Investigations into the Non-Mevalonate Isoprenoid Biosynthesis Pathway's First Two Enzymes utilizing Hybrid QM/MM Techniques

by

Justin K. White

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida

Major Professor: H. Lee Woodcock, Ph.D. David J. Merkler, Ph.D. Wayne C. Guida, Ph.D. Yu Chen, Ph.D.

> Date of Approval: November 16, 2017

Keywords: QM/MM, computational, 1-deoxy-D-xylulose 5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase

Copyright © 2017, Justin K. White

ProQuest Number: 10680472

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10680472

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

Dedication

I dedicate this to my constant companion and greatest supporter, Molly Burges.

Acknowledgments

To my family, I would like to express my unending gratitude for the support shown me over the past many years. As I am slogged through this process and begun to confront personal issues, you have been along side me.

My friends of whom, I consider my extended family. You have thought better of me than I have. For that and your undying faith in my potential, I will be eternally grateful. You are always there when I need you, no matter how long it has been since we last spoke.

The love of my life already got the dedication but she deserves so much more. My new wife is always in my corner. Trying to look out for me, even when I don't care about what happens to me. She is my love and rock. She has been there through it all.

I am grateful to my Ph.D. committee of Lee Woodcock, David Merkler, Wayne Guida, and Chair Yu Chen for their guidance and patience over the years. Though I might have pushed the patience portion too much.

My labmates through the years: Christi Whittington, Sai Vankayala, Fiona Kearns, Phillip Hudson, Yura Pevzner, and Jackie Hargis. There might be others I am forgetting but still know that each of you have helped me along the path, if by no other way then being there for me to rant at for a while.

Lastly, I am grateful for the opportunities and guidance provided by Lee and Dave over these many years. I hope I haven't caused you too many causes for stress and know that I do truly appreciate every bit of guidance and patience along the way.

TABLE OF CONTENTS

List of Tables	iii
List of Figures	v
Chapter 1 Introduction	1
1.1 Isoprenoids 1.2 Pathways for Isoprenoid Biosynthesis 1.2.1 Mevalonic Acid Dependent Synthesis of Isoprenoid Build-	$\frac{1}{3}$
ing Blocks 1.2.2 Mevalonate-Independent Synthesis of IDP and DMADP 1.3 Isoprenoids as Drug Target 1.1.1 Computational Methodology	3 5 17 21
Chapter 2 Thiamin Diphosphate Activation in 1-deoxy-D-xylulose 5- Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions	24
2.1 ACS Permissions 2 2.2 Abstract 2 2.3 Introduction 2 2.4 Methods 2 2.4.1 Computational Methods 2 2.4.2 Experimental Methods 2 2.5 Results and Discussion 2 2.6 Conclusion 2 2.7 Supporting Information (SI) 2 2.8 Acknowledgments 4	24 24 25 32 32 34 36 47 48 48
Chapter 3 Computational Examination of the Magnesium Ion Bind- ing Modes of 1-Deoxy-D-xylulose 5-Phosphate Reductoi- somerase	49
3.1 Introduction 4 3.2 Computational Methods 5 3.3 Results and Discussion 6 3.4 Conclusion 6 3.5 Supporting Information (SI) 6	49 56 58 62 63

Chapter 4 Conclusion and Future Work	64
4.1 1-Deoxy-D-xylulose 5-Phosphate Synthase Summary and Conclusion 4.2 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase Summary	64
and Conclusion	66
4.3 Future Work	68
Bibliography	70
Appendix A: "Supporting Information for Chapter 2"	109
A.1 Methods	109
A.1.1 Topology and Parameters for Thiamine Diphosphate (TDP) $$. $$.	109
A.1.2 Extended 20 ns Molecular Dynamics Simulation	115
and the DXS Mutants	116
A.2 ProPKA3.1 Results	121
Appendix B: "Supporting Information for Chapter 3"	166
B.1 Results from the ProPKA3.0 Calculations of a DXR with Sub-	
strates Bound	166
Appendix C: Copyright Permissions	189

LIST OF TABLES

Table 1.1 Examples of Biologically Significant Isoprenoids	2
Table 1.2 Genomic expression of Non-mevalonate and Mevalonate pathways	20
Table 2.1 $\Delta\Delta E$ values for four residues of interest in the WMM and DHM	40
Table 2.2 DXS steady-state kinetics data (wild-type and mutants) for both pyruvate and G3P	43
Table 2.3 Calculated NICS values for the WMM and DHM RS andTS	45

LIST OF FIGURES

Figure 1.1 Side-by-side representation of the MVA and NMA path- ways	4
Figure 1.2 Chemical reaction catalyzed by DXS	6
Figure 1.3 Chemical reaction catalyzed by DXR	8
Figure 1.4 Chemical reaction catalyzed by CMS/IspD	10
Figure 1.5 Chemical reaction catalyzed by CMK/IspE	12
Figure 1.6 Chemical reaction catalyzed by MCS/IspF	13
Figure 1.7 Chemical reaction catalyzed by HDS/IspG	16
Figure 2.1 Schematic of isoprene production via MVA or MEP path- way	26
Figure 2.2 Proposed general mechanism for DXP biosynthesis	27
Figure 2.3 Structure and relationship of the 4 possible tautomeric/ionization states proposed for the cofactor of TDP dependent enzymes	30
Figure 2.4 Representations of the RS for DHM (a) and WMM (b) $\ldots \ldots$	37
Figure 2.5 Minimum energy profiles computed for the WMM and DHM	38
Figure 2.6 Representative conformational changes between the RS (yellow) and TS (green) of the DHM	38
Figure 2.7 Illustration of the proton transfer from E373 to TDP's AP ring during the tautomerization reaction	39
Figure 2.8 Active site conformation of the residues discussed in the CPA results	40
Figure 2.9 Illustrated above are the computed RS (yellow) and TS (green) dipoles of the WMM and DHM	42

Figure 2.10 Analysis for 18 ns of the unrestrained simulation of the 2O1X DXS structure utilized in this investigation	44
Figure 2.11 Homodesmotic reaction used in evaluating the aromatic stabilization energy for a model TDP	46
Figure 3.1 Overview of IDP and DMADP production and example essential family members	50
Figure 3.2 Proposed reaction mechanisms for DXR	53
Figure 3.3 Illustration of the C2-C3 and C3-C4 binding modes in the reactant state	54
Figure 3.4 Two-dimensional energy surfaces with outlier values re- moved	58
Figure 3.5 One-dimensional representation of the center path across the two-dimensional energy surfaces for the C2-C3 and C3-C4 binding modes	59
Figure 3.6 "Product" states of the retro-aldol reaction for the C2-C3 and C3-C4 binding modes	60
Figure 3.7 Pre-equilibrium and post-equilibrium for for each binding mode.	61
Figure 3.8 Energy profiles of the proposed step-wise mechanisms	63
Figure A.1 Quantum mechanical regions for the DHM and WMM	117
Figure A.2 Kinetic plots for pyruvate and glyceraldehyde-3-phosphate for wild-type and H82A mutant DXS	118
Figure A.3 Kinetic plots for pyruvate and glyceraldehyde-3-phosphate for H304A and D430A DXS mutants	119
Figure A.4 Kinetic plots for pyruvate and glyceraldehyde-3-phosphate for H434A DXS mutant	120
Figure A.5 Collection of all CPA results	122
Figure C.1 ACS reprint permission for the TDP Activation paper (Chapter 2)	190

Abstract

Molecular drug design begins with the identification of a problem to solve. This work identifies the growing resistance among human pathogens to current treatments. Once the problem is identified and understood, solutions must be proposed. This one is straight forward, we need new antimicrobial drugs. More specifically, we need to identify novel targets to inhibit. A large portion of antibiotics focus on disruption of macromolecular production while only a few target metabolic systems. Finally, you need to propose solutions based on the information gathered. In order to avoid existing resistance, it is important to avoid the macromolecular route and focus on metabolic enzymes. Preferably, the pathway would have little overlap or similarity with pathways found in the treatment organism. With this in mind, the non-mevalonate (NMA) pathway poses as a very good target for drug design. Many pathogens have been found to be strictly dependent on this pathway while it is absent in humans. Additionally, formidomycin has already been shown to inhibit this pathway. Initially thought to just inhibit the 1-deoxy-D-xylulose 5phosphate (DXP) reductoisomerase (DXR), it has been shown to inhibit several enzymes along the path to a lesser extent. Ideally, this could be repeated or improve upon for future drug design.

With this in mind, the initial stages of the first two enzymes of the NMA pathway were examined utilizing quantum mechanical/molecular mechanical (QM/MM) techniques. The first enzyme was DXP synthase (DXS), which catalyzes a transketolase-like condensation of pyruvate and glyceraldehyde-3-phosphate to produce DXP. DXS and other transketolases are dependent on the thiamine diphosphate (TDP) cofactor, which must be deprotonated of the imidazolium C2 atom producing a highly reactive ylide. A tautomerization occurs prior to this deprotonation to prime the pyrimidinium ring N4 atom to perform the C2 abstraction. The question at hand was the identity of a general base to perform the N4 abstraction. The results favored a water-mediate mechanism with a higher than usual ΔE^{\ddagger} of 22.7 kcalcotmol⁻¹. An observation pertaining the tautomerization pertained to the aromaticity of the pyrimidine ring. Upon further investigation, aromaticity was found to play a significant role in the ΔE^{\ddagger} observed. Aromaticity might contribute 14.2 kcalcotmol⁻¹ to the barrier height. This high energy would drive the reaction forward producing the ylide.

Investigation of the DXR enzyme followed this work. Initially, the work was going to focus on the 2 mechanisms proposed for activity, α -ketol rearrangement and retroaldol/aldol mechanism. Subsequent publications involving secondary kinetic isotope effects (KIEs) add to the pile of evidence supporting the retro-aldol/aldol mechanism. So the project was retooled to investigate the energetic differences between two metal binding modes. The results of this work support a metal coordination across the C3-C4 bond, which eventually extends coordination to include the C2 oxygen. This conformation was help explain the tight binding effecting observation of the putative intermediates (transition states) and aldehyde intermediate. Additionally, as the C2-C3 mode consistently transfers a proton to the phosphate group of DXP or produces an elongated C-O bond, the C2-C3 mode would not be favorable.

Further investigations of these enzymes (e.g. completing the step begin, continuing through the reaction) could provide further illumination into the mechanism of action and possibly reveal new avenues of drug design. Examining the enzymes downstream in the NMA pathway might provide details of interest. Of particular interest is the radical reaction proposed for HDR/IspH. The final step of the pathway produces IDP and DMADP in a 4:1 proportion, which corresponds to the general system requirements for production of the long chain, branched isoprenoids. It would be interesting to compute the mechanism to see if energetics could provide further insights. Additionally, normal mode analysis coupled with vibrational subsystem analysis could identify allosteric sites for feedback sensitivity.

Chapter 1

Introduction

1.1 Isoprenoids

Accounting for nearly 60% of natural product diversity, isoprenoids (or terpenoids), with 55,000 known compounds, comprise the largest family of natural products^{56,59}. Many of these compounds serve important biological functions. The lipid-soluble vitamins (A, D, E, And K) and cholesterol are some of the most common examples¹⁶¹. Cholesterol is subsequently utilized as a biosynthetic precursor of various steroid hormones, including glucocorticoids, estrogens and androgens. Some synthetic analogs are used in many therapeutic applications. All isoprenoids are derived from two phosphate C₅ isoprene building blocks, isopentenylallyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP). The diversity of isoprenoids comes from number of IDP and DMADP molecules strung together. The string of isoprenes in combination with functional groups such as ketones, aldehydes, alcohols, peroxides, ethers and esters contribute to the considerable diversity amoungst the family of natural products⁴⁷.

The family is roughly divided into six major categories (Figure 1.1. These categories are based on the number of isoprene units linked. Monoterpenoids contain two isoprene units and therefore have a ten carbon skeleton. These are the major component of the fragrant oils from leaves, flowers and fruits (e,g, limonene and nerol). Sesquiterpenoids consist of three isoprene units to form 15 carbon cyclic and acyclic compounds. The next category is called diterpenoid and are composed of 20 carbon atoms derived from geranyl

Table 1.1: Examples of Biologically Significant Isoprenoids

geranoil diphosphate (a 10 carbon unit). Vitamin A, phytohormone and tetrahydrocannabinol are a few of the more well characterized examples of diterpenes. Ophiobolin A, a fungal metabolite, is an example of the next category, sesterterpenoids. These are derived from 25 carbon framework. Cholesterol are a member of the triterpenoids which are desired from the squalene precursor. Carotenoids are comprised of eight isoprene units to make forty carbon chains with conjugated double bonds. Carotenoids utilize the absorption properties arising from their conjugated structures to assist in photosynthesis and the prevention of photo-oxidative cellular damage.

1.2 Pathways for Isoprenoid Biosynthesis

1.2.1 Mevalonic Acid Dependent Synthesis of Isoprenoid Building Blocks

The first pathway for isoprenoid biosynthesis was discovered based on interest in cholesterol for the obvious health related interests. During the investigation of cholesterol, researchers discovered deuterium integration originating from labeled acetate via the IDP unit which meant IDP was the direct precursor to cholesterol¹⁶. Subsequent studies lead to the discovery and characterization of the mevalonate (MVA) pathway in the 1950s named after the key intermediate (3R)-3,5-dihydroxy-3-methylpentanoic acid (mevalonic acid, MVA). For the following decades, the MVA pathway dominated this area of research as it was thought to be the sole route for IDP and DMADP synthesis in living systems. The work in this area lead to a nobel prize in physiology for Lynen and Bloch in 1964, and in Chemistry for Cornforth in 1975^{15,40}.

As figure 1.1 illustrates¹³⁰, the initial step of the MVA pathway is the production of acetoacetyl-CoA via the condensation of two acetyl-CoA molecules catalyzed by acetyl-CoA acetyltransferase. A third acetyl-CoA molecule is attached to the acetoacetyl-CoA to produce 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) catalyzed via an aldol reaction performed by HMG-CoA synthase. HMG-CoA is reduced by two equivalents of NADPH performed by HMG-CoA reductase producing MVA. The HMG-CoA reduction is the rate-limiting step of this pathway, thus MVA production is the rate-limiting, or key, intermediary step in the pathway. Two consecutive phosphorylations performed by mevalonate kinase and phosphomevalonate kinase produces mevalonate-5-diphosphate (MDP). An ATP-coupled decarboxylation catalyzed by MDP decarboxylase yields IDP¹³⁰. The IDP isomer, DMADP, is produced via two structurally unrelated IDP:DMADP isomerases

Figure 1.1: An illustration of the complete Mevalonate and Non-Mevalonate pathways culminating in the production of IDP and DMADP.

(Figure 1.1).

1.2.2 Mevalonate-Independent Synthesis of IDP and DMADP

Decades following the MVA pathway discovery, further isotopic labeling studies were performed to trace the fate acetate in producing lycopene, hopanoids, taxol and sterols. The distribution of the labeled material in the subsequent terpenoids was inconsistent with a single source of isoprenic production. Following from these results, several independent research groups discovered a mevalonate-independent (or non-mevalonate, NMA) pathway in eubacteria, green algae, and higher plants. Rohmer et al. identified the conversion of pyruvate to 1-deoxy-D-xylulose 5-phosphate (DXP) as the first step of the NMA pathway by following the incorporation of ¹³C-labeled pyruvate or glycerol into ubiquinone. Additional independent studies carried out by Arigoni et al. traced the incorporation of $[1^{-13}C]$ - and $[2,3,4,5^{-13}C_4]$ -DXP into the formation of β -carotene, lutein, phytol and situated in cell cultures of *Catharanthus roseus* and demonstrated the involvement of DXP in the NMA pathway. The studies conducted by Arigoni et al. provided further insight into the compartmentalization of isoprenoid synthesis, as well as, the description of the rearrangement proposed by Eisenreich et al. In order to elucidate the NMA pathway (Figure 1.1, further labelling studies were performed and revealed the pathway to be composed of 7 enzymes that catalyze 8 reactions. Background on each of the enzymes found in the NMA pathway can be found in the following paragraphs.

1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS)

The aforementioned conversion of pyruvate to DXP is performed by DXP synthase (DXS) and employs glyceraldehyde-3-phosphate (G3P) (Figure 1.2). DXS is a member a large family of enzymes dependent upon the cofactor thiamine diphosphate (TDP)¹⁷⁶. Particularly, the structure and reaction catalyzed are highly reminiscent of members of the

subfamily of transketolases (TKs). Structurally, DXS is similar in composition to other members of the subfamily. Each monomer is composed of 3 subunits (I, II and III). In solution, DXS is more commonly found in a homodimer that is functionally significant as each active site communicates with the other. The formation of the active site pocket distinguishes DXS from other members of the TK subfamily. The active site in other TKs exists between domain I of one monomer and domain II of the other monomer II in a twisted conformation that arises via formation of the homodimer. In contrast, the DXS active site resides in a pocket between domains I and II of the same¹⁹⁷. Despite this distinction, several key residues remained highly conserved with the rest of the subfamily.

Mechanistically speaking, DXS corresponds to the α -hydroxyketone (acyloin) condensation and proceeds via a mechanism highly analogous to other TKs. Prior to substrate binding, the TDP cofactor undergoes a deprotonation of the thiazolium ring forming a carbanion ylide necessary for enzymatic. The usually high pK_a of the thiazolium proton makes this reaction highly unlikely in solution⁸⁴. The active site of DXS and other TKs binds the TDP into a energetically strained 'V'-shaped conformation; which brings the N4 of the pyrimidine ring into proximity of the C2 thiazolium proton¹⁹⁷. The proximity of nitrogen and strained structure lowers the pK_a significantly^{84,125}. Therefore, the carbanion ylide is free to perform a nucleophilic attack on the pyruvate. Subsequently, the electrophilic iminium acts as an electron sink during decarboxylation and results in a carbanion/enamine. The enamine performs a second nucleophilic attack on carbonyl carbon of glyceraldehyde-3-phosphate (G3P). A final deprotonation step releases the new

Figure 1.2: The abridged representation of the DXS catalyzed condensation of pyruvate with glyceraldehyde-3-phosphate to produce 1-deoxy-D-xylulose 5-phosphate.

DXP molecule and regenerates the TDP ylide for further catalysis. The substrate binding mechanism of other TKs has been thought to work through either a ping-pong or sequential mechanism⁶⁰. Recent studies of DXS have suggested a random sequential mechanism thus illustrating a further distinction between DXS and other TKs. DXS does show a preferred order involving the formation of the C2 α -lactylthiamin diphosphate (LTDP) intermediate as an unusually stable ternary complex of TDP and pyruvate. The hydrox-yaldehyde moiety of G3P was found to trigger and accelerate the decarboxylation which produces the enamine utilized in the second nucleophilic reaction²¹.

1-Deoxy-D-xylulose 5-Phosphate Reductisomerase (DXR)

The next step in the NMA pathway is actually the first committed step of the pathway. DXP reductoisomerase (DXR) catalyzes the conversion DXP into 2-C-methyl-Derythritol 4-phosphate (MEP) with preferential dependence on NADPH as reducing agent and Mn^{2+} as a divalent ion^{3,94,118,157,179}. The carbon-skeleton rearrangement in this reaction is thought to proceed via the aldehyde intermediate, 2-C-methyl-D-erythrose 4phosphate (MEsP), which is subsequently reduced by NADPH (Figure 1.3). The idea behind the aldehyde intermediate arose due to similarities between DXR and ketol-acid reductoisomerase (KARI; EC 1.1.1.86); which catalyzes a similar rearrangement-reduction sequence in the conversion of 2-acetolactate to 2,3-dihydroxy-3-methylbutyrate¹³². In both situations, the intermediate has never been directly observed as it is either tightly bound prior to reduction or in such low concentration due to it's transient nature. An experiment by Rohmer and co-workers provided the strongest evidence in support of the MEsP intermediate. The researchers synthesized MEsP and demonstrated its kinetic competency with DXR in the presence of NADPH and Mn^{2+} or Mg^{2+} . They also observed a 7% conversion of MEsP to DXP in the presence of NADPH³⁷.

Figure 1.3: The abridged representation of the DXR catalyzed rearrangement coupled reduction of 1-deoxy-D-xylulose 5-phosphate by NADPH to produce 2-C-methyl-D-erythritol 4-phosphate.

Similar to DXS, DXR is most commonly found in a homodimer of the V-shaped monomers producing a saddle-like quaternary structure. The monomers can be further subdivided into three distinct domains. A dinucleotide-binding domain acts as a binding site for the NADPH cofactor is found in the N-terminal region of each monomer. The central domain harbors the catalytic portion of the enzyme and is responsible for the crucial conformational changes required for substrate binding and turnover. The central domain contains a highly flexible loop, which acts as a lid upon substrate binding creating a protected active-site cavity. The final domain is the C-terminal domain consisting of a four-helix bundle and is characterized by its flexibility. The role of this flexible domain is to aid in dimerization^{118,151,199,200}.

Despite the similarities between DXR and KARI, differences in amino acid sequences and crystal structures suggest different mechanisms for DXR^{37,49,95}. Three mechanisms were originally considered for DXR's rearrangement of DXP to MEsP: 1) an α -ketol rearrangement, 2) a retro-aldolization/aldolization and 3) a sequential 1,2-hydride and 1,2-methyl shift⁶⁴. This last proposal was readily eliminated when the ¹³C-glucose incorporation studies failed to yield the appropriate labeled products. More over, 2-¹³C and 3,4,5-¹³C₃ labeled DXP experiments strictly yielded [2-¹³C]- and [1,3,4-¹³C₃]-MEP, respectively, which supports the rejection of the sequential shift mechanism^{3,73,160}. The α -ketol (sigmatropic) rearrangement occurs via the migration of the C3-C4 bond to form a C2-C4 bond in order to form MEsP, the aldehyde intermediate. This migration requires a partial positive charge on the C2 atom which can be achieved via protonation or the ketol coordinating with the divalent metal ion. There is evidence to support the latter approach. The metal has been shown to be chelated by the hydroxy groups of DXP. A deprotonation of the C3 hydroxyl group of DXP is required for aldehyde formation Thus, the deprotonation and bond-cleavage/-formation would result in the MEsP⁷⁸. Alternatively, the retro-aldol/aldol reaction begins with the deprotonation of the C4 hydroxyl group followed by cleavage of the C3-C4 bond in a retro-aldolization. The result of this reaction is the formation of a hydroxyacetone enolate and glycoaldehyde phosphate. Subsequently, an aldol condensation will result in the same MEsP intermediate^{80,95,109}. Kinetic isotope effects (KIEs) measurements are not compatible with the α -ketol rearrangement mechanism. The hydroxyacetone and glycoaldehyde phosphate intermediates have not been directly observed. Neither have they been successfully incorporated when incubated with DXR and the necessary cofactors. These conflicting results indicate there is further work to be done on the DXR mechanism. Despite the rearrngement mechanism, the subsequent reduction produces MEP in the same way. Deuterium-labeled NADPH and crystal structures have revealed details of the reduction reaction. The Re face of MEsP protonated by the pro-S hydrogen from the nicotinamide C4 to the C1 of the aldehyde^{5,132}.

4-Diphosphocytidyl-2C-methyl-D-erythritol Synthase (CMS/IspD)

The discovery of DXS and DXR allowed for the identification and characterization of additional NMA enzymes in quick succession. Utilizing $[2^{-14}]$ C-labeled MEP in *E. coli*, research groups were able to track the formation of new radioactive products¹⁵⁵. The first product identified was 4-diphosphocytidyl-2C-methyl-D-erythritol (CDP-ME) in nuclear magnetic resonance (NMR) spectroscopic assays (Figure 1.4). A database search of corresponding enzymatic activity pointed researchers towards the ygbP gene¹⁰¹. Subsequently several experiments showed MEP turnover and IPP production are dependent upon ygbP and several other open reading frames^{101,155}. The distribution of the new protein correlated well with the expected presence of the NMA pathway in eubacteria. Following the confirmation of ygbP, now designated IspD (CMS), activity assays revealed the necessity of a divalent cation (Mn²⁺, Mg²⁺, or Co²⁺) with a preference for Mg²⁺. CMS appears to be substrate specific with low but measurable activity with GTP and ATP. The incorporation of CTP's α -phosphate instead of the β - or γ -phosphates was confirmed utilizing radioactive phosphorous isotopes^{101,155}.

Figure 1.4: The abridged representation of reaction catalyzed by CMS/IspD which attaches a cytidyl group to the phosphate tail of 1-deoxy-D-xylulose 5-phosphate producing 4-diphosphocytidyl-2C-methyl-D-erythritol.

Several crystal structures of CMS have been solved from a variety of organisms^{62,88,152}. To continue the trend of the first two enzymes, CMS is found commonly as a homodimer. Each structure revealed strong overall structural conservation with each other and other nucleoside-binding proteins, particularly cytidyltransferases¹⁵². The domain of each monomer hold a certain characteristic inline with other homologues. One of the domains consists of a so-called β -arm, composed of overlapping parallel and anti-parallel β -strands, which protrudes from the main globular domain at a wide angle. This β arm acts as a hook-like structure that interlocks closely with another monomer which aids in dimerization^{62,88,152}. The tertiary structures with all necessary cofactors provided valuable insights into ligand binding and enzymatic activity. A large network of hydrogen-bonding interactions between ligands and side chains as well as backbone carbonyl and amide groups revealed that both the substrate and products are fixed to the active site. Direct interaction between the protein and cytosine moiety of CTP, in part, explains the selectivity and preference for pyrimidines over purine nucleosides¹⁵². Basic residues are proposed to position the triphosphate tail for catalysis. Additionally, these residues might play a role in stabilizing the pentacoordinate transition state during the reaction. Additional phosphate coordinations of MEP and CTP is provided by the Mg^{2+} despite its lack of direct interactions with the enzyme^{62,88}.

The crystal structures of CMS has lead to the proposal of 2 reaction mechanisms. One proposal involves the formation of a reactive metaphosphate CMP molecule via elimination of a disphosphate group. The metaphosphate CMP is subsequently attacked by the 4-phosphate of MEP to form CDP-ME. The alternative mechanism proposed starts with a direct nucleophilic attack on the α -phosphate of CTP by the 4-phosphate of MEP. The collapse of the pentacoordinate intermediate produces CDP-ME and PPi. Current mutagenesis and structural data favor the second mechanism over the first^{152,154}.

4-Diphosphocytidyl-2C-methyl-D-erythritol Kinase (CMK/IspE)

The expanding knowledge of the first three enzymes continued to facilitate the discovery of the next downstream catalyst. Genomic analyses showed *E. Coli ychB* and its orthologous sequences showed similar patterns in eubacteria and plants as other NMA genes. Overexpression, purification, and characterization of *ychB* revealed the production of 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate (CDP-MEP) from CDP-ME (Figure 1.5); which corresponds to a phosphorylation of the C2 hydroxy group¹¹⁷. Subsequently, the reaction and structure of ychB, later designated CMK or IspE, resembles those catalyzed by the GHMP superfamily of enzymes. In addition to galactokinases and homoserine kinases, two enzymes of the MVA pathway, mevalonate and phosphomevalonate kinases, defines the enzymes of GHMP superfamily^{117,185}.

Following from the observed sequential conservation, CMK homologues strongly resemble each other as well as other members of the GHMP superfamily. One distinction

Figure 1.5: The abridged representation of the phosphorylation of 4-diphosphocytidyl-2C-methyl-D-erythritol by CMK/IspE producing 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate.

between CMK and other GHMP enzymes, CMK is commonly found in a monomeric state where as GHMP family members are commonly found in a homodimeric structures^{85,126,168,185}. Each CMK monomer consists of predominantly 2 domains. An N-terminal domain responsible for cofactor binding and a C-terminal domain in charge of substate binding. CMK has an overall clamshell-like shape and the catalytic center is formed in an open cavity between the domains after the clamshell closes. This closure brings the substrate and cofactor into proximity in order to promote phosphorylation of CDP-ME^{126,168,169,185}.

Based on similarities to GHMP kinases, a catalytic mechanism was proposed. Not on direct observations of the actions of the actual enzyme^{61,97}. The C2 hydroxyl group of CDP-ME forms hydrogen bonds with the side chains and carboxyl groups of highly conserved lysine and aspartate residues. This network helps to further polarize the hydroxyl group^{126,168,185}. Due to this polarization, one of the aspartate residues can act as a base to deprotonate the hydroxyl group. The resulting reactive alkoxide undergoes nucleotide attack of the γ -phosphate of ATP resulting in a similar pentacoordinate intermediate for CMS/IspD. The subsequent collapse of the intermediate results in ADP and CDP-MEP being released with turnover^{126,168,185}. A divalent metal ion is required for catalytic activity similar to other GHMP family members. The ion is responsible for positioning and orienting the phosphate moiety in proximity for attack by the acceptor molecule. Additionally, it stabilizes the pentavalent transition state the bond between the β - and γ -phosphates of ATP^{34,61,70,97}. Though, no CMK crystal structure has been observed to contain the metal ion and lack of a highly conserved glutamate residue involved in positioning the metal ion suggests unique role in CMK. Additionally, some have proposed coordinated water molecules might act in place of the metal ion in certain kinases. The exact role of the metal remains to be determined ^{34,126,168,185}.

2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase (MCS/IspF)

When CMS was identified as the third enzyme of the NMA pathway, the ygbP gene expression was found coupled to another unannotated ygbB gene sequence with a few cases even fused inside a single open reading frame^{75,155}. Correspondingly, the species distributions of the gene orthologues parallel the presence of NMA based isoprenoid biosynthesis. Attempts to identify the activity of the corresponding protein was determined by challenging the enzyme with CDP-ME and CDP-MEP which produced 2-C-methyl-D-erythritol-3,4-cyclophosphate (MEcP) and 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP), respectively^{75,181}. MEcDP was found to have been previously detected as a bacterial metabolite. These results support MEcDP as a new intermediate between DXP and IDP or DMADP (Figure 1.6); while MEcP was regarded as an in vitro artifact with no physiological relevance. Subsequently, the name of the enzyme was changed MEcDP synthase or IspF to reflect its function and position in the pathway⁷⁵.

Figure 1.6: The cyclization of 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate and subsequent expulsion of cytidyl release catalyzed by MCS/IspF.

Structural characterizations have been published for the E. coli, Plasmodium falciparum, Plasmodium vivax, and A. thaliana MCS enzymes^{28,87,139,153,177}. While there are differences in the spacial grouping and composition of the asymmetric unit, the structures all showed the formation of a tightly associated homotrimer. The multimeric assembly buries a large surface area that contributes to the MCS enzyme's heightened stability even in the face of mass spectrometric analysis. This trimeric structural feature is a common feature observed between MCS and any of its wider structural or functional homologues^{87,153}. A series of anti-parallel β -sheets form a largely hydrophobic channel at the core of the trimer. This channel is thought to play a role in feedback regulation^{87,89,153,177}. The active site is found at the interface of two subunits with both side chains contributing to the catalytic center. Conformational stabilization of the substrate and intermediates is accomplished via interaction with a few key amino acids, and two distinct essential metals, a Zn^{2+} and either a Mg^{2+} or Mn^{2+} . A zinc ion responsible for positioning the cytidyl moiety of the substrate; which itself is tetrahedrally coordinated by an aspartate and two histidine residues as well as the β -phosphate of MEcDP. Both the α - and β -phosphates of the CDP substructure is coordinated and stabilized by either a Mg^{2+} or Mn^{2+} . These phosphate groups additionally play a role in the octahedral coordination of the Mg^{2+} or Mn^{2+} ions with three water molecules and a glutamate residue filling in the rest of the coordination sites^{87,153,177}.

The intramolecular cyclization of CDP-MEP to MEcDP and concomitant CMP release catalyzed by MCS is thought to proceed via an in-line mechanism. Analogous to the previous two enzymes, the reaction involes the nucleophilic attack on a phosphate moiety thus forming a pentacoordinated transition state. The subsequent collapse of the transition state releases the two products, CMP and MEcDP^{87,153,177}. The protective flexible loop closes off the catalytic cavity from the surrounding solvent. Interactions with CDP and MEP substructures via hydrogen-bonding and hydrophobic regions of the cavity accountants for the high degree of selectivity of MCS. The diphosphocytidyl moiety alignment is accomplished primarily by the active site metal ions with additional help from hydrogen-bonding and hydrophobic interactions of active site residues. Of particular interest for reactivity, the Zn^{2+} ion increases the electrophilic character of the β -phosphate in addition to aiding in lining up the nucleophilic attack by the 2-phosphate of the MEP moiety. Additionally, the enzyme restricts the flexibility of the substrate bringing the electron donor and acceptor in close proximity¹⁵³. The negative charge of the cyclic transition state is compensated by the positive charge of the 2 metal ions^{87,153,177}.

1-Hydroxy-2-methyl-2-(*E*)-butenyl 4-diphosphate Synthase (HDS/IspG)

Unlike the previous upstream catalysts were discovered and characterized in relatively quick succession, the final two steps proved more elusive. The unannotated qcpE gene was originally discovered in association with a histidyl tRNA synthetase⁵⁹. Utilizing bioinformatic approaches, an association was observed between the qcpE gene and other NMA pathway enzymes were observed to reflect the characteristic distribution patterns. As with DXS, DXR and IspD-IspF, the new gene sequence was detected in various bacterial species, plants and apicomplexa, but not in eukaryotes such as yeast^{2,29}. Disruption of this gene was lethal as with the other NMA genes. Isotopic labeling coupled with NMR analysis identified the new intermediate as 1-hydroxy-2-methyl-2-(E)-butenyl 4phosphate (HMBDP) (Figure 1.7), which can be produced via a reductive deoxygenation of MEcDP⁷¹. The gene was renamed to IspG to reflect the new position in the NMA pathway. Subsequent, recombinant expression and purification was straightforward, observed activities were low. The presence of three highly conserved cysteines and similarities with sequence motifs of ferrodoxin and aconitase enzymes suggested the presence of a catalytic iron-sulfur, [4Fe4S]^{71,192}. Further assays performed under anaerobic conditions and the presence of an reducing agent for regenerative purposes resulted in the efficient production of HMBDP from MEcDP. Additional confirmation of the presence of the cluster was UV-vis absorption spectrum, which matched previously observed spectrum of simi-

Figure 1.7: The penultimate step of the NMA pathway producing 1-hydroxy-2-methyl-2-(E)-butenyl 4-phosphate from 2-C-methyl-D-erythritol-2,4-cyclodiphosphate.

lar proteins 92,166 .

As with DXS, DXR and CMS, HDS is commonly found in a homodimer. Each monomer is composed of two domains¹⁰⁶. The N-terminal domain is an 8-stranded β barrel globular subunit similar to the common ($\beta\alpha$)₈-fold of the triose phosphate isomerase (TIM) barrel superfamily. The iron-sulfur cluster is found in the C-terminal domain. Coordination of the cluster is supplied via 3 cysteine residues and a glutamate residue^{106,149,150}. MEcDP binds in the active formed between the C-domain of a monomer and the N-domain of the other monomer. All published HDS crystal structures are highly similar; particularly with respect to the N-domain¹⁰⁶. The C-domains are absent in some structures (probably due to lack of resolution), while the *Plasmidium falciparum* structure has an additional domain. This additional domain is thought to fold into a second TIM barrel to allow for monomeric activity^{113,204}.

Mechanistic details remained elusive despite the identification of the substrate, product and resolution of several crsytal structures. The reaction was known to involve the [4Fe4S] cluster, elimination of the C3 hydroxyl and a 2 electron reduction. Results of isotopic-exchange experiments, electron paramegnetic resonance (EPR) spectroscopy, and many other experiments permitted the description of the HDS mechanism^{23,92,156,166,186,187}. Upon binding MEcDP, a conformational closure causes the displacement of the glutamate residue from the fourth iron while promoting the formation of a covalent bond with the substrate. A deprotonation of the C3 hydroxyl group by a second glutamate assists in the Fe-O bond formation^{106,150,204}. Once bond, the ring of MEcDP opens and closes consistently¹⁹⁸. The introduction of the first single external electron breaks the ring permenantly either a carbocation or radical (formed via internal electron transfer) and begins the reaction in ernest. The addition of a second external electron produces a C2 carbanion^{146,186,187}. Formation and release of HMBDP proceeds via an E_{1cb} elimination results. A localized proton relay change results in the release of H₂O from the cluster and regeneration of the enzyme¹⁴⁶.

1.3 Isoprenoids as Drug Target

Molecular medicine has provided means for mankind to overcome many diseases caused by various microbial life forms. Lately, there has been a growing resistance to current therapies. The discovery of multi-drug resistance forms of many diseases (e.g. tuberculosis and malaria) are poised to return us to the time prior to anti-microbial drugs^{96,122,165}. In an age of growing drug resistance, there are very few companies investing in developing novel treatments due to the low returns and high upfront costs. Amongst the now growing list of neglected disease, Tropical diseases (i.e. malaria, leishmaniasis, tuberculosis) represented the most neglected diseases in the world. This due in large part to their concentration in the developing nations. Malaria is one of the most profound problems due to its high morbidity rate and millions of reported cases a year. In the age of modern globalization, growing resistance is a world wide problem^{122,183}.

Malaria presence a growing international concern. High mortality aside, malaria can cause economic downturns in high areas of infection due to an acutely infected individuals inability to work. Long term effects can be seen by life-long learning impairments caused when children are infected. Malaria is caused by four species of *Plasmodium* but the majority of the mortalities are cause by two of them, *P. falciparum* and *P. vivax*^{24,183}. Both show evidence of a growing resistance to long standing therapies such as chloroquine and fansidar; which has hastened the need to develop novel treatments.

Primarily, drug resistance has been found via mutations in enzymes which reduce the inhibitive effects of the therapy. Additional mutations found in transporter proteins make up a large portion of the remaining resistance¹⁹⁶. These transporters (i.e. *pfmdr1*) act by removing the drug from the target sites. This is similar to the developing of β -lactamases in infectious bacteria to destroy antibiotics such as penicillin while developing mutations in the target peptidase enzymes. It is a two fold development in resistance.

The NMA pathway has great promise as a target for anti-microbial activity. The most significant benefit is the seeming absence of orthologous enzymes in mammalian cells. Particular absence in humans is a huge benefit. In other words, the entire pathway seems to be absent in humans which rely on the MVA pathway for IDP and DMADP production. The combination of the completion of the human genome project, subsequent expansion in mapping other species genomes, and the identification of the genes and enzymes of the NMA pathway allowed researchers to perform scans. Table 1.2 represents highlights of species and the isoprenoids biosynthesis pathways present. There are a few species that rely on both but have one isolated in an organelle, therefore the products of one of the pathways aren't readily available to use in a crisis^{59,63}.

As indicated in table 1.2, several protozoal genomes (e.g. *P. falciparum*, and *P. vivax*) have genes corresponding to the NMA pathway. Subsequent studies have revealed these genes to be predominantly located in the apicoplast; which is necessary for survival in the intraerythrocytic and intrahepatic stages of *plasmodium*. The inhibition of the NMA pathway via fosmidomycin can only be save via exogenous introduction of IDP and DMADP suggests this pathway as a new source of anti-malarial drugs^{59,201}.

Additionally, there is evidence of NMA being a good source of anti-bacterial drugs. A majority of current antibiotics work via the interruption of the biosynthesis of macromolecular components (e.g. DNA, RNA, cell wall) of the bacterium^{6,52}. The remaining

Organism		Nor	-Meva	lonate	Pathv	vay			Meval	onate	Pathv	vay			
		dxs	isp C	ispD	ispE	ispF	ispG	ispH	hmgs	hmgr	mk	pmk	pmdp	idiI	i di II
Bacteria															
	Aquifales (Aquifex aeolicus)	+	+	+	+	+	+	+	Ι	Ι	Ι	I	Ι	Ι	
	Chlamydia group (Chlamydophila pneumoniae)	+	+	+	+	+	+	+	Ι	Ι	Ι	I	Ι	I	I
	Cyanobacteria (Synechocystus sp.)	+	+	+	+	+	+	+	I	I	Ι	I	I	Ι	+
	Deinococcus group (Deinococcus radiodurans)	+	+	÷	+	÷	÷	+	I	Ι	Ι	I	I	I	+
	Firmicutes														
	(Bacillus subtilis)	+	+	+	+	+	+	+	Ι	Ι	Ι	I	Ι	I	+
	(Mycoplasma genitalium)		I	Ι	Ι	I	I		Ι	I	Ι	I	Ι		
	(Staphyloccus aureus)		I	I	Ι	Ι	Ι	I	+	+	+	+	+	I	+
	(Streptomyces coelicolor)	+	+	+	+	+	+	+	I	I	Ι	I	I	Ι	I
	Proteobacteria														
	(Escherichia coli)	+	+	+	+	+	+	+	I	I	Ι		I	+	
	$(Rickettsia \ prowazeckii)$		Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	+
	Spirochaetales														
-	(Treponema pallidum)	+	+	+	+	+	+	+	I	I	Ι	I	I	Ι	I
	$(Borrelia \ burgdorferi)$	I	Ι	Ι	Ι	Ι	Ι	I	+	+	+	+	+	Ι	+
	Thermotogales (Thermotoga maritima)	+	+	+	+	+	+	+	Ι	I	I	Ι	Ι	I	I
Archaea															
	Crenarchaeota (Aeropyrum pernix)	Ι	I	I	Ι	I	I	I	+	+	+	+	+	I	+
	Euryarchaeota (Archaeoglobus fulgidus)		I	Ι	Ι	Ι	Ι	I	+	+	+	+	+	I	+
Eukaryotes															
	Animals (Homo sapiens)		I	I	I	I	I	I	+	+	+	+	+	+	
-	Plants (Arabidopsis thaliana)	+	+	+	+	+	+	+	+	+	+	+	+	+	I
	Protozoa (Plasmodium falciparum)	+	+	+	+	+	+	+	I	I	I	Ι	I	I	I
	Yeasts (Saccharomyces cerevisae)	1	I	I	I	I	I	I	+	+	+	+	+	+	I

Table 1.2: Highlights the existence of genes found for both the Mevalonate and Non-Mevalonate Pathways in a variety of life forms.

few target metabolic enzymes. Arigoni et al. conducted a study using bioinformatics to identify 30 *E. coli* necessary for survival which could also be found in other bacterial species. The NMA pathway is amongst these necessary genes⁶. Several pathogenic bacteria, including *E. coli* and *Mycobacterium tuberculosis*, carrying deletions in the NMA genes could only be rescued via exogenous introduction of isoprenoids^{55,122}. The presence of the NMA pathway in several pathogenic species but absence in ours indicates this pathway as a key source of novel therapies to combat the growing resistance problem. There are a couple of issues. There are two enzymes belonging to large families of enzymes. DXS and IspE belong the TDP-dependent enzyme and GHMP families, respectively. High sequence similarity between these enzymes and their families poses unintended consequences. This has been observed consistently in work with kinases. Trying to develop a highly specific inhibitor is troubling at best. These considerations should not inhibit our attempts at developing new therapies base on this pathway.

1.4 Computational Methodology

Biochemistry is the study of the chemical reactions involved in biological processes. At the heart of this endeavor are enzymes that facilitate these processes. Hence, it became rapidly apparent a deeper understanding of enzymes was needed. When studying enzymes some key questions are: "What amino acids are participating in the enzymatic action? What are their roles? And what are the possible transition states?" ^{116,148,182}. In pursuit of answers to these questions, biochemists developed laboratory techniques to probe the relative importance of certain amino acids (AAs) and the motions of these highly dynamic macromolecules. Some of these experimental methods are kinetic isotope effects (KIE); site directed mutagenesis, and Forster resonance energy transfer (FRET). It was hoped that they could give insights into transition state structures and a better view of the molecular level interactions occurring in enzyme active sites. These techniques have contributed significant knowledge of the inner workings of the enzymes, however they do have limitations. With the advent of macromolecular crystallography and later NMR based methods, the ability to see at the molecular level was greatly enhanced.

Computational biochemistry can provide an even more detailed look into enzyme mechanisms. This includes but is not limited to the investigation of the motion of enzymes, de Novo design of transition state analog inhibitors, and investigating protein-protein interactions⁹³. My current focus is in 3 areas: application of computational techniques to elucidate mechanistic detail of two enzymatic processes.

The study of condensed phase chemical and biochemical processes has been major focus for both experimental and computational chemists for several decades now. Though QM approaches for computation are more accurate, the computational cost prohibits the use of these approaches with any biologically relevant systems. This limitation of QM methods was a driving force behind the growing use of more efficient MM methods that are more empirically driven. Significant time and effort has been put into attempting to improve the efficiency of traditional QM methods recently. Though these advances have shown benefits for small molecule chemistry, they are still prohibitively expensive for full scale biochemical applications. A problem that has been mitigated in part through the development of more efficient QM codes and the growing use of hybrid QM/MM methods. Standard methods of QM/MM attempt to couple the cost efficiency of MM methods with the accuracy and precision of QM methods through the division of the system into subsystems. These subsystems are treated at different levels of theory. One region, that is usually made up of the active site or site of most significant interest, is labelled the QM region and treated with the highest level of computational theory. An MM region is also defined and the protein environment that surrounds the QM region. The third region is an interface region that connects the QM and MM regions previously defined. The third region is only necessary if in the course of defining the QM region from the MM region, any bonds found along their borders are split between the regions, becoming the interface region. A coupled potential is responsible for the inclusion of electrostatic and van der Waals interactions from the QM and MM through the interface region^{136,182,188}.

Several methods for the implementation of hybrid QM/MM schemes have been reported. Empirical valence bond (EVB) and semi-empirical methods have been employed typically to describe the QM region, due to their relative efficiency in comparison to ab initio QM theory. Though they have been used effectively, several weaknesses that have been well documented. Recently, there has been a bigger push to overcome the deficiencies in these methods through the implementation of more accurate and rigorous computational methods such as ab initio and Density Functional Theory (DFT). Herein, we will be applying QM/MM methodology with the QM region being treated with the more rigorous DFT methodology¹⁶².

A major advantage of using hybrid QM/MM techniques is the ability to compute barriers for biological processes (e.g. NOX production). The relative free energy (Δ G) of each step along the reaction will be calculated in order to ascertain (within relative degrees of certainty) the profile of a proposed mechanism and therefore suggest the most energetically favorable mechanism^{136,182,188}. Δ G has been defined as a measure of the driving force behind a reaction. Thus by calculating the driving force, the mostly probable reaction will be uncovered. In addition, key residues involved in the stabilization of the transition state or destabilization of the reactant state will be idenitified and analyzed for relative electrostatics in determining the relative energetics of different reaction mechanisms.

Chapter 2

Thiamin Diphosphate Activation in 1-deoxy-D-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions

2.1 ACS Permissions

Reprinted with permission from White, J.K.; Handa, S; Vankayala, S.L.; Merkler, D.J. ;Woodcock, H.L., Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions, *J. Phys. Chem. B*, **2016**, *120* (37), pp 99229934, **DOI:** 10.1021/acs.jpcb.6b07248. Copyright 2016 American Chemical Society.

2.2 Abstract

1-deoxy-D-xylulose 5-phosphate synthase (DXS) is a thiamin diphosphate (TDP) dependent enzyme that marks the beginning of the methylerythritol 4-phosphate isoprenoid biosynthesis pathway. The mechanism of action for DXS is still poorly understood and begins with the formation of a thiazolium ylide. This TDP activation step is thought to proceed through an intramolecular deprotonation by the 4'-aminopyrimidine ring of TDP; however, this step would occur only after an initial deprotonation of its own 4'-amino group. The mechanism of the initial deprotonation has been hypothesized, by analogy to transketolases, to occur via a histidine or an active site water molecule. Results from hybrid quantum mechanical / molecular mechanical (QM/MM) reaction path calculations reveal an ~ 10 kcal/mol difference in transition state energies, favoring a water mediated mechanism over direct deprotonation by histidine. This difference was determined to be largely governed by electrostatic changes induced by conformational variations in the active site. Additionally, mutagenesis studies reveal DXS to be an evolutionarily resilient enzyme. Particularly, we hypothesize that residues H82 and H304 may act in a compensatory fashion if the other is lost due to mutation. Further, nucleus-independent chemical shifts (NICS) and aromatic stabilization energy (ASE) calculations suggest that reduction in TDP aromaticity also serves as a factor for regulating ylide formation and controlling reactivity.

2.3 Introduction

Isoprenoids are one of the largest and most diverse families of biomolecules with a number of them essential for life^{99,158,161}. An example would be Vitamin A, which plays a role in human growth and development as well as immune system maintenance. Two isoprene molecules are variably employed in the construction of all isoprenoids. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP) are produced via two distinct biosynthetic pathways (Figure 2.1): mevalonate pathway (MVA) and methylerythritol 4-phosphate pathway (MEP pathway)^{17,33,191}. The MVA pathway was discovered in the 1950s and was considered the sole pathway until the 1990s when discrepancies in isotopic labeling studies led researchers to hypothesize an alternative, MEP pathway^{51,159}. Subsequent, genetic studies have revealed a large variety of life (e.g., algae, bacteria, etc.) to have varying degrees of dependence upon MEP pathway for isoprenoid production; in addition to a number of human pathogens (e.g., *Plasmodium spp.*, and M. tuberculosis)^{52,66,110,147}. Interestingly, the MEP pathway is absent in all mammalian genomes meaning that the enzymes of this pathway are ideal targets for novel antibiotics and antimalarials⁸¹. For example, formidomycin is known to be an effective agent against several of the *Plasmodium spp.* (malarial pathogens) and targets MEP pathway's second step, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR)^{81,100,203}.

Figure 2.1: Schematic of isoprene production via MVA or MEP pathway. MVA pathway produces DMADP via a secondary enzyme, IDP Isomerase^{45,171}. MEP pathway directly synthesizes both isoprene molecules.

MEP pathway is comprised of eight reactions catalyzed by seven enzymes beginning with 1-deoxy-D-xylulose 5-phosphate synthase $(DXS)^{18,53,69,103,114,115,124,176}$. DXS catalyzes the condensation of glyceraldehyde-3-phosphate (G3P) and pyruvate to produce 1-deoxy-d-xylulose 5-phosphate (DXP). Aside from isoprenoid production, DXP is utilized in the production of vitamin B_1 (thiamin) and vitamin B_6 (pyridoxine) biosynthetic pathways^{14,53,76} suggesting increased significance to understanding the mechanism of DXS. Further, DXS is believed to be a rate-limiting step due to the observed correlation between isoprenoid product levels and DXS levels.⁵³ DXS is a member of the thiamin diphosphate (TDP) dependent family of proteins; specifically a member of the transketolase (TK) enzyme subclass and also possesses pyruvate decarboxylase activity.^{7,114,176} TKs are a class of TDP dependent enzymes responsible for the transfer of a ketol donor group to an aldehyde or ketone acceptor molecule 41,60,163 . In 2007, Xiang et al. published crystal structures and mutagenesis results of DXS from E. coli and D. radiodurans and compared them to the E1 subunit of pyruvate dehydrogenase (PDH) and yeast TK (members of the same class of enzymes)¹⁹⁷. The comparison revealed significant similarities between these four enzymes: 1) each enzyme is composed of three domains (I, II, and III), 2) all possess a TDP cofactor, and 3) all contain a GDGX₂₅₋₃₀N motif that plays a role in producing the twisted 'V' shape of the TDP cofactor in the active site¹⁹⁷. The strained cofactor conformation has been shown to play a role in lowering the pK_a of a hydrogen on the thiazolium ring's C2 atom (Figure 2.2)^{25,26,60,84,125}. The active site of DXS contains a number of strictly/highly conserved residues (e.g., Glu370/372, Asp152/154 in *E. coli/D. radiodurans*, respectively) that are common among TDP dependent enzymes, particularly TKs. These similarities have led researchers to propose a DXS reaction mechanism based, primarily, on mechanistic data of other TK enzymes (Figure 2.2)^{41,163,173}.

Figure 2.2: Proposed general mechanism for DXP biosynthesis. Pieces of each step are labeled with different colors to indicate where they originate from. Red represents pyruvate and blue are the pieces affiliated with G3P.

Although DXS contains many of the strictly/highly conserved residues of the TDPdependent superfamily of enzymes (*vide supra*), it displays distinct structural features¹⁹⁷. Specifically, the domain arrangement of DXS; homodimeric with a deep pocket between

two domains of the same monomer rather than at the dimer interface as is the case with other TDP enzymes. These structural differences logically lead to questions of mechanistic similarity. Until the discovery of DXS, it was believed that all TDP enzymes functioned via a classical "ping-pong" mechanism (i.e., pyruvate binding \longrightarrow CO₂ release \longrightarrow G3P binding)⁶⁰. However, Eubanks and Poulter in 2003 concluded that DXS operates via an ordered mechanism (i.e., irreversible pyruvate binding \longrightarrow G3P binding \longrightarrow CO₂ release) and hypothesized a side reaction for producing CO₂ via binding of a second pyruvate molecule⁵⁴. This hypothesized side reaction was subsquently confirmed by Brammer and Meyers in 2009¹⁹. However, the following year a steady-state kinetics study examining a herbicide metabolite (ketoclomazone, a derivative of clomazone) provided evidence of a traditional ping-pong mechanism for DXS¹²³. Nearly, simultaneously (in 2010), a single-molecule force spectroscopy nano sensor was developed and used to observe an approximate 2-fold binding enhancement of G3P in the presence of pyruvate; suggesting an ordered DXS mechanism¹⁷⁴. As part of this work, the authors cast doubt on the reliability of previous results based upon assays that measure bulk phenomena rather than single-molecule behavior. To further confound the situation, Meyers and coworkers (in 2011) proposed an unprecedented TDP-based mechanism; G3P and pyruvate were found to bind independently and reversibly. Thus, they concluded DXS functions via a rapid equilibrium, random sequential mechanism²⁰. In the following year, Meyers and co-workers revealed a 600 fold acceleration in the decarboxylation of the lactyl-TDP intermediate upon binding of G3P. This result further distinguishes DXS from other TDP-dependent enzymes.

Two recent studies have called into question our understanding of the active sites of the large class of TDP dependent enzymes. For instance, the benzaldehyde lyase (BAL) enzyme is devoid of all but two acid-base residues around the TDP active site: a histidine and highly conserved glutamate^{22,121}. Most interesting is the lack of any apparent acid-base residues in glyoxylate carboligase (GCL)⁸⁶. These recent discoveries represent glaring gaps in our understanding of TDP-dependent enzymes and bolster the importance of investigating distinct related enzymes (i.e., DXS).^{21,22,86,121} Here, computation is an ideal partner to experiment.

Of particular interest in this work is the "true first step" of this process: TDP activation, of which significant mechanistic details are still largely uncertain. For example, a proposed mechanism for ylide formation begins with an initial deprotonation of the 4'-aminopyrimidine (AP) state that produces the 1',4'-iminopyrimidine (IP) state^{114,176}. A general base (GB) is required for this deprotonation, however, the identity of this group remains unknown. One hypothesized GB is a highly conserved histidine (His434 in D. radiodurans DXS) found proximal to TDP's 4'-amino group 60,82 . The aforementioned mutation studies (i.e., H434A) showed approximately 95% activity retention, which suggests an alternative mechanism. A more recent 2014 study by Querol et al. suggests H431 (E. coli equivalent of D. radiodurans H434) plays a role in transition state stabilization but not required for catalysis¹⁴⁵. Additionally, numerous structural differences between DXS and TK enzymes (vide supra) support the possibility of an alternative mechanism¹⁹⁷. One possible alternative mirrors that of human TKs; where a water molecule would replace H434 as the GB with a Gln residue acting to stabilize this via coordination^{134,173,190}. This results in two possible TDP activation mechanisms: a water-mediated mechanism (WMM) or direct histidine mechanism (DHM). Even though the WMM utilizes a water molecule as the initial general base, it is possible that H434 plays a role in this mechanism as either a coordination site for the water molecule or as the final location of the proton.

TDP has been shown to exist in four different tautomeric/ionization states (Figure 2.3); however, the exact mechanism for producing the final ylide form remains unclear^{8,9,133,141}. Figure 2.3 illustrates two possible mechanisms: (1) a concerted AP to IP conversion followed by ylide formation or (2) a step wise mechanism where the AP is first ionized to a 4'-aminopyrimidinium ion (APH⁺) and, subsequently, converted to the IP and ylide, respectively. Although direct spectroscopic evidence of the APH⁺ state remains elusive, its existence has been inferred from alternative experiments (e.g., pH rate profiles, solid-state NMR) and hypothesized to assist in promoting IP formation via stabilization of the tautomerization reaction^{8,83,133}. An elevation in the pK_a of TDP's N1 atom is proposed to account for the APH⁺ state's existence; which is justified by its proximity to a strictly conserved glutamate residue. This idea, however, does not consider the possibility of an accompanying elevation in the pK_a of the glutamate residue. Recent studies have determined the pK_a for the N1 atom in DXS to be 7.5¹⁴¹ and a PROPKA^{11,108,138,175} calculation has estimated the E373 residue to have a pK_a of 8.4.¹ These pK_a values suggest an equilibrium between the AP, and APH⁺ states; which is consistent with the enzyme stabilizing the IP formation via pK_a modulation. Additionally, Jordan et al. supports the equilibria presented in Figure 2.3; particularly for apo (TDP-bound enzyme lacking substrate) enzymes⁸³. Therefore, it is not necessary to select between the step wise or concerted mechanism for the purposes of this study.

Figure 2.3: Structure and relationship of the 4 possible tautomeric/ionization states proposed for the cofactor of TDP dependent enzymes^{8,9,125,133,141}. Key atoms have been given names for reference purposes throughout this article.

¹The pK_a for the N1 atom of DXS was determined via pH rate profile studies. The E373 pK_a was estimated using PROPKA3.1 with TDP but without pyruvate and G3P. The complete output of the PROPKA3.1 calculation can be found in the supporting information.

The rate of activation and turnover of TDP shows a substantial increase when bound to an enzyme rather than in solution⁸⁴. Several factors leading to the increase in activity have been proposed. One factor includes the strained conformation the cofactor adopts upon binding. This conformation places the 4'-amino group in close proximity to the thiazolium C2 atom; both introducing strain and lowering the pK_a of the C2 hydrogen from 14-19 (depending on solvent) to approximately $9^{65,82}$. The electronics of the pyrimidine ring of TDP would also undoubtedly change during the activation process. These changes could lead to a disruption of the aromaticity and more indirectly influence the energetics of TDP activation. The link between aromaticity and TDP activation has not been investigated previously. Uncovering such a link will provide better understanding of DXS and raise the question if this phenomenon is general for all TDP dependent enzymes (e.g., TK, PDH, etc.).

Herein, a hybrid quantum mechanical/molecular mechanical (QM/MM) study is carried out using the *D. radiodurans* DXS crystal structure¹⁹⁷. The energy profile of the DHM and WMM are computed to determine the most favorable activation mechanism. Active site electrostatics are also probed to elucidate the stabilizing/destabilizing effects that govern this process. Further, two metrics of aromaticity are employed to quantify this effect and determine its role as a possible driving force in activation of TDP dependent enzymes. In addition to the computational work, a kinetics study, utilizing a coupled enzyme assay, was performed on mutant and wild-type forms of the *D. radiodurans* DXS enzyme. As part of the mutagenesis work, we have re-examined the H434A mutation; which is of particular interest in this study. Our study focuses on the K_M and k_{cat} due to their relationship with substrate affinity and reaction turnover, respectively. The combination of computational and experimental results helps bridge the gap between bulk behavior and atomistic understanding; ultimately leading to new insights into this unique enzyme.

2.4 Methods

2.4.1 Computational Methods

The DXS active homodimer structure was used throughout this study. The crystal structure for the *D. radiodurans* DXS (PDB ID:2O1X)¹⁹⁷ enzyme with TDP bound was processed and parsed via www.charmming.org¹²⁷. A TDP molecule can be broken down into three moieties: a thymine-like pyrimidine ring, a pyrophosphate (residue name utilized in the topology file), and a thiazolium ring(Figure 2.2). Parameters for all three of these have been developed as part of the CHARMM General Force Field (CGenFF)¹⁸⁴. Final TDP parameters were thus obtained by connecting the respective components and modifying charges (see SI). Parameter validation was done with respect to the TDP crystal conformation based on the RMSD (see SI).

Structural modifications were performed to ensure the active site Glu373 was protonated in agreement with experimental evidence 90,112 . CGenFF and CHARMM22 protein (C22) force fields¹¹⁹ were used throughout. The system was solvated in a rhombododechedron crystal structure and neutralized with KCl salt to a final concentration of 0.15M. The system was heated from 110K to 310K over 100ps and equilibrated for 200ps at constant pressure (1atm) and temperature (310K). The total system size was then reduced by removing all of the water and salt ions beyond 12Å from the surface of the protein. The reduced structure was then QM/MM minimized, without applying cutoffs, to a gradient tolerance of 0.002 kcal·mol⁻¹·Å⁻¹. All QM/MM calculations employed the Q-Chem4.0\CHARMM^{27,170,194} interface at the B3LYP/6-31G* level of theory^{13,68,105}. Additionally, the single link atom scheme was used to account for truncation of the QM region and employed group electrostatic exclusions to prevent over polarization of the QM region.

Reaction pathway calculations employed a combination of the replica path method (RPATh) and harmonic distance restraints (RESDi)^{36,194,195}. The RPATh method permits the user to divide the system into discrete subsystems (replicas), which are allowed

to change independently of the remaining "environment". A subsystem was defined to be 6.5Å around the QM region, which was comprised of TDP, Glu373, His120, and His434 (Figure 2.4a, 98 QM atoms). The QM region for the WMM included a water molecule (Wat9709) coordinating with the 4'-amino group of the pyrimidine ring of TDP and the N ϵ of His434. Wat9709 was removed from the initial structure prior to QM/MM minimization (*vide supra*) for the DHM. Two replicas of the subsystem were used to model successive steps along the reaction coordinate (δ), which was defined as a linear combination of the bond being broken and the bond being formed (Figure 2.4b, 101 QM atoms). The δ values were defined incrementally for each mechanism starting from the reactant state. The DHM scanned a range of -3.0Å to 3.0Å in increments of 0.3Å with smaller increments of 0.1Å used around the transition state (i.e., -1.0Å to 1.0Å) to provide finer detail. The WMM scanned a range of -1.1Å to 1.1Å in increments of 0.1Å.

The Charge Perturbation Analysis (CPA)^{12,42,67,107} technique involves QM/MM single point energy calculations where a single residue's classical charge is scaled to zero to probe its electrostatic contribution. ΔE is computed by taking the difference of the modified (zero-charge residue) and the full QM/MM electronic energy: $\Delta E_{CPA} = E_{elec}^{ZeroChargeRes}$ (QM/MM) - E_{elec}^{FullMM} (QM/MM). CPA calculations were performed for the reactant state (RS) and transition state (TS) of the DHM and WMM as determined by RPATh+RESDi calculations. The reactant state was the starting δ value for each mechanism while the TS corresponded to the point along the path with the highest energy. $\Delta \Delta E_{CPA} = \Delta E_{CPA}$ (RS) - ΔE_{CPA} (TS) provides insight into stabilizing/destabilizing electrostatic effects with respect to RS and TS. CPA was performed on all 82 residues found within 5Å of the QM region for both mechanisms. To further characterize long range electrostatic changes, the QM/MM dipole moments were calculated around the QM region for the RS and TS of each mechanism. The QM/MM dipoles take into account the external charge contributions of the MM region on the QM region. The calculations were carried out using Q-Chem 4.0¹⁷⁰ and initially visualized in IQmol with final rendering using PyMOL.

Two metrics were employed to quantify aromaticity and gauge the level of significance of it as a possible driving force of vlide formation: nucleus-independent chemical shifts (NICS)¹⁶⁴ and aromatic stabilization energy (ASE)^{43,44}. NICS directly measures the aromatic character of a compound^{35,39,43,164} while ASE reveals the stabilization/destabilization that arises from the aromaticity of a compound¹. Due to computational limitations, NICS calculations were performed on reduced versions of the RS and TS subsystems. The reduced subsystems contained 232 or 235 atoms for the DHM or WMM, respectively. The difference of 3 atoms being the absence of Wat9709 from the DHM. Ghost atoms were placed perpendicular to the plane of TDP's pyrimidine ring. Due to the non-symmetric protein active site, the NICS(0) (ring center), NICS(1), and NICS(-1) (atoms 1Å above and below the plane of the ring) will be reported herein 10,35,44,98 . All NICS calculations were performed using Q-Chem 4.0^{170} at the B3LYP/6-31G^{*} level of theory 13,68,105 . ASE is typically computed via a reference homodesmotic reaction 1,189 . A homodesmotic reaction must be defined such that equal numbers of each type of atom (sp³, sp², sp) and bond (sp³-sp³, sp³-sp², sp²-sp², etc...) exist in both reactants and products¹⁸⁹. All structures used in ASE calculations were optimized at the B3LYP/6-311+G^{**} level of theory. Energies for each molecule were corrected by subtracting out their respective zero point energy obtained from subsequent frequency calculations.

2.4.2 Experimental Methods

Materials

TDP, pyruvate, G3P, DXP sodium salt, bovine serum albumin, and LB-broth were purchased from Sigma Aldrich. NADPH was purchased from Alexis Biochemical, Ni-NTA resin was purchased from Invitrogen, and β -mercaptoethanol (β -Me) was purchased from Fisher. *E. coli* XL-10 cells, deoxynucleotide mix PCR grade, *pfu*Ultra Hotstart DNA polymerase, QuikChange II site directed mutagenesis kit and acetonitrile (HPLC grade) were purchased from Agilent. The DNA vectors pET28a(+) and pET15b(+) and *E. coli* BL-21 B(DE3) cells were purchased from EMD Biosciences. DNA sequencing services and primers were purchased from MWG operon. All the other reagents were of the highest quality commercially available.

Cloning of D. radiodurans DXS and E. coli DXR

A synthetic, codon optimized *D. radiodurans dxs* gene with 5'-*NdeI* and 3'-*XhoI* restriction sites in a pMK vector was purchased from Geneart (Germany). The *dxs* gene was excised from the pMK vector and cloned into the *NdeI* and *XhoI* sites of a pET28a(+) vector (*kanamycin* resistance) with an N-terminal His₆-tag to yield the pET28a(+)-DXS plasmid. Successful cloning of the *D. radiodurans dxs* gene was confirmed by DNA sequencing at MWG Operon.

A synthetic, codon optimized *E. coli dxr* gene with 5'-*NdeI* and 3'-*BamHI* restriction sites in a pMK vector was purchased from Geneart (Germany). The *dxr* gene was excised from pMK vector and cloned into *NdeI* and *BamHI* restriction sites of pET15b(+) vector with a C-terminal His₆ tag to yield the pET15b(+)-DXR plasmid. Gene insertion was confirmed by DNA sequencing.

Production of the D. radiodurans DXS Mutants

Site-directed mutagenesis was carried out using the QuikChange II site-directed mutagenesis kit. Briefly, the mutagenesis mixture consists of 50-100 ng plasmid pET28a(+)-DXS as a template, 1X PCR reaction buffer, 0.4 mM each of the forward and reverse primer, 0.25 mM dNTP mixture, 5 μ L Quik solution, and 2.5 units of *pfu*Ultra hotstart polymerase in a 50 μ L reaction. The overlap extension method was used to produce the DXS mutants that were difficult to create via site directed mutagenesis⁷⁷. The sequence of the mutant DNA was confirmed by DNA sequencing.

Assays for DXS Activity

We employed a DXS-DXR coupled assay to determine the wild-type and mutant DXS enzyme activities. In this way, the DXS-dependent production of DXP is ultimately coupled to the oxidation of NADPH to NADP⁺ via the DXR enzyme. The solution for the DXS-DXR coupled contained 100 mM HEPES pH 8.0, 100 mM NaCl, 1 mg/mL BSA, 1 mM TDP, 1.5 mM MnCl₂, 2 mM β -Me, 0.15 mM NADPH, 0.2 mg/mL DXR, and varying concentrations of pyruvate or G3P⁷⁹. Steady-state kinetic experiments were performed by varying pyruvate or G3P at a fixed saturating concentration of the cosubstrate. A DXS-DXR reaction solution was incubated at 37°C for 5 min, the reaction was initiated by addition of 358 nM DXS, and the progress of the reaction monitored spectrophotometrically at 340 nm for the oxidation of NADPH. The DXS and DXR employed in this assay were over-expressed and purified based on the methods presented in the supporting information. Each sample was stored at -80°C until used for the assay. The steady state initial velocity for DXS measured at various concentrations of pyruvate and G3P were fit to equation 1 (see SI for plots) using nonlinear regression analysis in Sigma-Plot 12.0.

$$v = \frac{V_{max}[S]}{K_M + [S]}$$
 (2.1)

2.5 Results and Discussion

A central aim of this investigation is to determine and characterize the mechanism of TDP activation in DXS (Figure 2.2). There are two hypothesized mechanisms acting by a different GB: WMM (Wat9709) and DHM (His434). Though most TK enzymes are thought to rely on a histidine residue as the GB, key structural differences and mutagenesis results suggest DXS might diverge from the majority of TK enzymes^{20,54,60,129,141}. The reactant state QM/MM minimized structures (Figure 2.4a, 2.4b) provides some initial insight into this process. Coordination of the water oxygen to the H_n (2.0Å,Figure 2.4b) suggests water could act as the GB. Further, the distance between H_o and N_{ϵ} (1.8Å, Figure 2.4b) suggests that this could be the final destination of this proton. Alternatively, in the absence of Wat9709, His434 directly interacts with TDP albeit more distantly (4.2Å, Figure 2.4a)¹⁹⁷.

Figure 2.4: Representations of the RS for DHM (a) and WMM (b). The dashed black lines illustrate the proton transfer reaction.

To determine each mechanism's feasibility, the RPATh+RESDi technique was employed and respective minimum energy pathways were computed. A plot of ΔE with respect to δ (Figure 2.5) values illustrates the energetic favorability of the WMM over the DHM. A δ value of 0.3Å corresponds to the TS of both mechanisms. The difference between barriers can partially be explained by a conformational change that occurs during the DHM (Figure 2.6). This involves the movement of His434 into a conformation more favorable for deprotonation of the 4'-amino moiety. His434's movement induces a strain in the protein backbone and perturbs the configuration of the local environment. This change in configuration accounts for a portion of the energetic differences between the WMM and DHM but does not provide a complete explanation. Further, a $\Delta E^{\ddagger}_{WMM}$ value of 22.7 kcal·mol⁻¹ is considerably higher than one might expect for an enzyme catalyzed proton transfer and cannot be explained by a simple conformational change¹⁴².

The reaction pathway calculations applied a restraint to the proton transfer involved in the DHM or WMM. No other restraints were applied to the system. Upon examination of structural changes during the reaction, a second proton was observed to spontaneously transfer from E373 to the N1 atom of TDP's AP ring in both mechanisms (Figure 2.7). Since E373 was included in the QM region, the proton transfer occurred in response to electronic changes encountered during each mechanism. The combination of the re-

Figure 2.5: Minimum energy profiles computed for the WMM and DHM. The different x-axes are used because of differences in the reaction coordinate ranges for WMM vs DHM; both are associated with the same y-axis. The ΔE^{\ddagger} are 22.7 kcal·mol⁻¹ and 33.7 kcal·mol⁻¹ for the WMM (gray circles) and DHM (black squares), respectively.

strained reaction path proton transfer and unrestrained E373 to N1 atom proton transfer represents the tautomerization of the AP to IP state (Figure 2.3). The formation of

Figure 2.6: Representative conformational changes between the RS (yellow) and TS (green) of the DHM.

the ylide state is dependent upon first forming the IP state. There is some debate in the literature over the exact details of the IP state formation (*vide supra*)^{8,9,133,141}. Most studies propose an equilibrium between the AP, APH⁺, and IP TDP states (Figure 2.3)

particularly for apo enzymes⁸³. As highlighted in the introduction, the pK_as of TDP's N1 atom and E373 residue (see SI and Introduction) are approximated to be close to one another using experimental and empirically based computational techniques. The combination of the pK_as and observed responses from QM/MM calculations suggests a concerted mechanism as previously thought. Additional studies are underway to more fully address this unresolved question.

Figure 2.7: Illustration of the proton transfer from E373 to TDP's AP ring during the tautomerization reaction. (a) and (b) represent the reactant and product states, respectively. While this figure only depicts the structures of the WMM, a similar response was observed during the DHM.

The CPA method, which approximates electrostatic contributions of a single active site residue, was used to determine the stabilizing/destabilizing effects of active site residues as a function of both states (i.e., RS vs TS) and mechanisms (i.e., WMM vs DHM). Negative $\Delta\Delta E$ values indicate that a particular residue is more stabilizing towards the TS; whereas positive $\Delta\Delta E$ values show stabilization of the RS. From the 82

	$\Delta \Delta E_{\rm DHM}$	$\Delta \Delta E_{\mathbf{WMM}}$
K101	2.0	7.5
H51	-10.1	-1.2
K289	-12.3	-2.5
D430	-21.3	-10.8

Table 2.1: $\Delta\Delta E$ values for four residues of interest in the WMM and DHM. Negative $\Delta\Delta E$ values indicate preferential stabilization of the TS; while positive $\Delta\Delta E$ show stabilization of the RS preferentially. All values are in kcal·mol⁻¹.

active site residues examined, there were 4 that showed substantive differences (Table 2.1). Residues found stabilizing the TS were D430, K289, and H51, and Wat10307. K101 were found to preferentially stabilize the RS. K101, H51 and D430 were found in a

Figure 2.8: Active site conformation of the residues discussed in the CPA results. Images show both the RS (yellow) and TS (green). (a) illustrates the DHM while (b) shows the WMM.

catalytic triad-like configuration in the active site (Figure 2.8). It is unlikely that they play a direct role in this reaction due to their distance from the site of activity (7.2Å). A cluster of water molecules were found to span the distance between the reaction site and triad; which suggests an electrostatic role. K289 coordinates to the negatively charged phosphate tail of TDP (Figure 2.8) and is highly conserved in *D. radiodurans*, as well as other TDP dependent enzymes. In fact, most TDP dependent enzymes are found to require a divalent metal ion and positive residues near the phosphate tail to anchor the cofactor.

The magnitude of $\Delta\Delta E_{\text{DHM}}$ values were consistently larger than the magnitudes of $\Delta\Delta E_{\text{WMM}}$ values. This behavior is attributed to the structural change that the DHM TS must adopt in order to position His434 for deprotonation of TDP's 4'-amino group. The increased TS stabilization for this mechanism suggests the enzyme is tuned to accommodate alternative activation routes although they may not be the most favorable. For example, active site mutations are a common way that bacteria and other lower life forms (i.e., those that rely on MEP pathway) can adapt to changes in chemical environments. By tuning the DXS active site to stabilize TDP activation via varying general bases, evolutionary fitness is maximized.

To better characterize long range electrostatic effects, QM/MM dipole moments for the RS and TS for each mechanism were computed and visualized (Figure 2.9). The RS dipole moments of both the WMM and DHM were essentially the same. Further, WMM dipoles, both RS and TS, are indistinguishable (Figure 2.9b) whereas the DHM TS dipole moment is significantly perturbed (Figure 2.9a). Again, this effect is attributed to the conformation change His434 undergoes during the DHM and appears to be the underlying source of DXS's ability to stabilize non-water mediated TDP activation.

Herein, we also report experimental kinetics studies of pyruvate and G3P binding and reaction in DXS and several DXS mutants (Table 2.2). For H434A, there exists negligible increase in catalytic rate for pyruvate as well as G3P in comparison to wild-type, respectively. K_M values also slightly increased by 6.1 and 4.6 folds, respectively. G3P's negatively charged phosphate tail is thought to bind in a positively charged region of the active site; which contains the polar H434 residue. Additionally, the negatively charged pyruvate is thought to interact with the same positive region but, not as strongly¹⁹⁷.

Figure 2.9: Illustrated above are the computed RS (yellow) and TS (green) dipoles of the WMM and DHM. (a) is the DHM and (b) is the WMM.

Therefore, the mutagenesis results suggest that the electrostatic effects that accompany the H434A mutation have a clear destabilizing effect on substate binding while enhancing turnover. This behavior is contrary to what would be expected if H434 is required for initial TDP activation. Thus, the H434A mutant supports the conclusion favoring a WMM for TDP activation.

Another interesting correlation between CPA and mutagenesis results is related to the D430A mutant. As previously discussed, D430 is found in a electrostatic triad of residues that includes K101 and H51 (Figure 2.8). While the k_{cat} for D430A mutant remains relatively unchanged, the K_M for pyruvate and G3P increases 1.9 and 2.4 times, respectively.

This behavior indicates a role in substrate binding rather than catalysis, similar to H434. The corresponding residue in yeast TK (D477) has been studied previously¹³⁵. D477 was shown to a have a rather large effect on activity and substrate binding. In comparison, DXS shows only a 50% loss of activity that is caused by decreased substrate affinity. This speaks to the difference between DXS and other TK enzymes and highlights the need to study this unique subclass of enzyme.

Pyruvate						
	K_{M} (mM)	$k_{cat}/K_{M} ~(s^{-1}M^{-1})$	$\mathbf{k}_{cat}~(\mathbf{s}^{-1})$	%WT		
Wild-type	0.28 ± 0.03	2.6×10^4	7.4 ± 0.3	100		
H82A	0.23 ± 0.02	1.7×10^3	0.38 ± 0.01	5.1		
H304A	1.7 ± 0.5	5.8×10^2	0.90 ± 0.01	12.1		
D430A	0.52 ± 0.5	1.4×10^4	7.2 ± 0.2	97.3		
H434A	1.7 ± 0.1	5.9×10^3	9.9 ± 0.2	133.8		
G3P						
	K_{M} (mM)	${ m k}_{cat}/{ m K_M}~({ m s}^{-1}{ m M}^{-1})$	$\mathbf{k}_{cat}~(\mathbf{s}^{-1})$	%WT		
Wild-type	0.05 ± 0.01	1.5×10^5	7.9 ± 0.4	100		
H82A	0.03 ± 0.01	1.3×10^4	0.37 ± 0.02	4.7		
H304A	0.08 ± 0.02	1.1×10^4	0.90 ± 0.1	11.4		
D430A	0.12 ± 0.01	6.6×10^4	7.7 ± 0.2	97.5		
H434A	0.23 ± 0.01	4.2×10^4	9.6 ± 0.3	121.5		

Table 2.2: DXS steady-state kinetics data (wild-type and mutants) for both pyruvate and G3P. %WT was determined by comparing the mutant k_{cat} to the wild-type k_{cat} .

Two histidine residues are in close proximity to each other (3.7Å between N_e atoms for H82 and H304) and the center of activity (5.1Å and 5.7Å from the thiazolium C2 atom respectively for H82 and H304) of DXS. Table 2.2 shows that the H82A and H304A mutants produce catalytically defective enzymes resulting in only 2-12% k_{cat} and k_{cat}/K_M values when compared to wild-type. The loss of activity can be explained by their proximity to the thiazolium C2 atom. These residues can assist in stabilizing the α -carbanion\enamine intermediate following pyruvate decarboxylation (Figure 2.2, step 5).While activity in these mutants is significantly retarded, detectable levels of activity are retained. This retention might be explained by the proximity of these two residues to one another. Upon the loss of one histidine, it is possible for the other His residue to recover partial functionality. There is one noticeable difference in the results of these two mutants. The H304A K_M for pyruvate has increased compared to the wild type; while K_M value for H82A

remain similar to the wild-type value. This indicates that while both residues are clearly catalytically important, H304A protrudes into the pyruvate binding site and, therefore, plays a role in binding; which can not be replaced by H82. Thus, accounting for observed differences in mutant K_M values for pyruvate.

Figure 2.10: Analysis for 18 ns of the unrestrained simulation of the 2O1X DXS structure utilized in this investigation. (a) the distances over time for N_{ϵ} of H434 to N4' of TDP's amino group. (b) shows the fluctuations for backbone (black), and side chains (grey) for residues H51, K101, H124, K289, E373, D430, and H434. These residues represent the QM region and key CPA residues previously discussed. (c) snapshot from the 18 ns trajectory with H434 in proximity to the 4'-amino group. (d) is representative of H434 in the second conformation.

With these mutagenesis results, it became apparent that a longer simulation was required to examine active site conformational dynamics. Thus, the 201X structure was simulated for an additional 20 ns with the first 2 ns discarded (details found in supplementary information). The trajectories were compared to the QM/MM minimized RS. The distance between the 4'-amino group and the N_{ϵ} atom of H434 revealed two major conformations (Figure 2.10a). The first conformation lasts for ~5.0 ns and has H434 3.5Å from the AP ring on average. The second conformation has H434 7.1Å from the AP ring on average and remains throughout the simulation. The fact that the 2nd conformation is stable for the majority of the simulation and places the histidine beyond the range of direct deprotonation of its 4'-amino group provides further support for a water mediated mechanism. Additionally, the backbone and side chain fluctuations were calculated for significant CPA residues (e.g., E373 and H434, Figure 2.10b). The conformational change of H434 to a position proximal to K101 and D430 accounts for the larger side chain fluctuations of K101 and D430 (Figure 2.10). The introduction of H434's imidazole would force K101 and D430 to move in order to accommodate the bulky polar side chain. The combination of the motion of these residues with H434 being the final resting place of the proton abstracted from TDP's amino group suggests a possible regulatory role for H434. H434 could act as a shuttle involved in regenerating the TDP-ylide for further reactions by displacing the abstracted proton onto D430. This perfectly aligns with experimental results showing that the removal of this residue (H434A) slightly increases k_{cat} , allowing any proton transfer from TDP's amino group to D430 to occur more rapidly via a water mediated process (picosecond time scale) rather than the H434 side chain motion that likely occurs on the nanosecond time scale.

	DHM-RS	DHM-TS	$\Delta \mathbf{NICS}$
NICS(1)	-7.1	-5.7	1.4
NICS(0)	-5.0	-2.7	2.3
NICS(-1)	-9.3	-6.7	2.6
Average			2.1
	WMM-RS	WMM-TS	$\Delta \mathbf{NICS}$
NICS(1)	WMM-RS -6.8	WMM-TS -4.7	$\Delta NICS$ 2.1
NICS(1) NICS(0)	•6.8 -4.6	WMM-TS -4.7 -2.2	$\begin{array}{c} \Delta \text{NICS} \\ 2.1 \\ 2.5 \end{array}$
NICS(1) NICS(0) NICS(-1)	-6.8 -4.6 -8.8	-4.7 -2.2 -6.3	Δ NICS 2.1 2.5 2.5

Table 2.3: Calculated NICS values for the WMM and DHM RS and TS. The NICS(0) values are taken from the center of the pyrimidine ring. The NICS(1) and NICS(-1) values are points away and towards a proximal phenylalanine (F398), respectively. A comparison set of benzene (-9.8) and cyclobutadiene (27.6) were computed to show reference aromatic and antiaromatic values, respectively. The average Δ NICS values represent a 29.4% and 35.6% decrease in aromaticity for DHM and WMM, respectively.

TDP reactivity is clearly dependent on the surrounding environment, e.g., rate of reaction increases a billion-fold when bound to an enzyme⁸⁴. Several attempts to determine the underlying energetics have attributed this behavior to the strained 'V' shape

TDP adopts upon binding^{25,26,82}. Given the pK_a changes this conformation induces, it is surprising that the barrier to activation (i.e., proton transfer) is significantly higher than expected; $\Delta E^{\ddagger}=22.7 \text{ kcal} \cdot \text{mol}^{-1} \text{ vs. } 5\text{-}10 \text{ kcal} \cdot \text{mol}^{-1}$ for typical proton transfers¹⁴². One possible cause of this is the loss of aromaticity that occurs during ylide formation. Additionally, overestimation of the barrier may be due to the inability to carry out free energy simulations; nevertheless, the energy barrier difference is a more meaningful quantity when seeking to differentiate two possible mechanisms.

To examine the former, i.e., aromaticity effects, both NICS and ASE were computed. NICS calculations estimate the aromaticity of a molecule; negative NICS values indicating aromaticity and positive NICS values antiaromaticity. Table 2.3 reports NICS results for RS and TS of TDP activation via DHM and WMM. An average of the Δ NICS values was used to quantify the relative change in aromatic character. Results indicate the AP ring is aromatic in both the RS and TS with values close to those published for similar pryimidine analogs¹. However, the TS consistently shows lower aromatic character than the RS; which supports our hypothesis of aromaticity regulating ylide formation.

Calculating the ASE for TDP's AP state should provide additional information about the importance of aromaticity in ylide formation. A homodesmotic reaction (Figure 2.11) provides a reference for determining ASE. Thiamin serves as a model compound for this purpose and represents the key components (e.g., 4'-amino and thiazolium moieties) of TDP. Systems with positive values of ASE are considered to be aromatic, whereas those with negative values are antiaromatic. ASE values are determined as the difference in energies between both halves of the reference reaction (Figure 2.11). Thiamin has an ASE

Figure 2.11: Homodesmotic reaction used in evaluating the aromatic stabilization energy for a model TDP.

of 37.6 kcal·mol⁻¹; which is again in close agreement with previously published results of similar pyrimidine derivatives¹.

Combining ASE values with the average decrease in aromaticity (i.e., Δ NICS, Table 2.3), we approximate the stabilization lost at the TS of each mechanism. Aromaticity losses of 13.4 kcal·mol⁻¹ and 11.1 kcal·mol⁻¹ for WMM and DHM were computed, respectively. Interestingly, we again observe the DHM TS being less destabilized when compared to the WMM TS. This provides further evidence that DXS is well adapted to stabilizing alternative mechanisms of TDP activation. Finally, when the total barrier heights are considered it becomes clear that the loss of aromaticity plays a major role in TDP activation and the initial step of isoprenoid biosynthesis.

2.6 Conclusion

The $\Delta\Delta E^{\ddagger}$ of 10.0 kcal·mol⁻¹ difference between the WMM and DHM mechanisms indicates the WMM is the energetically favorable route for ylide formation in DXS. The RPATh+RESDi results seem to suggest the mechanism of proton transfer acts in a concerted fashion proceeding via the tautomeric route between the AP and IP state. Further investigation is ongoing to confirm the relative energetics of a step-wise versus concerted mechanism.

CPA results were indicative of H434 playing a role in long range electrostatic stabilization; which is more clearly illustrated upon examination of the RS and TS active site dipole moments. Mutagenesis studies performed reveal H434 to play a role in substrate binding but not likely a direct role in catalysis. The H434A mutant results reinforce the CPA results. Additionally, a D430A mutant revealed a lower catalytic significance for DXS in comparison to the corresponding yeast TK mutant¹³⁵; again illustrating mechanistic differences. Furthermore, H82A and H304A DXS mutants showed significant decreases in activity (2-12% of wild-type). Given their proximity and retention of measurable activity, it is likely these residues function as back-ups to each other. This comports nicely with computational results that indicate DXS is well suited to functioning via alternative mechanisms (i.e., different general bases), something that would offer a significant evolutionary advantage. $\Delta E_{WMM}^{\ddagger}$ is significantly higher than what might be expected for a relatively simple proton transfer¹⁴². CPA results could not account for such behavior. However, upon examination of the 4'-amino moiety, it was evident from structural changes that aromaticity may be changing. The results of NICS and ASE calculations showed that indeed the AP ring was losing aromaticity. If the aromatic contribution is taken into consideration, the new $\Delta E_{WMM}^{\ddagger}$ would be closer to 8.5 kcal·mol⁻¹; which is in the range of similar reactions. This clearly shows that loss of aromaticity plays a key role in controlling activation of TDP in DXS. Further, restoration of this aromaticity upon intramolecular proton transfer from the C2 of the thiazolium ring to the 4'-amino group should ultimately drive the final ylide formation.

2.7 Supporting Information (SI)

The following can be found in Appendix A: PDB files for the transition states of the WMM and DHM; link atom details for QM/MM reaction path calculations; CPA results; topology and parameter files for TDP; methods for the over-expression and purification of DXS and DXR; steady-state initial velocity plots with varying concentrations of G3P and pyruvate; details about 20ns simulations; results of PROPKA3.1 calculations on DXS Chain A.

2.8 Acknowledgments

H.L.W. would like to acknowledge NIH (1K22HL088341-01A1, 4K22311045-02), NSF (CHE-1464946), and the University of South Florida (start-up) for funding. Additionally, D.J.M. would like to acknowledge funding from two NIH grants (RO3-DA034323 and R15-GM107864). Computations were performed at the USF Research Computing Center (NSF Grant No. CHE-1531590). This research was supported in part by a seed grant from the Florida Center of Excellence for Biomolecular Identification and Targeted Therapeutics (FCoE-BITT) to D.J.M. and a Graduate Multidisciplinary Scholar (GMS) award from FCoE-BITT to S.H.

Chapter 3

Computational Examination of the Magnesium Ion Binding Modes of 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase

3.1 Introduction

There exists a vast and varied class of natural products derived from two five-carbon isoprene precursors, isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), and serve several essential roles for all living organisms¹⁴⁴. These are generally known as Isoprenoids. The broad variety of uniques molecules comprising this family are derived via a combination of elongations, rearrangements, cyclizations, and oxidations utilizing IDP and DMADP in various combinations³⁸. A few of the important biological roles filled by isoprenoids are prenyl lipids in archaebacteria⁴⁶, sterols in eubacteria and eukaryotes¹²⁸, light-harvesting pigments such as carotenoids, electron transport carrier such as ubiquinone and menaquinone, and several growth and development regulators (Figure 3.1)¹⁶¹. Additionally, there are several known herbicides or herbivore repellents identified to be isoprenoids⁴⁸.

The biosynthesis of the IDP and DMADP building blocks were originally thought to derive from a single enzyme pathway (Figure 3.1^{132} . This pathway is known as the mevalonate dependent (MVA) pathway; which was named after the key committed intermediate formed from the condensation and reduction of 3 acetyl-CoA molecules producing mevalonic acid (or mevalonate in ionic state). Continuing discrepancies in the results of isotope labeling studies^{30,31,57,140,205} led several researchers to postulate the existence of a second yet unidentified pathway. Efforts by researchers such as Rohmer, Arigoni, Lich-

Figure 3.1: Illustration of the two biosynthetic pathways of IDP and DMADP and representative isoprenoids produced from the building blocks

tenthaler, and Seto, *etc.* eventually discovered a new pathway completely distinct from the MVA pathway^{32,91,111}. Initially, the pathway had names reflecting the distinction between MVA and the novel, mevalonate-independent or non-mevalonate (NMA) pathway. Seven enzymes catalyzing 8 reactions comprise the NMA pathway¹³². Rohmer and co-workers¹⁵⁹ established the formation of 1-deoxy-D-xylulose 5-phosphate (DXP) via the decarboxyl condensation of pyruvate and glyceraldehyde-3-phosphate (G3P). DXP is additionally utilized as an intermediate for the biosynthesis of vitamins B1 and B6 as well as isoprenoid biosynthesis^{114,160}. Therefore, DXP is required and considered the first step of the pathway but not the committing step in the NMA pathway. The succeeding reaction catalyzed by DXP reductoisomerase (DXR) bares the distinction of being the committed step in the NMA pathway. The product of this reaction, 2-C-methyl-Derythritol 4-phosphate (MEP), lends its name to the pathway, as the NMA pathway is frequently referred to as the MEP pathway¹⁰⁰.

DXP reductoisomerase catalyzes a carbon-skeleton rearrangement of DXP and subsequently reduced. DXR activity requires a divalent metal cation cofactor and NADPH co-substrate. Out of the divalent metal ions attempted, DXR is activated by only Mn^{2+} , Co^{2+} and Mg^{2+} , in decreasing order respectively^{3,94,102,118,179,202}. Additionally, NADH was tested in place of NADPH as the co-substrate with DXRs derived from *E. coli*, *M. tuberculosis* and *S. leopoliensis*. The results were a decrease in activity in some cases as much as a 100-fold decrease in activity. Decreased affinity is responsible for the lost activity primarily due to the loss of the 2'-phosphate of NADPH. Therefore, the phosphate is a binding determinant and not likely directly involved in catalysis since k_{cat} was unaffected^{3,179}.

Results of isotopic labeling studies demonstrated the required isomerization proceeding via a C3/C2 bond transition. The isomerization results in an aldehyde intermediate 2-C-methyl-D-erythrose 4-phosphate (MEsP), which is subsequently reduced on the *re* face of MEsP by the C4 pro-S hydride of NADPH^{4,5}. The proposal of this intermediate was originally based on analogy to ketol-acid reductisomerase (KARI), which catalyzes a similar reaction during the biosynthesis of branched-chain amino acids. As with the KARI reaction, the MEsP aldehyde intermediate has never been directly detected ^{50,100,179}. Several attempts have been made to isolate the aldehyde intermediate with no success. These results suggest the intermediate might be more transient than originally thought or very tightly bound prior to NADPH reduction ^{78,179}; which has been similarly proposed for KARI⁵⁰. Rohmer and co-workers produced the first compelling evidence supporting the aldehyde intermediate theory by introducing exogenously synthesized MEsP and demonstrating kinetic competency. When incubated with DXR in the presence of NADPH and Mg^{2+} or Mn^{2+} , a factor of 4 and 1.6, respectively, increase in conversion to MEP was observed. While the oxidized coenzyme was present, a 7% conversion of MEsP to DXP was detectable³⁷. Additionally, the K_m for MEsP was found to be greater than DXP by a factor of 4 and 1.6 in the presence of Mg²⁺ or Mn²⁺, respectively. The argument has been made based on these values against the tight-binding of MEsP. This is flawed though since K_d and K_m are only equal when substrate dissociation is rapid^{78,137}.

Despite the overall similarities of DXR- and KARI-catalyzed reactions, amino acid differences suggest different mechanism of $action^{37,49,95}$. Three mechanisms were proposed to explain the carbon-skeleton rearrangement: 1) an α -ketol rearrangement, 2) a retro-aldolization/aldolization, and 3) a sequential 1,2-hydride and 1,2-methyl shift⁶⁴. A dismissal of the third mechanism was accomplished based on ¹³C-glucose and ¹³-DXP incorporation studies^{3,72}. Therefore, further investigations looked to distinguish between the remaining α -ketol rearrangement or retro-aldol/aldol mechanism (Figure 3.2).

The retro-aldol/aldol mechanism should form 2 putative intermediates of glycoaldehyde phosphate and the enolate of hydrxyacetone. If these intermediate could be detected during or following the reaction, it would provide strong evidence in support of the retroaldol/aldol mechanism. Several attempts were made with no success^{58,78,104}. Though the lack of detection is consistent with both mechanisms as the results can be explained as the intermediates fragments are tightly confined to the active site. Additionally, these putative fragments could be so transient, they never truly form. Subsequent, experiments have tended to favor the retro-aldol/aldol mechanism, such as the modification or removal of the C4 hydroxyl group. The α -ketol rearrangement doesn't require the C4 hydroxyl group and therefore any turnover would support. Though turnover was not observed for 1,4-dideoxy-D-xylulose 5-phosphate, the K_i values similar to the K_m indicates a dependence on the C4 moiety for turnover but not binding. The C4 epimer and fluorinated version of DXP produces similar results^{143,193}. Due to the relatively good binding of these modified ligands, the retro-aldol/aldol mechanism is favored.

The analogues studies have provided some significant evidence in support of the retroaldol/aldol mechanism over the α -ketol rearrangement. Kinetic isotope effects (KIEs) provide a means of further probing the mechanism. In order to differentiate between

Figure 3.2: The above illustration compares the steps for the α -ketol rearrangement and retro-aldol/aldol mechanisms in a side-by-side view. Each concludes in the aldehyde intermediate 2-C-methyl-D-erythrose 4-phosphate (MEsP), which is subsequently reduced by NADPH to form the 2-C-methyl-D-erythritol 4-phosphate (MEP) product.

the two mechanisms, α -secondary KIEs were measured for [3-²H]- and [4-²H]-DXP. The α -ketol rearrangement predicts a shift from sp³ to sp² at the C3 position while the C4 position remained sp³, which translates into KIEs>1 and unit KIE values, respectively.

In contrast, the retro-aldol cleavage both C3 and C4 undergo changes from sp^3 to sp^2 with normal KIE values (KIE>1)¹³¹. The results of 1.04 for $[3-^{2}H]$ and 1.11 for $[4-^{2}H]$ -DXP supports the retro-aldol/aldol mechanism. When compared to muscle aldolase, which has a similar mechanism, the lower KIEs are thought to reflect the partially rate-limiting rearrangement or an early transition state¹³¹. Finally, a 2D [¹³C,¹H]-HSQC NMR based technique was used to analyze ¹³13 KIEs. The method measures the reactive competition between light and heavy C substrates in the same mixture with the enzyme. The ratio of ${}^{13}C/{}^{12}C$ represents the KIE. The ratios were measured for 2-, 3-, and 4- ${}^{13}C$ with results of 1.0031, 1.0303 and 1.0148, respectively¹²⁰. The sigmotropic rearrangement would result in large changes at all locales while retro-aldol predicts larger changes at the C3 and C4 position with little effect on the 2C position. The results of these KIE experiments supports the retro-aldol/aldol mechanism as the most likely mechanism. The only major issue left to challenge the retro-aldol/aldol mechanism is the failure to detect the putative hydroxyacetone and glycoaldehyde intermediates. Currently, the best explanation revolves around the tight binding of these intermediates and/or the molecules exist in such a high energy state, they aren't around long enough to be a true intermediate¹³².

Figure 3.3: Illustration of the C2-C3 and C3-C4 binding modes in the reactant state. These structures were utilized for the purposes the replica path calculcations as the starting point.

The retro-aldol mechanism was originally proposed with the metal ion coordinated between the C2-C3 hydroxyl groups. Results of incubating DXR with Mg²⁺, NADPH and DXP in the presence of ¹⁸O-labeled water to explore the incorporation of the isotope into MEP¹⁰⁹ dispute this proposal. Retro-aldol/aldol mechanism produces carbonyls, if transiently, at each position during the reaction, thus allowing for solvent exchange at the C2, C3, and C4 positions of DXP. Since the only hydroxyl affected was the C2 of DXP, there had to be a protective effect at the C3 and C4 positions. Coordination of the divalent ion would act as protection from solvent exchange, therefore the results suggest a C3-C4 binding mode. This binding mode helps to explain the tight binding of both fragments since the retro-aldol cleavage occurs along the C3-C4 bond^{74,118,172,178}. During the bond breaking and subsequent C2-C4 bond forming steps, the Mg^{2+} would remain coordinated to both fragments inhibiting release. It is still possible to interpret the results of these experiments in support of the C2-C3 binding mode. The Lewis acid characteristics of the metals would increase the electrophilicity of the C2 carbonyl thus promoting hydration. Furthermore, the transiency of the intermediates may explain the lack of solvent exchange. Exchange of the C1 or C3 oxygen atoms requires the rate of on-enzyme hydration to rival rates of hydride transfer and aldolization 132 .

Examining the energetics of the metal binding modality will be the focus of this work. Mac Sweeney et. al. published a crystal structure of *E. coli* DXR (PDB:1Q0Q) with DXP and NADPH bound in the active site¹¹⁸. The experimental results published to this point provide strong support for the retro-aldol/aldol mechanism being the most likely reaction mechanism, so it was decided to focus on this pathway for our calculations. In particular, we focused on the retro-aldol calculation, which is thought to be the true limiting step of this reaction. The putative intermediates are even thought to not be proper intermediates but possibly transition states. QM/MM techniques were utilized to compute the free energy surface of the retro-aldol reaction with the metal ion in the C2-C3 or C3-C4 position.

3.2 Computational Methods

The crystal structure published by Mac Sweeney et. al. (PDB:1Q0Q) was utilized for all calculations in this paper¹¹⁸. Although, DXR is generally found to be in a homodimer in solution, there is no evidence currently supporting catalytic interdependence of active sites. Thus, allowing up to focus on a single monomer. The structured was parsed utilizing www.charmming.org¹²⁷. Parameters for DXP were built based on similar structures already found in the CHARMM General Force Field (CGenFF)¹⁸⁴. The necessary bonds were added based on the most similar structures and the charges were corrected via quantum mechanical calculation. Final validation was performed utilizing the crystal structure as the comparison.

The protein was built and E234 was protonated based on values determined by ProPKA3.1 (see Appendix B)^{138,175}. CHARMM22 protein and CGenFF force fields were used throughout these calculations¹¹⁹. A Mg²⁺ ion was built separately and added to the composed enzyme. The ion was brought into C2-C3 and C3-C4 orientation via use of the harmonic distance restraint (RESDi) while fixing the rest of the system followed by an unrestrained minimization. The system was solvated in a rhombododechedron crystal structure and neutralized with KCl salt to a final concentration of 0.15M. The system was heated from 110K to 310K over 100ps and equilibrated for 200ps at constant pressure (1atm) and temperature (310K). The total system size was subsequently reduced to cut down on computational costs in the following QM/MM calculations by removing all waters/ions beyond 12Å from the protein surface. The reduced structure was treated to a QM/MM minimization without cut-offs to a tolerance of 0.002 kcal·mol⁻¹·Å⁻¹. All QM/MM calculations employed the Q-Chem4.0\CHARMM^{27,170,194} interface at the B3LYP/6-31G* level of theory^{13,68,105}. Additionally, the single link atom scheme was used to account for truncation of the QM region and employed group electrostatic exclusions to prevent over polarization of the QM region $(23 \text{ atoms})^{167}$. The QM region was defined as the D231, MG, and DXP only. The NADPH molecule was excluded because it is not thought to play a role in the skeletal rearrangement.

Reaction path calculations were performed using the Replica Path (RPATh) in combination with RESDi values to define the steps along the reaction coordinate^{36,194,195}. RPATh allows the user to define a subsection of the structure which will be duplicated into replicas. These replicas are free to react normally as the reaction progresses while the larger system is constrained thus cutting down on the computational costs. The replicas utilized in these calculations were included the QM region and a buffer region of 6.5Å around the QM section. For our purposes, two replicas were utilized. In order to provide a buffer from the constrained system, the replicas were defined as all residues within 6.5Å from the QM region. One replica was incrementally progressed along the reaction. This was performed by defining two reaction coordinates (δ_1 , δ_2); which were defined with reference to reaction component being controlled.

$$\delta_1 = Bond - Breaking_{C3-C4}; \delta_2 = Bond - Breaking_{O4-H9} - Bond - Forming_{H9-OE2}$$
(3.1)

As the retro-aldolization is composed of two parts, δ_1 , corresponding to the breaking of DXP's C3-C4 bond, could be easily be defined while δ_2 , corresponding to the deprotonation of the C4 hydroxyl by residue D231, was defined as a linear combination of distances. A two-dimensional energy surface was produced with respect to these reaction coordinates. While the progression along δ_2 was easily defined as beginning at -2.0 (reactant state) and ending at 2.0 (intermediates) as an assumption like previous work, the path of δ_1 was more difficult. Since δ_1 refers to a single bond breaking, the C3-C4 bond of DXP was elongated by 2.0Å. δ_2 was progressed in 0.2Å increments and δ_1 was allowed 0.1Å increments for a 21x21 point 2D surface. After the completion of these calculations, normal mode analysis was utilized to identify the reaction steps corresponding to states of interest ("products")¹⁸⁰. This was performed by QM calculations utilizing Q-Chem as "freq" jobs. The output frequencies were analyzed for unique asymmetric vibrations corresponding the changes desired.

3.3 Results and Discussion

The first response to the complete 2D-energy surface indicates our initial ranges for the reaction coordinates may have been too broad. Both the C2-C3 and C3-C4 show a range of values produce very strained structural states. A few of these values were repeated to verify with similar results, therefore the rest of the work focused on results prior to $\delta_2=0.8-2.0$ for C2-C3 and $\delta_2=1.2-2.0$ for C3-C4 calculations. The structures present structures representing over extended CO bonds and massively contorted structures.

Before continuing discussions of the energy results, it is important to discuss the identification of the "products"; which correspond to the putative intermediates between the retro-aldol and aldol steps of the DXR reaction. Systems with unique normal modes were found at $\delta_1; \delta_2=3.40; 0.60$ for C2-C3 coordinated state and $\delta_1; \delta_2=3.40-3.60; 1.00$ for the C3-C4 metal coordination. This results supports the proposal to exclude the results mentioned previously.

Figure 3.4: Two-dimensional energy surfaces with outlier values removed. With the outliers for the C2-C3 (image (a)) and C3-C4 (image(b)) removed from the surface plot, the details are more easily observed. The valley in the top right of image (b) might indicate a step-wise mechanism.

The results of the reaction path calculations (Figure 3.4) reveal some distinct differences between the binding modes. While the C3-C4 binding mode has distinct peaks and valleys, the C2-C3 surface is ever increasing (Figure 3.4a). This result is not really grounds for dismissal of the binding mode. As the "products" of the retro-aldol reac-

Figure 3.5: One-dimensional representation of the center path across the two-dimensional energy surfaces for the C2-C3 and C3-C4 binding modes.

tion are, in actuality, intermediates or more likely transient transition states during the skeletal rearrangement phase of the DXR reaction. Both binding modes conclude at high energy states (33.0 kcal·mol⁻¹ and 30.9 kcal·mol⁻¹ for C2-C3 and C3-C4 binding modes, respectively).

For easier comparison, scatter point plots of pathways representing the best path between points were produced (Figure 3.5). The results suggest the binding modes to be rather similar. The barrier energies are 36.0 and 37.6 kcal·mol⁻¹ for the C2-C3 and C3-C4 mode, respectively. So overall, the energetics of the C2-C3 compared to C3-C4 isn't sufficient to address the question binding modes. A structural comparison of the "products" in conjunction with the energetics makes for a different outcome. The retro-addol reaction needs a deprotonation to activate the breaking of the C3-C4 bond producing the hydroxyacetone enolate and glycoaldehyde phosphate "products" ¹³². The base is proposed to be the D231 residue found in proximity of the DXP hydroxyl groups, which was controlled by the δ_2 reaction coordinate. Figure 3.6 illustrates the "products" states of each binding mode. The C3-C4 binding mode (Figure 3.6b) are a clear representation of the intended hydroxyacetone enolate, glycoaldehyde phosphate and protonated D231 residue "products". The "product" state for the C2-C3 binding mode (Figure 3.6a) reveals an intermolecular protonation of the phosphate group despite the presence of a restraint directing proton transfer. There are two possible explanations for this difference configurations. The C3-C4 binding mode held the C4 hydroxyl group in a favorable position for deprotonation by the D231 oxygen. Secondly, the metal, acting as a lewis acid, could have further polarized the O4-H bond, thus promoting deprotonation by the glutamate.

Figure 3.6: The final structures of "products" for the retro-aldol reaction are the hydroxyacetone enolate and glycoaldehyde phosphate at the bottom of the two images above. Image (a) above represents the C2-C3 binding mode that results in a intermolecular protonation of the phosphate group and preferential coordination with the C2-C3 oxygens. On the right, image (b) is the C3-C4 binding mode which produced the desired products and protonation states.

Along with the possible structural highlights for the mechanism, figure 3.6 illustrates another key difference in the binding modes. Namely, the position of the metal ion after preparation and RPATh calculations. While the magnesium remains straddling the O2 and O3 atoms of the C2-C3 mode (Figure 3.7a,c), the C3-C4 binding mode actually transitions into an all oxygen coordination (Figure 3.7b). The conformational change occurs spontaneously after the heating and equilibration phases of the build phase. Figure 3.7 reveals the differences in coordination between the pre- and post-equilibration steps for each binding mode. Figure 3.7b shows the Mg²⁺ to rest 2.76 Å from the O2 atom prior to equilibration, which likely represents a local minimum on the energy potential. After the injection of energy from heating and equilibration, the distance from the O2 atom reduces to 2.31 Å. The conformational change observed between these steps occurred

Figure 3.7: Pre-equilibrium and post-equilibrium for for each binding mode. Images (a) and (c) represent the C2-C3 binding mode pre-equilibration and post-equilibration, respectively. Images (b) and (d) represent the C3-C4 binding mode pre-equilibration and post-equilibration, respectively. The side-by-side comparison highlights the changes made.

with no restraints on the system. In contrast, the C2-C3 structures show no interesting in reaching out the O4 atom of DXP. The post-equilibrated structure looks like what one might expect. The originally minimized structure shows some leveling out between the coordination bonds.

The putative intermediates, hydroxyacetone enolate and glycoaldehydephosphate, and reaction intermediate, MEsP, have never been observed directly^{78,179}, which is the remaining hope for the α -ketol rearrangement mechanism. An explanation is the tight binding of the reactants in the active site¹⁰⁴. This spontaneous coordination to all DXP oxygens might be further support for the tight binding hypothesis. While the C2-C3 binding mode would only effect the binding of the hydroxyacetone intermediate, the glycoalde-
hyde phosphate might actually be able to leave the active site. Additionally, an all oxygen coordination might aid in the subsequent aldolization by holding all the intermediates together and aiding in stabilizing the C2-C4 bond.

As previously mentioned, the C3-C4 energy surfaces have values with mechanistic implications. Generally, the retro-aldolization requires a deprotonation of the C4 hydroxyl group, and is thought to occur concurrently with the C3-C4 bond breakage (Figure 3.8c). The energetics displayed during these calculations are the first hints of a step-wise retroaldol reaction beginning with the proton transfer from a highly polarized hydroxyl group and proceeding to the C-C bond breakage. The other valley corresponding to C-C bond breakage occurring first does not contain any structures with unique normal mode frequencies, so this valley is probably an outlier in the data. Figures 3.8a,b are scatter point plots of each proposed step (figure 3.8c, respectively. The ΔE^{\ddagger} for the deprotonation of 30 kcal·mol⁻¹ is considerably higher than one might expect. Therefore, the ΔE^{\ddagger} indicates the deprotonation as the rate-limiting step. The relatively high energy of the deprotonated state produces a reduced ΔE^{\ddagger} to the final retro-aldolization "products" produced by C3-C4 bond breakage. These results are far from conclusive but provide a new area of further study.

3.4 Conclusion

The energetics of the two binding modes suggest a preference for the C3-C4 binding mode over the C2-C3 binding mode. It is a slight difference of 2.1 kcal·mol⁻¹; which means the energetics aren't definitive. The combination with the fact the C2-C3 "products" show an intermolecular proton transfer suggests the C2-C3 binding mode to be unfavorable.

In addition to the energetics, configurational differences between the binding modes provide further evidence in support of the C3-C4 binding mode. The spontaneous shift of the C3-C4 mode into a C2-C3-C4 mode enhances the arguments for DXR strongly binding the intermediates; which explains why they haven't been directly observed. Reaction assistance provided by the expanded binding mode could explain the formation

Figure 3.8: Image (a) is the scatter point plot for the deprotonation step while image (b) is the C3-C4 bond breakage. The new step-wise process and old concerted process is illustrated in image (c) with a quick reference to the 2D energy surface for the C3-C4 mode retro-aldol reaction.

of the desired "products" unlike the C2-C3 while holding the intermediate in proximity necessary for the aldolization. This aldolization assistance could provide further evidence these intermediates being truly transition states.

Further work should start with analyzing the changes in active site contributions over the reaction. The mapping of the aldol reaction should be performed starting at the "product" state of the retro-aldol reaction for both binding modes to see if there is a change in preference between the stages of the skeletal rearrangement.

3.5 Supporting Information (SI)

The following can be found in Appendix B: The ProPKA3.0 results of crystal structure for DXR produced by MacKerrell (PDB:1Q0Q).

Chapter 4

Conclusion and Future Work

The work shown in this document represent the initial steps in gaining understanding of the reactions involved in the NMA pathway for Isoprenoid biosynthesis. The work on 1-deoxy-D-xylulose 5-phosphate (DXP) synthase (DXS) focused on the deprotonation of the N4 atom of the thiamine diphosphate (TDP) cofactor, which occurs in preparation of the formation of the ylide via deprotonation of the C2 atom. This step highlights the significance of QM/MM reaction path calculations. Work similar to this can provide insights into reaction steps of an enzyme or even a portion of a step. Kinetics can provide similar insights but are dependent on the step of interest being the rate-limiting step, which provides no assistance with DXS and other TDP dependent enzymes. The ylide activation step is required for activity but happens at the rate of diffusion so experimental practices are currently ineffective. By utilizing computational techniques, it is possible focus on pieces of a reaction and tweeze out pieces of information of significance. Both experiments in this document deal with half of a reaction commonly referred to as a single reaction because they can't be measured experimentally.

4.1 1-Deoxy-D-xylulose 5-Phosphate Synthase Summary and Conclusion

The mechanism of DXS consists of 3 major pieces: ylide activation, pyruvate binding, and pyruvate decarboxylation couples with transferral of acetyl group to glyceraldehyde-3-phosphate (G-3-P). The conclusion is the production of DXP; which is utilized in the production of the isoprenoid precursors of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP). The rate-limiting step of the reaction is the pyruvate step. The ylide formation is thought to happen at the rate of diffusion but is required for enzymatic activity since the ylide acts as the reactive center for the enzyme. Prior to activation, a deprotonation happens at the N4 atom of the TDP pyridinium ring producing a tautomeric transition between the 4'-aminopyrimidine (AP) state to the 1',4'-iminopyrimidine (IP) state. The identity of a general base was unknown which could not be easily determined using experimental techniques. A water-mediate mechanism (WMM) or direct histidine mechanism (DHM) mechanisms were proposed primarily comparison with the other enzymes sharing sequence and structural similarities to other TDP-dependent enzymes and transketolases, in particular. While the active sites of this family of enzymes have a high degree of similarity, the recent discovery of an enzyme deplete of acid/base residues in the active site and a transketolase lacking the requisite histidine provided impulse to investigate DXS further. A reaction coordinate, define as bond-breaking minus bond-forming, was used to incrementally change the system between the reactant and product states

The WMM proposal was found to be preferential by a 11 kcal·mol⁻¹ difference in barrier heights. Computational results can be used in tandem with experimental results to help explain or reinforce conclusions made based on the experimental work. A H434A mutant revealed an effect on substrate binding while not effecting turnover. Thus, H434 was proposed not play a direct role in catalysis; which was supported in computationally via charge perturbation analysis. The charge of the H434 residue was artificially turned off and the result compared to the active site when the charge was on. The shift in the dipole resulting from this change illustrated the significance of this residue on long range electrostatics but no direct role in catalysis. Thus, the experimental work was bolstered and explained by the computational results.

Utilizing computational techniques, it is possible to investigate contributing factors otherwise inaccessible through experimental methods. The ΔE^{\dagger}_{WMM} was significantly higher than what would normally be expected for a simple proton transfer. A value of

22.7 kcal·mol⁻¹ for the WMM path vs 5-10 kcal·mol⁻¹ for representative proton transfers suggested some significant contributions. The deprotonation of TDP's N4 atom produces a tautomerization from the AP state to the IP state, which we realized interrupts the aromaticity of the pyrimidinium ring. There is no method for directly computing the change in aromaticity in an enzyme reaction. There is a method for determining the aromaticity of the base TDP molecule and another for determining the percent change in aromaticity in reaction. By combining these methods, it was revealed by taking into account the change in aromaticity the ΔE^{\dagger}_{WMM} would be closer to 8.5 kcal·mol⁻¹. The new value being closer to values previously published supported the conclusion of aromaticity playing a part in higher barrier energy. The higher energetic position of the IP state might also act as a driving force in the deprotonation of TDP's C2 atom and production of the ylide required for TDP-dependent activity.

4.2 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase Summary and Conclusion

When the work began on 1-deoxy-D-xylulose 5-phosphate reductisomerase (DXR), there was much more of a debate in the literature over the last two mechanisms, α -ketol rearrangement or retro-aldol/aldol mechanism. The reduction by NADPH has been pretty well understood since the enzymes initial characterizations. Along the way, papers were published with secondary kinetic isotope effects (KIEs) which supported the retro-aldol/aldol mechanism with the only remaining hope for the α -ketol rearrangement was the refutation of the putative intermediates of the retro-aldol/aldol mechanism, namely hydroxyacetone enolate and glycoaldehyde phosphate. Since the lack of direct observation could be explained with a relatively simple assumption of being tightly bound in the active site requires less assumptions than trying to produce complicated assumptions to explain KIEs, Occam's razor tentatively rules out the α -ketol rearrangement in favor of the retro-aldol/aldol mechanism. So, the work was refocused on a new question pertaining to the binding of the Mg⁺² ion. Previously, it was thought that the metal bound

across the C2-C3 bond coordinated by their bound oxygens, but the same secondary KIEs shed light on the possibility of a second option. This option being bound across the C3-C4 bond via their oxygens. Besides explaining the observed KIEs, it would help to explain the lack of finding any intermediates since the metal would actually stretch over both intermediates instead of just one like in the C2-C3 mode.

The mechanistic work turned to helping to answer the binding mode question. Initial calculations attempted to utilize a single restraint as was done in the DXS mechanism. A single restraint was found wanting though. The results consistently produced highly strained configurations. In order to have better control, a second reaction coordinate was employed. The coordinates controlled related to the C3-C4 bond breaking and proton transfer from DXP O4 hydroxyl to a carboxyl atom of a glutamate residue 231. Since the first coordinate was a bond breakage, the δ_1 was just stretched from 1.60Å to 3.60Å with 0.1Å increments. Similar to that of DXS, the proton transfer was a combination of the O4-H9 bond breaking and the H9-OE2 bond forming starting at the reactant state and progressing to the positive opposite value (i.e. -2.0Å to 2.0Å) over 0.2Å with the expectation the the final value would be shorter than the final 2.0Å mark.

The 2D-surfaces produced an ever increasing field for the C2-C3 binding mode while the C3-C4 binding mode had contours of interest for the retro-aldol reaction. The reaction consists of a deprotonation and C-C bond breakage producing the putative intermediates. Usually considered to be concerted, the C3-C4 energy surface has a valley at a point corresponding to the proton transfer progressing while the C-C breaking hadn't begun. Proposing the possibility of a step-wise retro-aldol process might be a possibility. The C2-C3 surface lacks any signs suggesting this as a possible conclusion. Both of the final states were found to have comparatively high energies of 30.9 kcal·mol⁻¹ and 33.0 kcal·mol⁻¹ for the C3-C4 mode and C2-C3 mode, respectively. In addition to the energetics, the structure of the C2-C3 final state has a proton transferred to the phosphate tail of DXP instead of the D231 carboxyl group despite the restraint directing the other way. It is possible the metal ion plays a role in preferential conformation stability and electron stabilization of the transition state through hydroxyl bond polarization.

Additional structural differences indicate a preference for the C3-C4 binding mode. Upon equilibration, this binding mode spreads across the C2-C3-C4 oxygens thus helping to coordinate the entire molecule. The additional binding would support the claims of tight binding in the active site throughout the reaction. The coordination promote the formation of the C2-C4 bond necessary the skeletal rearrangement. If this coordination is indeed necessary for aldolization, it might explain the lack of turnover when the hydroxyacetone and glycoaldehyde phosphate intermediate were exogenously introduced. The formation of the metal coordination might be very unlikely with the two intermediates compared to the single reactant.

4.3 Future Work

As previously mentioned, the projects above represent parts of a complete step of a reaction. The DXS work focused on the first half of ylide formation while the DXR project focuses on the retro-aldol reaction of the retro-aldol/aldol mechanism. Therefore, the follow up work should look to compute the completion of each step in the reaction. Additionally mapping the following reactions of DXS could provide valuable insight into residue contribution while the reactions are well understood. A project of interest would be the decarboxylation of pyruvate and subsequent transferral to G-3-P. Originally, the decarboxylation was thought to take place prior to G-3-P binding, but recent evidence suggests a pause until G-3-P binding. The energetics of decarboxylation with and without G-3-P and environmental analysis might provide unique insights into DXS.

These two enzymes represent the steps of the NMA pathway. Aspects the downstream enzymes might be ascertained utilizing computational techniques while experimental methods don't have the ability. The IspD enzyme is responsible for the transferral of the CMP group of CTP with a hide degree of specificity. Determining aspects to the specificity might be gleamed via Normal Mode Analysis coupled with Vibrational Subsystem Analysis. Normal mode computes the frequencies of a system while vibration subsystem analysis determines how the large modes have on a subsystems of interest. Thus, mapping changes brought on via simulations might provide insight in the changes upon binding CTP; which in turn would provide further insights into residues of interest.

A mechanism keenly designed for computational investigation might be that the ironsulfur cluster dependent IspG and IspH. Of particular interest would be IspH, the enzyme is able to produce by IDP and DMADP in a 4:1 ratio via a radical reaction. The ratio of 4:1 also represents the relative usage in downstream isoprenoids. An investigation into differences in the active site or energetics of the reaction might provide insight into how this eznyme preforms such an operation. There are many enzymes that have undesirable biproducts but no to my knowledge that produce both products of a pathway. The MVA pathway for instance utilizes isomerase to convert between IDP and DMADP.

NMA pathway enzymes are not found in mammalian cells suggest this pathway to be wonderful target to novel anti-biotic research. This is bolster by the fact that fosmidomycin is a known anti-malarial drug and inhibits DXR activity. There are other chemicals going through clinical trials currently with hopes of becoming a cheaper and better treatment for disease. Fosmidomycin has also been shown to inhibit IspD and IspE in addition to DXR though to a reduced extent. So it might even be possible to design a drug that target multiple enzymes, thus producing a stronger anti-microbial compound.

Bibliography

- M. Alonso, C. Miranda, N. Martin, and B. Herradon. Chemical applications of neural networks: aromaticity of pyrimidine derivatives. *Physical Chemistry Chemical Physics*, 13(46):20564–20574, 2011. doi: 10.1039/c1cp22001b. URL <GotoISI>://WOS:000297071400006.
- B. Altincicek, A. K. Kollas, S. Sanderbrand, J. Wiesner, M. Hintz, E. Beck, and H. Jomaa. GcpE is involved in the 2-C-Methyl-D-erythritol 4-Phosphate Pathway of Isoprenoid Biosynthesis in Escherichia coli. *Journal of Bacteriology*, 183(8): 2411–2416, 2001.
- [3] A. Argyrou and J. S. Blanchard. Kinetic and Chemical Mechanism of Mycobacterium tuberculosis 1-Deoxy-D-xylulose-5-phosphate Isomeroreductase. *Biochemistry*, 43(14):4375–4384, 2004. doi: 10.1021/bi049974k.
- [4] D. Arigoni, S. Sagner, C. Latzel, W. Eisenreich, A. Bacher, and M. H. Zenk. Terpenoid Biosynthesis from 1-Deoxy-D-xylulose in Higher Plants by Intramolecular Skeletal Rearrangement. *Proceedings of the National Academy of Sciences* of the United States of America, 94(20):10600-10605, 9 1997. doi: 10.1073/ PNAS.94.20.10600. URL http://www.ncbi.nlm.nih.gov/pubmed/9380681http: //www.ncbi.nlm.nih.gov/pubmed/9380681.
- [5] D. Arigoni, J.-L. Giner, S. Sagner, J. Wungsintaweekul, M. H. Zenk, K. Kis, A. Bacher, and W. Eisenreich. Stereochemical Course of the Reduction Step in the

Formation of 2-C-Methylerythritol from the Terpene Precursor 1-Deoxyxylulose in Higher Plants. *Chemical Communications*, 0(12):1127-1128, 1999. doi: 10.1039/A902216C. URL http://pubs.rsc.org/en/content/articlepdf/1999/ cc/a902216c.

- [6] F. Arigoni, F. Talabot, M. Peitsch, M. D. Edgerton, E. Meldrum, E. Allet, R. Fish, T. Jamotte, M.-L. Curchod, and H. Loferer. A Genome-based Approach for the Identification of Essential Bacterial Genes. *Nature Biotechnology*, 16(9):851-856, 9 1998. doi: 10.1038/nbt0998-851. URL http://www.nature.com/doifinder/10. 1038/nbt0998-851.
- [7] A. M. Bailey, S. Mahapatra, P. J. Brennan, and D. C. Crick. Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase. *Glycobiology*, 12(12):813–820, 2002. URL <GotoISI>://WOS:000180359500004.
- [8] A. Balakrishnan, Y. Gao, P. Moorjani, N. S. Nemeria, K. Tittmann, and F. Jordan. Bifunctionality of the Thiamin Diphosphate Cofactor: Assignment of Tautomeric/Ionization States of the 4\$'\$-Aminopyrimidine Ring when Various Intermediates occupy the Active Sites during the Catalysis of Yeast Pyruvate Decarboxylase. Journal of the American Chemical Society, 134(8):3873–3885, 2 2012. ISSN 1520-5126. doi: 10.1021/ja211139c. URL http://dx.doi.org/10.1021/ ja211139c.
- [9] A. Balakrishnan, S. Paramasivam, S. Chakraborty, T. Polenova, and F. Jordan. Solid-state nuclear magnetic resonance studies delineate the role of the protein in activation of both aromatic rings of thiamin. *Journal of the American Chemical Society*, 134(1):665–72, 1 2012. ISSN 1520-5126. doi: 10.1021/ja209856x. URL http://dx.doi.org/10.1021/ja209856x.

- [10] P. Bao and Z.-H. Yu. New Procedure to Evaluate Aromaticity at the Density Functional Theory, Hartree-Fock, and Post-Self-Consistent Field Levels. *Journal* of Computational Chemistry, 32(2):248–259, 2011. doi: 10.1002/jcc.21614. URL <GotoISI>://WOS:000285312300007.
- [11] D. C. Bas, D. M. Rogers, and J. H. Jensen. Very fast prediction and rationalization of pKa values for protein-ligand complexes. *Proteins*, 73(3):765-783, 11 2008.
 ISSN 1097-0134. doi: 10.1002/prot.22102. URL http://www.ncbi.nlm.nih.gov/pubmed/18498103.
- P. A. Bash, M. J. Field, R. C. Davenport, G. A. Petsko, D. Ringe, and M. Karplus. Computer-Simulation and Analysis of the Reaction Pathway of Triosephosphate Isomerase. *Biochemistry*, 30(24):5826–5832, 1991. doi: 10.1021/bi00238a003. URL <GotoISI>://WOS:A1991FR44600003.
- [13] A. D. Becke. Density-Functional Thermochemistry .3. The Role of Exact Exchange. Journal of Chemical Physics, 98(7):5648-5652, 1993. doi: 10.1063/1.464913. URL <GotoISI>://WOS:A1993KV99700048.
- T. P. Begley, D. M. Downs, S. E. Ealick, F. W. McLafferty, A. P. G. M. Van Loon,
 S. Taylor, N. Campobasso, H. J. Chiu, C. Kinsland, J. J. Reddick, and J. Xi. Thiamin Biosynthesis in Prokaryotes. *Archives of Microbiology*, 171(5):293–300, 4 1999. doi: 10.1007/s002030050713.
- [15] K. Bloch. Biological Synthesis of Cholesterol. Science, 150(3692):19-&, 1965. doi: 10.1126/science.150.3692.19. URL <GotoISI>://WOS:A19656843600007.
- [16] K. Bloch and D. Rittenberg. ON THE UTILIZATION OF ACETIC ACID FOR CHOLESTEROL FORMATION*. Journal of Biological Chemistry, 145: 625-636, 1942. URL http://www.jbc.org/content/145/2/625.full.pdf?sid= ab0d608a-0e0e-4367-b2d8-e891b9304d04.

- [17] K. Bloch, S. Chaykin, A. H. Phillips, and A. Dewaard. Mevalonic Acid Pyrophosphate and Isopentenylpyrophosphate. *Journal of Biological Chemistry*, 234(10): 2595-2604, 1959. URL <GotoISI>://WOS:A1959WA41900018.
- [18] F. Bouvier, A. D'Harlingue, C. Suire, R. A. Backhaus, and B. Camara. Dedicated Roles of Plastid Transketolases during the Early Onset of Isoprenoid Biogenesis in Pepper Fruits. *Plant Physiology*, 117(4):1423–1431, 8 1998. doi: 10.1104/pp.117.4. 1423.
- [19] L. A. Brammer and C. F. Meyers. Revealing Substrate Promiscuity of 1-Deoxy-D-xylulose 5-Phosphate Synthase. Organic Letters, 11(20):4748-4751, 2009. doi: 10.1021/ol901961q. URL <GotoISI>://WOS:000270461300067.
- [20] L. A. Brammer, J. M. Smith, H. Wade, and C. F. Meyers. 1-Deoxy-D-xylulose 5-Phosphate Synthase Catalyzes a Novel Random Sequential Mechanism. *Journal of Biological Chemistry*, 286(42):36522–36531, 2011. doi: 10.1074/jbc.M111.259747.
 URL <GotoISI>://WOS:000296538300037.
- [21] L. A. Brammer Basta, H. Patel, L. Kakalis, F. Jordan, and C. L. Freel Meyers. Defining critical residues for substrate binding to 1-deoxy-D-xylulose 5-phosphate synthase-active site substitutions stabilize the predecarboxylation intermediate C2α-lactylthiamin diphosphate. The FEBS Journal, 281(12):2820-37, 6 2014. ISSN 1742-4658. doi: 10.1111/febs.12823. URL http://www.ncbi.nlm.nih.gov/ pubmed/24767541.
- [22] G. S. Brandt, N. Nemeria, S. Chakraborty, M. J. McLeish, A. Yep, G. L. Kenyon, G. A. Petsko, F. Jordan, and D. Ringe. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester. *Biochemistry*, 47(29):7734-7743, 7 2008. ISSN 1520-4995. doi: 10.1021/bi8004413. URL http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=2729719&tool=pmcentrez&rendertype=abstract.

- [23] W. Brandt, M. A. Dessoy, M. Fulhorst, W. Gao, M. H. Zenk, and L. A. Wessjohann. A Proposed Mechanism for the Reductive Ring Opening of the Cyclodiphosphate MEcPP, a Crucial Transformation in the New DXP/MEP Pathway to Isoprenoids Based on Modeling Studies and Feeding Experiments. *Chem-BioChem*, 5(3):311–323, 3 2004. ISSN 14394227. doi: 10.1002/cbic.200300743. URL http://www.ncbi.nlm.nih.gov/pubmed/14997523http://doi.wiley.com/ 10.1002/cbic.200300743.
- [24] J. G. Breman, A. Egan, and G. T. Keusch. The Intolerable Burden of Malaria: A New Look at the Numbers. American Society of Tropical Medicine and Hygiene, Northbook, IL, 2001. URL https://www.ncbi.nlm.nih.gov/books/NBK2617/ ?report=reader.
- [25] R. Breslow. The Mechanism of Thiamine Action .2. Rapid Deuterium Exchange in Thiazolium Salts. Journal of the American Chemical Society, 79(7):1762–1763, 1957. URL <GotoISI>://WOS:A1957WB80600064.
- [26] R. Breslow. On the Mechanism of Thiamine Action .4. Evidence from Studies on Model Systems. Journal of the American Chemical Society, 80(14):3719-3726, 1958. URL <GotoISI>://WOS:A1958WB38900063.
- [27] B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus. CHARMM: The Biomolecular Simulation Program. Journal of Computational Chemistry, 30(10):1545–1614, 2009. doi: 10.1002/jcc.21287. URL <GotoISI>://WOS:000267269600001.

- [28] B. M. Calisto, J. Perez-Gil, M. Bergua, J. Querol-Audi, I. Fita, and S. Imperial. Biosynthesis of isoprenoids in plants: Structure of the 2C-methyl-d-erithrytol 2,4-cyclodiphosphate synthase from ji¿Arabidopsis thalianaj/i¿ . Comparison with the bacterial enzymes. *Protein Science*, 16(9):2082-2088, 9 2007. ISSN 09618368. doi: 10.1110/ps.072972807. URL http://www.ncbi.nlm.nih.gov/ pubmed/17660251http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=PMC2206962http://doi.wiley.com/10.1110/ps.072972807.
- [29] N. Campos, M. Rodríguez-Concepción, M. Seemann, M. Rohmer, and A. Boronat. Identification of gcpE as a Novel Gene of the 2-C-Methyl-D-erythritol 4-Phosphate Pathway for Isoprenoid Biosynthesis in Escherichia coli. *FEBS letters*, 488(3):170– 173, 1 2001. URL http://www.ncbi.nlm.nih.gov/pubmed/11163766.
- [30] D. E. Cane, T. Rossi, and J. P. Pachlatko. The Biosynthesis of Pentalenolactone. *Tetrahedron Letters*, 20(38):3639-3642, 1 1979. doi: 10. 1016/S0040-4039(01)95484-X. URL http://www.sciencedirect.com/science/ article/pii/S004040390195484X?via%3Dihub.
- [31] D. E. Cane, T. Rossi, A. M. Tillman, and J. P. Pachlatko. Stereochemical Studies of Isoprenoid Biosynthesis. Biosynthesis of Pentalenolactone from [U-13C6]Glucose and [6-2H2]Glucose. Journal of the American Chemical Society, 103(7):1838–1843, 4 1981. doi: 10.1021/ja00397a045. URL http://pubs.acs.org/doi/abs/10.1021/ ja00397a045.
- [32] J. Chappell. Biochemistry and Molecular Biology of the Isoprenoid Biosynthetic Pathway in Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 46(1):521-547, 6 1995. doi: 10.1146/annurev.pp.46.060195.002513. URL http: //www.annualreviews.org/doi/10.1146/annurev.pp.46.060195.002513.
- [33] S. Chaykin, J. Law, A. H. Phillips, T. T. Tchen, and K. Bloch. Phosphorylated Intermediates in the Synthesis of Squalene. *Proceedings of the National Academy*

of Sciences of the United States of America, 44(10):998–1004, 1958. doi: 10.1073/pnas.44.10.998. URL <GotoISI>://WOS:A1958WJ52800004.

- [34] S. Cheek, H. Zhang, and N. V. Grishin. Sequence and structure classification of kinases. Journal of molecular biology, 320(4):855-81, 7 2002. ISSN 0022-2836. URL http://www.ncbi.nlm.nih.gov/pubmed/12095261.
- [35] Z. F. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. V. Schleyer. Nucleus-independent Chemical Shifts (NICS) as an Aromaticity Criterion. *Chemi*cal Reviews, 105(10):3842–3888, 2005. doi: 10.1021/cr030088+. URL <GotoISI>: //WOS:000232755200014.
- [36] J. W. Chu, B. L. Trout, and B. R. Brooks. A Super-linear Minimization Scheme for the Nudged Elastic Band Method. *Journal of Chemical Physics*, 119(24):12708– 12717, 12 2003. doi: 10.1063/1.1627754.
- [37] S. K. Chunduru, G. T. Mrachko, and K. C. Calvo. Mechanism of Ketol Acid Reductoisomerase. Steady-state Analysis and Metal Ion Requirement. *Biochemistry*, 28(2):486–493, 1 1989. ISSN 0006-2960. doi: 10.1021/bi00428a012. URL http://pubs.acs.org/doi/abs/10.1021/bi00428a012.
- [38] J. D. Connolly and R. A. Hill. Dictionary of Terpenoids. CRC Press, 1991. ISBN 9780412257704. URL https://books.google.com/books?id=FjnKUcD7-B0C.
- [39] C. Corminboeuf, T. Heine, G. Seifert, P. V. Schleyer, and J. Weber. Induced magnetic fields in aromatic n-annulenes - interpretation of NICS tensor components. *Physical Chemistry Chemical Physics*, 6(2):273–276, 2004. doi: 10.1039/b313383b.
- [40] J. W. Cornforth, R. H. Cornforth, A. Pelter, M. G. Horning, and G. Popjak. Studies on the Biosynthesis of Cholesterol .7. Rearrangement of Methyl Groups During Enzymic Cyclisation of Squalene. *Tetrahedron*, 5(4):311–339, 1959. doi: 10.1016/ 0040-4020(59)80024-7. URL <GotoISI>://WOS:A1959WP46200006.

- [41] S. J. Costelloe, J. M. Ward, and P. A. Dalby. Evolutionary analysis of the TPPdependent enzyme family. *Journal of Molecular Evolution*, 66(1):36–49, 2008. doi: 10.1007/s00239-007-9056-2. URL <GotoISI>://WOS:000252629000004.
- [42] Q. Cui, M. Elstner, E. Kaxiras, T. Frauenheim, and M. Karplus. A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. *Journal of Physical Chemistry B*, 105(2):569–585, 2001. doi: 10.1021/jp0029109. URL <GotoISI>://WOS:000166490900029.
- [43] M. K. Cyranski, T. M. Krygowski, A. R. Katritzky, and P. V. Schleyer. To what extent can aromaticity be defined uniquely? *Journal of Organic Chemistry*, 67(4):1333–1338, 2002. doi: 10.1021/jo016255s. URL <GotoISI>://WOS: 000173901700041.
- [44] M. K. Cyranski, P. V. Schleyer, T. M. Krygowski, H. J. Jiao, and G. Hohlneicher.
 Facts and Artifacts about Aromatic Stability Estimation. *Tetrahedron*, 59(10): 1657–1665, 2003. doi: 10.1016/s0040-4020(03)00137-6.
- [45] T. Dairi, T. Kuzuyama, M. Nishiyama, and I. Fujii. Convergent strategies in biosynthesis. Natural Product Reports, 28(6):1054–1086, 2011. doi: 10.1039/c0np00047g.
 URL <GotoISI>://WOS:000290993000002.
- [46] M. De Rosa, A. Gambacorta, and A. Gliozzi. Structure, Biosynthesis, and Physic-ochemical Properties of Archaebacterial Lipids. *Microbiological Reviews*, 50(1): 70-80, 1986. URL https://www.scopus.com/record/display.uri?eid=2-s2.0-0022578265&origin=inward&txGid=b5e0542cb05a0ce4daffc1d460258205.
- [47] J. S. Dickschat. Isoprenoids in three-dimensional space: the stereochemistry of terpene biosynthesis. Natural Product Reports, 28(12):1917-1936, 2011. doi: 10.1039/c1np00063b. URL <GotoISI>://WOS:000297029900003.
- [48] Duke, Dayan, Romagni, and Rimando. Natural Products as Sources of Herbicides:
 Current Status and Future Trends. Weed Research, 40(1):99–111, 2 2000. ISSN

0043-1737. doi: 10.1046/j.1365-3180.2000.00161.x. URL http://doi.wiley.com/ 10.1046/j.1365-3180.2000.00161.x.

- [49] R. Dumas, D. Job, J. Y. Ortholand, G. Emeric, A. Greiner, and R. Douce. Isolation and Kinetic Properties of Acetohydroxy Acid Isomeroreductase from Spinach (Spinacia oleracea) Chloroplasts overexpressed in Escherichia coli. *The Biochemical Journal*, 288 (Pt 3(3):865-74, 12 1992. ISSN 0264-6021. doi: 10. 1042/BJ2880865. URL http://www.ncbi.nlm.nih.gov/pubmed/1472001http: //www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1131967.
- [50] R. Dumas, V. Biou, F. Halgand, R. Douce, and R. G. Duggleby. Enzymology, Structure, and Dynamics of Acetohydroxy Acid Isomeroreductase. Accounts of Chemical Research, 34(5):399–408, 2001. doi: 10.1021/AR000082W. URL http: //pubs.acs.org/doi/abs/10.1021/ar000082w.
- [51] W. Eisenreich, M. Schwarz, A. Cartayrade, D. Arigoni, M. H. Zenk, and A. Bacher. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. *Chemistry & Biology*, 5(9):R221–R233, 1998. doi: 10.1016/ s1074-5521(98)90002-3. URL <GotoISI>://WOS:000076023100002.
- [52] W. Eisenreich, A. Bacher, D. Arigoni, and F. Rohdich. Biosynthesis of Isoprenoids via the Non-Mevalonate Pathway. *Cellular and Molecular Life Sciences*, 61(12): 1401–1426, 2004. doi: 10.1007/s00018-004-3381-z.
- [53] J. M. Estévez, A. Cantero, A. Reindl, S. Reichler, P. León, J. M. Estevez, A. Cantero, A. Reindl, S. Reichler, and P. Leon. 1-Deoxy-D-xylulose-5-Phosphate Synthese, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants. *Journal of Biological Chemistry*, 276(25):22901–22909, 6 2001. ISSN 0021-9258. doi: 10. 1074/jbc.M100854200. URL http://www.ncbi.nlm.nih.gov/pubmed/11264287.
- [54] L. M. Eubanks and C. D. Poulter. Rhodobacter capsulatus 1-deoxy-D-xylulose5-phosphate synthase: Steady-state kinetics and substrate binding. *Biochem*-

istry, 42(4):1140–1149, 2003. doi: 10.1021/bi0205303. URL <GotoISI>://WOS: 000180695200036.

- [55] S. Falkow and D. Kennedy. Antibiotics, Animals, and People-Again! Science (New York, N.Y.), 291(5503):397, 1 2001. doi: 10.1126/SCIENCE.1058907. URL http://www.ncbi.nlm.nih.gov/pubmed/11228121.
- [56] R. Firn. Nature's chemicals the natural products that shaped our world. Oxford University Press, 2010. ISBN 9780191721700. URL http://apps.webofknowledge.com/full_record.do?product=WOS&search_ mode=GeneralSearch&qid=28&SID=2E4kGskQgOEpsoqX4Rp&page=1&doc=1.
- [57] G. Flesch and M. Rohmer. Prokaryotic Hopanoids: The Biosynthesis of the Bacteriohopane Skeleton. Formation of Isoprenic Units from Two Distinct Acetate Pools and a Novel Type of Carbon/Carbon Linkage between a Triterpene and d-Ribose. *European Journal of Biochemistry*, 175(2):405–411, 8 1988. doi: 10.1111/j.1432-1033.1988.tb14210.x. URL http://doi.wiley.com/10.1111/j. 1432-1033.1988.tb14210.x.
- [58] D. T. Fox and C. D. Poulter. Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli. *Biochemistry*, 44(23):8360-8368, 2005. doi: 10.1021/bi047312p. URL http://pubs.acs.org/doi/abs/10.1021/ bi047312p.
- [59] A. Frank and M. Groll. The Methylerythritol Phosphate Pathway to Isoprenoids. *Chemical Reviews*, 117(8):5675-5703, 4 2017. ISSN 0009-2665. doi: 10.1021/ acs.chemrev.6b00537. URL http://pubs.acs.org/doi/10.1021/acs.chemrev. 6b00537.
- [60] R. A. W. Frank, F. J. Leeper, and B. F. Luisi. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. *Cellular and Molecular Life Sciences*, 64

(7-8):892-905, 2007. doi: 10.1007/s00018-007-6423-5. URL <GotoISI>://WOS: 000245669400009.

- [61] Z. Fu, M. Wang, D. Potter, H. M. Miziorko, and J.-J. P. Kim. The Structure of a Binary Complex between a Mammalian Mevalonate Kinase and ATP. Journal of Biological Chemistry, 277(20):18134-18142, 5 2002. ISSN 0021-9258. doi: 10.1074/ jbc.M200912200. URL http://www.ncbi.nlm.nih.gov/pubmed/11877411http: //www.jbc.org/lookup/doi/10.1074/jbc.M200912200.
- [62] M. Gabrielsen, J. Kaiser, F. Rohdich, W. Eisenreich, R. Laupitz, A. Bacher, C. S. Bond, and W. N. Hunter. The crystal structure of a plant 2Cmethyl-D-erythritol 4-phosphate cytidylyltransferase exhibits a distinct quaternary structure compared to bacterial homologues and a possible role in feedback regulation for cytidine monophosphate. *The FEBS Journal*, 273(5): 1065–1073, 3 2006. ISSN 1742-464X. doi: 10.1111/j.1742-4658.2006.05133.x. URL http://www.ncbi.nlm.nih.gov/pubmed/16478479http://doi.wiley.com/ 10.1111/j.1742-4658.2006.05133.x.
- [63] T. Gräwert, M. Groll, F. Rohdich, A. Bacher, W. Eisenreich, T. Graewert, M. Groll, F. Rohdich, A. Bacher, and W. Eisenreich. Biochemistry of the Non-mevalonate Isoprenoid Pathway. *Cellular and Molecular Life Sciences*, 68(23):3797-3814, 12 2011. ISSN 1420-682X. doi: 10.1007/s00018-011-0753-z. URL http://link.springer.com/10.1007/s00018-011-0753-z.
- [64] S. Grolle, S. Bringer-Meyer, and H. Sahm. Isolation of the dxr Gene of Zymomonas mobilis and Characterization of the 1-deoxy-D-xylulose 5phosphate reductoisomerase. *FEMS Microbiology Letters*, 191(1):131-137, 10 2000. doi: 10.1016/s0378-1097(00)00382-7. URL https://academic.oup.com/femsle/ article-lookup/doi/10.1111/j.1574-6968.2000.tb09329.x.

- [65] F. S. Guo, D. Q. Zhang, A. Kahyaoglu, R. S. Farid, and F. Jordan. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. *Biochemistry*, 37(38): 13379–13391, 1998. URL <GotoISI>://WOS:000076088200038.
- [66] S. Handa, D. Ramamoorthy, T. J. Spradling, W. C. Guida, J. H. Adams, K. G. Bendinskas, and D. J. Merkler. Production of Recombinant 1-Deoxy-D-Xylulose-5-Phosphate Synthase from Plasmodium Vivax in Escherichia Coli. *FEBS Open Bio*, 3:124–129, 2013.
- [67] J. C. Hargis, S. L. Vankayala, J. K. White, and H. L. Woodcock. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and \$\beta\$-Lactamases. Journal of Chemical Theory and Computation, 10(2):855-864, 2 2014. ISSN 1549-9618. doi: 10.1021/ct400968v. URL http://pubs.acs.org.ezproxy.lib.usf.edu/doi/abs/10.1021/ct400968v.
- [68] Harihara.Pc, J. A. Pople, P. C. Harihara, and J. A. Pople. Influence of Polarization Functions on Molecular-Orbital Hydrogenation Energies. *Theoretica Chimica Acta*, 28(3):213–222, 1973. doi: 10.1007/bf00533485.
- [69] M. Harker and P. M. Bramley. Expression of Prokaryotic 1-Deoxy-D-xylulose-5-Phosphatases in Escherichia coli increases Carotenoid and Ubiquinone Biosynthesis. *FEBS Letters*, 448(1):115–119, 4 1999. doi: 10.1016/S0014-5793(99)00360-9.
- [70] A. Hartley, S. E. Glynn, V. Barynin, P. J. Baker, S. E. Sedelnikova, C. Verhees, D. de Geus, J. van der Oost, D. J. Timson, R. J. Reece, and D. W. Rice. Substrate Specificity and Mechanism from the Structure of Pyrococcus furiosus Galactokinase. *Journal of Molecular Biology*, 337(2):387–398, 3 2004. ISSN 00222836. doi: 10.1016/j.jmb.2004.01.043. URL http://www.ncbi.nlm.nih.gov/pubmed/15003454http://linkinghub.elsevier.com/retrieve/pii/S0022283604001147.

- [71] S. Hecht, W. Eisenreich, P. Adam, S. Amslinger, K. Kis, A. Bacher, D. Arigoni, and F. Rohdich. Studies on the Nonmevalonate Pathway to Terpenes: The Role of the GcpE (IspG) Protein. *Proceedings of the National Academy of Sciences of the* United States of America, 98(26):14837–14842, 2001. doi: 10.1073/pnas.201399298.
- [72] S. Hecht, F. Kis, W. Eisenreich, S. Amslinger, J. Wungsintaweekul, S. Herz, F. Rohdich, and A. Bacher. Enzyme-assisted Preparation of Isotope-labeled 1-Deoxy-Dxylulose 5-Phosphate. *Journal of Organic Chemistry*, 66(11):3948–3952, 2001. doi: 10.1021/jo0100300.
- [73] S. Hecht, J. Wungsintaweekul, F. Rohdich, K. Kis, T. Radykewicz, C. A. Schuhr, W. Eisenreich, G. Richter, and A. Bacher. Biosynthesis of Terpenoids: Efficient Multistep Biotransformation Procedures Affording Isotope-Labeled 2C-Methyl-derythritol 4-Phosphate Using Recombinant 2C-Methyl-d-erythritol 4-Phosphate Synthase. *The Journal of Organic Chemistry*, 66(23):7770–7775, 2001. doi: 10.1021/JO015890V. URL http://pubs.acs.org/doi/abs/10.1021/jo015890v.
- [74] L. M. Henriksson, T. Unge, J. Carlsson, J. Åqvist, S. L. Mowbray, and T. A. Jones. Structures of Mycobacterium tuberculosis 1-Deoxy-D-xylulose-5-phosphate Reductoisomerase Provide New Insights into Catalysis. *The Journal of Biological Chemistry*, 282(27):1990519916, 2007. doi: 10.1074/jbc.M701935200. URL http://www.jbc.org/content/282/27/19905.full.pdf.
- [75] S. Herz, J. Wungsintaweekul, C. A. Schuhr, S. Hecht, H. Luttgen, S. Sagner, M. Fellermeier, W. Eisenreich, M. H. Zenk, A. Bacher, and F. Rohdich. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2Cmethyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. *Proceedings of the National Academy of Sciences of the United States of America*, 97(6):2486-2490, 3 2000. ISSN 0027-8424. doi: 10.1073/pnas.040554697. URL http://www.ncbi.nlm.nih.gov/pubmed/10694574http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC15955http://www.pnas.org/cgi/ doi/10.1073/pnas.040554697.

- [76] R. E. Hill, K. Himmeldirk, I. A. Kennedy, R. M. Pauloski, B. G. Sayer, E. Wolf, and I. D. Spenser. The Biogenetic Anatomy of Vitamin B-6: A C-13 NMR Investigation of the Biosynthesis of Pyridoxol in \$\textit{Escherichia coli}\$. Journal of Biological Chemistry, 271(48):30426–30435, 11 1996.
- [77] S. N. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. Site-directed Mutagenesis by Overlap Extension using the Polymerase Chain Reaction. *Gene*, 77(1):51-59, 4 1989. ISSN 03781119. doi: 10.1016/0378-1119(89)90358-2. URL http://www.sciencedirect.com/science/article/pii/0378111989903582.
- [78] J.-F. F. Hoeffler, D. Tritsch, C. Grosdemange-Billiard, and M. Rohmer. Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway: Mechanistic Investigations of the 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase. *European Journal of Biochemistry*, 269(18):4446–4457, 9 2002. ISSN 0014-2956. doi: 10.1046/j. 1432-1033.2002.03150.x. URL http://www.ncbi.nlm.nih.gov/pubmed/12230556.
- [79] V. Humnabadkar, R. K. Jha, N. Ghatnekar, and S. M. De Sousa. А High-Throughput Screening Assay for Simultaneous Selection of Inhibitors Mycobacterium tuberculosis 1-Deoxy-D-Xylulose-5-Phosphate of Synthase (DXS) or 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase (DXR). Journal of Biomolecular Screening, 16(3):303-312, 3 2011. ISSN 1552-454X. doi: 10.1177/1087057110394845.URL http://apps.webofknowledge.com/ full_record.do?product=UA&search_mode=GeneralSearch&qid=4&SID= 3CGKQ16I9hqTlsvBbGH&page=1&doc=1.
- [80] A. E. Johnson and M. E. Tanner. Epimerization via CarbonCarbon Bond Cleavage.l-Ribulose-5-phosphate 4-Epimerase as a Masked Class II Aldolase. *Biochemistry*,

37(16):5746-5754, 1998. doi: 10.1021/BI972984J. URL http://pubs.acs.org/ doi/abs/10.1021/bi972984j.

- [81] H. Jomaa, J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, I. Turbachova, M. Eberl, J. Zeidler, H. K. Lichtenthaler, D. Soldati, and E. Beck. Inhibitors of the Nonmevalonate Pathway of Isoprenoid Biosynthesis as Antimalarial Drugs. *Science*, 285(5433):1573–1576, 1999. doi: 10.1126/science.285.5433.1573.
- [82] F. Jordan. Current mechanistic understanding of thiamin diphosphatedependent enzymatic reactions. Natural Product Reports, 20(2):184-201, 2003. doi: 10.1039/ b111348h. URL <GotoISI>://WOS:000182268900002.
- [83] F. Jordan and N. S. Nemeria. Progress in the Experimental Observation of Thiamin Diphosphate-bound Intermediates on Enzymes and Mechanistic Information derived from these Observations. *Bioorganic Chemistry*, 57(0):251-62, 12 2014. ISSN 0045-2068. doi: http://dx.doi.org/10.1016/j.bioorg.2014.08.002. URL http://www.sciencedirect.com/science/article/pii/S0045206814000674.
- [84] F. Jordan, H. J. Li, and A. Brown. Remarkable stabilization of zwitterionic intermediates may account for a billion-fold rate acceleration by thiamin diphosphate-dependent decarboxylases. *Biochemistry*, 38(20):6369–6373, 1999. URL <GotoISI>://WOS:000080593700001.
- [85] J. Kalinowska-Tłuścik, L. Miallau, M. Gabrielsen, G. A. Leonard, S. M. Mc-Sweeney, and W. N. Hunter. A Triclinic Crystal Form of \$\textit{Escherichia coli}\$ 4-Diphosphocytidyl-2C-methyl-D-erythritol Kinase and Reassessment of the Quaternary Structure. Acta Crystallographica Section F - Structural Biology and Crystallization Communications, 66(3):237-241, 3 2010. ISSN 1744-3091. doi: 10.1107/S1744309109054591. URL http://www.ncbi.nlm.nih.gov/pubmed/ 20208151http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= PMC2833027http://scripts.iucr.org/cgi-bin/paper?S1744309109054591.

- [86] A. Kaplun, E. Binshtein, M. Vyazmensky, A. Steinmetz, Z. Barak, D. M. Chipman, K. Tittmann, and B. Shaanan. Glyoxylate carboligase lacks the canonical active site glutamate of thiamine-dependent enzymes. *Nature: Chemical Biology*, 4(2): 113-8, 2 2008. ISSN 1552-4469. doi: 10.1038/nchembio.62. URL http://www.ncbi.nlm.nih.gov/pubmed/18176558.
- [87] L. E. Kemp, C. S. Bond, and W. N. Hunter. Structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase: An essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development. *Proceedings of the National Academy* of Sciences of the United States of America, 99(10):6591-6596, 5 2002. ISSN 0027-8424. doi: 10.1073/pnas.102679799. URL http://www.ncbi.nlm.nih.gov/ pubmed/11997478http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=PMC124447http://www.pnas.org/cgi/doi/10.1073/pnas.102679799.
- [88] L. E. Kemp, C. S. Bond, and W. N. Hunter. Structure of a tetragonal crystal form of Escherichia coli 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase. Acta Crystallographica Section D - Biological Crystallography, 59(Pt 3):607-610, 3 2003. ISSN 0907-4449. doi: 10.1107/s090744490202365x. URL http://www.ncbi.nlm. nih.gov/pubmed/12595740.
- [89] L. E. Kemp, M. S. Alphey, C. S. Bond, M. A. J. Ferguson, S. Hecht, A. Bacher, W. Eisenreich, F. Rohdich, and W. N. Hunter. The identification of isoprenoids that bind in the intersubunit cavity of Escherichia coli 2 C -methyl- D -erythritol-2,4-cyclodiphosphate synthase by complementary biophysical methods. Acta Crystallographica Section D - Biological Crystallography, 61 (Pt 1):45-52, 1 2005. doi: 10.1107/S0907444904025971. URL http://www.ncbi.nlm.nih.gov/pubmed/ 15608374.
- [90] D. Kern, G. Kern, H. Neef, K. Tittmann, M. KillenbergJabs, C. Wikner, G. Schneider, and G. Hubner. How thiamine diphosphate is activated in enzymes. *Science*,

275(5296):67-70, 1997. doi: 10.1126/science.275.5296.67. URL <GotoISI>://WOS: A1997WA90300049.

- [91] H. Kleinig. The Role of Plastids in Isoprenoid Biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1):39-59, 6 1989. ISSN 1040-2519. doi: 10.1146/annurev.pp.40.060189.000351. URL http://www.annualreviews. org/doi/10.1146/annurev.pp.40.060189.000351.
- [92] A.-K. Kollas, E. C. Duin, M. Eberl, B. Altincicek, M. Hintz, A. Reichenberg, D. Henschker, A. Henne, I. Steinbrecher, D. N. Ostrovsky, R. Hedderich, E. Beck, H. Jomaa, and J. Wiesner. Functional Characterization of GcpE, an Essential Enzyme of the Non-mevalonate Pathway of Isoprenoid Biosynthesis. *FEBS letters*, 532(3):432-6, 12 2002. ISSN 0014-5793. URL http://www.ncbi.nlm.nih.gov/pubmed/12482607.
- [93] P. A. Kollman, B. Kuhn, O. Donini, M. Perakyla, R. Stanton, and D. Bakowies. Elucidating the Nature of Enzyme Catalysis utilizing a New Twist on an Old Methodology: Quantum MechanicalFree Energy Calculations on Chemical Reactions in Enzymes and in Aqueous Solution. Accounts of Chemical Research, 34(1): 72–79, 2001. doi: 10.1021/AR000032R. URL http://pubs.acs.org/doi/abs/10. 1021/ar000032r.
- [94] A. T. Koppisch, D. T. Fox, B. S. J. Blagg, and C. D. Poulter. E-coli MEP Synthase: Steady-state Kinetic Analysis and Substrate Binding. *Biochemistry*, 41(1):236–243, 2002. doi: 10.1021/bi0118207.
- [95] D. E. Koshland and K. E. Neet. The Catalytic and Regulatory Properties of Enzymes. Annual Review of Biochemistry, 37:359-410, 1968. URL https://www.scopus.com/record/display.uri?eid=2-s2.0-0014235891& origin=inward&txGid=64ceb4f245ac59560d2063ba2da7cc6f.

- [96] A. Koul, E. Arnoult, N. Lounis, J. Guillemont, and K. Andries. The Challenge of New Drug Discovery for Tuberculosis. *Nature*, 469:483-490, 2011. doi: 10.1038/ nature09657. URL https://www.nature.com/articles/nature09657.pdf.
- [97] S. S. Krishna, T. Zhou, M. Daugherty, A. Osterman, and H. Zhang. Structural Basis for the Catalysis and Substrate Specificity of Homoserine Kinase. *Biochemistry*, 40 (36):10810–10818, 2001. doi: 10.1021/BI010851Z. URL http://pubs.acs.org/doi/10.1021/bi010851z.
- [98] T. M. Krygowski, M. K. Cyranski, Z. Czarnocki, G. Hafelinger, and A. R. Katritzky. Aromaticity: A Theoretical Concept of Immense Practical Importance. *Tetrahedron*, 56(13):1783–1796, 2000. doi: 10.1016/s0040-4020(99)00979-5.
- [99] T. Kuzuyama and H. Seto. Diversity of the biosynthesis of the isoprene units. *Natural Product Reports*, 20(2):171–183, 2003. doi: 10.1039/b109860h. URL
 <GotoISI>://WOS:000182268900001.
- [100] T. Kuzuyama, T. Shimizu, S. Takahashi, and H. Seto. Fosmidomycin, a Specific Inhibitor of 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase in the Nonmevalonate Pathway for Terpenoid Biosynthesis. *Tetrahedron Letters*, 39(43):7913–7916, 1998.
- [101] T. Kuzuyama, M. Takagi, K. Kaneda, T. Dairi, and H. Seto. Formation of 4-(cytidine 5-diphospho)-2-C-methyl-d-erythritol from 2-C-Methyl-d-erythritol 4-Phosphate by 2-C-Methyl-d-erythritol 4-Chosphate Cytidylyltransferase, a New Enzyme in the Nonmevalonate Pathway. *Tetrahedron Letters*, 41(5):703-706, 1 2000. doi: 10.1016/S0040-4039(99)02143-7. URL http://www.sciencedirect. com/science/article/pii/S0040403999021437?via%3Dihub.
- [102] T. Kuzuyama, S. Takahashi, M. Takagi, and H. Seto. Characterization of 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase, an Enzyme involved in Isopen-

tenyl Diphosphate Biosynthesis, and Identification of its Catalytic Amino Acid Residues. *Journal of Biological Chemistry*, 275(26):19928–19932, 2000.

- [103] B. M. Lange, M. R. Wildung, D. McCaskill, and R. Croteau. A Family of Transketolases that Directs Isoprenoid Biosynthesis via a Mevalonate-Independent Pathway. *Proceedings of the National Academy of Sciences of the United States of America*, 95 (5):2100-2104, 1998. URL http://www.pnas.org/content/95/5/2100.full.pdf.
- [104] S. Lauw, V. Illarionova, A. Bacher, F. Rohdich, and W. Eisenreich. Biosynthesis of Isoprenoids: Studies on the Mechanism of 2C-Methyl-D-erythritol-4-phosphate Synthase. *The FEBS Journal*, 275(16):4060–4073, 2008. doi: 10.1111/j.1742-4658. 2008.06547.x.
- [105] C. T. Lee, W. T. Yang, and R. G. Parr. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. *Physical Review B*, 37(2):785–789, 1988. doi: 10.1103/PhysRevB.37.785. URL <GotoISI>: //WOS:A1988L976200011.
- [106] M. Lee, T. Gräwert, F. Quitterer, F. Rohdich, J. Eppinger, W. Eisenreich, A. Bacher, and M. Groll. Biosynthesis of Isoprenoids: Crystal Structure of the [4Fe4S] Cluster Protein IspG. Journal of Molecular Biology, 404(4):600-610, 12 2010. ISSN 00222836. doi: 10.1016/j.jmb. 2010.09.050. URL http://www.ncbi.nlm.nih.gov/pubmed/20932974http:// linkinghub.elsevier.com/retrieve/pii/S0022283610010491.
- [107] Y. S. Lee, S. E. Worthington, M. Krauss, and B. R. Brooks. Reaction mechanism of chorismate mutase studied by the combined potentials of quantum mechanics and molecular mechanics. *Journal of Physical Chemistry B*, 106(46):12059–12065, 2002. doi: 10.1021/jp0268718. URL <GotoISI>://WOS:000179336200023.
- [108] H. Li, A. D. Robertson, and J. H. Jensen. Very Fast Empirical Prediction and Interpretation of Protein pKa Values. *Proteins*, 61:704–721, 2005.

- [109] H. Li, J. Tian, W. Sun, W. Qin, and W.-Y. Gao. Mechanistic Insights into 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase, a Key Enzyme of the MEP Terpenoid Biosynthetic Pathway. *The FEBS Journal*, 280(22):5896-5905, 11 2013. doi: 10. 1111/febs.12516. URL http://doi.wiley.com/10.1111/febs.12516.
- [110] H. K. Lichtenthaler. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50:47-65, 6 1999. ISSN 1040-2519. doi: 10.1146/annurev.arplant.50.1.47. URL http://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.50. 1.47.
- [111] H. K. Lichtenthaler, M. Rohmer, and J. Schwender. Two Independent Biochemical Pathways for Isopentenyl Diphosphate and Isoprenoid Biosynthesis in Higher Plants. *Physiologia Plantarum*, 101(3):643-652, 11 1997. doi: 10.1111/j. 1399-3054.1997.tb01049.x. URL http://doi.wiley.com/10.1111/j.1399-3054.
- [112] Y. Lindqvist, G. Schneider, U. Ermler, and M. Sundstrom. 3-Dimensional Structure of Transketolase, a Thiamine Diphosphate Dependent Enzyme, at 2.5 \$\angstrom\$ Resolution. The EMBO Journal, 11(7):2373–2379, 1992.
- [113] Y.-L. Liu, F. Guerra, K. Wang, W. Wang, J. Li, C. Huang, W. Zhu, K. Houlihan, Z. Li, Y. Zhang, S. K. Nair, and E. Oldfield. Structure, Function and Inhibition of the Two- and Three-domain 4Fe-4S IspG Proteins. *Proceedings of the National Academy of Sciences of the United States of America*, 109(22):8558-8563, 5 2012. doi: 10.1073/pnas.1121107109. URL http://www.ncbi.nlm.nih.gov/pubmed/22586085http://www.ncbi.nlm. nih.gov/pubmed/22586085http://www.ncbi.nlm.nih.gov/pubmed/22586085.
- [114] L. M. Lois, N. Campos, S. R. Putra, K. Danielsen, M. Rohmer, and A. Boronat. Cloning and characterization of a gene from Escherichia

coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. *Proceedings of the National Academy of Sciences of the United States of America*, 95(5):2105–2110, 3 1998. ISSN 0027-8424. URL http://www.ncbi.nlm.nih.gov/pubmed/9482846http://www. pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC19265.

- [115] L. M. Lois, M. Rodriguez-Concepcion, F. Gallego, N. Campos, and A. Boronat. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1deoxy-D-xylulose 5-phosphate synthase. *The Plant Journal*, 22(6):503–513, 2000.
- [116] R. Lonsdale, J. N. Harvey, and A. J. Mulholland. A Practical Guide to Modelling Enzyme-Catalysed Reactions. *Chemical Society Reviews*, 41(8):3025–3038, 2012. doi: 10.1039/c2cs15297e.
- [117] H. Lüttgen, F. Rohdich, S. Herz, J. Wungsintaweekul, S. Hecht, C. A. Schuhr, M. Fellermeier, S. Sagner, M. H. Zenk, A. Bacher, and W. Eisenreich. Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. *Proceedings of the National Academy of Sciences of the United States of America*, 97(3):1062-7, 2 2000. ISSN 0027-8424. URL http://www.ncbi.nlm.nih.gov/pubmed/10655484http: //www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC15522.
- [118] A. Mac Sweeney, R. Lange, R. P. M. Fernandes, H. Schulz, G. E. Dale, A. Douangamath, P. J. Proteau, and C. Oefner. The Crystal Structure of E. coli 1-Deoxy-D-xylulose-5-phosphate Reductoisomerase in a Ternary Complex with the Antimalarial Compound Fosmidomycin and NADPH reveals a Tight-binding Closed Enzyme Conformation. *Journal of Molecular Biology*, 345(1):115–127, 2005. doi: 10.1016/j.jmb.2004.10.030.

- [119] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom Empirical Potential for Molecular Modeling and Dynamics studies of Proteins. *Journal of Physical Chemistry B*, 102(18):3586–3616, 1998.
- [120] K. A. Manning, B. Sathyamoorthy, A. Eletsky, T. Szyperski, and A. S. Murkin. Highly Precise Measurement of Kinetic Isotope Effects Using HDetected 2D [H]-HSQC NMR Spectroscopy. Journal of the American Chemical Society, 134(51): 2058920592, 2012. doi: 10.1021/ja310353c. URL http://pubs.acs.org/doi/ pdfplus/10.1021/ja310353c.
- [121] A. Maraite, T. Schmidt, M. B. Ansörge-Schumacher, A. M. Brzozowski, and G. Grogan. Structure of the ThDP-dependent Enzyme Benzaldehyde Lyase Refined to 1.65 \$\angstrom\$ Resolution. Acta Crystallographica Section F - Structural Biology and Crystallization Communications, 63(Pt 7):546-548, 7 2007. ISSN 1744-3091. doi: 10.1107/S1744309107028576. URL http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=2335142&tool=pmcentrez&rendertype=abstract.
- [122] T. Masini, B. S. Kroezen, and A. K. H. Hirsch. Druggability of the Enzymes of the Non-mevalonate-pathway. *Drug Discovery Today*, 18 (23):1256-1262, 2013. doi: 10.1016/j.drudis.2013.07.003. URL https: //ac.els-cdn.com/S1359644613002377/1-s2.0-S1359644613002377-main. pdf?_tid=01c4d722-ca3c-11e7-8ef9-00000aab0f6b&acdnat=1510774654_ 41ad79b189e84568d5f6b401a18d1c53.
- [123] Y. Matsue, H. Mizuno, T. Tomita, T. Asami, M. Nishiyama, and T. Kuzuyama. The herbicide ketoclomazone inhibits 1-deoxy-D-xylulose 5-phosphate synthase in the 2-C-methyl-D-erythritol 4-phosphate pathway and shows antibacterial activity

against Haemophilus influenzae. *Journal of Antibiotics*, 63(10):583–588, 2010. doi: 10.1038/ja.2010.100. URL <GotoISI>://WOS:000283978200001.

- [124] P. D. Matthews and E. T. Wurtzel. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. *Applied Microbiology and Biotech*nology, 53(4):396-400, 4 2000. ISSN 0175-7598. doi: 10.1007/s002530051632. URL http://link.springer.com/10.1007/s002530051632.
- [125] D. Meyer, P. Neumann, R. Ficner, and K. Tittmann. Observation of a Stable Carbene at the Active Site of a Thiamin Enzyme. *Nature: Chemical Biology*, 9(8): 488–490, 2013.
- [126] L. Miallau, M. S. Alphey, L. E. Kemp, G. A. Leonard, S. M. McSweeney, S. Hecht, A. Bacher, W. Eisenreich, F. Rohdich, and W. N. Hunter. Biosynthesis of isoprenoids: Crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol kinase. *Proceedings of the National Academy of Sciences of the United States of America*, 100(16):9173-9178, 8 2003. ISSN 0027-8424. doi: 10.1073/pnas.1533425100. URL http://www.ncbi.nlm.nih.gov/pubmed/12878729http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC170891http://www.pnas.org/cgi/ doi/10.1073/pnas.1533425100.
- [127] B. T. Miller, R. P. Singh, J. B. Klauda, M. Hodoscek, B. R. Brooks, and H. L. Woodcock III. CHARMMing: A new, flexible web portal for CHARMM. *Journal of Chemical Information and Modeling*, 48(9):1920–1929, 2008. doi: 10.1021/ci800133b. URL <GotoISI>://WOS:000259398500018.
- [128] J. T. Mills, S. T. Furlong, and E. A. Dawidowicz. Plasma Membrane Biogenesis in Eukaryotic Cells: Translocation of Newly Synthesized Lipid. Proceedings of the National Academy of Sciences of the United States of America, 81:1385–1388, 1984. URL http://www.pnas.org/content/81/5/1385.full.pdf.

- [129] L. Mitschke, C. Parthier, K. Schroder-Tittmann, J. Coy, S. Ludtke, and K. Tittmann. The Crystal Structure of Human Transketolase and New Insights into Its Mode of Action. *Journal of Biological Chemistry*, 285(41):31559–31570, 2010. doi: 10.1074/jbc.M110.149955.
- [130] H. M. Miziorko. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. *Archives of Biochemistry and Biophysics*, 505(2):131–143, 2011. doi: 10.1016/j. abb.2010.09.028. URL <GotoISI>://WOS:000288286000001.
- [131] J. W. Munos, X. Pu, S. O. Mansoorabadi, H. J. Kim, and H.-w. Liu. A Secondary Kinetic Isotope Effect Study of the 1-Deoxy-D-xylulose-5-phosphate Reductoisomerase-Catalyzed Reaction: Evidence for a Retroaldol-Aldol Rearrangement. Journal of the American Chemical Society, 131(6):2048–2049, 2 2009. ISSN 0002-7863. doi: 10.1021/ja807987h. URL http://pubs.acs.org/doi/abs/10. 1021/ja807987h.
- [132] A. S. Murkin, K. A. Manning, and S. A. Kholodar. Mechanism and Inhibition of 1-Deoxy-D-xylulose-5-phosphate Reductoisomerase. *Bioorganic Chemistry*, 57:171-185, 2014. doi: 10.1016/j.bioorg.2014.06.001. URL https: //ac.els-cdn.com/S0045206814000467/1-s2.0-S0045206814000467-main. pdf?_tid=e0ad4cb4-c98b-11e7-92f0-00000aab0f6b&acdnat=1510699007_ 20041b054596561f9224562d11744b0c.
- [133] N. S. Nemeria, S. Chakraborty, A. Balakrishnan, and F. Jordan. Reaction Mechanisms of Thiamin Diphosphate Enzymes: Defining States of Ionization and Tautomerization of the Cofactor at Individual Steps. *The FEBS Journal*, 276(9): 2432-2446, 5 2009. ISSN 1742-4658. doi: 10.1111/j.1742-4658.2009.06964.x. URL http://apps.webofknowledge.com/full_record.do?product=UA&search_ mode=Refine&qid=4&SID=4FDs3H94dMWK4ZH3IHJ&page=1&doc=2.

- [134] M. Nikkola, Y. Lindqvist, and G. Schneider. Refined Structure of Transketolase from \$\textit{Saccharomyces cerevisiae}\$ at 2.0 \$\angstrom\$ Resolution. Journal of Molecular Biology, 238(3):387–404, 5 1994. doi: 10.1006/jmbi.1994.1299.
- [135] U. Nilsson, L. Meshalkina, Y. Lindqvist, and G. Schneider. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. *Journal of Biological Chemistry*, 272(3): 1864–1869, 1997. URL <GotoISI>://WOS:A1997WD05800071.
- [136] J. Norberg and L. Nilsson. Advances in Biomolecular Simulations: Methodology and Recent Applications. *Quarterly Reviews of Biophysics*, 36(3):257-306, 8 2003.
 doi: 10.1017/S0033583503003895. URL http://www.journals.cambridge.org/ abstract_S0033583503003895.
- [137] D. B. Northrop. On the Meaning of Km and V/K in Enzyme Kinetics. Journal of Chemical Education, 75(9):1153, 9 1998. ISSN 0021-9584. doi: 10.1021/ed075p1153.
 URL http://pubs.acs.org/doi/abs/10.1021/ed075p1153.
- M. H. M. Olsson, C. R. Søndergaard, M. Rostkowski, and J. H. Jensen. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2):525-537, 2 2011. ISSN 1549-9618. doi: 10.1021/ct100578z. URL http://dx.doi.org/10.1021/ct100578z.
- [139] P. E. ORourke, J. Kalinowska-Tłuścik, P. K. Fyfe, A. Dawson, and W. N. Hunter. Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment. *BMC Structural Biology*, 14(1):1–12, 1 2014. doi: 10.1186/1472-6807-14-1. URL http: //www.ncbi.nlm.nih.gov/pubmed/24410837.
- [140] S. Pandian, S. Saengchjan, and T. S. Raman. An Alternative Pathway for the Biosynthesis of Isoprenoid Compounds in Bacteria. *The Biochemical journal*, 196

(3):675-681, 6 1981. doi: 10.1042/BJ1960675. URL http://www.ncbi.nlm.nih. gov/pubmed/6274317http://www.ncbi.nlm.nih.gov/pubmed/6274317.

- [141] H. Patel, N. S. Nemeria, L. A. Brammer, C. L. Freel Meyers, and F. Jordan. Observation of Thiamin-Bound Intermediates and Microscopic Rate Constants for their Interconversion on 1-Deoxy-D-xylulose 5-Phosphate Synthase: 600-fold Rate Acceleration of Pyruvate Decarboxylation by D-Glyceraldehyde-3-phosphate. Journal of the American Chemical Society, 134(44):18374–18379, 11 2012. ISSN 1520-5126. doi: 10.1021/ja307315u. URL http://dx.doi.org/10.1021/ja307315u.
- [142] C. L. Perrin and J. B. Nielson. "Strong" Hydrogen Bonds in Chemistry and Biology. *Annual Review of Physical Chemistry*, 48:511-544, 1997. doi: 10.1146/annurev. physchem.48.1.511. URL http://www.ncbi.nlm.nih.gov/pubmed/9348662.
- [143] C. Phaosiri and P. J. Proteau. Substrate Analogs for the Investiga-5-phosphate Reductoisomerase tion of Deoxyxylulose Inhibition: Svn-Bioorganic & Medicinal Chemistry Letters, 14 thesis and Evaluation. (21):5309-5312,2004.doi: 10.1016/j.bmcl.2004.08.023. URL https: //ac.els-cdn.com/S0960894X04010315/1-s2.0-S0960894X04010315-main. pdf?_tid=5c9ffdd8-c7ae-11e7-b929-00000aab0f6b&acdnat=1510493915_ b4fe7c108c331c97399bc31ea8b5fad7.
- [144] J. W. Porter and S. L. Spurgeon. Biosynthesis of Isoprenoid Compounds. Number v. 1 in Biosynthesis of Isoprenoid Compounds. Wiley, New York, 1981. URL https: //books.google.com/books?id=X2cXAQAAIAAJ.
- [145] J. Querol, A. Boronat, J. J. Centelles, S. Imperial, J. Querol-Audí, A. Boronat, J. J. Centelles, and S. Imperial. Catalytically Important Residues in E. coli 1-Deoxy-D-Xylulose 5-Phosphate Synthase. *Journal of Biosciences and Medicines*, 02(04): 30-35, 6 2014. ISSN 2327-5081. doi: 10.4236/jbm.2014.24006. URL http://www.scirp.org/journal/PaperInformation.aspx?PaperID=46744&#abstract.

- [146] F. Quitterer, A. Frank, K. Wang, G. Rao, B. O'Dowd, J. Li, F. Guerra, S. Abdel-Azeim, A. Bacher, J. Eppinger, E. Oldfield, and M. Groll. Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe4S4] Enzyme IspG (GcpE). Journal of Molecular Biology, 427 (12):2220-2228, 6 2015. ISSN 00222836. doi: 10.1016/j.jmb.2015.04.002. URL http://www.ncbi.nlm.nih.gov/pubmed/25868383http://www. pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4433817http: //linkinghub.elsevier.com/retrieve/pii/S0022283615002259.
- [147] D. Ramamoorthy, S. Handa, D. J. Merkler, and W. C. Guida. Plasmodium Vivax 1-Deoxy-D-Xylulose-5-Phosphate Synthase: Homology Modeling, Domain Swapping, and Virtual Screening. *Journal of Data Mining Genomics Proteomics*, 1:602–2153, 2014.
- [148] K. E. Ranaghan and A. J. Mulholland. Investigations of Enzyme-catalysed Reactions with Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods. International Reviews in Physical Chemistry, 29(1):65-133, 1 2010. ISSN 0144-235X. doi: 10.1080/01442350903495417. URL http://www.tandfonline.com/doi/abs/10.1080/01442350903495417.
- [149] I. Rekittke, T. Nonaka, J. Wiesner, U. Demmer, E. Warkentin, H. Jomaa, and U. Ermler. Structure of the E -1-Hydroxy-2-methyl-but-2-enyl-4diphosphate Synthase (GcpE) from Thermus thermophilus. *FEBS Letters*, 585(3):447-451, 2 2011. ISSN 00145793. doi: 10.1016/j.febslet.2010.12.012. URL http://www.ncbi.nlm.nih.gov/pubmed/21167158http://doi.wiley.com/ 10.1016/j.febslet.2010.12.012.
- [150] I. Rekittke, H. Jomaa, and U. Ermler. Structure of the GcpE (IspG)-MEcPP Complex from Thermus thermophilus. *FEBS Letters*, 586(19): 3452–3457, 9 2012. ISSN 00145793. doi: 10.1016/j.febslet.2012.07.070.

URL http://www.ncbi.nlm.nih.gov/pubmed/22967895http://doi.wiley.com/ 10.1016/j.febslet.2012.07.070.

- [151] K. Reuter, S. Sanderbrand, H. Jomaa, J. Wiesner, I. Steinbrecher, E. Beck, M. Hintz, G. Klebe, and M. T. Stubbs. Crystal Structure of 1-Deoxy-D-xylulose-5-phosphate Reductoisomerase, a Crucial Enzyme in the Nonmevalonate Pathway of Isoprenoid Biosynthesis. Journal of Biological Chemistry, 277(7):5378-5384, 2 2002. ISSN 0021-9258. doi: 10.1074/jbc. M109500200. URL http://www.ncbi.nlm.nih.gov/pubmed/11741911http:// www.jbc.org/lookup/doi/10.1074/jbc.M109500200.
- [152] S. B. Richard, M. E. Bowman, W. Kwiatkowski, I. Kang, C. Chow, A. M. Lillo, D. E. Cane, and J. P. Noel. Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis. *Nature: Structural Biology*, 8(7):641–648, 2001. doi: 10.1038/89691.
- [153] S. B. Richard, J.-L. L. Ferrer, M. E. Bowman, A. M. Lillo, C. N. Tetzlaff, D. E. Cane, and J. P. Noel. Structure and Mechanism of 2-C-Methyl-D-erythritol 2,4-Cyclodiphosphate Synthase - An Enzyme in the Mevalonateindependent of Isoprenoid Biosynthetic Pathway. *Journal of Biological Chemistry*, 277(10):8667-8672, 3 2002. ISSN 0021-9258. doi: 10.1074/jbc. C100739200. URL http://www.ncbi.nlm.nih.gov/pubmed/11786530http:// www.jbc.org/lookup/doi/10.1074/jbc.C100739200.
- [154] S. B. Richard, A. M. Lillo, C. N. Tetzlaff, M. E. Bowman, J. P. Noel, and D. E. Cane. Kinetic Analysis of Escherichia coli 2-C-Methyl-d-erythritol-4-phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino Acids. *Biochemistry*, 43(38):12189–12197, 2004. doi: 10.1021/BI0487241. URL http://pubs.acs.org/doi/abs/10.1021/bi0487241.
- [155] F. Rohdich, J. Wungsintaweekul, M. Fellermeier, S. Sagner, S. Herz, K. Kis, W. Eisenreich, A. Bacher, and M. H. Zenk. Cytidine 5'-Triphosphatedependent Biosynthesis of Isoprenoids: YgbP Protein of Escherichia coli catalyzes the Formation of 4-Diphosphocytidyl-2-C-methylerythritol. Proceedings of the National Academy of Sciences of the United States of America, 96(21):11758-63, 10 1999. ISSN 0027-8424. doi: 10.1073/pnas.96. 21.11758. URL http://www.ncbi.nlm.nih.gov/pubmed/10518523http://www. pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC18359.
- [156] F. Rohdich, F. Zepeck, P. Adam, S. Hecht, J. Kaiser, R. Laupitz, T. Grawert, S. Amslinger, W. Eisenreich, A. Bacher, and D. Arigoni. The Deoxyxylulose Phosphate Pathway of Isoprenoid Biosynthesis: Studies on the Mechanisms of the Reactions catalyzed by IspG and IspH Protein. *Proceedings of the National Academy of Sciences of the United States of America*, 100(4):1586–1591, 2003. doi: 10.1073/pnas.0337742100.
- [157] F. Rohdich, S. Lauw, J. Kaiser, R. Feicht, P. Köhler, A. Bacher, and W. Eisenreich. Isoprenoid Biosynthesis in Plants? 2C-Methyl-d-erythritol-4-phosphate Synthase (IspC Protein) of Arabidopsis thaliana. *The FEBS Journal*, 273(19):4446-4458, 10 2006. ISSN 1742-464X. doi: 10.1111/j.1742-4658.2006.05446.x. URL http: //doi.wiley.com/10.1111/j.1742-4658.2006.05446.x.
- [158] M. Rohmer. The Mevalonate-Independent Methylerythritol 4-Phosphate (MEP) Pathway for Isoprenoid Biosynthesis, including Carotenoids. Pure and Applied Chemistry, 71(12):2279-2284, 1999. URL https://www.iupac.org/ publications/pac/pdf/1999/pdf/7112x2279.pdf.
- [159] M. Rohmer, M. Knani, P. Simonin, B. Sutter, and H. Sahm. Isoprenoid Biosynthesis in Bacteria: A Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate. *The Biochemical Journal*, 295(2): 517–524, 10 1993. ISSN 0264-6021. doi: 10.1042/BJ2950517. URL

http://www.ncbi.nlm.nih.gov/pubmed/8240251http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC1134910%3CGoto.

- [160] M. Rohmer, M. Seemann, S. Horbach, S. Bringer-Meyer, and H. Sahm. Glyceraldehyde 3-Phosphate and Pyruvate as Precursors of Isoprenic Units in an Alternative Non-mevalonate Pathway for Terpenoid Biosynthesis. Journal of the American Chemical Society, 118(11):2564–2566, 1 1996. ISSN 0002-7863. doi: 10.1021/ja9538344. URL http://pubs.acs.org/doi/abs/10.1021/ja9538344.
- [161] J. C. Sacchettini and C. D. Poulter. Biochemistry Creating Isoprenoid Diversity. Science, 277(5333):1788–1789, 1997. doi: 10.1126/science.277.5333.1788.
- [162] D. R. Salahub, A. de la Lande, A. Goursot, R. Zhang, and Y. Zhang. Recent Progress in Density Functional Methodology for Biomolecular Modeling. In M. V. Putz and D. M. P. Mingos, editors, *Applications of Density Functional Theory to Biological and Bioinorganic Chemistry*, pages 1–64. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-32750-6. doi: 10.1007/978-3-642-32750-6.
 1. URL https://doi.org/10.1007/978-3-642-32750-6_1.
- [163] G. Schenk, F. J. Leeper, R. England, P. F. Nixon, and R. G. Duggleby. Investigation of the mechanistic functions of residues HIS113 and HIS114 in pyruvate decarboxylase from Zymomonas mobilis: A proposed model in the binding of the substrate pyruvate. *The FASEB Journal*, 11(9):A1135–A1135, 1997.
- [164] P. V. Schleyer and H. J. Jiao. What is aromaticity? Pure and Applied Chemistry, 68(2):209–218, 1996.
- [165] M. Schlitzer and R. Ortmann. Feeding the Antimalarial Pipeline. *ChemMedChem*, 5 (11):1837-1840, 11 2010. doi: 10.1002/cmdc.201000341. URL http://doi.wiley.com/10.1002/cmdc.201000341.

- [166] M. Seemann, B. T. S. Bui, M. Wolff, D. Tritsch, N. Campos, A. Boronat, A. Marquet, and M. Rohmer. Isoprenoid Biosynthesis through the Methylerythritol Phosphate Pathway: The (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Synthase (GcpE) is a [4Fe4S] Protein. Angewandte Chemie International Edition, 41(22):4337-4339, 11 2002. doi: Doi10.1002/1521-3773(20021115) 41:22(4337::Aid-Anie4337)3.0.Co;2-K. URL http://www.ncbi.nlm.nih.gov/ pubmed/12434382.
- [167] H. M. Senn and W. Thiel. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition, 48(7):1198-1229, 2 2009. doi: 10.1002/anie. 200802019. URL http://doi.wiley.com/10.1002/anie.200802019.
- [168] T. Sgraja, M. S. Alphey, S. Ghilagaber, R. Marquez, M. N. Robertson, J. L. Hemmings, S. Lauw, F. Rohdich, A. Bacher, W. Eisenreich, V. Illarionova, and W. N. Hunter. Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-D-erythritol kinase ligand recognition in a template for antimicrobial drug discovery. *The FEBS Journal*, 275(11):2779–2794, 6 2008. ISSN 1742464X. doi: 10.1111/j.1742-4658.2008.06418.x. URL http://www.ncbi.nlm.nih.gov/pubmed/ 18422643http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2655357http://doi.wiley.com/10.1111/j.1742-4658.2008.06418.x.
- [169] S. Shan, X. Chen, T. Liu, H. Zhao, Z. Rao, and Z. Lou. Crystal structure of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis. *The FASEB Journal*, 25(5):1577-1584, 5 2011. ISSN 0892-6638. doi: 10. 1096/fj.10-175786. URL http://www.ncbi.nlm.nih.gov/pubmed/21282208http: //www.fasebj.org/cgi/doi/10.1096/fj.10-175786.
- [170] Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B.
 Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr.,
 R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin,
 T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen,

P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel,
R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger,
A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A.
Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E.
Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M.
Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I.
Krylov, P. M. W. Gill, and M. Head-Gordon. Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package. *Physical Chemistry Chemical Physics*, 8(27):3172–3191, 2006. doi: 10.1039/b517914a.

- [171] C. G. M. G. Sinead Heuston Maire Begley, C. Hill, S. Heuston, M. Begley, C. G. M. Gahan, and C. Hill. Isoprenoid Biosynthesis in Bacterial Pathogens. *Microbiology*, 158(Pt 6):1389-1401, 6 2012. ISSN 1465-2080. doi: 10.1099/mic.0.051599-0. URL http://mic.sgmjournals.org.ezproxy.lib.usf.edu/content/158/Pt_6/1389.abstract.
- [172] N. Singh, G. Cheve, M. Avery, and C. McCurdy. Targeting the Methyl Erythritol Phosphate (MEP) Pathway for Novel Antimalarial, Antibacterial and Herbicidal Drug Discovery: Inhibition of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase (DXR) Enzyme. *Current Pharmaceutical De*sign, 13(11):1161-1177, 4 2007. doi: 10.2174/138161207780618939. URL http://www.eurekaselect.com/openurl/content.php?genre=article&issn= 1381-6128&volume=13&issue=11&spage=1161.
- [173] C. K. Singleton, J. J. L. Wang, L. Shan, and P. R. Martin. Conserved Residues are Functionally Distinct within Transketolases of Different Species. *Biochemistry*, 35 (49):15865–15869, 12 1996. doi: 10.1021/bi9616920.
- [174] X. Sisquella, K. de Pourcq, J. Alguacil, J. Robles, F. Sanz, D. Anselmetti, S. Imperial, and X. Fernàndez-Busquets. A single-molecule force spectroscopy nanosen-

sor for the identification of new antibiotics and antimalarials. *The FASEB Journal*, 24(11):4203-17, 11 2010. ISSN 1530-6860. doi: 10.1096/fj.10-155507. URL http://www.ncbi.nlm.nih.gov/pubmed/20634351.

- [175] C. R. Søndergaard, M. H. M. Olsson, M. M. Rostkowski, J. H. Jensen, C. R. Sondergaard, M. H. M. Olsson, M. M. Rostkowski, and J. H. Jensen. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pK(a) Values. Journal of Chemical Theory and Computation, 7(7):2284–2295, 5 2011. ISSN 1549-9618. doi: 10.1021/ct200133y. URL http://dx.doi.org/10.1021/ct200133y.
- [176] G. A. Sprenger, U. Schorken, T. Wiegert, S. Grolle, A. A. DeGraaf, S. V. Taylor, T. P. Begley, S. BringerMeyer, H. Sahm, U. Schrken, T. Wiegert, S. Grolle, A. A. de Graaf, S. V. Taylor, T. P. Begley, S. Bringer-Meyer, H. Sahm, U. Schörken, T. Wiegert, S. Grolle, A. A. de Graaf, S. V. Taylor, T. P. Begley, S. Bringer-Meyer, and H. Sahm. Identification of a Thiamin-Dependent Synthase in Escherichia coli Required for the Formation of the 1-Deoxy-D-xylulose 5-Phosphate Precursor to Isoprenoids, Thiamin, and Pyridoxol. *Proceedings of the National Academy of Sciences of the United States of America*, 94(24):12857–12862, 11 1997. ISSN 0027-8424. URL http://www.ncbi.nlm.nih.gov/pubmed/9371765http: //www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC24228http: //www.pnas.org/content/94/24/12857.full.pdf.
- [177] S. Steinbacher, J. Kaiser, J. Wungsintaweekul, S. Hecht, W. Eisenreich, S. Gerhardt, A. Bacher, and F. Rohdich. Structure of 2C-methyl-derythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent Journal of Molecular Biology, biosynthesis of isoprenoids. 316(1):79-88, 2 2002. ISSN 00222836. doi: 10.1006/jmbi.2001.5341. URL http://www.ncbi.nlm.nih.gov/pubmed/11829504http://linkinghub. elsevier.com/retrieve/pii/S0022283601953410.

- [178] S. Steinbacher, J. Kaiser, W. Eisenreich, R. Huber, A. Bacher, and F. Rohdich. Structural Basis of Fosmidomycin Action Revealed by the Complex with 2-C-Methyl-D-erythritol 4-Phosphate Synthase (IspC) - Implications for the Catalytic Mechanism and Anti-Malaria Drug Development. *Journal of Biological Chemistry*, 278(20):18401-18407, 5 2003. doi: 10.1074/jbc.M300993200. URL http://www.jbc.org/content/278/20/18401.full.pdfhttp://www.ncbi. nlm.nih.gov/pubmed/12621040.
- [179] S. Takahashi, T. Kuzuyama, H. Watanabe, and H. Seto. A 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase Catalyzing the Formation of 2-C-Methyl-D-elythritol 4-Phosphate in an Alternative Nonmevalonate Pathway for Terpenoid Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 95(17):9879-9884, 8 1998. ISSN 0027-8424. URL http://www.ncbi.nlm.nih.gov/pubmed/9707569http://www. pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC21430.
- [180] D. G. Truhlar. Transition State Theory for Enzyme Kinetics. Archives of Biochemistry and Biophysics, 582:10-17, 2015. doi: 10.1016/j.abb.2015.05.004. URL https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC4555010/pdf/nihms705440.pdf.
- [181] D. L. Turner, H. Santos, P. Fareleira, I. Pacheco, J. LeGall, and A. V. Xavier. Structure determination of a novel cyclic phosphocompound isolated from Desulfovibrio desulfuricans. *The Biochemical Journal*, 285 (Pt 2):387-90, 7 1992. URL http://www.ncbi.nlm.nih.gov/pubmed/1637331.
- [182] M. W. Van Der Kamp and A. J. Mulholland. Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods in Computational Enzymology. *Biochemistry*, 52(16):2708–2728, 2013. ISSN 00062960. doi: 10.1021/bi400215w.
- [183] J.-Y. Van Der Meer and A. K. H. Hirsch. The Isoprenoid-precursor Dependence of Plasmodium spp. Natural Product Reports, 29(7):721–728, 2012. doi: 10.

1039/c2np20013a. URL http://pubs.rsc.org/en/content/articlepdf/2012/ np/c2np20013a.

- [184] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and A. D. MacKerell Jr. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. *Journal of Computational Chemistry*, 31(4):671–690, 2010. doi: 10.1002/jcc.21367. URL <GotoISI>://WOS: 000274922000002.
- [185] T. Wada, T. Kuzuyama, S. Satoh, S. Kuramitsu, S. Yokoyama, S. Unzai, J. R. Tame, and S.-Y. Park. Crystal Structure of 4-(Cytidine 5diphospho)-2- ji¿Ci/i¿ -methyl-d-erythritol kinase, an Enzyme in the Nonmevalonate Pathway of Isoprenoid Synthesis. Journal of Biological Chemistry, 278(32):30022-30027, 8 2003. ISSN 0021-9258. doi: 10.1074/jbc. M304339200. URL http://www.ncbi.nlm.nih.gov/pubmed/12771135http:// www.jbc.org/lookup/doi/10.1074/jbc.M304339200.
- [186] W. Wang and E. Oldfield. Bioorganometallic Chemistry with IspG and IspH: Structure, Function, and Inhibition of the [Fe jsub¿4j/sub¿ S jsub¿4j/sub¿] Proteins Involved in Isoprenoid Biosynthesis. Angewandte Chemie International Edition, 53(17):4294-4310, 4 2014. ISSN 14337851. doi: 10.1002/anie.201306712. URL http://doi.wiley.com/10.1002/anie.201306712.
- [187] W. Wang, J. Li, K. Wang, C. Huang, Y. Zhang, and E. Oldfield. Organometallic Mechanism of Action and Inhibition of the 4Fe-4S Isoprenoid Biosynthesis Protein GcpE (IspG). Proceedings of the National Academy of Sciences of the United States of America, 107(25):11189–11193, 6 2010. doi: 10.1073/pnas.1000264107. URL http://www.ncbi.nlm.nih.gov/pubmed/20534554.

- [188] A. Warshel. Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines (Nobel Lecture). Angewandte Chemie International Edition, 53 (38):10020-10031, 9 2014. ISSN 14337851. doi: 10.1002/anie.201403689. URL http://doi.wiley.com/10.1002/anie.201403689.
- [189] S. E. Wheeler, K. N. Houk, P. V. R. Schleyer, and W. D. Allen. A Hierarchy of Homodesmotic Reactions for Thermochemistry. *Journal of the American Chemical Society*, 131(7):2547–2560, 2009. doi: 10.1021/ja805843n. URL <GotoISI>://WOS: 000263576100041.
- [190] C. Wikner, L. Meshalkina, U. Nilsson, M. Nikkola, Y. Lindqvist, M. Sundstrom, and G. Schneider. Analysis of an Invariant Cofactor-Protein Interaction in Thiamin Diphosphate-Dependent Enzymes by Site-Directed Mutagenesis: Glutamic-Acid-418 in Transketolase is Essential for Catalysis. *Journal of Biological Chemistry*, 269(51):32144–32150, 1994.
- [191] E. I. Wilding, J. R. Brown, A. P. Bryant, A. F. Chalker, D. J. Holmes, K. A. Ingraham, S. Iordanescu, C. Y. So, M. Rosenberg, and M. N. Gwynn. Identification, Evolution, and Essentiality of the Mevalonate Pathway for Isopentenyl Diphosphate Biosynthesis in Gram-positive Cocci. *Journal of Bacteriology*, 182(15):4319–4327, 8 2000. doi: 10.1128/JB.182.15.4319-4327.2000. URL http://www.ncbi.nlm.nih. gov/pubmed/10894743.
- [192] M. Wolff, M. Seemann, C. Grosdemange-Billiard, D. Tritsch, N. Campos, M. Rodrguez-Concepción, A. Boronat, and M. Rohmer. Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway. (E)-4-Hydroxy-3-methylbut-2enyl Diphosphate: Chemical Synthesis and Formation from Methylerythritol Cyclodiphosphate by a Cell-Free System from Escherichia coli. *Tetrahedron Letters*, 43 (14):2555-2559, 4 2002. doi: 10.1016/S0040-4039(02)00293-9. URL http://www. sciencedirect.com/science/article/pii/S0040403902002939?via%3Dihub.

- [193] A. Wong, J. W. Munos, V. Devasthali, K. A. Johnson, and H.-w. Liu. Study of 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase: Synthesis and Evaluation of Fluorinated Substrate Analogues. Organic Letters, 6(20):3625–3628, 2004. doi: 10.1021/OL048459B. URL http://pubs.acs.org/doi/abs/10.1021/o1048459b.
- [194] H. L. Woodcock, M. Hodoscek, and B. R. Brooks. Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms. *Journal of Physical Chemistry A*, 111(26):5720–5728, 2007. doi: 10.1021/jp0714217. URL <GotoISI>://WOS: 000247573600017.
- [195] H. L. Woodcock, M. Hodoscek, A. T. B. Gilbert, P. M. W. Gill, H. F. Schaefer, B. R. Brooks, H. L. Woodcock III, M. Hodoscek, A. T. B. Gilbert, P. M. W. Gill, H. F. Schaefer III, and B. R. Brooks. Interfacing Q-chem and CHARMM to perform QM/MM reaction path calculations. *Journal of Computational Chemistry*, 28(9):1485–1502, 7 2007. ISSN 0192-8651. doi: 10.1002/jcc.20587. URL http://www.ncbi.nlm.nih.gov/pubmed/17334987.
- [196] C. J. Woodrow and S. Krishna. Antimalarial Drugs: Recent Advances in Molecular Determinants of Resistance and their Clinical Significance. *Cellular and Molecular Life Sciences*, 63(14):1586-1596, 2006. doi: 10.1007/ s00018-006-6071-1. URL https://link.springer.com/content/pdf/10.1007% 2Fs00018-006-6071-1.pdf.
- [197] S. Xiang, G. Usunow, G. Lange, M. Busch, and L. Tong. Crystal structure of 1-deoxy-d-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. *Journal of Biological Chemistry*, 282(4):2676-2682, 1 2007. ISSN 0021-9258. doi: 10.1074/jbc.M610235200. URL http://www.ncbi.nlm.nih.gov/pubmed/ 17135236http://www.jbc.org/lookup/doi/10.1074/jbc.M610235200.
- [198] Y. Xiao, D. Rooker, Q. You, C. L. Freel Meyers, and P. Liu. IspG-Catalyzed Positional Isotopic Exchange in Methylerythritol Cyclodiphosphate of the De-

oxyxylulose Phosphate Pathway: Mechanistic Implications. *ChemBioChem*, 12(4):527-530, 3 2011. ISSN 14394227. doi: 10.1002/cbic.201000716. URL http://www.ncbi.nlm.nih.gov/pubmed/22238143http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3257810http://doi.wiley.com/10. 1002/cbic.201000716.

- [199] S. Yajima, T. Nonaka, T. Kuzuyama, H. Seto, and K. Ohsawa. Crystal structure of 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase Complexed with Cofactors: Implications of a Flexible Loop Movement upon Substrate Binding. *Journal of Biochemistry*, 131(3):313-317, 3 2002. ISSN 0021-924X. URL http://www.ncbi.nlm.nih.gov/pubmed/11872159.
- [200] S. Yajima, K. Hara, D. Iino, Y. Sasaki, T. Kuzuyama, K. Ohsawa, and H. Seto. Structure of 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase in a Quaternary Complex with a Magnesium Ion, NADPH and the Antimalarial Drug Fosmidomycin. Acta Crystallographica Section F - Structural Biology and Crystallization Communications, 63(6):466-470, 6 2007. doi: 10.1107/S1744309107024475. URL http://www.ncbi.nlm.nih.gov/pubmed/17554164.
- [201] E. Yeh and J. L. DeRisi. Chemical Rescue of Malaria Parasites lacking an Apicoplast defines Organelle Function in Blood-Stage Plasmodium falciparum. *PLoS Biology*, 9(8):e1001138, 8 2011. doi: 10.1371/journal.pbio.1001138. URL http://dx.plos.org/10.1371/journal.pbio.1001138.
- [202] X. H. Yin and P. J. Proteau. Characterization of Native and Histidinetagged Deoxyxylulose 5-Phosphate Reductoisomerase from the Cyanobacterium \$\textit{Synechocystis sp}\$ PCC6803. Biochimica et Biophysica Acta - Proteins and Proteomics, 1652(1):75-81, 2003. doi: 10.1016/j.bbapap.2003.08.005.
- [203] J. Zeidler, J. Schwender, C. Müller, J. Wiesnerb, C. W. Eidemeyerb, E. Beckb,H. Jomaab, H. K. Lichtenthaler, J. Zeidler, J. Schwender, C. Muller, J. Wies-

ner, C. Weidemeyer, E. Beck, H. Jomaa, and H. K. Lichtenthaler. Inhibition of the Non-mevalonate 1-Deoxy-D-xylulose-5-phosphate Pathway of Plant Isoprenoid Biosynthesis by Fosmidomycin. *Zeitschrift Fur Naturforsch. C-a J. Biosci.*, 53 (11-12):980-986, 1998. URL https://www.degruyter.com/downloadpdf/j/znc. 1998.53.issue-11-12/znc-1998-11-1208/znc-1998-11-1208.pdf.

- [204] F. Zepeck, T. Gräwert, J. Kaiser, N. Schramek, W. Eisenreich, A. Bacher, and F. Rohdich. Biosynthesis of Isoprenoids. Purification and Properties of IspG Protein from Escherichia coli. *The Journal of Organic Chemistry*, 70(23):9168–9174, 2005. doi: 10.1021/JO0510787. URL http://pubs.acs.org/doi/10.1021/jo0510787.
- [205] D. Zhou and R. H. White. Early Steps of Isoprenoid Biosynthesis in Escherichia coli. The Biochemical Journal, 273(3):627-634, 2 1991. doi: 10.1042/BJ2730627. URL http://www.ncbi.nlm.nih.gov/pubmed/1996960.

Appendix A: Supporting Information for "Thiamine Diphosphate Activation in 1-deoxy-D-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions"

A.1 Methods

A.1.1 Topology and Parameters for Thiamine Diphosphate (TDP)

TDP has never been parameterized for use in MM calculations. In order to build 1deoxy-d-xylulose 5-phosphate synthase (DXS), it was necessary to develop a topology and parameter file that would reproduce the TDP crystal structure. TDP has a pyrimidine ring, thiazole ring, and an inorganic phosphate tail; each of which have been developed for use in CHARMM calculations. The topology and parameters for each moiety were used and augmented to account for TDP's final structure. The additional bonds and parameters were determined based on structures with homologous chemical properties. QM calculations at the B3LYP/6-31G* level of theory were used to determine acquire initial charges for undefined atoms (e.g., C1 atom, *vide infra*). These charges were combined with those already established for each moiety. MacKerrell's charge rules (mackerell.umaryland.edu/ff_dev.html) for substituents was followed to account for the linkers between groups. Finally, the atomic charges were balanced via manual manipulation and chemical intuition to equal the final -2.0 charge for TDP. A minimization of TDP was performed using the topology and parameter files to a tolerance of 0.002 kcal·mol⁻¹·Å⁻¹. The minimized structure's RMSD was compared to that of the crystal structure. The two structures were found to deviation by 0.1Å.

*Topology File for Thiamine Diphosphate using CGenFF Atom Types *

36 1

RESI	TDP		-2.00	!	
GROUF)	! 0.00			
ATOM	C1	CG331	0.43	!	H2
ATOM	H1	HGA3	0.16	!	I
ATOM	H2	HGA3	0.16	!	H1C1H3
ATOM	НЗ	HGA3	0.16	!	I
ATOM	C2	CG2R64	-0.50	!	C2
ATOM	N1	NG2R62	-0.49	!	/ \\
ATOM	N2	NG2R62	-0.54	!	/ \\
ATOM	C3	CG2R62	-0.04	!	N1 N2
ATOM	H4	HGR62	0.11	!	
ATOM	C4	CG2R64	0.45	!	C3 C4
ATOM	N3	NG2S3	-0.80	!	/ \ // \
ATOM	H31	HGP4	0.38	!	H4 ∖// N3H31
ATOM	H32	HGP4	0.38	!	C5
ATOM	C5	CG2R62	0.14	!	H32
GROUF)	! 1.00			
ATOM	C6	CG324	-0.24	!	Н5-С6-Н6
ATOM	Н5	HGA2	0.11	!	I
ATOM	Н6	HGA2	0.11	!	H8 N4(+)
ATOM	N4	NG2R52	0.59	ļ	/ \\
ATOM	C7	CG2R53	-0.41	!	Н7С10С8 С7Н71

ATOM	H71	HGR52	0.14	!	
ATOM	S1	SG2R50	0.73	ļ	/
ATOM	C8	CG2R51	0.40	ļ	H9 C9S1
ATOM	C9	CG2R51	-0.25	!	I
ATOM	C10	CG331	-0.54	!	H10C11H11
ATOM	H7	HGA3	0.12	ļ	Ι
ATOM	H8	HGA3	0.12	ļ	H12C12H13
ATOM	H9	HGA3	0.12	!	I
GROUI	þ	! -3.00			
ATOM	C11	CG321	-0.30	ļ	01
ATOM	H10	HGA2	0.10	!	I
ATOM	H11	HGA2	0.10	ļ	04==P1==03 (-)
ATOM	C12	CG321	-0.16	!	I
ATOM	H12	HGA2	0.10	!	02
ATOM	H13	HGA2	0.10	!	I
ATOM	01	DG303	-0.62	!	07==P2==06 (-)
ATOM	P1	PG1	1.50	!	I
ATOM	02	0G304	-0.74	!	05 (-)
ATOM	03	OG2P1	-0.80	!	
ATOM	04	OG2P1	-0.80	!	
ATOM	P2	PG2	1.10	ļ	
ATOM	05	OG2P1	-0.86	!	
ATOM	06	OG2P1	-0.86	ļ	
ATOM	07	OG2P1	-0.86	ļ	
ATOM	04	OG2P1	-0.80	!	
ATOM	P2	PG2	1.10	ļ	
ATOM	05	OG2P1	-0.86	ļ	
ATOM	06	OG2P1	-0.86	ļ	

ATOM 07 0G2P1 -0.86 !

BONE) C1	H1	C1	H2	C1	HЗ					
BOND	C1	C2	N1	C2	N1	C3					
BOND	C2	N2	N2	C4	C4	N3	NЗ	H31	NЗ	H32	
BOND	C4	C5	C5	C3	СЗ	H4					
BOND	C5	C6	C6	H5	C6	H6	C6	N4			
BOND	N4	C7	C7	H71	N4	C8	C8	C10)		
BOND	C10	H7	C10) H8	C	10 HS	9				
BOND	C8	C9	C9	S1	C9	C11	S1	C7			
BOND	C11	H10	C	11 H:	11	C11	C12				
BOND	C12	H12	C	12 H:	13	C12	01				
BOND	01	P1	Ρ1	02	P1	03	P1	04			
BOND	02	P2	P2	05	P2	06	P2	07			
IC	C2	N1	C3	C5	0	.0000	0.0	C	0.0	0.0	0.0000
IC	CЗ	N1	C2	N2	0	.0000	0.0	C	0.0	0.0	0.0000
IC	N1	C2	N2	C4	0	.0000	0.0	C	0.0	0.0	0.0000
IC	N2	C4	NЗ	H31	0	.0000	0.0	C	0.0	0.0	0.0000

*Parameter File for Thiamine Diphosphate

*

BONDS

CG324	NG2R52	400.00	1.4580
CG2R51	CG334	229.63	1.5000
CG2R62	CG324	222.50	1.4900
CG2R62	NG2R62	302.00	1.3430

ANGLES

CG321	CG2R51	SG2R50	45.80	124.00		
CG331	CG2R51	NG2R52	45.80	124.00		
CG331	CG2R64	NG2R62	45.80	121.00		
CG2R62	CG324	HGA2	55.00	110.10		
NG2R52	CG324	HGA2	33.43	110.10		
CG2R62	CG324	HGP5	49.30	107.50		
CG2R51	CG321	CG321	58.35	114.00		
CG2R51	NG2R52	CG324	70.00	126.90		
CG2R53	NG2R52	CG324	70.00	126.90		
CG2R62	CG2R62	CG324	45.80	119.00		
CG2R64	CG2R62	CG324	45.80	119.00		
NG2R62	CG2R62	HGR62	44.00	115.00		
NG2R52	CG2R53	HGR52	32.00	126.00		
CG2R62	NG2R62	CG2R64	40.00	110.50		
CG2R64	CG2R62	NG2R62	20.00	124.00		
CG2R62	CG2R62	NG2R62	85.00	122.90		
NG2R52	CG2R53	SG2R50	L10.00	117.20		
NG2R52	CG324	HGP5	33.43	110.10	22.53	2.179
CG2R64	CG331	HGA3	33.43	110.10	22.53	2.179
CG2R62	CG324	NG2R52	45.00	102.30	35.00	2.101

DIHEDRAL

HGA3	CG331	CG2R64	NG2R62	2.8000	2	180.00
CG321	CG321	DG303	PG2	0.0000	3	0.00
CG331	CG2R64	NG2R62	CG2R62	1.0000	2	180.00

CG331	CG2R64	NG2R62	CG2R64	1.0000	2	180.00
CG324	CG2R62	CG2R62	HGR62	2.4000	2	180.00
CG324	NG2R52	CG2R53	HGR52	2.0000	2	180.00
CG331	CG2R51	CG2R51	CG321	1.2000	2	180.00
CG324	NG2R52	CG2R51	CG331	3.0000	2	180.00
NG2S3	CG2R64	CG2R62	CG324	0.0000	2	180.00
CG324	NG2R52	CG2R51	CG2R51	5.4000	2	180.00
CG324	NG2R52	CG2R53	SG2R50	6.0000	2	180.00
CG2R51	CG321	CG321	HGA2	0.1500	3	0.00
CG2R51	CG321	CG321	DG303	0.4000	3	180.00
CG2R62	CG324	NG2R52	CG2R53	0.2300	2	180.00
CG2R62	CG324	NG2R52	CG2R51	0.2300	2	180.00
CG2R51	NG2R52	CG324	HGA2	0.0000	3	0.00
CG2R53	NG2R52	CG324	HGA2	0.0000	3	0.00
CG2R62	CG2R62	CG324	HGA2	0.0000	3	0.00
CG2R64	CG2R62	CG324	HGA2	0.0000	2	0.00
NG2R52	CG2R51	CG331	HGA3	0.1900	3	0.00
SG2R50	CG2R51	CG321	HGA2	0.1900	3	0.00
CG2R51	CG2R51	CG321	CG321	0.2000	1	0.00
CG2R51	CG2R51	CG321	CG321	0.2700	2	0.00
CG2R51	CG2R51	CG321	CG321	0.0000	3	0.00
SG2R50	CG2R51	CG321	CG321	0.1900	3	0.00
CG2R62	CG2R62	CG324	NG2R52	0.1500	2	180.00
CG2R64	CG2R62	CG324	NG2R52	0.1500	2	180.00
CG2R51	NG2R52	CG2R53	HGR52	2.0000	2	180.00
CG2R64	NG2R62	CG2R62	HGR62	4.5000	2	180.00
CG2R53	NG2R52	CG2R51	CG331	3.0000	2	180.00
CG2R53	SG2R50	CG2R51	CG321	8.5000	2	180.00

NG2R62	CG2R62	CG2R62	CG324	0.0000	2	180.00
NG2R62	CG2R64	CG2R62	CG324	3.1000	2	180.00
SG2R50	CG2R51	CG2R51	CG331	3.0000	2	180.00
CG2R64	NG2R62	CG2R62	CG2R62	1.2000	2	180.00
CG2R64	NG2R62	CG2R64	CG2R62	2.0000	2	180.00
NG2R62	CG2R62	CG2R62	CG2R64	3.0000	2	180.00
NG2R52	CG2R53	SG2R50	CG2R51	8.5000	2	180.00
NG2R62	CG2R64	NG2R62	CG2R62	3.1000	2	180.00
NG2R52	CG2R51	CG2R51	SG2R50	7.0000	2	180.00
SG2R50	CG2R53	NG2R52	CG2R51	2.0000	2	180.00

END

A.1.2 Extended 20 ns Molecular Dynamics Simulation

The crystal structure for the *D. radiodurans* DXS (PDB ID:201X)¹⁹⁷ enzyme with TDP bound was processed and parsed via www.charmming.org¹²⁷. The topology and parameters for TDP shown above were used in generating the structure used in this extended simulation. Structural modifications were performed to ensure the active site Glu373 was protonated in agreement with experimental evidence^{90,112}. CGenFF and CHARMM22 protein (C22) force fields¹¹⁹ were used throughout. The system was solvated in a cubic crystal structure and neutralized with KCl salt to a final concentration of 0.15M. The system was heated from 110K to 310K over 100ps. The system was simulated for 20 ns at constant pressure (1atm) and temperature (310K). For the purposes of analysis, the first 2 ns were discarded to allow for an equilibration period.

A.1.3 Over-expression and Purification of Wildtype DXS and the DXS Mutants

Plasmids containing the wild type D. radiodurans dxs gene or the mutant dxs gene were transformed into E. coli BL-21 B(DE3) cells and used for protein expression. An overnight culture of E. coli in LB broth containing 50 μ g/ml kanamycin was diluted 100-fold, cultured at 37°C until the absorbance at 600 nm reached ~ 0.6 , and then cooled to 20°C. Expression was induced by the addition of 0.5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG). The cells were harvested by centrifugation (6,000 \times g for 10 min) after being shakem for 6 hrs at 20°C and the resulting cell pellets stored at -80°C before purification. Cells were thanked and all the purification steps were performed at 4°C. Cells were resuspended in binding buffer (20 mM Tris, 500 mM NaCl, 5 mM imidazole, 10 mM β -Me, pH = 7.5) supplemented with 1 mM phenylmethanesulfonylfluoride (PMSF), 4 $\mu g/mL$ leupeptin, and 2 μ g/mL pepstatin, sonicated using a Heat systems W-380 ultrasonic processor, and centrifuged $(16,000 \times \text{g for } 20 \text{ min})$ to remove cell debris. The supernatant from the cell lysate was applied to a 1.5 cm \times 5 cm column packed with Ni-NTA resin that had been equilibrated with binding buffer. Non-bound proteins eluted from the column by first washing with 5 column volumes of binding buffer followed by 20 column volumes of wash buffer (20 mM Tris pH 7.5, 500 mM NaCl, 60 mM imidazole, and 10 mM β -Me). The bound DXS (wildtype or mutant) was eluted from the Ni-NTA resin using elution buffer (20 mM Tris pH 7.5, 500 mM NaCl, 250 mM imidazole, and 10 mM β -Me). A flow rate of 1.5 mL/min was maintained through the Ni-NTA column for all the loading and washing steps. DXS-containing fractions containing were combined, exhaustively dialyzed at 4°C against 20 mM Tris pH 7.5, 100 mM NaCl, and 10 mM β -Me, and concentrated by ultrafiltration. The final yield of DXS (wildtype or mutant) was 7-8 mg/L of E. coli culture medium. Enzyme was flash frozen in liquid nitrogen, stored at -80°C. The purity of the DXS (wildtype or the mutant) was evaluated by SDS-PAGE.

Figure A.1: An illustration of the QM regions of both the direct histidine mechanism (DHM, image (a)) and the water-mediated mechanism (WMM, image (b)). DHM's QM region contained 98 atoms; which were made up from H124, E373, H434 and TDP. WMM's QM region was comprised of all the same residues as the DHM with the addition of Wat9709 (reactive water) making the total 101 atoms. Additionally, linker atoms were used the C_O-C_{α} bond (purple atoms).

Figure A.2: Plots of the initial velocities versus varying concentrations of pyruvate or G3P. Plots a and b are for wild-type DXS while plots c and d represent the H82A mutant.

Figure A.3: Graphs of initial velocities versus varying concentrations of pyruvate or G3P. Plots a and b are for the H304A mutant. Plots c and d represent the D430A mutant.

Figure A.4: Plots of the initial velocities versus varying concentrations of pyruvate or G3P. All graphs are for the H434A mutant discussed in primary manuscript.

A.2 ProPKA3.1 Results

Below will be found the ProPKA3.1 results for monomer A of DXS:

propka.ki.ku.dk/pka/2o1x.pka

propka3.1		2014-09-29
	PROPKA: A PROTEIN PKA PREDICTOR	
	VERSION 1.0, 04/25/2004, IOWA CITY	
	BY HUI LI	
	VERSION 2.0, 11/05/2007, IOWA CITY/COPENHAGEN	
	BY DELPHINE C. BAS AND DAVID M. ROGERS	
	VERSION 3.0, 01/06/2011, COPENHAGEN	
	BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD	
	VERSION 3.1, 07/01/2011, COPENHAGEN	
	BY CHRESTEN R. SONDERGARD AND MATS H.M. OLSSON	

References:

Very Fast Empirical Prediction and Rationalization of Protein pKa Values Hui Li, Andrew D. Robertson and Jan H. Jensen PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)

Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes Delphine C. Bas, David M. Rogers and Jan H. Jensen PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)

PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen Journal of Chemical Theory and Computation, 7(2):525-537 (2011)

Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values Chresten R. Sondergaard, Mats H.M. Olsson, Michal Rostkowski, and Jan H. Jensen Journal of Chemical Theory and Computation, (2011)

			DESOLVATION	EFFECTS	SIDECHAIN	BACKBONE	COULOMBIC
RESIDUE	рКа	BURIED	REGULAR	RE	HYDROGEN BOND	HYDROGEN BOND	INTERACTION

http://propka.ki.ku.dk/pka/2o1x.pka

propka.ki.ku.dk/pka/2o1x.pka

																		•
ASP 9 A ASP 9 A	3.88	0 %	0.12 1	160	0.00	0	0.00	xxx xxx	0 0	X 0 X 0	.00 .00	XXX XXX	0 0	X X	-0.05 0.01	ARG ASP	43 A 14 A	f f
ASP 14 A ASP 14 A ASP 14 A ASP 14 A	2.41	0 %	0.49 2	266	0.00	0	-0.72 -0.54 -0.32 0.00	SER THR ARG XXX	8 10 94 0	A 0 A 0 A 0 X 0	.00 .00 .00 .00	XXX XXX XXX XXX	0 0 0 0	X X X X	-0.00 -0.02 -0.02 -0.27	N+ ARG HIS ARG	5 F 43 F 17 F 94 F	7 7 7 7
ASP 21 A ASP 21 A ASP 21 A ASP 21 A	2.72	0 %	0.44 2	281	0.00	0	-0.22 0.00 0.00 0.00	ARG XXX XXX XXX	24 0 0 0	A -0 X 0 X 0 X 0 X 0	.78 .00 .00 .00	HIS XXX XXX XXX	17 0 0 0	A X X X	-0.04 -0.01 -0.28 -0.20	LYS LYS ARG HIS	20 F 23 F 24 F 17 F	7 7 7 7
ASP 60 A ASP 60 A ASP 60 A	2.08	83 %	3.05 5	513	1.08	0	-0.61 -1.58 -1.60	THR ARG HIS	34 38 262	A -0 A 0 A 0	.07 .00 .00	ASP XXX XXX	60 0 0	A X X	-0.10 -1.13 -0.77	LYS ARG HIS	291 F 38 F 262 F	7 7 7
ASP70AASP70AASP70AASP70AASP70AASP70A	4.70*	20 %	0.75 3	338	0.17	0	-0.36 0.67 0.00 0.00 0.00 0.00	ARG ASP XXX XXX XXX XXX	73 74 0 0 0 0	A -0 A 0 X 0 X 0 X 0 X 0 X 0 X 0	.03 .00 .00 .00 .00	ASP XXX XXX XXX XXX XXX	70 0 0 0 0	A X X X X X	-0.09 -0.28 -0.02 -0.08 -0.27 0.43	LYS LYS HIS HIS ARG ASP	20 F 23 F 117 F 147 F 73 F 74 F	7 7 7 7 7
ASP 74 A ASP 74 A ASP 74 A ASP 74 A	1.39*	50 %	1.78 4	422	0.40	0	-0.67 -1.60 0.00 0.00	ASP HIS XXX XXX	70 147 0 0	A -0 A -0 X 0 X 0	.78 .82 .00 .00	ASP HIS XXX XXX	70 147 0 0	A A X X	-0.07 -0.05 -0.03 -0.56	LYS ARG ARG HIS	23 F 73 F 139 F 147 F	7 7 7 7
ASP 79 A ASP 79 A ASP 79 A	4.78	100 %	4.09 6	506	0.40	0	-0.73 -0.85 0.00	SER SER XXX	128 156 0	A -0 A -0 X -0	.81 .01 .64	SER THR SER	126 127 128	A A A	-0.22 -0.24 0.00	ARG HIS XXX	401 A 82 A 0 X	ζ 7 7
ASP 95 A ASP 95 A ASP 95 A	3.85	4 %	0.26 2	292	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X 0 X 0 X 0	.00 .00 .00	XXX XXX XXX	0 0 0	X X X	-0.17 0.03 -0.06	ARG ASP HIS	94 A 14 A 17 A	ł ł ł
ASP 99 A ASP 99 A	2.75	0 %	0.31 2	243	0.00	0	-0.85 0.00	LYS XXX	102 0	A 0 X 0	.00 .00	XXX XXX	0 0	X X	-0.13 -0.38	ARG LYS	47 A 102 A	Ŧ Ŧ
ASP 118 A ASP 118 A ASP 118 A ASP 118 A	0.14	82 %	3.19 5	510	0.81	0	-1.60 -1.47 0.00 0.00	HIS ARG XXX XXX	87 93 0 0	A -0 A 0 X 0 X 0 X 0	.75 .00 .00 .00	LYS XXX XXX XXX	111 0 0 0	A X X X	-0.01 -0.08 -0.15 -1.47	LYS HIS HIS HIS	111 F 66 F 117 F 87 F	7 7 7 7

http://propka.ki.ku.dk/pka/2o1x.pka

9/29/2014

9/29/2014	4									propka.	ki.ku.dk	/pka/2o	1x.pk	ca							
ASP	118	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.99	LYS	88	А
ASP	118	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.13	ARG	93	A
ASP	140	A	2.00	5	00	0.64	295	0.06	0	-0.84	ARG	139	A	0.00	XXX	0	х	-0.25	LYS	175	А
ASP	140	А								-0.74	ARG	174	А	0.00	XXX	0	Х	-0.41	ARG	139	А
ASP	140	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.26	ARG	174	A
ASP	145	А	3.69	0	8	0.16	216	0.00	0	0.00	XXX	0	Х	-0.10	ASP	145	A	-0.04	ARG	139	А
ASP	145	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.11	LYS	175	А
ASP	145	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	74	А
ASP	145	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.08	HIS	147	А
ASP	145	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	276	A
ASP	154	А	4.87*	95	8	3.64	546	1.01	0	-0.18	ASN	183	A	-0.38	ASP	154	A	-4.07	MG	MG	А
ASP	154	А								-0.04	TDP	022	А	-0.08	GLY	155	А	-0.19	LYS	289	А
ASP	154	А								0.28	ASP	182	А	-0.23	ASN	183	А	-0.11	HIS	284	А
ASP	154	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.86	ASP	182	А
ASP	154	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.55	TDP	021	A
ASP	171	A	3.96	0	90	0.17	171	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	Х	-0.01	ARG	174	A
ASP	182	А	1.80	62	8	1.88	456	0.13	0	-0.28	ASP	154	А	-0.55	GLU	184	А	-1.03	MG	MG	А
ASP	182	A			-				-	-1.60	HIS	284	A	0.00	XXX	0	х	-0.55	HIS	284	А
																-					
ASP	260	А	3.25	18	8	0.74	332	0.02	0	0.00	XXX	0	Х	-0.82	HIS	262	А	-0.01	ARG	38	А
ASP	260	А								0.00	XXX	0	Х	-0.29	ASN	263	А	-0.06	LYS	291	А
ASP	260	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	60	А
ASP	260	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.26	HIS	262	A
ASP	276	А	3.36	3	8	0.32	290	0.01	0	-0.51	HIS	147	А	0.00	XXX	0	х	-0.02	LYS	175	А
ASP	276	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	74	А
ASP	276	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.28	HIS	147	А
ASP	278	A	3.75	0	90	0.17	212	0.00	0	0.00	XXX	0	Х	-0.02	ASP	278	A	-0.15	LYS	175	A
ASP	278	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	ARG	254	А
ASP	278	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	276	A
ASP	299	A	3.71	21	90	0.81	341	0.02	0	0.00	XXX	0	Х	-0.08	ILE	301	A	-0.04	LYS	289	A
ASP	299	A								0.00	XXX	0	Х	-0.81	TYR	302	A	0.00	XXX	0	Х
ASP	310	А	3.71	0	8	0.43	201	0.00	0	0.00	XXX	0	х	-0.10	ASP	310	A	-0.00	LYS	308	A
ASP	310	A								0.00	XXX	0	Х	-0.42	THR	313	A	0.00	XXX	0	Х
ASP	339	А	3.64	42	8	1.76	398	0.09	0	-0.84	THR	342	A	-0.74	ARG	341	A	-0.21	ARG	341	А
ASP	339	А								0.00	XXX	0	Х	-0.06	THR	342	А	-0.04	ARG	365	А
ASP	339	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	ARG	389	А

125

pro	pka.ki	.ku.dk/	pka/20	lx.pka

ASP ASP ASP	368 368 368	A A A	5.57	80	00	2.37	505	0.53	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	-0.40 -0.69 0.00	ALA GLY XXX	348 370 0	A A X	-0.19 0.05 0.11	ARG GLU GLU	350 189 351	A A A
ASP ASP	404 404	A A	4.06	0	90	0.33	254	0.00	0	0.00	XXX XXX	0 0	x x	0.00 0.00	XXX XXX	0 0	X X	-0.22 0.15	HIS ASP	408 409	A A
ASP ASP	409 409	A A	2.62	3	00	0.59	291	0.03	0	-0.85 -0.63	THR HIS	378 408	A A	0.00 0.00	XXX XXX	0 0	X X	-0.32 0.00	HIS XXX	408 0	A X
ASP ASP	422 422	A A	4.51	100	QO	3.67	576	1.07	0	-0.84 -0.62	SER ARG	325 423	A A	-0.74 0.00	ARG XXX	423 0	A X	-0.05 -1.77	ARG ARG	480 423	A A
ASP ASP ASP ASP ASP ASP ASP	430 430 430 430 430 430 430	A A A A A A	0.37	100	8	2.39	582	0.00	0	-0.85 0.00 0.00 0.00 0.00 0.00 0.00	LYS XXX XXX XXX XXX XXX XXX	101 0 0 0 0 0 0	A X X X X X X	0.00 0.00 0.00 0.00 0.00 0.00 0.00	XXX XXX XXX XXX XXX XXX XXX	0 0 0 0 0 0	X X X X X X X	-0.16 -0.32 -0.03 -0.02 -0.84 -2.03 -1.57	ARG ARG HIS HIS HIS LYS HIS	423 480 304 597 51 101 434	A A A A A A
ASP ASP	439 439	A A	5.32	100	0/0	4.06	640	0.42	0	-0.60 -0.42	SER ARG	396 477	A A	-0.03 0.00	ASP XXX	439 0	A X	0.13 -2.03	ASP ARG	561 477	A A
ASP ASP	456 456	A A	4.07	55	0/0	1.47	436	0.00	0	0.00	XXX XXX	0 0	X X	-0.22 -0.67	ALA GLU	458 459	A A	-0.27 -0.03	LYS ARG	455 536	A A
ASP ASP ASP ASP	471 471 471 471	A A A A	3.58	0	9	0.21	257	0.00	0	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 0 0 0	X X X X	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 0 0 0	X X X X	-0.08 -0.10 -0.18 -0.06	ARG ARG HIS HIS	389 450 414 470	A A A A
ASP ASP	493 493	A A	2.83	0	00	0.28	240	0.00	0	-0.85 0.00	LYS XXX	465 0	A X	0.00 0.00	XXX XXX	0 0	X X	-0.02 -0.38	HIS LYS	470 465	A A
ASP ASP	506 506	A A	3.37	0	00	0.31	230	0.00	0	0.00	XXX XXX	0 0	X X	-0.26 0.00	ASP XXX	506 0	A X	-0.20 -0.28	ARG ARG	501 552	A A
ASP ASP	507 507	A A	3.96	6	00	0.54	299	0.04	0	-0.09 0.00	ARG XXX	554 0	A X	0.00 0.00	XXX XXX	0 0	X X	-0.38 0.04	ARG ASP	554 506	A A
ASP ASP	518 518	A A	5.43	62	0/0	1.23	455	0.76	0	0.00	xxx xxx	0 0	X X	-0.00 0.00	ASP XXX	518 0	A X	-0.38 0.02	LYS ASP	515 456	A A
ASP	526 pka.ki.ł	A cu.dk/pk	3.97 xa/201x.pka	0	00	0.17	169	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.03	LYS	503	A

9/29/2014

9/29/201	4									propka.	ki.ku.dk	/pka/2o	1x.pk	a							
ASP	526	А								0.00	XXX	0	х	0.00	XXX	0	х	-0.04	LYS	522	А
ASP	526	А								0.00	XXX	0	х	0.00	XXX	0	Х	-0.11	ARG	615	А
ASP	526	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.16	GLU	525	A
ASP	542	A	4.02	34	8	1.37	377	0.28	0	0.00	XXX	0	Х	-0.81	TRP	499	А	-0.05	ARG	536	A
ASP	542	А								0.00	XXX	0	х	-0.01	GLU	544	А	0.06	GLU	544	А
ASP	542	А								0.00	XXX	0	Х	-0.62	MET	545	A	0.00	XXX	0	Х
ASP	561	A	2.66	100	8	3.52	609	0.68	0	-1.60	HIS	604	А	-0.61	ILE	426	А	-0.43	LYS	515	A
ASP	561	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.88	ARG	477	Α
ASP	561	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.82	HIS	604	A
ASP	592	A	4.02	0	00	0.22	202	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	Х	0.00	XXX	0	х
ASP	610	А	4.24	17	90	0.89	329	0.04	0	0.00	xxx	0	х	-0.03	ASP	610	A	0.01	GLU	601	A
ASP	610	A								0.00	XXX	0	Х	-0.35	ALA	613	А	-0.12	HIS	604	A
ASP	624	A	3.93	0	00	0.13	161	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	0.00	xxx	0	Х
GLU	28	A	4.41	0	00	0.26	185	0.00	0	0.00	xxx	0	х	-0.26	GLU	28	A	-0.10	ARG	27	A
GLU	35	А	4.59	0	00	0.16	277	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	-0.06	ARG	38	А
GLU	35	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.00	LYS	291	A
GLU	36	A	4.95	28	00	1.84	359	0.22	0	0.00	XXX	0	х	-0.83	LEU	12	А	-0.03	ARG	43	A
GLU	36	А								0.00	XXX	0	Х	-0.84	LEU	13	А	-0.11	ARG	94	А
GLU	36	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	9	А
GLU	36	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	14	Α
GLU	36	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	40	A
GLU	40	A	4.20	57	8	1.62	440	0.17	0	-0.54	ARG	43	А	0.00	XXX	0	Х	0.07	ASP	14	A
GLU	40	А								-0.69	ARG	94	А	0.00	XXX	0	Х	0.08	ASP	95	А
GLU	40	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.40	ARG	43	А
GLU	40	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.60	ARG	94	A
GLU	103	А	3.66	0	8	0.37	248	0.00	0	-0.85	SER	602	А	0.00	xxx	0	х	-0.33	ARG	606	А
GLU	103	A		-	-				-	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	HIS	597	A
GLU	114	A	4.03	64	80	2.45	461	0.71	0	-0.85	LYS	88	A	-0.80	SER	107	А	-0.09	LYS	111	A
GLU	114	А								-0.49	ARG	93	А	0.00	XXX	0	Х	-0.10	HIS	87	А
GLU	114	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.18	HIS	597	А
GLU	114	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.01	LYS	88	А
GLU	114	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.66	ARG	93	А
GLU	114	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.57	ASP	118	A
GLU	116	A	4.36	0	00	0.31	255	0.00	0	0.00	xxx	0	Х	0.00	xxx	0	Х	-0.07	LYS	20	A
http://pro	pka.ki.l	ku.dk/p	ka/2o1x.pka																		

9/29/201	4									propka.	ki.ku.dk	/pka/2o	1x.pl	ca							
GLU	116	А								0.00	XXX	0	х	0.00	XXX	0	Х	-0.13	ARG	73	А
GLU	116	А								0.00	XXX	0	х	0.00	XXX	0	х	-0.01	ARG	75	А
GLU	116	A								0.00	XXX	0	x	0.00	XXX	0	x	-0.25	HTS	117	A
010	110									0.00		Ũ		0.00		Ŭ		0.25	mito	117	
GLU	184	А	5.15	16	8	0.32	325	0.04	0	0.00	XXX	0	х	0.00	XXX	0	Х	-0.08	MG	MG	А
GLU	184	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	ASP	154	А
GLU	184	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.23	ASP	182	А
	100				•	0 67	260		•				-	0 61		100	-				
GLU	189	A	3./4	29	8	0.67	362	0.00	0	-0.33	ARG	350	A	-0.61	GLU	189	A	-0.03	LYS	289	A
GLU	189	A								0.00	XXX	0	х	0.00	XXX	0	Х	-0.05	ARG	360	A
GLU	189	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	299	А
GLU	189	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.43	ARG	350	А
GLU	266	A	5.09	7	00	0.43	300	0.05	0	0.00	xxx	0	х	0.00	xxx	0	Х	0.11	ASP	260	A
GLU	272	Δ	4.24	8	<u>0</u>	0.62	304	0.05	0	-0.54	ARG	27	А	0.00	xxx	0	x	-0.40	ARG	27	Δ
020	272				•	0002			•			27				•					
GLU	297	А	4.13	17	8	0.70	330	0.13	0	0.00	XXX	0	Х	-0.64	GLY	292	А	-0.10	ARG	38	А
GLU	297	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.36	LYS	291	А
GLU	297	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.10	HIS	262	А
CUI	215	n	1 73	0	9	0 12	1/2	0 00	0	0 00	vvv	0	v	0 00	vvv	0	v	0 11	VGD	310	л
GTO	313	A	4.75	0	0	0.12	142	0.00	0	0.00	ΛΛΛ	0	Λ	0.00	ΛΛΛ	0	Λ	0.11	ASP	310	A
GLU	330	А	4.67	20	8	0.90	337	0.12	0	-0.14	GLN	485	А	0.00	XXX	0	х	-0.01	LYS	337	А
GLU	330	А								-0.62	TYR	322	А	0.00	XXX	0	Х	-0.23	ARG	461	А
GLU	330	А								0.00	XXX	0	х	0.00	XXX	0	Х	0.11	GLU	334	А
GLU	330	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	GLU	357	А
CTU	221	7	2 7 2	10	Q.	0 02	216	0 0 0	0	0 66	ממח	401	7	0 5 9	CT V	100	7	0 1 2	TVC	227	7
GLU	224	A	2.75	12	6	0.92	310	0.08	0	-0.00	TRP	491	A	-0.58	GLI	409	A	-0.13	LIS	337	A
GLU	334	A								-0.91	ARG	461	А	0.00	XXX	0	х	-0.49	ARG	461	А
GLU	351	A	4.75	60	00	2.02	448	0.00	0	-0.85	SER	188	А	-0.07	GLU	351	А	-0.06	LYS	289	А
GLU	351	А								-0.33	ARG	350	А	0.00	XXX	0	Х	-0.09	ARG	360	А
GLU	351	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.24	GLU	189	А
GLU	351	А								0.00	XXX	0	х	0.00	XXX	0	х	0.04	ASP	299	А
GLU	351	А								0.00	XXX	0	х	0.00	XXX	0	Х	-0.66	ARG	350	А
			4 5 6		•	0.00	0.5.5		•			•									
GLU	357	A	4.56	0	8	0.26	275	0.00	0	0.00	XXX	0	X	0.00	XXX	0	Х	-0.11	LYS	331	A
GLU	357	A								0.00	XXX	0	х	0.00	XXX	0	Х	-0.04	ARG	360	A
GLU	357	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	HIS	362	A
GLU	373	А	8.47	100	00	3.73	588	0.84	0	0.00	xxx	0	х	-0.53	GLU	373	А	0.57	GLU	374	А
GLU	373	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.64	ARG	401	A
GUI	371	Δ	5 56	60	Q.	1 / 3	448	0 37	٥	0 00	xyy	0	y	_0 36	GLU	371	Δ	_0 37	APC	401	Δ
010	574	17	5.50	00	0	T.12	-1-10	0.37	v	0.00	ΛΛΛ	0	Λ	-0.30	010	574	п	-0.37	111/0	TOF	л

9/29/201	4									propka.l	ki.ku.dk	/pka/2o	1x.pka								
GLU	413	A	4.63	0	80	.14	179	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	-0.01	HIS	414	A
GLU	459	А	5.00	81	8 3	.11	507	0.29	0	-0.48	ASN	534	A	-0.84	LYS	455	A	0.45	ASP	456	А
GLU	459	А								-0.45	LYS	455	А	0.00	XXX	0	Х	0.10	GLU	500	А
GLU	459	А								-0.26	ARG	536	А	0.00	XXX	0	Х	-0.74	LYS	455	А
GLU	459	A								0.00	XXX	0	x	0.00	XXX	0	x	-0.67	ARG	536	A
CTC	109									0.00		Ū		0.00		Ũ		0.07	me	550	
GLU	498	А	4.82	0	8 0	.33	278	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.24	LYS	495	А
GLU	498	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	ARG	536	А
GLU	498	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.19	GLU	500	А
GLU	498	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	ASP	542	А
GLU	500	A	4.53	16	8 0	.46	325	0.12	0	0.00	XXX	0	х	0.00	xxx	0	Х	-0.18	LYS	455	А
GLU	500	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.00	LYS	495	А
GLU	500	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.43	ARG	536	А
GLU	500	А								0.00	XXX	0	Х	0.00	xxx	0	Х	0.06	ASP	542	А
GLU	525	А	3.59	0	8 0	.30	205	0.00	0	-0.73	LYS	522	А	0.00	xxx	0	х	-0.10	ARG	615	А
GLU	525	A								0.00	XXX	0	x	0.00	XXX	0	x	-0.38	LYS	522	A
GEC	525									0.00		Ū		0.00		Ũ		0.00	110	522	
GLU	543	А	4.98	14	80	.46	321	0.04	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	ARG	547	А
GLU	543	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	542	А
GLU	543	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	GLU	544	А
GLU	544	А	3.95	0	8 0	.21	189	0.00	0	-0.48	ARG	547	A	0.00	xxx	0	Х	-0.27	ARG	547	A
GLU	548	Δ	4.64	0	8 0	.17	240	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	-0.07	ARG	501	Δ
GLU	548	Α		, i		• - •	210		Ū.	0.00	XXX	0	x	0.00	XXX	0	x	-0.05	ARG	552	Α
GLU	548	Δ								0 00	XXX	0	x	0 00	XXX	0	x	0 03	ASP	506	Δ
CTU	5/8	71								0.00	vvv	0	v	0.00	vvv	0	v	0.03	ACD	5/2	71
CLU	5/8	7								0.00	VVV	0	л v	0.00	VVV	0	л v	0.04	CTIL	542	7
GTO	540	л								0.00	ллл	U	Λ	0.00	ллл	0	Λ	0.03	GTO	544	А
GLU	560	А	6.95	96	8 3	.34	550	1.19	0	-0.10	ASN	562	А	-0.76	PHE	568	А	-0.11	ARG	444	А
GLU	560	А								0.00	XXX	0	Х	-0.84	GLY	569	А	-0.31	ARG	477	А
GLU	560	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	439	А
GLU	560	А								0.00	XXX	0	Х	0.00	xxx	0	Х	0.02	ASP	561	А
GLU	574	А	3.73	8	8 0	.48	305	0.06	0	-0.82	ARG	444	А	0.00	xxx	0	х	-0.01	LYS	539	А
GLU	574	А								0.00	XXX	0	х	0.00	XXX	0	х	-0.48	ARG	444	А
												-				-					
GLU	593	А	4.70	0	80	.14	184	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.00	ARG	606	А
GLU	593	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	592	А
GLU	593	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	GLU	596	A
GLU	596	А	4.39	20	8 0	.42	337	0.02	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.37	LYS	111	A
GLU	596	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	606	А
-	-									-		-		-	-	-		. –	-	-	

129

9/29/2014							propka.l	ki.ku.dk	/pka/2o	1x.pka								
GLU 596 A							0.00	XXX	0	х	0.00	XXX	0	Х	0.01	GLU	114	А
GLU 596 A							0.00	XXX	0	х	0.00	XXX	0	Х	-0.18	HIS	597	А
GLU 601 A	4.18	19 %	0.50	334	0.00	0	0.00	XXX	0	х -	-0.45	GLU	601	А	-0.05	ARG	480	А
GLU 601 A							0.00	XXX	0	х	0.00	XXX	0	х	-0.16	LYS	515	А
GLU 601 A							0.00	XXX	0	x	0.00	XXX	0	x	-0.15	HIS	604	A
									-				-					
GLU 620 A	4.26	0 %	0.31	249	0.00	0	-0.22	ARG	586	А	0.00	XXX	0	х	-0.34	ARG	586	А
						-							-					
HIS 17 A	6.53	0 %	-0.23	253	0.00	0	0.00	xxx	0	х	0.00	XXX	0	х	-0.00	ARG	24	А
HIS 17 A						-	0.00	XXX	0	x	0.00	XXX	0	x	-0.02	ARG	94	A
HIS 17 A							0.00	XXX	0	x	0.00	XXX	0	x	0.02	ASP	14	A
HIS 17 A							0.00	XXX	0	x	0.00	XXX	0	x	0.20	ASP	21	A
HTS 17 A							0.00	XXX	0	x	0.00	XXX	0	x	0.06	ASP	95	A
110 I, II							0.00		Ŭ		0.00		Ū		0.00	1101	20	
HTS 51 A	1.06	100 %	-2.59	639	0.00	0	0.00	xxx	0	x	0.27	HTS	304	Δ	-1.49	LYS	101	Δ
HTS 51 A	1.00	100 0	2.05	005	0.00	Ū	0.00	XXX	0	x	0.00	XXX	0	x	-0.10	LYS	289	Δ
HTS 51 A							0.00	XXX	0	x	0.00	XXX	0	x	-1.11	HTS	82	Δ
HTS 51 A							0.00	XXX	0	x	0.00	XXX	0	x	-1.26	HTS	304	Δ
HIS 51 A							0 00	XXX	0	x	0 00	XXX	0	x	_0 27	HTS	434	Δ
HIG 51 A							0 00	VVV	0	v	0 00	VVV	0	v	0 28	סבוו סחיד	021	Δ
HIS 51 A							0.00	VVV	0	x x	0.00	VVV	0	x x	0.20	AGD	130	Δ
IIIS JI A							0.00	ллл	U	А	0.00	ЛЛЛ	U	Λ	0.04	ADI	400	л
HTS 66 A	1 56	100 %	-2 88	603	0 00	0	0 00	xxx	0	x	0 00	xxx	0	x	-0.26	LVS	23	Δ
HIS 66 A	1.50	100 0	2.00	005	0.00	U	0 00	VVV	0	v	0 00	VVV	0	v	_0 12	ARC	03	Δ
HIS 66 A							0.00	VVV	0	x x	0.00	VVV	0	x x	-1 3/	HIG	87	Δ
HIS 66 A							0.00	VVV	0	x x	0.00	VVV	0	x x	-0.40	нтс	117	Δ
HIS 66 A							0.00	VVV	0	x x	0.00	VVV	0	x x	0.08	ACD	118	Δ
HID OU A							0.00	ллл	U	А	0.00	ЛЛЛ	0	л	0.00	ADI	110	л
нтс 82 д	5 29	100 %	_3 20	664	0 00	0	0 56	סחיד	011	Δ	0 00	vvv	٥	v	_0 72	мс	MC	Δ
HIG 82 A	5.25	100 8	-5.20	004	0.00	U	0.30	יי עעד	021	Δ	0.00	VVV	0	x x	-0.06	LVS	101	Δ
HIG 82 A							0.00	VVV	021	x v	0.00	VVV	0	x x	_0 41	LVS	280	Δ
HIG 82 A							0.00	VVV	0	x x	0.00	VVV	0	x x	0 24	76D	70	Δ
HIS 82 A							0.00	XXX	0	x	0.00	XXX	0	x	1 56	TOP	021	Δ
IIID UZ A							0.00	ллл	U	А	0.00	ЛЛЛ	U	л	1.50	IDI	021	л
HTS 87 A	4 47	100 %	-3 14	615	0 00	0	1 60	ASP	118	Δ	0 02	нтс	117	Δ	-0 46	T.VS	88	Δ
	/	100 8	-3.14	015	0.00	U	0 00	VVV	110	v	0.02	vvv	117	v	-0.40	ADC	03	7
HIS 07 A							0.00	VVV	0	x x	0.00	VVV	0	x x	0 10	GLU	111	Δ
HIS 07 A							0.00	VVV	0	x x	0.00	VVV	0	x x	_0.38	нтс	117	Δ
HIS 07 A							0.00	VVV	0	x x	0.00	VVV	0	x x	1 17	ACD	118	Δ
IIIS O/ A							0.00	ллл	0	Λ	0.00	ллл	0	Λ	1.4/	ASL	110	А
ute 117 л	5 20	10 8	1 5/	110	0 00	0	0 00	vvv	0	v	0 31	CED	71	л	0 05	тус	20	Ā
	3.23	47 0	-1.04	413	0.00	U	0.00	AAA VVV	0	A V	0.00	VVV	, T	л v	-0.03	тто	20	л 7
							0.00	AAA VVV	0	A V	0.00	AAA VVV	0	л V	-0.04		23	л 7
							0.00	AAA VVV	0	л V	0.00	AAA VVV	0	A V	-0.09	ARG	13	A A
							0.00	AAA VVV	0	A V	0.00	AAA VVV	0	A V	-0.23	ARG	93 70	н 7
HIS II/ A							0.00	XXX	0	Λ	0.00	XXX	0	X	0.02	ASP	70	А

130

9/29/2014	1									propka.	ki.ku.dk	/pka/2o	1x.pka								
HIS	117	А								0.00	XXX	0	Х	0.00	XXX	0	х	0.25	GLU	116	А
HIS	117	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	ASP	118	А
HIS	124	А	2.62	92	% -	-2.42	540	0.00	0	0.00	XXX	0	х	0.04	THR	433	А	-0.63	ARG	401	A
HIS	124	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.86	HIS	434	А
HIS	147	А	8.30	44	% -	-1.14	404	0.00	0	1.60	ASP	74	A	0.00	XXX	0	х	-0.10	ARG	139	A
HIS	147	А								0.51	ASP	276	А	0.00	XXX	0	Х	-0.06	LYS	175	А
HIS	147	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	70	А
HIS	147	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	145	А
HIS	147	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.56	ASP	74	А
HIS	147	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.28	ASP	276	А
HIS	262	А	6.11	72	% -	-2.27	484	0.00	0	1.60	ASP	60	А	0.01	GLY	261	А	-0.61	ARG	38	A
HIS	262	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.26	LYS	291	А
HIS	262	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.26	ASP	260	А
HIS	262	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	GLU	297	А
HIS	262	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.77	ASP	60	Α
HIS	284	А	6.81	59	% -	-1.94	446	0.00	0	1.60	ASP	182	А	0.00	XXX	0	х	0.11	ASP	154	A
HIS	284	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.55	ASP	182	Α
HIS	304	А	2.33	100	% -	-2.82	619	0.00	0	0.17	TDP	021	А	0.00	XXX	0	х	-0.23	MG	MG	A
HIS	304	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	LYS	101	А
HIS	304	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.64	LYS	289	А
HIS	304	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.07	HIS	82	А
HIS	304	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	430	А
HIS	304	А								0.00	XXX	0	Х	0.00	XXX	0	Х	1.46	TDP	021	А
HIS	362	А	5.25	25	% -	-1.11	352	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.13	LYS	337	A
HIS	362	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	ARG	365	А
HIS	362	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	357	Α
HIS	364	A	6.26	0	% -	-0.15	160	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	х	-0.09	ARG	365	A
HIS	408	А	7.42	0	% -	-0.25	206	0.00	0	0.63	ASP	409	А	0.00	XXX	0	х	0.22	ASP	404	A
HIS	408	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.32	ASP	409	А
HIS	414	А	5.62	19	% -	-0.67	335	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.39	ARG	450	A
HIS	414	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	LYS	539	А
HIS	414	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	413	А
HIS	414	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	ASP	471	A
HIS	434	А	4.72	100	% -	-2.87	589	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.49	LYS	101	A
HIS	434	А								0.00	XXX	0	Х	0.00	XXX	0	Х	1.57	ASP	430	А

131

9/29/2	2014							propka.	ki.ku.dk	/pka/2o	1x.pl	ta							
HI	S 470 A	5.65	13	% -0.83	318	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	ARG	389	А
HI	S 470 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	ARG	450	А
HI	S 470 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.00	LYS	465	А
HI	S 470 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	471	А
HJ	IS 470 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	493	А
ні	S 582 A	6.30	0	% -0.20) 168	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.00	XXX	0	Х
НЭ	S 597 A	5.69	48	% -1.37	416	0.00	0	0.00	XXX	0	Х	0.49	LYS	102	А	-0.13	LYS	88	А
HI	S 597 A							0.00	XXX	0	Х	0.00	HIS	597	А	-0.12	LYS	101	А
HI	S 597 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.10	LYS	111	Α
HI	S 597 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	GLU	103	А
HI	S 597 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	GLU	114	А
HI	S 597 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	430	А
НJ	S 597 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	GLU	596	A
н	S 604 A	7.47	77	% -2.46	5 496	0.00	0	1.60	ASP	561	A	0.00	XXX	0	х	-0.00	ARG	477	A
HI	S 604 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.24	LYS	515	А
HI	S 604 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	606	А
НЗ	S 604 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	GLU	601	А
НЗ	S 604 A							0.00	XXX	0	х	0.00	XXX	0	х	0.12	ASP	610	А
НЭ	S 604 A							0.00	XXX	0	Х	0.00	XXX	0	Х	1.82	ASP	561	A
СЛ	S 45 A	12.61	100	° 3.82	2 570	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.15	ARG	47	А
СУ	S 45 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	LYS	101	А
СЛ	S 420 A	12.64	100	% 3 . 56	5 731	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.09	ASP	422	A
ጥነ	7R 67 A	10.55	16	\$ 0.83	325	0.00	0	-0.18	ARG	27	А	0.00	xxx	0	x	-0.31	ARG	27	А
 TTV	$^{\rm R}$ 67 A	10000	10		020		•	0 00	XXX	0	x	0 00	XXX	0	x	0 08	GLU	28	Δ
ТУ	2R 67 A							0.00	XXX	0	X	0.00	XXX	0	X	0.13	GLU	272	A
ጥእ	7R 85 A	13.91	100	\$ 3.30	596	0.00	0	0.00	xxx	0	x	-0.81	HTS	51	Δ	1.31	CYS	45	Δ
 TY	7R 85 A	10191	200				•	0.00	XXX	0	x	0.00	XXX	0	x	-0.18	ARG	47	Α
ТУ	R 85 A							0.00	XXX	0	X	0.00	XXX	0	X	0.21	ASP	430	A
ТУ	R 255 A	11.49	28	% 1.40) 359	0.00	0	0.00	xxx	0	х	0.00	xxx	0	х	0.09	ASP	182	A
ТУ	R 295 A	11.77	25	% 1.65	352	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	х	0.12	ASP	310	A
Тλ	R 302 A	10.96	23	8 1.44	347	0.00	0	0.00	xxx	0	х	-0.77	ALA	307	А	0.05	ASP	299	А
ΤY	2R 302 A						-	0.00	XXX	0	Х	0.00	XXX	0	Х	0.24	TYR	316	A
ТУ	R 316 A	10.47	0	¥ 0.30) 264	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.15	ASP	299	А
ТУ	R 316 A		-		-	-		0.00	XXX	0	Х	0.00	XXX	0	х	0.01	GLU	315	A

132

9/29/2014	1									propka.	ki.ku.dk	/pka/2o	1x.pka								
TYR	322	A	12.45	30	8	1.50	365	0.00	0	0.62	GLU	330	А	0.00	XXX	0	х	0.03	GLU	334	А
TYR	322	А								0.00	XXX	0	Х	0.00	XXX	0	х	-0.18	ARG	461	А
TYR	322	А								0.00	XXX	0	х	0.00	XXX	0	х	0.48	GLU	330	А
												· ·							020		
TYR	366	А	13.79	73	8	3.09	485	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.06	GLU	189	А
TYR	366	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.44	ARG	350	А
TYR	366	А								0.00	XXX	0	х	0.00	XXX	0	х	0.25	GLU	351	А
TYR	366	А								0.00	XXX	0	х	0.00	XXX	0	х	0.84	ASP	368	А
TYR	395	A	11.94	100	8	2.90	585	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-2.03	ARG	423	А
TYR	395	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.20	ASP	430	А
TYR	395	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.20	ARG	480	А
TYR	395	А								0.00	XXX	0	Х	0.00	XXX	0	Х	1.08	ASP	422	А
шVD	402	7	10 25	0	0.	0 21	276	0 00	0	0 00	vvv	0	v	0 00	vvv	0	v	0.05	م ې ۸	404	7
TIR	403	A	10.35	0	6	0.31	276	0.00	0	0.00	XXX	0	X	0.00	XXX	0	X	0.05	ASP	404	А
TYR	466	A	10.65	21	8	0.76	339	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.11	ARG	450	А
TYR	466	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	471	А
TYR	466	А								0.00	XXX	0	Х	0.00	XXX	0	х	0.01	GLU	498	А
ΨYR	466	А								0.00	xxx	0	x	0.00	xxx	0	x	-0.02	LYS	495	А
												-				-					
TYR	478	А	16.85	100	8	3.92	663	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	1.47	CYS	420	А
TYR	478	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.17	ARG	423	А
TYR	478	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	TYR	395	А
TYR	478	А								0.00	XXX	0	Х	0.00	XXX	0	Х	1.55	ASP	422	А
TYR	519	А	12.47	48	8	1.57	416	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.12	ASP	518	А
TYR	519	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.30	ASP	561	А
TYR	519	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.26	GLU	601	А
TYR	519	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.22	ASP	610	А
TVC	20	7	10 07	0	0.	0 22	200	0 00	0	0 00	vvv	0	v	0 00	vvv	0	v	0.04	7 C D	21	7
	20	A	10.07	0	6	-0.22	200	0.00	0	0.00		0	A V	0.00		0	A V	0.04	ASP	21	A
LIS	20	A								0.00	XXX	0	X	0.00	***	0	X	-0.03	ARG	Z4	A
LYS	20	A -								0.00	X X X	0	X	0.00	XXX	0	X	0.09	ASP	70	A
LYS	20	A								0.00	XXX	0	х	0.00	XXX	0	х	-0.38	ARG	73	A
LYS	20	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	GLU	116	A
LYS	23	А	9.06	49	8	-1.65	419	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.01	ASP	21	А
LYS	23	А								0.00	XXX	0	х	0.00	XXX	0	х	-0.01	ARG	24	А
LYS	23	Δ								0.00	XXX	0	x	0.00	XXX	0	x	0.28	ASP	70	Α
LVS	23	Δ								0.00	XXX	0	x	0 00	XXX	ñ	x	_0 07	ARG	, 3 7 3	Δ
T'AG	23	Δ								0 00	XXX	0	x	0 00	XXX	0	x	0 07	ACD	7/	Δ
TVG	22	Δ								0.00	VVV VVV	0	л V	0.00	XXX XXX	0	v	_0 07	LAG	20	Λ
стп	23	л								0.00	ΛΛΛ	U	л	0.00	ллл	U	л	-0.07	611	20	А
LYS	88	A	8.79	88	8	-3.57	529	0.00	0	0.85	GLU	114	А	0.00	XXX	0	Х	-0.94	ARG	93	А
LYS	88	A								0.00	XXX	0	Х	0.00	XXX	0	х	-0.02	LYS	101	А

133

11/21

http://propka.ki.ku.dk/pka/201x.pka
9/29/201	4							propka.	ki.ku.dk	/pka/2o	1x.pk	ca							
LYS	88 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	LYS	111	А
LYS	88 A							0.00	XXX	0	х	0.00	XXX	0	Х	1.01	GLU	114	А
LYS	88 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.99	ASP	118	A
LYS	101 A	10.47	100 %	-2.85	572	0.00	0	0.85	ASP	430	A	0.00	XXX	0	Х	0.06	CYS	45	А
LYS	101 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	ARG	47	А
LYS	101 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.07	ARG	480	А
LYS	101 A							0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	ASP	430	A
LYS	102 A	10.91	0 %	-0.44	258	0.00	0	0.85	ASP	99	A	0.00	xxx	0	Х	-0.38	ARG	47	А
LYS	102 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.38	ASP	99	A
LYS	111 A	10.37	25 %	-0.60	352	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	Х	0.09	GLU	114	А
LYS	111 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	118	А
LYS	111 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.37	GLU	596	A
LYS	144 A	10.30	0 %	-0.20	177	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.00	ARG	75	A
LYS	175 A	10.40	2 %	-0.31	288	0.00	0	0.00	xxx	0	Х	0.00	xxx	0	Х	-0.30	ARG	139	А
LYS	175 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.25	ASP	140	А
LYS	175 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.11	ASP	145	А
LYS	175 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	ARG	174	А
LYS	175 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	276	А
LYS	175 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	ASP	278	A
LYS	196 A	10.39	0 %	-0.11	166	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	Х	0.00	XXX	0	Х
LYS	289 A	8.34	98 %	-3.61	556	0.00	0	0.20	TDP	021	А	0.00	xxx	0	х	-1.34	MG	MG	А
LYS	289 A						-	0.00	XXX	0	x	0.00	XXX	0	х	0.19	ASP	154	А
LYS	289 A							0.00	XXX	0	x	0.00	XXX	0	x	0.03	GLU	189	A
LYS	289 A							0.00	XXX	0	x	0.00	XXX	0	x	0.04	ASP	299	A
LYS	289 A							0.00	XXX	0	x	0.00	XXX	0	x	0.06	GLU	351	Α
LVS	289 A							0 00	XXX	0	x	0 00	XXX	0	x	0 25	TUD	013	Δ
LYS	289 A							0.00	XXX	0	X	0.00	XXX	0	X	2.03	TDP	021	A
LYS	291 A	10.53	7 %	-0.30	302	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	0.00	GLU	35	А
LYS	291 A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.19	ARG	38	А
LYS	291 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	60	А
LYS	291 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	260	А
LYS	291 A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.36	GLU	297	Α
LYS	308 A	10.37	0 %	-0.13	195	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	ASP	310	A
LYS	337 A	10.47	0 %	-0.28	280	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.01	GLU	330	А
LYS	337 A		5 5		200		5	0.00	XXX	0	x	0.00	XXX	õ	x	0.13	GLU	334	A
LVS	337 A							0.00	XXX	ñ	x	0.00	XXX	0	x	0.11	GLU	357	A
	557 A							0.00	*****	5	~ >	5.00	414141	0	**	0 • I I	220	557	**

134

9/29	/2014	ļ									propka.	ki.ku.dk	/pka/2o	1x.pk	a							
L	YS	337	A								0.00	XXX	0	Х	0.00	XXX	0	х	-0.01	ARG	461	A
L	YS	455	А	10.52	41	8	-1.28	396	0.00	0	0.45	GLU	459	А	0.00	XXX	0	Х	0.27	ASP	456	А
L	YS	455	А								0.00	XXX	0	х	0.00	xxx	0	х	0.18	GLU	500	А
L	YS	455	A								0.00	XXX	0	x	0.00	XXX	0	x	-0.34	ARG	536	A
T.	YS	455	Δ								0.00	XXX	0	x	0.00	XXX	0	x	0.74	GLU	459	Α
-	10	100									0.00		Ű		0.00		Ŭ		0.,1	010	100	
L	YS	465	A	11.18	4	90	-0.55	292	0.00	0	0.85	ASP	493	A	0.00	XXX	0	Х	0.38	ASP	493	A
L	YS	495	А	10.68	0	8	-0.09	148	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.24	GLU	498	А
L	YS	495	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	GLU	500	А
L	YS	495	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	TYR	466	A
L	YS	503	A	9.86	9	8	-0.64	306	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.03	ARG	501	A
L	YS	503	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	526	A
L	YS	515	А	10.07	68	8	-1.36	471	0.00	0	0.00	xxx	0	х	0.00	XXX	0	х	-0.05	ARG	480	А
T	YS	515	A			-				-	0.00	XXX	0	x	0.00	XXX	0	x	0.38	ASP	518	A
T	YS	515	A								0.00	XXX	0	x	0.00	XXX	0	x	0.43	ASP	561	A
L	YS	515	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.16	GLU	601	A
L	YS	522	A	11.34	0	00	-0.24	201	0.00	0	0.73	GLU	525	А	0.00	XXX	0	х	0.04	ASP	526	A
L	YS	522	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	ARG	615	А
L	YS	522	Α								0.00	XXX	0	Х	0.00	XXX	0	Х	0.38	GLU	525	A
L	YS	539	A	9.22	41	8	-1.12	396	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.10	ARG	444	A
L	YS	539	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.07	ARG	450	Α
L	YS	539	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	574	A
A	RG	24	A	12.77	0	00 00	-0.22	193	0.00	0	0.22	ASP	21	A	0.00	XXX	0	х	0.28	ASP	21	A
А	RG	27	А	13.63	0	8	-0.39	282	0.00	0	0.18	TYR	67	А	0.00	XXX	0	Х	0.10	GLU	28	А
А	RG	27	А								0.54	GLU	272	А	0.00	XXX	0	х	0.31	TYR	67	А
A	RG	27	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.40	GLU	272	A
A	RG	38	A	12.94	79	00	-2.43	503	0.00	0	1.58	ASP	60	A	0.00	XXX	0	Х	0.06	GLU	35	A
А	RG	38	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	260	А
А	RG	38	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	GLU	297	А
A	RG	38	A								0.00	XXX	0	Х	0.00	XXX	0	Х	1.13	ASP	60	A
A	RG	43	А	12.70	25	00	-0.71	352	0.00	0	0.54	GLU	40	А	0.00	XXX	0	х	0.05	ASP	9	А
A	RG	43	A					. –			0.00	XXX	0	x	0.00	XXX	0	х	0.02	ASP	14	A
A	RG	43	A								0.00	XXX	0	х	0.00	XXX	0	х	0.03	GLU	36	A
A	RG	43	А								0.00	XXX	0	х	0.00	XXX	0	х	-0.13	ARG	94	А
A	RG	43	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.40	GLU	40	А

135

http://propka.ki.ku.dk/pka/2o1x.pka

9/29/20	014									propka.	ki.ku.dk	/pka/2o	1x.pka	ı							
AR	G 47	А	11.71	35	8	-1.24	378	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.15	CYS	45	А
AR	G 47	А								0.00	XXX	0	Х	0.00	XXX	0	х	0.18	TYR	85	А
AR	G 47	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	99	A
AR	G 73	A	12.97	0	8	-0.34	246	0.00	0	0.36	ASP	70	A	0.00	xxx	0	Х	0.05	ASP	74	A
AR	G 73	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	GLU	116	А
AR	G 73	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.27	ASP	70	A
AR	G 75	A	11.65	41	0jo	-0.85	395	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.01	GLU	116	A
AR	G 93	А	13.33	80	8	-2.92	506	0.00	0	0.49	GLU	114	А	0.00	XXX	0	Х	0.66	GLU	114	А
AR	G 93	A								1.47	ASP	118	А	0.00	XXX	0	Х	1.13	ASP	118	A
AR	G 94	A	13.65	31	90	-1.01	368	0.00	0	0.32	ASP	14	A	0.00	XXX	0	х	0.11	GLU	36	A
AR	G 94	А								0.69	GLU	40	А	0.00	XXX	0	Х	0.17	ASP	95	А
AR	G 94	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.27	ASP	14	А
AR	G 94	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.60	GLU	40	A
AR	G 139	A	12.42	36	8	-1.35	381	0.00	0	0.84	ASP	140	А	0.00	XXX	0	х	0.03	ASP	74	A
AR	G 139	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	145	А
AR	G 139	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	ARG	174	А
AR	G 139	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.41	ASP	140	A
AR	G 174	A	13.16	0	90	-0.35	247	0.00	0	0.74	ASP	140	А	0.00	XXX	0	х	0.01	ASP	171	A
AR	G 174	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.26	ASP	140	A
AR	G 254	A	12.00	10	olo	-0.56	309	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	278	A
AR	G 273	A	12.32	0	olo	-0.18	160	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
AR	G 341	A	12.38	0	00	-0.33	278	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	Х	0.21	ASP	339	A
AR	G 350	A	13.63	43	8	-1.26	403	0.00	0	0.33	GLU	189	А	0.00	XXX	0	х	0.44	TYR	366	A
AR	G 350	А								0.33	GLU	351	А	0.00	XXX	0	Х	0.19	ASP	368	А
AR	G 350	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.43	GLU	189	А
AR	G 350	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.66	GLU	351	A
AR	G 360	A	12.32	0	90	-0.22	225	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.05	GLU	189	A
AR	G 360	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.09	GLU	351	А
AR	G 360	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	357	А
AR	G 360	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.14	ARG	350	A
AR	G 365	A	12.24	0	00	-0.29	271	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	339	A
AR	G 389	А	11.54	23	8	-0.76	347	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	0.12	ASP	339	А
AR	G 389	А								0.00	XXX	0	х	0.00	XXX	0	Х	0.08	ASP	471	А

136

9/29/201	4								propka.	ki.ku.dk	/pka/2o	1x.pk	a							
ARG	389	A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.40	ARG	341	A
ARG	401	А	11.96	72 %	-1.77	482	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.22	ASP	79	А
ARG	401	А							0.00	XXX	0	Х	0.00	XXX	0	х	0.37	GLU	374	А
ARG	401	A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.64	GLU	373	A
ARG	423	A	14.85	93 %	-2.40	541	0.00	0	0.62	ASP	422	A	0.00	XXX	0	Х	2.03	TYR	395	A
ARG	423	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.16	ASP	430	А
ARG	423	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	TYR	478	А
ARG	423	A							0.00	XXX	0	Х	0.00	XXX	0	Х	1.77	ASP	422	A
ARG	444	А	12.71	41 %	-1.21	397	0.00	0	0.82	GLU	574	А	0.00	xxx	0	Х	0.11	GLU	560	A
ARG	444	A							0.00	XXX	0	х	0.00	XXX	0	Х	0.48	GLU	574	A
ARG	450	A	10.85	51 %	-1.86	425	0.00	0	0.00	XXX	0	х	0.00	xxx	0	Х	0.11	TYR	466	A
ARG	450	А							0.00	XXX	0	х	0.00	XXX	0	Х	0.10	ASP	471	A
ARG	461	Δ	12 72	42 %	-1 59	399	0 00	0	0 91	GLII	334	Δ	0 00	xxx	0	x	0 18	ͲVR	322	Δ
ARG	461	Δ	12.72	12 0	1.00	000	0.00	Ũ	0.00	XXX	0	x	0.00	XXX	0	x	0.23	GLU	330	Δ
APC	161	Δ							0 00	vvv	0	v	0 00	vvv	0	v	0 49	GLU	331	Δ
ARO	401	п							0.00	ллл	U	л	0.00	ΛΛΛ	U	Λ	0.45	0110	554	п
ARG	477	А	12.67	100 %	-3.47	679	0.00	0	0.42	ASP	439	А	0.00	XXX	0	Х	0.31	GLU	560	А
ARG	477	А							0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	ASP	439	А
ARG	477	А							0.00	XXX	0	х	0.00	XXX	0	Х	0.88	ASP	561	A
ARG	480	А	11.77	71 %	-0.83	481	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.20	TYR	395	А
ARG	480	А							0.00	XXX	0	х	0.00	XXX	0	х	0.05	ASP	422	А
ARG	480	А							0.00	XXX	0	х	0.00	xxx	0	х	0.32	ASP	430	А
ARG	480	А							0.00	XXX	0	х	0.00	XXX	0	х	0.05	GLU	601	А
ARG	480	A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.52	ARG	423	A
ARG	501	A	11.92	28 %	-0.84	361	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	0.20	ASP	506	A
ARG	501	А							0.00	XXX	0	Х	0.00	XXX	0	х	0.07	GLU	548	А
ARG	501	A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	552	A
ARG	536	A	12.28	53 %	-1.78	430	0.00	0	0.26	GLU	459	А	0.00	xxx	0	Х	0.03	ASP	456	A
ARG	536	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.12	GLU	498	А
ARG	536	А							0.00	XXX	0	Х	0.00	XXX	0	х	0.43	GLU	500	А
ARG	536	А							0.00	XXX	0	Х	0.00	XXX	0	х	0.05	ASP	542	А
ARG	536	A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.67	GLU	459	A
ARG	547	A	13.11	0 %	-0.27	204	0.00	0	0.48	GLU	544	А	0.00	xxx	0	Х	0.12	GLU	543	A
ARG	547	A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.27	GLU	544	A
ARG	552	A	12.72	0 %	-0.10	150	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.28	ASP	506	A
ARG	552	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	GLU	548	А

137

propka.ki.ku.dk/pka/2o1x.pka

ARG 554 A	12.63	0 %	-0.34	264	0.00	0	0.09	ASP	507	A	0.00	XXX	0	х	0.38	ASP	507	A
ARG 586 A	12.70	0 %	-0.36	281	0.00	0	0.22	GLU	620	A	0.00	XXX	0	х	0.34	GLU	620	A
ARG 606 A ARG 606 A ARG 606 A	12.40	3 %	-0.44	291	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.33 0.00 0.01	GLU GLU GLU	103 593 596	A A A
ARG 615 A ARG 615 A	12.25	0 %	-0.45	273	0.00	0	0.00	xxx xxx	0 0	X X	0.00 0.00	XXX XXX	0 0	X X	0.10 0.11	GLU ASP	525 526	A A
N+ 5 A	7.94	08	-0.07	70	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.00	ASP	14	A
TDP N1' A TDP N1' A TDP N1' A	-0.58	100 %	-3.93	581	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	-0.48 -0.78 -0.38	ARG HIS HIS	401 124 434	A A A
TDP O13 A TDP O13 A	8.30*	100 %	3.41	638	0.00	0	-0.52 0.00 0.00 0.00 0.00 0.00	SER XXX XXX XXX XXX XXX	156 0 0 0 0 0	A X X X X X	0.00 0.00 0.00 0.00 0.00 0.00	XXX XXX XXX XXX XXX XXX	0 0 0 0 0	X X X X X X X	-3.48 -0.25 0.03 0.85 0.90 1.36	MG LYS ASP ASP ASP TDP	MG 289 182 79 154 021	A A A A A
TDP O21 A	-0.86*	100 %	3.86	613	0.00	0	-0.85 -0.83 -0.20 -0.17 0.00	SER HIS LYS HIS XXX	54 82 289 304 0	A A A X	0.00 0.00 0.00 0.00 0.00	XXX XXX XXX XXX XXX	0 0 0 0	X X X X X	-3.35 -0.28 -1.56 -2.03 -1.46	MG HIS HIS LYS HIS	MG 51 82 289 304	A A A A

Coupled residues (marked *) were detected. Please rerun PropKa with the --display-coupled-residues or -d option for detailed information.

SUMMAR	RY O	F	THIS	PREDIC	TION		
	Gr	ou	ıp	рКа	model-pKa	ligand	atom-type
ASI	2	9	A	3.88	3.80		
ASI	2 1	4	A	2.41	3.80		
ASI	2	1	A	2.72	3.80		
ASI	? 6	0	A	2.08	3.80		
ASI	. 7	0	A	4.70	3.80		
ASI	. 7	4	A	1.39	3.80		
ASI	. 7	9	A	4.78	3.80		
ASI	. 9	5	A	3.85	3.80		
ASI	. 9	9	A	2.75	3.80		
ASI	2 11	8	A	0.14	3.80		

http://propka.ki.ku.dk/pka/201x.pka

138

0/20/2014	
9/29/2014	

1	ASP	140	A	2.00	3.80
1	ASP	145	А	3.69	3.80
1	ASP	154	А	4.87	3.80
1	ASP	171	А	3.96	3.80
1	ASP	182	А	1.80	3.80
1	ASP	260	А	3.25	3.80
1	ASP	276	A	3.36	3.80
1	ASP	278	A	3.75	3.80
1	ASP	299	А	3.71	3.80
1	ASP	310	А	3.71	3.80
1	ASP	339	A	3.64	3.80
1	ASP	368	A	5.57	3.80
1	ASP	404	A	4.06	3.80
1	ASP	409	А	2.62	3.80
1	ASP	422	A	4.51	3.80
1	ASP	430	A	0.37	3.80
1	ASP	439	A	5.32	3.80
1	ASP	456	A	4.07	3.80
1	ASP	471	A	3.58	3.80
1	ASP	493	A	2.83	3.80
1	ASP	506	A	3.37	3.80
1	ASP	507	А	3.96	3.80
1	ASP	518	A	5.43	3.80
1	ASP	526	A	3.97	3.80
1	ASP	542	A	4.02	3.80
1	ASP	561	A	2.66	3.80
1	ASP	592	A	4.02	3.80
1	ASP	610	A	4.24	3.80
1	ASP	624	A	3.93	3.80
(GLU	28	A	4.41	4.50
(GLU	35	A	4.59	4.50
(GLU	36	A	4.95	4.50
(GLU	40	A	4.20	4.50
(GLU	103	A	3.66	4.50
(GLU	114	A	4.03	4.50
(GLU	116	A	4.36	4.50
(GLU	184	A	5.15	4.50
(GLU	189	A	3.74	4.50
(GLU	266	A	5.09	4.50
(GLU	272	A	4.24	4.50
(GLU	297	A	4.13	4.50
(GLU	315	A	4.73	4.50
(GLU	330	A	4.67	4.50
(GLU	334	A	2.73	4.50
(GLU	351	А	4.75	4.50
(GLU	357	A	4.56	4.50

9/29/2014
712712017

GLU 373 A 8.47 4.50 GLU 374 A 5.56 4.50 GLU 413 A 4.63 4.50 GLU 459 A 5.00 4.50 GLU 498 A 4.82 4.50 GLU 500 A 4.53 4.50 GLU 525 A 3.59 4.50 GLU 543 A 4.98 4.50 GLU 544 A 3.95 4.50 GLU 548 A 4.64 4.50 GLU 560 A 6.95 4.50 GLU 574 A 3.73 4.50 GLU 593 A 4.70 4.50 GLU 596 A 4.39 4.50 GLU 601 A 4.18 4.50 GLU 620 A 4.26 4.50 17 A 6.53 6.50 HIS HIS 51 A 1.06 6.50 HIS 66 A 1.56 6.50 HIS 82 A 5.29 6.50 HIS 87 A 4.47 6.50 HIS 117 A 5.29 6.50 HIS 124 A 2.62 6.50 HIS 147 A 6.50 8.30 HIS 262 A 6.11 6.50 HIS 284 A 6.81 6.50 HIS 304 A 2.33 6.50 HIS 362 A 5.25 6.50 HIS 364 A 6.26 6.50 HIS 408 A 7.42 6.50 HIS 414 A 5.62 6.50 HIS 434 A 4.72 6.50 HIS 470 A 5.65 6.50 HIS 582 A 6.50 6.30 HIS 597 A 5.69 6.50 HIS 604 A 7.47 6.50 CYS 45 A 12.61 9.00 CYS 420 A 12.64 9.00 TYR 67 A 10.55 10.00 TYR 85 A 10.00 13.91 TYR 255 A 11.49 10.00 TYR 295 A 11.77 10.00 TYR 302 A 10.96 10.00 TYR 316 A 10.47 10.00 TYR 322 A 10.00 12.45 TYR 366 A 10.00 13.79

http://propka.ki.ku.dk/pka/2o1x.pka

propka.ki.ku.dk/pka/2o1x.pka

TYR	395	А	11.94	10.00
TYR	403	А	10.35	10.00
TYR	466	А	10.65	10.00
TYR	478	А	16.85	10.00
TYR	519	А	12.47	10.00
LYS	20	А	10.07	10.50
LYS	23	А	9.06	10.50
LYS	88	А	8.79	10.50
LYS	101	А	10.47	10.50
LYS	102	А	10.91	10.50
LYS	111	А	10.37	10.50
LYS	144	А	10.30	10.50
LYS	175	А	10.40	10.50
LYS	196	А	10.39	10.50
LYS	289	А	8.34	10.50
LYS	291	А	10.53	10.50
LYS	308	А	10.37	10.50
LYS	337	А	10.47	10.50
LYS	455	А	10.52	10.50
LYS	465	А	11.18	10.50
LYS	495	А	10.68	10.50
LYS	503	А	9.86	10.50
LYS	515	А	10.07	10.50
LYS	522	А	11.34	10.50
LYS	539	А	9.22	10.50
ARG	24	А	12.77	12.50
ARG	27	А	13.63	12.50
ARG	38	А	12.94	12.50
ARG	43	А	12.70	12.50
ARG	47	А	11.71	12.50
ARG	73	А	12.97	12.50
ARG	75	А	11.65	12.50
ARG	93	А	13.33	12.50
ARG	94	А	13.65	12.50
ARG	139	А	12.42	12.50
ARG	174	А	13.16	12.50
ARG	254	А	12.00	12.50
ARG	273	А	12.32	12.50
ARG	341	А	12.38	12.50
ARG	350	А	13.63	12.50
ARG	360	А	12.32	12.50
ARG	365	А	12.24	12.50
ARG	389	Α	11.54	12.50
ARG	401	Α	11.96	12.50
ARG	423	А	14.85	12.50
ARG	444	А	12.71	12.50

9/	29	/20	11

29/2014					propka.ki.ku.dk/pka/2o1x.pka	
ARG	450 A	10.85	12.50			
ARG	461 A	12.72	12.50			
ARG	477 A	12.67	12.50			
ARG	480 A	11.77	12.50			
ARG	501 A	11.92	12.50			
ARG	536 A	12.28	12.50			
ARG	547 A	13.11	12.50			
ARG	552 A	12.72	12.50			
ARG	554 A	12.63	12.50			
ARG	586 A	12.70	12.50			
ARG	606 A	12.40	12.50			
ARG	615 A	12.25	12.50			
N+	5 A	7.94	8.00			
TDP	N1' A	-0.58	5.00	NAR		
TDP	013 A	8.30	6.00	OP		
TDP	021 A	-0.86	6.00	OP		
 Free ei	nergy of	f folding	(kcal/mol) as	a function of	pH (using neutral reference)	
 Free en 0.00	nergy of 121	f folding	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00	nergy of 121 114	f folding .58 .56	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00	nergy of 121. 114. 102.	f folding .58 .56 .32	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00 3.00	nergy of 121 114 102 82	f folding 58 56 32 92	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00 3.00 4.00	nergy of 121 114 102 82 63	f folding 58 56 32 92	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00 3.00 4.00 5.00	nergy of 121 114 102 82 63 54	f folding 58 56 32 92 15 15	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00 3.00 4.00 5.00 6.00	nergy of 121 114 102 82 63 54 47	f folding 58 56 32 92 15 15 75	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00	nergy of 121 114 102 82 63 54 47 46	f folding 58 56 32 92 15 15 75 01	(kcal/mol) as	a function of	pH (using neutral reference)	
Free en 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	nergy of 121 114 102 82 63 54 47 46 50	f folding 58 56 32 92 15 15 15 .75 .01	(kcal/mol) as	a function of	pH (using neutral reference)	
Free er 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	nergy of 121 114 102 63 54 47 46 50 50 52	f folding 58 56 32 92 15 15 57 01 01 49	(kcal/mol) as	a function of	pH (using neutral reference)	
Free er 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00	nergy of 121 114 102 82 63 54 47 46 50 52 55	folding 58 56 32 92 15 15 75 01 01 49 52	(kcal/mol) as	a function of	pH (using neutral reference)	
Free er 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	nergy of 121 114 102 82 63 54 47 46 50 52 55 64	folding 58 56 32 92 15 15 75 01 01 49 52 72	(kcal/mol) as	a function of	pH (using neutral reference)	
Free er 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00	nergy of 121 114 102 82 63 54 47 46 50 52 55 64 74	folding 58 56 32 92 15 15 15 01 01 49 52 .72	(kcal/mol) as	a function of	pH (using neutral reference)	
Free er 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00	nergy of 121. 114. 102. 82. 63. 54. 47. 46. 50. 52. 55. 64. 74. 82.	folding 58 56 32 92 15 15 15 01 01 49 52 72 13 54	(kcal/mol) as	a function of	pH (using neutral reference)	

The pH of optimum stability is ~6.7 for which the free energy is ~45.5 kcal/mol at 298K Could not determine pH values where the free energy is within 80 % of minimum Could not determine the pH-range where the free energy is negative

Protein charge of folded and unfolded state as a function of pH

рН	unfolded	folded
0.00	75.99	72.32
1.00	75.93	69.11
2.00	75.28	63.76
3.00	69.62	53.32
4.00	43.87	33.19

http://propka.ki.ku.dk/pka/201x.pka

9/29/2014

propka.ki.ku.dk/pka/2o1x.pka

5.00		12.26	5 7.93			
6.00		-3.38	3 -7.79			
7.00		-16.81	1 -14.82			
8.00		-22.21	1 -19.43			
9.00		-25.65	5 -24.47			
10.00		-36.21	1 -31.88			
11.00		-53.00	-44.94			
12.00		-65.18	3 -59.50			
13.00		-83.00	-76.21			
14.00		-89.98	8 -86.04			
The pI	is	6.00	(folded)	and	6.00	(unfolded)

http://propka.ki.ku.dk/pka/2o1x.pka

Below will be found the ProPKA3.1 results for monomer B of DXS:

propka.ki.ku.dk/pka/2o1x.pka

propka3.1		2014-09-29
	PROPKA: A PROTEIN PKA PREDICTOR	
	VERSION 1.0, 04/25/2004, IOWA CITY	
	BY HUI LI	
	VERSION 2.0, 11/05/2007, IOWA CITY/COPENHAGEN	
	BY DELPHINE C. BAS AND DAVID M. ROGERS	
	VERSION 3.0, 01/06/2011, COPENHAGEN	
	BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD	
	VERSION 3.1, 07/01/2011, COPENHAGEN	
	BY CHRESTEN R. SONDERGARD AND MATS H.M. OLSSON	

References:

Very Fast Empirical Prediction and Rationalization of Protein pKa Values Hui Li, Andrew D. Robertson and Jan H. Jensen PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)

Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes Delphine C. Bas, David M. Rogers and Jan H. Jensen PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)

PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen Journal of Chemical Theory and Computation, 7(2):525-537 (2011)

Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values Chresten R. Sondergaard, Mats H.M. Olsson, Michal Rostkowski, and Jan H. Jensen Journal of Chemical Theory and Computation, (2011)

			DESOLVATION	EFFECTS	SIDECHAIN	BACKBONE	COULOMBIC
RESIDUE	рКа	BURIED	REGULAR	RE	HYDROGEN BOND	HYDROGEN BOND	INTERACTION

http://propka.ki.ku.dk/pka/2o1x.pka

9/29/2014

9/29/2014

propka.ki.ku.dk/pka/2o1x.pka

ASP	9	в	3.68	0	8	0.15	186	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	-0.11	N+	8	в
AGD	Q	B								0 00	vvv	0	v	0 00	vvv	0	v	_0 19	APC	13	B
ACD	ó	D D								0.00	vvv	0	v	0.00	vvv	0	v	0.01	ADC	91	D D
AGE	9	D D								0.00		0	A V	0.00		0	л v	-0.01	ANG	14	D
ASP	9	в								0.00	XXX	0	X	0.00	XXX	0	X	0.02	ASP	14	в
ASP	9	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.02	GLU	40	В
ASP	14	в	1.43	0	8	0.47	244	0.00	0	-0.80	SER	8	в	0.00	xxx	0	x	-0.14	N+	8	в
ASP	14	B								-0.77	THR	10	B	0.00	XXX	0	x	-0.01	ARG	43	B
ACD	11	Ð								0 81	ADC	01	D	0 00	vvv	ů 0	v	0.02	UTC	17	D
ACD	11	D D								-0.01		24	v	0.00	VVV	0	v	-0.02	ADC	1/	л П
ASP	14	Б								0.00	ллл	0	Λ	0.00	ллл	0	Λ	-0.20	ARG	94	Б
ASP	21	в	2.19	0	8	0.48	275	0.00	0	-0.68	ARG	24	в	-0.77	HIS	17	в	-0.08	LYS	20	в
ASP	21	В								0.00	XXX	0	Х	-0.01	GLY	18	В	-0.23	HIS	17	В
ASP	21	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.33	ARG	24	в
ASP	60	В	2.17	85	8	3.16	519	1.16	0	-0.50	THR	34	В	-0.15	ASP	60	В	-0.13	LYS	291	В
ASP	60	в								-1.62	ARG	38	В	0.00	XXX	0	Х	-1.17	ARG	38	В
ASP	60	в								-1.60	HIS	262	в	0.00	xxx	0	х	-0.79	HIS	262	в
		_											_			-					_
ASP	70	в	3.34	8	8	0.59	304	0.07	0	-0.81	ARG	73	В	0.00	XXX	0	Х	-0.05	LYS	20	в
ASP	70	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.21	LYS	23	в
ASP	70	в								0.00	xxx	0	х	0.00	xxx	0	х	0.33	ASP	74	в
AGD	70	B								0 00	vvv	0	v	0 00	vvv	0	v	_0_01	нтс	117	B
AGE	70	D D								0.00	AAA VVV	0	A V	0.00		0	л v	-0.01	UTC	147	D D
ASP	70	в								0.00		0	л 	0.00		0	л 	-0.04	HIS	147	Б
ASP	70	в								0.00	XXX	0	х	0.00	XXX	0	х	-0.32	ARG	/3	в
ASP	74	в	2.18	53	8	1.80	429	0.42	0	-1.60	HIS	147	в	-0.77	ASP	70	в	-0.13	LYS	23	в
ASP	74	в								0.00	XXX	0	х	-0.73	HIS	147	в	-0.05	ARG	73	в
ASP	74	B								0 00	XXX	0	x	0 00	XXX		x	_0_00	ARG	139	B
ACD	74	D D								0.00	vvv	0	v	0.00	vvv	0	v	0.55	UTC	1/7	D D
ASE	/4	Б								0.00	ллл	U	Λ	0.00	ллл	U	Λ	-0.55	1115	14/	Б
ASP	79	в	4.72	100	8	3.96	616	0.37	0	-0.69	SER	128	в	-0.82	SER	126	в	-0.25	ARG	401	В
ASP	79	в								-0.73	SER	156	В	-0.03	THR	127	В	-0.21	HIS	82	В
ASP	79	в								0.00	XXX	0	Х	-0.67	SER	128	в	0.00	XXX	0	Х
												_									
ASP	95	В	3.93	0	8	0.21	274	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	ARG	94	в
ASP	95	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	14	В
ASP	95	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	HIS	17	В
ASP	95	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	GLU	40	В
100	0.0	п	2 04	^	0.	0.20	226	0 00	0	0 60	TVC	100	ъ	0 00	~~~	0	v	0 10	ADC.	47	п
ASP	99	в	2.94	0	8	0.30	230	0.00	U	-0.09	LIS	102	ы	0.00	XXX	0	X	-0.10	ARG	4/	в
ASP	99	в								0.00	XXX	0	х	0.00	XXX	0	х	-0.37	LIS	102	в
ASP	118	в	0.13	81	00	3.24	507	0.81	0	-1.60	HIS	87	В	-0.83	LYS	111	в	-0.01	LYS	111	в
http://pro	pka.ki.k	u.dk/p	ka/2o1x.pka																		
		1	-																		

9/29/2014	4									propka.	ki.ku.dk	/pka/2o	1x.pk	ta							
ASP	118	в								-1.59	ARG	93	в	0.00	XXX	0	х	-0.07	HIS	66	в
ASP	118	в								0.00	XXX	0	х	0.00	XXX	0	х	-0.15	HIS	117	в
ASP	118	в								0.00	XXX	0	х	0.00	XXX	0	х	-1.43	HIS	87	в
ASP	118	в								0.00	XXX	0	x	0.00	XXX	0	x	-0.96	LYS	88	В
ASP	118	В								0.00	XXX	0	X	0.00	XXX	0	X	-1.09	ARG	93	В
ASP	140	в	2.50	3	00	0.64	290	0.04	0	-0.55	ARG	139	в	0.00	XXX	0	х	-0.17	LYS	175	в
ASP	140	В								-0.54	ARG	174	В	0.00	XXX	0	Х	-0.44	ARG	139	В
ASP	140	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.27	ARG	174	В
ASP	145	В	3.72	0	00	0.21	247	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.09	ARG	139	в
ASP	145	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.16	LYS	175	В
ASP	145	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	74	в
ASP	145	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	140	В
ASP	145	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.13	HIS	147	В
ASP	154	В	5.46*	100	00	4.05	577	1.25	0	0.00	XXX	0	Х	-0.28	ASP	154	В	-4.07	MG	MG	В
ASP	154	В								0.00	XXX	0	Х	-0.09	GLY	155	В	-0.40	LYS	289	В
ASP	154	В								0.00	XXX	0	Х	-0.64	ASN	183	В	0.13	GLU	184	В
ASP	154	В								0.00	XXX	0	Х	-0.01	GLU	184	в	-0.08	HIS	284	В
ASP	154	В								0.00	XXX	0	Х	-0.06	MET	185	в	0.94	ASP	182	в
ASP	154	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.91	TDP	021	В
ASP	171	В	3.95	0	90	0.15	163	0.00	0	0.00	xxx	0	Х	0.00	xxx	0	Х	0.00	XXX	0	Х
ASP	182	в	2.62	69	8	2.61	475	0.12	0	-1.60	HIS	284	в	-0.67	GLU	184	в	-1.08	MG	MG	в
ASP	182	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.56	HIS	284	В
ASP	260	в	3.44	15	8	0.61	324	0.02	0	0.00	XXX	0	Х	-0.74	HIS	262	В	-0.11	LYS	291	В
ASP	260	в								0.00	XXX	0	х	-0.01	ASN	263	в	0.11	ASP	60	в
ASP	260	В								0.00	XXX	0	Х	0.00	XXX	0	X	-0.24	HIS	262	В
ASP	276	В	3.91	0	olo	0.28	276	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	LYS	175	В
ASP	276	В								0.00	XXX	0	х	0.00	XXX	0	х	-0.01	ARG	273	в
ASP	276	в								0.00	XXX	0	х	0.00	XXX	0	х	0.02	ASP	145	в
ASP	276	В								0.00	XXX	0	х	0.00	XXX	0	х	-0.20	HIS	147	В
ASP	276	В								0.00	XXX	0	x	0.00	XXX	0	x	0.02	GLU	272	В
ASP	276	В								0.00	XXX	0	X	0.00	XXX	0	Х	0.01	ASP	278	В
ASP	278	в	3.67	0	00	0.16	200	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.22	LYS	175	в
ASP	278	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.07	ARG	254	В
ASP	299	в	3.78	21	00	0.83	340	0.03	0	0.00	XXX	0	Х	-0.09	ILE	301	в	0.00	XXX	0	х
ASP	299	В								0.00	XXX	0	Х	-0.79	TYR	302	В	0.00	XXX	0	Х
ASP	310	В	3.34	0	80	0.39	201	0.00	0	-0.14	THR	313	В	-0.65	ALA	312	В	0.00	xxx	0	Х
http://pro	pka.ki.k	cu.dk/pł	ka/2o1x.pka																		

9/29/201	4									propka.	ki.ku.dk	/pka/2o	1x.pl	ka							
ASP	310	В								0.00	XXX	0	Х	-0.06	THR	313	В	0.00	XXX	0	Х
ASP	339	в	3.08	40	8	1.46	393	0.07	0	-0.46	TRP	335	В	-0.58	ARG	341	в	-0.22	ARG	341	в
ASP	339	в								-0.69	THR	342	в	0.00	xxx	0	х	-0.17	ARG	365	в
ASP	339	В								0.00	XXX	0	x	0.00	XXX	0	х	-0.13	ARG	389	В
ASP	368	в	5.38	82	8	2.39	512	0.45	0	0.00	XXX	0	х	-0.32	ALA	348	в	-0.21	ARG	350	в
ASP	368	В								0.00	XXX	0	Х	-0.80	GLY	370	В	0.06	GLU	189	В
ASP	404	В	4.07	0	8	0.33	254	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.21	HIS	408	в
ASP	404	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	ASP	409	В
ASP	409	в	2.72	2	80	0.55	287	0.01	0	-0.65	THR	378	в	0.00	XXX	0	х	-0.32	HIS	408	в
ASP	409	В								-0.68	HIS	408	В	0.00	XXX	0	Х	0.00	XXX	0	Х
ASP	422	в	4.89	100	8	3.67	576	1.05	0	-0.79	SER	325	В	-0.61	ARG	423	В	-0.01	ARG	480	В
ASP	422	В								-0.52	ARG	423	В	0.00	XXX	0	х	-1.70	ARG	423	В
ASP	430	в	0.22	100	8	2.30	575	0.00	0	-0.85	LYS	101	в	0.00	XXX	0	х	-0.18	ARG	423	в
ASP	430	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.38	ARG	480	В
ASP	430	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	HIS	304	в
ASP	430	в								0.00	XXX	0	х	0.00	XXX	0	х	-0.01	HIS	597	в
ASP	430	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.77	HIS	51	в
ASP	430	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-2.03	LYS	101	в
ASP	430	В								0.00	XXX	0	Х	0.00	XXX	0	х	-1.61	HIS	434	В
ASP	439	в	4.77	100	8	3.84	645	0.42	0	-0.85	SER	396	в	0.00	xxx	0	x	0.11	ASP	561	в
ASP	439	В			-				-	-0.52	ARG	477	В	0.00	XXX	0	х	-2.03	ARG	477	В
ASP	456	в	4.44	56	00	1.74	438	0.00	0	0.00	xxx	0	х	-0.00	ASP	456	В	-0.35	LYS	455	В
ASP	456	в								0.00	XXX	0	Х	-0.00	ALA	458	В	-0.04	ARG	536	В
ASP	456	В								0.00	XXX	0	Х	-0.79	GLU	459	в	0.09	GLU	500	В
ASP	471	в	3.61	0	8	0.20	260	0.00	0	0.00	XXX	0	х	0.00	xxx	0	х	-0.01	ARG	341	в
ASP	471	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.18	ARG	389	В
ASP	471	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	ARG	450	В
ASP	471	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.10	HIS	414	в
ASP	471	В								0.00	XXX	0	Х	0.00	XXX	0	х	-0.06	HIS	470	В
ASP	493	в	3.31	0	00	0.25	231	0.00	0	-0.34	LYS	465	В	0.00	xxx	0	Х	-0.03	LYS	495	в
ASP	493	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	HIS	470	В
ASP	493	В								0.00	XXX	0	х	0.00	XXX	0	х	-0.35	LYS	465	в
ASP	506	в	3.61	0	00	0.24	235	0.00	0	0.00	XXX	0	х	-0.11	ASP	506	в	-0.18	ARG	501	в
ASP	506	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.18	ARG	552	в
ASP	506	в								0.00	XXX	0	Х	0.00	XXX	0	х	0.04	ASP	507	в

148

4/21

http://propka.ki.ku.dk/pka/2o1x.pka

propka.ki.ku.dk/pka/2o1x.pka

ASP 507 B	3.21	3 %	0.48	291	0.02	0	-0.71	ARG	554	В	0.00	xxx	0	х	-0.38	ARG	554	В
ASP 518 B ASP 518 B	4.66	53 %	0.89	429	0.36	0	0.00 0.00	XXX XXX	0 0	X X	0.00	XXX XXX	0 0	X X	-0.34 -0.06	LYS LYS	515 522	B B
ASP 526 B ASP 526 B	3.84	0 %	0.15	171	0.00	0	0.00 0.00	XXX XXX	0 0	X X	0.00	XXX XXX	0 0	X X	-0.03 -0.07	LYS ARG	503 615	B B
ASP 542 B ASP 542 B	4.13	35 %	1.53	380	0.31	0	0.00 0.00	XXX XXX	0 0	X X	-0.80 -0.64	TRP MET	499 545	B B	-0.06 0.00	ARG XXX	536 0	B X
ASP 561 B ASP 561 B ASP 561 B	4.23	100 %	3.39	621	0.87	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	-0.68 0.00 0.00	ILE XXX XXX	426 0 0	B X X	-0.28 -0.95 -1.92	LYS ARG HIS	515 477 604	B B B
ASP 592 B	4.04	0 %	0.24	208	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.00	xxx	0	х
ASP 610 B ASP 610 B	4.13	19 %	0.96	335	0.04	0	0.00 0.00	XXX XXX	0 0	X X	-0.03 -0.54	ASP ALA	610 613	B B	-0.10 0.00	HIS XXX	604 0	B X
ASP 624 B ASP 624 B	3.93	0 %	0.13	171	0.00	0	0.00 0.00	XXX XXX	0 0	X X	0.00	XXX XXX	0 0	X X	-0.01 0.01	ARG ASP	554 507	B B
GLU 28 B	4.26	0 %	0.28	194	0.00	0	0.00	XXX	0	Х	-0.42	GLU	28	в	-0.10	ARG	27	В
GLU 35 B GLU 35 B GLU 35 B	4.72	20 %	0.37	338	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	-0.19 -0.01 0.04	ARG LYS ASP	38 291 60	B B B
GLU 36 B GLU 36 B	4.72	21 %	1.47	339	0.17	0	0.00 0.00 0.00 0.00 0.00 0.00	XXX XXX XXX XXX XXX XXX	0 0 0 0 0	X X X X X X	-0.63 -0.82 0.00 0.00 0.00 0.00	LEU LEU XXX XXX XXX XXX	12 13 0 0 0 0	B X X X X X	-0.06 -0.02 -0.10 0.04 0.13 0.04	N+ ARG ARG ASP ASP GLU	8 43 94 9 14 40	B B B B B
GLU 40 B GLU 40 B GLU 40 B	3.24	46 %	1.47	409	0.11	0	-0.46 -1.59 0.00	ARG ARG XXX	43 94 0	B B X	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.08 -0.35 -0.52	ASP ARG ARG	14 43 94	B B B
GLU 103 B GLU 103 B	4.02	0 %	0.34	244	0.00	0	-0.45 0.00	SER XXX	602 0	B X	0.00	xxx xxx	0 0	X X	-0.35 -0.03	ARG HIS	606 597	B B
GLU 114 B GLU 114 B	3.93	64 %	2.45	461	0.66	0	-0.65 -0.74	LYS ARG	88 93	B B	-0.80 0.00	SER XXX	107 0	B X	-0.07 -0.11	LYS HIS	111 87	B B

5/21

http://propka.ki.ku.dk/pka/201x.pka

9/29/2014

9/29/2014							propka.	ki.ku.dk	/pka/2o	1x.pk	a							
GLU 114 B							0.00	XXX	0	х	0.00	XXX	0	Х	-0.16	HIS	597	В
GLU 114 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-1.03	LYS	88	в
GLU 114 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.72	ARG	93	В
GLU 114 B							0.00	XXX	0	х	0.00	XXX	0	Х	0.59	ASP	118	в
GLU 116 B	4.37	0 %	0.20	233	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	-0.05	LYS	20	В
GLU 116 B							0.00	XXX	0	х	0.00	XXX	0	х	-0.11	ARG	73	в
GLU 116 B							0.00	XXX	0	х	0.00	XXX	0	Х	-0.01	ARG	75	в
GLU 116 B							0.00	XXX	0	Х	0.00	XXX	0	х	-0.17	HIS	117	в
GLU 184 B	5.09	15 %	0.32	324	0.04	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	MG	MG	В
GLU 184 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	199	в
GLU 184 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.29	ASP	182	в
GLU 184 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	GLU	189	в
GLU 184 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	HIS	284	В
GLU 189 B	5.03	25 %	0.42	350	0.31	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.20	ARG	350	В
GLU 266 B	5 63	18 %	0 78	333	0 14	0	0 00	vvv	0	v	0 00	vvv	0	v	0 22	AGD	260	в
GT0 700 P	5.05	10 8	0.70	555	0.14	0	0.00	ллл	0	л	0.00	ллл	U	л	0.22	ADI	200	D
GLU 272 B	3.65	7 %	0.62	300	0.05	0	-0.30	ARG	27	в	0.00	XXX	0	х	-0.39	ARG	27	в
GLU 272 B							-0.57	ARG	273	в	0.00	XXX	0	Х	-0.24	ARG	273	В
GLU 297 B	3.97	10 %	0.47	308	0.06	0	-0.15	LYS	291	В	-0.42	GLY	292	В	-0.05	ARG	38	В
GLU 297 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.35	LYS	291	В
GLU 297 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.09	HIS	262	В
																		_
GLU 315 B	4.70	0 %	0.14	142	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.06	ASP	310	В
CT.II 330 B	1 30	20 %	0 82	337	0 1 1	0	_0 38	GT.N	185	в	0 00	vvv	0	v	_0 00	LVS	337	в
GLU 330 B	4.55	20 0	0.02	557	0.11	0	_0 61	TVD	322	B	0.00	VVV	0 0	v	-0.16	APC	161	в
GTO 220 B							-0.01	VVV	522	v	0.00	NNN VVV	0	л v	-0.10	CTU	221	Б
GT0 220 P							0.00	ллл	0	Λ	0.00	ΛΛΛ	0	Λ	0.12	GTO	554	Б
GLU 334 B	3.20	17 %	0.92	328	0.13	0	-0.37	TRP	491	в	-0.76	GLY	489	в	-0.13	LYS	337	в
GLU 334 B							-0.60	ARG	461	в	0.00	XXX	0	Х	-0.50	ARG	461	в
GLU 351 B	5.63	55 %	1.78	434	0.00	0	-0.09	ARG	350	в	0.00	XXX	0	Х	-0.10	ARG	360	В
GLU 351 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	GLU	189	в
GLU 351 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	ASP	299	в
GLU 351 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	ASP	368	в
GLU 351 B							0.00	XXX	0	Х	0.00	XXX	0	х	-0.63	ARG	350	В
GLU 357 B	4.58	0 %	0.25	261	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.13	LYS	337	В
GLU 357 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	ARG	360	В
GLU 357 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	GLU	330	В
GLU 357 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	HIS	362	В

propka.ki.ku.dk/pka/2o1x.pka

GLU GLU	373 373	B B	7.98	100	00	3.55	587	0.83	0	0.00	XXX XXX	0 0	x -0 x 0	.74	GLU XXX	373 0	В Х	0.51 -0.67	GLU ARG	374 401	B B
GLU	374	в	5.25	57	00	1.27	440	0.34	0	0.00	xxx	0	x -0	.49	GLU	374	в	-0.36	ARG	401	в
GLU	413	В	4.64	0	QQ	0.14	177	0.00	0	0.00	XXX	0	x 0	.00	xxx	0	х	-0.01	HIS	414	В
GLU	459	В	5.19	79	90	3.13	503	0.24	0	-0.82	ASN	534	в –0	.76	LYS	455	в	0.46	ASP	456	в
GLU	459	в								-0.61	ARG	536	в 0	.00	xxx	0	х	0.35	GLU	500	в
GLU	459	B								0.00	XXX	0	x 0	.00	XXX	0	x	-0.51	LYS	455	B
GLU	459	B								0.00	XXX	0	X 0	.00	XXX	0	X	-0.78	ARG	536	В
GLU	498	В	4.73	0	8	0.41	278	0.00	0	0.00	XXX	0	X 0	.00	XXX	0	Х	-0.23	LYS	495	в
GLU	498	В								0.00	XXX	0	X 0	.00	XXX	0	Х	-0.12	ARG	536	в
GLU	498	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.17	ASP	542	В
GLU	500	в	3.59	25	8	0.70	350	0.09	0	-0.85	LYS	455	в 0	.00	xxx	0	x	-0.35	ARG	536	в
GLU	500	В			-				-	0.00	XXX	0	X 0	.00	XXX	0	Х	-0.49	LYS	455	В
GLU	525	В	4.56	0	8	0.21	213	0.00	0	0.00	XXX	0	x 0	.00	XXX	0	Х	-0.04	LYS	503	в
GLU	525	В								0.00	XXX	0	X 0	.00	XXX	0	Х	-0.18	LYS	522	В
GLU	525	В								0.00	XXX	0	X 0	.00	XXX	0	Х	-0.07	ARG	615	В
GLU	525	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.12	ASP	526	в
GLU	525	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.03	GLU	628	В
GLU	543	В	4.84	14	8	0.40	321	0.03	0	0.00	XXX	0	X 0	.00	XXX	0	Х	-0.13	ARG	547	В
GLU	543	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.02	ASP	542	в
GLU	543	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.03	GLU	544	В
GLU	544	в	4.58	0	Ş	0.12	172	0.00	0	0.00	XXX	0	X 0	.00	XXX	0	х	-0.14	ARG	547	в
GLU	544	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.07	ASP	542	В
GLU	544	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.03	GLU	548	В
GLU	548	В	4.43	0	90	0.19	219	0.00	0	0.00	XXX	0	X 0	.00	XXX	0	Х	-0.01	ARG	501	в
GLU	548	В								0.00	XXX	0	X 0	.00	XXX	0	Х	-0.28	ARG	552	В
GLU	548	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.03	ASP	542	В
GLU	560	В	7.65	93	8	3.47	543	1.59	0	0.00	XXX	0	X -0	.72	PHE	568	В	-0.12	ARG	444	В
GLU	560	В								0.00	XXX	0	X -0	.82	GLY	569	В	-0.28	ARG	477	В
GLU	560	В								0.00	XXX	0	X 0	.00	XXX	0	Х	0.02	ASP	561	В
GLU	574	В	3.77	11	8	0.50	311	0.07	0	-0.80	ARG	444	в 0	.00	XXX	0	х	-0.02	LYS	539	в
GLU	574	В								0.00	XXX	0	X 0	.00	XXX	0	Х	-0.49	ARG	444	В
GLU	593	в	4.70	0	0/0	0.14	193	0.00	0	0.00	xxx	0	X 0	.00	XXX	0	х	0.04	ASP	592	в
http://pro	pka.ki.k	cu.dk/pk	a/201x.pka																		

9/29/2014

9/29/2014	4									propka.	ki.ku.dk	c/pka/2o	1x.pl	ka							
GLU	593	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	GLU	596	В
GLU	596	в	4.44	26	8	0.59	354	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	-0.41	LYS	111	в
GLU	596	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	606	в
GLU	596	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	114	в
GLU	596	в								0.00	XXX	0	х	0.00	XXX	0	х	-0.25	HIS	597	В
020		2																0.20			-
GLU	601	В	4.45	18	8	0.48	331	0.00	0	0.00	XXX	0	Х	-0.19	GLU	601	В	-0.08	ARG	480	В
GLU	601	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.15	LYS	515	в
GLU	601	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.11	HIS	604	В
GLU	620	В	4.62	0	90	0.26	240	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	Х	-0.14	ARG	586	в
GLU	628	в	4.29	0	8	0.36	195	0.00	0	-0.22	ARG	615	в	0.00	xxx	0	x	0.03	ASP	526	в
GLU	628	B	1.23	Ū	0	0.00	175	0.00	Ũ	0 00	XXX	010	x	0 00	XXX	0	x	-0.38	ARG	615	B
GEO	020	Б								0.00		0		0.00		Ŭ	**	-0.50	711(0	015	D
HIS	17	в	6.51	0	8	-0.25	239	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	24	В
HIS	17	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	94	В
HIS	17	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	14	в
HIS	17	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.23	ASP	21	В
HIS	17	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	ASP	95	В
HIS	51	в	0.43	100	8	-2.59	642	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-1.66	LYS	101	В
HIS	51	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	LYS	289	в
HIS	51	в								0.00	XXX	0	х	0.00	XXX	0	х	-1.12	HIS	82	в
HTS	51	в								0.00	XXX	0	x	0.00	XXX	0	x	-1.24	HTS	304	в
HTS	51	B								0.00	XXX	0	x	0.00	XXX	0	x	-0.25	HTS	434	B
HIS	51	B								0 00	XXX	0	x	0 00	XXX	0	x	0 15	TDP	021	B
нтс	51	в								0 00	VVV	0	v	0.00	VVV	0	v	0.77	AGD	130	в
шъ	51	Ъ								0.00	ллл	0	л	0.00	ΛΛΛ	U	л	0.77	ADI	450	D
HIS	66	В	1.51	100	8	-2.89	590	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.34	LYS	23	В
HIS	66	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.09	ARG	93	в
HIS	66	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.32	HIS	87	в
HIS	66	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.41	HIS	117	в
HIS	66	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	ASP	118	В
HIS	82	в	4.51	100	00	-3.32	669	0.00	0	0.01	GLN	83	в	0.00	XXX	0	х	-0.74	MG	MG	в
HIS	82	в								0.53	TDP	011	в	0.00	XXX	0	х	-0.08	LYS	101	в
HTS	82	в								0.71	TDP	021	В	0.00	XXX	0	x	-0.54	LYS	289	в
HTS	82	B								0.00	XXX	0	x	0.00	XXX	0	x	0.21	ASP	79	B
нтс	82	в								0 00	vvv	0	v	0 00	vvv	0	v	1 23	סחיד	021	в
1112	02	ם								0.00	ллл	0	Λ	0.00	ллл	0	л	1.23	IDP	021	Ы
HIS	87	В	4.64	100	8	-3.12	614	0.00	0	1.60	ASP	118	В	0.07	HIS	117	В	-0.46	LYS	88	В
HIS	87	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.11	ARG	93	В
HIS	87	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.11	GLU	114	В
HIS	87	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.37	HIS	117	В

9/29/2014	4								propka.	ki.ku.dk	/pka/2o	1x.pk	ta							
HIS	87	В							0.00	XXX	0	Х	0.00	XXX	0	Х	1.43	ASP	118	В
HIS	117	в	5.19	49 %	-1.46	419	0.00	0	0.00	XXX	0	Х	0.18	SER	71	в	-0.06	LYS	20	В
HIS	117	в							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	LYS	23	В
HIS	117	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.07	ARG	73	в
HIS	117	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.22	ARG	93	в
HIS	117	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	70	в
HIS	117	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	GLU	116	в
HIS	117	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	ASP	118	В
HIS	124	в	2.70	92 8	-2.38	539	0.00	0	0.00	XXX	0	Х	0.11	THR	433	в	-0.70	ARG	401	в
HIS	124	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.83	HIS	434	В
HIS	147	в	7.66	47 %	-1.24	412	0.00	0	1.60	ASP	74	В	0.00	XXX	0	Х	-0.07	ARG	139	В
HIS	147	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	LYS	175	в
HIS	147	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	70	в
HIS	147	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	145	в
HIS	147	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.20	ASP	276	В
HIS	147	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.55	ASP	74	В
HIS	262	в	5.90	72 %	a −2.33	484	0.00	0	1.60	ASP	60	в	0.00	GLY	261	в	-0.57	ARG	38	В
HIS	262	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.42	LYS	291	в
HIS	262	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.24	ASP	260	в
HIS	262	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.09	GLU	297	в
HIS	262	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.79	ASP	60	В
HIS	284	в	6.61	66 %	-2.12	466	0.00	0	1.60	ASP	182	В	0.00	XXX	0	Х	-0.03	ARG	199	В
HIS	284	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	154	В
HIS	284	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	GLU	184	в
HIS	284	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.56	ASP	182	В
HIS	304	в	1.71	100 %	a −2.79	617	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.33	MG	MG	В
HIS	304	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	LYS	101	в
HIS	304	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-1.62	LYS	289	В
HIS	304	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-1.08	HIS	82	В
HIS	304	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	430	В
HIS	304	В							0.00	XXX	0	Х	0.00	XXX	0	Х	1.12	TDP	021	В
HIS	362	в	5.16	21 %	-1.05	340	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	LYS	337	в
HIS	362	В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.22	ARG	365	В
HIS	362	В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	357	В
HIS	364	В	6.34	0 %	-0.15	160	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	365	В
HIS	408	в	7.47	0 %	₽ -0.23	202	0.00	0	0.68	ASP	409	В	0.00	XXX	0	Х	0.21	ASP	404	в
HIS	408	в						-	0.00	XXX	0	x	0.00	XXX	0	x	0.32	ASP	409	в
	100	2							0.00		0	**	0.00		0	**	0.02		100	2

153

HIS 414 B	5.56	20 %	-0.67	338	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	-0.37	ARG	450	В
HIS 414 B							0.00	XXX	0	х	0.00	XXX	0	Х	-0.00	LYS	539	в
HIS 414 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	413	В
HIS 414 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	471	В
HIS 434 B	4.76	100 %	-2.87	585	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.48	LYS	101	в
HIS 434 B							0.00	XXX	0	Х	0.00	XXX	0	Х	1.61	ASP	430	В
HIS 470 B	5.59	12 %	-0.87	316	0.00	0	0.00	xxx	0	х	0.00	XXX	0	Х	-0.06	ARG	389	в
HIS 470 B							0.00	XXX	0	х	0.00	XXX	0	Х	-0.05	ARG	450	В
HIS 470 B							0.00	XXX	0	х	0.00	XXX	0	х	-0.01	LYS	465	в
HIS 470 B							0.00	XXX	0	Х	0.00	XXX	0	х	0.06	ASP	471	в
HIS 470 B							0.00	XXX	0	х	0.00	XXX	0	х	0.02	ASP	493	В
HIS 582 B	6.27	0 %	-0.23	170	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	Х	0.00	XXX	0	х
HIS 597 B	5.56	49 %	-1.34	418	0.00	0	0.00	xxx	0	x	0.03	LYS	101	в	-0.11	LYS	88	в
HTS 597 B							0.00	XXX	0	x	0.20	LYS	102	в	-0.08	LYS	101	В
HTS 597 B							0 00	XXX	0	x	0 00	XXX		x	-0.08	LVS	111	B
HIG 597 B							0.00	VVV	ñ	y v	0.00	VVV	0	v	0.03	GLU	103	B
UTC 507 D							0.00	VVV	0	v	0.00	VVV	0	v	0.05	CLU	111	ם ם
							0.00	AAA VVV	0	A V	0.00	AAA VVV	0	A V	0.10	A C D	120	Б
HIS 597 B							0.00		0	A V	0.00		0	A V	0.01	ASP	430	В
шт9 ЭА/ В							0.00	λλλ	U	л	0.00	XXX	0	X	0.25	GГÜ	396	в
HIS 604 B	5.95	80 %	-2.48	504	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.01	ARG	477	в
HIS 604 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.18	LYS	515	В

propka.ki.ku.dk/pka/201x.pka

HIS	414	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	413	В
HIS	414	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	471	В
HTS	434	в	4.76	100	8	-2.87	585	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	-0.48	LYS	101	в
нтс	131	в	1.70	100	0	2.07	505	0.00	Ū	0 00	vvv	0	v	0 00	vvv	0	v	1 61	AGD	130	B
шь	131	Б								0.00	ллл	0	л	0.00	ЛЛЛ	U	л	1.01	ADI	400	D
нтс	470	R	5 59	12	ò	-0.87	316	0 00	0	0 00	xxx	0	x	0 00	xxx	0	x	-0.06	ARG	389	R
нтс	170	в	5.55	12	0	0.07	010	0.00	Ū	0 00	vvv	0	v	0 00	vvv	0	v	-0.05	ARC	450	B
пте	470	D D								0.00	VVV	0	v	0.00	vvv	0	v	0.01	TVC	465	Б
1115	470	D D								0.00	AAA VVV	0	л v	0.00		0	л v	-0.01	7 GD	405	Б
пто 115	470	D								0.00	^^^	0	^ 	0.00	^^^	0	л 	0.00	ASP	4/1	D
HIS	470	в								0.00	XXX	0	х	0.00	XXX	0	Х	0.02	ASP	493	в
нтс	582	B	6 27	٥	è	_0 23	170	0 00	0	0 00	vvv	٥	v	0 00	vvv	٥	v	0 00	vvv	0	v
шь	502	D	0.27	U	0	-0.25	170	0.00	0	0.00	ллл	0	Λ	0.00	ллл	0	л	0.00	ЛЛЛ	0	Λ
HIS	597	в	5.56	49	8	-1.34	418	0.00	0	0.00	XXX	0	х	0.03	LYS	101	в	-0.11	LYS	88	в
HIS	597	в								0.00	XXX	0	х	0.20	LYS	102	в	-0.08	LYS	101	в
HTS	597	B								0.00	XXX	0	x	0.00	XXX	0	x	-0.08	LYS	111	B
HTS	597	B								0 00	XXX	0	x	0 00	XXX	0	x	0 03	GLU	103	B
ите	507	D D								0.00	vvv	0	v	0.00	vvv	0	v	0.05	CLU	111	D D
ште	507	D D								0.00	NNN VVV	0	л v	0.00	NNN VVV	0	л v	0.10	AGD AGD	120	Б
ніб	597	Б								0.00		0	A V	0.00		0	л 	0.01	ASP	430	Б
HIS	597	в								0.00	XXX	0	X	0.00	XXX	0	X	0.25	GГO	590	в
HTS	604	в	5,95	80	8	-2.48	504	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	-0.01	ARG	477	в
HTS	604	B			Ū	2010			, i i i i i i i i i i i i i i i i i i i	0.00	XXX	0	x	0.00	XXX	0	x	-0.18	LYS	515	B
нтс	604	в								0 00	vvv	0	v	0 00	vvv	0	v	_0_01	ARC	606	B
птс	604	D D								0.00	VVV	0	v	0.00	VVV	0	v	0 11	CTU	601	D D
1115	604	Б								0.00		0	л v	0.00		0	л v	0.11	A C D	610	Б
HIS	604	в								0.00	XXX	0	X V	0.00	XXX	0	X	0.10	ASP	010	В
HIS	604	В								0.00	XXX	0	х	0.00	XXX	0	Х	1.92	ASP	561	в
CVS	45	R	12 62	100	ò	3 73	575	0 00	0	0 00	xxx	0	x	0 00	xxx	0	x	-0 09	ARG	47	R
CVS	45	в	12.02	100	0	5.75	575	0.00	0	0 00	VVV	0	v	0.00	VVV	0	v	-0.02	T.VS	101	В
CID	45	D								0.00	ллл	0	Λ	0.00	ллл	0	л	-0.02	цгр	101	Ъ
CYS	420	в	12.82	100	8	3.73	737	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	0.09	ASP	422	в
010	120	D	12.02	100	Ū	0,0	101	0.00	Ũ	0.00		Ũ		0.00		Ũ		0.05	1101	122	2
TYR	67	В	10.59	19	8	0.87	335	0.00	0	-0.16	ARG	27	В	0.00	XXX	0	Х	-0.27	ARG	27	в
TYR	67	в								0.00	XXX	0	Х	0.00	XXX	0	х	0.08	GLU	28	в
TYR	67	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	GLU	272	в
TYR	85	В	13.82	100	8	3.47	601	0.00	0	0.00	XXX	0	Х	-0.84	HIS	51	В	1.13	CYS	45	в
TYR	85	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	ARG	47	В
TYR	85	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	ASP	430	в
TYR	255	В	11.64	34	8	1.62	377	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.09	ASP	182	В
http://pro	opka.ki.k	u.dk/	pka/201x.pka																		

9/29/2014	Ļ									propka.	ki.ku.dk	/pka/2o	1x.pk	ca							
TYR	255	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.07	ARG	199	в
TYR	295	в	10.62	0	8	0.50	247	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.09	ASP	310	в
TYR	295	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.03	GLU	315	В
TYR	302	в	11.37	23	8	1.43	347	0.00	0	0.00	xxx	0	x	-0.35	AT.A	307	в	0.05	ASP	299	в
TYR	302	В		20	0	1010			Ū	0.00	XXX	0	X	0.00	XXX	0	X	0.24	TYR	316	В
TYR	316	в	10.51	0	8	0.32	271	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	х	0.19	ASP	299	В
TYR	316	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	GLU	315	В
TYR	322	в	12.12	26	8	1.38	355	0.00	0	-0.25	GLN	485	в	0.00	XXX	0	х	0.05	GLU	334	в
TYR	322	в								0.61	GLU	330	в	0.00	XXX	0	Х	-0.14	ARG	461	в
TYR	322	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.47	GLU	330	в
TYR	366	в	12.68	70	8	2.64	477	0.00	0	-0.48	ARG	350	в	0.00	XXX	0	х	0.03	GLU	189	в
TYR	366	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.51	ARG	350	В
TYR	366	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.21	GLU	351	В
TYR	366	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.79	ASP	368	В
TYR	395	в	12.09	100	8	2.96	586	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	-2.03	ARG	423	в
TYR	395	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.20	ASP	430	В
TYR	395	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.16	ARG	480	В
TYR	395	В								0.00	XXX	0	Х	0.00	XXX	0	Х	1.12	ASP	422	В
TYR	403	В	10.37	0	90	0.33	277	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	404	В
TYR	466	в	10.67	20	ò	0.82	337	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.14	ARG	450	в
TYR	466	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	471	в
TYR	466	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	LYS	495	В
TYR	478	в	16.80	100	8	3.86	663	0.00	0	0.00	xxx	0	х	0.00	XXX	0	Х	1.46	CYS	420	в
TYR	478	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.15	ARG	423	в
TYR	478	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	TYR	395	в
TYR	478	В								0.00	XXX	0	Х	0.00	XXX	0	Х	1.54	ASP	422	В
TYR	519	В	12.32	48	00	1.49	415	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	х	0.14	ASP	518	в
TYR	519	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.32	ASP	561	В
TYR	519	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.21	GLU	601	В
TYR	519	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	ASP	610	В
LYS	20	в	10.29	0	8	-0.15	205	0.00	0	0.00	xxx	0	Х	0.00	xxx	0	Х	0.08	ASP	21	в
LYS	20	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	ARG	24	В
LYS	20	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	ASP	70	В
LYS	20	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.19	ARG	73	В
LYS	20	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	GLU	116	В

155

LYS	23	в	8.57	58	8	-2.24	443	0.00	0	0.00	XXX	0	х	0.00	xxx	0	Х	0.21	ASP	70	В
LYS	23	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	73	В
LYS	23	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	74	в
LYS	88	в	8.66	90	80	-3.58	532	0.00	0	0.65	GLU	114	в	0.00	XXX	0	х	-0.88	ARG	93	в
LYS	88	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	LYS	111	В
LYS	88	в								0.00	XXX	0	Х	0.00	XXX	0	Х	1.03	GLU	114	в
LYS	88	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.96	ASP	118	в
LYS	101	в	10.50	100	80	-2.70	567	0.00	0	0.85	ASP	430	в	0.00	XXX	0	х	0.02	CYS	45	в
LYS	101	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	ARG	47	В
LYS	101	в								0.00	XXX	0	х	0.00	XXX	0	Х	-0.15	ARG	480	в
LYS	101	В								0.00	XXX	0	Х	0.00	XXX	0	х	2.03	ASP	430	В
LYS	102	В	10.84	0	00	-0.39	248	0.00	0	0.69	ASP	99	в	0.00	XXX	0	х	-0.34	ARG	47	в
LYS	102	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.37	ASP	99	В
LYS	111	в	10.41	21	80	-0.58	339	0.00	0	0.00	XXX	0	х	0.00	xxx	0	х	0.07	GLU	114	в
LYS	111	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	118	В
LYS	111	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.41	GLU	596	В
LYS	144	в	10.28	0	00	-0.21	174	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	х	-0.01	ARG	75	в
LYS	175	В	10.63	0	80	-0.22	269	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.18	ARG	139	в
LYS	175	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	ASP	140	В
LYS	175	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.16	ASP	145	В
LYS	175	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	174	В
LYS	175	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	276	В
LYS	175	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.22	ASP	278	В
LYS	196	в	9.82	20	90	-0.68	338	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
LYS	289	В	8.42	100	8	-3.62	575	0.00	0	0.80	TDP	021	в	0.00	xxx	0	х	-2.08	MG	MG	в
LYS	289	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.40	ASP	154	В
LYS	289	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.39	TDP	013	В
LYS	289	В								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	TDP	021	В
LYS	291	В	10.57	18	8	-0.49	332	0.00	0	0.15	GLU	297	В	0.00	XXX	0	х	0.01	GLU	35	в
LYS	291	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.18	ARG	38	в
LYS	291	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	60	В
LYS	291	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.11	ASP	260	В
LYS	291	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.35	GLU	297	В
LYS	308	в	10.37	0	00	-0.13	174	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.00	XXX	0	Х

propka.ki.ku.dk/pka/2o1x.pka

http://propka.ki.ku.dk/pka/2o1x.pka

9/29/2014

9/29/2014							propka.	ki.ku.dk	/pka/2o	1x.pka							
LYS 337 B LYS 337 B LYS 337 B	10.52	0 %	-0.24	271	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.00 0.13 0.13	GLU GLU GLU	330 334 357	B B B
LYS 455 B LYS 455 B LYS 455 B LYS 455 B	11.53	31 %	-1.00	368	0.00	0	0.85 0.00 0.00 0.00	GLU XXX XXX XXX	500 0 0 0	B X X X	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 X 0 X 0 X 0 X	0.35 -0.18 0.51 0.49	ASP ARG GLU GLU	456 536 459 500	B B B B
LYS 465 B	10.84	2 %	-0.36	288	0.00	0	0.34	ASP	493	В	0.00	XXX	0 X	0.35	ASP	493	в
LYS 495 B LYS 495 B LYS 495 B	10.68	0 %	-0.10	165	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.03 0.23 0.02	ASP GLU TYR	493 498 466	B B B
LYS 503 B LYS 503 B LYS 503 B	10.11	8 %	-0.45	304	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	-0.01 0.04 0.03	ARG GLU ASP	501 525 526	B B B
LYS 515 B LYS 515 B LYS 515 B LYS 515 B	10.25	58 %	-1.00	444	0.00	0	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 0 0 0	X X X X	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 X 0 X 0 X 0 X	-0.02 0.34 0.28 0.15	ARG ASP ASP GLU	480 518 561 601	B B B B
LYS 522 B LYS 522 B	10.60	0 %	-0.14	220	0.00	0	0.00	XXX XXX	0 0	x x	0.00	XXX XXX	0 X 0 X	0.06 0.18	ASP GLU	518 525	B B
LYS 539 B LYS 539 B LYS 539 B	9.01	40 %	-1.36	392	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	-0.11 -0.04 0.02	ARG ARG GLU	444 450 574	B B B
ARG 24 B	13.22	0 %	-0.28	201	0.00	0	0.68	ASP	21	В	0.00	XXX	0 X	0.33	ASP	21	В
ARG27BARG27BARG27B	13.34	0 %	-0.38	282	0.00	0	0.16 0.30 0.00	TYR GLU XXX	67 272 0	B B X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.10 0.27 0.39	GLU TYR GLU	28 67 272	B B B
ARG38BARG38BARG38B	13.02	80 %	-2.51	505	0.00	0	1.62 0.00 0.00	ASP XXX XXX	60 0 0	B X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.19 0.05 1.17	GLU GLU ASP	35 297 60	B B B
ARG 43 B ARG 43 B	12.72	21 %	-0.70	341	0.00	0	0.46 0.00 0.00 0.00 0.00	GLU XXX XXX XXX XXX	40 0 0 0	B X X X X X	0.00 0.00 0.00 0.00 0.00	XXX XXX XXX XXX XXX	0 X 0 X 0 X 0 X 0 X	0.19 0.01 0.02 -0.12 0.35	ASP ASP GLU ARG GLU	9 14 36 94 40	B B B B

157

propka.ki.ku.dk	/pka/2o1x.pka
propraating	prece 20 miprece

ARG 47 ARG 47 ARG 47	B B B	11.77	29 %	-1.05	363	0.00	0	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.09 0.12 0.10	CYS TYR ASP	45 85 99	B B B
ARG 73 ARG 73 ARG 73	B B B	13.49	0 %	-0.30	237	0.00	0	0.81 0.00 0.00	ASP XXX XXX	70 0 0	B X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.05 0.11 0.32	ASP GLU ASP	74 116 70	B B B
ARG 75	В	11.63	41 %	-0.88	395	0.00	0	0.00	XXX	0	Х	0.00	XXX	0 X	0.01	GLU	116	В
ARG 93 ARG 93	B B	13.83	78 %	-2.81	501	0.00	0	0.74 1.59	GLU ASP	114 118	B B	0.00 0.00	XXX XXX	0 X 0 X	0.72 1.09	GLU ASP	114 118	B B
ARG 94 ARG 94 ARG 94 ARG 94 ARG 94	B B B B	15.05	18 %	-0.88	333	0.00	0	0.81 1.59 0.00 0.00 0.00	ASP GLU XXX XXX XXX	14 40 0 0	B B X X X	0.00 0.00 0.00 0.00 0.00	XXX XXX XXX XXX XXX	0 X 0 X 0 X 0 X 0 X	0.01 0.10 0.12 0.28 0.52	ASP GLU ASP ASP GLU	9 36 95 14 40	B B B B
ARG 139 ARG 139 ARG 139 ARG 139	B B B	12.36	29 %	-1.16	362	0.00	0	0.55 0.00 0.00 0.00	ASP XXX XXX XXX	140 0 0 0	B X X X	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 X 0 X 0 X 0 X	0.00 0.09 -0.07 0.44	ASP ASP ARG ASP	74 145 174 140	B B B B
ARG 174	В	12.96	0 %	-0.35	246	0.00	0	0.54	ASP	140	В	0.00	XXX	0 X	0.27	ASP	140	в
ARG 199 ARG 199	B B	12.42	0 %	-0.15	195	0.00	0	0.00	XXX XXX	0 0	X X	0.00 0.00	XXX XXX	0 X 0 X	0.01 0.07	GLU TYR	184 255	B B
ARG 254	В	12.04	8 %	-0.53	304	0.00	0	0.00	XXX	0	Х	0.00	XXX	0 X	0.07	ASP	278	В
ARG 273 ARG 273 ARG 273	B B B	12.77	0 %	-0.48	212	0.00	0	0.57 0.00 0.00	GLU XXX XXX	272 0 0	B X X	0.00 0.00 0.00	XXX XXX XXX	0 X 0 X 0 X	0.01 -0.09 0.24	ASP ARG GLU	276 27 272	B B B
ARG 341 ARG 341	B B	12.46	0 %	-0.28	280	0.00	0	0.00	xxx xxx	0 0	X X	0.00 0.00	XXX XXX	0 X 0 X	0.22 0.01	ASP ASP	339 471	B B
ARG 350 ARG 350 ARG 350 ARG 350	B B B B	13.50	41 %	-1.12	395	0.00	0	0.48 0.09 0.00 0.00	TYR GLU XXX XXX	366 351 0 0	B B X X	0.00 0.00 0.00 0.00	XXX XXX XXX XXX	0 X 0 X 0 X 0 X	0.20 0.51 0.21 0.63	GLU TYR ASP GLU	189 366 368 351	B B B B
ARG 360 ARG 360	B B	12.30	0 %	-0.23	231	0.00	0	0.00 0.00	XXX XXX	0 0	x x	0.00 0.00	xxx xxx	0 X 0 X	0.10 0.04	GLU GLU	351 357	B B

9/29/2014

14/21

http://propka.ki.ku.dk/pka/2o1x.pka

9/29/2	2014										propka.	ki.ku.dk	/pka/2o	1x.pka								
AF	RG (360	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	ARG	350	В
AF	RG :	365	в	11.33	32	00	-1.35	370	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	ASP	339	в
AF	RG :	389	в	11.57	30	8	-0.89	365	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	339	в
AF	RG 🗄	389	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	ASP	471	в
AF	RG :	389	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.34	ARG	341	В
AF	RG 4	401	в	11.90	73	80	-1.89	486	0.00	0	0.00	XXX	0	х	0.00	xxx	0	х	0.25	ASP	79	в
AF	RG 4	401	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.36	GLU	374	В
AF	RG 4	401	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.67	GLU	373	В
AF	RG 4	423	В	14.76	92	8	-2.33	540	0.00	0	0.52	ASP	422	в	0.00	XXX	0	х	2.03	TYR	395	в
AF	RG 4	423	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	ASP	430	в
AF	۲G ،	423	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	TYR	478	в
AF	RG 4	423	В								0.00	XXX	0	Х	0.00	XXX	0	х	1.70	ASP	422	В
AF	RG 4	444	в	12.71	41	8	-1.19	397	0.00	0	0.80	GLU	574	в	0.00	xxx	0	x	0.12	GLU	560	в
AF	RG 4	444	B			•				•	0.00	XXX	0	x	0.00	XXX	0	x	0.49	GLU	574	B
			2								0.00		Ū		0.00		Ū		0.15	010	571	2
AF	۲G ،	450	В	10.92	48	8	-1.77	416	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	TYR	466	В
AF	RG 4	450	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.05	ASP	471	В
AF	RG 4	461	В	12.33	39	8	-1.57	391	0.00	0	0.60	GLU	334	в	0.00	xxx	0	х	0.14	TYR	322	в
AF	۲G ،	461	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.16	GLU	330	В
AF	RG 4	461	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.50	GLU	334	В
AF	RG 4	477	в	12.71	100	8	-3.57	679	0.00	0	0.52	ASP	439	в	0.00	XXX	0	х	0.28	GLU	560	в
AF	RG 4	477	в								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	ASP	439	В
AF	RG 4	477	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.95	ASP	561	В
AF	RG 4	480	В	11.82	71	00	-0.85	481	0.00	0	0.00	XXX	0	х	0.00	xxx	0	х	0.16	TYR	395	в
AF	RG 4	480	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	422	в
AF	RG 4	480	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.38	ASP	430	В
AF	RG 4	480	в								0.00	XXX	0	х	0.00	XXX	0	х	0.08	GLU	601	в
AF	RG 4	480	В								0.00	XXX	0	Х	0.00	XXX	0	х	-0.46	ARG	423	В
AF	RG !	501	в	11.73	29	00	-0.91	362	0.00	0	0.00	XXX	0	х	0.00	xxx	0	х	0.18	ASP	506	в
AF	RG !	501	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	548	в
AF	RG !	501	В								0.00	XXX	0	Х	0.00	XXX	0	х	-0.06	ARG	552	В
AF	RG !	536	в	12.63	58	8	-1.85	443	0.00	0	0.61	GLU	459	в	0.00	xxx	0	х	0.04	ASP	456	в
AF	RG !	536	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.12	GLU	498	В
AF	RG !	536	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.35	GLU	500	В
AF	RG !	536	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	542	В
AF	RG !	536	В								0.00	XXX	0	Х	0.00	XXX	0	х	0.78	GLU	459	В

159

http://propka.ki.ku.dk/pka/2o1x.pka

ARG	547	в	12.49	0	8	-0.28	208	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	Х	0.13	GLU	543	в
ARG	547	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	GLU	544	В
ARG	552	в	12.73	0	8	-0.23	222	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.18	ASP	506	в
ARG	552	в								0.00	XXX	0	х	0.00	XXX	0	Х	0.28	GLU	548	В
ARG	554	в	13.25	0	0/0	-0.35	266	0.00	0	0.71	ASP	507	в	0.00	xxx	0	Х	0.01	ASP	624	В
ARG	554	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.38	ASP	507	В
ARG	586	в	12.35	0	ò	-0.28	261	0.00	0	0.00	xxx	0	х	0.00	XXX	0	х	0.14	GLU	620	в
ARG	606	в	12.38	3	0/0	-0.47	291	0.00	0	0.00	XXX	0	х	0.00	xxx	0	Х	0.35	GLU	103	В
ARG	606	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	596	В
ARG	615	в	12.80	0	00	-0.46	279	0.00	0	0.22	GLU	628	в	0.00	xxx	0	Х	0.07	GLU	525	в
ARG	615	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	ASP	526	В
ARG	615	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.38	GLU	628	В
N+	8	в	8.05	0	00	-0.26	136	0.00	0	0.00	XXX	0	х	0.00	xxx	0	Х	0.11	ASP	9	в
N+	8	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	14	в
N+	8	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	GLU	36	В
TDP	N1'	в	-0.57	100	8	-3.89	578	0.00	0	0.00	XXX	0	х	0.00	xxx	0	Х	-0.55	ARG	401	в
TDP	N1'	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.77	HIS	124	в
TDP	N1'	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.35	HIS	434	В
TDP	013	в	8.33*	100	0/0	3.53	644	0.00	0	-0.78	SER	156	в	0.00	xxx	0	Х	-3.48	MG	MG	В
\mathtt{TDP}	013	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.39	LYS	289	В
TDP	013	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	ASP	182	В
TDP	013	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.79	ASP	79	в
TDP	013	В								0.00	XXX	0	Х	0.00	XXX	0	Х	1.20	ASP	154	в
TDP	013	в								0.00	XXX	0	Х	0.00	XXX	0	Х	1.38	TDP	021	В
TDP	021	в	-1.66*	100	00	3.87	616	0.00	0	-0.85	SER	54	в	0.00	xxx	0	Х	-4.07	MG	MG	в
TDP	021	в								-0.58	ASN	183	В	0.00	XXX	0	Х	-0.15	HIS	51	В
TDP	021	в								-0.71	HIS	82	В	0.00	XXX	0	Х	-1.23	HIS	82	В
TDP	021	в								-0.80	LYS	289	В	0.00	XXX	0	Х	-2.03	LYS	289	В
TDP	021	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.12	HIS	304	В

Coupled residues (marked *) were detected. Please rerun PropKa with the --display-coupled-residues or -d option for detailed information.

SUMMARY OF THIS PREDICTION Group pKa model-pKa ligand atom-type ASP 9 B 3.68 3.80

http://propka.ki.ku.dk/pka/201x.pka

160

propka.ki.ku.dk/pka/2o1x.pka

ASP	14	В	1.43	3.80
ASP	21	В	2.19	3.80
ASP	60	В	2.17	3.80
ASP	70	В	3.34	3.80
ASP	74	В	2.18	3.80
ASP	79	В	4.72	3.80
ASP	95	В	3.93	3.80
ASP	99	В	2.94	3.80
ASP	118	В	0.13	3.80
ASP	140	В	2.50	3.80
ASP	145	В	3.72	3.80
ASP	154	В	5.46	3.80
ASP	171	В	3.95	3.80
ASP	182	В	2.62	3.80
ASP	260	В	3.44	3.80
ASP	276	В	3.91	3.80
ASP	278	В	3.67	3.80
ASP	299	В	3.78	3.80
ASP	310	В	3.34	3.80
ASP	339	В	3.08	3.80
ASP	368	В	5.38	3.80
ASP	404	В	4.07	3.80
ASP	409	В	2.72	3.80
ASP	422	В	4.89	3.80
ASP	430	В	0.22	3.80
ASP	439	В	4.77	3.80
ASP	456	В	4.44	3.80
ASP	471	В	3.61	3.80
ASP	493	В	3.31	3.80
ASP	506	В	3.61	3.80
ASP	507	В	3.21	3.80
ASP	518	В	4.66	3.80
ASP	526	В	3.84	3.80
ASP	542	В	4.13	3.80
ASP	561	В	4.23	3.80
ASP	592	В	4.04	3.80
ASP	610	В	4.13	3.80
ASP	624	В	3.93	3.80
GLU	28	В	4.26	4.50
GLU	35	В	4.72	4.50
GLU	36	В	4.72	4.50
GLU	40	В	3.24	4.50
GLU	103	В	4.02	4.50
GLU	114	В	3.93	4.50
GLU	116	В	4.37	4.50
GLU	184	В	5.09	4.50

GLU	189	В	5.03	4.50
GLU	266	В	5.63	4.50
GLU	272	В	3.65	4.50
GLU	297	В	3.97	4.50
GLU	315	В	4.70	4.50
GLU	330	В	4.39	4.50
GLU	334	В	3.20	4.50
GLU	351	В	5.63	4.50
GLU	357	В	4.58	4.50
GLU	373	В	7.98	4.50
GLU	374	В	5.25	4.50
GLU	413	В	4.64	4.50
GLU	459	В	5.19	4.50
GLU	498	В	4.73	4.50
GLU	500	В	3.59	4.50
GLU	525	В	4.56	4.50
GLU	543	В	4.84	4.50
GLU	544	В	4.58	4.50
GLU	548	В	4.43	4.50
GLU	560	В	7.65	4.50
GLU	574	В	3.77	4.50
GLU	593	В	4.70	4.50
GLU	596	В	4.44	4.50
GLU	601	В	4.45	4.50
GLU	620	В	4.62	4.50
GLU	628	В	4.29	4.50
HIS	17	В	6.51	6.50
HIS	51	В	0.43	6.50
HIS	66	В	1.51	6.50
HIS	82	В	4.51	6.50
HIS	87	В	4.64	6.50
HIS	117	В	5.19	6.50
HIS	124	В	2.70	6.50
HIS	147	В	7.66	6.50
HIS	262	в	5.90	6.50
HIS	284	В	6.61	6.50
HIS	304	В	1.71	6.50
HIS	362	В	5.16	6.50
HIS	364	В	6.34	6.50
HIS	408	В	7.47	6.50
HTS	414	B	5.56	6.50
HIS	434	B	4.76	6.50
HIS	470	B	5.59	6.50
HIS	582	B	6.27	6.50
HIS	597	B	5.56	6.50
HTS	604	в	5.95	6.50
		_		

CYS	45	В	12.62	9.00
CYS	420	В	12.82	9.00
TYR	67	В	10.59	10.00
TYR	85	В	13.82	10.00
TYR	255	В	11.64	10.00
TYR	295	В	10.62	10.00
TYR	302	В	11.37	10.00
TYR	316	В	10.51	10.00
TYR	322	В	12.12	10.00
TYR	366	В	12.68	10.00
TYR	395	В	12.09	10.00
TYR	403	В	10.37	10.00
TYR	466	В	10.67	10.00
TYR	478	В	16.80	10.00
TYR	519	В	12.32	10.00
LYS	20	В	10.29	10.50
LYS	23	В	8.57	10.50
LYS	88	В	8.66	10.50
LYS	101	В	10.50	10.50
LYS	102	В	10.84	10.50
LYS	111	В	10.41	10.50
LYS	144	В	10.28	10.50
LYS	175	В	10.63	10.50
LYS	196	В	9.82	10.50
LYS	289	В	8.42	10.50
LYS	291	В	10.57	10.50
LYS	308	В	10.37	10.50
LYS	337	В	10.52	10.50
LYS	455	В	11.53	10.50
LYS	465	В	10.84	10.50
LYS	495	В	10.68	10.50
LYS	503	В	10.11	10.50
LYS	515	В	10.25	10.50
LYS	522	В	10.60	10.50
LYS	539	В	9.01	10.50
ARG	24	В	13.22	12.50
ARG	27	В	13.34	12.50
ARG	38	В	13.02	12.50
ARG	43	В	12.72	12.50
ARG	47	В	11.77	12.50
ARG	73	В	13.49	12.50
ARG	75	В	11.63	12.50
ARG	93	В	13.83	12.50
ARG	94	В	15.05	12.50
ARG	139	В	12.36	12.50
ARG	174	В	12.96	12.50

propka.ki.ku.dk/pka/2o1x.pka

ARG	199 H	в 1	12.42	12.50	
ARG	254 H	в 1	L2.04	12.50	
ARG	273 H	в 1	L2.77	12.50	
ARG	341 H	в 1	L2.46	12.50	
ARG	350 H	в 1	L3.50	12.50	
ARG	360 H	в 1	L2.30	12.50	
ARG	365 H	в 1	L1.33	12.50	
ARG	389 I	в 1	L1.57	12.50	
ARG	401 H	в 1	L1.90	12.50	
ARG	423 H	в 1	L4.76	12.50	
ARG	444 I	в 1	12.71	12.50	
ARG	450 H	в 1	L0.92	12.50	
ARG	461 H	в 1	12.33	12.50	
ARG	477 H	в 1	12.71	12.50	
ARG	480 H	в 1	L1.82	12.50	
ARG	501 H	в 1	L1.73	12.50	
ARG	536 H	в 1	L2.63	12.50	
ARG	547 H	в 1	L2.49	12.50	
ARG	552 H	в 1	L2.73	12.50	
ARG	554 H	в 1	13.25	12.50	
ARG	586 H	в 1	L2.35	12.50	
ARG	606 H	в 1	L2.38	12.50	
ARG	615 H	в 1	L2.80	12.50	
N+	8 I	З	8.05	8.00	
TDP	N1' H	з -	-0.57	5.00	NAR
TDP	013 H	З	8.33	6.00	OP
TDP	021 H	з -	-1.66	6.00	OP
			folding	(kaal /mal)	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iergy 1'	0L 10	TOTATING	(KCal/MOI)	as a function of ph (using neutral reference)
1 00	1 -	17 01			
2 00	1.	1/.04 1/ 8/			
3 00	10	R6 18			
1 00		56 66			
5 00		57 17			
6 00	-	50 36			
7 00	-	17 60			
8 00		50 78			
9 00	- 1	52.28			
10 00	-	54 93			
11 00	-	53 98			
12 00	-	72.65			
13.00	\$	80.85			
14,00	\$	38.96			
		0			

http://propka.ki.ku.dk/pka/2o1x.pka

9/29/2014

propka.ki.ku.dk/pka/2o1x.pka

The pH of optimum stability is 6.8 for which the free energy is 47.4 kcal/mol at 298K Could not determine pH values where the free energy is within 80 % of minimum Could not determine the pH-range where the free energy is negative

Protein charge of folded and unfolded state as a function of pH

pН	unfolded	folded			
0.00	76.99	73.05			
1.00	76.93	69.92			
2.00	76.28	65.06			
3.00	70.59	54.84			
4.00	44.63	33.90			
5.00	12.51	7.85			
6.00	-3.35	-8.48			
7.00	-16.81	-15.46			
8.00	-22.21	-20.12			
9.00	-25.65	-25.07			
10.00	-36.21	-31.88			
11.00	-53.03	-45.35			
12.00	-65.42	-60.25			
13.00	-83.76	-76.79			
14.00	-90.95	-86.50			
The pI	is 5.40	(folded)	and	5.80	(unfolded)

http://propka.ki.ku.dk/pka/201x.pka

Appendix B: Supporting Information for "Computational Examination of the Magnesium Ion Binding Modes of 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase"

B.1 Results from the ProPKA3.0 Calculations of a DXR with Substrates Bound

Below will be found the ProPKA3.0 results for of crystal structure, PDB:1Q0Q, for DXR with bound NADPH and DXP:

nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka

эрказ.0,	cevision 182		
		PROPKA: A PROTEIN PKA PREDICTOR	
		WERSTON 1.0. $04/25/2004$ TOWA CTUR	
		BY HUT LT	
		VERSION 2.0, 11/05/2007, IOWA CITY/COPENHAGEN	
		BY DELPHINE C. BAS AND DAVID M. ROGERS	
		VERSION 3.0, XX/XX/2010, COPENHAGEN	
		BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD	
20201000	•		
Very Fas	Empirical Pre	ediction and Rationalization of Protein pKa Values	
Very Fas Hui Li,	t Empirical Pre Andrew D. Rober	ediction and Rationalization of Protein pKa Values ctson and Jan H. Jensen	
Very Fas Hui Li, PROTEINS	t Empirical Pre Andrew D. Rober : Structure, Fu	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005)	
Very Fas Hui Li, PROTEINS Very Fas	t Empirical Pre Andrew D. Rober : Structure, Fu : Prediction an	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com	plexes
Very Fas Hui Li, PROTEINS Very Fas Delphine	t Empirical Pre Andrew D. Rober : Structure, Fu : Prediction an C. Bas, David :	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen	plexes
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS	t Empirical Pre Andrew D. Rober : Structure, Fu : Prediction an C. Bas, David : : Structure, Fu	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008)	plexes
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS	t Empirical Pre Andrew D. Rober : Structure, Fu : Prediction an C. Bas, David : : Structure, Fu	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008)	plexes
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3:	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical p	plexes Ka predictions
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre . Olsson, Chres	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pi sten R. Sondergard, Michal Rostkowski, and Jan H. Jenser eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David : : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The	ediction and Rationalization of Protein pKa Values oftson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pi sten R. Sondergard, Michal Rostkowski, and Jan H. Jenser eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction and C. Bas, David J : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pi sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The	ediction and Rationalization of Protein pKa Values ctson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical p sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical p sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal ANING ! Propka3.	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The 	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) nd Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical p sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal ARNING ! Propka3.	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The . Oisson, Chres	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pi sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010)	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal ARNING ! Propka3.	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David I : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The 	ediction and Rationalization of Protein pKa Values ctson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical p sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010) dical to propka2.0 and does not work with ligands	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal 	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David 1 : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The 	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen Inction, and Bioinformatics 61:704-721 (2005) A Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen Inction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pictures sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010) Lical to propka2.0 and does not work with ligands DESOLVATION EFFECTS SIDECHAIN BACKBOO REGULAR RE HYDROGEN BOND HYDROGEN	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal 	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David J : Structure, Fu Consistent Tre Olsson, Chres of Chemical The 	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) and Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pi sten R. Sondergard, Michal Rostkowski, and Jan H. Jense eory and Computation, to be submitted (2010) 	plexes Ka predictions n
Very Fas Hui Li, PROTEINS Very Fas Delphine PROTEINS PROPKA3: Mats H.M Journal 	t Empirical Pre Andrew D. Rober : Structure, Fu t Prediction an C. Bas, David J : Structure, Fu Consistent Tre . Olsson, Chres of Chemical The . Olsson, Chres of Chemical The . Dis not identi	ediction and Rationalization of Protein pKa Values rtson and Jan H. Jensen unction, and Bioinformatics 61:704-721 (2005) A Rationalization of pKa Values for Protein-Ligand Com M. Rogers and Jan H. Jensen unction, and Bioinformatics 73:765-783 (2008) eatment of Internal and Surface Residues in Empirical pi sten R. Sondergard, Michal Rostkowski, and Jan H. Jenser eory and Computation, to be submitted (2010) 	plexes Ka predictions n

1/13/2015	5							nbcr-222.ucs	sd.edu/opa	al-jobs/apppd	b2pqr_1	.81421	20924	498428831181	6/1q0q.	propka					
ASP	19	А								-0.11	ARG	277	А	0.00	XXX	0	х	-0.33	ARG	22	А
ASP	19	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.47	ARG	277	А
ASP	57	A	4.68	27	8	0.80	356	0.01	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.08	ASP	58	A
ASP	58	А	2.97	0	8	0.38	241	0.00	0	-0.39	SER	61	A	-0.20	ALA	60	A	-0.07	LYS	37	А
ASP	58	Α								0.00	XXX	0	Х	-0.54	SER	61	A	0.00	XXX	0	Х
ASP	87	A	3.70	1	80	0.38	284	0.01	0	-0.50	GLN	83	A	0.00	XXX	0	Х	0.00	XXX	0	х
ASP	93	А	3.29	0	8	0.26	215	0.00	0	-0.36	ARG	52	A	0.00	XXX	0	Х	-0.10	ARG	29	А
ASP	93	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	LYS	118	А
ASP	93	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.25	ARG	52	A
ASP	95	А	3.65	17	00	0.65	330	0.24	0	0.00	XXX	0	Х	-0.81	GLN	3	А	-0.06	LYS	2	A
ASP	95	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	29	А
ASP	95	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.14	LYS	118	А
ASP	95	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.08	N+	1	А
ASP	95	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	93	A
ASP	137	А	3.26	10	8	0.65	309	0.07	0	-0.85	TYR	170	А	0.00	XXX	0	х	-0.28	ARG	133	А
ASP	137	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.13	LYS	140	А
ASP	150	А	1.23*	100	00	4.83	738	0.26	0	-0.85	LYS	125	A	-0.03	SER	151	А	-2.03	LYS	125	A
ASP	150	А								-0.56	GLU	152	А	0.00	XXX	0	Х	-1.69	HIS	153	А
ASP	150	А								-0.57	GLU	231	А	0.00	XXX	0	Х	-0.59	LYS	228	А
ASP	150	А								-1.34	GLU	234	A	0.00	XXX	0	Х	0.00	XXX	0	Х
ASP	172	А	3.56	0	8	0.36	272	0.00	0	0.00	XXX	0	Х	-0.03	GLU	174	A	0.00	XXX	0	х
ASP	172	А								0.00	XXX	0	Х	-0.57	GLN	175	Α	0.00	XXX	0	Х
ASP	197	A	4.06	0	00	0.26	157	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
ASP	204	A	3.06	0	8	0.22	214	0.00	0	-0.65	ARG	216	A	0.00	XXX	0	Х	-0.31	ARG	216	A
ASP	221	А	4.58	100	8	3.64	679	0.94	0	-0.84	ASN	339	А	0.00	XXX	0	Х	-0.29	LYS	125	А
ASP	221	А								-0.85	LYS	217	А	0.00	XXX	0	Х	0.22	GLU	340	А
ASP	221	Α								0.00	XXX	0	Х	0.00	XXX	0	Х	-2.03	LYS	217	A
ASP	264	А	4.07	100	8	3.58	601	0.78	0	-0.84	SER	266	A	-0.08	ASP	264	А	-1.86	ARG	289	в
ASP	264	Α								-0.50	ARG	289	В	-0.82	SER	266	Α	0.00	XXX	0	х
ASP	275	A	4.13	62	8	1.88	455	0.00	0	-0.39	ARG	277	A	-0.68	ARG	277	A	-0.04	LYS	295	A
ASP	275	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.11	ASP	19	А
ASP	275	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	HIS	23	А
ASP	275	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.55	ARG	277	А

http://nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka

ASP ASP	298 298	A A	3.40	0	00	0.36	261	0.00	0	0.00	XXX XXX	0 0	X X	-0.46 -0.15	CYS LYS	300 301	A A	-0.03 -0.08	LYS LYS	295 301	A A
ASP	298	А								0.00	xxx	0	х	0.00	XXX	0	х	-0.09	ARG	261	в
ASP	298	A								0.00	XXX	0	X	0.00	XXX	0	X	0.05	GLU	247	В
ASP	311	А	3.36	0	8	0.37	264	0.00	0	0.00	XXX	0	х	-0.21	ASP	313	А	-0.21	ARG	314	А
ASP	311	A								0.00	XXX	0	Х	-0.39	ARG	314	A	0.00	XXX	0	Х
ASP	313	А	3.96	0	8	0.16	173	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	-0.19	LYS	319	А
ASP	313	A		-	-				-	0.00	XXX	0	Х	0.00	XXX	0	Х	0.19	ASP	311	A
ASP	355	A	3.98	28	00	1.05	361	0.13	0	0.00	XXX	0	Х	-0.81	ARG	352	A	-0.19	ARG	352	A
ASP	368	A	3.91	0	00	0.14	192	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	ARG	370	A
ASP	376	A	4.05	0	00	0.17	194	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	377	A
ASP	377	А	3.27	0	90	0.36	214	0.00	0	-0.12	CYS	374	A	-0.76	GLN	373	A	-0.00	ARG	370	A
ASP	382	А	4.83	67	8	2.05	469	0.38	0	-1.12	ARG	386	А	0.00	XXX	0	Х	-0.05	ARG	390	А
ASP	382	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.59	GLU	340	А
ASP	382	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.83	ARG	386	A
GLU	26	А	4.44	0	8	0.08	119	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.03	N+	1	А
GLU	26	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.11	HIS	27	A
GLU	44	А	4.37	1	8	0.36	283	0.00	0	-0.11	ARG	41	A	0.00	XXX	0	х	-0.10	ARG	22	А
GLU	44	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.12	GLU	48	А
GLU	44	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.41	ARG	41	A
GLU	48	А	3.41	9	8	0.70	306	0.01	0	-1.40	ARG	22	А	0.00	XXX	0	х	-0.04	ARG	41	А
GLU	48	А								0.00	XXX	0	Х	0.00	XXX	0	х	0.06	ASP	19	А
GLU	48	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.43	ARG	22	A
GLU	59	А	4.50	0	8	0.17	166	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.21	LYS	63	А
GLU	59	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	58	A
GLU	77	А	4.52	0	8	0.17	226	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.11	LYS	66	А
GLU	77	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	ARG	75	A
GLU	92	А	4.61	0	8	0.09	164	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	х	-0.14	LYS	118	A
GLU	92	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	93	А
GLU	92	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	95	A
GLU	126	A	6.06	100	00	3.88	645	0.15	0	-0.68	LYS	217	A	-0.35	GLY	103	A	-0.00	ARG	386	A
http://nbo	er-222.u	icsd.edu	u/opal-jobs/aµ	ppdb2pq	r_1.8	1421209249842	88311810	6/1q0q.propka													

1/13/2015
1/13/201	5							nbcr-222.ucs	d.edu/op	al-jobs/apppd	b2pqr_1	1.81421	2092	498428831181	6/1q0q.	propka					
GLU	126	А								0.00	XXX	0	Х	-0.65	GLU	126	А	0.17	ASP	150	А
GLU	126	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.62	LYS	125	А
GLU	126	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.97	LYS	217	А
GLU	126	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.74	ASP	221	А
GLU	126	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.90	GLU	340	A
GLU	152	A	10.96*	100	00	5.00	712	0.81	0	-0.77	LYS	228	А	-0.74	GLU	152	А	-1.03	LYS	125	A
GLU	152	А								0.56	ASP	150	А	0.00	XXX	0	Х	-2.03	LYS	228	А
GLU	152	А								1.12	GLU	231	А	0.00	XXX	0	Х	1.50	ASP	150	Α
GLU	152	A								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	GLU	231	A
GLU	174	A	4.82	0	90	0.20	279	0.00	0	0.00	xxx	0	Х	0.00	xxx	0	Х	0.12	ASP	172	A
GLU	192	А	4.49	0	00	0.14	235	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.13	ARG	191	A
GLU	192	Α								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	314	A
GLU	231	A	4.51*	100	8	5.25	721	0.66	0	-0.50	ASN	227	А	0.00	XXX	0	х	-2.03	LYS	125	A
GLU	231	А								-0.85	LYS	125	А	0.00	XXX	0	Х	2.03	ASP	150	А
GLU	231	А								0.57	ASP	150	А	0.00	XXX	0	Х	-1.11	HIS	153	Α
GLU	231	А								-1.12	GLU	152	А	0.00	XXX	0	Х	-2.03	LYS	228	А
GLU	231	A								-0.85	LYS	228	A	0.00	XXX	0	Х	0.00	XXX	0	Х
GLU	234	A	12.81*	100	00	4.27	713	0.66	0	1.34	ASP	150	А	0.00	XXX	0	х	-1.17	LYS	125	A
GLU	234	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.05	LYS	228	А
GLU	234	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	GLU	126	А
GLU	234	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.33	GLU	152	А
GLU	234	А								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	ASP	150	А
GLU	234	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.72	GLU	231	A
GLU	247	А	3.44	61	8	1.67	451	0.05	0	-0.78	SER	180	А	0.00	xxx	0	х	0.05	ASP	298	в
GLU	247	A								-1.21	ARG	261	Α	0.00	XXX	0	Х	-0.84	ARG	261	A
GLU	273	A	5.10	30	8	0.86	365	0.06	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.32	LYS	295	A
GLU	273	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.12	LYS	301	А
GLU	273	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.00	ARG	261	В
GLU	273	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.09	ASP	275	А
GLU	273	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	298	A
GLU	323	A	4.69	6	90	0.36	297	0.03	0	0.00	XXX	0	Х	0.00	xxx	0	Х	-0.20	LYS	319	A
GLU	326	A	3.96	2	olo	0.35	288	0.01	0	-0.53	ARG	236	A	0.00	xxx	0	Х	-0.36	ARG	236	A
GT.U	340	А	3.88	100	8	2 . 82	569	0.67	0	-0.44	ASN	336	А	-0.77	ΑΤ.Α	104	А	-1.09	LVS	217	А
GLU	340	A	0.00	100	U	2.02	507	,	v	-0.60	ARG	386	A	0.00	XXX	0	x	-1.21	ARG	386	A
510	- 10											200				5					
GLU	365	A	4.74	0	8	0.28	234	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	LYS	366	A
nttp://nbc	er-222.u	csd.ed	u/opai-jobs/ap	ppdb2pq	[r_1.81	421209249842	288311810	o/1q0q.propka													

GLU GLU	371 371	A A	3.97	19	00	0.78	334	0.06	0	0.00 0.00	XXX XXX	0 0	X X	-0.61 -0.73	GLN ALA	329 330	A A	-0.04 0.00	ARG XXX	370 0	A X
GLU	387	A	4.63	0	90	0.20	212	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.07	ARG	390	A
CLU	302	Δ	1 20	2	ę	0 60	287	0 01	0	_0_04	C F D	362	Δ	0 00	v vv	0	v	_0 32	T.VS	366	Δ
CTU	302	7	4.20	2	0	0.00	207	0.01	U	-0.04	ADC	302	7	0.00	VVV	0	v	-0.14	TVC	300	Л
GLU	392	A								0.00	XXX	0	X	0.00	XXX	0	X	-0.38	ARG	395	A
C-	398	A	3.31	0	90	0.11	95	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	xxx	0	х
нтс	23	Δ	6 08	8	0	-0 51	305	0 00	0	0 00	xxx	0	x	0 00	xxx	0	x	-0.08	ARG	22	Δ
пте	23	7	0.00	0	0	-0.51	505	0.00	U	0.00	VVV	0	v	0.00	VVV	0	v	-0.00	ARC	22	7
пте	23	7								0.00	NNN VVV	0	л v	0.00	NNN VVV	0	л v	-0.22	ARG	10	7
HIS	23	A								0.00	XXX	0	л Х	0.00	XXX	0	л Х	0.38	ASP	275	A
	0.7	-	6 00	_	•		0.01		•			•				•					
HIS	27	A	6.02	/	8	-0.39	301	0.00	0	0.00	XXX	0	x	0.00	XXX	0	X	-0.08	LYS	2	A
HIS	27	A								0.00	XXX	0	х	0.00	XXX	0	х	-0.11	N+	1	Α
HIS	27	A								0.00	XXX	0	х	0.00	XXX	0	х	0.11	GLU	26	A
HIS	153	А	5.02	100	8	-3.95	718	0.00	0	0.00	XXX	0	х	0.77	HIS	153	А	-0.74	LYS	125	A
HIS	153	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.35	LYS	228	А
HIS	153	А								0.00	XXX	0	Х	0.00	XXX	0	Х	1.69	ASP	150	А
HIS	153	А								0.00	XXX	0	Х	0.00	XXX	0	Х	1.11	GLU	231	A
HIS	166	A	5.89	18	90	-0.61	331	0.00	0	0.00	xxx	0	Х	0.00	xxx	0	х	0.00	xxx	0	х
HIS	209	А	2.93	86	8	-3.09	522	0.00	0	0.00	xxx	0	х	0.00	xxx	0	х	-0.20	ARG	191	А
HIS	209	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.28	LYS	228	А
нтя	251	Δ	2 88	100	Q.	-3 33	569	0 00	0	0 00	xxx	0	x	0 00	xxx	0	x	-0 02	ARG	191	Δ
HIS	251	A	2.00	100	0	-5.55	505	0.00	Ū	0.00	XXX	0	x	0.00	XXX	0	X	-0.26	HIS	257	A
HIS	257	А	3.99	100	8	-3.13	667	0.00	0	0.29	GLN	270	А	0.23	HIS	257	А	-0.00	LYS	228	А
HIS	257	A								0.00	XXX	0	х	0.11	HIS	257	А	0.00	XXX	0	Х
HIS	282	A	2.01	100	80	-3.10	641	0.00	0	0.00	xxx	0	х	0.00	xxx	0	х	-1.39	ARG	289	A
CYS	15	А	10.34	61	8	1.82	453	0.00	0	-0.02	ARG	41	A	0.00	XXX	0	х	-0.09	ARG	22	А
CYS	15	А								0.00	XXX	0	х	0.00	XXX	0	х	-0.55	ARG	41	А
CYS	15	А								0.00	XXX	0	х	0.00	XXX	0	х	0.02	ASP	19	А
CYS	15	А								0.00	XXX	0	х	0.00	XXX	0	х	0.15	GLU	44	А
CYS	15	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	48	A
CYS	46	A	11.92	80	00	2.97	504	0.00	0	-0.05	THR	76	A	0.00	xxx	0	Х	0.00	xxx	0	х

1/13/2015

CYS	86	А	10.56	42	8	1.59	399	0.00	0	0.00	XXX	0	Х	-0.03	CYS	86	А	-0.15	ARG	115	А
CYS	86	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	87	A
CYS	131	А	11.75	80	8	2.75	505	0.00	0	0.00	XXX	0	Х	-0.02	PHE	135	А	0.01	ASP	137	А
CYS	131	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	CYS	374	A
CYS	207	А	10.78	55	8	2.19	436	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.53	ARG	216	А
CYS	207	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	204	A
CYS	300	А	10.02	17	8	0.74	329	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	ARG	261	В
CYS	300	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.26	ASP	298	А
CYS	300	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	247	В
CYS	317	А	11.85	100	8	3.20	588	0.00	0	-0.40	THR	224	А	0.00	XXX	0	Х	-0.00	LYS	217	А
CYS	317	A								-0.32	ASN	360	A	0.00	XXX	0	Х	0.38	ASP	221	A
CYS	374	А	9.07	0	8	0.46	224	0.00	0	0.12	ASP	377	А	-0.34	ASP	376	А	0.20	ASP	376	А
CYS	374	A								0.00	XXX	0	Х	-0.75	ASP	377	A	0.38	ASP	377	A
TYR	53	А	10.17	0	8	0.28	268	0.00	0	-0.05	ARG	52	А	0.00	XXX	0	Х	-0.21	ARG	52	А
TYR	53	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	GLU	77	А
TYR	53	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	93	A
TYR	170	А	11.71	22	8	1.23	342	0.00	0	-0.34	ARG	133	А	0.00	XXX	0	Х	-0.47	ARG	133	А
TYR	170	A								0.85	ASP	137	A	0.00	XXX	0	Х	0.44	ASP	137	A
TYR	232	А	10.66	50	8	1.63	422	0.00	0	-0.66	ARG	236	А	0.00	XXX	0	Х	-0.56	ARG	236	А
TYR	232	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.25	GLU	326	A
TYR	262	А	12.82	100	8	3.71	631	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	264	А
TYR	262	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-1.02	ARG	289	В
TYR	312	A	11.37	48	90	1.26	416	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	TYR	232	A
TYR	315	А	11.98	70	8	2.28	476	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.15	ARG	191	А
TYR	315	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	GLU	192	А
TYR	315	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	311	А
TYR	315	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.26	ARG	314	A
LYS	2	A	9.13	54	00	-1.43	432	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.06	ASP	95	A
LYS	37	A	10.33	9	00	-0.25	306	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	ASP	58	A
LYS	63	А	10.62	0	8	-0.09	136	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.21	GLU	59	А

1/13/2015

1/13/201	5							nbcr-222.ucs	sd.edu/opal-	jobs/apppd	b2pqr_1	.814212	20924	98428831181	6/1q0q.p	oropka					
LYS	66	A	10.36	0	8	-0.25	250	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.11	GLU	77	A
LYS	118	A	9.81	22	00	-1.02	344	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	0.14	GLU	92	А
LYS	118	А								0.00	XXX	0	х	0.00	XXX	0	х	0.05	ASP	93	А
LYS	118	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	95	A
LYS	125	A	13.89	100	80	-5.49	702	0.00	0	0.85	ASP	150	A	0.00	xxx	0	х	1.03	GLU	152	A
LYS	125	А								0.85	GLU	231	А	0.00	XXX	0	Х	0.29	ASP	221	А
LYS	125	A								0.00	XXX	0	Х	0.00	XXX	0	Х	1.17	GLU	234	А
LYS	125	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.62	GLU	126	А
LYS	125	A								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	ASP	150	А
LYS	125	A								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	GLU	231	A
LYS	140	A	10.29	0	8	-0.27	212	0.00	0	0.00	XXX	0	х	0.00	xxx	0	Х	-0.07	ARG	133	A
LYS	140	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	137	A
LYS	143	A	10.10	0	00	-0.30	184	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.10	LYS	140	A
LYS	217	А	13.30	100	8	-3.47	645	0.00	0	0.68	GLU	126	А	0.00	XXX	0	х	0.00	CYS	317	А
LYS	217	A			-				-	0.85	ASP	221	A	0.00	XXX	0	x	-0.12	ARG	386	A
LYS	217	A								0.00	XXX	0	x	0.00	XXX	0	x	-0.24	LYS	125	A
LYS	217	Δ								0.00	XXX	0	x	0.00	XXX	Ő	x	1.97	GLU	126	Δ
LYS	217	A								0.00	XXX	0	x	0.00	XXX	0	x	2.03	ASP	221	A
LYS	217	A								0.00	XXX	0	x	0.00	XXX	0	Х	1.09	GLU	340	A
LYS	228	A	10.72	100	90	-5.43	704	0.00	0	0.77	GLU	152	А	0.00	xxx	0	х	2.03	GLU	152	А
LYS	228	А								0.85	GLU	231	А	0.00	XXX	0	х	0.05	GLU	234	А
LYS	228	A								0.00	XXX	0	x	0.00	XXX	0	х	-0.68	LYS	125	A
LYS	228	A								0.00	XXX	0	x	0.00	XXX	0	х	0.59	ASP	150	A
LYS	228	A								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	GLU	231	A
LYS	295	A	10.71	0	00	-0.17	232	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	х	0.32	GLU	273	A
LYS	295	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	ASP	275	А
LYS	295	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	277	А
LYS	295	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	298	A
LYS	301	A	10.43	0	80	-0.12	199	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	х	0.12	GLU	273	A
LYS	301	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	298	А
LYS	301	A								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.15	LYS	295	A
LYS	319	A	10.72	0	e e	-0.17	209	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.19	ASP	313	A
LYS	319	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.20	GLU	323	A
LYS	366	А	10.40	0	8	-0.23	216	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	х	0.04	GLU	365	А
LYS	366	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.32	GLU	392	А
LYS	366	А								0.00	XXX	0	х	0.00	XXX	0	Х	-0.24	ARG	395	А

173

LYS LYS	391 391	A A	10.17	0 %	-0.13	174	0.00	0	0.00 0.00	XXX XXX	0 0	X X	0.00 0.00	XXX XXX	0 0	X X	0.14 -0.15	GLU ARG	392 395	A A
LYS	391	A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.19	LYS	366	Α
ARG	22	А	14.57	20 %	-0.76	337	0.00	0	0.48	ASP	19	А	0.00	XXX	0	Х	0.09	CYS	15	А
ARG	22	А							1.40	GLU	48	А	0.00	XXX	0	Х	0.10	GLU	44	А
ARG	22	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.33	ASP	19	А
ARG	22	A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.43	GLU	48	A
ARG	29	А	11.94	12 %	-0.53	314	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.10	ASP	93	А
ARG	29	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	95	А
ARG	29	A							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.16	ARG	52	A
ARG	41	А	13.08	14 %	-0.45	321	0.00	0	0.02	CYS	15	A	0.00	XXX	0	х	0.55	CYS	15	А
ARG	41	А							0.11	GLU	44	А	0.00	XXX	0	Х	0.04	GLU	48	А
ARG	41	А							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.09	ARG	22	А
ARG	41	A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.41	GLU	44	A
ARG	52	А	12.96	2 %	-0.41	286	0.00	0	0.05	TYR	53	A	0.00	XXX	0	х	0.21	TYR	53	А
ARG	52	A							0.36	ASP	93	A	0.00	XXX	0	Х	0.25	ASP	93	A
ARG	75	A	12.46	0 %	-0.08	166	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.04	GLU	77	A
ARG	115	A	12.16	18 %	-0.49	331	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.15	CYS	86	A
ARG	133	А	12.71	31 %	-0.89	367	0.00	0	0.34	ΨYR	170	А	0.00	xxx	0	x	0.28	ASP	137	А
ARG	133	A	12.71	01 0	0.05	507	0.00	Ũ	0.00	XXX	1,0	x	0.00	XXX	Ő	x	0.47	TYR	170	A
	100																			
ARG	191	А	11.47	47 %	-1.30	414	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	GLU	192	А
ARG	191	A							0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	TYR	315	A
ARG	196	A	12.41	0 %	-0.09	117	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
ARG	208	A	12.42	0 %	-0.08	172	0.00	0	0.00	xxx	0	х	0.00	XXX	0	х	0.00	XXX	0	Х
ARG	216	А	13.46	13 %	-0.53	318	0.00	0	0.65	ASP	204	А	0.00	XXX	0	х	0.53	CYS	207	А
ARG	216	Α							0.00	XXX	0	Х	0.00	XXX	0	Х	0.31	ASP	204	Α
ARG	236	А	13.16	43 %	-1.46	402	0.00	0	0.66	TYR	232	А	0.00	XXX	0	х	0.56	TYR	232	A
ARG	236	А							0.53	GLU	326	А	0.00	XXX	0	Х	0.36	GLU	326	Α
ARG	261	A	12.56	73 %	-2.14	485	0.00	0	1.21	GLU	247	A	0.00	xxx	0	х	0.03	GLU	273	в
ARG	261	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	298	В
ARG	261	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	CYS	300	В
ARG	261	А							0.00	XXX	0	Х	0.00	XXX	0	Х	0.84	GLU	247	А

ARG	277	А	13.08	28	8	-0.90	359	0.00	0	0.11	ASP	19	А	0.00	XXX	0	Х	-0.04	ARG	22	А
ARG	277	А								0.39	ASP	275	А	0.00	XXX	0	Х	0.47	ASP	19	А
ARG	277	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.55	ASP	275	A
ARG	289	А	12.78	100	8	-3.29	617	0.00	0	0.60	ASP	264	в	0.00	XXX	0	х	1.01	TYR	262	в
ARG	289	A								0.00	XXX	0	X	0.00	XXX	0	Х	1.96	ASP	264	в
ARG	314	A	12.66	0	00	-0.33	280	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.02	GLU	192	А
ARG	314	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.21	ASP	311	А
ARG	314	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.26	TYR	315	A
ARG	352	A	12.55	0	00	-0.14	225	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.19	ASP	355	A
ARG	370	A	12.49	0	00	-0.08	119	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	ASP	368	A
ARG	370	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	371	А
ARG	370	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	ASP	377	A
ARG	386	A	14.66	65	00	-1.60	463	0.00	0	0.60	GLU	340	A	0.00	XXX	0	Х	0.00	GLU	126	А
ARG	386	А								1.12	ASP	382	А	0.00	XXX	0	Х	1.21	GLU	340	А
ARG	386	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.83	ASP	382	A
ARG	390	A	12.10	2	00	-0.36	287	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	х	0.05	ASP	382	А
ARG	390	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.07	GLU	387	А
ARG	390	А								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.16	ARG	386	A
ARG	395	A	12.64	0	00	-0.27	208	0.00	0	0.02	GLU	392	A	0.00	XXX	0	х	0.38	GLU	392	A
N+	1	А	7.77	0	Ş	-0.25	225	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.09	LYS	2	A
N+	1	А								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	GLU	26	А
N+	1	A								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	95	A
ASP	19	в	2.91	26	8	0.94	355	0.11	0	-0.49	ARG	22	в	0.00	xxx	0	х	-0.40	HIS	23	в
ASP	19	В								-0.33	ARG	277	В	0.00	XXX	0	Х	-0.32	ARG	22	В
ASP	19	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.40	ARG	277	В
ASP	57	в	4.81	31	8	0.92	367	0.02	0	0.00	XXX	0	Х	0.00	xxx	0	Х	-0.02	LYS	37	в
ASP	57	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	58	В
ASP	58	В	2.80	0	00	0.41	234	0.00	0	-0.79	SER	61	В	-0.38	SER	61	В	-0.24	LYS	37	В
ASP	87	В	3.54	4	00	0.43	292	0.03	0	-0.71	GLN	83	В	0.00	XXX	0	Х	-0.00	ARG	115	В
ASP	93	в	2.15	0	8	0.31	245	0.00	0	-0.80	GLN	3	в	0.00	XXX	0	Х	-0.05	ARG	29	в
ASP	93	В								-0.75	ARG	52	в	0.00	XXX	0	Х	-0.05	LYS	118	в
ASP	93	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.32	ARG	52	в

ASP	95	В	3.42	17	8	0.62	330	0.21	0	0.00	XXX	0	Х	-0.83	GLN	3	В	-0.23	LYS	2	В
ASP	95	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	29	В
ASP	95	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.13	LYS	118	в
ASP	95	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.09	N+	1	в
ASP	95	в								0.00	XXX	0	x	0.00	XXX	0	x	0.07	ASP	93	в
1101	50	D								0.00		Ū		0.00		Ū		0.07	1101	20	2
ASP	137	В	3.22	6	8	0.54	297	0.04	0	-0.81	TYR	170	в	0.00	XXX	0	Х	-0.26	ARG	133	В
ASP	137	в								0.00	xxx	0	х	0.00	XXX	0	х	-0.09	LYS	140	в
ASP	150	В	6.49*	100	8	4.88	737	0.24	0	-0.78	LYS	125	в	-0.02	SER	151	в	0.15	GLU	126	в
ASP	150	В								-0.52	GLU	152	В	0.00	XXX	0	Х	-2.03	LYS	125	В
ASP	150	В								0.54	GLU	231	в	0.00	XXX	0	Х	-0.60	LYS	228	В
ASP	150	в								-1.21	GLU	234	в	0.00	XXX	0	х	2.03	GLU	231	в
		_											_			-					_
ASP	172	В	3.44	0	8	0.41	270	0.00	0	0.00	XXX	0	Х	-0.04	GLU	174	в	0.00	XXX	0	Х
ASP	172	В								0.00	XXX	0	Х	-0.73	GLN	175	В	0.00	XXX	0	Х
ASP	197	В	4.13	0	8	0.33	165	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
ASP	204	В	3.70	0	8	0.21	215	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.21	ARG	208	В
ASP	204	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.10	ARG	216	В
ASP	221	В	4.35	100	8	3.68	679	0.72	0	-0.84	ASN	339	В	0.00	XXX	0	Х	-0.33	LYS	125	В
ASP	221	В								-0.85	LYS	217	В	0.00	XXX	0	Х	0.21	GLU	340	В
ASP	221	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-2.03	LYS	217	В
ASP	264	В	3.88	100	8	3.64	600	0.75	0	-0.85	SER	266	В	-0.09	ASP	264	В	-1.96	ARG	289	А
ASP	264	В								-0.60	ARG	289	А	-0.81	SER	266	В	0.00	XXX	0	Х
ASP	275	В	3.98	61	8	1.96	451	0.00	0	-0.58	ARG	277	В	-0.69	ARG	277	В	-0.01	LYS	295	В
ASP	275	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	19	В
ASP	275	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	HIS	23	В
ASP	275	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.59	ARG	277	В
ASP	298	В	3.26	0	8	0.40	265	0.00	0	0.00	XXX	0	Х	-0.58	CYS	300	в	-0.10	ARG	261	А
ASP	298	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.10	LYS	295	В
ASP	298	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.17	LYS	301	В
ASP	311	В	3.62	0	8	0.43	282	0.00	0	-0.07	ARG	314	В	-0.32	ARG	314	В	-0.22	ARG	314	В
ASP	313	В	4.03	0	8	0.15	172	0.00	0	0.00	XXX	0	Х	-0.02	ASP	313	в	-0.08	LYS	319	В
ASP	313	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.17	ASP	311	В
ASP	355	В	3.97	28	8	1.07	361	0.13	0	0.00	XXX	0	Х	-0.83	ARG	352	В	-0.20	ARG	352	В

1/13/2015

176

1/13/2015	5							nbcr-222.ucs	d.edu/opa	ıl-jobs/apppd	b2pqr_1	.814212	20924	98428831181	6/1q0q.j	propka					
ASP	368	В	3.92	0	90	0.13	197	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.01	ARG	370	В
ASP	376	в	4.07	0	00	0.18	196	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	0.09	ASP	377	в
ASP	377	в	3.27	0	00	0.35	208	0.00	0	-0.16	CYS	374	в	-0.71	GLN	373	В	-0.01	ARG	370	в
ASP	382	в	4.82	67	90	2.06	469	0.40	0	-1.14	ARG	386	в	0.00	XXX	0	х	-0.05	ARG	390	в
ASP	382	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.61	GLU	340	В
ASP	382	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.86	ARG	386	В
GLU	26	В	4.35	0	90	0.18	188	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.03	N+	1	в
GLU	26	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.31	HIS	27	В
GLU	44	В	4.46	0	8	0.34	278	0.00	0	0.00	XXX	0	Х	0.00	xxx	0	Х	-0.09	ARG	22	в
GLU	44	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.40	ARG	41	в
GLU	44	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.11	GLU	48	В
GLU	48	в	3.46	9	8	0.73	306	0.01	0	-1.37	ARG	22	в	0.00	XXX	0	х	-0.03	ARG	41	в
GLU	48	в								0.00	XXX	0	Х	0.00	XXX	0	х	0.06	ASP	19	в
GLU	48	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.43	ARG	22	В
GLU	59	в	4.66	0	90	0.10	155	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	0.05	ASP	58	в
GLU	77	в	4.72	0	90	0.26	265	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	-0.04	LYS	66	в
GLU	92	в	4.52	0	8	0.08	165	0.00	0	0.00	xxx	0	х	0.00	xxx	0	Х	-0.08	LYS	118	в
GLU	92	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	93	В
GLU	126	в	5.71	100	8	3.86	643	0.15	0	-0.78	LYS	217	в	-0.35	GLY	103	в	-0.03	ARG	386	в
GLU	126	В								0.00	XXX	0	Х	-0.65	GLU	126	В	-0.61	LYS	125	В
GLU	126	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-2.03	LYS	217	в
GLU	126	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.72	ASP	221	в
GLU	126	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.93	GLU	340	В
GLU	152	в	10.62*	100	8	4.88	707	0.80	0	-0.74	LYS	228	в	-0.74	GLU	152	в	-0.99	LYS	125	в
GLU	152	В								0.52	ASP	150	В	0.00	XXX	0	Х	-2.03	LYS	228	В
GLU	152	В								0.87	GLU	231	В	0.00	XXX	0	Х	1.52	ASP	150	В
GLU	152	В								0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	GLU	231	В
GLU	174	В	4.79	0	00	0.16	251	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	0.12	ASP	172	в
GLU	192	В	4.32	0	8	0.19	245	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-0.34	ARG	191	в
GLU	192	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	ARG	314	В
GLU	231	в	1.51*	100	8	5.13	724	0.66	0	-0.47	ASN	227	в	0.00	XXX	0	х	-0.03	HIS	209	в
GLU	231	В								-0.85	LYS	125	в	0.00	XXX	0	Х	-2.03	LYS	125	В

1/13/2015	5							nbcr-222.ucs	sd.edu/opa	ll-jobs/apppd	b2pqr_1	1.81421	2092	498428831181	6/1q0q.	propka					
GLU	231	в								-0.54	ASP	150	В	0.00	XXX	0	Х	-1.09	HIS	153	в
GLU	231	в								-0.87	GLU	152	в	0.00	XXX	0	Х	-2.03	LYS	228	в
GLU	231	В								-0.85	LYS	228	в	0.00	XXX	0	Х	0.00	XXX	0	Х
GLU	234	в	12.78*	100	00	4.37	712	0.66	0	1.21	ASP	150	в	0.00	xxx	0	х	-1.14	LYS	125	в
GLU	234	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	LYS	228	в
GLU	234	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.18	GLU	126	в
GLU	234	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.34	GLU	152	в
GLU	234	в								0.00	XXX	0	Х	0.00	XXX	0	Х	1.97	ASP	150	в
GLU	234	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.78	GLU	231	В
GLU	247	В	3.30	58	80	1.63	445	0.04	0	-0.80	SER	180	в	0.00	XXX	0	х	-0.80	ARG	261	В
GLU	247	В								-1.27	ARG	261	В	0.00	XXX	0	Х	0.00	XXX	0	Х
GLU	273	В	4.91	28	90	0.85	361	0.10	0	-0.29	LYS	295	в	0.00	XXX	0	х	-0.03	ARG	261	A
GLU	273	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.09	ASP	275	В
GLU	273	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	ASP	298	в
GLU	273	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.36	LYS	295	В
GLU	323	в	4.58	0	80	0.34	282	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.27	LYS	319	В
GLU	326	в	4.71	0	8	0.16	216	0.00	0	0.00	xxx	0	х	0.00	xxx	0	х	-0.05	ARG	236	в
GLU	326	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	GLU	323	В
GLU	340	в	3.93	100	8	2.89	577	0.65	0	-0.48	ASN	336	в	-0.75	AT.A	104	в	-1.03	LYS	217	в
GLU	340	В			-				-	-0.52	ARG	386	В	0.00	XXX	0	x	-1.33	ARG	386	В
GLU	365	в	4.68	0	00	0.26	223	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	-0.10	LYS	366	в
GLU	365	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	GLU	392	В
GLU	371	В	3.85	18	8	0.81	333	0.08	0	0.00	XXX	0	Х	-0.68	GLN	329	в	-0.14	ARG	370	В
GLU	371	В								0.00	XXX	0	Х	-0.71	ALA	330	В	0.00	XXX	0	Х
GLU	387	в	3.95	0	8	0.22	204	0.00	0	-0.20	ARG	390	в	0.00	XXX	0	Х	-0.26	ARG	390	В
GLU	387	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.31	LYS	391	В
GLU	392	в	2.80	1	8	0.53	283	0.00	0	-0.85	SER	362	в	0.00	XXX	0	х	-0.00	LYS	391	в
GLU	392	в								-0.69	LYS	366	В	0.00	XXX	0	Х	-0.31	ARG	395	в
GLU	392	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.38	LYS	366	В
C-	398	В	3.30	0	90	0.10	110	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
HIS	23	В	6.72	10	8	-0.55	309	0.00	0	0.00	XXX	0	Х	0.65	HIS	23	в	-0.08	ARG	22	в
HIS	23	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.22	ARG	277	В
HIS	23	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.40	ASP	19	В
HIS	23	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	ASP	275	В

178

HIS HIS	27 27	B B	6.17	10	8	-0.53	308	0.00	0	0.00	XXX XXX	0 0	X X	0.00	XXX XXX	0 0	X X	-0.00 -0.10	LYS N+	2 1	B B
HIS	27	В								0.00	XXX	0	X	0.00	XXX	0	X	0.31	GLU	26	В
HIS	153	в	2.68	100	80	-3.92	718	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.66	LYS	125	в
HIS	153	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.34	LYS	228	В
HIS	153	В								0.00	XXX	0	Х	0.00	XXX	0	Х	1.09	GLU	231	В
HIS	166	В	5.91	17	90	-0.59	330	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	XXX	0	Х
HIS	209	В	3.25	85	8	-3.02	519	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.26	LYS	228	В
HIS	209	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	GLU	231	в
HIS	251	в	3.40	100	8	-3.33	564	0.00	0	0.02	GLN	253	в	0.48	HIS	251	в	-0.00	ARG	191	в
HIS	251	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.26	HIS	257	в
HTS	257	в	3,97	100	8	-3.14	666	0.00	0	0.28	GLN	270	в	0.23	HTS	257	в	-0.01	LYS	228	в
HIS	257	В		100	•				Ū	0.00	XXX	0	X	0.12	HIS	257	В	0.00	XXX	0	x
HIS	282	в	2.10	100	90	-3.09	640	0.00	0	0.00	XXX	0	х	0.07	HIS	282	В	-1.39	ARG	289	В
CYS	15	в	9.90	59	8	1.76	447	0.00	0	-0.35	ARG	41	в	-0.04	CYS	15	в	-0.09	ARG	22	в
CYS	15	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	19	в
CYS	15	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.15	GLU	44	в
CYS	15	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.53	ARG	41	В
CYS	46	в	11.93	77	90	2.93	498	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.00	XXX	0	Х
CYS	86	в	10.64	44	8	1.63	404	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.14	ARG	115	в
CYS	86	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	57	В
CYS	86	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	87	В
CYS	131	В	11.77	81	80	2.76	509	0.00	0	0.00	XXX	0	Х	-0.01	PHE	135	В	0.01	CYS	374	В
CYS	207	в	10.83	54	8	2.01	432	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	ARG	208	в
CYS	207	в								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.27	ARG	216	в
CYS	207	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.12	ASP	204	В
CYS	300	в	9.97	15	8	0.73	324	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	ARG	261	А
CYS	300	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.02	LYS	301	В
CYS	300	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	247	А
CYS	300	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.25	ASP	298	в
CYS	317	в	12.04	100	00	3.22	592	0.00	0	-0.34	THR	224	в	-0.02	CYS	317	в	0.39	ASP	221	в
CYS	317	в								-0.22	ASN	360	в	0.00	XXX	0	х	0.00	XXX	0	Х

CYS CYS	374 374	B B	9.14	0	90	0.47	227	0.00	0	0.16 0.00	ASP XXX	377 0	B X	-0.43 -0.68	ASP ASP	376 377	B B	0.23 0.38	ASP ASP	376 377	B B
TYR TYP	53	B	10.37	0	90	0.28	275	0.00	0	0.00	XXX	0	X v	0.00	XXX	0	X Y	-0.18	ARG	52 77	B
	53	B								0.00	XXX XXX	0	л У	0.00	XXX XXX	0	л У	0.24	7 CD	87	B
TIN	53	B								0.00	VVV	0	x v	0.00	VVV	0	x x	0.02	AGD	07	B
IIK	55	D								0.00	ллл	U	л	0.00	ΛΛΛ	Ū	л	0.02	ADI))	Б
TYR	170	В	11.85	25	8	1.32	352	0.00	0	-0.37	ARG	133	В	0.00	XXX	0	Х	-0.34	ARG	133	В
TYR	170	В								0.81	ASP	137	В	0.00	XXX	0	Х	0.44	ASP	137	В
TYR	232	В	10.47	51	00	1.60	423	0.00	0	-0.62	ARG	236	В	0.00	XXX	0	Х	-0.59	ARG	236	В
TYR	232	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	GLU	326	В
TYR	262	в	12.79	100	8	3.66	629	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	-1.01	ARG	289	А
TYR	262	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	264	В
TYR	312	в	11.10	43	8	1.02	402	0.00	0	0.00	xxx	0	x	0.00	xxx	0	x	0.08	ͲYR	232	в
		2			•	1000	102		•			, i								202	2
TYR	315	В	12.23	72	8	2.54	483	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.15	ARG	191	В
TYR	315	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	GLU	192	В
TYR	315	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.14	ASP	311	в
TYR	315	В								0.00	XXX	0	Х	0.00	XXX	0	Х	-0.32	ARG	314	В
LYS	2	В	10.38	16	8	-0.34	325	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.23	ASP	95	В
LYS	37	в	10.63	0	8	-0.14	243	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.02	ASP	57	в
LYS	37	в								0.00	XXX	0	Х	0.00	XXX	0	Х	0.24	ASP	58	в
LYS	63	в	10.43	0	90	-0.07	124	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.00	XXX	0	Х
T 110		-	10.00	0	0	0 05	244	0 00	0	0 00		0		0 00		0		0.04	a t 11		
LIS	66	в	10.29	0	8	-0.25	244	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.04	GLU	//	в
LYS	118	В	9.57	27	8	-1.19	358	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	GLU	92	В
LYS	118	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.05	ASP	93	в
LYS	118	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.13	ASP	95	В
LYS	125	В	13.75	100	00	-5.52	703	0.00	0	0.78	ASP	150	в	0.00	xxx	0	х	0.99	GLU	152	в
LYS	125	В								0.85	GLU	231	В	0.00	XXX	0	Х	0.33	ASP	221	в
LYS	125	В								0.00	XXX	0	Х	0.00	XXX	0	Х	1.14	GLU	234	В
LYS	125	В								0.00	XXX	0	Х	0.00	XXX	0	Х	0.61	GLU	126	В
LYS	125	в								0.00	XXX	0	Х	0.00	XXX	0	х	2.03	ASP	150	в
LYS	125	в								0.00	XXX	0	Х	0.00	XXX	0	х	2.03	GLU	231	в
LYS	140	в	10.38	0	QO	-0.19	208	0.00	0	0.00	xxx	0	х	0.00	xxx	0	х	-0.02	ARG	133	В

1/13/2015						nbcr-222.ucsc	l.edu/opal-	jobs/apppd	b2pqr_1	.814212	209249842	8831181	6/1q0q.pr	ropka					
LYS 14	40 B							0.00	XXX	0	Х	0.00	XXX	0	х	0.09	ASP	137	В
LYS 14	13 B	10.43	0 %	-0.07	121	0.00	0	0.00	XXX	0	х	0.00	XXX	0	Х	0.00	XXX	0	х
LYS 21	l7 В	13.29	100 %	-3.53	643	0.00	0	0.78	GLU	126	В	0.00	XXX	0	Х	-0.12	ARG	386	в
LYS 21	l7 в							0.85	ASP	221	В	0.00	XXX	0	х	-0.30	LYS	125	в
LYS 21	17 в							0.00	XXX	0	Х	0.00	XXX	0	х	2.03	GLU	126	в
LYS 21	17 в							0.00	XXX	0	Х	0.00	XXX	0	х	2.03	ASP	221	в
LYS 21	17 B							0.00	XXX	0	Х	0.00	XXX	0	Х	1.03	GLU	340	В
LYS 22	28 B	10.85	100 %	-5.30	707	0.00	0	0.74	GLU	152	В	0.00	XXX	0	х	2.03	GLU	152	в
LYS 22	28 B							0.85	GLU	231	В	0.00	XXX	0	Х	0.06	GLU	234	В
LYS 22	28 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.66	LYS	125	В
LYS 22	28 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.60	ASP	150	в
LYS 22	28 B							0.00	XXX	0	Х	0.00	XXX	0	Х	2.03	GLU	231	В
LYS 29	95 B	11.01	0 %	-0.24	252	0.00	0	0.29	GLU	273	В	0.00	XXX	0	х	-0.01	ARG	261	A
LYS 29	95 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	275	В
LYS 29	95 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.10	ASP	298	В
LYS 29	95 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.36	GLU	273	В
LYS 30	01 в	10.58	0 %	-0.07	103	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	х	0.17	ASP	298	в
LYS 30	D1 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.02	CYS	300	в
LYS 30	01 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	LYS	295	В
LYS 31	19 B	10.69	0 %	-0.15	203	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.08	ASP	313	в
LYS 31	19 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.27	GLU	323	В
LYS 36	56 B	11.02	0 %	-0.48	254	0.00	0	0.69	GLU	392	В	0.00	XXX	0	Х	0.10	GLU	365	в
LYS 36	56 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.17	ARG	395	в
LYS 36	56 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.38	GLU	392	В
LYS 39	91 В	10.43	0 %	-0.28	193	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	Х	0.31	GLU	387	в
LYS 39	91 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.04	ARG	390	В
LYS 39	91 В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.00	GLU	392	в
LYS 39	91 B							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	ARG	395	В
ARG 2	22 В	14.53	20 %	-0.78	337	0.00	0	0.49	ASP	19	В	0.00	XXX	0	х	0.09	CYS	15	в
ARG 2	22 B							1.37	GLU	48	В	0.00	XXX	0	Х	0.09	GLU	44	В
ARG 2	22 B							0.00	XXX	0	Х	0.00	XXX	0	Х	0.32	ASP	19	В
ARG 2	22 В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.43	GLU	48	В
ARG 2	29 В	12.28	0 %	-0.26	262	0.00	0	0.00	xxx	0	Х	0.00	XXX	0	х	0.05	ASP	93	в
ARG 2	29 В							0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	95	В
ARG 2	29 В							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.03	ARG	52	в

181

1/13/2015	5							nbcr-222.uc	sd.edu/opal-	jobs/apppd	b2pqr_1	1.814212	209249	8428831181	6/1q0q.pr	ropka					
ARG ARG	41 41	B B	13.35	11	00	-0.40	313	0.00	0	0.35	CYS XXX	15 0	B X	0.00	XXX XXX	0 0	X X	0.40	GLU GLU	44 48	B B D
ARG	41	в В								0.00	XXX	0	X X	0.00	XXX	0	X X	0.53	CYS	22 15	в В
ARG ARG	52 52	B B	13.25	5	00	-0.50	296	0.00	0	0.75 0.00	ASP XXX	93 0	B X	0.00	XXX XXX	0 0	X X	0.18 0.32	TYR ASP	53 93	B B
ARG	75	В	12.44	0	00	-0.06	139	0.00	0	0.00	XXX	0	х	0.00	XXX	0	х	0.00	XXX	0	Х
ARG ARG	115 115	B B	12.23	15	90	-0.41	323	0.00	0	0.00 0.00	XXX XXX	0 0	X X	0.00 0.00	XXX XXX	0 0	X X	0.14 0.00	CYS ASP	86 87	B B
ARG ARG	133 133	B B	12.74	26	ò	-0.73	354	0.00	0	0.37 0.00	TYR XXX	170 0	B X	0.00	XXX XXX	0 0	X X	0.26 0.34	ASP TYR	137 170	B B
ARG ARG	191 191	B B	12.22	24	90	-0.74	349	0.00	0	0.00	XXX XXX	0 0	X X	0.00	XXX XXX	0 0	X X	0.34	GLU TYR	192 315	B B
ARG	191	в	12.44	0	00	-0.06	74	0.00	0	0.00	xxx	0	x	0.00	XXX	0	x	0.00	XXX	0	х
ARG ARG	208 208	B B	12.51	0	00	-0.23	199	0.00	0	0.00	xxx xxx	0 0	X X	0.00	XXX XXX	0 0	X X	0.21 0.03	ASP CYS	204 207	B B
ARG ARG	216 216	B B	12.47	18	ò	-0.40	331	0.00	0	0.00	XXX XXX	0 0	X X	0.00	XXX XXX	0 0	X X	0.10 0.27	ASP CYS	204 207	B B
ARG ARG	236 236	B B	12.36	43	90	-1.40	403	0.00	0	0.62 0.00	TYR XXX	232 0	B X	0.00	xxx xxx	0 0	x x	0.59 0.05	TYR GLU	232 326	B B
ARG ARG ARG	261 261 261	B B B	12.70	70	90	-1.99	476	0.00	0	1.27 0.00 0.00	GLU XXX XXX	247 0 0	B X X	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.00 0.09 0.03	GLU ASP CYS	273 298 300	A A A
ARG ARG ARG	277 277 277	B B B R	13.49	28	90	-0.89	359	0.00	0	0.33	ASP ASP XXX	19 275 0	B B X	0.00	XXX XXX XXX	0 0 0	X X X X	-0.02 0.40	ARG ASP ASP	247 22 19 275	B B B B
ARG ARG	289 289	B B	12.63	100	Q	-3.24	618	0.00	0	0.50	ASP XXX	264 0	A X	0.00	xxx xxx	0 0	x x	1.02 1.86	TYR ASP	262 264	A A
ARG ARG ARG	314 314 314	B B B	12.52	8	0 O	-0.62	303	0.00	0	0.07 0.00 0.00	ASP XXX XXX	311 0 0	B X X	0.00 0.00 0.00	XXX XXX XXX	0 0 0	X X X	0.03 0.22 0.32	GLU ASP TYR	192 311 315	B B B

ARG 35	52 E	12.56	0	00	-0.14	212	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.20	ASP	355	В
ARG 37 ARG 37	70 E 70 E	12.47	0	0/0	-0.19	169	0.00	0	0.00 0.00	xxx xxx	0 0	X X	0.00 0.00	XXX XXX	0 0	X X	0.01 0.14	ASP GLU	368 371	B B
ARG 37	70 E	5							0.00	XXX	0	Х	0.00	XXX	0	Х	0.01	ASP	377	В
ARG 38	36 E	14.67	69	8	-1.71	475	0.00	0	0.52	GLU	340	В	0.00	XXX	0	Х	0.03	GLU	126	В
ARG 38	36 E	1							1.14	ASP	382	В	0.00	XXX	0	Х	1.33	GLU	340	В
ARG 38	36 E	5							0.00	XXX	0	Х	0.00	XXX	0	Х	0.86	ASP	382	В
ARG 39	90 E	12.46	3	8	-0.39	290	0.00	0	0.20	GLU	387	В	0.00	XXX	0	Х	0.05	ASP	382	В
ARG 39	90 E	5							0.00	XXX	0	Х	0.00	XXX	0	Х	0.26	GLU	387	В
ARG 39	90 E	•							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.16	ARG	386	В
ARG 39	95 E	12.58	0	0¦0	-0.23	197	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	0.31	GLU	392	В
N+	1 E	7.66	0	8	-0.25	221	0.00	0	0.00	XXX	0	Х	0.00	XXX	0	Х	-0.14	LYS	2	В
N+	1 E	5							0.00	XXX	0	Х	0.00	XXX	0	Х	0.03	GLU	26	В
N+	1 E	5							0.00	XXX	0	Х	0.00	XXX	0	Х	-0.06	ARG	29	В
N+	1 E	5							0.00	XXX	0	Х	0.00	XXX	0	х	0.09	ASP	95	В

Residues that are found to be 'coupled', i.e. titrates together, has been marked by '*' in the above section. Please rerun PropKa with the --display-coupled-residues option for detailed information.

SUMMAR	Y OF	THIS	PREDI	CTION	
R	ESID	UE	рКа	pKmodel	ligand atom-type
ASP	19	А	3.18	3.80	
ASP	57	А	4.68	3.80	
ASP	58	А	2.97	3.80	
ASP	87	A	3.70	3.80	
ASP	93	А	3.29	3.80	
ASP	95	А	3.65	3.80	
ASP	137	А	3.26	3.80	
ASP	150	А	1.23	3.80	
ASP	172	А	3.56	3.80	
ASP	197	А	4.06	3.80	
ASP	204	А	3.06	3.80	
ASP	221	А	4.58	3.80	
ASP	264	А	4.07	3.80	
ASP	275	А	4.13	3.80	
ASP	298	А	3.40	3.80	
ASP	311	А	3.36	3.80	
ASP	313	А	3.96	3.80	
ASP	355	А	3.98	3.80	

http://nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka

ASP	368	А	3.91	3.80
ASP	376	А	4.05	3.80
ASP	377	А	3.27	3.80
ASP	382	А	4.83	3.80
GLU	26	А	4.44	4.50
GLU	44	А	4.37	4.50
GLU	48	А	3.41	4.50
GLU	59	А	4.50	4.50
GLU	77	А	4.52	4.50
GLU	92	А	4.61	4.50
GLU	126	А	6.06	4.50
GLU	152	А	10.96	4.50
GLU	174	А	4.82	4.50
GLU	192	А	4.49	4.50
GLU	231	А	4.51	4.50
GLU	234	А	12.81	4.50
GLU	247	А	3.44	4.50
GLU	273	А	5.10	4.50
GLU	323	А	4.69	4.50
GLU	326	А	3.96	4.50
GLU	340	А	3.88	4.50
GLU	365	А	4.74	4.50
GLU	371	А	3.97	4.50
GLU	387	А	4.63	4.50
GLU	392	А	4.20	4.50
C-	398	А	3.31	3.20
HIS	23	А	6.08	6.50
HIS	27	А	6.02	6.50
HIS	153	А	5.02	6.50
HIS	166	А	5.89	6.50
HIS	209	А	2.93	6.50
HIS	251	А	2.88	6.50
HIS	257	А	3.99	6.50
HIS	282	А	2.01	6.50
CYS	15	А	10.34	9.00
CYS	46	А	11.92	9.00
CYS	86	А	10.56	9.00
CYS	131	А	11.75	9.00
CYS	207	А	10.78	9.00
CYS	300	А	10.02	9.00
CYS	317	А	11.85	9.00
CYS	374	А	9.07	9.00
TYR	53	А	10.17	10.00
TYR	170	А	11.71	10.00
TYR	232	А	10.66	10.00
TYR	262	А	12.82	10.00

TYR	312	А	11.37	10.00
TYR	315	А	11.98	10.00
LYS	2	А	9.13	10.50
LYS	37	А	10.33	10.50
LYS	63	А	10.62	10.50
LYS	66	А	10.36	10.50
LYS	118	А	9.81	10.50
LYS	125	А	13.89	10.50
LYS	140	А	10.29	10.50
LYS	143	А	10.10	10.50
LYS	217	А	13.30	10.50
LYS	228	А	10.72	10.50
LYS	295	А	10.71	10.50
LYS	301	А	10.43	10.50
LYS	319	А	10.72	10.50
LYS	366	А	10.40	10.50
LYS	391	А	10.17	10.50
ARG	22	А	14.57	12.50
ARG	29	А	11.94	12.50
ARG	41	А	13.08	12.50
ARG	52	А	12.96	12.50
ARG	75	А	12.46	12.50
ARG	115	А	12.16	12.50
ARG	133	А	12.71	12.50
ARG	191	А	11.47	12.50
ARG	196	А	12.41	12.50
ARG	208	А	12.42	12.50
ARG	216	А	13.46	12.50
ARG	236	А	13.16	12.50
ARG	261	А	12.56	12.50
ARG	277	А	13.08	12.50
ARG	289	А	12.78	12.50
ARG	314	А	12.66	12.50
ARG	352	А	12.55	12.50
ARG	370	А	12.49	12.50
ARG	386	А	14.66	12.50
ARG	390	А	12.10	12.50
ARG	395	А	12.64	12.50
N+	1	А	7.77	8.00
ASP	19	в	2.91	3.80
ASP	57	в	4.81	3.80
ASP	58	в	2.80	3.80
ASP	87	в	3.54	3.80
ASP	93	в	2.15	3.80
ASP	95	в	3.42	3.80
ASP	137	В	3.22	3.80

ASP 150 B 3.80 6.49 ASP 172 B 3.44 3.80 ASP 197 B 3.80 4.13 ASP 204 B 3.70 3.80 ASP 221 B 4.35 3.80 ASP 264 B 3.88 3.80 ASP 275 B 3.98 3.80 ASP 298 B 3.26 3.80 ASP 311 B 3.80 3.62 ASP 313 B 4.03 3.80 ASP 355 B 3.97 3.80 ASP 368 B 3.92 3.80 ASP 376 B 3.80 4.07 ASP 377 B 3.80 3.27 ASP 382 B 4.82 3.80 GLU 26 B 4.35 4.50 GLU 44 B 4.46 4.50 GLU 48 B 3.46 4.50 GLU 59 B 4.66 4.50 GLU 77 B 4.50 4.72 GLU 92 B 4.52 4.50 GLU 126 B 5.71 4.50 GLU 152 B 10.62 4.50 GLU 174 B 4.79 4.50 GLU 192 B 4.32 4.50 GLU 231 B 1.51 4.50 GLU 234 B 12.78 4.50 GLU 247 B 3.30 4.50 GLU 273 B 4.50 4.91 GLU 323 B 4.58 4.50 GLU 326 B 4.71 4.50 GLU 340 B 3.93 4.50 GLU 365 B 4.50 4.68 GLU 371 B 3.85 4.50 GLU 387 B 3.95 4.50 GLU 392 B 2.80 4.50 C- 398 B 3.30 3.20 HIS 23 B 6.72 6.50 HIS 27 B 6.17 6.50 HIS 153 B 6.50 2.68 HIS 166 B 6.50 5.91 HIS 209 B 3.25 6.50 HIS 251 B 3.40 6.50 HIS 257 B 3.97 6.50 6.50 HIS 282 B 2.10 CYS 15 B 9.90 9.00

http://nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka

46 B 9.00 CYS 11.93 CYS 86 B 10.64 9.00 CYS 131 B 9.00 11.77 CYS 207 B 10.83 9.00 CYS 300 B 9.97 9.00 CYS 317 B 12.04 9.00 CYS 374 B 9.14 9.00 TYR 53 B 10.37 10.00 TYR 170 B 11.85 10.00 TYR 232 B 10.47 10.00 TYR 262 B 12.79 10.00 TYR 312 B 11.10 10.00 TYR 315 B 10.00 12.23 2 B 10.50 10.38 LYS LYS 37 B 10.63 10.50 63 B 10.43 10.50 LYS LYS 66 B 10.29 10.50 LYS 118 B 9.57 10.50 LYS 125 B 13.75 10.50 LYS 140 B 10.38 10.50 LYS 143 B 10.43 10.50 LYS 217 B 13.29 10.50 LYS 228 B 10.85 10.50 LYS 295 B 11.01 10.50 LYS 301 B 10.58 10.50 LYS 319 B 10.69 10.50 LYS 366 B 11.02 10.50 LYS 391 B 10.50 10.43 22 B 12.50 ARG 14.53 29 B ARG 12.28 12.50 ARG 41 B 13.35 12.50 ARG 52 B 13.25 12.50 ARG 75 B 12.44 12.50 ARG 115 B 12.23 12.50 ARG 133 B 12.74 12.50 ARG 191 B 12.22 12.50 ARG 196 B 12.44 12.50 ARG 208 B 12.51 12.50 ARG 216 B 12.47 12.50 ARG 236 B 12.50 12.36 ARG 261 B 12.50 12.70 ARG 277 B 12.50 13.49

ARG 289 B

ARG 314 B

ARG 352 B

ARG 370 B

nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka

http://nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka

12.50

12.50

12.50

12.50

12.63

12.52

12.56

12.47

1/13/2015			nbcr-222.ucsd.edu/opal-jobs/apppdb2pqr_1.8142120924984288311816/1q0q.propka
ARG	386 B 14	.67 12	2.50
ARG	390 B 12	.46 12	2.50
ARG	395 B 12	.58 12	- 50
N+	1в 7	.66 8	3.00
Free er	nergy of	folding (k	cal/mol) as a function of pH (using neutral reference)
0.00	115.93		
2.00	112.54		
2.00	101 87		
4 00	8/ 02		
5 00	75 56		
6 00	70.96		
7 00	69 49		
8.00	73.69		
9.00	83.58		
10.00	103.51		
11.00	129.66		
12.00	151.92		
13.00	168.65		
14.00	180.06		
The pH	of optimum	ı stability	y is 6.7 for which the free energy is 69.2 kcal/mol at 298K
Could r	not determi	ne pH valu	ies where the free energy is within 80 % of maximum
Could r	not determi	ne where t	he free energy is positive
Ductoin	h		ad unfolded state as a function of mu
Protein	n charge of	folded an	a unifolded state as a function of ph
0 00	80 00	20 27	
1 00	89.99	88 97	
2 00	89.06	84 77	
3 00	81 91	70 68	
4 00	51 15	40 23	
5 00	14 24	10 39	
6.00	-0.32	-3.36	
7.00	-10.36	-8.99	
8.00	-16.16	-11.56	
9.00	-25.79	-14.95	
10.00	-43.86	-26.00	
11.00	-66.83	-47.76	
12.00	-83.04	-69.48	
13.00	-105.80	-94.70	
14.00	-114.70	-109.22	
The pI	is 5.65 (folded) an	ud 5.97 (unfolded)

Appendix C: Copyright Permissions

Rightslink® by Copyright Clearance Center

9/20/2016

ore?

Copyright © 2016, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- · Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school
- · Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

https://s100.copyright.com/AppDispatchServlet#formTop

1/1

Figure C.1: Reprinted with permission from White, J.K.; Handa, S; Vankayala, S.L.; Woodcock, H.L., Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions, J. Phys. Chem. B, 2016, 120 (37), pp 99229934, DOI: 10.1021/acs.jpcb.6b07248. Copyright 2016 American Chemical Society.