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Abstract of the Dissertation

Numerical Study of Reaction-Diffusion Systems using Front Tracking

by

Saurabh Gajanan Joglekar

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Concentration - Computational Applied Mathematics)

Stony Brook University

2017

We study the three component Reaction-Diffusion systems with and without
precipitation and crystal growth. Focus is on the generic chemical reaction
represented by nA + mB −→ C, where n,m are the stoichiometric coefficients. In
case of the reaction-diffusion system without precipitation, we investigate the
movement of the center of reaction zone in for equal and unequal diffusivities. We
compare the analytical and numerical solutions for equal diffusivities to establish
the accuracy of the numerical method. Then we apply the numerical method to
provide numerical evidence in support of a conjecture in the case of unequal
diffusivities.

Next, we apply the Front Tracking method to study the reaction-diffusion systems
with crystal growth in higher spatial dimentions. The effects of different parameters
on the crystal growth are investigated.

Key words: Reaction-Diffusion System, Reaction-Diffusion Equations, Reaction
zone/front, Center of reaction front, front tracking, crystal growth.

iii



To my father, my mother and my wife.

iv



Contents

List of Figures vii

List of Tables ix

List of Abbreviations x

Acknowledgements xi

1 Introduction 1
1.1 Crystal Formation and Dendritic Growth . . . . . . . . . . . . . . . . 2
1.2 Liesegang Pattern Formation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Supersaturation Theory . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Sol Coagulation Theory . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Phase Separation Theory . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Cellular Automata Model . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Spacing and Width Laws . . . . . . . . . . . . . . . . . . . . . 9

2 Effectively One-dimensional Reaction-Diffusion Systems 10
2.1 Steady State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Mathematical Analysis of the Steady State . . . . . . . . . . . 11
2.1.2 Numerical Results for the Steady State Solution . . . . . . . . 13
2.1.3 Summary of the steady state solutions . . . . . . . . . . . . . 22

2.2 Reaction-Diffusion Front . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Mathematical Model and Definitions . . . . . . . . . . . . . . 24
2.2.2 Dimensionless Equations . . . . . . . . . . . . . . . . . . . . . 26

2.2.2.1 The case of equal diffusivities . . . . . . . . . . . . . 26
2.2.2.2 The case of arbitrary diffusivities . . . . . . . . . . . 28
2.2.2.3 Conjecture for arbitrary diffusivities . . . . . . . . . 30

2.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.2.3.1 Numerical Results for Db/Da = 1 and (n,m) = (1, 1) 32
2.2.3.2 Numerical Results for Db/Da 6= 1 and (n,m) = (1, 1) 38
2.2.3.3 Numerical Results for Db/Da = 1 and (n,m) = (1, 2) 44
2.2.3.4 Numerical Results for Db/Da 6= 1 and (n,m) = (1, 2) 47
2.2.3.5 Numerical Results for Db/Da = 1 and (n,m) = (2, 1) 52
2.2.3.6 Numerical Results for Db/Da 6= 1 and (n,m) = (2, 1) 55
2.2.3.7 Numerical Results for Db/Da = 1 and (n,m) = (2, 2) 60
2.2.3.8 Numerical Results for Db/Da 6= 1 and (n,m) = (2, 2) 63
2.2.3.9 Summary and Conclusion . . . . . . . . . . . . . . . 68

3 Front Tracking 69

4 Mathematical Model for Crystal Growth 71

5 Numerical Results 73
5.1 Effects of kAB and k . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Effect of the diffusivities . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Effect of the Damkohler Number . . . . . . . . . . . . . . . . . . . . 84
5.4 Effect of the equilibrium concentration . . . . . . . . . . . . . . . . . 88

6 Conclusions and future directions for research 90

Bibliography 92

vi



List of Figures

1.1 Liesegang Petterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Initial Concentration Profiles at t = 0 for Figure 2.2 . . . . . . . . . . 15
2.2 Effect of changing Db . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Initial Concentration Profiles at t = 0 for Figure 2.4 . . . . . . . . . . 17
2.4 Effect of changing Dc . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Initial Concentration Profiles at t = 0 for Figure 2.6 . . . . . . . . . . 19
2.6 Effect of changing kAB . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Steady State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

(a) Initial Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(b) Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Steady State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(a) Initial Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(b) Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Steady State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
(a) Initial Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
(b) Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Expected Solutions for the experimental setup . . . . . . . . . . . . . 24
2.12 Numerical solutions for q = 0.5 . . . . . . . . . . . . . . . . . . . . . 34
2.13 xf (t) vs t for different q’s. (n,m) = (1, 1), Db/Da = 1 . . . . . . . . . 35
2.14 xf (t)/

√
t vs t for different q’s. (n,m) = (1, 1), Db/Da = 1 . . . . . . . 36

2.15 Implementation of Heaviside Step Function on a finite compuational
grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(a) Heaviside Step Function . . . . . . . . . . . . . . . . . . . . . . 37
(b) Numerical Implementation . . . . . . . . . . . . . . . . . . . . . 37

2.16 xf (t)/
√
t vs t for varying grid size . . . . . . . . . . . . . . . . . . . . 38

2.17 Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (1, 1) . . . . . 40
2.18 Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (1, 1) . . . . . 41

vii



2.19 Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (1, 1) . . . . . 42
2.20 Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (1, 1) . . . . . 43
2.21 xf (t) vs t for different q’s. (n,m) = (1, 2), Db/Da = 1 . . . . . . . . . 45
2.22 xf (t)/

√
t vs t for different q’s. (n,m) = (1, 2), Db/Da = 1 . . . . . . . 46

2.23 Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (1, 2) . . . . . 48
2.24 Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (1, 2) . . . . . 49
2.25 Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (1, 2) . . . . . 50
2.26 Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (1, 2) . . . . . 51
2.27 xf (t) vs t for different q’s. (n,m) = (2, 1), Db/Da = 1 . . . . . . . . . 53
2.28 xf (t)/

√
t vs t for different q’s. (n,m) = (2, 1), Db/Da = 1 . . . . . . . 54

2.29 Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (2, 1) . . . . . 56
2.30 Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (2, 1) . . . . . 57
2.31 Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (2, 1) . . . . . 58
2.32 Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (2, 1) . . . . . 59
2.33 xf (t) vs t for different q’s. (n,m) = (2, 2), Db/Da = 1 . . . . . . . . . 61
2.34 xf (t)/

√
t vs t for different q’s. (n,m) = (2, 2), Db/Da = 1 . . . . . . . 62

2.35 Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (2, 2) . . . . . 64
2.36 Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (2, 2) . . . . . 65
2.37 Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (2, 2) . . . . . 66
2.38 Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (2, 2) . . . . . 67

5.1 Effects of kAB and k, rectangular seed . . . . . . . . . . . . . . . . . . 74
5.2 Effects of kAB and k, rectangular seed . . . . . . . . . . . . . . . . . . 75
5.3 Effects of kAB and k, circular seed . . . . . . . . . . . . . . . . . . . . 76
5.4 Effects of kAB and k, circular seed . . . . . . . . . . . . . . . . . . . . 77
5.5 Effects of kAB and k, triangular seed . . . . . . . . . . . . . . . . . . 78
5.6 Effects of kAB and k, triangular seed . . . . . . . . . . . . . . . . . . 79
5.7 Effects of diffusivities, rectangular seed . . . . . . . . . . . . . . . . . 81
5.8 Effects of diffusivities, circular seed . . . . . . . . . . . . . . . . . . . 82
5.9 Effects of diffusivities, triangular seed . . . . . . . . . . . . . . . . . . 83
5.10 Effect of Damkohler Number, circular seed . . . . . . . . . . . . . . . 85
5.11 Effect of Damkohler Number, triangular seed . . . . . . . . . . . . . . 86
5.12 Effect of Damkohler Number, rectangular seed . . . . . . . . . . . . . 87
5.13 Effect of Equilibrium Concentration, circular seed . . . . . . . . . . . 89

viii



List of Tables

2.1 Maximum of C(x) as function of Db . . . . . . . . . . . . . . . . . . . 17
2.2 Maximum of C(x) as function Dc . . . . . . . . . . . . . . . . . . . . 19
2.3 Maximum of C(x) and Ts as a function of kAB . . . . . . . . . . . . . 20
2.4 Ts against Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . 22

ix



List of Abbreviations

Abbreviation Meaning

BC Boundary Condition/s
DLA Diffusion Limited Aggregation
IC Initial Condition/s
ODE Ordinary Differential Equation/s
PDE Partial Differential Equation/s
RDE Reaction-Diffusion Equation/s
RDP Reaction-Diffusion Process
RDS Reaction-Diffusion System

x



Acknowledgements

This dissertation would not have been possible without the help of many people
in many ways. I owe my gratitude to all those people who made this journey possible
and who made the experience memorable.

I would like to express my sincere gratitude to my advisor, Prof. Xiaolin Li for
his valuable advice, support and guidance. He taught me the skills and expertise
required to finish my PhD study and many other nuances in the broad field of
scientific computing. The fluency with which he applies his computational skills to
various scientific problems has always been a source of inspiration for me.

I am also indebted to Prof. Xiangmin Jiao and Prof. Jin Wang who shared
valuable scientific insights regarding my dissertation topic. I am also thankful to
Prof. Roman Samulyak who served as my course instructor during the begining of my
studies. He was essentially the first person who introduced me to the mathematical
knowledge required for scientific computing and I learned a lot from him. He also
provided important insights into my dissertation. I would also like to thank Prof.
Hyunkyung Lim and Dr. Yangang Liu for being on my dissertation committee. I
would like to acknowledge the support of the Department of Applied Mathematics
and Statistics and it’s staff. This work was supported in part by the equipment grant
by the US Army Research Office under the ARO-DURIP Grant W911NF1210357.

I would like to thank all my friends in my research group for their friendship
and encouragement. I wish to mention JoungDong Kim, Yan Li, Yijing Hu, Yiyang
Yang, Qiangqiang Shi, Zheng Gao, Xiaolei Chen, Muye Chen and Tengbo Yang.

I would also like to mention my friends Omkar Aphale, Akshay Patil, Ravi Dey,
Niranjan Hasabnis, Sujan Dabholkar and Pralhad Deshpande who made this journey
enjoyable.

Most importantly, I wish to thank my mother Dr. Seema Joglekar, my father Dr.
Dilip Joglekar and my wife Charuta. Their support and unconditional love gives me
strength at every step of the way in my life. This dissertation is dedicated to them.

xi



Chapter 1

Introduction

Study of crystal formation and growth in a solution is an active research area in
physical chemistry. Crystallization is a process used to obtain a near pure
substance in solid form. There are various mechanisms responsible for crystal
growth. A comprehensive list of these mechanisms is provided in [11]. In the
current work, front tracking method has been applied to one of these mechanisms,
precipitation by the (isothermal) addition of reactive components or solvent
components to reduce solubility (addition by diffusion or with stirring) [11]. This
mechanism also applies to multi-component systems. In the absence of convection,
such systems are characterized by reaction and diffusion. In a single component
Reaction-Diffusion system, reaction is primararily the precipitation reaction. In
multicomponent systems, different substances in solution form react with each
other to produce a substance, which deposits under suitable physical conditions to
form a solid precipitate.

The mechanism of crystallization mentioned above is explained through
Diffusion Limited Aggregation (DLA) [14]. On microscopic level, dissolved solute
particles perform Brownian motion in the solvent. On contact, the particles adhere
to each other irreversibly. When the congregated mass is large enough, it forms the
precipitate. Thus, if a seed particle is fixed at the center of some coordinate system
and solute particles are allowed to perform random walk, the particles will
eventually attach themselves irreversibly to the seed and the cluster will grow. This
model produces highly branched and fractal structure as shown in [14]. Fractal
structure is due to the fact that faster growing parts of the cluster shield other
parts, thus making them less accessible to free particles which are still performing
ramdom walk. Although the model is simple, the problem becomes
computationally intractable as the number of particles grows larger.
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On the macroscopic scale, the growth of dendrites is described by a system of
partial differential equations.Mathematically, these processes are governed by a
system of Reaction-Diffusion Equations (henceforth abbreviated RDE’s). Typically,
RDE’s are parabolic PDE’s coupled through the source term. They represent a
moving boundary problem. Considerable amount of theoretical and experimental
work has been done on single as well as multi-component Reaction-Diffusion
systems. Analytical (closed-form) solutions are available only for the simplest of
the cases and boundary conditions. For the non-homogeneous cases in which the
precipitation front evolves with time, numerical simulations and laboratory
experiments are the main tools of investigation. Behaviour of a given
Reaction-Diffusion system and the patterns formed within the system can vary
greatly depending upon nature of reaction term. We focus mainly on the dendritic
growth and Liesegang pattern formation.

Following section gives a review of the experimental and numerical work done
and reported by so far. This short review concerns the Reaction-Diffusion systems
with and without the precipitation involved. Emphasis has been given on the
mathematical description of the problems.

1.1 Crystal Formation and Dendritic Growth

Xiaolin Li et al [1] have studied a single component Reaction-Diffusion system
through front tracking without consideration of advection, in which the reaction
term is replaced by precipitation term at the fluid-solid interface. The governing
equations for the solute concentration C = C(~x, t) are as follows:

∂C

∂t
= D∇2C, for ~x ∈ Ω (1.1)

Here Ω is the ambient region containing solute and D is diffusion coefficient. At the
fluid-solid interface ∂Ω, the front growth is governed by:

D
dC

dn
(~xs) = k

(
C(~xs)− Ce

)
(1.2)

where k is the reaction rate per unit area for the solute from the liquid phase to
precipitate onto the solid phase at the interface, Ce is the equilibrium concentration
and C(~xs) is the local concentration of solute at the interface. Interface is propagated
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with the normal velocity,

υn =
D

ρs

dC

dn
(~xs) (1.3)

where ρs is the density of solid phase. Interface growth and the dendritic structure of
the precipitate have been studied at different Damkohler numbers. Front tracking is
well suited to dendritic structures at large Damkohler numbers where high resolution
is necessary.

Tartakovsky et al [3] have studied multi-component Reaction-Diffusion systems for
the chemical reaction A+B −→ C(aq+solid), on two different spatial scales, Pore-scale
and Darcy-scale. Smoothed particle hydrodynamics (SPH) has been applied to carry
out hybrid simulations on two different spatial scales. Let A(~x, t), B(~x, t), C(~x, t)
and Da, Db, Dc be the concentrations and diffusion coefficients of components A, B
and C in solute phase. Let k and kAB be heterogeneous and homogeneous reaction
rates and ρs be the density of solid phase. Then the Pore scale model satisfies
following system of equations:

∂A

∂t
= ∇ · (Da∇A)− kABAB (1.4)

∂B

∂t
= ∇ · (Db∇B)− kABAB (1.5)

∂C

∂t
= ∇ · (Dc∇C) + kABAB − k

∫
F

H(C − Ceq)δ(~x− ~xf ) d~xf (1.6)

where H(x) is the Heaviside step function and the integration is taken over the whole
fluid-solid interface. Soluble precipitate C follows the first order kinetic reaction
model on the fluid-solid interface,

Dc
dC

dn
= k
(
C − Ceq

)
(1.7)

The interface advances into the liquid with normal velocity,

υn(~xs) =
A0 +B0

ρs
Dc∇C · ~n (1.8)

Simulations start with a crystal seed already present in the domain. Hence, although
the same equations govern the formation of Liesegang Patterns, nucleation theories
have not been considered in Tartakovsky et al [3].

3



1.2 Liesegang Pattern Formation

Another type of precipitation pattern commonly observed in chemical systems
is the Liesegang pattern. When an outer electrolyte A is put on top of an inner
electrolyte B and the diffusion is allowed to take place through a chemically inert
medium like gel, peculiarly spaced precipitation patterns are observed throughout
the medium, typically when advection is absent. Usually the precipitation patterns
consist of bands, rings or spherical shells. Shape of the pattern depends on the
geometry of the experimental setup. Extensive theoretical and numerical studies
have been done since the discovery of the phenomenon almost a century ago.
Supersaturation Theory, Sol-Coagulation and Phase Separation are three main
models proposed to explain the formation of Liesegang patterns [4]. None of the
theories have been fully successful in explaining macroscopic as well as microscopic
structure of the Liesegang bands. Following figure shows Liesegang bands and rings
obtained in a laboratory setup.

Figure 1.1: Liesegang banding of (a) CuCl2 + K2CrO4 system in silica gel column,
and (b) that of NH4OH +MgCl2 system in PVA gel column. (c)Picture taken with
Environmental Scanning Electron Microscopy of the colloidal particles that build
up a Liesegang band formed in the experiment on panel (b). (d)Cross-section of
Liesegang shells of NH4OH +MgCl2 system in PVA gel. (Source [10])
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1.2.1 Supersaturation Theory

This is the simplest theory put forth by Wilhem Ostwald to explain Leisegang
banding. In the simple form, it concerns the chemical reaction

A + B
Chemical Reaction−−−−−−−−−−−→ C

Precipitation−−−−−−−→ D. Chemical species A ad B react to form C.
The reaction front is assumed to propagate only through diffusion. As the reaction
proceeds in time, the concentration of C keeps increasing in the wake of reaction
front. Eventually it reaches saturation level. However, the precipitation does not
start untill the local concentration at any point in te domain reaches a
supersaturation point, called the nucleation threshold. Once the nucleation
threshold is reached, species C forms localised colloidal particles, D. Typically, the
threshold concentration required for growth of the particles is much less than the
nucleation threshold. Hence, the precipitate grows rapidly starting at the point of
nucleation. Eventually, the areas near the precipitate are depleted of C and the
concentration drops below the precipitation threshold. As the reaction front moves
forward through the domain, same process is repeated at specific points in the
domain, thus giving rise to Liesegang bands. This process assumes that the species
C does not undergo any diffusion and the nucleation is spontaneous.

This model was formulated mathematically by C. Wagner [15]. The model is able
to reproduce the Liesegang bands and rings observed in laboratory setting. It was
further improved by T. Antal and Z. Racz.[8]. At the next level of complexity is
the case where species C diffuses through the medium in addition to forming the
precipitate D. This has been explored in [8].

In most of the numerical simulations, supersaturation theory is the primary
model of nucleation. For the sake of completeness, Sol Coagulation theory and
Phase Separation theory have been explained below in brief.

1.2.2 Sol Coagulation Theory

Experiments performed in [17] and [18] suggest that Supersaturation theory
cannot explain all the experimental findings in a laboratory setting. They also
suggest that formation of the bands is a process occuring after the reaction, and
not primarily related to it. Sol coagulation models [8] and [16] propose that the
band formation takes place in two different stages. The first stage consists of
formation of colloidal sol after the concentration of C reaches nucleation threshold.

5



This sol is not observable by the naked eye. The precipitation bands are later
formed from the coagulation of sol, after the ionic concentration reaches critical
coagulation concentration.

Both Supersaturation theory and Sol Coagulation theory predict that the
precipitation bands are formed one at a time. However, the experimental findings
reported by H. Higuchi and R. Matura [19] suggest that this prediction is not
always true. It has been suggested that the mechanism of the formation of
Liesegang bands is specific to the chemical system under consideration. No
universal theory has yet been proposed which explains all laboratory observations.
Advantage of these theories is that they are easy to implement in numerical
simulations. The disadvantage is the absence of parameter(s) which control the
time at which the bands are formed, the spacing between bands and the width of
bands.

1.2.3 Phase Separation Theory

Theories put forth in [20], [21], [22] propose that the reaction of A and B forms an
intermediate product M which is capable of undergoing phase separation. Some time
after the reaction front has swept past the region containing M , the intermediate
product gets separated into high density regions and low density regions. High
density regions appear as bands of the precipitate while low density regions cannot
be observed by the naked eye. The process of the formation of M is governed by the
following equation [10].

∂m(x, t)

∂t
= −λ ∂

2

∂x2
[ε(m(x, t)−m∗)−γ(m(x, t)−m∗)3 +σ

∂2

∂x2
(m(x, t)−m∗)]+S(x, t)

(1.9)
The source term S represents the production rate of compound M by chemical
reaction [10]. The advantage of this model over previous ones is the presence of
parameters which can control the formation of bands.
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1.2.4 Cellular Automata Model

B. Chopard, P. Luthi and M. Droz [4] have carried out numerical simulations
based on cellular automata approach and supersaturation theory proposed by W.
Ostwald [5]. Their model is concerned with the chemical reaction

A + B
Chemical Reaction−−−−−−−−−−−→ C

Precipitation−−−−−−−→ D. Two chemical species A and B react to
produce a species C which also diffuses. When local concentration of C reaches
some threshold value, nucleation occurs spontaneously. Spontaneity of nucleation
after supersaturation level is the basis for Supersaturation model of precipitation.
Mathematical model is based on G. T. Dee [6]:

∂ta = ∂2
xa− κab (1.10)

∂tb =
Db

Da

∂2
xb− κab (1.11)

∂tc =
Dc

Da

∂2
xc+ κab− u (1.12)

where Di is the diffusion constant for species i, κ is the reaction constant and u is
the nucleation and aggregation term. Different expressions for u in Dee [6] and Le
Van and Ross [7] lead to different systems of coupled nonlinear PDE’s which, when
solved numerically, lead to Liesegang bands.

Horvat and Hantz [23] have also carried out the simulations using the cellular
automata approach and supersaturation thoery. The governing equations are:

∂a(x, y, t)

∂t
= Da(x, y) · ∇2a(x, y, t)− r · a(x, y, t) · b(x, y, t) (1.13)

∂b(x, y, t)

∂t
= Db(x, y) · ∇2b(x, y, t)− r · a(x, y, t) · b(x, y, t) (1.14)

∂c(x, y, t)

∂t
= Dc(x, y) · ∇2c(x, y, t) + r · a(x, y, t) · b(x, y, t)− [R] (1.15)

The cellular automata rules are given by:
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(R0) : [c(x, y, t) > c∗∗] ∧ [d(x, y, t) = empty] −→ d(x, y, t+ ∆t) = active

(R1) : [c(x, y, t) > c∗] ∧ [d(x, y, t) = active] −→ [d(xnn, ynn, t+ ∆t)

= active]

∧ [d(x, y, t+ ∆t)

= bulk precipitate]

∧ [c(x, y, t+ ∆t) = 0]

(R2) : [c(x, y, t) < c∗] ∧ [d(x, y, t) = active]

∧ [T (x, y, t) ≤ τ(υ)] −→ T (x, y, t+ ∆t)

= T (x, y, t) + ∆t

(R3) : [c(x, y, t) < c∗] ∧ [d(x, y, t) = active]

∧ [T (x, y, t) > τ(υ)] −→ d(x, y, t+ ∆t) = passive

(R4) : [d(x, y, t) = active]

∧ [d(xnn, ynn, t) = nonempty ∀ (xnn, ynn)] −→ d(x, y, t+ ∆t)

= bulk precipitate

Da(x, y) = 0, if d(x, y) = passive or obstacle

= Da, otherwise

Db,c(x, y) = 0, if d(x, y) = nonempty

= Db,c, otherwise

Here a(x, y, t) and b(x, y, t) represent the ion concentrations of species A and B
respectively. c(x, y, t) is the concentration of diffusive intermediate product C.
d(x, y, t) identifies whether precipitate is present in the cell or not. It is not related
to concentrations. c∗∗ is the nucleation threshold and c∗ is growth threshold. [R]
signifies the cellular automata rules dictated by supersaturation theory. ∧ is the
logical AND operator. T (x, y, t) is the age and τ(υ) is the maximal lifetime of the
cells. υ is the speed of propagation of the precipitation front. The maximal lifetime
is assumed to be a function of υ. (xnn, ynn are the nearest neighbors of the lattice
point (x, y).
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1.2.5 Spacing and Width Laws

The position, width and the time at which various Liesegang bands are formed
seem to follow certain empirical laws. Numerical verification of these laws can be
found in [4]. Let xn be the position of the n-th Liesegang band, wn be it’s width
and tn be the time at which nucleation was first observed in n-th band. The law
xn ∼

√
tn is well satisfied[4] and is the signature of diffusion process. The width law

wn ∼ xαn is also shown to be satisfied numerically[4].
T. Antal et al [8] have done theoretical and numerical investigations into the

Matalon Packter Law[9] for the precipitation reaction stated above. Mathematical
model they have used is as follows:

∂a

∂t
= Da

∂2a

∂x2
− kθ(ab− q∗)− λabd (1.16)

∂b

∂t
= Db

∂2b

∂x2
− kθ(ab− q∗)− λabd (1.17)

∂d

∂t
= kθ(ab− q∗) + λabd (1.18)

where Da and Db are diffusion coefficients, θ(x) is the step function, q∗ is the
nucleation threshold, k is the rate constant and λ is the aggregation constant. If a0,
b0 represent the initial concentrations, then the initial conditions to the above
equations are given by a(x, 0) = a0θ(−x), b(x, 0) = b0θ(−x), d(x, 0) = 0.
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Chapter 2

Effectively One-dimensional
Reaction-Diffusion Systems

In this chapter, we focus our attention on RDE’s containing only one spatial
dimension. The precipitation term will be absent for our current numerical
investigations. The purpose of this chapter is to investigate the effect of different
parameters on the solutions.

Consider a long thin tube which is open at both ends. At each end, there is a
reactant present whose concentrations are maintained to be constants by external
means. The tube is filled with an inert medium like a gel which does not take
part in the chemical reaction. Let’s assume that the reactants are denoted by A
and B and their product is C. This experimental setup is similar to that for the
formation of Liesegang patterns described in the previous chapter. The important
difference is that the reactants may not necessarily be in direct contact with each
other. Let us denote the diffusivities of A, B and C by Da, Db and Dc respectively.
Let us also denote the homogeneous reaction constant by kAB. Let us also denote the
concentrations of A, B and C by A, B and C. This should not cause any ambiguity
since the meaning will usually be clear from the context in which these symbols are
used. Assume further that the tube has its left end located at x = L and the right
end at x = U . Then, for the chemical reaction A(aq) +B(aq) −→ C(aq), the evolution
of the concentrations A, B and C is governed by the following system of RDEs:

∂A

∂t
= Da∇2A− kABAB (2.1)

∂B

∂t
= Db∇2B − kABAB (2.2)
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∂C

∂t
= Dc∇2C + kABAB (2.3)

Although the diffusion term contains the partial derivatives in all spatial dimensions
(i.e. the terms ∇2A, ∇2B and ∇2C), the experimental setup (long thin tube) allows
us to focus on just one spatial dimension (along the length of the tube) and neglect
the rest of the spatial dimensions. Hence ∇2 can be replaced by ∂2

∂x2
. Thus the

effectively 1D system of RDEs can be written as:

∂A

∂t
= Da

∂2A

∂x2
− kABAB (2.4)

∂B

∂t
= Db

∂2B

∂x2
− kABAB (2.5)

∂C

∂t
= Dc

∂2C

∂x2
+ kABAB (2.6)

The domain is (x, t) ∈ Ω = [L,U ]× [0,∞). Boundary conditions (BCs) imposed
are similar to [3]. i.e.
A(L, t) = 1, A(U, t) = 0, B(L, t) = 0, B(U, t) = 1, C(L, t) = C(U, t) = 0. Initial
conditions (ICs) A(x, 0) = f(x), B(x, 0) = g(x), C(x, 0) = h(x) will be specified
later in numerical results.

2.1 Steady State Solutions

The purpose of the this section is to discuss the steady state solutions to RDEs
(2.4) to (2.6). First we derive an ODE which governs the steady state solution. In
the numerical results section, we investigate the effect of parameters on the
solution.

2.1.1 Mathematical Analysis of the Steady State

We discuss the steady state solution to the system (2.4) to (2.6). In the steady
state, lim

t→∞
∂A
∂t

= lim
t→∞

∂B
∂t

= lim
t→∞

∂C
∂t

= 0. Hence the system (2.4) to (2.6) is reduced
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to:

Da
d2A

dx2
= kABAB (2.7)

Db
d2B

dx2
= kABAB (2.8)

Dc
d2C

dx2
= −kABAB (2.9)

where x ∈ [L,U ] and the boundary conditions are given by
A(L) = 1, A(U) = 0, B(L) = 0, B(U) = 1, C(L) = C(U) = 0. It can be deduced
by simple calculations that

d2(DaA−DbB)

dx2
= 0 (2.10)

d2(DaA+DcC)

dx2
= 0 (2.11)

This system of ODE’s gives

B =
Da

Db

A−m
B
x− c

B
(2.12)

C =
Da

Dc

A+m
C
x+ c

C
(2.13)

where the constants m
B
, c

B
, m

C
and c

C
are determined by the boundary conditions

and are given by,

m
B

= −
1 + Da

Db

U − L
(2.14)

c
B

=
L+ U Da

Db

U − L
(2.15)

m
C

= − 1

U − L
Da

Dc

(2.16)

c
C

=
U

U − L
Da

Dc

(2.17)

From equation (2.7) and (2.12), the steady state concentration of A is given by the
ODE,

d2A

dx2
=
kAB
Da

Da

Db

A2 −m
B

kAB
Da

xA− c
B

kAB
Da

A (2.18)
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with boundary conditions A(L) = 1, A(U) = 0. Similar ODEs can be derived for B
and C. Alternatively, expressions for B and C can be found by substituting A in
(2.12) and (2.13) respectively. Unfortunately, equation (2.18) cannot be solved
analytically in closed form. Thus, none of A, B and C can be expressed in closed
form mathematical expressions. However, it is clear that the steady state solutions
are governed by kAB,

Da

Db
and Da

Dc
. The effect of these parameters on the solution as

well as the rate at which the system attains steady state is discussed in the section
on numerical results.

2.1.2 Numerical Results for the Steady State Solution

In this section we present the steady state solution to the system (2.4) to (2.5)
with the stated boundary conditions. Crank Nicolson method was used to
discretize the PDE’s. In each of the numerical tests, the program execution was
terminated when the L2-norm of the residual of solution vectors at two successive
time steps was less than ε = 10−15. The initial condition for C was uniformly set to
C(x, 0) = h(x) = 0 for all x ∈ Ω = [L,U ]. For the initial condition A(x, 0) = f(x),
following functions were used in different numerical tests. They are simple test
functions. All of them are continuous and piecewise smooth. The smooth pieces
consist of linear, cosine and polynomial functions.

1, x ≤ L,

f1(x) = 0.5 + 0.5 cos

(
5π

x− L
U − L

)
, L < x <

4L+ U

5
(2.19)

0, x ≥ 4L+ U

5

1, x ≤ L,

f2(x) =
U − x
U − L

, L < x < U (2.20)

0, x ≥ U

13



1, x ≤ L,

f3(x) =
27

4(U − L)3

(
x− 4L− U

3

)(
x− L+ 2U

3

)2

, L < x <
L+ 2U

3
(2.21)

0, x ≥ L+ 2U

3

1, x ≤ L,

f4(x) =
9

4(U − L)2

(
x− L− 2U

3

)(
x− L+ 2U

3

)
, L < x <

L+ 2U

3
(2.22)

0, x ≥ L+ 2U

3

1, x ≤ L,

f5(x) = 1− 5(U − x)

2(U − L)
, L < x <

3L+ 2U

5
(2.23)

0, x ≥ 3L+ 2U

5

The initial conditions B(x, 0) = g(x) for x ∈ [L,U ] are obtained by reflecting fj(x)
about x = L+U

2
, i.e. gj(x) = fj(L + U − x), j = 1, 2, 3, 4, 5. In all of the the

following tests, we have used L = 0 and U = 1. Figure 2.1 shows the initial
concentration profiles of A, B and C. Figure 2.2 shows the effect of changing Db on
the steady state solution, with initial conditions as prescibed in Figure 2.1, and
keeping other parameters constant. In all of the following figures, the blue curve
represents A, the green curve represents B and the red curve represents C.
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Figure 2.1: Concentration profiles at t = 0. A(x, 0) = f2(x), B(x, 0) =
g3(x), C(x, 0) = 0.
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(a) Db = 0.1 (b) Db = 0.5

(c) Db = 0.9

Figure 2.2: Effect of changing Db. Da = 0.5, Dc = 0.6, kAB = 150, Initial conditions
as shown in Figure 2.1
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Table 2.1 shows max
x∈[L,U ]

C(x) in the steady state as a function of Db.

Table 2.1: Maximum of C(x) as function of Db

Db max
x∈[L,U ]

C(x)

0.1 0.110739424
0.5 0.309249483
0.9 0.382674985

Next numerical test investigates the effects of changing Dc on the steady state
solution, keeping all other parameters constant. Figure 2.3 gives the initial
concentration profiles of A, B and C at t = 0. Figure 4 shows the steady state
solutions for different Dcs.

Figure 2.3: Concentration profiles at t = 0. A(x, 0) = f1(x), B(x, 0) =
g3(x), C(x, 0) = 0.
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(a) Dc = 0.1 (b) Dc = 0.5

(c) Dc = 0.9 (d) Dc = 1.5

Figure 2.4: Effect of changing Dc. Da = 0.05, Db = 0.5, kAB = 150, Initial conditions
as shown in Figure 2.3
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Table 2.2 shows max
x∈[L,U ]

C(x) in the steady state as a function of Dc.

Table 2.2: Maximum of C(x) as function Dc

Dc max
x∈[L,U ]

C

0.1 0.371905875
0.5 0.074381175
0.9 0.041322932
1.5 0.024793725

Next we investigate the effect of changing the homogeneous reaction constant
kAB on the steady state solution, keeping other parameters constant. Figure 2.5
shows the initial concentration profiles at t = 0. Figure 2.6 shows the steady state
solutions for different kABs. Table 2.3 gives max

x∈[L,U ]
C in the steady state as a

function of kAB. It also gives Ts as a function of kAB, where Ts is the time required
by the system to attain steady state.

Figure 2.5: Concentration profiles at t = 0. A(x, 0) = f3(x), B(x, 0) =
g3(x), C(x, 0) = 0.
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(a) kAB = 1.5 (b) kAB = 15

(c) kAB = 150 (d) kAB = 1500

Figure 2.6: Effect of changing kAB. Da = 0.4, Db = 0.5, Dc = 0.6, Initial conditions
as shown in Figure 2.5.

Table 2.3: Maximum of C(x) and Ts as a function of kAB

kAB max
x∈[L,U ]

C(x) Ts

1.5 0.049561224 5.58828125
15 0.175430869 5.21909375
150 0.278307273 5.33725
1500 0.327634034 3.000041667
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Lastly we investigate the effects of different initial conditions on the steady
state solution and Ts. Figure 2.7 to Figure 2.9 show different initial concentration
profiles and corresponding steady state solutions.

(a) A(x, 0) = f5(x), B(x, 0) = g2(x),
C(x, 0) = 0

(b) Steady State

Figure 2.7: Da = 0.5, Db = 0.1, Dc = 0.7, kAB = 150

(a) A(x, 0) = f1(x), B(x, 0) = g4(x),
C(x, 0) = 0

(b) Steady State

Figure 2.8: Da = 0.5, Db = 0.1, Dc = 0.7, kAB = 150
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(a) A(x, 0) = f2(x), B(x, 0) = g3(x),
C(x, 0) = 0

(b) Steady State

Figure 2.9: Da = 0.5, Db = 0.1, Dc = 0.7, kAB = 150

As seen from Figure 2.7 to Figure 2.9, the steady state solutions are not affected
by the initial concentration profiles. However, the time required to attain steady
state was affected and is recorded in Table 2.4.

Table 2.4: Ts against Initial Conditions

Initial Conditions Ts
f5(x), g2(x) 6.661392857
f1(x), g4(x) 6.666303571
f2(x), g3(x) 6.1634375

2.1.3 Summary of the steady state solutions

The purpose of the numerical tests presented in the previous section was to
investigate the effects of different parameters on the steady state solutions of the
system in one spatial dimension. Although the precipitation term is absent, it can
be seen that precipitation is feasible only for a certain range of parameters which
control maxx∈ΩC. In higher spatial dimensions where precipitation term is present,
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precipitation cannot occur if Ceq >> maxx∈ΩC, where Ceq represents equilibrium
concentration. This is a consequence of supersaturation theory which posits that
precipitation occurs when the concentration of the precipitating chemical
component is more than a threshold concentration. When it is feasible, the
direction in which the crystal mass keeps growing will be controlled by the points
at which maxx∈ΩC is attained, which in turn are controlled by Da, Db, Dc and
kAB. To this end, it can be observed that the point at which maxx∈ΩC occurs is
controlled by Da

Db
. The ratio also has a significant effect on maxx∈ΩC. On the other

hand Da

Dc
only controls maxx∈ΩC, and not the point at which maximum occurs.

Similarly, kAB affects only maxx∈ΩC, and not the point at which maximum occurs.
However, kAB has a significant effect on Ts, with Ts being reduced as kAB increases.
The exact mathematical relationship between kAB and Ts could not be determined
from the present numerical tests. The initial concentration profiles have a negligible
effect on steady state solution as well as Ts.

2.2 Reaction-Diffusion Front

In the last section, we investigated the steady state solutions for the chemical
reaction A + B → C. The stoichiometric coefficients were assumed to be all 1’s. In
this section, we modify the experimental setup a little bit. Instead of considering a
long thin tube with finite length, we consider the tube having no restrictions on the
length. We also change the chemical reaction to nA+mB → C. We assume that at
time t = 0, the reactant are sharply separated from each other at point x = 0. The
concentration of A (for all x < 0) is a0 and that of B (for all x > 0) is b0. Initially
there is no component C present in the domain and the reaction starts at time t = 0.
The experimental setup is illustrated in the following figure.

Figure 2.10: Experimental Setup.

Reactants A and B start to react and diffuse at time t = 0, and a zone is formed in
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which concentrations of A and B are relatively depleted. This zone is called depletion
zone. Inside the depletion zone, there is a narrower zone called the reaction front.
Concentration of the product C is at it’s highest levels inside the reaction front. The
concentration profiles of A, B and C at some arbitrary time t are similar to what is
shown in the following figure. Precise definitions concerning reaction front and the
depletion zone will be given later.

Figure 2.11: Concentrations of A, B and C at some arbitrary time t. The
stoichiometric coefficients (n,m) are assumed to be (1, 1). Concentration profiles
for other values of the coefficients (n,m) are qualitatively the same. (This figure is
adopted from a similar figure by Galfi and Racz [24])

2.2.1 Mathematical Model and Definitions

Reaction-Diffusion system given by the equations 2.4 to 2.6 describes the
evolution of concentrations for the chemical reaction A + B −→ C, in which all
three chemical species are assumed to diffuse within the domain. In this section, we
generalize the mathematical model to include reactions of type nA + mB −→ C.
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However, we assume that the product C does not diffuse in the domain. The
diffusivities of A and B are given by Da and Db respectively. For the sake of
brevity, we denote the homogeneous reaction constant by k instead of kAB. As we
have already mentioned, the domain in which the reaction takes place is
(effectively) one-dimensional and has no restriction on its length. The two
reactants A and B are assumed to be separated initially at X = 0. For the
remainder of this section, we will follow the convention that, 1. the symbols X and
T will denote real length and time, and the symbols x and t will denote normalized
(dimensionless) length and time, 2. symbols A(.), B(.) and C(.) will denote real
concentrations, and the symbols a(.), b(.) and c(.) will denote normalized
(dimensionless) concentrations, 3. the symbols a0 and b0 will denote real initial
concentrations of A and B in the domain. (Note that with these conventions, one
can interprete a quantity like A(x, T ) to mean the real concentration of reactant A
at a point whose normalized space coordinate is x and at real time T . However, we
will have no use of such quantities. We will simply use either all real quantities or
all dimensionless quantities.)

With the conventions above, the equations for the RDP in Figure 2.10 are given
as follows:

∂A(X,T )

∂T
= Da

∂2A(X,T )

∂X2
− knAn(X,T )Bm(X,T ) (2.24)

∂B(X,T )

∂T
= Db

∂2B(X,T )

∂X2
− kmAn(X,T )Bm(X,T ) (2.25)

∂C(X,T )

∂T
= kAn(X,T )Bm(X,T ) (2.26)

The initial conditions are given as:

A(X, 0) = a0θ(−X) (2.27)

B(X, 0) = b0θ(X) (2.28)

C(X, 0) = 0 (2.29)

where θ(.) represents the Heaviside Step Function.
We now give some definitions concerning the RDP described by the Figures 2.10,

2.11 and the equations (2.24) to (2.26).
1. Reaction Front / Reaction Zone is defined as the region where the rate

of production of C is the highest compared to rest of the domain. Typically, the
reaction front is not stationary and keeps moving in a direction determined by other
parameters of the system (like the diffusivities).
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2. Center of Reaction Front has been variably defined in the literature as
the point at which the production rate of C is the highest or as the point at which
mA(X,T ) = nB(X,T ). We adopt the later definition. We also mention that these
two points may not necessarily coincide. Galfi and Racz [24] have proved that for
a first order reaction (n = 1, m = 1), both these points coincide in the large time
limit. Since the reaction front moves with time, the center of reaction front is also a
function of time, and will be denoted by xf (t) (in the dimensionless equations).

3. Width of the Reaction Front (w) is defined as the second moment of the
rate of production r(x, t) = kan(x, t)bm(x, t).

w2(t) =

∞∫
−∞

(x− xf (t))2r(x, t)dx

∞∫
−∞

r(x, t)dx

(2.30)

4. Depletion Zone (Wd) is defined as the region where the product
an(x, t)bm(x, t) is significantly lower than an0b

m
0 .

5. Order of Reaction is defined as the ordered pair of stoichiometric
coefficients (n,m) for the chemical reaction nA+mB −→ C.

2.2.2 Dimensionless Equations

Following derivations for the dimensionless equations are adopted from Galfi
and Racz [24] and Magnin [25]. Non-dimensionaliztion is done for the system of
RDEs (2.24) to (2.26) along with the ICs (2.27) to (2.29), which describe the RDP
for chemical reaction nA+mB −→ C.

2.2.2.1 The case of equal diffusivities

We make a key assumption that Da = Db = D. (This assumption is extremely
difficult to reproduce in a laboratory setting and is quite unrealistic. However, it
makes mathematics more manageable and paves way for the case of arbitrary
diffusivities). With this assumption, we introduce the characteristic length as

l :=
√

D
k·a0n+m−1 and characteristic time as τ := 1

k·a0n+m−1 . We also introduce
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characteristic concentration to be a0, and assume that Da, Db, k, a0 and b0 remain
constant. We now introduce dimensionless length, time and concentration as
x := X

l
, t := T

τ
and a(x, t) := A(X,T )

a0
, b(x, t) := B(X,T )

a0
, c(x, t) := C(X,T )

a0
. With this

change of variables, the terms in the RDEs (2.24) to (2.26) can now be written as
∂A
∂T

= ka0
n+m∂a

∂t
; ∂B

∂T
= ka0

n+m∂b
∂t

; ∂C
∂T

= ka0
n+m∂c

∂t
; ∂2A

∂X2 = ka0n+m

D
∂2a
∂x2

;
∂2B
∂X2 = ka0n+m

D
∂2b
∂x2

; knAnBm = kna0
n+manbm; kmAnBm = kma0

n+manbm and
kAnBm = ka0

n+manbm, where A, B, C represent A(X,T ), B(X,T ), C(X,T )
respectively and a, b, c represent a(x, t), b(x, t), c(x, t) respectively. Substituting
these into RDEs (2.24) to (2.26) and the ICs (2.27) to (2.29) and cancelling
common terms, we get the : following dimensionless RDS:

∂a

∂t
=

∂2a

∂x2
− nanbm (2.31)

∂b

∂t
=

∂2b

∂x2
−manbm (2.32)

∂c

∂t
= anbm (2.33)

subject to the initial conditions

a(x, 0) = θ(−x) (2.34)

b(x, 0) =
b0

a0

θ(x) (2.35)

c(x, 0) = 0 (2.36)

For the dimensionless system, the domain is Ω = {(x, t)|(x, t) ∈ R × [0,∞)}. At
this point we introdue a new function u(x, t) := a(x, t) − n

m
b(x, t). To understand

the motivation behind this definition, recall the definition of the Center of Reaction
Front, xf (t). (It is defined as the point where ma(x, t) = nb(x, t)). Thus xf (t) is
precisely the point where u(x, t) = 0. To find an expression for xf (t), we will show
that u(x, t) satisfies the Diffusion equation over the whole real line. Thus it will
become a pure initial value problem in one spatial dimension which can be solved
using Fourier Transforms or Eigenvalue functions.

Multiply equation (2.32) by n
m

and subtract from equation(2.31). Thus we get

∂

∂t
(a− n

m
b) =

∂2

∂x2
(a− n

m
b)

=⇒ ∂u

∂t
=

∂2u

∂x2
(2.37)
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Define q := b0
a0

. Then the initial conditions (2.34) and (2.35) for equation (2.37) are
given by:

u(x, 0) = θ(−x)− n

m
qθ(x) (2.38)

Now equation(2.37) along with the IC (2.38) becomes a pure initial value problem
for the Diffusion Equation. It’s solution is given by:

u(x, t) =
1

2

((
1− n

m
q
)
−
(

1− n

m
q
)
· erf

( x

2
√
t

))
(2.39)

where erf(·) represents the error function. At x = xf (t), u(x, t) = 0. Hence we get

xf (t) =
√

2Df t (2.40)

where Df is given by

Df = 2

(
erf−1

(
1− n

m
q

1 + n
m
q

))2

(2.41)

where erf−1(·) represents inverse error function.
We wish to emphasize the point that the movement of the center of reaction

zone is proportional to the square root of time. This is to be expected since this
form of relationship is the signature of a typical diffusion process. We wish to
further emphasize the fact that the proportionality constant,

√
2Df , is a function

of n, m and q. This will be explored in greater details in the subsequent sections.

2.2.2.2 The case of arbitrary diffusivities

For the case of arbitrary diffusivities, we can no longer use the assumption that
Da = Db. This assumption was a key factor in deriving equations (2.39), (2.40) and
(2.41). Without this assumption, the mathematics quickly becomes untenable. To
the best of our knowledge, no closed form expression for xf (t) exists for the case
of arbitrary diffusivities. Thus we must resort to numerical solutions to study the
movement of the reaction front.

In this section, we first derive dimensionless equations for the RDEs (2.24) to
(2.26) along with the ICs (2.27) to (2.29). In the next section, we put forth a
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cojecture regarding xf (t). In the section on numerical results, we present numerical
evidence in support of the conjecture.

For the case of arbitrary diffusivities, we can either choose Da or Db in place of

D. We choose Da and we introduce the characteristic length as l :=
√

Da

ka0n+m−1 and

characteristic time as τ := 1
ka0n+m−1 . We also introduce characteristic concentration

to be a0, and assume that Da, Db, k, a0 and b0 remain constant. We now introduce
dimensionless length, time and concentration as x := X

l
, t := T

τ
and a(x, t) := A(X,T )

a0
,

b(x, t) := B(X,T )
a0

, c(x, t) := C(X,T )
a0

. (Notice that these definitions are identical to the
case of equal diffusivities except for the fact that we have usedDa instead ofD). With
this change of variables, the terms in the RDEs (2.24) to (2.26) can now be written
as ∂A

∂T
= ka0

n+m∂a
∂t

; ∂B
∂T

= ka0
n+m∂b

∂t
; ∂C
∂T

= ka0
n+m∂c

∂t
; ∂2A
∂X2 = ka0n+m

Da

∂2a
∂x2

; ∂2B
∂X2 =

ka0n+m

Da

∂2b
∂x2

; knAnBm = kna0
n+manbm; kmAnBm = kma0

n+manbm and kAnBm =
ka0

n+manbm, where A, B, C represent A(X,T ), B(X,T ), C(X,T ) respectively and
a, b, c represent a(x, t), b(x, t), c(x, t) respectively. Substituting these into RDEs
(2.24) to (2.26) and the ICs (2.27) to (2.29) and cancelling common terms, we get
the following dimensionless RDS:

∂a

∂t
=

∂2a

∂x2
− nanbm (2.42)

∂b

∂t
=

Db

Da

∂2b

∂x2
−manbm (2.43)

∂c

∂t
= anbm (2.44)

subject to the initial conditions

a(x, 0) = θ(−x) (2.45)

b(x, 0) =
b0

a0

θ(x) (2.46)

c(x, 0) = 0 (2.47)

As for the case of equal diffusivities, the domain is once again
Ω = {(x, t)|(x, t) ∈ R × [0,∞)}. Unfortunately, due to the the coefficient Db

Da
in

equation (2.43), it is not possible to carry out any simplifications similar to the
previous case. As mentioned earlier, no closed form expression for xf (t) is currently
known for the case of arbitrary diffusivities. However, observe that the process is
diffusive. Thus we will put forward the following conjecture.
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2.2.2.3 Conjecture for arbitrary diffusivities

Observe that for the case of equal diffusivities, xf (t) ∝
√
t and that the

propotionality constant η =
√

2Df is a function of n, m and q. (Df has been
defined by equation (2.41)).

Based on these observations, we put forth the following conjecture: “For the
dimensionless reaction-diffusion system described by equations (2.42) to (2.44) along
with the initial conditions (2.45) to (2.47), the position of the center of reaction-front
at any time t is proportional to

√
t. Further, the constant of proportionality, η, is a

function of Db

Da
, n, m and q.” (i.e. xf (t) = η(Db

Da
, n,m, q)

√
t).

To the best of our knowledge, no known mathematical proof exists for this
conjecture. Known results are all asymptotic in nature [30, 34]. Thus we present
numerical evidence in support of this conjecture.

2.2.3 Numerical Results

Our goal in this section is to solve equations (2.42) to (2.44) numerically and to
find the position of xf (t), thereby producing numerical evidence in support of the
conjecture put forth in the last section.

We first apply the numerical method described below to the case of equal
diffusivities to and compare the numerical solution to the analytical solution to
establish the accuracy of the method. Next we carry out numerical tests to explain
the initial “overshoots” and “undershoots” near t = 0. Once the accuracy of our
method has been established, we then apply the method to the case of arbitrary
diffusivities to show the numerical evidence in support of the conjecture. We carry
out the numerical tests for (n,m) = (1, 1), (1, 2), (2, 1) and (2, 2). In each case, we
change the values of Db

Da
and q in uniform small intervals. The numerical method is

described below.
We use Crank-Nicolson method to solve Eqn. (2.42) and (2.43). Discretization

is given as follows:

a
(k+1)
j − a(k)

j

∆t
=

1

2

(
a

(k+1)
j−1 − 2a

(k+1)
j + a

(k+1)
j+1

∆x2
+
a

(k)
j−1 − 2a

(k)
j + a

(k)
j+1

∆x2

)
−n(a

(k)
j )n(b

(k)
j )m (2.48)
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b
(k+1)
j − b(k)

j

∆t
=

1

2

Db

Da

(
b

(k+1)
j−1 − 2b

(k+1)
j + b

(k+1)
j+1

∆x2
+
b

(k)
j−1 − 2b

(k)
j + b

(k)
j+1

∆x2

)
−m(a

(k)
j )n(b

(k)
j )m (2.49)

Here the subscript j represents spatial index and the superscript (k) represents time
step. For the sake of completeness, we discretize equation (2.44) using the Forward
Euler method. Forward Euler can be unstable and typically only first order. However
we draw attention to the fact that our main interest is in studying the behavior of the
center of reaction zone xf (t) which depends only on a(x, t) and b(x, t). Since equation
(2.44) is decoupled from equation (2.42) and (2.43), consistency and stability of it’s
numerical solution will have no effect on the other two. It has been solved only for
the sake of completeness. The discretization is given as follows:

c
(k+1)
j − c(k)

j

∆t
= (a

(k)
j )n(b

(k)
j )m (2.50)

Notice that the original problem is an Initial Value Problem. So ideally j runs
through all non-negative integers. However, due to the finite memory constraints
of any computing platform, we restrict the computational domain to [−1, 1] and let
j run through 0,1,...,M where 2/∆x = M . Since the left and right boundaries are
reasonably far from the initial reaction zone, it is also reasonable to approximate the
boundary conditions as follows:

∂a(x, t)

∂x

∣∣∣∣∣
x=−1

=
∂a(x, t)

∂x

∣∣∣∣∣
x=1

= 0 (2.51)

∂b(x, t)

∂x

∣∣∣∣∣
x=−1

=
∂b(x, t)

∂x

∣∣∣∣∣
x=1

= 0 (2.52)

We implement these boundary conditions numerically as follows:

a
(k+1)
0 = a

(k+1)
1 , a

(k+1)
M = a

(k+1)
M−1 (2.53)

b
(k+1)
0 = b

(k+1)
1 , b

(k+1)
M = b

(k+1)
M−1 (2.54)

We note that the numerical boundary conditions can lead to only first order
consistency at the boundary while Crank-Nicolson is expected to produce second
order accuracy elsewhere in the computational domain. We overcome this problem
by terminating the run as soon as diffusion process reaches the boundary. In
particular, we terminate the code run as soon as any of
|a(k)

0 − a
(k)
1 |, |a

(k)
M − a

(k)
M−1|, |b

(k)
0 − b

(k)
1 |, |b

(k)
M − b

(k)
M−1| is greater than O(∆x2).
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To detect the position of the center of reaction zone xf (t), we use linear
interpolation between the grid points x0, x1, ..., xM at every time step. In
particular,at every time step k, we find out the index i ∈ {0, 1, 2, ...,M} such that

(a
(k)
i − n

m
b

(k)
i )(a

(k)
i+1 − n

m
b

(k)
i+1) ≤ 0. Then we find out the location xf (t) by solving the

two linear equations
y−a(k)i

x−xi =
a
(k)
i+1−a

(k)
i

xi+1−xi and
y− n

m
b
(k)
i

x−xi = n
m

b
(k)
i+1−b

(k)
i

xi+1−xi .

2.2.3.1 Numerical Results for Db/Da = 1 and (n,m) = (1, 1)

As discussed in the previous sections, the analytical expression for xf (t) in this

case is given by xf (t) =
√

2Df t where erf
(√

Df

2

)
= 1−q

1+q
. In this section we compare

the numerical results with analytical results and show that the numerical method
described above indeed gives accurate results. All numerical tests have been carried
out with the FronTier software library.

We begin by showing the numerical solutions for species A, B and C.
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(a) t = 0.00000

(b) t = 0.01275

Figure 2.12: Numerical solutions for q = 0.5. (continued on next page)
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(c) t = 0.02550

Figure 2.12: Numerical solutions for q = 0.5. Blue line represents Normalized
Concentration of species A, Green that of B and Red that of product C.

It can be seen that the numrical solutions match the expected shape of the
concentration profiles of all three species. Next we verify that the numerical
method gives the position of the center of reaction-diffusion zone correct upto
second order. In the next figure, we show the numerical results for the theoretical
xf (t) and numerical xf (t) vs. time t for various q’s. In the graphs which follow, q
changes from 0.1 to 1.0 in steps of 0.1 as one moves from the topmost branch of the
graph to the lowest branch.

From Fig.2.13, it can be seen that as t increases, numerical xf (t) indeed aproaches
theoretical xf (t) for every q. To further investigate the convergence of nuerical
method, we present the same numerical results as xf (t)/

√
t vs. time t. Fig.2.14

indicates that xf (t)/
√
t indeed approaches a constant as time t increases.

34



Figure 2.13: Graphical results for second order accuracy of the numerical method.
Theoretical position of the center of reaction zone is given by xf (t) = 2erf−1

(
1−q
1+q

)√
t.
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Figure 2.14: Graphical results for xf (t)/
√
t vs t for different q’s.

Notice that in Fig.2.14, there is a spike and small oscillatory behaviour near
t = 0 for most of the q’s. This can be explained by the fact that the grid points
are finite in number and hence not dense in the computational domain. Hence
the initial conditions (Heaviside Step Function) cannot be realized perfectly on any
computational grid on a computer. This fact is illustrated in Fig.2.15.
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(a) Heaviside Step Function

(b) Numerical Implementation

Figure 2.15: Implementation of Heaviside Step Function on a finite compuational
grid

This fact is further verified by changing the grid-size. Next figure shows the
effects of grid-size on the convergence of xf (t)/

√
t.
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Figure 2.16: xf (t)/
√
t vs t for varying grid size.

It can be seen from Fig.2.16 that as the grid is refined, xf (t)/
√
t attains it’s

theoretical value at earlier time.

2.2.3.2 Numerical Results for Db/Da 6= 1 and (n,m) = (1, 1)

In the previous section, we have presented enough numerical evidence to show
that the numerical method applied indeed gives results that match with theoretical
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results. In this section, we proceed to the case of Db/Da 6= 1. In this case, no
closed form analytical expression is available for xf (t). Hence, we will provide
numerical verification that xf (t) is indeed proportional to

√
t, and that the

constant of proportionality η is a function of Db/Da and q. We present our
numerical results for Db/Da = 0.2, 0.4, 0.6 and 0.8. Fig.2.17(a), Fig.2.18(a),
Fig.2.19(a) and Fig.2.20(a) present the numerical results for xf (t) vs. t.
Fig.2.17(b), Fig.2.18(b), Fig.2.19(b) and Fig.2.20(b) present the same results for
xf (t)/

√
t vs. t. As mentioned previously, q changes from 0.1 to 1.0 in the steps of

0.1 as one moves from the topmost branch of the graph to the lowest branch.
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.17: Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (1, 1)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.18: Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (1, 1)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.19: Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (1, 1)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.20: Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (1, 1)
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Thus, the numerical results presented in this section indeed verify the fact that
xf (t) ∝ η

(
Db/Da, n,m, q

)√
t for (n,m) = (1, 1).

Next we present similar results for higher order reactions, (n,m) = (1, 2), (2, 1)
and (2, 2). There is no qualitative difference in the results. The only difference is
the specific numerical values of concentration profiles, reaction zone position etc.

2.2.3.3 Numerical Results for Db/Da = 1 and (n,m) = (1, 2)

As in previous section, we first present the comparison between theoretical and
numerical results when Db/Da = 1. As mentioned previously, analytical results are
available in this case only. q changes from 0.1 to 1.0 in the steps of 0.1 as one moves
from the topmost branch of the graph to the lowest branch.
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Figure 2.21: Graphical results for (n,m) = (1, 2) Theoretical position of the center

of reaction zone is given by xf (t) = 2erf−1
(1− 1

2
q

1+ 1
2
q

)√
t.
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Figure 2.22: Graphical results for xf (t)/
√
t vs t for different q’s.

These results show that the analytical and numerical results match with each
other. Next we present the results for Db/Da 6= 1.
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2.2.3.4 Numerical Results for Db/Da 6= 1 and (n,m) = (1, 2)

We present the numerical results for Db/Da = 0.2, 0.4, 0.6 and 0.8. q changes
from 0.1 to 1.0 in the steps of 0.1 as one moves from the topmost branch of the
graph to the lowest branch.
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.23: Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (1, 2)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.24: Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (1, 2)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.25: Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (1, 2)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.26: Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (1, 2)
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2.2.3.5 Numerical Results for Db/Da = 1 and (n,m) = (2, 1)

For the sake of presenting enough numerical evidence, we present the results for
(n,m) = (2, 1) in this and the next section. Later sections section will present similar
results for (n,m) = (2, 2). Qualitatively, the results are similar to those presented in
previous two sections. However, it will be observed from numerical results that the
center of reaction zone travels in different direction depending on whether q ≤ 0.5 or
q > 0.5 respectively. As explained previously, q changes from 0.1 to 1.0 in the steps
of 0.1 as one moves from the topmost branch of the graph to the lowest branch.
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Figure 2.27: Graphical results for (n,m) = (2, 1) Theoretical position of the center
of reaction zone is given by xf (t) = 2erf−1

(
1−2q
1+2q

)√
t.
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Figure 2.28: Graphical results for xf (t)/
√
t vs t for different q’s.
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2.2.3.6 Numerical Results for Db/Da 6= 1 and (n,m) = (2, 1)

As before, we present the numerical results for (n,m) = (2, 1) and Db/Da =
0.2, 0.4, 0.6 and 0.8. q changes from 0.1 to 1.0 in the steps of 0.1 as one moves from
the topmost branch of the graph to the lowest branch.
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.29: Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (2, 1)

56



(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.30: Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (2, 1)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.31: Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (2, 1)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.32: Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (2, 1)
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2.2.3.7 Numerical Results for Db/Da = 1 and (n,m) = (2, 2)

Lastly, we take up the case of (n,m) = (2, 2). We present the theoretical and
numerical results for comparison. As before, q changes from 0.1 to 1.0 in the steps
of 0.1 as one moves from the topmost branch of the graph to the lowest branch.
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Figure 2.33: Graphical results for (n,m) = (2, 2) Theoretical position of the center
of reaction zone is given by xf (t) = 2erf−1

(
1−q
1+q

)√
t.
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Figure 2.34: Graphical results for xf (t)/
√
t vs t for different q’s.
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2.2.3.8 Numerical Results for Db/Da 6= 1 and (n,m) = (2, 2)

In the graphs which follow (till the end of this subsection), q changes from 0.1
to 1.0 in the steps of 0.1 as one moves from the topmost branch of the graph to the
lowest branch.
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.35: Center of Reaction Zone for Db/Da = 0.2 and (n,m) = (2, 2)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.36: Center of Reaction Zone for Db/Da = 0.4 and (n,m) = (2, 2)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.37: Center of Reaction Zone for Db/Da = 0.6 and (n,m) = (2, 2)
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(a) xf (t) vs. t

(b) xf (t)/
√
t vs. t

Figure 2.38: Center of Reaction Zone for Db/Da = 0.8 and (n,m) = (2, 2)
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2.2.3.9 Summary and Conclusion

We have presented enough numerical evidence to support the conjecture that
xf (t) = η

(
Db/Da, n,m, q

)√
t for every Db/Da, n,m and q. Although the results are

presented only for n = 1, 2 and m = 1, 2, and only for a few values of the stated
parameters. However, we mention in passing that similar results were obtained for
Db/Da = 0.1, 0.2, ...1.0 and for q = 0.1, 0.2, ...1.0, only with minor shape changes. In
our opinion, the results are consistent enough to support the claim.
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Chapter 3

Front Tracking

The “Front” is defined as the boundary point between two regions containing a
sharp discontinuity of a physical variable, e.g. density, concentration, viscocity etc.
Theoretically, the function representing the physical variable is not differentiable at
a point of discontinuity. This problem can be handled by using the integral form
of the governing equations. However, if the numerical scheme is of low order, then
the front diffuses quickly losing it’s sharpness. On the other hand, a high order
numerical scheme may cause numerical oscillations near the front and reduce the
high order of accuracy near the region [40]. To solve these difficulties, there exist two
main strategies, namely front-capturing and front-tracking.

The main idea of front capturing is to use a high order scheme and use artificial
viscosity around the front to diffuse it slightly to avoid oscillations. Front capturing
works well for shocks but does not work very well for contact discontinuities[40]. It
also requires high resolution.

Second appoach is front tracking in which the front is represented by hypersurface
elements (line segments in 2D and triangles in 3D). This approach is best suited sharp
discontinuities.

We apply the front tracking method and the FronTier code to study crystal
formation in a generic 3 component reaction-diffusion system. We use front tracking
to track the position of the front where there is a discontinuity in solute concentration.
We then use finite difference scheme (Crank-Nicolson) to update the concentrations
of the reactants and the product which are still in the liquid phase.

The front tracking method treats the moving interface as an interior boundary
and and applies finite difference method to each subdomain where concentration
fields are smooth.

We use the FronTier library to implememnt the front tracking and crystal growth.
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The functions implemented in the library can be classified as folloes: [1]

1. Initialization. Initialization functions are capable of initializing the problem
parameters as well as geometrical parameters for the computations such dimension,
domain, computational grid and boundary conditions. This is done through the
input routines. Initialization of the interface is also done through these functions as
well as the front velocity initialization.

2. Query Functions. Query functions are used to obtain information about the
front interface such as vertex coordinates, hypersurface elements (bonds in 2D and
triangular surface elements in 3D), access to the manifold (hypersurface), tangents
and normals to the surface elements etc.

3. Propagation Control Functions. These functions include advancement of
the front interface, redistribution and bifurcation.

4. Front and Subdomain Interaction Functions. These include the
functions which couple the PDE solvers with the front interface functions. These
functions can be used to obtain information like the nearest grid points, values of
the physical variables in a cell/grid point near the interface etc.

5. Ourput and Data Saving Functions.These functions mainly deal with the
data output which is used for visualization of the simulations. The compatible file
types include VTK for VisIt, Paraview, Geomview, HDF and GD packages. These
functions also have the capability to halt and/or restart the program run from a
specific time or time-step.
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Chapter 4

Mathematical Model for Crystal
Growth

Consider a reaction-diffusion system given by nA+mB −→ C and let a seed be
already present inside the computational domain. The evolution of concentrations
is governed by the following system of equations:

∂A

∂t
= ∇ · (DA∇A)− kABAnBm (4.1)

∂B

∂t
= ∇ · (DB∇B)− kABAnBm (4.2)

∂C

∂t
= ∇ · (DC∇C) + kABA

nBm − k
∫
F

H(C − Ceq)δ(~x− ~xf )d ~xf (4.3)

where A(~x, t), B(~x, t), C(~x, t) are normalized concentrations, DA, DB, DC are
diffusion coefficients, kAB > 0 is the rate coefficient of homogeneous reaction (liquid
phase), k > 0 is the rate coefficient of heterogeneous reaction (precipitation), ~xf is
a point on fluid-solid interface and Ceq is the equilibrium concentration. H(·)
represents the Heaviside step function and δ(·) represents the dirac-delta function.
The integration is taken over the whole fluid-solid interface.

The fluid-solid interface is advanced with the normal velocity:

νn(~xs) = − 1

ρs
DC

dC

dn
(4.4)

where ρs is the crystal density and dC/dn is the normal derivative of the
concentration C(~x, t).
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The FronTier code has the ability to detect if a cell contains liquid phase or solid
phase. We use this capability and for purely liquid phase, we note that the integral
k
∫
F
H(C−Ceq)δ(~x− ~xf )d ~xf = 0. Assuming that a computational cell contains only

liquid phase and that the diffusion coefficients stay constant throughout the liquid
phase, the system of equations is reduced to:

∂A

∂t
= DA∇2A− kABAnBm (4.5)

∂B

∂t
= DB∇2B − kABAnBm (4.6)

∂C

∂t
= DC∇2C + kABA

nBm (4.7)

Any high order finite difference scheme may be used to solve this system of
equations. In the present work, we have used Crank-Nicolson scheme.

When a cell contains purely solid phase, we assume that there is neither reaction
nor diffusion taking place. Thus there is no need to solve the system for the cells
containing purely solid phase.

When a cell contains fluid-solid interface, both liquid and solid phases are present
inside the cell. At a point of interface, k

∫
F
H(C−Ceq)δ(~x− ~xf )d ~xf = kH(C−Ceq).

To update the concentrations at the grid point of a cell containing the interface,
we introduce ghost points in the opposite direction to that of the interface and then
solve the system using finite differences. The ghost points are introduced to maintain
second order accuracy of the finite difference scheme.

Once the concentrations are updated, we propagate the fluid-solid interface by
the methods described by Li et al.[1]. To update the concentrations at a point on
the interface, we assume that the solute concentrations at the fluid-solid interface
are As = Bs = 0. Thus, for the (n+ 1)-th time step, the discretized equation for Cs
is given by:

C
(n+1)
s − C(n)

s

∆t
=

(
DC

C
(n+1)
s+h − C

(n+1)
s

h
− kH(C(n+1)

s − Ceq)

)
2

h
(4.8)

where h is the spatial step in normal direction. The superscripts denote time step.
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Chapter 5

Numerical Results

In this section, we present the numerical results which show the effects of different
parameters of the problem on the crystal growth. The parameters which control the
reaction-diffusion system described by equations (4.1) to (4.3) are DA, DB, DC and
kAB, k.

We set the computational domain to a square [0, 1] × [0, 1]. The boundary
conditions used for testing are A(x, 0, t) = B(x, 1, t) = 0 and
A(x, 1, t) = B(x, 0, t) = 1.

5.1 Effects of kAB and k

We first explore the effects of kAB and k on the crystal growth. We present the
simulation results for different shapes of initial seeds, namely rectangular, circular
and triangular. Initial conditions used were A(x, y, 0) = g1(y) and B(x, y, 0) = f1(y),
where f1 and g1 are the functions described in section 2.1.2. We have also used only
first order reaction. i.e. (n,m) = (1, 1).

It can be observed from the following tests that the dendritic growth is
pronounced when k is high. kAB has negligible effect on the dendritic growth. It
will also be observed that in general, the direction in which dendrites grow is
controlled by DA/DB. This point will be further explored in the next section.
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(a) t = 0

(b) t = 2.755

Figure 5.1: Parameters are kAB = 150, k = 800 and DA = DB = DC = 0.5
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(a) t = 0

(b) t = 2.755

Figure 5.2: Parameters are kAB = 1500, k = 200 and DA = DB = DC = 0.5
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(a) t = 0

(b) t = 2.755

Figure 5.3: Parameters are kAB = 150, k = 800 and DA = 0.3, DB = 0.7, DC = 0.5
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(a) t = 0

(b) t = 2.755

Figure 5.4: Parameters are kAB = 1500, k = 200 and DA = 0.3, DB = 0.7, DC = 0.5
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(a) t = 0

(b) t = 2.755

Figure 5.5: Parameters are kAB = 150, k = 800 and DA = 0.3, DB = 0.7, DC = 0.5
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(a) t = 0

(b) t = 2.755

Figure 5.6: Parameters are kAB = 1500, k = 200 and DA = 0.3, DB = 0.7, DC = 0.5
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5.2 Effect of the diffusivities

As mentioned in the previous section, the direction in which the dendrites grow
is controlled by the value of DA/DB. This is explored more in this section. The
initial conditions vary for each simulation. However, initial conditions are found to
have little effect on the direction of growth.
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(a) DA = 0.3, DB = 0.7

(b) DA = 0.5, DB = 0.5

(c) DA = 0.7, DB = 0.3

Figure 5.7: Parameters are kAB = 150, k = 800 and DC = 0.5. Each image is taken
at t = 2.68.
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(a) DA = 0.3, DB = 0.7

(b) DA = 0.5, DB = 0.5

(c) DA = 0.7, DB = 0.3

Figure 5.8: Parameters are kAB = 150, k = 800 and DC = 0.5. Each image is taken
at t = 2.68.
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(a) DA = 0.3, DB = 0.7

(b) DA = 0.5, DB = 0.5

(c) DA = 0.7, DB = 0.3

Figure 5.9: Parameters are kAB = 150, k = 800 and DC = 0.5. Each image is taken
at t = 2.68.
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5.3 Effect of the Damkohler Number

The Damkohler Number, d, is defined by d = kL/DC
[1, 2] where k is the

heterogeneous reaction constant, L is the characteristic length and DC is the
diffusion coeficient for the product C. Damkohler number is closely tied with the
dendritic growth of the crystal. High Damkohler number produces high dendritic
structure and vice-versa. In this section, we provide numerical results which show
that the dendritic growth in a RDS for A + B −→ C occurs only when the
Damkohler number is higher than a threshold value. In most of our simulations,
the threshold was in the range of 60 to 80. Although it is difficult to predict the
exact value of the threshold, we mention that traces of the dendritic structures
started to appear for d = 60 and they were well formed for d = 80. For lower
Damkohler numbers, the crystal growth was smooth without any dendrites. The
direction of the growth was still controlled by DA/DB. The initial shape of the seed
had no effect on the threshold value.

The computational domain is [0, 1] × [0, 1]. Reactants A and B are initially
separated at y = 0.5. Other parameters are as follows: kAB = 1500, DA = 0.3,
DB = 0.7. We wish to mention that the simulations were carried out for a range of
Damkohler Numbers, in particular for d = 0.1, 0.5, 1, 5, 10, 20, 40, 60, 80, 160. For
small values of d, the crystal growth was not qualitatively different, the only
significant difference being the amount of growth in a given time. We also carried
out the simulations for a range of values of DA and DB. Numerical results showed
difference in the direction of crystal growth.
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(a) d = 20 (b) d = 40

(c) d = 60 (d) d = 80

Figure 5.10: Effects of the Damkohler Number. Parameters are kAB = 1500, DA =
0.3 and DB = 0.7. Each image is taken at t = 2.57. Initial seed is circular.
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(a) d = 20 (b) d = 40

(c) d = 60 (d) d = 80

Figure 5.11: Effects of the Damkohler Number. Parameters are kAB = 1500, DA =
0.3 and DB = 0.7. Each image is taken at t = 2.57. Initial seed is triangular.
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(a) d = 20 (b) d = 40

(c) d = 60 (d) d = 80

Figure 5.12: Effects of the Damkohler Number. Parameters are kAB = 1500, DA =
0.3 and DB = 0.7. Each image is taken at t = 2.57. Initial seed is rectangular.

87



5.4 Effect of the equilibrium concentration

The supersaturation theory asserts that the deposition of mass occurs only
when Cs > Ceq where Cs is the concentration of C at a point on the fluid-solid
interface and Ceq is the equilibrium concentration. The theory also asserts that
once the concentration C attains the equilibrium concentration, the deposition
occurs instantaneously. It is natural expect that this process will have effect on the
dendritic growth. This is confirmed by the following numerical results. Lower
equilibrium concentration produces more dendritic growth and vice-versa, when all
other parameters are held constant. Parameters used are kAB = 1500, k = 100,
DA = 0.3, DB = 0.7 and DC = 0.5. Other computational setup is the same as the
previous sections.
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(a) Ceq = 0.1 (b) Ceq = 0.01

(c) Ceq = 0.001

Figure 5.13: Effects of the Equilibrium Concentration. Parameters are kAB = 1500,
k = 100, DA = 0.3, DB = 0.7 and DC = 0.5. Each image is taken at t = 2.629.
Initial seed is circular.
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Chapter 6

Conclusions and future directions
for research

In the present work, we presented a numerical study of the reaction-diffusion
system for the generic reaction nA + mB −→ C. In the study of effectively one
dimensional systems, we put forward a conjecture based on the results obtained by
other researchers regarding the case of equal diffusivities. Next we provided the
nmerical evidence for the case of unequal diffusivities for
(n,m) = (1, 1), (1, 2), (2, 1), (2, 2).

In our work on the higher dimensional simulations involving the crystal growth,
we examined the effects of parameters DA, DB, DC and kAB, k. We found that the
dendritic growth is controlled dominantly by the heterogeneous reaction constant k
and the homogeneous reaction constant kAB has no effect on the dendrites. We also
observed that the direction in which the dendrites grow is controlled by DA/DB.
Numerical simulations show that the Damkohler number produces dendritic growth
only if it’s value is higher than some threshold. The threshold for the particular tests
done appears to be in the range of d = 60 to d = 80. The equilibrium concentration,
Ceq also has effect on the dedrites with lower Ceq being responsible for higher dendritic
growth and vice-versa.

The work done here presents a basis for further study of Liesegang Pattern
formation in effectively one dimensional systems and multidimensional systems. In
particular, the theories put forth for formation of Liesegang Patterns do not
adequately explain the spacing and width laws, especially in 2 and 3 dimensions.
Out of the theories proposed, the supersaturation theory is especially amenable to
the Front Tracking method. It is our contention that front tracking method be used
to investigate if supersaturation theory can adequately explain the spacing and
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width laws in higher dimensions, for which there does not yet exist a fully
satisfactory theoretical explanation. Present work and the front tracking code
employed can further be used in this direction.
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[11] Chemistry and Crystal Growth, Angew. Chem. Int. Ed. Engl. 33, 143-162
(1994), Jurg Hulliger

[12] Dendrites, Viscous Fingers, and the Theory of Pattern Formation, Science 243,
1150-1156 (1989), J. S. Langer

[13] Competition between kinetic and surface tension anisotropy in dendritic growth,
Eur. Phys. J. B 16, 337-344 (2000), T. Ihle

[14] Diffusion-Limited Aggregation: A Model for Pattern Formation, Physics Today
53, 36-41 (2000), Thomas C. Halsey

[15] Mathematical Analysis of the Formation of Periodic Precipitates, J. Colloid Sci.
5, 85-97 (1950), C. Wagner

[16] Periodic Precipitation Patterns in the Presence of Concentration Gradients 1.,
J. Phys. Chem. 86, 4078-4087 (1982), Stefan C. Muller, Shoichi Kai and John
Ross

[17] The Formation of Liesegang Rings as a Periodic Coagulation Phenomenon,
Journal of the Chemical Society 1928/II, 2714-2727 (1928), Ernest S. Hedges
and Rosalind V. Henley

[18] Mechanism of chemical instability for periodic precipitation phenomena, J.
Chem. Phys. 60, 3458-3465 (1974), Michael Flicker and John Ross

[19] The Concentration Distribution in the Gel before the Periodic Precipitation,
Memoirs of the Faculty of Science, Kyushu University, Series C Chemistry, 5,
33-42 (1962), Hiroshige Higuchi and Ryohei Matura

[20] Nucleation and Spinodal Decomposition, Solid State Phenomena 56, 67-106
(1997), L. Granasy

[21] Phase Transitions and Critical Phenomena, vol. 8, Academic Press, London
(1989), C. Domb and J. L. Lebowitz (editors)

[22] Formation of Liesegang Patterns, Physica A 274, 50-59 (1999), Zoltan Racz

[23] Pattern formation induced by ion-selective surfaces: Models and simulations, J.
Chem. Phys. 123, 034707 (2005), Szabolcs Horvt and Pter Hantz

93



[24] Properties of the reaction front in an A + B −→ C type reaction-diffusion
process, Physical Review A 1988, Volume 38, Number 6: 3151-3154, L. Galfi
and Z. Racz

[25] Properties of the asymptotic nA + mB −→ C reaction-diffusion fronts, Eur.
Phys J. B 17 (2000): 673-678, J. Magnin

[26] Dynamic multiscaling of the recation-diffusion front for mA + nB −→ C,
Physical Review E, October 1995, Volume 52, Number 4, S. Cornell, Z. Koza
and M. Droz

[27] Reaction front for A + B −→ C diffusion-reaction systems with initially
separated reactants, Physical Review A, July 1992, Volume 46, Number 2, H.
Larralde, M. Araujo, S. Havlin and H. Stanley

[28] Steady-State Reaction-Diffusion Front Scaling for mA + nB −→ C, Physical
Review Letters, June 1993, Volume 70, Number 24, S. Cornell and M. Droz

[29] Asymptotic behaviour of initially separated A+B(static) −→ C reaction-diffusion
systems, Physica A 240 (1997) 622-634, Z. Koza

[30] Reaction-Diffusion fronts in systems with concentration-dependent diffusivities,
Physical Review E 74, 036103 (2006), P. Polanowski and Z. Koza

[31] Reaction fronts in reversible A + B 
 C reaction-diffusion systems, Physica A
330 (2003) 160-166, Z. Koza

[32] Reversible and irreversible reaction fronts in two competing reaction system,
Nuclear Instruments and Methods in Physica Research B 186 (2002) 161-165,
M. Sinder, H. Taitelbaum, J. Pelleg

[33] Asymptotic expansion for reversible A + B ←→ C reaction-diffusion process,
Physical Review E 66, 011103 (2002), Z. Koza

[34] The Long-time Behavior of Initially Separated A+B −→ C Reaction-Diffusion
Systems with Arbitrary Diffusion Constants, J. Stat. Phys. 85, 179-191(1996),
Z. Koza

[35] Some Properties of the A + B −→ C Reaction-Diffusion System with Initially
Separated Components, Journal of Statistical Physics, Vol. 65, Nos. 5/6, 1991,
H. Taitelbaum, S. Havlin, J. Kiefer, B. Trus, and G. Weiss

94



[36] Numerical analysis of reversible A + B ←→ C reaction-diffusion systems, Eur.
Phys. J. B 32, 507-511(2003), Z. Koza

[37] Simulation study of reaction fronts, Physical Review A, December 1990, Volume
42, Number 12, Z. Jiang and C. Ebner

[38] Refined simulations of the reaction front for diffusion-limited two-species
annihilation in one dimension, Physical Review E, May 1995, Volume 51,
Number 5, S. Cornell

[39] Role of fluctuations for inhomogeneous reaction-diffusion phenomena, Physical
Review A, Volume 44, Number 8, Oct. 1991, S. Cornell, M. Droz, B. Chopard

[40] A Front-Tracking Method for Viscous, Incompressible, Multi-fluid Flows Journal
of Computational Physics 100, 25-37 (1992) Salih Ozen Unverdi, Gretar
Tryggvason

[41] Numerical simulation of dendritic solidification with convection: Two-
Dimensional Geometry, Journal of Computational Physics, Volume 180, Issue
2, 10 August 2002, Pages 471-496, Nabeel Al-Rawahi, Gretar Tryggvason

[42] Numerical simulation of dendritic solidification with convection: Three-
dimensional flow, Journal of Computational Physics, Volume 194, Issue 2, 1
March 2004, Pages 677-696, Nabeel Al-Rawahi, Gretar Tryggvason

[43] Front tracking for gas dynamics, Journal of Computational Physics, Volume 62,
Issue 1, January 1986, Pages 83-110, I.-L Chern, J. Glimm, O. Mcbryan, B.
Plohr, S. Yaniv

[44] A simple package for front tracking, Journal of Computational Physics, 213:613-
628, 2006, Jian Du, Brian Fix, James Glimm, Xicheng Jia, Xiaolin Li, Yunhua
Li, and Lingling Wu

[45] A level set simulation of dendritic solidification with combined features of front-
tracking and fixed-domain methods, Journal of Computational Physics, 211:36-
63, 2006, Lijian Tan and Nicholas Zabaras

[46] Front tracking in two and three dimensions, Comput. Math. Appl., 35(7):1-11,
1998, J. Glimm, M. J. Graham, J. W. Grove, X.-L. Li, T. M. Smith, D. Tan, F.
Tangerman, and Q. Zhang

95



[47] Frontier and applications to scientific and engineering problems, Proceedings of
International Congress of Industrial and Applied Mathematics, pages 1024507 -
1024508, 2008, W. Bo, B. Fix, J. Glimm, X. L. Li, X. T. Liu, R. Samulyak, and
L. L. Wu

[48] Diamond crystsal growth by plasma chemical vapor deposition, Journal of
Applied Physics, 63:1744-1748, 1988, C.P. Chang, D.L. Flamm, D.E.Ibbostson,
and J.A.Mucha

[49] Precipitation and dissolution of reactive solutes in fractures, Water Resources
Research, 34:457-470, 1998, Peter Dijk and Brian Berkowitz

[50] Simulation of dissolution and precipitation in porous media, J. Geophys. Res.,
108:2505, 2003, Q. Kang, D. Zhang, and S. Chen

[51] Numerical modeling of ice deposition, Journal of the Atmospheric Sciences,
28:226-237, 1970, L. R. Koenig

[52] An experimental investigation of nonaqueous phase liquid dissolution in
saturated subsurface systems: Steady state mass transfer rates, Water Resources
Research, 28:2691-2705, 1992, Susan E. Powers, Linda M. Abriola, and Walter
J. Weber JR

96


