.5 Forecast
Having obtained the estimation from the joint model of IE dynamics, we continue in this
section by forecasting the common inflation factor. Figure 3.11 displays a forecast (in
blue) containing 30 observations, that is, a two and a half year prediction. The predicted
linear model we use involves trend and seasonality components. The confidence intervals
are presented graphically and are shown at confidence levels of 80% and 95%.
Figure 3.12 clearly shows the difference among different measures of inflation. The

real-time approach to measure IE proposed previously performs better than the other
measures. A similar co-movement is seemingly present between the realized inflation
level and the three-year IE estimated derived from our model. The 1 year and 2 year
SPF (Survey Professional Forecast) data plotted in Figure 3.12 vary slightly over time
therefore contains limited information of financial markets.

3.5 Conclusion
This study attempts to provide an additional measure of IE on the basis of financial
markets. We firstly construct an AFNS model in multi-maturity term structure of
modelling nominal and inflation-indexed bonds simultaneously. The performance of
this multiple yield curve modelling was assessed by conducting Kalman filtering, whose
recursion was a set of equations allowing for an estimator to be updated once a new
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Figure 3.10. Model residual for modelling of inflation expectation dynamics with a default proxy fac-
tor over different countries - U.K.(red line), Germany(grey line), France(blue dashed line), Italy(black
dotted) and Sweden(green dot-dashed).
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3 Inflation Co-movement across Countries in Multi-maturity Term Structure: An
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Figure 3.11. The forecast of common inflation factor derived from the joint model of IE dynamics
with default factor. The 80% and 95% confidence intervals are marked in the shaded area.

observation yt is available. We then conducted the decomposition of model-implied BEIR
into parts of IE, convexity effect and IRP to facilitate the modelling of joint structure
of IE dynamics. The joint models of IE dynamics with, and without, macroeconomic
factors indicated the extracted common inflation factor and was an important driver
for each country of interest. Moreover, the model should lead to a better forecast in
benchmark levels of inflation and give good implications for financial markets.
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Time
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Figure 3.12. The comparison of different measures of inflation - the model-implied common inflation
level (in red line), the observed inflation level (blue dashed line), the 1 year SPF forecast level of
inflation (black dot-dashed) and the 2 year SPF forecast (in green).
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A.1 Bootstrap-based multistep forecast methods
Here we describe the computation steps to yield bootstrapped GFEVD, more technical
details can be found in Lanne and Nyberg (2016) and Terasvirta et al. (2010),

1. Pick a history ωt−1 which consists of all the information used to produce Yt, and
select a given forecast horizon h.

2. Randomly sample NB vectors of shocks (δ1t, δ2t, . . . , δKt)> from the residuals of
estimated model,

(δ1t, δ2t, . . . , δKt)> ∼ ût

ût = Yt −
(
Â1, Â2, . . . , Âp

) (
Y >t−1, Y

>
t−2, . . . , Y

>
t−p

)>
= Yt − g(Yt−1) (A.1)

3. Compute conditional multistep forecast E(yt+l|ωt−1),

ft,0 = g(Yt−1) (A.2)
ft,1 = E[Yt+1|ωt−1] = E[g(ft,0 + û?t )|ωt−1]
ft,2 = E[Yt+2|ωt−1] = E[g(ft,1 + û?t+1)|ωt−1]

. . .

4. Repeat steps 3 for all NB vectors of estimated innovations with bootstrap methods,
iterating on the estimated model,

fbt,1 = 1
NB

NB∑
j=1

g(ft,0 + û?t ) (A.3)

fbt,2 = 1
NB

NB∑
j=1

g(g(ft,0 + û?t ) + û?t+1)

. . .

5. By the same logic, modify and repeat step 3 and 4 for all NB vectors of shocks
when the shock is given as ujt = δjt, this yields E(yt+l|ujt = δjt, ωt−1).
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6. Plug in the GI function

GI(l, δjt, ωt−1) = E(yt+l|ujt = δjt, ωt−1)− E(yt+l|ωt−1) (A.4)

to obtain the relative contribution of a shock δjt to the i-th variable with horitzon
h at time t,

λij,ωt−1(h) =
∑h
l=0GI(l, δjt, ωt−1)2

i∑K
j=1

∑h
l=0GI(l, δjt, ωt−1)2

i

, i, j = 1, . . . ,K (A.5)

7. Repeat steps 2-6 for all histories.

8. Construct table 1.3 using averaged λij,ωt−1(h) generated from step 7.

We should note that if K is very large in empirical study, the denominator of equation
(A.5) might be unnecessarily large due to accumulated noise caused by the large amount
of irrelevant variables. Therefore it is one more step of prescreening is preferred to filter
out less relevant variables.

A.2 Graphical models
Suppose a graph G consists of a set of vertices (nodes) V, along with a set of edges E
connecting pairs of V. E is a subset of V × V consisting of ordered pairs of distinct
vertices. The edges in a graph are parametrized by values or potentials that encode the
strength of the conditional dependence between the random variables at the correspond-
ing vertices.

Here we restrict our discussion to undirected graphical model where the edges have no
direction. An edge is undirected if for two any nodes j and k, (j, k) ∈ E and (k, j) ∈ E .
The neighbors or adjacency set of a node j in the undirected graph G is denoted by

adj(G, j) = {k ∈ V; (j, k) ∈ E & (k, j) ∈ E} (A.6)

The pair (G,P) is called a graphical model with P as the probability distribution of
the variables on the nodes

X = (X(1), X(2), . . . , X(p)) ∼ P (A.7)

where P satisfies the pairwise Markov property w.r.t. G if for any pair of unconnected
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vertices (j, k) /∈ E ,

X(j) ⊥ X(k)|X(V\{j,k}) (A.8)

A Gaussian Graphical Model (GGM) is defined if P is a normal distribution, i.e.

X = (X(1), X(2), . . . , X(p)) ∼ Np(0,Σ) (A.9)

with mean µ = 0 and positive definite p× p covariance matrix Σ. The edges in a GGM
are given by the inverse of the covariance matrix due to

(j, k) /∈ E ⇐⇒ X(j) ⊥ X(k)|X(V\{j,k}) ⇐⇒ Σ−1
jk = 0 (A.10)

A.3 Time-varying network
Figure A.1 and A.2 show the time-varying network for T.
Figure A.3 and A.4 are of IBM.
Figure A.5 and A.6 are of JNJ.
Figure A.7 and A.8 are of PFE.
Figure A.9 and A.10 are of MRK.
Figure A.11 and A.12 are of JPM.
Figure A.13 and A.14 are of WFC.
Figure A.15 and A.16 are of Citigroup.

A.4 Estimation of multiple yield curve modelling
The analysis starts by introducing the yield-adjustment term proposed in the original
AFNS model. Derived in an analytical form, the yield-adjustment term A(τ)

τ
with τ

92



A Appendix

MSFT_p
T_a1

T_p

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

T_b1
T_a2

T_a1

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

T_a1
T_a2

T_b1

0.
00

0.
05

0.
10

0.
15

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

T_b1
MRK_b2

T_a2

0.
00

0.
05

0.
10

0.
15

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

Figure A.1. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask size
factor of T.

93



A Appendix

T_a3
T_b3

T_b2

0.
00

0.
05

0.
10

0.
15

0.
20

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

T_b3
T_b2

T_a3

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

T_a3
WFC_a2

T_b3

0.
00

0.
05

0.
10

0.
15

0.
20

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41

Figure A.2. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of T.
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Figure A.3. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask size
factor of IBM.
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Figure A.4. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of IBM.
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Figure A.5. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask size
factor of JNJ.
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Figure A.6. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of JNJ.
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Figure A.7. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask size
factor of PFE.
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Figure A.8. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of PFE.
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Figure A.9. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask size
factor of MRK.
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Figure A.10. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of MRK.
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Figure A.11. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask
size factor of JPM.
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Figure A.12. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of JPM.
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Figure A.13. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask
size factor of WFC.
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Figure A.14. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of WFC.
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Figure A.15. The time-varying network of price factor, 1st level ask/bid size factor, 2nd level ask
size factor of Citigroup.
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Figure A.16. The time-varying network for 1st level ask/bid size factor, 2nd level ask/bid size factor
and 3rd level ask/bid size factor of Citigroup.
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months to maturity can be written as,

A(τ)
τ

= Ā
τ2

6 + B̄

{ 1
2λ2 −

1
λ3

1− exp(−λτ)
τ

+ 1
4λ3

1− exp(−2λτ)
τ

}
+ C̄

{ 1
2λ2 + 1

λ2 exp(−λτ)− 1
4λτ exp(−2λτ)− 3

4λ2 exp(−2λτ)
}

+ C̄

{
− 2
λ3

1− exp(−λτ)
τ

+ 5
8λ3

1− exp(−2λτ)
τ

}
+ D̄

{ 1
2λτ + 1

λ2 exp(−λτ)− 1
λ3

1− exp(−λτ)
τ

}
+ Ē

{ 3
λ2 exp(−λτ) + 1

2λτ + 1
λ

exp(−λτ)− 3
λ3

1− exp(−λτ)
τ

}
+ F̄

{ 1
λ2 + 1

λ2 exp(−λτ)− 1
2λ2 exp(−2λτ)− 3

λ3
1− exp(−λτ)

τ
+ 3

4λ3
1− exp(−2λτ)

τ

}
(A.11)

where the six terms Ā, B̄, C̄, D̄, Ē and F̄ can be identified by the volatility matrix Σ
defined in the dynamics equation under P-measure. The value of the adjustment term
is constant in time t, but depends on time to maturity τ , coefficient λ that governs the
mean reversion rate of slope and curvature factors, and the volatility parameters Ā, D̄
and F̄ .
The four latent factors defined in the state variable X>it =

(
LNit , S

N
it , C

N
it , L

R
it

)
evolve

dynamically and hence we can identify their shocks accordingly,
dLNit
dSNit
dCNit
dLRit

 =


κ11 κ12 κ13 κ14
κ21 κ22 κ23 κ24
κ31 κ32 κ33 κ34
κ41 κ42 κ43 κ44




LNit
SNit
CNit
LRit

 dt+ Σ


dWLN

t

dWSN

t

dWCN

t

dWLR

t

 (A.12)

where WLN

t , WSN

t , WCN

t and WLR

t are independent Brownian motions.
We estimate the parameters in (A.2) using the Kalman filter technique. The Kalman

filter recursion is a set of equations which allow for an estimator to be updated once
a new observation yt becomes available. It first forms an optimal predictor of the un-
observed state variable vector given its previously estimated value. This prediction is
obtained using the distribution of unobserved state variables, conditional on the previ-
ous estimated values. These estimates for unobserved state variables are then updated
using the information provided by the observed variables.

By rewriting the yield equation (6) of the joint AFNS model in multi-maturity term
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structure proposed in sub-section 3.2.3, we obtain the measurement equation as,


yNit (τ1)
yRit (τ1)

...
yRit (τn)

 = AXit +


εNit (τ1)
εRit(τ1)

...
εRit(τn)

−



ANi (τ1)
τ1

ARi (τ1)
τ1...

ARi (τn)
τn


(A.13)

The transition equation derived from Christensen et al. (2011) takes the form of,

Xi,t =
[
I − expm

(
−KP∆t

)]
θP + expm (−Kp∆t)Xi,t−1 + ηt (A.14)

where expm is a matrix exponential. The measurement and transition equations are
assumed to have the error structure as,(

ηt
εt

)
= N

{(
0
0

)
,

(
Q 0
0 H

)}

where Q has a special structure,

Q =
∫ ∆t

0
e−K

P sΣΣ>e−(KP )>sds

For estimation, the transition and measurement errors are assumed orthogonal to
the initial state. The initial value of the filter is given by the unconditional mean and
variance of the state variable X>t under the P measure,

X0 = θP

Σ0 =
∫ ∞
0

e−K
P sΣΣ>e−(KP )>sds

which can be calculated using the analytical solution provided in Fisher and Gilles (1996).

A.5 BEIR Decomposition
In the environment of an AF model, there are no opportunities to make risk-free profits.
Based on the pricing equation from Cochrane (2005), the bond can be priced by the
equation,

Pt = Et
{
β
u
′(ct+1)
u′(ct)

xt+1

}
(A.15)
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where the value of the bond ct has a payoff xt+1, β is the discount factor. We break
up the basic consumption-based pricing equation (B.1) and get the stochastic discount
factor (SDF) Mt+1 at time t+ 1,

Mt+1 = β
u
′(ct+1)
u′(ct)

(A.16)

To estimate the expected value of inflation using the stochastic discount factor (SDF)
Mt. Firstly we use the Taylor series to approximate the moments of the logarithm.
Assuming that Mt, in a sense, significant from 0, so the yield for a nominal bond can be
extended as follows,

log
(
MN
t+1M

N
t+2 · · ·MN

t+τ

)
= log

{(
µM +MN

t+1M
N
t+2 · · ·MN

t+τ − µM
)}

(A.17)

where
µM = Et

(
MN
t+1M

N
t+2 · · ·MN

t+τ

)
(A.18)

Expand equation (B.3) using Taylor series and take the expectation on both sides,

Et
(
logMN

t+1M
N
t+2 · · ·MN

t+τ

)
= logµM − Vart

(
logMN

t+1M
N
t+2 · · ·MN

t+τ

)
(A.19)

Therefore,

yNt (τ) = −1
τ

log Et
(
MN
t+1M

N
t+2 · · ·MN

t+τ

)
= −1

τ
Et
(
logMN

t+1M
N
t+2 · · ·MN

t+τ

)
− 1

2τ Vart
(
logMN

t+1M
N
t+2 · · ·MN

t+τ

)
(A.20)

Similar solution could be obtained for the inflation-indexed bonds by the same logic.
To facilitate the calculation of equation (12), the instantaneous risk-free rate rt and

the risk premium Γt are given, more details can be found in Christensen et al. (2011)
and Christensen et al. (2010a),

rt = ρ0(t) + ρ1(t)Xt (A.21)
Γt = γ0 + γ1Yt (A.22)

where ρ0(t), ρ1(t), γ0 and γ1 are bounded, continuous functions. Xt is the state variable
and Yt is the realized observations.
The estimation of the inflation expectation can be calculated by

πt(τ) = −1
τ

log EPt
[
exp

{
−
∫ t+τ

t
(rNs − rRs )ds

}]
(A.23)

which are the solutions to a system of ordinary differential equations using the fourth-
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order Runge Kutta method.
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