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ABSTRACT

Title of dissertation: SATELLITE SIMULATOR STUDIES OF THE
IMPACT OF CLOUD INHOMOGENEITY ON
PASSIVE CLOUD REMOTE SENSING

RETRIEVALS

Daniel J. Miller, Doctor of Philosophy, 2017

Dissertation directed by: Professor Zhibo Zhang
Department of Physics

Satellite cloud remote sensing provides us the opportunity to study the spa-

tial and temporal distributions of marine boundary layer clouds, as well as their

connections with environments on a global scale. However, cloud remote sensing is

not without difficulties; retrievals require numerous simplifying assumptions, plac-

ing limits on our understanding of cloud processes. Passive remote sensing retrievals

often assume that clouds are homogeneous slabs, when in reality, these clouds of-

ten have complex inhomogeneous vertical and horizontal structures. Enhancing our

understanding of how cloud inhomogeneity influences passive cloud remote sensing

requires comparison between cloud retrievals and the underlying cloud properties.

In observational data-sets this can become problematic, as it is difficult to compare

satellite and airborne measurements because they have both different observed spa-

tial scales and sensitivities to cloud properties. To avoid these complications, this

work is based on a satellite retrieval simulator – a Large-Eddy Simulation (LES)

cloud model coupled to radiative transfer and retrieval algorithms. The LES-satellite



simulator can be used to study the source of retrieval biases. It provides the under-

lying realistic cloud structure as a reference, informing conclusions about its impact

on various cloud retrieval methods. In the first step we focus on cloud vertical

profile, finding that the selection of appropriate vertical profile assumptions for the

retrieval of cloud liquid water path. Confirming previous studies, drizzle and cloud

top entrainment of dry air are identified as physical features that bias liquid water

path retrievals away from adiabatic and toward homogeneous profile assumptions.

The mean bias induced by drizzle-influenced profiles was shown to be on the or-

der of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found

to be smaller by about a factor of 2. A theoretical framework is also developed

to explain variability in LWP retrievals by introducing modifications to the adia-

batic effective radius profile. The second step focuses on horizontal inhomogeneity

and exploring a comparison of both the bispectral and polarimetric cloud retrieval

techniques. Using the satellite retrieval simulator we are able to verify that at high

spatial resolution (50m) the bispectral and polarimetric retrievals are indeed highly

correlated with one another. The small differences at high spatial resolution can

be attributed to different sensitivity limitations of the two retrievals. In contrast, a

systematic difference between the two effective radius retrievals emerges at coarser

resolution. This bias largely stems from differences related to sensitivity of the two

retrievals to unresolved inhomogeneities in effective variance and optical thickness.

The influence of coarse angular resolution is found to increase uncertainty in the po-

larimetric effective radius retrieval, but generally maintains a constant mean value.

The third study focuses on 3-D radiative effects influencing both total and polarized



reflectances and retrievals. Comparisons between the 1-D and 3-D reflectances are

made in order to study horizontal photon transfer and radiative smoothing. We find

noticeable differences between the total and polarized reflectance 3-D effects, with

radiative smoothing and roughening occurring at different scales as well as viewing

geometry dependence. Despite these apparently strong 3-D effects on polarized re-

flectances, the polarimetric retrieval is robust to the influence of 3-D effects – with

only sub-micron biases in the retrieval of effective radius.
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Chapter 1: Introduction

1.1 Why do marine boundary layer clouds matter?

Marine boundary layer (MBL) clouds constantly cover approximately one-fifth

of the Earths ocean surface [Warren et al., 1988; Wood , 2012]. These clouds reflect

significantly more sunlight than the dark underlying ocean and therefore have a

strong cooling effect on the climate system [Klein and Hartmann, 1993]. Moreover,

the prevalence of drizzle in MBL clouds according to recent CloudSat observations

suggesting they play an important role in both the water and energy cycles by

contributing precipitation and latent heat respectively [Kubar and Hartmann, 2009;

Behrangi et al., 2012]. Additionally, as demonstrated by ship tracks, MBL clouds are

susceptible to changes in aerosol concentrations, indicating a sensitivity to aerosol

indirect effects [Twomey , 1977; Oreopoulos and Platnick , 2008].

All of the facts above suggest that MBL clouds have an important role in the

climate system. However, at present we only have a limited understanding of this

role. Our ability to simulate MBL clouds and their interactions with environment

factors in climate models is awkwardly inadequate [Zhang et al., 2005]. As a result,

the interactions between aerosols and clouds have been repeatedly identified as one

of the primary sources of uncertainty in estimates of the human impact on climate
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change [IPCC , 2013]. It is not just the magnitude of the MBL cloud feedback

which is unknown, but even whether they contribute to or dampen the effects of

global warming [Bony and Dufresne, 2005]. There is a pressing need for a better

understanding of the varied impacts of MBL clouds on both the present climate

system and their role in climate change.

1.2 Satellite Remote Sensing

Providing a better scientific picture of the impact of MBL clouds on climate

requires long-term continuous observations of the spatial and temporal distributions

of MBL clouds, as well as their connections with environments on a global scale.

At present, satellite-based cloud remote sensing is the only means to achieve such

observations. Many remote sensing techniques have been developed over the past

several decades for monitoring cloud properties from both orbital and sub-orbital in-

struments [Stephens and Kummerow , 2007]. Among these techniques, the bispectral

reflectance method of Nakajima and King [1990] and the multi-angular polarimet-

ric method Bréon and Goloub [1998] are two of the most widely used methods for

remote sensing of cloud optical and microphysical properties from passive satellite

observations. The former is the theoretical basis for the operational algorithm for

the MODIS (Moderate Resolution Spectroradiometer) cloud product and the latter

is used for retrieving the cloud droplet size of MBL clouds from POLDER (Polar-

ization and Directionality of the Earths Reflectances) observations. For simplicity

hereafter we refer these two methods as the spectral and polarimetric methods re-
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spectively. The MODIS and POLDER cloud products have been utilized to ad-

dress numerous important open research questions: aerosol-cloud interactions (e.g.,

[Kaufman et al., 2005; Quaas and Boucher , 2005; Lebsock et al., 2008; Jiang , 2009;

Quaas et al., 2009]), radiative effects of aerosols (e.g., [Wilcox , 2012; Costantino and

Breon, 2013a; Meyer et al., 2013; Zhang et al., 2013; Min and Zhang , 2014]), valida-

tion of cloud parameterization schemes in climate models (e.g., [Donner et al., 2011;

Jiang et al., 2012; Kay et al., 2012; Pincus et al., 2012]), and the cloud feedback

to climate change (e.g., [Zhou et al., 2013]) to list a few. The wide use and broad

impact of these cloud products make it important to understand their limitations

and uncertainties.

1.3 Limitations of Passive Satellite Remote Sensing

One of the greatest issues facing passive remote sensing is that realistic cloud

structure can be significantly inhomogeneous. This creates difficulties for remote

sensing techniques without prior information about such inhomogeneity. Realistic

3-D cloud structure can be complex, with both vertical and horizontal variability

driven by a variety of physical processes. However, most cloud retrieval algorithms

cannot account for the actual cloud structure and instead assume various cloud

homogeneity conditions. To that end, passive retrievals typically assume that all

cloudy pixels are homogeneous, plane-parallel, and infinitely homogeneous slabs.

This assumption leads to numerous consequences for the sensitivity of remotely

sensed cloud properties to the presence of realistically inhomogeneous clouds.
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For (shortwave) passive satellite remote sensing cloud vertical inhomogeneity

can cause issues because it is difficult to probe cloud properties in specific layers

or volumes of a cloud. This difficulty stems from the fact that light is scattered

throughout the vertical extent of the cloud and thus the information from particular

layers is vertically averaged. The particulars of this vertical averaging or smoothing

depends vertical variability of the absorption and scattering properties of cloud

water droplets. This leads some cloud retrievals to make assumptions about the

cloud vertical profile in order to obtain cloud properties in specific layers (like cloud

top) or column properties.

Cloud horizontal inhomogeneity can cause a number of difficulties as well. At

high spatial resolutions, this horizontal variability can lead to significant horizontal

radiative flux, violating the plane-parallel infinite assumption. These situations can

produce artifacts referred to as “3-D radiative effects”, which are discrepancies in the

observed reflectances and their retrievals. At coarse spatial resolutions, biases can be

induced by unresolved, inhomogeneous or broken clouds and surface contamination.

As a consequence of these two extremes, there is a always a resolution trade off.

High resolutions are susceptible to 3-D effects, whereas low resolution reflectances

do not clearly resolve the cloud scale are susceptible to unresolved inhomogeneity

biases.
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1.4 Objectives and Significance of this Study

Enhancing our understanding of how cloud inhomogeneity influences passive

cloud remote sensing requires comparison between cloud retrievals and the underly-

ing cloud properties. In observational data sets this can become problematic – it is

difficult to compare satellite and in-situ airborne measurements because they have

both different observed spatial scales and sensitivities to cloud properties [Henrich

et al., 2010]. To avoid these complications, this work is based on a satellite retrieval

simulator - an LES cloud model coupled to radiative transfer and retrieval algo-

rithms. The LES-satellite simulator can be used to study the source of retrieval

biases, providing the underlying realistic cloud structure as a reference, informing

conclusions about its impact on various cloud retrieval methods. These results can

then be used in future observational studies, providing guidance on the interpreta-

tion of various cloud properties.

The LES-satellite simulator will allow us to investigate the following scientific

questions:

• What impact does inhomogeneity of the cloud vertical profile have on both

spectral and polarimetric-based cloud property retrievals?

• How do the bispectral and polarimetric retrievals compare to one another and

how does cloud inhomogeneity influence differences between these retrievals?

• How do cloud horizontal inhomogeneity and 3-D radiative effects impact both

the total and polarized reflectances, and how do these impacts influence the

5



bispectral and polarimetric retrievals?

The structure of this dissertation is as follows: In chapter 2 we provide back-

ground information about cloud optical properties, remote sensing, retrieval tech-

niques and the satellite simulator that will used throughout this work. Then in

chapter 3 we use the passive cloud remote sensing simulator to explore the impact

of cloud vertical profile assumptions on passive retrievals of cloud liquid water path.

The focus of chapter 4 is on the use of the satellite simulator to compare bispec-

tral and polarimetric cloud remote sensing techniques. Within the framework of a

simulator study we can isolate the influence of differences in retrieval sensitivity,

spatial and angular resolution. Finally, in chapter 5 we present case studies of 3-D

effects in total and polarized reflectances and their influence on cloud microphysical

retrievals.
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Chapter 2: Background and Theory

2.1 Cloud Microphysics and Optical Properties

2.1.1 Cloud Droplet Size Distribution

The cloud droplet size distribution (DSD) is an important microphysical prop-

erty of liquid-phase clouds. Given the cloud water content, it largely determines the

shortwave radiative effects of clouds [Twomey , 1977]. It also plays a critical role

in cloud-precipitation processes [Pruppacher and Klett , 1978]. As a result, anthro-

pogenic perturbation to the DSD could lead to a variety of cloud property changes

with significant climate implications [Lohmann et al., 2007]. Typical MBL clouds

have been observed to have a cloud droplet number concentration (N0, CDNC) on

the order of a few tens to hundreds of droplets per cm3, depending on availability of

condensation nuclei and meteorological conditions [Martin et al., 1994; Miles et al.,

2000]. The CDNC is usually not mono-disperse, with droplet sizes varying through-

out the cloud due to a number of size dependent droplet growth, dissipation, and

precipitation processes. Cloud droplet radii range from a few µm to tens of µm. In

satellite remote sensing cloud droplet size distributions (DSD) are often described

using theoretical distributions that fit well with in situ observations [Deirmendjian,
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1964; Tampieri and Tomasi , 1976], in addition to being mathematically convenient.

To that end, a popular theoretical DSD is the gamma distribution proposed by

Hansen and Travis [1974]1:

N(r; re, ve) = N0Cr(1−3ve)/ve exp

[

−
r

reve

]

, (2.1)

C ≡
(

(reve)
−2+1/ve Γ [(1− 2ve)/ve]

)−1
, (2.2)

where the independent variable r is the cloud droplet radius, N(r) is the droplet

size distribution, N0 is the droplet number concentration, and C is the distribution

normalization constant defined in 2.2, where Γ is the gamma-function. Note that

throughout this paper, the fully normalized form of this distribution (i.e., without

N0) will be written as n(r). The two gamma-distribution parameters are the effective

radius (re) and the effective variance (ve), defined mathematically in 2.3 and 2.4.

re =

∫∞

0 r3n(r; re, ve)dr
∫∞
0 r2n(r; re, ve)dr

, (2.3)

ve =
1

r2e

∫∞
0 (r − re)

2 r2n(r; re, ve)dr
∫∞
0 r2n(r; re, ve)dr

. (2.4)

Which can also be conveniently recast in terms of moments of the DSD itself:

re =
⟨r3⟩

⟨r2⟩
, (2.5)

ve =
⟨r4⟩ ⟨r2⟩

⟨r3⟩2
− 1 , (2.6)

1The gamma distribution specifically describes a non-precipitating cloud droplet distribution.
Further modifications need to be made to this distribution to include the effects of precipitation.
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Figure 2.1: The gamma-distribution (PDF) of cloud droplets under various re and
ve conditions. In (a) the effective radius is varied for a constant effective variance of
0.1. A fixed effective radius of 15µm and varied effective variances is depicted in (b).
Neither one of these distributions parameters describe “the peak or “the width of the
distribution alone.

However, in a practical sense the value of re influences the median radius as well as

the broadness of the tail of the distribution. Whereas the value of ve also influences

the broadness of the tail and the asymmetry of the distribution. This is clearly

demonstrated in Figure 2.1. This distribution also has some interesting and impor-

tant mathematical properties, in particular the moments of the normalized gamma

distribution are useful to state:

〈

r1
〉

= re − 2reve , (2.7)

〈

r2
〉

= r2e (ve − 1) (2ve − 1) , (2.8)

〈

r3
〉

= r3e (ve − 1) (2ve − 1) , (2.9)

〈

r4
〉

= r4e (ve − 1) (2ve − 1) (ve + 1) , (2.10)

⟨rn⟩ = (reve)
n
Γ
[

n + 1
ve

− 2
]

Γ
[

1
ve

− 2
] . (2.11)
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The relationships between re, ve, and these various distribution moments are useful

for creating simple relationships between physical and optical properties of a cloud.

For example the mass of liquid water in a parcel of air is expressed in terms of

Liquid Water Content (LWC), with units of gm−3. For a known size distribution it

is possible to define the LWC in terms of the droplet volume and density of liquid

water. The same expression can also be recast in terms of the effective radius,

LWC ≡
4

3
πρl

∞
∫

0

r3N(r)dr , (2.12)

LWC =
4

3
πρlre

∞
∫

0

r2N(r)dr . (2.13)

In addition to the LWC, it is also common to define the dispersion of the DSD (k)

which is used as a conversion factor, relating the droplet volume radius (rv = ⟨r3⟩1/3)

to the effective radius [Brenguier et al., 2011],

k ≡
⟨r3⟩

r3e
= (ve − 1) (2ve − 1) . (2.14)
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2.1.2 Optical Properties of Cloud Droplets and Clouds

The optical properties of individual cloud droplets can be obtained from first

principle applications of Maxwell’s equations for the interaction of a plane wave with

spherical droplets. A general analytic solution to this problem for a dielectric sphere

of size parameter (X ≡ (2πr)/λ) with real (ñr(λ)) and complex refractive index

(ñc(λ)) was obtained by Mie [1908]2. The resulting series solutions for the optical

properties of single droplets are all defined on pg. 79-80 of Wendisch and Yang

[2012]. The numerical solution to these equations is non-trivial, and an efficient and

popular algorithm for obtaining these scattering properties was developed through

the efforts of Wiscombe [1979].

Using this numerical solution results in the following optical properties: Qext(X),

the extinction efficiency (the fractional area of the beam both absorbed or scat-

tered); Qscat(X), the scattering efficiency (the fractional area of the incident beam

scattered). Additionally, it is common to express the absorption properties using

the single-scattering albedo (ω = Qscat/Qext), where values closer to 1 indicate sig-

nificant scattering and smaller values indicate increasing absorption. In addition to

the above properties, the angular distributions of scattered light are also obtained

in the form of the amplitude scattering matrix elements, Sij. The scattering ma-

trix is used to describe how the intensity and polarization state of light is scattered

into different directions. It is conventional to normalize the amplitude scattering

2This problem has a vast scientific history, despite often being dubbed solely ”Mie Theory”
[Logan, 1965]. As noted by Warren Wiscombe: “[It is] by an odd twist of fate, [that] Mie’s name
has come to be exclusively associated with the problem; we shall adhere to this convention, but
with full awareness that a misnomer is involved.” [Wiscombe, 1979]
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matrix with respect to the scattering cross section, converting them into phase ma-

trix elements, Pij, which describe the angular probability density function (PDF) of

scattered light.

The cloud DSD is not monodisperse, so for these optical properties to appropri-

ately represent the scattering in a cloud we need to account for this size variability.

To accomplish this we compute an scattering and extinction cross section weighted

averages of these single size properties to obtain bulk optical properties,

Qscat,blk (re, ve,λ) =

∞
∫

0

πr2ω (r,λ)Qext(r,λ)n(r)dr

∞
∫

0

πr2(r,λ)n(r)dr
, (2.15)

Qext,blk (re, ve,λ) =

∞
∫

0

πr2Qext (r,λ)n(r)dr

∞
∫

0

πr2n(r)dr
, (2.16)

Pij,blk (Θ, re, ve,λ) =

∞
∫

0

πr2ω(r,λ)Qext (r,λ)Pij (Θ, re, ve,λ)n(r)dr

∞
∫

0

πr2ω(r,λ)Qext (r,λ)n(r)dr
. (2.17)

In addition to size, passive remote sensing techniques are sensitive across spectral

band according to a spectral response function (SRF) as well as the wavelength

distribution of the incident source (i.e., solar blackbody Planck function). The

SRF, and the solar source function (SSF) are then convoluted and re-normalized to

create a spectral weighting function, f(λ), that is used to create the bulk optical
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properties observed by an instrument:

Q̄scat (re, ve,λband) =

∞
∫

0

Qscat,blk(r,λ)f(λ)dλ , (2.18)

Q̄ext (re, ve,λband) =

∞
∫

0

Qext,blk(r,λ)f(λ)dλ , (2.19)

P̄ij (Θ, re, ve,λband) =

∞
∫

0

P num.
ij,blk (Θ, re, ve,λ) f(λ)dλ

Q̄scat
. (2.20)

Note that P num.
ij,blk is simply defined as the numerator of equation 2.17. These optical

properties make up the microphysical optical property library used throughout this

work. Similar to the optical properties below, the cloud DSD information that can

be obtained from remote sensing is dependent on the scattering cross section and

not directly on the cloud droplet sizes. Thus the droplet size that scattered light is

sensitive to can be described as an scattering cross section weighted size, known as

the mean radius for scattering,

rscat =

λf
∫

λ0

∞
∫

0

r [Qscat (r,λ) r2]n(r; re, ve)dr f(λ)dλ

λf
∫

λ0

∞
∫

0

[Qscat (r,λ) r2]n(r; re, ve)dr f(λ)dλ

, (2.21)

vscat =
1

r2scat

λf
∫

λ0

∞
∫

0

(r − rscat)
2 [Qscat (r,λ) r2]n(r; re, ve)dr f(λ)dλ

λf
∫

λ0

∞
∫

0

[Qscat (r,λ) r2]n(r; re, ve)dr f(λ)dλ

. (2.22)

These equations resemble the distribution definitions of re and ve in Equation 2.3 and

Equation 2.4, with the difference being their dependence on Qscat(r,λ). Fortunately,
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due to the the large size of cloud droplets relative to the spectral bands important

for passive cloud remote sensing we can approximate Q̄ext(r,λ) ≈ const. = 2. Thus

the scattering equivalent properties in Equation 2.21 and Equation 2.22 can be

conveniently approximated as rscat ≈ re and vscat ≈ ve.

It is additionally important for the purposes of radiative transfer to define the

optical path length, used to define the amount of light removed from the incident

beam of light by scattering and absorption through radiative transfer. This optical

path is usually defined relative to a vertically oriented coordinate system simply for

geometric convenience, resulting in the optical depth,

τ(z,λ) ≡

z
∫

ZTOA

⎡

⎣

∞
∫

0

Qext(r,λ)πr
2N(r, z)dr

⎤

⎦ dz , (2.23)

where the optical depth is defined as being integrated from the top of atmosphere

(ZTOA) downward to a variable vertical depth (z). The optical depth at the bot-

tom of the atmosphere (or the optical depth integrated throughout a particular

atmospheric layer) is often redefined as the optical thickness,

τtot(λ) ≡

ZBOA
∫

ZTOA

⎡

⎣

∞
∫

0

Q̄extπr
2N(r, z)dr

⎤

⎦ dz (2.24)

Despite the dependence on wavelength, it is common to sometimes state the optical

thickness and depth without denoting the wavelength or band it is “anchored” to.

Unless otherwise stated, the optical depths and thicknesses discussed in this work

are all anchored to a spectral band centered around λ = 0.865µm.
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2.1.3 Radiative Transfer in Cloudy Atmospheres

The description of how light scatters through an optically dense medium re-

quires us to define the radiative transfer equation (RTE). In general the radiative

transfer equation (for total radiance) takes the following differential form Thomas

and Stamnes [1999],

dI(s,λ, Ω̂)

ds
= −I(s,λ, Ω̂) + J(s,λ, Ω̂) , (2.25)

where the incident radiance I is diminished after passing through the medium along

distance s in solid-angle direction Ω. The source term, J , describes how additional

radiance is added into the beam direction Ω either through emission or scatter-

ing processes. In the absence of additional sources the analytical solution to this

differential equation is known as the Beer-Lambert law,

I(s,λ, Ω̂) = I(s0,λ, Ω̂) exp
−τs , (2.26)

where τs is the optical path length along path s. This optical path can also be

redefined relative to the optical depth coordinate as, τs =
τ
µ , where µ = cos(θ) and

θ is an angle measured relative to the zenith.

The development a more complete representation of RTE requires the intro-

duction of the polarization state of light. The representation of the intensity and

polarization state is often conveniently expressed using the stokes vector, I, which
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decomposes a light source into different polarization angles and phase shifts [Hansen

and Travis , 1974].

I =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I

Q

U

V

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I(0◦, 0) + I(90◦, 0)

I(0◦, 0)− I(90◦, 0)

I(45◦, 0)− I(135◦, 0)

I(45◦, π/2)− I(135◦, π/2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.27)

Where I represents the total intensity, while Q and U each represent the intensity of

orthogonal linear polarization states, and V is the intensity of the circularly polarized

light. For example, fully polarized light and unpolarized light can be decomposed

as follows.

Ipol =
√

Q2 + U2 + V 2 (2.28)

Iunpol = I −
√

Q2 + U2 + V 2 (2.29)

For shortwave radiative transfer in a conservative scattering medium (i.e. elastic

scattering) the vector RTE is,

µ
dI(λ, Ω̂)

dτ
= −I(λ, Ω̂) +

ω

4π

∫

4π

L(−σf )P(λ, Ω̂′, Ω̂)L(−σi)I(λ, Ω̂
′)dΩ̂′. (2.30)

The first term of this equation represents the portion of the radiance remaining in

the beam after passing through the optical path. The integral term describes the

scattering of light from all directions (Ω′) scattered into the direction (Ω). Note that

16



the matrix, L(−σi) is a rotation matrix intended to rotate the orientation of the po-

larization state vector I from the observation plane into the scattering plane where

the phase matrix P describes scattering. After the scattering plane transformation,

the result is rotated back to observation plane with another rotational transforma-

tion using L(−σi). In general the form of this equation can take on a number of

additional terms depending on boundary conditions and methods of obtaining a so-

lution (chapter 6 of Thomas and Stamnes [1999]). Generalizable analytical solutions

to this equation are difficult to obtain except under idealized and highly symmetric

conditions [van de Hulst , 1980]. Typically the RTE is solved via various different

numerical methods (chapter 8 of Thomas and Stamnes [1999]). Numerous numerical

approaches exist to solve this problem (chapter 7 of Thomas and Stamnes [1999]).

Several different RTE solvers are used throughout this work. Each of them will be

discussed in section 2.4.

2.2 Cloud Inhomogeneity

2.2.1 Inhomogeneity of Cloud Vertical Profile

The vertical profile of MBL clouds is a remarkable macrophysical cloud fea-

ture due in large part because it is effectively determined by droplet growth and

development processes on microphysical scales. From a remote sensing perspective

the cloud vertical profile plays an important role in retrievals of cloud droplet sizes

[Platnick , 2000] and the total amount of cloud water [Seethala and Horváth, 2010].

With (shortwave) passive satellite remote sensing it is difficult, if not impossible, to
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probe cloud properties in very specific layers or volumes of a cloud. This difficulty

stems from the fact that light is scattered throughout the vertical extent of the

cloud and thus the information from particular layers is vertically averaged. The

particulars of this vertical averaging or smoothing depends vertical variability of the

absorption and scattering properties of cloud water droplets. Thus, it is common to

recast profile properties, like the LWC profile, in terms of a column total quantities

like the cloud liquid water path (LWP),

LWP =

Ztop
∫

Zbase

LWC(z)dz , (2.31)

LWP =
4

3
πρl

Ztop
∫

Zbase

⎡

⎣

∞
∫

0

r3N(r, z)dr

⎤

⎦ dz . (2.32)

This equation can be further simplified by substituting in Equation 2.13 and Equa-

tion 2.23 to create relationship linking the cloud LWP with the vertical profiles of

re(z), and τ(z):

LWP =
4

3
πρl

1

Q̄ext

Ztop
∫

Zbase

re(z)τ(z)dz . (2.33)

Note that this substitution implicitly assumes that the size parameter is sufficiently

large such that Q̄ext ≈ const. = 2 and can be removed from the size distribution

integral (refer to subsection 2.1.2). Additionally, a change of variable can be made,

expressing Equation 2.33 with respect to optical depth, resulting a more convenient
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relationship for the purposes of remote sensing.

LWP =
2

3
πρl

τtot
∫

0

re(τ)dτ . (2.34)

In the end, it is evident that the LWP is highly dependent on the vertical profile of

re(z) and τ(z). Typically, remote sensing techniques assume that cloud are vertically

homogeneous in order to simplify cloud property retrievals [Platnick et al., 2003].

Under this assumption the re(τ) = const. and the homogeneous LWP relationship

(LWPh) are reduced to,

LWPh =
2

3
ρlreτtot (2.35)

Beyond the simplified homogeneous cloud vertical profile, the implementation of a

more realistic cloud vertical profile requires an understanding of fundamental cloud

development processes. To that end, the adiabatic cloud model, which describes

cloud vertical profile in terms of condensational droplet growth, could potentially

introduce more realistic assumptions for some MBL cloud regimes [Wood and Hart-

mann, 2006; Bennartz , 2007]. Adiabatic cloud formation begins when a moist air

parcel becomes supersaturated with respect to liquid water and the condensation of

water vapor into the liquid phase begins. Buoyant vertical transport of warm moist

parcels from the surface upward through the atmosphere drives this process [Wallace

and Hobbs , 2006]. The buoyant parcel begins to cool adiabatically, resulting in the

condensation of water vapor onto available cloud condensation nuclei (CCN). The
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classic adiabatic model of cloud formation assumes that all CCN activation occurs

at cloud base and thus the N0 profile remains constant3 throughout the adiabatic

cloud vertical profile [Boers and Mitchell , 1994]. In-situ observations of cloud ver-

tical profiles of N0(z) in MBL clouds have been found to support this assumption

[Slingo et al., 1982; Martin et al., 1994; Miles et al., 2000]. After droplet activation

the cloudy air parcel continues to be lifted and cooled adiabatically as it rises caus-

ing droplets in the parcel to grow rapidly. This growth occurs at a rate such that

the LWC of the parcel increases linearly moving upward through the column,

LWCad(z) = fΓlz , (2.36)

This linear relationship is expressed in terms of the adiabatic LWC lapse rate (Γl,

g m−3 km−1) and degree of adiabaticity (f , unitless). The adiabatic lapse rate can

be analytically defined as in Equation 2.37 and is dependent on temperature and

weakly dependent pressure [Bennartz , 2007]. The degree of adiabaticity introduces

sub-adiabatic profiles to this definition.

Γl = −
1

RvT

des
dT

dT

dz
. (2.37)

3This assumption also makes it possible to obtain closure in terms of the coupled relationship
between the condensation rate, N0 and re. By fixing N0 the condensation rate only contributes to
growth in droplet sizes.
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Integrating over the vertical profile of LWC(z) from cloud base to the cloud top

height (H) results in the adiabatic cloud liquid water path (LWPad),

LWPad(H) =

∫ H

0

LWCad(z)dz =
1

2
fΓlH

2, (2.38)

As the LWC increases linearly, the re and τ are also increasing [Boers and Mitchell ,

1994; Martin et al., 1994; Miles et al., 2000; Brenguier et al., 2011].

re,ad(z) =

(

4

3
πρl

1

fΓl

)1/3

(kN0)
−1/3 z1/3 , (2.39)

τad(z) =
3

5
Q̄ext

(

4

3
πρl

1

fΓl

)−2/3

(kN0)
1/3 z5/3 , (2.40)

where a simplified form of re,ad(τ) can be defined,

re(τ) = rtope

(

τtot − τ

τtot

)1/5

(2.41)

These relationships, coupled with Equation 2.34, lead to an expression for adiabatic

LWPad that differs from the vertically homogeneous relationships Equation 2.35 by

a multiplicative factor and recast in terms of the droplet size specifically at cloud

top [Bennartz , 2007].

LWPad =
5

9
ρlr

top
e τtot (2.42)

It is important to note that the cloud vertical profile can also be altered as the cloud

develops by precipitation and mixing processes leading to further natural variability
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in observed cloud profiles. Observations of the in-situ cloud vertical profile, like

those in Figure 2.2, often deviates from the predicted adiabatic cloud structure,

especially near cloud top. While the overall structure of LWC in Figure 2.2(a) does

appear to be linearly increasing, as indicated by the adiabatic theory, the observa-

tions have a reduced lapse rate (slope) throughout the lower region of the cloud.

This cloud profile is said to be sub-adiabatic, because the amount of water con-

densing from vapor into the liquid phase is reduced. This reduction is presumed

to be due to an overall increase in evaporation due to the mixing of dry air into

the cloud. More importantly, at cloud top (Figure 2.2(c)) the discrepancies be-

tween the theoretical and observed structures become even more dramatic. This

disagreement between the theoretical adiabatic cloud vertical structure and obser-

vations indicates that there are still other physical processes at play in real clouds.

For example, precipitation and mixing processes could lead to more complicated

cloud vertical structures. Droplets cannot grow large enough to precipitate through

condensational processes alone because it becomes increasingly inefficient with in-

creasing droplet size [Pruppacher and Klett , 1978; Salby , 1996]. Further droplet

growth can occur through collisional-coalescence processes, or the growth of large

droplets by colliding with and collecting other droplets. Collisional growth increases

in efficiency as droplets become larger and their increased cross sectional area leads

to an increased probability of colliding and collecting smaller droplets. The likely

explanation for the asymmetry of droplet size distributions stems from the exis-

tence of this size dependent difference in efficiency between two growth processes

[Tampieri and Tomasi , 1976]. Some aspects of cloud vertical structure depend on
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Figure 2.2: Observed profiles of LWC(z) and re(z) for two sets of observations (a,b)
and (c,d). Solid lines in the LWC profiles indicate the theoretical adiabatic profile.
The droplet profiles here are reported in terms of droplet volume diameter (Dv) rather
than effective radius. Dashed lines are guides for the eye for features addressed in the
text. (adapted from Brenguier et al. [2000])

turbulent mixing processes. For example, the entrainment of dry air into the moist

cloudy air at cloud edges leads to evaporation of cloud droplets. The resultant effect

of this mixing-evaporation process on the cloud microphysics is thought to depend

on two timescales: the mixing timescale, and a reaction time-scale for the droplets

to equilibrate with a new slightly drier environment [Baker and Latham, 1979].

Under inhomogeneous mixing conditions, mixing occurs rapidly and droplets of all

sizes are evaporated indiscriminately, effectively reducing CDNC. Whereas under

homogeneous mixing conditions mixing occurs slowly and the droplets have time to

adjust to their environment, leaving CDNC unchanged but introducing a change in

the droplet distribution due to the size dependence of the evaporation/condensation

efficiency. Which of these mixing regimes dominates the entrainment of dry air at

MBL cloud tops has continued to be an area of active scientific research and debate

for over fifty years [Latham and Reed , 1977; Baker and Latham, 1979; Gerber et al.,

23



2005, 2013; Beals et al., 2015]. More recent studies have suggested that in reality

these two limiting cases are much more extreme than realistic cloud behavior which

appears to fall somewhere between them. The effect of turbulent mixing on droplet

microphysics is further complicated by indications that turbulence can also act to

cluster cloud droplets, enhancing collisional-coalescence and broadening the droplet

size distributions [Shaw , 2003].

The exceptions to adiabatic cloud vertical profile discussed here will be further

explored in chapter 3 as we examine how cloud vertical profile assumptions impact

passive LWP retrievals.

2.2.1.1 Cloud Vertical Weighting

As mentioned in the previous section, it is difficult for passive satellite remote

sensing to identify cloud properties in very specific layers or volumes of a cloud. As

a consequence, absorbing spectral bands have limited penetration depth into the

cloud and as a result retrievals like the bispectral re can be weighted toward the

microphysics prevalent in the upper part of the cloud [Platnick , 2000]. Therefore,

an important step toward understanding the retrieval results is to understand the

vertical weighting involved in the re retrieval. If the spectral band is very strongly

absorbing then it possible to approximate the cloud reflectance in this wavelength

as being dominated by single scattering (because multiple scattering is inhibited

by absorption). As such, an analytical vertical weighting function (W (τ)) can be

approximated by a two-way transmittance (2WT) function as follows [Platnick ,
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2000; Alexandrov et al., 2012a]:

u(τ) = e
−τ

(

1
µ0

+ 1
µ

)

, (2.43)

W (τ) ≡
1

C

du

dτ
, (2.44)

Ztop
∫

Zbase

W (τ) dτ = 1 . (2.45)

where µ0 and µ are the cosines of the solar and viewing zenith angles, respectively.

The form of u(τ) corresponds to the attenuation of two-way transmittance and leads

to the definition of the vertical weighting function W (τ). This vertical weighting

function provides a useful tool for interpreting re retrievals and comparing them

to the microphysical properties of the scene. In Platnick [2000], W (τ) is used to

estimate re retrieval, re(2WT), from the vertical profile of re(τ),

re,W =

τtot
∫

0

re(τ)W (τ)dτ . (2.46)

However, a different approach to vertical weighting is adopted in this study. As

described by Alexandrov et al. [2012a], the vertical weighting function W (τ) is first

used to derive an effective size distribution, N2WT(r), which is an optically weighted

superposition of the droplet size distributions throughout the cloud column,

N2WT(r) =

τtot
∫

0

N(r, τ)W (τ)dτ . (2.47)
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The effective size distribution N2WT(r) is then used to produce a vertically weighted

re,

re(2WT) =

∞
∫

0

r3N2WT(r)dr

∞
∫

0

r3N2WT(r)dr
. (2.48)

The advantage of first defining a vertically weighted droplet size distribution is

that it makes no assumptions about the shape of the droplet size distribution. In

contrast, the other vertical weighted droplet size, re,2WT) implicitly assumes that

all of the variability in the vertical profile of droplet size distribution properties is

attributable to re.

2.2.2 Inhomogeneity of Cloud Horizontal Properties

One of the most striking features of MBL clouds is that they have highly

variable, and yet often self-similar, horizontal structures ranging from the mesoscale

(≈ 100 km) down well below the sub-pixel scale of most satellite imaging sensors (<

100m) [Davis and Marshak , 2010]. This large-scale self-similarity is characteristic of

fractal cloud structure and poses many challenges for satellite cloud remote sensing.

In addition to the physical aspects of horizontal structure there are also practical

aspects, like satellite resolution, which become convoluted and produce complicated

cloud retrieval biases.

Most cloud retrieval algorithms are forced to assume that clouds are horizon-

tally homogeneous and infinitely plane-parallel below pixel resolution. In reality

26



however, pixel level reflectances are the result of scattering from the unresolved sub-

pixel cloud properties. Broken cloud cover or clouds with inhomogeneous properties

at the sub-pixel level can lead to the so-called plane-parallel homogeneous (PPH)

bias. This effect is discussed at length in chapter 4 because it has strong effects on

bispectral retrievals.

Light scattered from horizontally inhomogeneous clouds is susceptible to 3-D

radiative effects, which can strongly impact cloud retrievals [Várnai and Marshak ,

2001; Zhang et al., 2012]. One method for quantifying the horizontal inhomogeneity

of clouds is the sub-pixel inhomogeneity index, Hσ. To quantify the sub-pixel vari-

ability, remote sensing instruments sometimes produce measurements both at their

principal retrieval resolution (∆X) but also at a sub-pixel scale (∆X/N). For ex-

ample, an instrument with a 1 km principle resolution (such as MODIS) and 250 km

sub-pixel resolution this degree of sub-pixel inhomogeneity can be defined as in

Equation 2.49 [Liang et al., 2009]. It is evident from this definition that the inter-

pretation of horizontal cloud inhomogeneity is directly tied to the principle footprint

resolution of an instrument,

Hσ =
std [Ri(0.865m)]

mean [Ri(0.865m)]
, (2.49)

where std [...] and mean [...] indicate the standard deviation and mean of the mea-

sured reflectances for the sub-pixels within the larger pixel footprint. WhenHσ > 0.4

the underlying cloud can be considered inhomogeneous and Hσ < 0.4 is said to be

more homogeneous.
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Cloud horizontal structure is richly varied, in fact it is not uncommon for MBL

clouds to self-organize into large scale cellular patterns as seen in Figure 2.3(top

right) [Agee et al., 1973; Wood and Hartmann, 2006]. This mesoscale cellular con-

vection (MCC) is observed in both open and closed cellular forms. Open cells are

characterized by dry subsiding air at the center of the cell creating cloud free regions

with updrafts at the boundaries producing narrow clouds surrounding the cell. In

contrast, the closed cellular form is characterized by updrafts at the center of the

cell forming broad regions of thick stratiform cloud and the surrounding subsiding

air thins the cloud near the cell edge. Transitions from closed to open cellular cloud

fields are known to be triggered by precipitation which rapidly forms large pockets

of open cells (POCs)[Wang and Feingold , 2009; Feingold et al., 2010; Koren and

Feingold , 2013]. Whether the cloud field has open or closed cellular structure plays

an important role in determining both the radiative impact and the retrieval sensi-

tivity to horizontal structure effects. It has been posited that the microphysics in

open and closed cells could be different due to their relationship with the precipi-

tation processes [Wang and Feingold , 2009]. This poses an interesting and difficult

remote sensing problem, as cloud retrievals in the open cellular regions will suffer

from sub-pixel inhomogeneity and 3-D effect biases.

2.3 Passive Cloud Remote Sensing Techniques

All of the cloud remote sensing techniques used throughout this study rely

on libraries of cloud microphysical, optical, and radiative properties to one degree
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Figure 2.3: Satellite imagery demonstrating the tremendous wealth of spatial scales
of MBL clouds on the mesoscale. The main panel is a 250m resolution visible re-
flectance image (λ = 0.65µm) taken on April 7th 2001 at 12:35 UTC using the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) over the northeast Atlantic
Ocean. The inset to the upper right shows a higher resolution (15m) visible image
(λ = 0.8m) taken at approximately the same time using the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER). The inset to the lower right
shows detail from the main image. (Figure and caption adapted from Wood [2012].)
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or another. The cloud optical property libraries used throughout these studies are

based on single scattering Mie calculations of monodisperse droplet optical proper-

ties that are averaged with respect to size according to the gamma DSD. In addition,

these single scattering optical properties are averaged with respect to wavelength

over an instrument spectral response function (based on MODIS bands) and solar

source functions (blackbody). The single scattering bulk cloud optical properties

are subsequently used to run radiative transfer calculations for the so-called bis-

pectral reflectance look-up-table (LUT). This LUT is made up of pre-calculated

reflectances of plane-parallel and homogeneous (PPH) clouds over a high-resolution

grid of combinations of τtot, re, and ve. Here, τtot is defined in terms of the DSD.

2.3.1 The Bispectral Method

Many satellite-based techniques have been developed to retrieve cloud DSD

properties from regional to global scales. These techniques typically infer DSD

properties based on an assumed size distribution shape, characterized by an effec-

tive radius (re), and an effective variance (ve). One such retrieval method is called

the bispectral total reflectance technique, hereafter referred to as the bispectral tech-

nique, simultaneously retrieves cloud optical thickness (τtot) and re from a pair of

cloud reflectances, one in the visible to near infrared (VNIR) and the other in the

shortwave infrared (SWIR) spectral range [Nakajima and King , 1990]. This retrieval

technique has been implemented for numerous satellite and airborne instruments,

such as the Moderate Resolution Imaging Spectro-radiometer (MODIS, [King et al.,
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2003; Platnick et al., 2003; 2016]), the Spinning Enhanced Visible and Infrared Im-

ager (SEVIRI, [Roebeling et al., 2006]), and the National Polar-orbiting Partnership

Visible Infrared Imaging Radiometer Suite (NPP VIIRS, [Rosenfeld et al., 2014]).

The bi-spectral method retrieves τtot and re simultaneously from a pair of cloud

reflectances observed in VNIR and SWIR bands, respectively. The VNIR band,

dominated by multiple scattering, provides sensitivity to τtot; the selected SWIR

band, where liquid water droplets are moderately absorptive, provides sensitivity

to re. This method is usually implemented using a LUT like the one shown in

Figure 2.4(a), which has a fixed ve. Cloud reflectance in the VNIR band (centered

around 0.865µm) increases with τtot (gray) for a fixed re, while the reflectance in

the SWIR band (centered around 3.75µm) decreases with re (colored) when τtot

is fixed. The retrieved properties are obtained by performing a two-dimensional

inverse interpolation between observed reflectance and the τtot and re grid. A notable

characteristic of the bispectral LUT is that when the optical thickness is low (τtot <

3), the isolines of the LUT are more densely packed and less orthogonal, which results

in reduced sensitivity and increased retrieval uncertainty [Werner et al., 2013]. The

bispectral technique, while sensitive to re, is not particularly sensitive to ve, so

typically an a priori guess is required (e.g., ve = 0.1 in the operational MODIS

retrieval). While different combinations of VNIR and SWIR bands are used to

perform the bispectral retrieval, in this study we focus on VNIR reflectances centered

on 0.865µm and SWIR reflectances centered on both 2.13 and 3.75µm. There are

consequences for the re retrieval depending on the particular SWIR band selected.

For example, a strongly absorbing band limits penetration into the cloud and as a
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Figure 2.4: Demonstrations of the microphysical sensitivity of the bispectral and
the polarimetric techniques. Panel (a) features the bispectral LUT exhibiting sensi-
tivity to re (colored iso-lines), due to absorption in the SWIR reflectance. The VNIR
reflectances provide sensitivity to τtot (gray iso-lines).
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result the retrieved re is vertically weighted toward the microphysics prevalent in

the uppermost part of the cloud [Platnick , 2000].

2.3.2 The Polarimetric Technique

A second, vastly different, retrieval technique is the multi-angular polarimetric

reflectance technique, hereafter referred to as the polarimetric technique. This re-

trieval requires multi-angular observations of the polarized reflectance in the cloud-

bow scattering region. In addition to re, the polarimetric technique can also re-

trieve ve [Bréon and Goloub, 1998]. Global retrievals using the polarimetric tech-

nique were first demonstrated by the Polarization and Directionality of Earth Re-

flectance (POLDER, [Deschamps et al., 1994]) instruments operating from 1996 to

2013 on three different satellite platforms. The Aerosol Polarimetry Sensor (APS,

[Mishchenko et al., 2007]) would have been the first space-borne multi-angular po-

larimeter from U.S. to provide global aerosol and cloud property retrievals. Unfortu-

nately, it was lost as a result of the satellite launch failure in 2011, which suddenly in-

terrupted development of polarimetric-based remote sensing in the U.S. Recognizing

the great potential of polarimetric techniques for aerosol and cloud remote sensing,

NASA has invested heavily in recent years on the development of airborne polarime-

ters, such as the Research Scanning Polarimeter (RSP, [Cairns et al., 2003]), the

Airborne Multi-angle Spectro-Polarimetric Imager (AirMSPI, [Diner et al., 2013])

and the Airborne Hyper-Angular Rainbow Polarimeter (Air-HARP, [Martins et al.,

2017]). Moreover, several space-borne missions are in development, such as the
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Multi-Angle Imager for Aerosols (MAIA, [Liu and Diner , 2017]), HARP, the Plank-

ton, Aerosols, Cloud, ocean Ecosystem mission (PACE) and the Multi-viewing,

Multi-channel, Multi-polarization imaging mission (3MI, [Marbach et al., 2013]).

Each of these missions will have a multi-angular polarimeter on-board. In the fore-

seeable future, we may expect to have operational global retrievals of cloud droplet

size distributions from both bispectral and polarimetric methods.

For the polarimetric technique, the source of sensitivity to cloud microphysical

properties stems from the angular pattern of the linearly polarized reflectance. Po-

larized reflectances are dominated by single scattering because multiple scattering

induces depolarization. As a result, the single scattering polarized phase functions

(−P12) shown in Figure 2.5 are good approximations to the observed angular pat-

tern of polarized cloud reflectances [Bréon and Goloub, 1998]. These phase functions

demonstrate the sensitivity of the polarimetric retrieval to both re and ve. As re

increases in Figure 2.5(b) the supernumerary bow peaks (around a scattering angle

of 142◦) become narrower and shift toward smaller scattering angles. In contrast,

as ve increases in Figure 2.5(c) the supernumerary bow peaks erode in magnitude,

eventually smoothing out for broad DSDs (ve > 0.15). A consequence of this erosion

of the supernumerary peaks is that the polarimetric retrieval has less sensitivity to

both re and ve for very broad DSDs. The polarimetric retrieval does not signif-

icantly rely on multispectral information, although observations in several bands

may help provide stronger observational constraints due to the shift in the supernu-

merary bows with changing wavelength, as shown in Figure 2.5(a). The dominance

of the single scattering contributions to the polarized reflectance leads to cloud re-

34



trievals that represent microphysical properties within the top ∼ 3 optical depths

in the cloud. The polarimetric retrieval is often based on a parametric curve fitting

retrieval algorithm like the one presented in [Alexandrov et al., 2012a]. However,

there are also other retrieval approaches, including the Rainbow Fourier Transform

technique of Alexandrov et al. [2012b], which can retrieve multi-modal DSDs.) The

parametric technique relies on a library of −P12 curves with varying re and ve that

are parametrically scaled and adjusted to fit the observed reflectance via a nonlinear

least squares optimization procedure. This process yields the phase function that

best matches the angular pattern of the observation, thus determining the re(pol)

and ve(pol) retrieval. The polarimetric method described above does not result in

a retrieval of τtot, however, it can still be obtained by implementing a simplified

variant of the bispectral τtot retrieval. With simultaneous measurements of the total

reflectance in a VNIR band and the re(pol) retrieval, a VNIR-only LUT curve can

be used to perform a 1-D interpolation of the corresponding bispectral LUT curve

for RV NIR(re(pol), τtot).
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Figure 2.5: The spectral variability of the polarized reflectances is shown in panel
(a). Demonstrations of the microphysical sensitivity of the polarimetric technique are
shown in panels (b) and (c) demonstrate the sensitivity of polarimetric technique to
re and ve respectively. The supernumerary bow peaks of the polarized phase function
(−P12) shift and become narrower with increasing droplet size (re), whereas the peaks
erode in magnitude for broadened droplet size distributions (ve).
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2.4 The Satellite Remote Sensing Simulator

2.4.1 The DHARMA LES Model

The remote sensing retrieval simulator implemented in this study is built

around a cloud resolving LES model (DHARMA) with bin microphysics [Ackerman

et al., 2004; Zhang et al., 2012; Miller et al., 2016]. The LES provides freely evolving

3-D cloud microphysical properties, which are used as reference when comparing to

numerically simulated retrievals. The DHARMA LES adopts 25 size bins to rep-

resent droplet size distributions [Ackerman et al., 1995]. Unlike a parameterized

cloud microphysics scheme, this method makes no assumptions about the shape or

number of modes of the droplet size distribution. A bin scheme uses basic physical

relationships to describe droplet activation, condensation, collision-coalescence, and

sedimentation. Conveniently, the bin scheme also allows us to discriminate drizzle

drops from cloud droplets by using a bin size cutoff of ≈ 30µm. Distinguishing these

two populations of droplets allows us to examine the impact of the larger drops on

remote sensing retrievals. The optical properties of each size bin are computed by

bulk averaging Mie scattering properties over a highly resolved constant sub-bin

droplet size distribution, as described in section 2.1.2. It should be noted that the

background aerosols that serve as cloud condensation nuclei in the model are not

included in the radiative transfer scene.
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2.4.2 LES Cloud Scenes

Three LES cases are the focus of these studies. The first (referred to as ATEX

clean hereafter) and second (ATEX polluted) cases are based on an idealized case

study from the Atlantic Trade Wind Experiment (ATEX), with different aerosol

loadings [Stevens et al., 2001]. The ATEX cases are representative of a trade wind

cumulus regime in which scattered cumuli rise into a thin, broken stratocumulus

layer. The third case (referred to as DYCOMS-II hereafter), originally presented

in Stevens et al. (2005), is an idealized setup based on clouds observed during the

second research flight (RF02) of the Second Dynamics and Chemistry of Marine

Stratocumulus project (DYCOMS-II) [Stevens et al., 2010]. This case is representa-

tive of nocturnal marine stratocumulus under a dry inversion. The specific details

of the LES scene properties change from study to study, and these will be discussed

in greater detail in chapter 3, chapter 4, and chapter 5.

2.4.3 Radiative Transfer Calculations

Radiative transfer calculations in the this remote sensing simulator are per-

formed by a variety of radiative transer models, each selected to address the specific

cloud remote sensing questions of each study. In the cloud LWP and vertical in-

homogeneity studies in chapter 3, we make use of the discrete ordinates radiative

transfer (DISORT) model [Stamnes et al., 1988], producing 1-D total radiances at

the horizontal resolution of the LES grid. The high-resolution 1-D retrievals al-

low for the isolation of the vertical profile effects from other known retrieval biases
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that exist due to inhomogeneous horizontal structure, and 3-D radiative effects. In

the study comparing bispectral and polarimetric cloud retrievals in chapter 4 we

make use of vector radiative transfer models that result in both the total and po-

larized reflectances. The vector radiative transfer calculations are performed using

a polarized doubling-adding technique (PDA) to produce 1-D total and polarized

reflectances at the horizontal resolution of the LES grid [De Haan et al., 1987]. A

demonstration of an ”imager-mode” of the satellite simulator reflectances is shown

in Figure 2.6. Total and polarized reflectances (panel a and b respectively) for a

cloudy DYCOMS-II LES scene, where the viewing angle changes horizontally across

the scene (as shown in panel c). The viewing angle range is chosen such that the pri-

mary and supernumerary cloudbows are visible in the polarized reflectances, while

the primary bow is slightly visible in the total reflectance but it doesn’t have signif-

icant spectral variability. Panel (d) displays the column mean of the LES polarized

reflectances, and shows clear signals in the primary and supernumerary bow features

for different wavelengths.

The sole consideration of 1-D retrievals avoids 3-D radiative effects and focuses

this study on retrieval technique differences rather than on radiative processes. In

contrast, the study in chapter 5 focuses on differences between 3-D radiative effects

in total and polarized reflectances and their consequences for cloud remote sensing.

To that end, the simulation of cloud reflectances in both 1-D (independent pixel)

and 3-D scenes will be obtained using the recently developed polarized Monte Carlo

radiative transfer algorithm MSCART (Multiple-Scaling-based Cloudy Atmospheric

Radiative Transfer)[Wang et al., 2017].
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a) b)

c) d)

Figure 2.6: Demonstration of the ”imager-mode” cloud reflectances from the LES-
satellite simulator used in this study. Total and polarized reflectances are shown in
panel (a) and (b) respectively. The viewing angle varies horizontally through the
simulated scene as shown in panel (c). Median vertical slices demonstrate the angular
variability and spectral variability of the polarized cloud reflectances panel (d).
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Chapter 3: The impact of cloud vertical profile on passive

cloud retrievals of LWP

Passive optical retrievals of cloud liquid water path (LWP), like those im-

plemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on

cloud vertical profile assumptions to relate τtot and re retrievals to LWP. These tech-

niques typically assume that shallow clouds are vertically homogeneous; however,

an adiabatic cloud model is plausibly more realistic for shallow marine boundary

layer cloud regimes. In this study a satellite retrieval simulator is used to per-

form MODIS-like satellite retrievals, which in turn are compared directly to the

large-eddy simulation (LES) output. This satellite simulator creates a framework

for rigorous quantification of the impact that vertical profile features have on LWP

retrievals, and it accomplishes this while also avoiding sources of bias present in pre-

vious observational studies. The cloud vertical profiles from the LES are often more

complex than either of the two standard assumptions, and the favored assumption

was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming pre-

vious studies, drizzle and cloud top entrainment of dry air are identified as physical

features that bias LWP retrievals away from adiabatic and toward homogeneous

assumptions. The mean bias induced by drizzle-influenced profiles was shown to be
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on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was

found to be smaller by about a factor of 2. A theoretical framework is developed to

explain variability in LWP retrievals by introducing modifications to the adiabatic

re profile. In addition to analyzing bispectral retrievals, we also compare results

with the vertical profile sensitivity of passive polarimetric retrieval techniques.

3.1 Overview

Cloud liquid water path (LWP) is a key parameter in many cloud physical

processes (e.g., condensation, evaporation, and precipitation) and largely determines

cloud shortwave radiative forcing. Many techniques have been developed to retrieve

cloud LWP from satellite observations. In this study, we focus on the so-called

bispectral solar reflectance method (hereafter bispectral method) of Nakajima and

King [1990]. This method employs a pair of cloud reflection observations, one in the

visible and near-infrared (VNIR), and the other in the shortwave-infrared (SWIR)

spectral region. These two bands are used to simultaneously retrieve cloud optical

thickness (τtot) and cloud droplet effective radius (re). Cloud LWP can be computed

from the retrieved τtot and re by using the relationship,

LWP = Cρlreτtot , (3.1)

where ρl is the bulk density of liquid water and C is a coefficient that can be derived

from the assumed vertical cloud profile (see subsection 2.2.1 for more discussion).

Several widely used satellite cloud property products are based on the bispectral
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method. Most notably, this includes the operational cloud products from the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) [King et al., 2003; Platnick

et al., 2003], the Spinning Enhanced Visible and Infrared Imager (SEVIRI) [Roebel-

ing et al., 2006], and National Polar-orbiting Partnership Visible Infrared Imaging

Radiometer Suite (NPP VIIRS) [Rosenfeld et al., 2014]. The cloud products derived

from these instruments include LWP retrievals used in numerous studies, for exam-

ple, to evaluate spatial variability of MBL cloud LWP [Wood and Hartmann, 2006],

to study the warm rain process in MBL clouds [Kubar and Hartmann, 2009; Suzuki

et al., 2011], to evaluate cloud LWP simulation in climate models [Jiang et al., 2012],

and to assess the impact of aerosols on MBL clouds [Costantino and Breon, 2013b].

The wide use of the bispectral method makes it important to understand its

inherent limitations and potential sources of retrieval uncertainty. Among others,

the influence of cloud vertical profile on the bispectral retrieval of LWP has received

significant and increasing attention in recent years [Wood and Hartmann, 2006;

Bennartz , 2007; Seethala and Horváth, 2010; Lebsock and Su, 2014]. In operational

bispectral retrieval algorithms, clouds are commonly assumed to be vertically ho-

mogeneous (i.e., re(τ) is constant) which implies that the constant C = 2/3 in

Equation 3.1, and thus,

LWPh =
2

3
ρlreτtot . (3.2)

Here the subscript h denotes LWP retrievals based on the homogeneous vertical

profile assumption. It is well established, however, that MBL clouds may develop
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inhomogeneous vertical profiles as a result of a variety of physical processes. For

example, in situ measurements commonly resemble an adiabatic profile associated

with droplet condensational growth in nonprecipitating MBL clouds. Adiabatic

profiles exhibit cloud water content (LWC) that increases linearly with height from

cloud base, because cloud droplet number concentration (CDNC) is constant and

all droplet activation occurs at the cloud base [Nicholls and Leighton, 1986; Miles

et al., 2000; Brenguier et al., 2003]. observations of MBL clouds typically differ

slightly from the theoretical adiabatic profile, with a reduced vertical gradient of

LWC compared to theory. Profiles exhibiting this reduced gradient are referred to

as sub-adiabatic. On the basis of these observations, a number of recent studies have

argued that an adiabatic or sub-adiabatic profile is a better assumption for LWP

retrievals. These studies have also suggested that assuming clouds to be vertically

homogeneous could lead to an overestimation of the LWP of MBL clouds [Wood and

Hartmann, 2006; Seethala and Horváth, 2010]. For both adiabatic and sub-adiabatic

vertical profiles C = 5/9 in Equation 3.1 leading to the expression:

LWPad =
5

9
ρlr

top
e τtot , (3.3)

where rtope specifically denotes the droplet size at cloud top and the subscript ad

denotes the assumption of adiabatic or subadiabatic vertical profile. In an opera-

tional retrieval sense, where the same droplet size retrieval may be used for both

LWPh and LWPad assumptions, the difference between equations Equation 3.2 and

Equation 3.3 is purely in terms of the value of the constant C. Given that both
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adiabatic and subadiabatic behavior result in the same LWP relationship, we will

simply refer to this as the adiabatic LWP relationship.

Although the adiabatic profile is more appealing and has been increasingly fa-

vored over the homogeneous profile in recent studies, only a few have systematically

compared and evaluated LWP retrievals based on the two assumptions. For exam-

ple, Seethala and Horváth [2010] compared the two sets of MODIS LWP retrievals

(LWPh and LWPad) with collocated LWP retrievals from the Advanced Microwave

Scanning Radiometer for EOS (AMSR-E). One advantage of the AMSR-E retrieval

is that it is less sensitive to cloud vertical profile because the information content

for the retrieval comes from transmitted surface microwave emission. Interestingly,

they found that assuming adiabatic vertical profile in MODIS LWP retrievals does

not always lead to a better agreement with AMSR-E results (see their Figure 6).

Over the subtropical coastal stratocumulus regions (e.g., SE Atlantic and Pacific),

the results are as expected: the LWPh overestimates AMSR-E retrievals and the

retrieval assuming adiabatic profile, LWPad, leads to better agreement between the

two instruments. However, over tropical and subtropical shallow cumulus regions,

the adiabatic assumption increases the difference between the two methods. The

LWPh retrievals from MODIS over these regions are already smaller than AMSR-E

results, and assuming an adiabatic profile, LWPad, makes the underestimation bias

even worse. The authors listed a number of potential issues in both MODIS and

AMSR-E retrieval techniques that may cause such a bias. However, one possible

physical explanation they noted was that entrainment of dry air at cloud top can re-

duce re and thereby induce an underestimated LWP. This occurs because MODIS re
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retrievals are particularly sensitive to cloud top properties. In a more recent study,

Lebsock and Su [2014] carried out a comprehensive intercomparison between MODIS

(based on adiabatic LWPad), AMSR-E, and CloudSat LWP retrievals over global

oceans. Similar to Seethala and Horváth [2010], they also found that MODIS LWPad

retrievals are in better agreement with the other two data sets over subtropical stra-

tocumulus regions than over tropical and subtropical cumulus cloud regions. Taking

advantage of the sensitivity of the CloudSat radar to precipitation in MBL clouds,

they found that over the subtropical cumulus cloud regions rainwater accounts for

a substantial portion of LWP (see their Figure 14). They hypothesized that the

LWP retrieval differences between MODIS and AMSR-E over these regions may be

partly caused by differences in the sensitivity of MODIS and AMSR-E algorithms

to precipitation. In addition to remote sensing studies, MODIS LWP retrievals have

also been rigorously compared to in situ observations in field campaigns specifically

examining MBL clouds (stratocumulus) [Noble and Hudson, 2015]. This study in-

dicated several potential sources of bias for re and τtot that propagate into LWP

retrievals. Comparing the homogeneous and adiabatic retrieval assumptions to the

in situ observations led to mean LWP retrieval biases of 37% and 14%, respectively.

For one of the in situ data sets studied the MODIS retrieval of τtot did not appear to

be the source of LWP bias, while re retrievals were found to be high biased despite

being well correlated with in situ measurements. One of the conclusions of Noble

and Hudson [2015] was that MODIS captured the variability of re while still being

systematically biased due to cloud inhomogeneity, cloud top retrieval sensitivity, or

temporal discrepancies between in situ cloud penetration and satellite overpass.
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These recent studies have shed light on important limitations and uncertainties

associated with bispectral LWP retrievals in comparison with other remote sensing

techniques. Beyond cloud vertical profile, however, the bispectral method is sen-

sitive to other sources of retrieval bias. Notable examples include inhomogeneous

cloud horizontal structure and retrieval resolution [Oreopoulos and Davies , 1998;

Zhang et al., 2012], as well as 3-D radiative transfer effects [Várnai and Davies ,

1999; Várnai and Marshak , 2001; Marshak et al., 2006]. These sensitivities are

often entangled such that it is problematic to completely separate them in observa-

tional studies like those previously mentioned. Moreover, the physical mechanisms

underlying the influence of cloud vertical profile on the bispectral LWP retrieval

remain largely unexplored in the observational studies.

This study approaches the problem from a different perspective; rather than

use remote sensing data, synthetic retrievals are generated from large-eddy simu-

lations (LESs) of cloud scenes. Synthetic retrievals are obtained by modeling the

radiative transfer of a scene and performing bispectral retrievals using the result-

ing reflectances. As discussed in detail in subsection 2.4.1, an advantage of using

synthetic retrievals is that uncertainty sources in the retrieval are known and can

be controlled, permitting a more focused and in-depth study. The overall objective

is to improve understanding of how cloud vertical profile affects bispectral LWP

retrievals. More specifically, we hope to shed light on three questions. First, which

cloud vertical profile assumption, homogeneous (LWPh), or adiabatic (LWPad), leads

to bispectral LWP retrievals that agree better with the ground truth from our LES

cases? Second, how does cloud vertical profile vary with MBL cloud types (e.g.,

47



stratocumulus versus cumulus) and what are the consequences of selecting a partic-

ular cloud vertical profile assumption for bispectral retrievals? Third, how do cloud

top entrainment and the presence of drizzle in MBL clouds influence bispectral re-

trievals? We address these questions not only using numerical simulations but also

by developing a theoretical and analytical framework that can explain the bispectral

LWP retrievals for a given true cloud vertical profile from the LES cloud model.

3.2 Results and Analysis

3.2.1 LWP Retrievals

With two vertical profile assumptions for LWP retrieval it is natural to ask

the question: does the homogeneous LWPh = 2/3ρlreτtot or adiabatic LWPad =

5/9ρlrtope τtot relationship compare more closely with the LES ground truth? In

an attempt to address this question, Figure 3.1 provides gray scale images show-

ing LWPLES for the three LES cases. The biases of LWPh and LWPad relative to

LWPLES are then used to identify which retrieval is favored. The favored retrieval

assumption is simply the one with a smaller absolute bias. The red contour lines

in Figure 3.1 surround retrieval pixels that favor adiabatic vertical profile assump-

tions, while the blue contour lines surround retrieval pixels that favor homogeneous

profile assumptions. For this comparison, both of the retrievals make use of the

MODIS-like bispectral re(3.7µm) and τtot retrievals. To address LES columns that

do not overwhelmingly favor either retrieval, a third population is defined, and these

columns lie in the space between the red and blue contour lines. This population is
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defined by the following tolerance condition on the ratio of the two biases,

0.75 ≤
|LWPh − LWPLES|

|LWPad − LWPLES|
≤ 1.25 . (3.4)

The lower and upper ends of the inequality correspond to cases that favor homoge-

neous and adiabatic assumptions, respectively. It is intriguing to observe that none

of the three cases support a single retrieval assumption but rather indicate that

LWPad works better for some columns, while LWPh works better for others. As

summarized in the first column of Table 3.1, the LWPad retrieval works better for

about 70% of the cloudy LES columns in the DYCOMS-II case, 22% in the ATEX

clean case, and 70% in the ATEX polluted case. The most appropriate retrieval

assumption appears to depend on cloud regime.

It is important to note that in this study, we focus on the re retrieval based

on the 3.75µm SWIR band for a few reasons. First, it is a common SWIR band

found on board most passive polar-orbiting and geostationary instruments, such

as advanced very high resolution radiometer, MODIS, VIIRS, and SEVIRI. Recent

studies also indicate that the 3.75µm band is less sensitive to 3-D radiative transfer

effects than other SWIR bands, such as 2.13 and 1.65µm [Zhang and Platnick , 2011;

Zhang et al., 2012; Cho et al., 2015].
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Figure 3.1: These figures depict the VNIR-SWIR retrieval of cloud LWP with adi-
abatic assumptions as in Equation 3.3 and using the re(3.7µm) retrieval to represent
the cloud top droplet size for several LES cases. The red and blue contours outline
regions where the adiabatic (red) or constant (blue) vertical profile assumptions more
accurately predicted the LES LWP.
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Steps of Procedure
1. Original Scene 2. Remove Drizzle 3. Remove Drizzle & Trans. Zone

Profile Assumption 5/9 2/3 5/9 2/3 5/9 2/3

DYCOMS-II 70.7% 19.1% 91.5% 4.0% 96.3% 1.5%
ATEX Clean 21.7% 73.2% 41.5% 49.8% 54.2% 37.3%

ATEX Polluted 69.8% 19.3% 69.8% 19.63% 84.4% 3.6%

Table 3.1: Percentage of columns that favor adiabatic, homogeneous, or neither
LWP retrieval assumption. The rows separate different LES cases and the columns
distinguish removal of features. The statistics are aggregated over all scenes for each
LES case.

3.2.2 LWP Retrieval Bias Budget

Biases in the bispectral LWP retrieval can result from a number of sources. The

retrieval is sensitive to biases resulting from the a priori vertical profile assumption

as well as the biases in the τtot and re retrievals that LWP is calculated from. To

identify the importance of the bias resulting from cloud vertical profile assumptions,

we consider the total bias budget of the LWP retrieval. Treating each of the biases as

a deviation away from the actual LES properties leads to the following bias budget,

LWPret = LWPLES +∆LWP

= (CLES +∆C) ρl (re,LES +∆re+) (τLES +∆τ) , (3.5)
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from which the first-order terms can be extracted:

∆LWPC ≈ (Cret − CLES) ρlre,LESτLES , (3.6)

∆LWPre ≈ CLESρl (re,ret − re,LES) τLES , (3.7)

∆LWPτ ≈ CLESρlre,LES (τret − τLES) , (3.8)

where the subscript ”ret” denotes retrieved properties and the subscript LES denotes

properties taken from the LES scene itself. These biases are reported in units of

g/m2 and are referred to here as the vertical profile assumption bias ∆LWPC , the

re retrieval bias ∆LWPre , and the τtot retrieval bias (∆LWPτ ). Although not shown

here, higher-order cross terms obtained by fully factoring Equation 3.5 account for a

very small portion of the overall LWP retrieval bias, so we neglect them throughout.

The value of τLES can be obtained from LES microphysics in a straightforward

manner, while the definition of re,LES and CLES require further introduction. The

definition of re,LES is tied to the definition of cloud top, which we define operationally

for each LES column with respect to the cloud maximum LWC located near the

optical cloud top (defined as the first cloudy layer with τ > 10−3):

re,LES ≡ r∗e = re (z (max [LWC])) . (3.9)

Where re,LES is recast as r∗e to recognize that its value depends on the definition of

cloud top. The definition of cloud top will be further discussed in the proceeding

section. The definition of CLES depends on the coupled relationship between other
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Figure 3.2: The LWP bias budget for a DYCOMS-II scene is broken into the profile
bias (a, d), the re bias (b, e), and the τtot bias (c, f). Panels a-c depict the spatial dis-
tributions of these biases, while panels d-f depict their corresponding histograms. The
mean and standard deviation (µ and σ) of each of the biases in this scene are stated
in units of g/m2. Together these results demonstrate that the profile assumption bias
dominates the LWP bias budget (see text).

LES properties outlined in Equation 3.1,

CLES =
LWPLES

re,LESτLES
. (3.10)

The bias budget presented here allows for the evaluation of the relative impor-

tance of each of the primary biases. Analysis of both the spatial distribution and

histograms of these primary bias terms yields interesting insight. The spatial distri-

butions of each of the terms in the bias budget for the DYCOMS-II LWPad retrieval

(Cret ≡ 5/9) are shown in Figure 3.2(a-c). These results reveal that the profile

assumption bias and the re retrieval bias are non-uniformly distributed, in contrast

with the more uniformly distributed τtot retrieval bias. Moreover, the profile as-

sumption bias and the re retrieval bias appear to be spatially correlated with the
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contours defining the retrieval-favoring populations in Figure 3.1(a). Histograms of

these biases, seen in Figure 3.2(d-f), reveal that the magnitude of the vertical profile

assumption bias is also highly varied, with some of the population biased high and

some low. In contrast, the distributions of the re and τtot retrieval biases are sub-

stantially narrower and on average smaller than the vertical profile bias. Motivated

by this case, the focus of the remainder of this study will be on the impact of cloud

vertical profile assumptions and the physical causes of re retrieval bias. While only

shown for one scene from one LES case, the vertical profile and re retrieval biases

were each consistently the greatest contributors to the bias budget across all scenes

and cases. The τtot bias is less deserving of further scrutiny because it cannot ac-

count for either the spatial variability or much of the magnitude of the full LWP

bias.

3.2.3 Vertical Profiles of LES properties

To further understand the impact of cloud vertical profiles on LWP retrievals,

the profiles of several cloud properties were discriminated into two retrieval popu-

lations (i.e., LWPh favored versus LWPad favored). The median vertical profiles for

the DYCOMS-II case in Figure 3.3(a,b) demonstrate that both LWPh-favored (blue)

and LWPad-favored (red) columns have similar vertical profiles in terms of CDNC

and LWC. The profile of CDNC remains relatively constant within the cloud, with

the LWPh-favored columns having on average a smaller CDNC than those LWPad-

favored columns. The LWC profiles for both populations show a characteristic linear
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Figure 3.3: Median vertical profiles of (a) CDNC, (b) LWC, and (c) re for the
DYCOMS-II scene from Figure 3.1(a) when divided into two LWP retrieval bias pop-
ulations. The blue lines correspond to columns favoring the homogeneous vertical
assumption (C = 2/3), and similarly the red lines correspond to the adiabatic ver-
tical assumption (C = 5/9). The dash-dotted lines in panels (a) and (b) depict the
constant CDNC assumption and the adiabatic LWC profile, respectively.

increase with height associated with the sub-adiabatic assumption. However, the

most distinguishing feature of the two populations appears to be the vertical profile

of re. Clearly, the LWPad-favored columns have simpler vertical profiles within the

cloud layer, with re monotonically increasing from cloud base upward, unlike the

LWPh-favored columns, which have a more complex vertical profile of re. Below

cloud base re is seen to increase rapidly downward for both populations. This signa-

ture is indicative of the predominant impact that growth from collisional-coalescence

and vertical size sorting can have on the re profile at those levels.

Shifting from a physical profile perspective to an optical profile perspective,

Figure 3.4 depicts the vertical profile of LWC and re as a function of cloud optical

depth. Given that scattering exponentially attenuates reflected light as a function
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of τ , it is appropriate to plot optical profiles logarithmically with respect to τ .

What is evident from these optical profiles is that there is a region above cloud

top (defined by the maximum LWC and indicated by the horizontal dashed line)

where re is modestly reduced from its value at cloud top r∗e . In this region LWC

also transitions from its maximum at cloud top to its cloud-free value of zero as dry

air from above cloud top becomes entrained and mixed with the upper region of

the cloud. This reduction in LWC is indicative of inhomogeneous mixing or, more

simply, dilution, in which mixing resolved by the model is faster than evaporation

[Baker and Latham, 1979]. However, the modest reduction of re in this region also

serves as an indicator that some evaporation is also occurring. Hereafter, we shall

refer to this region as the cloud top transition zone. The peak LWC is used to define

the base of the transition zone, which then extends upwards toward the optical

cloud top (τ = 10−3). These artificial boundaries are intended to delimit the region

influenced by cloud top entrainment. While the transition zone appears shallow in

terms of physical thickness (Figure 3.3), the optical profile (Figure 3.4) reveals that

the transition zone has a typical optical depth of 12. This is important because,

as mentioned in subsubsection 2.2.1.1, strongly absorbing bands lead to retrievals

exponentially weighted toward the uppermost region of the cloud. It follows that a

transition zone of this thickness could impact the retrieved droplet size, and thus, it

can indirectly influence LWP retrievals. However, the behavior of the transition zone

does not appear to significantly differentiate the two retrieval-favoring populations.

Looking toward the cloud base in Figure 3.4(b), it is clear that the two populations

differ significantly. As Figure 3.4(c) reveals, this difference is absent after removing
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Figure 3.4: Optically binned profiles of (a) LWC, (b) re with drizzle bins included,
and (c) re without contribution of drizzle bins from the DYCOMS-II case. The optical
depths refer to the 3.75µm band. As discussed in the text, drizzle is defined as drops
larger than 30µm. The lines denote median profiles of the columns that favor LWPad

(red) and LWPh assumptions (blue), while the enveloping contours around the curves
denote the interquartile range (IQR) envelope centered about the median. In panel
(b) the large IQR of the last two bins of the 2/3 favored profile fall well outside of the
plotting range with values IQR = [16, 30.7] µm.

drizzle. In fact, the removal of drizzle leaves both profiles resembling one another,

in addition to matching well with the form of the theoretical adiabatic profile (the

black dash-dotted curve in Figure 3.4(c).

3.2.4 Impact of Drizzle and the Cloud Top Transition Zone

As discussed above, the cloud vertical profiles observed in these LES cases

differ from adiabatic profiles mainly due the presence of drizzle and a cloud top

transition zone. The impacts of these features on the LWP retrievals are explained

using the hypothetical profiles of re shown in Figure 3.5. To make the explanation

easier, we first define two reference effective radii, re(5/9) and re(2/3), by rearranging
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Figure 3.5: Several common cloud vertical profile cases in the LES. These optical pro-
files are defined in terms of cloud optical height to maintain consistency between the
characteristic equation describing an adiabatic vertical profile. The vertical blue and
red dash-dotted lines represent the value of the vertical profile assumption-required
droplet sizes re(2/3) and re(5/9) respectively. The yellow line represents the value of
the optical retrieval re(2WT) and the gray dashed line in panel (c) represents the lo-
cation of the base of the transition zone. The yellow star represents both the location
and value of the cloud top droplet size r∗e .

Equation 3.1 and substituting the appropriate constant as well as the LWP and τtot

from the LES:

re(5/9) =
9

5

LWPLES

ρlτtot,LES
, (3.11)

re(2/3) =
3

2

LWPLES

ρlτtot,LES
. (3.12)

These are the droplet sizes that are required to complete the assumed relationship

between LWP, re, and τtot for either of the vertical profile assumptions. These

droplet sizes serve as litmus tests: If the in situ cloud top droplet effective radius, r∗e ,

better matches with re(5/9) than with re(2/3), then the LES column favors LWPad

vertical profile assumptions and where closer to re(2/3) it favors LWPh vertical
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assumptions. The ideal adiabatic profile in Figure 3.5(a) demonstrates that r∗e and

re(5/9) would perfectly match when the actual profile is adiabatic. This stands

in contrast with re(2/3), which is smaller because the LWPh profile assumption

overestimates the actual LWP. In addition to the vertical profile assumed in the

LWP calculation, there is also the impact of vertical weighting on the underlying

droplet size retrieval. For the adiabatic profile in Figure 3.5(a), re(2WT) matches

r∗e very well, indicating that the vertically weighted droplet size would provide a

reasonable estimate of the cloud top droplet size for such a cloud. The comparisons

of re(5/9) and re(2WT) to r∗e indicate, as expected, that the adiabatic retrieval

provides an accurate representation of LWPLES for an adiabatic cloud. A second

hypothetical case seen in Figure 3.5(b) adds complexity by including drizzle near

cloud base to mimic the cloud profiles from the LES as seen in Figure 3.3 and

Figure 3.4. In this case the retrieval proxy re(2WT) is still a good match to cloud

top r∗e because the SWIR band reflectance saturates near cloud top and is largely

insensitive to the presence of drizzle lower in the cloud. However, as demonstrated in

the schematic, the presence of drizzle can cause both re(5/9) and re(2/3) to be larger

than r∗e in proportion to the amount of LWP in the drizzle mode. This bias reflects

the increase in the ratio of LWPLES to τtot,LES in Equation 3.11 and Equation 3.12.

This shift in the ratio occurs because LWPLES is sensitive to the increase in the

re(τ) profile lower in the cloud, as indicated in the integral in Equation 2.34. It

follows that a high bias of re(2/3) indicates that, compared to LWPLES, the LWPh

retrieval would be biased low and the LWPad lower yet. With that in mind, a

positive re(2/3) − r∗e bias can serve as an indicator of the influence of drizzle on
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vertical profile. A third hypothetical case, shown in Figure 3.5(c), addresses the

impact of the cloud top transition zone. In this zone, re decreases modestly with

height (increases with optical depth for τ < 2) from the value at cloud top, r∗e . The

optical thickness of this transition zone is large enough to influence the vertically

weighted retrieval, re(2WT), which would be low biased relative to r∗e . A low bias

in the cloud top re retrieval would subsequently lead to a low bias in both LWP

calculations. In contrast, to the extent that the transition zone is optically thin,

re(2WT) would serve as an accurate description of the cloud top droplet size.

Considering the impacts of the cloud top transition zone and drizzle we now

ask, what happens to LWP retrieval biases when these two features are removed from

an LES cloud scene? If it were correct to treat these features as the primary drivers

of non-adiabatic cloud profiles, then we would expect adiabatic retrieval assumptions

to better match the actual LWP upon the removal of these features. To organize

these comparisons, we introduce two re biases: (1) a profile bias, which compares

the vertical profile retrieval assumptions with LES profiles, and (2) a retrieval bias,

which compares the vertically weighted 2WT retrieval proxy to LES profiles:

re profile bias ≡ re(5/9)− r∗e , (3.13)

re retrieval bias ≡ re(2WT)− r∗e . (3.14)

These two biases are used to identify features of the schematics in Figure 3.5 and

allow for the intercomparison of retrieval uncertainty associated with droplet size

retrievals (retrieval bias) and profile assumptions in LWP retrievals (profile bias).
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This method is convenient because it decouples sensitivity to drizzle and the tran-

sition zone. The profile bias is primarily sensitive to the presence of drizzle because

of its influence on re(5/9) due to the changing vertical profile of re(τ) Figure 3.5(b),

whereas the retrieval bias is primarily sensitive to the impact of the transition zone at

the cloud top because of the vertically weighted droplet size retrieval Figure 3.5(c).

Each bias is compared relative to the droplet size at the peak LWC, r∗e , as a point

of reference.

With the retrieval and profile biases as diagnostics we can now examine what

happens to the quality of LWP retrievals as these two features are removed from

an LES scene. The removal of drizzle involves simply removing droplets in size

bins larger than the 30µm cutoff from all LES quantities and subsequent retrievals,

while the transition zone removal is accomplished by excluding this region at the

top of the cloud from the LES LWP and optical thickness as well as the re(2WT)

retrieval proxy. This removal experiment is performed sequentially, with drizzle

removed first, followed by the transition zone. It should be noted that the order of

the sequence was determined to be unimportant because the biases from drizzle and

the transition zone are sufficiently decoupled. As depicted in Figure 3.6, the joint

analysis of the profile and retrieval biases demonstrates how sequential removal of

drizzle and the transition zone influence LWP retrievals. For example, the impact of

drizzle can be understood by looking at the points around upper horizontal dashed

line, which denotes the location of zero bias for re(2/3) − r∗e on the re(5/9) − r∗e

axis. As mentioned previously, drizzle can induce a positive bias in re(2/3) and an

even greater bias in re(5/9) (refer to Figure 3.5(b)). Removal of drizzle removes
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nearly all occurrences of positive re(2/3) − r∗e , as evidenced by the change in bias

between the scatter plots in Figure 3.6(a) and (b). In the final removal step, after

the transition zone is removed in Figure 3.6(c), there is a drastic improvement in

the retrieval bias resulting in almost no dispersion and only a slight negative bias.

The removal of drizzle and entrainment zone features causes the DYCOMS-II case

to go from nearly a 50 − 50 split regarding favored vertical profile assumption to

more than 95% in favor of the adiabatic vertical profile assumption. The fraction

of the DYCOMS-II columns favoring adiabatic, homogeneous, or neither retrieval

assumption is shown in the first row of Table 3.1 for each of the removal experiment

steps. It is worth noting that the remaining columns that favor homogeneous vertical

assumptions appear to be located near cloud holes where entrainment of dry air can

occur through the side of the cloud. It thus appears plausible that the transition

zone at horizontal cloud boundaries can contribute to LWP retrieval bias as well.

As already mentioned, previous studies have indicated that bispectral LWP

retrieval bias is dependent on cloud regime. Thus far, we have highlighted a single

LES case (DYCOMS-II) and snapshot, but an examination of the other LES cases

offers the opportunity to study how another MBL cloud regime is influenced by

vertical profile assumptions. A comprehensive view of the model cases and time slices

requires a statistical approach. The mean bias for a case represents the systematic

bias from vertical profile and retrieval assumptions, and the standard deviation of

the bias is associated with the variability within the LES. The results, provided

in Table 3.3, further demonstrate that the relative importance of drizzle and the

transition zone are associated with cloud regime. These results are also informed
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Figure 3.6: The sequential removal analysis for the DYCOMS-II LES scene intro-
duced in Figure 3.1(a) The impact of the removal of drizzle and then transition zone
on the profile and retrieval biases. The dash-dotted lines in (a)(c) denote neutral bias,
whereas the horizontal dashed line denotes the value of re(5/9) profile bias that cor-
responds to neutral re(2/3) profile bias. The color of the points in panel (a) and (b)
are associated with the retrieval quality maps in panel (d) and (e), where red denotes
LWP retrievals favoring LWPad, blue with LWPh, and green with neither. Note that
the retrieval quality map in panel (d) corresponds to the contours in Figure 3.1(a).
The inset percentages indicate the share of pixels that favor LWPad. The color of
points in panel (c) depict the droplet optical growth exponent, β (see text), after (f)
drizzle and the transition zone features have been omitted.
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by the cloud fraction and LWP information in Table 3.2. For the DYCOMS-II case,

the overall reduction of mean and standard deviation of biases indicates that the

removal of both features leads toward increasing agreement with adiabatic retrieval

assumptions. The statistical results from the ATEX cases do not exhibit the same

behavior. As we saw before, the ATEX clean case strongly favors homogeneous

retrievals at the outset. The contribution of drizzle to LWP in this case is appreciable

(see Table 3.2), and as a consequence, the removal of drizzle leads to a reduced mean

and standard deviation of profile biases. The ATEX clean case does not converge

toward adiabatic assumptions by the final removal step and the remaining regions

that do not favor adiabatic assumptions are narrow, lie in the vicinity of cloud

edge, and surround thick convective cores that favor adiabatic assumptions (not

shown). As mentioned previously, horizontal cloud boundaries near cloud holes are

potentially influenced by entrainment horizontally as well as from cloud top. The low

cloud fraction in this case (see Table 3.2) increases the prevalence of horizontal cloud

boundaries making it difficult to distinguish the influence of entrainment and drizzle

in these regions. For the ATEX clean case homogeneous assumptions yield less bias

than the adiabatic assumptions when drizzle is prominent. However, in the ATEX

polluted case, which lacks drizzle (see Table 3.2), the retrievals are little affected

by omitting it. The retrieval assumption favored by the ATEX polluted case is not

driven by a systematic (mean) bias, as was the case for the DYCOMS-II and ATEX

clean cases. Instead, the rather large variability (standard deviations) in both biases

leads to instances where either of the LWP retrieval assumptions satisfy portions of

the population. Upon removal of the entrainment features the ATEX polluted case
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LES Case Cloud Fraction Median LWP (g/m2) %LWP (Drizzle)

DYCOMS-II 99.4% 163.6 4.0%
ATEX clean 34.8% 71.5 13.0%

ATEX polluted 40.2% 35.6 < 0.1%

Table 3.2: Aggregated statistics for each of the LES cases including: cloud fraction,
median LWP , and percent of LWP associated with drizzle. All properties are listed
for the initial state of each LES scene before the removal experiment.

clearly favors adiabatic retrievals, as indicated in Table 3.1. However, as with the

ATEX clean case, the majority of columns that do not favor adiabatic retrievals are

again found near horizontal cloud boundaries (not shown). To summarize some of

the foregoing discussion, major distinctions between the ATEX clean and polluted

cases can be drawn. The first is that while drizzle plays a dominant role in the clean

case, it is negligible in the polluted case. The second is that the polluted case has

significantly fewer columns associated with cloud horizontal boundaries and favors

adiabatic retrievals more on the whole after removal of entrainment features. The

varied difference in these findings across just these three cases demonstrates that

bispectral LWP retrieval biases depend on cloud regime as well as the presence of

drizzle. Furthermore, the differences highlight the fact that there is no single vertical

profile assumption suitable for all of these cloud regimes.

The evaluation of retrieval and profile bias statistics in terms of re is useful for

identifying and comparing the physical causes of LWP retrieval bias, but it does not

directly relate these biases to the magnitude of the associated LWP bias. To address
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re Bias Statistics (µm)

Profile Bias [re(5/9)− r∗
e
] Retrieval Bias [re(2WT)− r∗

e
]

Removal of Removal of Drizzle & Removal of Removal of Drizzle &
LES case Original Scene Drizzle Transition Zone Original Scene Drizzle Transition Zone

DYCOMS-II µ = 0.55 µ = −0.0704 µ = −0.254 µ = −0.217 µ = −0.232 µ = −0.0696
(σ = 1.03) (σ = 0.840) (σ = 0.832) (σ = 0.401) (σ = 0.409) (σ = 0.0597)

ATEX Clean µ = 2.84 µ = 1.38 µ = 1.30 µ = 0.393 µ = −0.324 µ = −0.016
(σ = 2.51) (σ = 1.37) (σ = 1.65) (σ = 1.96) (σ = 1.21) (σ = 0.311)

ATEX Polluted µ = 0.122 µ = 0.124 µ = 0.084 µ = −0.107 µ = −0.108 µ = −0.0066
(σ = 0.586) (σ = 0.585) (σ = 0.610) (σ = 0.681) (σ = 0.681) (σ = 0.0752)

Table 3.3: Aggregate statistics for the profile and retrieval bias of re. Rows are as
in Table 3.1, while columns are broken into sections for profile and retrieval biases,
which are then broken down into subsections by removal step. The mean and standard
deviation are indicated by µ and σ

this, we also define LWP profile and retrieval biases, which couples re variability and

τtot variability. The LWP profile and retrieval biases are defined as follows:

LWP profile bias ≡
5

9
ρlr

∗
eτLES − LWPLES, (3.15)

LWP retrieval bias ≡
5

9
ρlre(2WT)τLES − LWPLES. (3.16)

The LWP profile and retrieval biases, shown in Table 3.4, help to put the previous

analysis in the context of retrieval outcomes and furthers our arguments about the

impact of profile on cloud retrievals. In the presence of drizzle, the LWP profile

bias is negative, while the presence of an optically thick transition zone can cause

the LWP retrieval bias to be negative as a secondary effect of low-biasing cloud top

droplet size retrievals (refer to re(2WT) in Figure 3.5(c). Removal of both of these

features leads to LWPad retrievals that are biased low relative to actual LWP. Mean

LWP biases are seen in Table 3.4 to range from values as large as 10 g/m2before the

features are removed, to values on the order of 1 g/m2 after removal. Thus, adiabatic
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LWP Bias Statistics (g/m2)

Profile Bias [LWP(5/9)− LWPLES] Retrieval Bias [LWP(2WT)− LWPLES]

Removal of Removal of Drizzle & Removal of Removal of Drizzle &
LES case Original Scene Drizzle Transition Zone Original Scene Drizzle Transition Zone

DYCOMS-II µ = −5.79 µ = 2.89 µ = 4.41 µ = −2.64 µ = −2.76 µ = −0.990
(σ = 8.81) (σ = 7.70) (σ = 7.31) (σ = 3.61) (σ = 3.64) (σ = 0.575)

ATEX Clean µ = −9.92 µ = −0.834 µ = 1.95 µ = −3.37 µ = −5.76 µ = −2.70
(σ = 12.4) (σ = 7.88) (σ = 8.09) (σ = 9.15) (σ = 11.8) (σ = 3.83)

ATEX Polluted µ = −0.63 µ = 0.368 µ = 0.878 µ = −1.33 µ = −1.33 µ = −0.0156
(σ = 4.29) (σ = 4.71) (σ = 4.71) (σ = 7.23) (σ = 7.40) (σ = 0.0712)

Table 3.4: As in Table 3.3 but for LWP.

assumptions in cloud retrievals can lead to LWP biases on the order of 10-20% in

the presence of drizzle and the cloud top transition zone. As with the re biases,

the mean LWP profile and retrieval biases show improvement as well as a reduction

in their standard deviation as the features are removed. The remaining variability

in these biases and their dependence on cloud regime are likely attributable to

unaccounted behavior in the passive LWP retrieval technique, i.e., the assumption

that the droplet number concentration is constant throughout the cloud, which we

consider next.

3.2.5 Vertical Profile Variability

Beyond the impact of drizzle on the re profile bias the large variability remain-

ing after removal of drizzle and entrainment features remains unexplained. For the

adiabatic retrieval, this variability suggests that there are additional aspects of the

simulated clouds that are inconsistent with adiabatic assumptions. In an attempt to

explain this variability, we return to the adiabatic profile described in Equation 2.41
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and note that the profile of re(τ) can be expressed as a simple power law relationship

re(τ) = α

(

τtot − τ

τtot

)β

(3.17)

Hereafter, we refer to the exponent, β, as the ”droplet optical growth exponent,”

or sometimes ”growth exponent” for the sake of brevity. For an adiabatic profile

the value of the droplet optical growth exponent is βad = 1/5 = 0.2. Taking the

logarithm of both sides of Equation 3.17, solving for β, and taking a derivative yields

an expression with fewer unknown constants:

β =
dlog (re)

dlog (τtot − τ)
. (3.18)

If β was constant throughout the cloudy column, then Equation 3.18 results in the

droplet growth exponent in Equation 3.19, which now describes β in terms of re(τ),

the total optical thickness and the cloud top droplet size.

β =
log (r∗e)− log (re)

log (τtot)− log (τtot − τ)
=

log (r∗e/re)

log (τtot − τ)
. (3.19)

A recasting of Equation 3.17 avoids the constant α,

re(τ) = r∗e

(

τtot − τ

τtot

)β

. (3.20)

This is the same form as Equation 2.41, and as we did before with the adiabatic

case in Equation 2.42, the integral form of the LWP equation in Equation 2.34 can
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be used to derive a more general LWP expression that includes our definition of the

droplet growth exponent,

LWP =
2

3
ρl

∫ τtot

0

re (τ) dτ ,

=
2

3
ρl

1

β + 1
r∗e

(

1

τtot

)β

(τtot)
β+1 ,

=
2

3
ρl

1

β + 1
r∗eτtot . (3.21)

In practice, we can calculate the value of β discretely between each layer of the LES,

as expressed in Equation 3.22, in which β depends on the LES vertical grid index i,

βi =
log (re,i)− log (re,i+1)

log (τtot − τi)− log (τtot − τi+1)
. (3.22)

We then compute a vertically weighted average of β with the weighted sum of each

layer by its contribution to the optical thickness,

β =

∑N−1
i=1 βi∆τi,i+1

τtot
. (3.23)

It is clear from Equation 3.21 that values of β = 0 and β = 1/5 = 0.2 lead to

the respective definitions of LWP for homogeneous and adiabatic vertical profiles

that were introduced in Equation 3.2 and Equation 3.3. As was evident from Fig-

ure 3.6(c) the value of β associated with zero adiabatic profile bias is somewhat

smaller (β ≈ 0.13) than the expected adiabatic value, (βad ≡ 0.2). Perhaps the

most striking feature in Figure 3.6(c) is the broad variability in the droplet optical
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growth exponent. We speculate that this variability in growth exponent can be

associated with the sensitivity to other implicit assumptions in Equation 2.41. Ev-

idently, many of the DYCOMS-II LES profiles have been modified by diabatic pro-

cesses (i.e., precipitation and radiative heating) leading to violation of two implicit

assumptions of the adiabatic model. First, the cloud droplet number concentration

is not consistently vertically uniform. Second, the dispersion of the cloud droplet

size distribution is also not vertically uniform. To address this, it is important to

introduce the complete expression for the adiabatic profile of re,

re,ad(τ) =

[

5

3

1

Qe

(

4

3
πρl

1

f ΓLWC

)

1

(kN)2
τtot − τ

τtot

]1/5

. (3.24)

The adiabatic re(τ) relationship presented here is a result of the relationship be-

tween adiabatic LWC(z), re(z), and τ(z) profiles that has been described throughout

the literature numerously [Pontikis and Hicks , 1993; Pontikis, 1996; Szczodrak et al.,

2001]. A detailed derivation of this relationship can be found appendix A of Boers

et al. [2006]. Additional constants are introduced in the adiabatic re(τ) profile, like

the degree of adiabaticity and adiabatic LWC lapse rate (f and ΓLWC, respectively);

a measure of the droplet size distribution dispersion (k) [Brenguier et al., 2011]; and

the CDNC (N). As mentioned previously, the adiabatic vertical profile assumption

hinges on two implicit assumptions: the effective CDNC (Ne = kN) is constant

and the droplet size retrieval used is similar to the cloud top droplet size, r∗e . The

observed variability in the values of the droplet optical growth parameter, β, can

be attributed to the breakdown of these assumptions. If we assume that both N(τ)

70



and k(τ) can also be treated as power law relations, we get the following profiles:

N (τ) ≡ N0

(

τtot − τ

τtot

)η

, (3.25)

k (τ) ≡

(

rv (τ)

re (τ)

)3

= k0

(

τtot − τ

τtot

)κ

, (3.26)

where the new exponents η and κ can be determined in the same manner as was

outlined for β. Referring back to the adiabatic vertical profile in Equation 2.41 and

Equation 3.24, we can reform Equation 3.17 to account for the profiles of N(τ) and

k(τ),

re (τ) =
α

[k (τ)N (τ)]2β

(

τtot − τ

τtot

)β

,

=
α

[k0N0]
2β

(

τtot − τ

τtot

)β

. (3.27)

It should be noted that Equation 3.27 becomes equivalent to Equation 2.41 if η and

κ are each zero, which of course leads to both k and N being vertically homogeneous

(i.e., constant). Nonzero η and κ can lead to a new definition for a reduced effective

droplet growth exponent:

re (τ) = α′

(

τtot − τ

τtot

)β′

, (3.28)

β ′ = β [1− 2 (η + κ)] . (3.29)

Hereafter, we will refer to the value of β measured from the LES profile as β ′ in

recognition that it represents a modified adiabatic profile. As previously noted,
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the DYCOMS-II case displayed a reduced droplet growth exponent of β ′ ≈ 0.13

associated with the minimum adiabatic profile bias in Figure 3.6(c). This clearly

contradicts the theoretical adiabatic value of βad = 1/5 = 0.2. If we consider

the median LES values of the two other exponents, η = 0.039 and κ = 0.048,

respectively, and an initial droplet growth exponent of β = 0.2 then Equation 3.29

results in a modified growth exponent of β ′ = 0.165. This result, while offering

an explanation for the low bias in β values for adiabatic assumptions, still does

not explain the source of the broad variability the droplet optical growth rate in

Figure 3.6(c). To that end, joint histograms of β ′ in Figure 3.7 with respect to

both η and κ reveal that β ′ is sensitive to the observed values of η and κ. The

relationship between of η and β ′ in Figure 3.7(a) indicates that much of the broad

variability in β ′ can be traced back to the broadly distributed values of η observed

in the LES. While Figure 3.7(b) reveals that much of the reduction in the mean

value of β ′ comes from the strong linear dependence of β ′ on κ.

3.3 Discussion

Throughout this study several key assumptions are made in order to study

the influence of cloud vertical profile on retrievals of cloud LWP: The removal of

droplets larger than 30µm is representative of a cloud without drizzle. The vertically

weighted re(2WT) is an appropriate proxy for the re(3.7µm) bispectral retrieval.

The transition zone appropriately represents the region of the cloud impacted by

local entrainment.
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Figure 3.7: Joint histograms of the droplet growth exponent β′ and both of the
exponents η and κ introduced in Equation 3.25 and Equation 3.26, respectively. All
quantities are from the LES profiles. The histogram is binned in 0.01 intervals and
the color scale is stated in percent. The median values of both η and κ are 0.039 and
0.048 respectively. The dash-dotted lines denote the adiabatic assumptions for each
of these exponents.

The validity of the drizzle assumption was tested directly by turning off collisional-

coalescence processes during a DYCOMS-II LES run. The resulting microphysical

snapshots revealed that the suppression of droplet growth into drizzle led to a profile

bias that was only slightly more reduced than it was by removing drizzle bins. Thus,

it is likely that the impact of drizzle on cloud vertical profile assumptions is slightly

greater (on the order of a few g/m2) than predicted in this study. The assumption

regarding vertical weighting of the 3.7µm SWIR band can be tested by explicitly

using re(3.7µm) in the definition of the retrieval bias in Equation 3.14 rather than

re(2WT). The bias scatterplots in Figure 3.8 correspond to this new definition for

the retrieval bias. In contrast to the re(2WT) retrieval bias, Figure 3.8(a) reveals

that, on average, re(3.7µm) has a slight positive bias. A comparison of Figure 3.6(c)

and Figure 3.8(c) also reveals that removal of transition zone features does not dra-

matically reduce the retrieval bias of re(3.7µm). While it may appear that re(2WT)
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Figure 3.8: Just as in Figure 3.6, these profile and retrieval bias scatter plots depict
the sequential removal experiment of the DYCOMS-II case snapshot. The difference
between the two figures is that the x-axis depicts the bias of bispectral retrieval
re(3.7µm) rather than the vertically weighted re(2WT). Panels (a) and (b) the color
of the points is as in Figure 3.6; and in panel (c) the color of the points corresponds
to the vertically weighted retrieval, ve(2WT). Refer to Figure 3.6 for the description
of lines and coloration.

and re(3.7µm) are not perfect analogues, it is important to note the correlation of

the re(3.7µm) retrieval bias with the value of ve(2WT) in Figure 3.8(c). This implies

that distinguishing the impact of the bispectral ve assumption from the accuracy

of the vertical weighting assumptions could be problematic. The impact of the bis-

pectral ve assumption will be discussed further on in this section with regard to

polarimetric retrievals of re and ve.

The removal of the transition zone is assumed to isolate the core of the cloud

from the region that could be influenced by cloud top entrainment. While a rig-

orous definition of this region requires characterization of both the dynamics and

microphysics, it is outside the scope of this retrieval study to identify the dynamical

causes of the transition zone. We have instead inferred the presence of this fea-

ture from the microphysical properties in the LES snapshots because of the clearly
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altered microphysics of this region. Resolving the transition zone in this manner

can be complicated by the coarseness of the vertical resolution of the LES. This is

especially true for the resolution of the ATEX cases where situations can occur such

that the optical cloud top and transition zone base cannot be distinguished from

one another. Thus, for the ATEX cases, the impact of the removal of the transition

zone on the retrieval bias can only serve as a low estimate.

While this work has primarily focused on bispectral LWP retrievals, the core

concept behind this passive retrieval technique is likely to be extended to future

spaceborne polarimetric instruments. The work of Alexandrov et al. [2012a] as well

as our own polarimetric simulator studies in (refer to chapter 4) has demonstrated

that vertically weighted retrieval proxies, [re(2WT), ve(2WT)], compare well with

polarimetric retrievals, [re(pol), ve(pol)] Figure 3.9 and Figure 3.10. The spatial

distributions of all of the re microphysical retrieval techniques are shown in Fig-

ure 3.10(a-c). The similarities between re(2WT) and re(pol) imply that polarimet-

ric retrievals may exhibit a similar sensitivity to the removal of the transition zone.

It follows that a cursory understanding of the impact of cloud vertical profile on

polarimetric and spectral retrievals can be obtained from this study. For example,

the comparison between the retrieval biases in Figure 3.6(c) and Figure 3.8(c) may

also imply that the standard deviation of the retrieval bias for re(pol) would be

much less than for re(3.7µm). This difference in the accuracy of the retrieval bias

occurs in part because re(2WT) and re(pol) make no explicit assumption about the

value of ve. As the scatterplot in Figure 3.8(c) revealed, ve(2WT) is correlated with

the value of the re(3.7µm) retrieval bias, and this correlation is also demonstrated
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Figure 3.9: Droplet microphysical retrieval scenes from the DYCOMS-II case. (a)
The bias between the 2WT and bispectral re retrievals; retrieval of ve via the (b)
polarimetric method and (c) vertically weighted retrieval proxy are shown. The lack
of sensitivity for the polarimetric ve retrieval above values of 0.11 is not physical but
instead due to retrieval algorithm limitations.

spatially in the comparison of Figure 3.9(a,c). This systematic broadening of the

bias indicates that the bispectral assumption of ve = 0.1 results in a lack of sen-

sitivity to the removal of the transition zone. In contrast, the re(2WT) bias (and

re(pol)) clearly improves after removing the transition zone. Thus, polarimetric re-

trievals of LWP may have to take into consideration the impact that the cloud top

transition zone might have on retrieval quality. Further study on the sensitivity of

polarimetric retrievals to the cloud top transition may be necessary for future po-

larimetric campaigns like those of NASAs upcoming Pre-Aerosol Clouds and ocean

Ecosystem (PACE) mission and ESAs Multiviewing Multichannel Multipolarization

(3MI) mission. It should be noted that for MODIS cloud products the bias due to

the ve assumption does not substantially impact the re retrieval compared to other

sources of bias (i.e., cloud inhomogeneity or 3-D effects). In the MODIS Collection

6 cloud products, the uncertainty associated with the ve assumption is included in

the determination of the retrieval uncertainty data products.
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Figure 3.10: Droplet effective radius retrievals from the DYCOMS-II case for a
variety of retrieval techniques. The retrievals displayed have been obtained using the
(a) bispectral method, (b) the polarimetric method, and (c) the vertically weighted
retrieval proxy.

3.4 Conclusions

The LES cloud retrieval simulator used in this study has allowed us to probe

the impact of cloud vertical structure on passive LWP retrievals for marine boundary

layer clouds in two regimes: trade wind cumulus and subtropical stratocumulus.

With regard to the three questions that motivated this study we have found the

following:

1. The vertical profile assumption (homogeneous or adiabatic) most appropriate

for LWP retrieval depends on cloud regime (cumuliform or stratiform).

2. The vertical profiles of the LES cloud cases were quite varied, with some dom-

inated by strong drizzle production and others by the microphysical impact

of entrainment. Each of these features was found to bias LWP retrievals low,

leading to a more favorable retrieval for homogeneous vertical profile assump-

tions.
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3. The theoretical framework developed here defines LWP in terms of an arbitrary

droplet vertical profile. This framework was used to demonstrate that the large

variability in the bias of LWP retrievals was associated with varying vertical

profiles of CDNC and droplet size distribution dispersion (both of which are

assumed to be constant in the standard adiabatic profile).

A primary objective of this study was to identify the cloud vertical profile assumption

most appropriate for LWP retrievals; however, we have found that simply asking

which retrieval assumptions perform better is not a particularly fruitful approach to

these issues. In fact, there is likely no such thing as an ideal retrieval assumption that

suits all cloud regimes. With that in mind, the impact of the a priori cloud vertical

profile assumption should not be neglected when attempting passive LWP retrievals.

Future work needs to address a method of identifying appropriate a priori vertical

profile assumptions by constraining them relative to other measurable or retrievable

cloud properties.

The focus on high-resolution retrievals based on 1-D radiative transfer leaves

questions for future studies. While these model choices were invoked to focus on

biases associated with cloud vertical profile assumptions, it does limit the scope of

this study. Future work will need to also identify the relative importance cloud ver-

tical profile and cloud horizontal heterogeneity or 3-D radiative effects on retrievals.

This study begins the discussion of a broader and more complicated study of the

impact of cloud vertical profile on LWP retrievals when including all possible cloud

retrieval biases.
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The results of this study are not limited to the passive bispectral retrieval

of LWP. Regardless of the microphysical retrieval technique, the profile assumption

bias has an impact on any passive shortwave retrieval based on the retrieval relation-

ship in Equation 3.1. As we have demonstrated, polarimetric retrievals of droplet

microphysics do not avoid this limitation. In fact, polarimetric retrievals exhibit a

more acute sensitivity to the cloud top transition zone than bispectral retrievals.

This is due, in part, to the influence of the bispectral ve assumption on the vari-

ability of re retrievals. The re retrieval variability induced by this assumption is

of the same magnitude as the impact of the transition zone. Future polarimetric

microphysical retrievals, unencumbered by the ve assumption will likely be sensitive

to the cloud top transition zone, and this could in turn influence the future climatic

record of LWP measurements.
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Chapter 4: Comparisons of bispectral and polarimetric cloud

microphysical retrievals using an LES-Satellite

retrieval simulator

Many passive remote sensing techniques have been developed to retrieve cloud

microphysical properties from satellite-based sensors, with the most common ap-

proaches being the bispectral and polarimetric techniques. These two vastly differ-

ent retrieval techniques have been implemented for a variety of polar-orbiting and

geostationary satellite platforms, providing global climatological datasets. Prior

instrument comparison studies have shown that there are systematic differences be-

tween the droplet size retrieval products (effective radius) of bispectral (e.g. MODIS,

Moderate Resolution Imaging Spectroradiometer) and polarimetric (e.g. POLDER,

Polarization and Directionality of Earths Reflectances) instruments. However, inter-

comparisons of airborne bispectral and polarimetric instruments have yielded results

that do not appear to be systematically biased relative to one another. Diagnosing

this discrepancy is complicated, because it is often difficult for instrument intercom-

parison studies to isolate differences between retrieval technique sensitivities and

specific instrumental differences such as calibration, atmospheric correction, etc.

In addition to these technical differences the polarimetric retrieval is also sensitive
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to the dispersion of the droplet size distribution (effective variance), which could

influence the interpretation of the droplet size retrieval. To avoid these instrument-

dependent complications, this study makes use of a cloud remote sensing retrieval

simulator. Created by coupling a large eddy simulation (LES) cloud model with

radiative transfer models, the simulator serves as a test bed for understanding differ-

ences between bispectral and polarimetric retrievals. With the help of this simulator

we can not only compare the two techniques to one another (retrieval intercompar-

ison), but also validate retrievals directly against the LES cloud properties. Using

the satellite retrieval simulator we are able to verify that at high spatial resolution

(50 m) the bispectral and polarimetric retrievals are indeed highly correlated with

one another. The small differences at high spatial resolution can be attributed to

different sensitivity limitations of the two retrievals. In contrast, a systematic dif-

ference between the two retrievals emerges at coarser resolution. This bias largely

stems from differences related to sensitivity of the two retrievals to unresolved in-

homogeneities in effective variance and optical thickness. The influence of coarse

angular resolution is found to increase uncertainty in the polarimetric retrieval, but

generally maintains a constant mean value.

4.1 Overview

The bi-spectral and polarimetric remote sensing techniques are the major tools

we have to obtain DSD observations on a global scale. Thus it is important to iden-

tify and explain the differences between them so we can better understand the
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advantages and limitations of each technique. A satellite retrieval intercomparison

of POLDER and MODIS re retrievals by Bréon and Doutriaux-Boucher [2005] rep-

resented one of the first attempts to identify and understand the differences between

the two techniques. The main finding from this study is that the bispectral-based

MODIS retrieval of re(2.13µm) (using the 2.13µm) SWIR band) is persistently

larger than the polarimetric-based POLDER retrieval by about 2µm over ocean,

despite a close correlation between the two. A variety of factors, from differences

in sensitivity to cloud vertical profile to influence of cloud horizontal inhomogene-

ity, have been suggested to explain this difference. However, as pointed out by the

authors, all these factors might contribute to the difference. It is difficult, if not im-

possible, to untangle them in observations and determine their relative importance.

In addition, POLDER observations in this study were aggregated from the nominal

6 km spatial resolution to a much coarser 150 km resolution to achieve the angular

resolution needed to resolve the cloud bow. The vast difference in spatial resolution

(i.e., 150 km for POLDER and 1 km for MODIS) makes the interpretation of the

2µm) re difference between the two retrievals even more difficult.

A more recent study by Alexandrov et al. [2015] is based on observations from

the recent sub-orbital Polarimeter Definition Experiment (PODEX) in 2013. In this

study, the polarimetric re retrievals for marine stratocumulus decks off the California

coast from the RSP instrument are compared to collocated bi-spectral retrievals

from the Autonomous Modular Sensor (AMS). Interestingly, the two retrievals are

found to be in close agreement, with a correlation of 0.928 and negligible sub-micron

bias. The differing conclusions of Alexandrov et al. [2015] and Bréon and Doutriaux-
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Boucher [2005] raise many questions, motivating this study.

A great challenge facing these observational studies is the separation of vari-

ous intertwined factors, which could result in retrieval differences. For example, the

polarimetric and bi-spectral methods may have different sensitivity to cloud verti-

cal structure, and at the same time they are also both affected by cloud horizontal

inhomogeneity [Zinner et al., 2010; Zhang et al., 2012; Miller et al., 2016; Zhang

et al., 2016a]. It is difficult, if not impossible, to separate these two factors based

on observations alone. This study approaches the intercomparison of bispectral and

polarimetric retrievals from a different perspective; rather than use observational

remote sensing data, synthetic retrievals are generated from large-eddy simulations

(LES) of clouds. Modeling radiative transfer in an LES scene to obtain total and

polarized reflectances opens up the possibility of using the LES to perform synthetic

bispectral and polarimetric retrievals. This retrieval simulator framework has proven

to be a useful tool in other cloud remote sensing studies [Zhang et al., 2012; Miller

et al., 2016; Zhang et al., 2016a]. Using this idealized simulation at high spatial res-

olution, we can attempt to parse the effects of unresolved sub-pixel inhomogeneity,

spatial resolution, and angular sampling/resolution on the inter-comparison of po-

larimetric and bispectral retrievals. The use of a satellite retrieval simulator opens

up two unique opportunities for developing and studying cloud microphysical re-

trievals: First, it provides the means to compare retrievals directly to LES cloud

microphysics and thus test retrieval closure for each of these retrieval techniques.

Second, it allows us to perform a retrieval technique intercomparison that is inde-

pendent of instrument characteristics and other differences that often complicated
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previous observational studies. This study focuses on three particular questions:

• How well do the bispectral and polarimetric retrievals perform in terms of

retrieval closure (i.e., comparing retrievals to the physical LES properties)?

• How do the bispectral and polarimetric retrieval techniques compare to one

another at high spatial resolution?

• How are the bispectral and polarimetric retrieval techniques sensitive to spe-

cific observational conditions (i.e., the influence of spatial and angular resolu-

tion)?

The rest of the chapter is organized as follows: section 4.2 provides a brief

overview of different sensitivities of the bispectral and polarimetric retrievals. sec-

tion 4.3 describes the LES-based satellite retrieval simulations used in this study;

the comparisons between the two techniques based on the LES cases are presented

in 4.4; followed by summary and discussion in section 4.5.

4.2 Background

Both bispectral and polarimetric techniques are susceptible to a variety of re-

trieval uncertainties. The main objective of this study is to understand how the

retrieval uncertainties influence each technique and whether they can lead to devia-

tion between the two techniques in terms of retrieval results. In this study, we focus

on three major sources of retrieval uncertainty for both techniques:

1) Cloud vertical profile: In the operational retrievals, both bispectral and polari-
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metric techniques assume vertically homogenous clouds. However, clouds in real-

ity often have significant variability in vertical profile resulting from microphysical

processes (e.g., adiabatic condensation growth of droplet; sedimentation and coales-

cence). This deviation from the assumed profile gives rise to many questions. For

example, how do we interpret the re and ve retrievals based on homogenous cloud

assumption? To what extent does cloud vertical profile influence the bispectral and

polarimetric techniques? Note that Platnick (2000) developed a method utilizing

the so-called vertical weighting function to interpret the re retrieval from the bis-

pectral method for clouds with vertically varying re profile. Recently, Alexandrov

et al., (2015) modified this method slightly and applied it to interpret the re and

ve retrievals from the polarimetric technique. In subsection 4.4.1, we will apply

the vertical weighting function method to both techniques on the basis of the LES

cloud fields, to help us understand if cloud vertical structure could lead to significant

differences between the two techniques.

2) Reduced sensitivity: It can be clearly seen from Figure 2.4 that when clouds are

optically thin (τtot < 3), the LUT for the bispectral retrieval becomes less orthogonal

and the isolines of re become more condense. This reduction in sensitivity can lead

to significant retrieval uncertainties in bispectral techniques for optically thin clouds

(τtot < 3). Similarly, the sensitivity of polarimetric technique to re and ve is reduced

when DSD becomes very broad (i.e., ve > 0.15), in which case the supernumerary

bow features are barely distinguishable (Figure 2.5(c)). In subsection 4.4.2, we

will investigate the impacts of the reduction of sensitivity on retrieval consistency

between the two techniques.
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3) Sub-pixel inhomogeneity: The impact of spatial resolution and unresolved sub-

pixel cloud inhomogeneity on bispectral retrievals has been well studied [Zhang and

Platnick , 2011; Zhang et al., 2012, 2016a]. An important conclusion from these

studies is that the so-called plane-parallel homogenous bias (PPHB) can cause the

bispectral technique to significantly overestimate re. In contrast, the sensitivity of

the polarimetric retrieval to unresolved sub-pixel inhomogeneity and resolution has

not been significantly studied. In subsection 4.4.3, we will compare the impacts of

sub-pixel inhomogeneity on bispectral and polarimetric techniques, and investigate

whether is can cause deviation between the two techniques.

4) Angular resolution and sampling for polarimetric technique: In addition to spatial

resolution, angular resolution and sampling is also important for the polarimetric

technique. A coarse angular resolution may not be able to resolve the feature of

the supernumerary bows. Similarly, if the scattering angles corresponding to the

supernumerary bows are not or only partly sampled, then the polarimetric technique

may not have enough information content for retrieval. This issue will be discussed

in subsection 4.4.4.

4.3 Model and Methodology

The satellite retrieval simulator implemented in this chapter obtains vector ra-

diative transfer calculations using the polarized doubling-adding technique (PDA) to

produce 1-D total and polarized reflectances at the horizontal resolution of the LES

grid (described below) [De Haan and Bosma, 1987]. The radiative transfer model-
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ing in this work is performed for numerous solar zenith angles (SZA = [20, 40, 60]◦),

viewing zenith angles (VZA = [70 : +70]◦), and a constant relative azimuthal angle

(∆φ = 30◦). The VZA resolution results in a scattering angle (Θ) resolution on the

order of 0.5◦. Reflectances in spectral bands (based on MODIS spectral response

functions) are centered on 0.865, 2.13, and 3.75µm wavelengths. Total reflectances

in all bands are used to produce bispectral retrievals, whereas polarized reflectances

in the 0.865µmband are used to produce polarimetric retrievals. Subsequently, the

bispectral and polarimetric retrieval algorithms are performed on the simulated re-

flectances to obtain the re (and ve) retrievals. Bispectral and polarimetric retrievals

are performed over a sub-set of observation geometries, with bispectral retrievals

performed for VZA = [50, 40, 30, 20, 10, 0, 10]◦ and all SZA. Meanwhile, the polari-

metric retrievals are performed for a SZA = 20◦ and a range of VZA = [0 : 27]◦ that

result in reflectances spanning scattering angles resolving the primary and supernu-

merary bow features (i.e., Θ = [135 : 160]◦). Reflectances are also aggregated from

the 50m native LES resolution up to coarser 100, 200, 400, and 800m horizontal res-

olutions to reflect the influence of different remote sensing footprint resolutions. The

retrievals performed in this study are also performed at all of the various reflectance

resolutions. The bispectral LUT implemented in this study spans microphysical

properties re = [2 : 30]µm in steps of 0.5µm and ve = [0.01 : 0.11] in steps of 0.01.

The τtot retrieval in this study is anchored to the 0.865µm band optical properties

and spans τtot = [0.1 : 100] with 101 logarithmically spaced grid points. Including ve

variability in the bispectral LUT allows for the comparison of standard MODIS-like

retrievals (the ve = 0.1 LUT) to retrievals with other ve assumptions. The bispectral
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retrieval is then accomplished by performing a 2-D linear interpolation of the ob-

served reflectances and inverting between the reflectance and retrieval space. For the

polarimetric retrieval, the polarimetric phase function library spans re = [2 : 40]µm

in steps of 0.25µm and ve = [0.01 : 0.3] in steps of 0.01. The polarimetric retrieval

implemented in this study is based on the approach of Alexandrov et al. (2012a),

fitting the polarized phase functions in their eq. (3) to the modeled polarized re-

flectances of the LES scene. The optimal parametric fit in the −P12 library is arrived

at a solution arrived at by using the Levenberg-Marquardt nonlinear least squares

algorithm. This optimally fitting phase function corresponds to the resulting re(pol)

and ve(pol) retrieval. As previously stated in subsection 2.3.2 the polarimetric re-

trieval of τtot is accomplished by using a constrained 1-D version of the bi-spectral

LUT.

The LES cloud fields are used not only to drive the radiative transfer sim-

ulations, but also to help us interpret and understand the retrieval results. As

mentioned in Section 2.2, it is not trivial how to interpret the re and ve retrievals

based on the homogeneous cloud assumption, when the cloud has significant ver-

tical structure. To address this issue, for each LES column with detailed vertical

profiles of DSD, we derive two reference variables re(2WT) and ve(2WT) from the

vertical integration of the DSD profile. The integration is weighted by a two-way

transmittance (2WT) function to account for the penetration depth of the single-

scattered radiation following the procedure in subsubsection 2.2.1.1. The re(2WT)

and ve(2WT) take into account the first-order sensitivity of the retrieval techniques

to the vertical profile of clouds. Thus, they are directly comparable to the nu-

88



merically retrieved re and ve from the simulated reflectance [Platnick , 2000; Zhang

et al., 2010; Alexandrov et al., 2015; Miller et al., 2016]. We note that the 2WT

vertical weighting function provides a reasonable approximation when the signal is

contributed mainly by single-scattering (i.e., 3.7 µm or polarimetric reflectances)

but becomes less accurate when multiple scattering increases [Platnick , 2000]. In

addition to re(2WT) and ve(2WT), we also derive τtot,LES for each LES column sim-

ply by integrating the extinction coefficient from cloud bottom to cloud top. The

re(2WT) and ve(2WT) and τtot,LES are used as references in the closure study in Sec-

tion 4.1 to understand the differences between the retrievals and the original LES

fields. After obtaining the re(2WT) and ve(2WT) and τtot,LES at the 50 m native

LES resolution, they are aggregated to 100, 200, 400, and 800 m to help interpret the

retrievals at these coarser resolutions. In this study, we simply aggregate re(2WT)

and ve(2WT) from the native LES resolution 50m to obtain the values at desired

resolution (e.g., 800m).

The three LES cases introduced in section 2.4 are the focus of this study.

The first (referred to as ATEX clean hereafter) and second (ATEX polluted) cases

are based on an idealized case study from the Atlantic Trade Wind Experiment

(ATEX), with different aerosol loadings [Stevens et al., 2001]. The ATEX cases

are representative of a trade wind cumulus regime in which scattered cumuli rise

into a thin, broken stratocumulus layer. The third case (referred to as DYCOMS-II

hereafter), originally presented in Stevens et al. [2005], is an idealized setup based

on clouds observed during the second research flight (RF02) of the Second Dynamics

and Chemistry of Marine Stratocumulus project (DYCOMS-II) [Stevens et al., 2003].
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This case is representative of nocturnal marine stratocumulus under a dry inversion.

The DYCOMS-II case has a domain size of 6.4,x 6.4,x 1.5 km (128,x 128,x 96 grid

points), while each of the ATEX simulations have a domain size of 7.2 x 7.2 x 3 km

(144 x 144 x 200 grid points). The spatial resolution of these LES cases is fixed at 50

m, while the vertical resolution is defined based on a stretched vertical grid with a

minimum spacing of 5 m near the surface and temperature inversion to better resolve

small-scale turbulence. Further details of the model setup for the DYCOMS-II case

are provided in Ackerman et al. [2009]. The ATEX cases are updated model runs

with increased spatial resolution that are similar to the cases discussed in Fridlind

and Ackerman [2011]. For each LES scene a snapshot of cloud microphysical and

optical properties is saved every half hour after the first hour of each simulation,

resulting in numerous cloud fields. A single time step of each of the cases was

selected to be the focus of this retrieval study, each occurring ≈ 3 hours into the

simulation.

The variability of cloud optical and microphysical properties in each of the

LES cases is highlighted in Figure 4.1 and Table 4.1. Spatial inhomogeneity of both

optical and microphysical properties of these scenes is evident, with the ATEX pol-

luted and DYCOMS-II cases exhibiting lower spatial inhomogeneity and the ATEX

clean case being more broken and inhomogeneous. One method for quantifying the

optical inhomogeneity of a cloud scene is to use the sub-pixel inhomogeneity in-

dex (Equation 2.49). In addition to optical inhomogeneity, each of the LES scenes

also has characteristically different microphysical properties. The average value of

re(2WT) of each scene varies, in part because of the initial background CCN in
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LES case CCN CF τtot,LES re(2WT) ve(2WT)) Hσ(800m))

DYCOMS-II 60 0.998 17.95 15.52 0.071 0.13
(6.22) (1.00) (0.11) (0.10)

ATEX Clean 40 0.941 7.90 16.93 0.16 0.42
(8.02) (2.62) (0.12) (0.17)

ATEX Polluted 600 0.985 17.48 7.29 0.13 0.24
(14.71) (0.91) (0.068) (0.13)

Table 4.1: Mean values (µ) and standard deviations (σ, in parenthesis) of various
optical (τtot,LES and Hσ) and microphysical properties (re(2WT) [µm], and ve(2WT))
of the LES scenes examined in this study. The cloud fraction (CF) is obtained by
using a threshold of τtot,LES > 0.1 to define cloudy pixels. Note that the units for
cloud condensation nuclei (CCN) [#cm−3]

each particular case but also cloud top height variability. In these LES cases ve

is spatially correlated with τtot and organized in a cellular structure - regions with

larger τtot tend to have smaller ve(2WT) and regions with thinner τtot tend to have

large ve(2WT).

4.4 Results and Analysis

4.4.1 Retrieval Closure

Before comparing the retrieval results from the two techniques, in this section

we first carry out a retrieval closure study to assess and understand the differences

between the retrieval results and the original LES cloud fields. This is a necessary

sanity check that will help us understand the accuracy and uncertainty of our re-

trieval routines. More importantly, this closure study will help us to interpret the
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Figure 4.1: The optical and microphysical properties (τtot,LES, re(2WT), and
ve(2WT)) of the LES cases examined in this study. The panels are arranged such
that each LES case appears row-wise and the different properties are appear column-
wise. Cloud-free masking in each of the images appears in gray.
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retrievals based on homogeneous cloud assumption when the LES cloud fields have

significantly inhomogeneous vertical profiles.

The bispectral retrieval closure comparisons in Figure 4.2 depict joint his-

tograms of re and τtot retrievals using both the 2.13 and 3.75µm SWIR bands

against the reference values derived from the LES fields, re(2WT), ve(2WT), and

τtot,LES. The two bispectral re retrievals, re(2.13µm) and re(3.75µm), are in agree-

ment with the LES ground-truth (Figure 4.2(a,b)) with strong correlations exceeding

0.95. The biases between these two retrievals and the LES properties differ slightly.

As expected, the different vertical weighting differences discussed in section 4.2,

the re(2.13µm) retrieval is typically smaller than the re(3.75µm) retrieval. Both

re retrievals have relatively small sub-micron mean biases compared to LES. The

mean absolute biases in this closure experiment are also less than 1µm. Note that

the mean regression biases reported throughout this study are stated relative to

the plotted axes as, µbias = ⟨y − x⟩ and µ|bias| = ⟨|y − x|⟩ (i.e., x and y denote the

axes). Additionally, it is important note a sampling limitations of this population,

as none of the LES scenes in this study have a mean cloud top re near 10µm. As

a consequence, there is an evident lack of sampling in this particular regime. The

two bispectral τtot retrievals, τtot(2.13µm) and τtot(3.75µm) in (Figure 4.2(c,d)),

are compared here in terms of percent difference. Each of these τtot retrievals also

reveal good correlations (R > 0.99), despite a slight high bias on the order of 2-

5%. As explained earlier in section 4.2, the bi-spectral method suffer a reduction of

sensitivity when clouds are optically thin. By sampling only LES columns that are

optically thick (τtot > 3) a significant improvement in the regression correlations of
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the two re retrievals (Figure 4.2(e,f)) is achieved. However, some outlier points still

remain. In particular, both re(2.13µm) and re(3.75µm) have some cases where the

retrieved values (10-30µm) are substantially larger than the corresponding re(2WT)

values (mostly around 5µm)). The cause of these outliers and some other differences

between the retrievals and LES fields will be discussed in detail in subsection 4.4.2.

The joint histograms in Figure 4.3 depict comparisons of the polarimetric

retrievals, re(pol) ve(pol), and τtot(pol), against corresponding LES properties. The

re(pol) retrieval compares very well to re(2WT) (Figure 4.3(a)), with a regression

correlation exceeding 0.98 and a mean bias of less than 0.1µm. The quality of this

retrieval closure test also supports the definition of re(2WT), as the polarimetric

retrieval is indeed well represented by the single-scattering 2WT vertical weighting.

In contrast, the polarimetric retrieval of ve(pol) reveals a regression against ve(2WT)

(Figure 4.3(c)) that does not perform quite as well. In this case the regression

correlation is much weaker (0.62) with a mean bias of −0.013. While the mean

bias is on the order of the ve LUT grid spacing, it is clear that the regression

correlation is poor because of a systematic low bias for ve(2WT) > 0.15.1 Comparing

only the population with ve(2WT) ≤ 0.15 reveals an improved correlation of 0.86

with negligible mean bias. The final retrieval product, τtot(pol) (Figure 4.3(e)),

indicates that more accurate a priori re and ve estimates have little impact on

the retrieval of τtot. As explained earlier in section 4.2, the polarimetric method

suffer a reduction of sensitivity when DSD is broad. This explains why limiting the

1The increased concentration of ve(pol) retrievals at ve = 0.3. is a result of the boundaries of
the retrieval space, ve = [0.01, 0.3]. This limitation is a consequence of the definition of the gamma
distribution in Hansen and Travis [1974]; for ve = 0.3 the size distribution becomes monotonic.
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Bispectral Closure Experiment

a) b)

c) d)

e) f)

Figure 4.2: Joint histogram regressions or re and τtot in all LES cases comparing the
bispectral retrievals to the physical LES properties. Panels (a) and (b) are regressions
of the bispectral re(2.13µm) and re(3.75µm) retrievals against the physical analogue
re(2WT). While panels (c) and (d) are regressions of the bispectral τ(2.13µm) and
τ(3.75µm) retrievals against the physical τtot(LES). While the final pair of panels,
(e) and (f), display the regression of the bispectral τtot(2.13µm) and τtot(3.75µm)
retrievals for only optically thick (τtot > 3). Note that in each panel the quality of
the correlation is quantified and the black and white population density iso-contours
are drawn surrounding 66% and 95% of the data respectively.
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regression population only to LES columns with ve(2WT) ≤ 0.15 (Figure 4.3(b))

increases the correlation and decreases the absolute bias. This appears to be an

indication of sensitivity to degradation of the supernumerary bow features for large

ve, features that are necessary for reliable re(pol) and ve(pol) retrievals. For ve(pol)

we find that by sampling LES columns that are optically thick (τtot > 3), there is

moderate improvement in the correlation and reduced biases (Figure 4.3(d). This

improvement stems from the correlation between the population of optically thin

clouds and high ve(2WT) (Figure 4.3(f)) that are found near cloud edges in the LES

scenes.

4.4.2 Retrieval Comparison at High Spatial Resolution

At the native spatial resolution of the LES (50 m) direct intercomparisons of

polarimetric and bispectral retrieval techniques offer the possibility of diagnosing

different sources of bias. The joint histograms of re retrievals in Figure 4.4 compare

the two bispectral retrievals, re(2.13µm) and re(3.75µm), to the polarimetric re-

trieval, re(pol), for all LES cases and observation geometries. The regression for the

comparisons of both re(2.13µm) (Figure 4.4(a)) and re(3.75µm) (Figure 4.4(b)) are

highly correlated (R ≈ 0.954) and have relatively small sub-micron mean biases. A

couple of notable features are evident in these regressions. (1) The sign of the mean

bias appears to be sensitive to the SWIR band selection. (2) There are numerous

statistical outliers with small re(pol) ≈ 5−9µm but broadly distributed re(2.13µm)

or re(3.75µm). One way to understand these features is to constrain the data set
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Polarimetric Closure Experiment
a) b)

c)

e) f)

d)

Figure 4.3: Joint histogram regressions of re, ve, and τtot in all LES cases comparing
the polarimetric retrievals to the physical LES properties. Panel (a) depicts the re-
gression of the polarimetric re(pol) retrieval against the physical analogue re(2WT),
while panel (b) is sub-selection of the same regression for low ve. Panel (c) depicts the
regression of the polarimetric ve(pol) retrieval against the physical analogue ve(2WT),
while panel (c) is a sub-selection of the same regression for thick clouds (τtot > 3).
Panel (e) depicts the regression of the polarimetric τtot(pol) retrieval against the phys-
ical analogue τtot(LES), while panel (f) is sub-selection of the same regression for low
ve. Note that in each panel the quality of the correlation is quantified and the black
and white population density iso-contours are drawn surrounding 66% and 95% of the
data respectively.
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to LES columns where both retrieval techniques yield reliable results. As discussed

previously, the bispectral retrieval is sensitive to biases for thin clouds (τtot < 3)

and the polarimetric retrieval is sensitive to biases for broad droplet size distribu-

tions (ve > 0.15). Based on these criteria (τtot > 3 and ve ≤ 0.15), the constrained

joint histograms (Figure 4.4(c) and (d)) feature much tighter regression relationships

(R ≈ 0.99) and reduced mean absolute biases are observed. These filters indicate

that the poorly correlated population corresponds to situations in which both re-

trievals are expected to suffer from significant biases. The retrieval regression can

be further improved if the bispectral retrieval is artificially provided with more com-

plete information about the shape of the droplet size distribution. Providing the

ve(pol) retrieval as an a priori assumption for the bispectral LUT can demonstrate

the sensitivity of the bispectral re retrievals to the ve = 0.1 assumption. To create

these new retrieval results we coupled the selection of the bispectral retrieval LUT to

the pixel-by-pixel value, thus making sure that the respective LUT had a matching

ve to the ve(pol) retrieval. The new re(2.13µm) retrievals (Figure 4.4(e)) are largely

unchanged from the ve = 0.1 results, although a slight increase in the two biases

indicates that ve = 0.1 was both an appropriate and sufficient assumption for the

re(2.13µm) retrieval. In contrast, the re(3.75µm) retrieval (Figure 4.4(f)) is shown

to benefit from this additional a priori information, improving the correlation and

reducing the small systematic low bias (≈ 0.25µm). The differences between the two

SWIR band retrievals can be explained in two ways. Firstly, the vertically weighted

DSD of the 2.13µm SWIR band might result in a broader DSD (i.e., a larger ve)

compared to the 3.75µm SWIR band, and therefore the results might be closer to
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the ones with the ve = 0.1 assumption. Alternatively, the R(2.13µm) reflectance

might simply be less sensitive to the broader DSD shape than the R(3.75µm) re-

flectance. Overall, these results demonstrate a feature well known to the remote

sensing community; the bispectral retrieval of re is not particularly sensitive to ve

[Nakajima and King , 1990]. Indeed, when comparing the coupled bispectral retrieval

of re to the polarimetric retrieval of re confirms that the advantage of retrieving ve

only changes the bispectral retrieval of re on sub-micron scales (i.e., it is appropriate

to neglect this parameter of the DSD for retrieval purposes). The slight improve-

ment demonstrates that when the two retrievals are compared on equal information

footing they can be nearly equivalent.

The origin of the broadly distributed high-biased bispectral retrievals in the

small droplet size regime (re(pol) ≈ 5µm) stems from the ATEX polluted case,

where such small droplets make up about 5% of the LES scene.2 A close examination

of this case reveals that there are no bispectral retrievals below 5µm, despite approx-

imately 5% of the cloudy pixels in the scene are characterized by re(2WT) < 5µm.

This feature is a consequence of the bispectral LUT state space3, which covers a

re range of 5–30µm. In contrast, the polarimetric retrieval space covers 1–30µm.

The differences between these two state spaces is not so much a matter of decision-

making, but is more reflective of complexities of the bispectral retrieval for small re.

To demonstrate this point panels (a) and (b) of 4.5 depict the cloud reflectances from

the ATEX polluted case (colors) within the respective bispectral LUT. It is obvious

2Additionally, ≈ 2.5% of the cloudy pixels in this scene exhibit values below 4µm.
3Note that the MODIS LUT extends its range down to 4µm, and in situations with multiple

solutions the larger retrieval value is selected.
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e

a) b)

c)

e) f)

d)

Figure 4.4: Joint histogram regressions of re retrievals for all LES cases comparing
the bispectral and polarimetric techniques. Panels (a) and (b) display the unfiltered
regressions of re(pol) against the re(2.13µm) and re(3.75µm) bispectral retrievals.
After introducing filters to these regressions to remove thin clouds (τtot < 3) and broad
droplet size distributions (ve > 0.15) panels (c) and (d) the retrieval intercomparison
improves. Panels (e) and (f) each replicate the results from the previous selection
criteria but additionally provide bispectral retrieval in this regression with ve(pol) as
an a priori for each retrieval. In each panel the quality of the correlation is quantified
and the black and white population density iso-contours are drawn surrounding 66%
and 95% of the data respectively.
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that the black isolines for τtot and re increasingly overlap with the standard LUT

space as τtot decreases. In this region of the state space, there are multiple solutions

for a single reflectance pair; one solution is representative of a small re (< 5µm,

extended LUT), while the other indicates a much larger re (≥ 5µm, standard LUT).

There is also a modest impact on τtot, but due to the curvature of the LUT this

impact is less severe. The overlapping region between the standard and extended

LUT is referred to as the multiple solution space and the amount of LUT overlap is

determined by both the observation geometry and the combination of the selected

spectral bands. Depending on the optical thickness, the larger re retrieval may be

significantly larger, because the extended LUT isolines cross numerous larger re iso-

lines in the standard LUT. The color of each scattered reflectance in Figure 4.5(a)

and (b) correspond with the associated re(SWIR) − re(2WT) retrieval bias maps

shown in Figure 4.5(c) and (d). This highlights that for optically thick clouds the

bispectral re retrievals exhibit only moderate retrieval biases on the order of ±1µm.

However, for very thin clouds (near cloud edge) the retrieval bias can increase signif-

icantly. For some of these thinner clouds the retrievals also fall within the multiple

solution space, so it is possible to attribute the very large biases to the presence of

ambiguous retrieval results. This also provides another explanation for why the re-

moval of optically thin (τtot < 3) observations significantly improved the bispectral

retrieval comparisons.

In contrast to the intercomparison of re retrievals, the τtot retrieval intercom-

parison in Figure 4.6 reveals very few differences between the bispectral and polari-

metric technique. This is not surprising, because the τtot(pol) retrieval is simply
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Figure 4.5: Panel (a) and (b) depict the standard bispectral LUT (light gray dashed
lines) for both SWIR bands with the scattered reflectance points for the ATEX pol-
luted LES case plotted overtop. The scatterplot is colored by the bias between the bis-
pectral retrieval and the physical reference (re(SWIR)re(2WT)), which is also shown
below as a spatial variability map. Note that some reflectance points are colored in
black to indicate retrieval failure due to falling outside the standard LUT space. In
addition to the standard LUT, an extended LUT including droplet sizes from 2–4µm
is included (black dashed lines), revealing an overlapping region of the two LUT for
smaller τtot referred to as the multiple solution space.
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Polarimetric and Bispectral Intercomparison - 
a) b)

Figure 4.6: Joint histogram regressions of τtot retrievals for all LES cases comparing
the bispectral and polarimetric techniques. Panel (a) and (b) display the τtot(2.13µm)
and τtot(3.75µm) retrievals respectively. In each panel the quality of the correlation
is quantified and the black and white population density iso-contours are drawn sur-
rounding 66% and 95% of the data respectively.

a reimplementation of the bispectral technique with constraints on re and ve (as

discussed in section 4.2).

4.4.3 Sensitivity to Unresolved Spatial Inhomogeneity

Unresolved spatial inhomogeneity affects the bispectral and polarimetric cloud

retrievals in very different ways. Comparing 100% overcast coarse resolution re-

trievals to the native resolution (50m) results demonstrates this difference clearly,

as illustrated in the panel (a) and (b) of Figure 4.7. As the retrieval resolution

coarsens (larger circles), the sub-pixel inhomogeneity index (Hσ) tends to increase

(redder color), and the re(2.13µm) retrieval suffers from an increasingly high bias

relative to the polarimetric retrieval. Compared to the re(2.13µm) retrieval the bias
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Figure 4.7: Bispectral and polarimetric cloud retrievals exhibit different sensitivities
to sub-pixel inhomogeneity even for 100% cloudy pixels. Panel (a) and (b) each
respectively demonstrate that the re(2.13µm) and re(3.75µm) retrievals diverge from
the polarimetric retrieval at coarse resolutions (size of circle) and with large sub-pixel
inhomogeneity, Hσ (color).

in the re(3.75µm) results is lower, although the trend is still clearly present.

To probe how unresolved inhomogeneity influences these two retrieval tech-

niques, we will examine a particularly inhomogeneous pixel from the ATEX clean

case at a very coarse resolution (800m). Focusing first on the bispectral retrieval us-

ing the 2.13µm SWIR band, the LUT scatterplot in Figure 4.8(a) reveals that there

is significant variability in the sub-pixel (i.e., 50m) VNIR reflectances, indicated by

a large value of the sub-pixel inhomogeneity index (Hσ = 0.5637). In contrast to the

variability of VNIR reflectances, the microphysical properties of this 800m pixel are

largely homogeneous, indicated by the narrow distribution of sub-pixel re(2WT)50m

(color of the points). The sub-pixel mean of < re(2WT) >50m= 19.23µm agrees

well with the mean of both sub-pixel retrievals, < re(2.13µm) >50m= 18.73µm and
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< re(pol) >50m= 18.92µm. This combination of optical inhomogeneity and micro-

physical homogeneity leads to an average reflectance (indicated by the black star)

for the 800 m pixel that falls significantly below the re = 20µm isoline (i.e., the

closest isoline to the mean sub-pixel retrievals). Thus, the coarse resolution 800 m

reflectance results in an 800 m bispectral retrieval with re(2.13µm)800m = 23.62µm,

which is biased high by ≈ 4µm. This effect is attributable to the well-documented

PPH bias induced by the curvature of the bispectral LUT [Zhang et al., 2016b, 2012,

2016a]. The PPH bias has a stronger influence on the 2.13µm retrieval compared

to the 3.75µm retrieval (Figure 4.8(c)) because the curvature of the LUT is more

pronounced.

The polarimetric retrieval has a fundamentally different relationship to the

unresolved sub-pixel inhomogeneity, as shown in the sub-pixel polarized reflectance

histogram in Figure 4.8(b). The reflectances in this figure have been binned by scat-

tering angle to demonstrate the 50m sub-pixel distribution of polarized reflectances

within the selected 800m pixel footprint. Within the plot there are also two curves,

shifted in amplitude away from the histogram for clarity, that display the mean 800m

multi-angular polarized reflectance and the corresponding 800m retrieved polarized

phase function. It is evident from this histogram and these curves that the mean

angular position of the supernumerary bow does not shift, indicating that there is no

significant difference between re(pol)800m, ⟨re(pol)50m⟩, and ⟨re(2WT)50m⟩. In con-

trast, there is clear variability in the amplitude of sub-pixel polarized reflectances.

This variability owes itself to both optical (τtot), and microphysical inhomogeneity

(i.e., ve(2WT) > 0.15) within the coarse resolution pixel. For thin clouds (τtot < 3)
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Figure 4.8: Selecting a particularly inhomogeneous 800m pixel how resolution and
inhomogeneity influence the bispectral and polarimetric retrieval in different ways.
Panels (a) and (c) depict the bispectral LUTs and 50m reflectances for the 2.13
and 3.75µm SWIR retrievals respectively. The scattered points correspond to 50m
reflectances with color corresponding to re(2WT), while the black star corresponds
to the 800m reflectance pair (the average of the 50m data). The polarimetric re-
flectance distribution histograms in panels (b) and (d) address how the high-resolution
(50m) reflectance distribution influences the polarimetric retrieval at coarse resolution
(50m). The two curves (plotted with a 0.02 reflectance shift for clarity) are the 800m
observed reflectance (black dashed curve) and the 800m retrieval (red solid curve). All
of these figures include statistics on the high-resolution averages of physical properties
and retrievals along with their coarse resolution counterparts for comparison.
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the supernumerary bow amplitude is dependent on both τtot and ve. With a fixed

ve and varying τtot the polarized reflectance converges towards an asymptotic maxi-

mum for optically thick clouds (τtot ≥ 3), a consequence of increasing depolarization

due to multiple scattering. Similarly, for a fixed τtot, reflectances corresponding to

ve(2WT) > 0.15 also produce decreased polarization in the primary and supernu-

merary bow features, as discussed in subsection 2.3.2. Despite the fact that both

types of inhomogeneity induce an asymmetric polarized reflectance distribution, we

find that these features do not systematically bias the ve(pol) retrieval in this case.

In fact, rather surprisingly, we find that the most important bias for the coarse

spatial resolution ve(pol) retrieval is the lack of sensitivity on ve(2WT) > 0.15, a

feature that was also present for the high spatial resolution retrievals. This find-

ing is also supported for polarimetric retrievals performed on sub-populations of

the polarized reflectance of this 800m pixel that removed populations of either the

ve(2WT) > 0.15 or τtot < 3 populations, removing either of them had little to no

impact on either the coarse resolution re(pol) or ve(pol) retrieval. Possible explana-

tions for this behavior will be discussed in section 4.4.

4.4.4 Sensitivity to Angular Resolution and Sampling

The polarimetric retrieval requires high-resolution multi-angular data to re-

solve the supernumerary bow features. To test how angular resolution influences

polarimetric retrievals we examined coarse spatial resolution re(pol)800m retrievals

at different angular resolutions. Each angular resolution (i.e., changing angular step
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size) was also convoluted with shifting angular sampling (i.e., changing the initial

angle). This convolution is necessary in order to account for all possible sets of scat-

tering angle observations associated with each resolution. These coarse resolution

retrievals were then compared to the original high angular resolution retrieval. The

results of this experiment (including all LES cases), are shown in Figure 4.9(a), re-

veal that angular resolution does not systematically bias re(pol) retrievals, although

angular resolutions exceeding 3◦ do result in a marked increase in retrieval variability

(i.e., a constant mean bias, but increased absolute bias). In contrast, Figure 4.9(b)

demonstrates that angular resolutions exceeding 3◦ lead to both high-biased ve(pol)

and increased retrieval variability.

a) b)Sensitivity of r
e
(pol.) to Angular Resolution Sensitivity of v

e
(pol.) to Angular Resolution 

Figure 4.9: Angular resolution sensitivity experiments examining polarimetric re-
trievals of re (panel a) and ve (panel b) for all LES scenes at the 800m spatial res-
olution. The color and size of scattered points denote the angular resolution of each
retrieval. The gray dashed lines denote a step in microphysical space of the ±0.5m
and ±0.01 for re and ve respectively.

The origin of the observed degradation in retrieval accuracy above 3◦ angular

resolution is demonstrated in Figure 4.10(a), where two different polarized phase

functions with re = 15µm and ve = [0.03, 0.2] (solid and dashed-dotted respec-
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tively). are sampled at an angular resolution of 3.5◦ (indicated by the gray vertical

lines). This resolution is coarser than the spacing between the supernumerary bow

maxima. As a consequence, this particular angular sampling nearly intersects both

of the polarized phase functions at nearly the same locations. This leads to a rela-

tively low cost-function during the best fit optimization in the polarimetric retrieval

algorithm. The lack of observed differences between these two curves leads to a lack

of ve information. However, under different angular sampling condition, shifting the

initial angle by a few degrees to the right, the supernumerary bow peaks of the low

ve curve would be sampled and the similarity between the observations of these two

curves would go away. This highlights an important feature of multi-angular po-

larimetry, poor angular resolutions can suffer increased biases depending on whether

or not important angles are sampled. Generalizing this result requires determining

the angular spacing of the supernumerary bow features for other re. With decreas-

ing droplet size the supernumerary bow features widen and dilate, making it easier

to resolve supernumerary bow features at coarse angular resolution. The peak-to-

trough distance of the supernumerary bow oscillations can be used to determine the

Nyquist-frequency, or in this case Nyquist resolution. In signal analysis, a sampling

resolution finer than the Nyquist frequency is required to appropriately resolve fea-

tures of an oscillatory signal. The corresponding Nyquist angular resolution, that is

required for resolving the supernumerary bow oscillations, changes with both re and

λ according to the behavior illustrated in Figure 4.10(b). Note that according to this

analysis a shorter wavelength would require finer angular resolutions. The Nyquist

angular resolution for = 0.865µm and re = 15µm is 3◦, providing an explanation
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Figure 4.10: Panel (a) features the polarized phase functions re = 15µm (red) at
ve = 0.03 (solid) and ve = 0.2 (dashed). Gray dashed lines and circles indicate a
3.4◦ observation sampling of the phase functions. The Nyquist rate is obtained by
measuring the peak-to-trough distance of the supernumerary bow oscillations. The
Nyquist resolution changes as a function of re and λ as shown in panel (b), where the
gray vertical line highlights the Nyquist resolutions required for the re = 15µm case.

for the increased uncertainty in re(pol) and ve(pol) LES retrievals exceeding this

angular resolution.

4.5 Summary and Discussion

The analysis in this study, which features comparisons of vastly different pas-

sive cloud property retrieval techniques, is facilitated by comparisons to the LES

cloud fields. Perhaps one of the most essential examples of this is the retrieval

closure experiment at the native LES resolution (50m). This experiment reveals

promising results for both the bispectral and polarimetric retrievals. For the bispec-

tral retrieval, the closure experiment shows significant biases for retrievals of very

thin clouds, as well as only small differences between the vertically weighted cloud

properties in each of the two SWIR bands (2.13 and 3.75µm). Meanwhile, for the
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polarimetric retrieval, the closure experiment demonstrates that the re(pol) retrieval

agrees well with the vertically weighted in situ properties of each LES scene. How-

ever, the ve(pol) retrieval exhibits persistent low biases due to a lack of retrieval

sensitivity to very broad droplet size distributions (i.e., ve(2WT) ≤ 0.15). The opti-

cal thickness retrievals from both methods are effectively the same, with the caveat

that the polarimetric technique performs the re(pol) retrieval as an a priori con-

straint on the τtot retrieval space. Regarding τtot, both bispectral and polarimetric

retrievals were found to have a small systematic high bias on the order of 2–5%.

The retrieval intercomparison of polarimetric and bispectral retrievals in this

study demonstrates that both techniques yield very similar results, especially when

the most reliable populations of cloud properties are selected for each method

(τtot > 3 and ve centered around 0.1). While the physical principles and measure-

ment requirements are vastly different, both retrieval techniques seem to be able

to capture similar information about re. These results agree with high-resolution

airborne observations obtained during the PODEX and ORACLES field campaigns,

where RSP and AMS microphysical retrievals are compared [Alexandrov et al., 2015].

These high spatial resolution field campaign observations indicate that the two re-

trieval techniques agree well to within the tolerances observed in this study. The

bispectral re retrievals are found to be moderately sensitive to ve in the 3.75µm band,

and less so in the less absorptive 2.13µm band. Coupling the retrieved ve(pol) to

the bispectral re(3.75µm) retrieval led to slight improvements in the re(pol) and

re(2WT) comparison. It should be noted that for MODIS cloud products the bias

due to the ve = 0.1 assumption does not substantially impact the re retrieval com-
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pared to other sources of bias (i.e., cloud inhomogeneity or 3-D radiative effects).

In addition, the MODIS Collection 6 cloud product includes uncertainty estimates

associated with the ve assumption. The intercomparison of the bispectral and po-

larimetric τtot retrievals indicates that the two produce very similar results. This was

to be expected, as the polarimetric technique also uses a bispectral LUT approach

to derive τtot. When the results from the two methods diverge, the observations

tend to be related to the thin cloud regimes.

The presence of a multiple solution space in the bispectral LUTs, where small

droplet sizes (re < 5µm) have the same reflectance as larger droplets, was shown

to induce numerous outliers resulting in a significant high bias in the bispectral

retrievals for both re and (to a lesser extent) τtot. This multiple solution space like-

wise impacts the MODIS operational products, since the bispectral LUTs used in

the MODIS collection 6 cloud products include theoretical re solutions as low as

4µm. However, for retrievals with multiple LUT solutions the MODIS product only

reports the larger re value, leading to a systematic bias if the observed cloud really

includes a population of small droplets. As a consequence, for thin clouds with

small droplet sizes one can expect the comparison of polarimetric and bispectral

retrievals to disagree. This strong high-bias for small re retrievals provides a plausi-

ble explanation for the large discrepancies observed in the small droplet size regime

in the intercomparison of MODIS and POLDER retrievals [Bréon and Doutriaux-

Boucher , 2005]. Absent a solution to this issue, future intercomparisons or combined

climatological datasets should be limited to retrievals of re(pol) exceeding 5–7µm

(depending on the respective bispectral LUT multiple solution space properties).
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At the coarse spatial resolutions of most satellite instruments, the dominant

source of bias between the polarimetric and bispectral re retrievals is attributable

to the influence of unresolved spatial inhomogeneity. In this study we found that

even for 100% cloudy pixels (at a coarse 800m horizontal resolution) the influence

of the PPH bias is significant, with the average re bias exceeding 1µm in the most

inhomogeneous LES scene (ATEX clean). Based on these results we expect that

the overall systematic bias observed in the MODIS and POLDER intercomparison

of moderate droplet size regimes may be attributable to the influence of this PPH

bias [Bréon and Doutriaux-Boucher , 2005]. Recently, great effort has been made to

account for the influence of the PPH bias on bispectral (MODIS) retrievals. The 2-D

Taylor expansion technique implemented by Zhang et al. [2016a] offers the possibility

of quantifying (and potentially correcting for) the impact of PPH bias on bispectral

retrievals. This approach requires high spatial resolution measurements in at least

one spectral band to obtain the sub-pixel reflectance variability, which is used to

determine corrections for the bias of re and τtot.

Sufficient angular resolution is one of the more important requirements of the

polarimetric retrieval technique. We find that resolving the multi-angular polar-

ized reflectance at a resolution coarser than the Nyquist angular resolution results

in greater uncertainty (re(pol) and ve(pol)) and biased (ve(pol)) polarimetric re-

trievals. The required angular resolution is dependent both on droplet size and

wavelength. Future cloud polarimetric instrumentation should consider these an-

gular resolution requirements. While we have not explicitly tested the so-called

super-pixel approach implemented for POLDER retrievals, our coarse spatial and
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angular resolution studies lead us to anticipate some biases induced by this tech-

nique. We would expect such an approach to further bias re(pol) retrievals low,

due to the lack of sensitivity to unresolved high-ve populations. In addition, this

current study indicates that re(pol) retrieval variance might increase, but the mean

bias may not increase significantly. However, if the there was significant correlation

between the unresolved re and ve populations within the observation footprint, the

mean re bias would be expected to suffer.

114



Chapter 5: The impact of 3-D radiative effects on passive cloud

remote sensing – Comparisons of total and polarized

reflectances and retrievals

Radiative transfer in 3-D inhomogeneous cloud fields has always proved to be

a complicated issue for passive cloud remote sensing techniques that are typically

restricted to 1-D cloud homogeneity assumptions. While a great amount of study

has gone into understanding 3-D radiative effects on total reflectances and on sub-

sequent bispectral retrievals, very few have examined the influence of 3-D radiative

effects on polarized reflectances and retrievals. Addressing this lack of understand-

ing, this study aims to contextualize 3-D radiative effects in polarized reflectances by

comparing total and polarized reflectances (and retrievals) to one another. Building

a foundation for understanding polarimetric 3-D radiative effects we focus on use

simple hypothetical models to study the coupled impact that cloud horizontal inho-

mogeneity and 3-D radiative effects can have on remote sensing. With hypothetical

models of clouds we can develop an understanding of 3-D radiative effects in total

and polarized cloud retrievals from two perspectives: The first focuses on ideal-

ized cloud cases, isolating simplified examples of horizontal radiative flux; while the

second examines more realistic inhomogeneous conditions by analyzing 3-D effects
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observed in a bounded-cascade fractal cloud model. Comparisons between the 1-D

and 3-D reflectances and retrievals are made in order to study horizontal photon

transfer and radiative smoothing. The differences between the behavior of polarized

and total reflectances are explored in particular, in addition to behavior of subse-

quent impacts on retrieval biases. The influence of 3-D radiative effects on polarized

reflectances is currently an area of significant interest with regard to forthcoming

satellite remote sensing technologies.

5.1 Overview

To facilitate passive remote sensing of cloud properties, it is typical to approx-

imate the inhomogeneous 3-D structure of real clouds into a simplified 1-D model

such that the radiative transfer process can be efficiently simulated. To that end,

clouds are typically considered to be both vertically and horizontally homogeneous

within each observation footprint. This assumption is known as the plane-parallel

homogeneity (PPH) assumption. In addition, it is assumed that there is no net

horizontal photon transport between individual pixels and, as such, each pixel is

independent of one another. This is known as the independent pixel assumption

(IPA). These assumptions can become problematic when the underlying cloud is

particularly inhomogeneous. When real clouds deviate from the simplified plane-

parallel IPA model, the cloud radiative properties (i.e., cloud reflectance) expected

based on 1-D radiative transfer modeling will be different from the observed cloud

radiative properties, which can in turn lead to retrieval artifacts. These deviations

116



of 1-D radiative transfer models from the real world 3-D cloud fields, and subse-

quent impacts on retrievals, are known as “3-D radiative effects” [Davies , 1978].

The importance of these 3-D radiative effects depend on numerous observation con-

ditions including observation and solar geometry [Davies , 1978; Loeb and Davies,

1996], cloud inhomogeneity [Zhang et al., 2012;Marshak et al., 2006], and the spatial

resolution of observations [Cahalan et al., 1997; Oreopoulos and Davies , 1998].

Most previous studies of 3-D radiative effects have focused on cloud opti-

cal thickness retrievals [Marshak et al., 1995; Loeb and Davies, 1996; Várnai and

Davies , 1999; Várnai and Marshak , 2002a], only few have studied the impacts on

cloud microphysics retrievals [Marshak et al., 2006; Zhang and Platnick , 2011; Zhang

et al., 2012]. Motivated by this, this study primarily focuses on cloud microphysical

properties (e.g., effective radius (re) and effective variance (ve) of the droplet size dis-

tribution). In addition, we are focused on both the bispectral and polarimetric cloud

retrievals. In contrast to the vast amount of work that has gone into understanding

3-D radiative effects observed in total reflectances [Marshak and Davis, 2005; Davis

and Marshak , 2010], there has been very little exploration of 3-D radiative effects

in polarized reflectances. The physical processes behind polarized radiative trans-

fer differ in a few significant ways from total reflectance. For example, polarized

reflectances are predominately the result of single scattering and only a few orders

of multiple-scattering events contribute to the observed polarized reflectance. The

work of Cornet et al. [2009] demonstrated that this low-scattering order dependence

led to 3-D radiative effects in cirrus that exceeded the 1-D reflectances by ≈ 8%

over all viewing angles. They also demonstrated for a step cloud case that the lo-
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cal influence of 3-D radiative effect near cloud edge can be quite significant, with

biases ranging from 25–150% depending on cloud thickness and viewing geometry.

The angular dependence of the polarized reflectance is required for the polarimetric

re(pol) and ve(pol) retrievals. Therefore the angular dependence of polarized 3-D

radiative effects could be of great importance to the accuracy of the polarimetric

technique. The polarimetric retrieval sensitivity study of of Alexandrov et al. [2012a]

found that the re(pol) retrieval was not significantly influenced by the 3-D radiative

effects. However they also found that the ve(pol) retrieval high-biased in retrievals

based 3-D reflectances. However, the focus of that work was on the quality of re-

trieval outcomes, not on the influence of 3-D effects, so their work did not focus on

the origins and impact of polarimetric 3-D effects much further.

This study explores the impact of 3-D radiative effects on total and polarized

reflectances and their subsequent impact on cloud property retrievals. Simulated

cloud reflectances in both 1-D (independent pixel) and 3-D scenes will be obtained

using the recently developed polarized Monte Carlo radiative transfer algorithm,

Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) [Wang

et al., 2017]. The hypothetical cloud model clouds studied here will be used to

develop the scientific knowledge required to study 3-D radiative effects in observed

total and polarized cloud reflectances. Additionally, the comparison of 3-D effects in

both bispectral and polarimetric retrievals will help to develop a greater understand-

ing of the differences between observations made by different satellite instruments.

This research will study the influence of 3-D radiative effects as follows: 1) hypo-

thetical cloud scenes of increasing complexity will be generated in subsection 5.3.1.
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2) The 1-D and 3-D reflectances of the hypothetical cloud models will be used to

demonstrate illuminating and shadowing effects, the angular variability of 3-D re-

flectances, and diagnose radiative smoothing (subsection 5.4.1 and subsection 5.4.3).

3) Finally the 1-D and 3-D reflectances can be used to generate bispectral and po-

larimetric cloud retrievals that can be compared to one another and understood in

context with the 3-D effects diagnosed in the previous step.

5.2 Background

One of the limitations of operational cloud retrieval algorithms is that 3-D

radiative transfer effects are simply not accounted for in most algorithms [Várnai

and Davies , 1999; Marshak et al., 2006]. There are two primary categories of 3-D

radiative effects: unresolved and resolved. As mentioned previously, operational

retrievals are forced to assume that clouds are horizontally homogeneous below the

resolved pixel scale. Below pixel resolution, unresolved cloud features can result in

retrievals that suffer from PPH biases as discussed in subsection 4.4.3. On the other

hand, the second category consists of horizontal inhomogeneities above detector

resolvable scales. In this category pixels in an inhomogeneous cloud field can be

influenced by 3-D scattering to/from neighboring pixels, violating the independent

pixel approximation (IPA). As a consequence, there is a trade off, high resolutions

are susceptible to the IPA biases associated with 3-D radiative effects, whereas low

resolution reflectances that do not clearly resolve the cloud scale are susceptible to

PPH biases [Davis et al., 1997a]. The focus of this study is on resolved 3-D radiative
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effects.

Transmission from or scattering into/out of neighboring pixels can lead to the

so called illuminating/shadowing effect [Marshak et al., 2006]. These effects are ex-

pressed in terms of the difference between 3-D and 1-D reflectances, where a positive

value of I3D − I1D corresponds to illuminating and a negative value with shadow-

ing. Such 3-D radiative effects are not only important for inhomogeneous or broken

clouds, but are also particularly relevant at cloud edges and during low solar illu-

mination. Focusing on the bispectral retrieval, Marshak et al. [2006] demonstrated

that, due to the non-linear relationship between reflectances and optical properties,

the illuminating and shadowing effects lead to microphysical retrieval biases. For

example, the shadowing effect increases re more than the illumination does. In con-

trast the illumination effect increases τtot more than the shadowing effect does. The

result is that for domain averages the values of re or τtot will be biased low/high for

illuminated pixels,

∆rille < ∆rshde , (5.1)

∆τ illtot > ∆τ shdtot . (5.2)

For high sun, the domain averaged 3-D reflectance is lower than predicted by 1-D

RT (due to radiative smoothing) and thus shadowing dominates [Davis and Mar-

shak , 2001]; while the opposite is true for low sun conditions [Várnai and Marshak ,

2001]. It follows that for high sun the shadowing effect dominates, positively biasing

bispectral re retrievals (on average). In contrast, for low sun, the illumination effect
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dominates leading to a positive bias in retrieved optical thickness (on average).

Multiple scattering plays an important role in enhancing 3-D radiative ef-

fects, because of this it is important to understand the influence of multiple scat-

tering on polarized reflectances. Typically, polarized reflectances are dominated

by single-scattering. This is a result of the orientation of the scattering plane of

each multiply-scattered photon becoming uncorrelated with one another, resulting

in unpolarized light. However, for photons initially scattered in the near-forward

direction the orientation of the scattering plane is largely preserved, and therefore

secondary scattering events can continue to contribute to the magnitude of the po-

larized reflectance. Throughout this work we will refer to this type of scattering as

polarimetrically coherent scattering1. For example, the primary and supernumerary

cloudbows are influenced significantly by multiple scattering, while other scattering

angles with lower polarized reflectances, are less sensitive to multiple scattering.

This is a consequence of enhanced coherent scattering in directions associated with

the primary and supernumerary bows. Forward scattered photons, with a preserved

scattering plane and therefore polarization state, are capable of traveling from one

pixel to another leading to an enhancement of the polarized reflectance these in

these special angles.

1Not to be confused with coherent (or elastic) scattering, which preserves the energy and mo-
mentum of the scattered photon.
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5.3 Models and Methodology

5.3.1 Cloud Models

5.3.1.1 Step Cloud Model

The step cloud case is one of the simplest hypothetical cloud observation sce-

narios, featuring a homogeneous optically thin-cloud environment (τthn = 0.1) sur-

rounding a region with a homogeneous step-wise jump in cloud optical thickness

(τthk = 10). Given that both the thin and thick regions have the same geomet-

rical thickness, H = 1 km, the extinction cross sections are βthn = 0.1 km−1 and

βthk = 10 km−1 respectively. In this model we can meaningfully address the impact

of horizontal photon transfer on reflectances and retrievals. Additionally, we use

this case to understand the differences between how single-scattering and multiple-

scattering influence the observed 3-D radiance field. The simplicity of the step cloud

case also offers the opportunity to obtain analytical solutions for the single-scattering

3-D cloud reflectance. Such an analytical model can be quite useful in explaining

the 3-D polarized reflectances because they are so strongly dominated by single-

scattering. Comparisons of these single scattering approximations to the modeled

3-D and 1-D reflectances will enable a more robust understanding of the horizontal

photon transport. For a nadir viewing zenith angle (µ ≡ 1), the theoretical single

scattering reflectance, ISS or −QSS, can be described as a piece-wise function of x,

breaking the scene into different sections sensitive to horizontal transport near the

locations of the illuminated (xill), and shadowed cloud edges (xshd),
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ISS(x, µ = 1, µ0) = A
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(5.3)

Where the coefficients in this model are defined as:

A ≡
ωF0Pij

4π

(

1

µ0
+

1

µ

)−1

, (5.4)

z′(x, xedge, µ0) ≡
x− xedge

tan θ0
, (5.5)

∆x3D ≡ H tan θ0 . (5.6)

Note that the coefficient A can be modified to calculate ISS or QSS depending on

whether the phase function or polarized phase function is substituted into Pij. The

variable z′ depends on both x and µ0, and is used to define the amount of radiation

transmitted into or out of the cloud edges located at xedge. Additionally, ∆X3D

defines the maximum distance away from the cloud edges that could be influenced

by single scattering horizontal transport effects across the cloud step.
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5.3.1.2 Fractal Cloud Model

The fractal cloud represents the next incremental step in our study toward

modeling a more realistic cloud, mimicking both the LWP distribution and the

spatial variability of an MBL cloud field. The spatial variability of clouds and

rain is self-similar across vast spatial scales [Lovejoy , 1982]. This self-similarity,

a property of fractals, allows us to model cloud spatial distributions using multi-

fractals. Taking advantage of this, realistic cloud spatial variability can be modeled

using the bounded-cascade fractal model described in Cahalan et al. [1994]. The

fractal model produces a spatial distribution of cloud LWP that is characteristic

of marine stratocumulus clouds. The recursive algorithm for generating this one

dimensional (horizontal variability) fractal cloud is as follows: Starting with a single

uniform cloud slab with fixed geometric thickness and mean LWP. This uniform

slab is then divided in half horizontally, with each containing half of the cloud mass.

Subsequently a fraction of mass, f0, is transferred in a random direction (from the

left to the right or vice versa) and into one of the new sub-divisions. With these

two slabs the process begins again, but this time dividing both of the new slabs in

half again. A random fractional mass transfer of, f1, is then exchanged between

the newly created quarters. The schematic diagram of this process from Davis and

Marshak [2010] is included for the sake of completeness in Figure 5.1(a). This process

then continues for many steps, for example, the fractal model in Figure 5.1(b) went

through n=10 iterations of this algorithm. The recursive relationship defining the

fractional mass transfer is defined in Equation 5.7, where f0 is a free parameter
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Figure 5.1: The schematic of the recursive algorithm used to generate the fractal
cloud model is shown in panel (a). Darker shades of gray indicate higher LWP. Refer
to the text for more details. (Schematic adapted from Davis and Marshak [2010]).
The particular fractal cloud scene used throughout this study is shown in panel (b),
with the left y-axis indicating the LWP and right y-axis indicating optical thickness.

that defines the resulting distribution of LWP. If we define f0 = 0.5 then the fractal

model reproduces a LWP distribution characteristic of a stratocumulus cloud.

fn = f0 2
−n/3 (5.7)

The fractal cloud LWP can then be used to determine τtot by assuming a vertical

profile of re(z) and using the relationship in Equation 3.1. In this study we will

assume that the cloud is vertically homogeneous, using the LWP relationship in

Equation 3.2. This assumption focuses our efforts on understanding 3-D radiative

effects and spatial inhomogeneity. The fractal cloud scene, shown in Figure 5.1,

displays LWP and τtot for a cloud with re = 15µm and ve = 0.02, a geometrical

thickness H = 1 km and a spatial resolution of 10m. Note that in some experiments

we will make use of alternate fractal model that has the same LWP and optical
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thicknesses but geometric thickness of H = 500m and a spatial resolution of 50m.

5.3.2 Radiative Transfer and Retrieval

The 1-D (independent pixel) and 3-D cloud radiative transfer simulations in

this study are each handled by the same radiative transfer model to avoid discrep-

ancy during intercomparison. To that end, we make use of the Monte Carlo radiative

transfer algorithm Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer

(MSCART) [Wang et al., 2017]. MSCART is a fast vector 3-D radiative transfer

algorithm that yields both total and polarized reflectances for complex cloud struc-

tures. Note that the modeled 3-D reflectances used throughout this study have been

collocated to the cloud top to correct for the impact of parallax on the 3-D radia-

tion fields. This is an important detail, as an accurate comparison of 1-D and 3-D

reflectances requires that both observations originate from the same location of the

cloud. The bispectral and polarimetric retrievals are performed in the same manner

as discussed previously in subsection 2.3.1 and subsection 2.3.2. Further details on

other sources of bias between the bispectral and polarimetric retrievals can be found

in chapter 4.

5.3.3 Quantifying Radiative Smoothing

A useful tool for understanding the influence of radiative smoothing is the

spatial Fourier transform, F . The spatial Fourier transform can be used to determine

the scale-dependent power spectral energy density, E , probing the behavior of
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different scale-dependent cloud phenomenon,

E(k) = |F (k)|2 , (5.8)

where the power spectral density expresses the relative contribution of each spatial

scale (k is the spatial wavenumber) to the spatial variability of the scene. In the

fractal cloud case it will be useful to study the power spectral density (PSD) of the

cloud LWP and reflectances, which often exhibit a power law sensitivity to spatial

scale,

E(k) ≈ k−β , (5.9)

where β is referred to as the spectral slope, defining the steepness of the energy

cascade in the PSD. Cloud physical properties have a PSD that follows Kolmogorov’s

β = 5/3 law for energy distribution in a turbulent fluid [Kolmogorov , 1941]. In the

absence of horizontal radiative flux, cloud reflectances also follow a β = 5/3 ≈ 1.66

spectral slope over all scales. For example, the power spectrum of the fractal cloud

LWP (in Figure 5.2) used in this study has a value of β that quite close to 5/3. The

fractal model reproduces this spectral variability because of the 2−n/3 dependence

in Equation 5.7, other power law dependencies would produce different spectral

slopes. The value of β is determined by fitting a linear curve to the log-log plot

of E(k). Obtaining a good curve-fit is nontrivial, and requires aggregating some

of the high spatial-frequency data to appropriately account for the limited amount
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of low spatial frequency data [Davis et al., 1997b]. This is accomplished by first

creating octave bin averaged PSD’s that are then used to obtain a best fit curve

that defines β. The details of this bin-averaging approach are described in section 3

of Schröder et al. [2004] as well as appendix A of Davis et al. [1996]. With increasing

horizontal photon transport, the cloud reflectances at small scales (typically < 1 km)

the PSD will sometimes exhibit a steeper power law relationship with βs > β due

to the erosion of small scale features caused by radiative smoothing. In constrast,

the large scale cloud optical properties continue to follow the β = 5/3 relationship.

The spatial scale where this change in the variability of cloud optical properties

occurs is known as the scale break, ξ. The scale break is useful in determining

the resolution below which 3-D radiative effects have significant influence over cloud

reflectances [Schutgens and Roebeling , 2009]. The theoretical work in Marshak et al.

[1995] led to the determination of a relationship between the transport mean free

path (lt = [(1− g)σext]
−1) in fractal clouds and the expected ξ of reflectances from

a conservative scattering medium,

⟨ξ⟩ ≈
√

⟨lt⟩ ⟨H⟩ =
⟨H⟩

(1− g) ⟨τtot⟩
. (5.10)

For a moderately absorbing medium, this result was studied theoretically inMarshak

et al. [1999] and numerically in chapter 12.4.2 of Marshak and Davis [2005]. These

works demonstrated that increasing the absorption decreased the length scale of

the scale break, due to the the role that absorption plays in decreasing multiple
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Figure 5.2: Power spectral density of the LWP in the fractal cloud model scene.
The scattered blue points correspond to the original PSD. Whereas the red scattered
points correspond to the octave-bin averaged PSD that is used to determine the linear
best fit. Note that the theoretical spectral slope for MBL clouds and this fractal model
is β ≈ 5/3.
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scattering (and therefore the transport mean free path).

ξ (ω̄) > ξ (ω̄′) , if ω̄ > ω̄′ . (5.11)

In addition to radiative smoothing, roughening of the scene properties can oc-

cur under certain observation conditions [Marshak and Davis, 2005]. For example,

when the SZA is very large radiative roughing is observed at intermediate scales

near the scale break. Additionally the intensity of radiative roughening is depen-

dent on absorption, with smaller ω̄ corresponding to increased radiative roughening.

Radiative roughening is characterized by a small (β < 5/3) or neutral (β = 0) the

local slope in the PSD near the scale break. The behavior of radiative smoothing

and roughening in the polarized and total reflectances will be explored throughout

subsubsection 5.4.3.1.

5.4 Results and Analysis

5.4.1 Step Cloud Reflectances

The step cloud model serves as a simple demonstration of 3-D radiative effects

related to horizontal photon transport and the violation of the IPA. At a spatial

resolution of 10m, the step cloud case has significant horizontal radiative flux –

violating the IPA. Both the 1-D and 3-D reflectances of total and polarized light

scattered from the step cloud model are depicted in Figure 5.3. These modeled

reflectances are shown for SZA = −60◦, VZA = 0◦, and RAA = 0◦, relative to the
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scene this geometry places the sun to the left of the step. It should be noted that this

nadir viewing geometry is convenient because it can be compared to the theoretical

ISS in Equation 5.3. One of the clearest features of the step cloud reflectance is

the region on the sunward side of the step cloud that has a significantly brighter

reflectance in the 3-D model due to illuminating effects. In this case, the light

entering the τthn region ends up being transmitted into the τthk region, increasing

the scattered light from the cloud step. This results in an increased photon flux

across the cloud step that can then lead to multiply-scattered enhancements. For

example photons that multiply scatter back out of the τthk region can illuminate the

τthn region. Or multiple scattering can transmit these illuminating photons further

into the τthk region, spatially broadening the peak of the illuminated reflectance. In

addition to these illuminating effects, the side of the step cloud opposite the sun

has a reduced 3-D reflectance associated with shadowing effects. In this case, the

light entering the thick region of the cloud near cloud edge, has some of its photons

absorbed or scattered away in the process of transmitting from the τthk and into

the τthn region. This transmission loss on the shadowed side leads to a significantly

reduced reflectance on the sunward cloud side. Both the illuminating and shadowing

effects observed in the step cloud are largely a consequence of geometry, depending

largely on the cloud geometrical thickness, the solar zenith angle, and the ratio of

τthn/τthk. The illuminating and shadowing features are present in both total and

polarized reflectances as well as all the spectral bands studied here – though the

particular features of these effects may differ.

Focusing first on the bispectral total reflectances in Figure 5.3(a–b), the sig-
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VNIR Reflectance (0.865 µm)

SWIR Reflectance (2.13 µm)

SWIR Reflectance (3.75 µm)

Polarized VNIR Reflectance (0.865 µm)

a)
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x - km

Figure 5.3: Step cloud total reflectances for λ = 0.865, 2.13, and 3.75µm in panel
(a), (b) and (c) respectively. All reflectances are observed at the following geometry:
SZA = 60◦, VZA = 0◦, and RAA = 0◦. In addition to the total reflectances, the
polarized reflectance for λ = 0.865µm is in panel (d). Each panel includes 1-D (red)
and 3-D (blue) reflectances as well as the theoretical ISS (black) in Equation 5.3.
Note that the ISS has been adjusted and scaled to match the pattern of the modeled
(multiple scattering).
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nificant multiple scattering in the VNIR band (0.865µm, Figure 5.3(a)) leads to a

spatially broadened illuminating effect. As discussed previously, multiple-scattering

can enhance 3-D radiative effects by increasing horizontal transfer into and out of

the cloud step. In contrast, absorption reduces multiple scattering decreasing hor-

izontal transfer. As a result, the absorbing SWIR bands (2.13µm and 3.75µm,

Figure 5.3(b) and (c) respectively) exhibit illuminating shadowing effects that are

sharper, and less spatially broadened. This dependence on the single scattering

albedo indicates that strongly absorbing bands, or reflectances dominated by single

scattering (i.e., polarized reflectance) will reduce the broadness of illuminating and

shadowing effects. However, this does not mean that the influence of 3-D effects

in these bands is lessened, because the relative bias between the peak illuminat-

ing reflectance and the 1-D reflectance increases with increased absorption. On the

shadowed side of the step cloud the influence of absorption is again evident. Ap-

proaching the the transition from the thick to thin regions there is a dip in the

reflectance – a consequence of horizontal flux due to transmission out of the thick

cloud. The magnitude of this transmission effect is a function of absorption, because

less light is transmitted in strongly absorbing spectral bands.

Compared to total reflectances, the 0.865µm polarized reflectance in Fig-

ure 5.3(d) exhibits illuminating and shadowing effects that are similar, though

sharper in magnitude and less broad in spatial extent. The relative magnitude of this

peak is more than double the presumed 1-D polarized reflectance at cloud edge. At

first glance, there is a lot of similarity between the polarized reflectance and the over-

all shape of the total reflectance in the strongly absorbing 3.75µm band – supporting
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Illuminating Side Shadowing Side
b)a)

Figure 5.4: The angular features of the polarized reflectance are influenced 3-D
effects near the illuminated side (panel (a)) and the shadowed side (panel (b)). Red
curves correspond to reflectances within the thick cloud and blue curves correspond to
reflectances that are within the thin cloud. The dashed curves are slightly displaced
(50–100m) to either side of the cloud edge (black curve). The solid red and solid blue
lines correspond to the 1-D plane parallel reflectances.

the idea that strongly absorbing bands have single-scattering-dominated 3-D effects.

Strictly speaking, the comparison between strongly absorbing total reflectance and

polarized reflectances could be problematic. For one, coherent polarimetric scatter-

ing is unlike absorption, which absorbs photons irrespective of scattering geometry.

In contrast, the dependence of the polarimetrically coherent reflectance on scatter-

ing angle leads to the multiple scattering sensitivity in polarized reflectances (as

discussed in section 5.2). To that end, Figure 5.4 reveals that the influence of

3-D effects (illuminating and shadowing) on polarized reflectances is intrinsically

dependent on viewing angle. This figure demonstrates clear enhancements to the

polarized reflectance in primary, secondary, and supernumerary bow features on the

illuminating side of the cloud. In contrast, the 3-D effects on the shadowed side are

less stark and extensive, but there are some impacts within 50m of cloud edge that

influence the back-scattering more than the cloudbow features.
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a)

b)
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.

Figure 5.5: The spatial and angular dependency of the 1-D and 3-D polarized
reflectance of the step cloud scene is shown in panel (a) and (b) respectively. The
bias between the two reflectances is introduced in panel (c). Viewing angles that
correspond to the scattering geometries of the primary and supernumerary bow are
highlighted with dashed black lines.
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Taking this analaysis a step further, the angular and spatial dependence of

these 3-D effects is fully examined in Figure 5.5. This examination also demonstrates

that the primary cloud bow (at VZA = 0◦) suffers the greatest enhancement due to

illumination. Some of the observed VZA dependence stems from the parallax effect.

For example, a really oblique viewing angle of VZA = −60◦ looking at the cloud

reflectance at 1 km observe a larger optical optical path because it is viewing through

the thin cloud region and into the thick cloud region. For a polarized reflectance

this parallax effect can be important if the thin cloud region observed has τtot < 3

because the additional optical path length can increase the polarized reflectance.

Note that while, the importance of this parallax effects is sensitive to cloud top

height, we have not explicitly explored that concept here.

5.4.2 Step Cloud Retrievals

Performing bispectral and polarimetric cloud retrievals on the step cloud re-

flectances we can begin to diagnose how horizontal photon transfer influences cloud

retrievals. Focusing on the bispectral retrievals first, we see in panel (a) and (b) of

Figure 5.6 that the bispectral retrieval of re(2.13µm) and τtot(2.13µm) are both in-

fluenced by 3-D effects near the illuminating and shadowing side of the cloud scene.

The significant increase in the 0.865µm reflectance on the illuminating side results

in a over-estimated bump in the retrieved τtot(2.13µm). While the shadowed side

on the other hand is darkened, reducing the τtot retrieval and in one case near cloud

edge reducing it so much that it falls outside of the bispectral LUT-space resulting
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in a failed retrieval.

The bispectral re(2.13µm) retrieval also exhibits 3-D effects that are depen-

dent on the 2.13µm reflectance biases observed previously. On the illuminating side

of the thick-cloud region we observe a decrease in the re(2.13µm) retrieval because

of the increased reflectance, I(2.13µm). The bispectral retrieval uses droplet ab-

sorption to infer re, so an increase in the I(2.13µm) 3-D reflectance is construed

here as a reduced droplet size because smaller droplets are less absorptive. As is ev-

ident in, Figure 5.6 the τtot retrieval largely follows the behavior of the I(0.865µm)

reflectance, while the bispectral re retrieval has biases associated with 3-D effects

that are dependent on the both the VNIR and SWIR reflectances. This is evident

in the region just outside the thick cloud on the illuminating and shadowing side.

In this region, some multiply-scattered I(0.865µm) photons are able to either scat-

ter from the τthk region and into the τthn region. This source of increased VNIR

reflectances increases the τtot(2.13µm) retrieval moderately, but also increases the

re(2.13µm) retrieval. This occurs because the bispectral LUT exhibits a strong cor-

relation between VNIR and SWIR reflectances when τtot is small, resulting in biases

due to 3-D effects associated with either spectral band. As discussed previously in

chapter 4 this region of the LUT is a source of numerous retrieval errors. It should

also be noted that the noisiness in the re retrieval in the thin cloud region is likely

attributable to small Monte Carlo fluctuations in the reflectances that are exacer-

bated by the sensitivity of this region of the LUT to even small changes in cloud

reflectance.

In contrast to the bispectral retrievals, the polarimetric retrieval of re(pol) in
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Bispectral Step Cloud Retrievalsa)

b)

Figure 5.6: The 1-D and 3-D step cloud model retrievals using the bispectral
(2.13µm) (panel a) and polarimetric (panel b) techniques. Note that the original
properties of the scene are re = 10µm, τthk = 10, τthn = 0.1.
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the step cloud case is more spatially consistent. The re(pol) retrieval is accurate

throughout most of the scene, but has a small < 1µm dip near the illuminating

cloud edge to the left of the thick cloud. There is another jump very slight change

in the retrieval near the shadowed cloud side at 12 km. This is consistent with

the results in Figure 5.4(a), where we saw the positions of the supernumerary and

primary bows were very stable even near the cloud edges. In contrast, the ve(pol)

retrieval appears to sensitive to the step cloud edges, with a jump down to a lower

ve just before the cloud step at 2 km and then a rapid increase within the thick

illuminated cloud edge. On the shadowed cloud edge, ve drops to it’s lowest value

as the supernumerary bow peaks are depressed (as demonstrated in Figure 5.4(b)).

Within the cloud, the ve(pol) retrieval oscillates between two grid point values at 0.02

and 0.03. This oscillation could be an artifact of the retrievals sensitivity to noise in

the 3-D monte carlo reflectances. In practice, observational ve(pol) retrievals behave

in a similar manner, with locally variable oscillations [Alexandrov et al., 2015].

The τtot(pol) retrieval is another story. This retrieval, which is based on the

constrained bispectral LUT approach, discussed in subsection 2.3.2, largely shares

the same sensitivity to 3-D effects present in the bispectral τtot retrieval. Because

these retrievals are effectively the same, the 3-D effects induced in the τtot(pol) follow

the same behavior as the τtot(2.13µm) retrieval discussed here and throughout the

literature [Várnai and Marshak , 2002b].
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a)

b)

c)

Figure 5.7: Polarimetric retrievals of re(pol), ve(pol), and τ(pol) (panel a,b, and c
repsectively) for the 3-D reflectances observed in the step cloud model. Note that the
original properties of the scene are re = 10µm, ve = 0.02, and τthk = 10, τthn = 0.1.
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5.4.3 Fractal Cloud Reflectances

The spatial variability of the step cloud is too simplified to extend our under-

standing of 3-D effects much further. The fractal cloud scene introduces the sort of

spatial inhomogeneity in cloud LWP and optical thickness required for a more rigor-

ous study. To that end, we first analyze the spatial variability of the nadir viewing

total reflectances of the fractal cloud scene in Figure 5.8 for SZA = −60◦. These

nadir viewing reflectances make it clear that there are significant differences between

the 3-D and 1-D reflectances for this inhomogeneous cloud scene. For very large SZA,

the influence of shadowing and illuminating effects dominates over the influence of

radiative smoothing. This is evident in the I(0.865µm) band, where large-scale

illuminating/shadowing effects are evident. In this case, higher reflectances appear

on sunward side of thick cloud regions and lower reflectances on the shadowed side.

Even for this really oblique SZA, radiative smoothing still dominates 3-D effects

at small-scale. For example, there is a clear reduction in the high-frequency os-

cillations of the 1-D I(0.865µm) total reflectance due to radiative smoothing. In

the more strongly absorbing bands like I(2.13µm) and I(3.75µm) this high SZA

case leads to significant roughening of large scale features due to the impact of the

shadowing/illuminating effects at the large scale.
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3.75 µm

0.865 µm

2.13 µm

0.865 µm

a)

b)

c)

d)

Figure 5.8: Nadir viewing fractal cloud total reflectances for λ = 0.865, 2.13, and
3.75µm in panel (a), (b) and (c) respectively. All reflectances are observed at the
following geometry: SZA = 60◦, VZA = 0◦, and RAA = 0◦. In addition to the total
reflectances, the polarized reflectance for λ = 0.865µm is in panel (d).
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The most extreme example of spatial roughening is observed in the polarized

reflectances. The 1-D polarized reflectance is nearly constant throughout this scene,

but the 3-D polarized reflectances have significantly higher spatial variability. As

demonstrated in the step cloud study, the angular variability of 3-D polarized re-

flectances is significantly different from 1-D polarized reflectances. To that end, we

can address the angular and spatial variability of the polarized reflectance in the

fractal cloud scene in Figure 5.9 in the same manner as we did for the step cloud.

One consequence of the microphysical homogeneity of the scene is that the 1-D po-

larized reflectance field is nearly constant throughout all the regions of the cloud and

at all viewing angles. The only exception to this is in the thin regions with τtot < 3

where the influence of multiple scattering introduces subtle differences in 1-D re-

flectance bow features before saturating around τtot > 3. This means that nearly all

of the variability in the bias plot in Figure 5.9(c) is a result of the 3-D reflectance

field. The bias between 3-D and 1-D reflectances is shown here as a spatial/angular

map, displaying how the spatial inhomogeneity of optical thicknesses influences the

angular scattering features of the cloud. There are few important features in the

angular and spatial variability of thsi bias:

• The magnitude and variability in the bias between 3-D and 1-D reflectances

is again greatest in the primary and supernumerary cloudbow features.

• The locations of large spikes in the τtot appear to define boundaries between

illuminating and shadowing features, a finding consistent with the step cloud

case.
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Figure 5.9: The spatial and angular dependency of the 1-D and 3-D polarized
reflectance of the fractal cloud scene is shown in panel (a) and (b) respectively. The
bias between the two reflectances is introduced in panel (c). Viewing angles that
correspond to the scattering geometries of the primary and supernumerary bow are
highlighted with dashed black lines.
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• For a scene with homogeneous re and ve, the bias between 3-D and 1-D re-

flectances is much smaller at viewing angles where the polarized phase function

−P12 crosses zero (e.g. 20◦).

5.4.3.1 Radiative Smoothing and Roughening

The reliable spectral slope of the fractal scene (β = 5/3) allows us to test be-

yond simple illuminating/shadowing effects, but can allow us to probe the behavior

of radiative smoothing. The power spectral density (PSD) can help diagnose these

3-D effects in the fractal cloud case2. As described in subsection 5.3.3, the PSD can

identify the characteristic scale break associated with radiative smoothing caused

by horizontal photon transfer. In this section we will focus first on the total re-

flectance, where known features of the 3-D reflectance PSD’s can be demonstrated.

The PSD’s for three different viewing angle geometries (VZA−60◦ (a), VZA = −20◦

(b), and VZA = 0◦ (c)) are shown in Figure 5.10. Examining the angular variabil-

ity of the PSD allows us to develop an understanding how the smoothness of the

scene changes with viewing geometry. Numerous studies discuss reflectance scale

breaks for nadir viewing geometries [Davis et al., 1997b]. This is perhaps because

the influence of radiative smoothing dominates in nadir viewing geometries over

the influence of illuminating/shadowing 3-D radiative effects. However, there still

has not been much discussion of viewing angle dependence of the cloud reflectance

PSD. These results indicate that the location of this scale break and the small-scale
2Note that the fractal case used in this section of the study has a different aspect ratio, with

resolution (∆x = 50m) and cloud geometrical thickness (H = 50m) altered to span an appropriate
range of spatial scales in order to resolve scale breaks.
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Figure 5.10: Spectral power distributions of the fractal cloud scene total reflectances.
These PSD’s demonstrate that for VZA = −60◦, VZA = −20◦, and VZA = 0◦ (panel
a, b, and c respectively) the PSD displays different spectral slope and scale break
properties. For more information on interpreting these figures, refer back to Figure 5.2
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Figure 5.11: Panel (a) displays the angular variability of the large scale (βL) and
small scale (βS) spectral slopes. Panel (b) depicts the scale break defined using the
large scale and small scale curve-fits.

spectral slope (associated with radiative smoothing) are highly dependent on the

viewing geometry. Analyzing all of the viewing angle geometries, we can obtain the

VZA dependence of the small and large-scale spectral slopes, in addition to the an-

ticipated scale break. To that end, Figure 5.11 reveals that the difference between

the small and large scale spectral slope plummets near nadir-viewing geometries.

For most viewing geometries, the large scale spectral slope is approximately similar

to the expected k−5/3 relationship, however the small scale variability diverges from

this behavior when there is significant radiative smoothing. In addition, the scale

break (ξ) calculated using the spectral slopes, indicates that the scale-break near

nadir is larger than the minimum scale break observed at VZA ≈ −20◦ (this VZA

corresponds to the primary bow scattering angle). In addition, the rapid decrease

of the small scale spectral slope for large viewing angles leads to scale breaks that

become large and probably non-physical.
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At oblique viewing geometries (i.e. ±60◦) the fractal cloud case sometimes

exhibits more than one scale break regime (refer to Figure 5.10(a)). One scale

break around ≈ 1 km and another approaching 100m resolution. The presence

of this small-scale break is associated with a very small spectral slope (β) and

can result in contamination of the spectral slope fit. These flat small-scale slopes

are characteristic of spectral “white noise”, indicating that these spatial scales are

increasingly uncorrelated and equally probable.3 One way to test these ideas is to

run a small-window smoothing filter through the reflectances at −60◦ and observe

how the PSD changes. If it is truly a noisy signal then we will find that the small-

scale averaging window does not alter the PSD at these small scales. However, we

find that the PSD is indeed modified after applying this filter. Given this result,

it is most likely that this white noise is associated with Monte Carlo noise in the

modeled reflectances at these oblique viewing angles. Note that for this directly

back-scattering viewing geometry such Monte Carlo noise is common.

To our knowledge an examination of the power spectral density of polarized

cloud reflectances has never been performed. We find that the PSD of the polarized

reflectance, behaves in a significantly different manner than the total reflectance or

cloud LWP field, with a few characteristic properties:

• The small-scale spectral slope in the primary and supernumerary cloudbow

angles exhibits radiative smoothing similar to the total reflectance.

• At nadir viewing, βS = βL ≈ 5/3, despite exhibiting roughening at intermedi-

3It is also interesting to note that in signal analysis, stochastic signals with spectral slopes of -2
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Figure 5.12: Power spectral distributions of the fractal cloud scene polarized re-
flectances. These PSD’s demonstrate that for VZA−60◦, VZA = −20◦, and VZA = 0◦

(panel a, b, and c respectively) the PSD displays different spectral slope and scale
break properties. For more information on interpreting these figures, refer back to
Figure 5.2

ate scales.

• At intermediate scales there is typically a more pronounced knee, associated

with roughening (rather than smoothing), indicating that polarized reflectance

fluctuations at this scale are greater than those of optical depth.

• For viewing angles where Q ≈ 0 the small scale slopes become flatter, this

could be an artifact of Monte Carlo noise.

The variability of the spectral slopes for the polarized reflectance is shown in

Figure 5.13. These results demonstrate that the primary and supernumerary bow

spectral slopes behave like the total reflectance, with a large-scale spectral slope

are described as “brown(ian) noise” because the spectral slope -2 is characteristic of the diffusion
length scale of Brownian stochastic signals.
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similar to β = 5/3 and a smoothed small-scale spectral slope. This similarity is

largely the result of these cloudbow features exhibiting the greatest sensitivity to

τtot variability. We were able to confirm that this feature was a function of the

cloudbow scattering angle and not VZA by identifying the same feature in the

PSD for SZA = −40◦ at different VZA that also corresponded to the cloudbow

features for that solar geometry. The constant β = 1.6 ≈ 5/3 slope at nadir viewing

reveals a promising feature of polarized reflectances. For example it could possibly

be used to provide a method for probing the scaling features of the physical scene

via remote sensing, without the influence of radiative smoothing. Again, we tested

the SZA dependence of this feature to determine if this was a scattering angle

dependent or nadir viewing feature of the polarized reflectance. Examining the

SZA = 40◦ polarized PSD revealed that the viewing angle where the small and

large-scale slopes cross moved to VZA = +20◦, an indication that this too was a

scattering angle dependent phenomenon.

The presence of the pronounced roughening at intermediate scales makes it

algorithmically difficult to determine the scale break for the polarized reflectance

PSD. By visual inspection, this intermediate roughening scale between large and

small scale variability consistently occurred around 1 km. It has been demonstrated

that for total reflectance PSD’s, increased absorption and large SZA led to greater

roughening at intermediate scales (refer to fig 12.19 in Marshak and Davis [2005]).

For a strongly absorbing/depolarizing reflectance, this roughening is a characteristic

of the domination of single-scattering illuminating and shadowing effects over the

multiply-scattered radiative smoothing effects. The roughening of the PSD for po-
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Figure 5.13: The angular variability of the large scale (βL) and small scale (βS)
spectral slopes. Panel (b) depicts the scale break defined using the large scale and
small scale curve-fits. Note that the oscillations in the small scale slope between
V ZA = −20◦ and −40◦ are associated with the primary and supernumerary cloud-
bows.

larized reflectances is likely similarly related to the importance of single-scattering,

and the scale where roughening occurs is likely associated with a depolarization

length-scale. Further research is required in order to develop this idea further with

regard to polarized reflectances.

5.4.4 Fractal Cloud Retrievals

Performing bispectral and polarimetric retrievals on the fractal cloud model

will help to illustrate how radiative smoothing and roughening can impact the re-

trievals in the spatially inhomogeneous cloud scene. The results of these retrievals

are shown in Figure 5.14. Where it is evident that both the bispectral τtot(2.13µm)
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a)

b)

Figure 5.14: Bispectral retrievals of fractal cloud properties for SZA = −60◦ and
V ZA = 0◦. There are clear, systematic biases in the re(2.13µm) retrieval (solid black
line) and re = 15µm (blue dashed line). The τ(2.13µm) retrieval on the other hand
is doing comparatively better.

and re(2.13µm) suffer from 3-D radiative effect biases. In the case of τtot(2.13µm)

these biases largely follow the spatial structure of the I(0.865µm) reflectances in

Figure 5.8(a). The retrieval biases observed here are expected in such low-sun con-

ditions dominated by illuminating and shadowing effects.

For the re(2.13µm) retrieval, shown in Figure 5.14(b), the illuminating and

shadowing effects of both the I(0.865µm) and I(2.13µm) reflectances influence the

retrieval. As discussed previously for the step cloud case, in thick cloud regions, the

illuminating effects in the SWIR band dominates the re bias leading to re < 15µm

(for example, in the thick regions near 2 km and 8 km). Whereas in the thin cloud

regions, the co-variability of the shadowing effects in both the VNIR and SWIR

leads to an re bias with re > 15
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Previously, the polarized reflectances in Figure 5.9(c) revealed strong sensitiv-

ity to 3-D effects in certain scattering angles. However, despite this the polarimetric

retrievals in Figure 5.15 demonstrates far less sensitivity to the highly inhomoge-

neous cloud field. For example, the re(pol) retrieval in Figure 5.15(a) retrieval is

highly stable throughout the retrieval scene. This result is consistent both with our

own results in the step cloud case as well as other studies [Alexandrov et al., 2012a].

On the other hand, ve(pol) retrieval in Figure 5.15(b) again indicates some instabil-

ity, leaping between two possible solutions for ve. This variability, the retrieval does

not suffer large biases. In section 5.5 we will discuss reasons why the polarimetric

ve(pol) retrieval does not exhibit any variability despite clear impacts on the 3-D

polarized reflectances.

5.5 Summary and Discussion

In the step cloud case the broadness of the illuminating or shadowing features

were found to be dependent on multiple scattering, the single scattering albedo, and

depolarization. This dependence on the single scattering albedo leads us to believe

that strongly absorbing bands, or reflectances dominated by single scattering (like

the polarized reflectance) will reduce the broadness of illuminating and shadowing

effects. However, despite the spatial extent of 3-D effects being lessened for these

absorbing and depolarizing bands we also found that the local illuminating and

shadowing effect biases were more severe. We also demonstrated that the influence

of 3-D effects in polarized reflectances was highly dependent on viewing geometry,
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Figure 5.15: Polarimetric retrievals of re(pol), ve(pol) and τtot(pol) (panels a,b, and
c respectively) of the fractal cloud scene for SZA = −60◦ and V ZA = 0◦. There are
clear, systematic biases in the re(2.13µm) retrieval (solid black line) and re = 15µm
(blue dashed line). The τtot(pol) retrieval on the other hand is doing comparatively
worse.
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with the greatest illuminating and shadowing effects impacting the primary and

supernumerary cloudbow scattering angles.

The bispectral retrievals of the step cloud scene helped solidify our understand-

ing of the impacts of illuminating and shadowing effects on cloud remote sensing.

In our low sun experiments (SZA = −60◦) we found that 3-D effect bias of the

re(2.13µm) retrieval was complicated. The scene average retrieval was found to be

biased high, despite expecting that illuminating effects in the SWIR band would

lead to a low-biased retrieval. This resulted in re retrievals in the τthn region were

biased high due to illuminating effects in the VNIR band in this region. The change

in VNIR reflectance, coupled with the the correlated dependency of the VNIR and

SWIR reflectances for small τtot, led to systematically high-biased re. This coupled

dependency can become more or less important depending on the difference between

τthn and τthk. In this case, because τthn was very small compared to τthk this bias

was enhanced. Further study should examine the behavior of this bias as a function

of the ratio of τthn to τthk.

The polarimetric retrieval of re(pol) was found to be highly robust to the influ-

ence of the step cloud, with < 1µm biases within ≈ 100m of the cloud edges. This

step cloud case study was incapable of reproducing the systematic high bias in the

ve(pol) retrieval that was presented in Alexandrov et al. [2012a]. We were however

able to demonstrate that the ve(pol) retrieval was influenced by inhomogeneity in

the step cloud case. We find that the ve(pol) retrieval is biased low on the shadowing

cloud side from cloud edge to ≈ 1 km away, whereas on the illuminating side the

ve(pol) retrieval is biased low in the thin cloud region, but high in the thick cloud
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region. More work needs to be done to explore the behavior of these biases as a

function of other values of ve and other forms of inhomogeneity (e.g., re inhomo-

geneity). In general, 3-D effects that lead to decreases in the ve(pol) retrieval could

further low bias this retrieval in addition to the low biases discussed in chapter 4.

We find significant spatial inhomogeneity of the −(Q3D − Q1D) biases in the

fractal cloud field. As in the step cloud case, we examined how this variability

changes with viewing angle in order to develop an understanding as to how it may

be able to influence multi-angular polarimetric retrievals. The fractal cloud also

enabled us to examine the PSD of polarized reflectances, revealing several interesting

features. The spectral variability in the primary and supernumerary cloud bow

angles (Θ = 140, 150◦ in this case) was reminiscent of the scale breaks observed in

total reflectance fields. This similarity leads us to believe that 3-D radiative effects

are likely also smoothing the polarized reflectances. We also found that at around

Θ = 120◦, near the secondary bow angle, the spectral slope of the polarized PSD as

large and small scales were equal to one another (βL = βS ≈ 5/3). The equivalence

of the spectral slope at this angle to the physical spectral slope of β = 5/3 indicates

that if this effect is also present in observational data it could be used as a proxy to

remotely sense the physical spectral slope.

The Fourier transform (and curve-fitting) approach used to characterize ra-

diative smoothing encountered numerous difficulties. For one, a higher-order fractal

model with an aspect ratio (H/∆x) more appropriate for radiative smoothing stud-

ies because it could span larger orders of magnitude in spatial scale. Future studies

should also consider replacing or expanding on the octave binning scheme. A bin-
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ning scheme that provides more data-points for curve fitting would be of a great

asset to this analysis. A future study might consider using a sliding-octave-binning

scheme that could provide numerous data points and a smooth PSD for fitting.

Such a modification would make handling the cases with intermediate roughening

scales in the polarized reflectance easier to discern and fit the large and small scale

features without including the enhancement in the knee of the PSD. Additionally,

as Oreopoulos et al. [2000] and others have pointed out, the fourier PSD is not quite

as robust at small-scales as a short-lag autocorrelation. It is possible that such an

approach would be able to help distinguish small-scale features from Monte Carlo

variability. In a future study, the autocorrelation of the polarized reflectances (as a

function of viewing angle) should be examined.

Again, the fractal cloud model revealed no major re(pol) retrieval biases. The

3-D effects observed in this study didn’t appear to alter the angular pattern of po-

larized reflectances, rather it increased and decreased reflectances in specific angles.

This is perhaps unsurprisingly, given the finding of others who have looked into

polarimetric re(pol) retrieval sensitivities ([Alexandrov et al., 2012a]). The fractal

cloud case also demonstrated that the ve(pol) was unaffected by any clear retrieval

bias. A future study might test whether the selected homogeneous ve of the frac-

tal/step cloud case influences the polarimetric retrieval bias. Additionally, the role

of 3-D effects in a microphysically inhomogeneous (i.e., re variability) scene would

also be very important.

As discussed briefly in section 5.2, there are polarimetric instruments that

make use of the DOLP for the purposes of their retrievals. The behavior of total
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and polarized reflectances in the λ = 0.865µm spectral band is quite different, and

this can lead to some significant consequences for the 3-D DOLP. The total and

polarized reflectances have vastly different radiative smoothing scales and this could

induce more complicated 3-D effects for the DOLP. While the polarimetric retrievals

implemented in this study do not make use of the DOLP, it will be important for

future studies to consider this sort of 3-D radative effect.
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