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Abstract of Dissertation

Line Bundles of Rational Degree Over Perfectoid Space

We begin the story by recalling the notion of degree in topology as given
in [Hatcher, 2002, pp 134]. A map of spheres f : S — S™ induces a map in
homology ¢ : H,(S™) — H,(S™) given as a group homomorphism 7 — Z.
This map is simply multiplication by d € Z which is called the degree of the

map.

If we take direct limit of these maps (1) as in example 3F.3 [Hatcher, 2002,

pp 312] by setting d = p a prime

(1) 725757 ...

we get a moore space M(Z[1/p]l,n). We can now talk about maps from
Z[1/p] — Z[1/pl, and degree d as an element of Z[1/p]. In this thesis we
transfer the notion of degree as an element of Z[1/p] to algebra, analysis and

geometry.

We start with non-archimedean analysis and define order and degree for
power series with terms of rational degree, and then use these definitions to
prove the analogues of theorems in complex analysis: Weierstafl Division,

Weierstrafl preparation and Maximum principal for the case of rational degrees.

We now move onto algebraic geometry and in chapter 7 we describe vector

bundles over perfectoid projective and affine spaces. This is similar to descrip-
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tion of vector bundles over P! given by Grothendieck. This result requires us

to describe and prove the unit elements of rational power series.

In the chapter 8 we define line bundles with degree d € Z[1/p] and use it
to compute Picard groups and show equivalence of Cartier and Weil divisors

n,ad,perf
on Py .

In the chapter 9 we compute cohomology of line bundles of rational degree
and show these are of infinite dimension. The proof uses Cech complex as in
Serre’s corresponding result of cohomology of line bundles.

Finally, in chapter 10 we describe differential forms on ]PE’ad’perfand show

that it is also of infinite dimension. We also show that standard Euler sequence

holds and also understand why standard Reimann Roch would not hold.
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Chapter 1

Introduction to Rigid

Analytic Geometry

The methods of complex-analytic geometry can be used for studying algebraic
geometry over C and for computations of coherent sheaf cohomology. We
want similar methods and theory for arithmetic geometry where we use p-
adic numbers (Qp) or non-archimedean fields, but this theory does not have
the ‘right topology’ since the underlying field is totally disconnected and thus
we cannot define manifolds the same way as in C. The problem of topology
is overcome by using Grothendieck topology instead of regular topology and
working with Etale Cohomolgy. This new cohomology theory was used by

Grothendieck and Deligne to prove the Weil conjectures.

John Tate in the 60’s profitably used Grothedieck topology to get a well
behaved coherent sheaf and its cohomology for non-archimedean spaces. This

theory introduced by John Tate is called rigid analytic geometry and it has



many important applications such as the Langlands correspondence relating
automorphic and Galois representations. The central subject of arithmetic ge-
ometry is the study of Galois representations which can be associated with
Etale Cohomology of a scheme defined over number fields. The most famous
example is that of elliptic curves and modular forms. We can associate a Tate
Module to an elliptic curve with a Galois action and have an associated Ga-
lois Representation . This was used in the proof of Fermat’s Last theorem
via Shimura-Taniyama conjecture. The perfectoid rings arise from Fontaine’s
period rings (defined by Jean-Marc Fontaine) which are a collection of commu-
tative rings (over Cp) that are used to classify p-adic Galois representations.
Informally, we can think of obtaining perfectoid spaces by attaching all pth
power roots, for example, if we start with Q, its perfectoid analogue would be
completion of Qp (p'/?™), more formal details are in Chapter 4. These spaces
have been used to prove many recent results including the weight-monodromy
conjecture. The idea is to construct an equivalence of categories from the realm
of algebraic geometry to that of rigid geometry in the sense of Roland Huber.
Perhaps, the most interesting part of Perfectoid space is the correspondence
between fields of characteristic zero and fields of characteristic p, this corre-
spondence is constructed conceptually via tilting functors or the computational

approach of Witt vectors.

In this thesis we lay the foundation for rational degree d as an element of
Z.[1/p] by using perfectoid analogue of projective space P™, and consider power
series instead of polynomials. We start the groundwork by proving Weierstrafl

theorems for perfectoid spaces which are analogues of standard Weierstrafl the-



orems in complex analysis. We then move onto defining sheaves for Projective
perfectoid analogue and prove perfectoid analogues of Gorthendieck’s classi-
fication theorem on P!, Serre’s theorem on Cohomology of line bundles. As
intermediate results we also compute Picard groups and define Cartier and
Weil divisors for Perfectoid projective space, again these are analogous to their

counterparts in Algebraic Geometry.

We start with the definition of Non-Archimedean absolute value.
Definition 1.0.1. Let K be field. A map || : K — Ry is called a non-
Archimedean absolute value if for all «, 3 € K the following hold.

(1) laf =0iff « =0.
(ii) loBl = lodIBl,
(iii) o+ Bl < max{lo, B}

An absolute value |-| is trivial if the only values it takes is 0,1 € R. We
shall assume that absolute value is non trivial.

If we take this absolute value to define the distance function by setting
d(a, B) = | — B| we can talk about disks/balls around points a € K with some

radius v € R~p.

(1.1) Open disc: D™ (a,7) ={x € K : d(x,a) <}
(1.2) Closed disc: D (a,7) ={x €K : d(x,a) <71}
(1.3) Boundary: 9D(a,r) ={x € K : d(x,a) =1}

The following properties hold



1. The topology of K is totally disconnected.
2. An Open disc is both open and closed.

3. If two discs intersect (D1 N D, # &) then one disc contains the other

(D] CDjyor D, C D]).

We define holomorphic (or analytic) functions via convergent power series.
This leads to a problem that a function could be locally analytic but might
not enjoy global convergence properties, since, non-empty open subsets are not
connected, locally analytic functions might not have reasonable global proper-

ties. This problem can be resolved via Grothendieck Topology.

1.1 Restricted Power Series

We use lemma 1.1.1 [Bosch, 2014, Lemma 3, p10] as a guiding light to define

restricted power series , which states that

Lemma 1.1.1. If K 2s complete, the series Zigo a; where a; € K, s con-

vergent off limi_., |ai| =0

Let K2 be algebraic closure of a complete field K, the absolute value on K

extends uniquely to K#8. We can now define a unit ball in K28™ given as

(1.4) B™(K28) = {(x1,...,%n) € Kale™ . Ixi] < 1 for all i}

We can now define power series which converge globally on B™(K2#) as



given in [Bosch, 2014, Lemma 1, p12].

Lemma 1.1.2. A formal power series where v = (U1,...,VUn)

(1.5) Z a;vt = Z ai]_”inv'ﬁ‘ vl e Ky, ..., U0l
ielNn ielNn

converges globally on B™(K%) iff lim ;| lai| = 0.

1.2 Tate Algebra

The K algebra T, = K (v1,...,0n) (by convention Tp = K) of all formal power
series converging on the unit ball B™(K?€) is called Tate Algebra of strictly

convergent power series.

(1.6) > aw' €Klr,...,vnll, @i €K, lim |ag=0

i|—
ieNn lt/—o0

1.2.1 Gaufl Norm

We can define Gau3 norm on the Tate algebra T,

(1.7) |fl = max|ai| where f = Z aivt

1



The Gaufl norm satisfies the following conditions with ¢ € K and f,g € T,

Ifl=0iff f=0
|cf| = [c|If]
Ifgl = Ifllgl

If + gl = max(|f], [g])

This makes T, a K algebra. The above listed properties can be found on

[Bosch, 2014, pl13]. In fact T, is complete with respect to the Gaufl norm,

thus a Banach K algebra.

1.2.2 Reduction

Since we have an absolute value on K we can define corresponding valuation

ring, the maximal ideal and the residue field.

(1.8) Valuation Ring: R={x € K:[x| <1}
(1.9) Maximal Ideal: m={xcK:|x| <1}
(1.10) Residue Field: k =R/m

The R algebra of restricted power series is denoted by R (vq,

f € R(v1,...,vy) then [f| < 1.

...,Un) and if



We can extend the natural epimorphism R — k to the following

(1.11) mt: R (V1,...Un) = Kk[v1,...Vn]
(1.12) D aivte Y

i i
(1.13) =

The reduction of f is denoted as f = 7T(f).

The canonical projection induced the following reduction map which is

compatible with evaluations at B™(K28).

v) —— K]
heval
— K

Definition 1.2.1. An element f € T,, is called v,, distinguished of order s € IN

eval

7u|<—/\

if f can be written as f = Y 3y gw0¥ € Tn (vn) and gy € T and the

following hold

1. gsis a unitin T, 1.

2. lgs| = If].

3. |gsl > lgyl| for v > s.



Chapter 2

Affinoid Algebra

The elements T,, are functions from B™(K2€) — K2 and we can look at the

zero set of T,,

(2.1) V(a) ={x € B™(K*) | f(x) =0 for f € a}

Algebras of the type T, /a are called affinoid algebra. Note that ideal a in

T, implies that it is closed in T,.

Definition 2.0.1. Let A be a K algebra, it is called an affinoid K algebra if

there is an epimorphism

(2.2) T — A for some n € IN



2.1 Some properties of Affinoid K Algebra

The following proposition is given on [Bosch, 2014, p 32]

Proposition 2.1.1. If A is an affinoid K algebra then it has the following

properties

1. A s Noetherian.
2. A 15 Jacobson

3. A satisfies Noether Normalization. In other words we have an injection

Tm — A for some m € IN.

The sup norm for a Tate Algebra T, coincides with the Gaufl norm. Further

more
Proposition 2.1.2. For an affinoid K algebra A the following conditions

are equivalent

1. |f| 0

sup —
2. f 1s nilpotent.

Definition 2.1.3. The Gaufl norm on the Tate Algebra T, induces residue

norm on A = T, /a. We denote the residue norm by ||, and is given by

(2.3) Im(f)|,, = inf |[f—al,

T acKerm

where 7t is the canonical epimorphism 7t: T, — A.



Let f€ T, and f € A then |?|ﬂ is the infimum of all values |f| varying over

all inverse images of f.

2.1.1 Some Properties of the Residue Norm

Proposition 2.1.4. let A : T,,/a be an affinoid K algebra with the projection

map 7: T, — Tn/a. The residue map ||, : A — R>o satifies the following:

1. The residue norm || 15 a K algebra norm and induces quotient topol-

ogy of T, on A.
2. The map m: Ty — A 1s continuous and open.
3. The affinoid K algebra A 1s complete under the norm || .

4. Corresponding to any f € T, /a there erists an inverse image f € T,

such that |?|ﬂ =|f].

Let MaxSpec A denote the set of maximal ideals of A. If m € MaxSpec A
then we can define f(m) as the residue class of f in A/m, that is f mod m. We
will often write x € MaxSpec A and f(x) to mean residue class of f in A/x.

The sup norm is given as

/7] sup  [f(m)|

sup
meMaxSpec A

2.1.2 Some properties of the sup norm

1. [f*p = Iflsyp, the sup norm is power multiplicative.

10



2. If  : B — A is a morphism between two affinoid K algebras. Then

b (b)lyyp < blgyp for all b € B

3. Let A be an affinoid K algebra and f € A, with a residue norm ||

corresponding to the epimorphism 7t: T,, —+ A. Then

[l < [fle

In particular [fl,, is finite.

4. Let A be an affinoid K algebra and f € A, with a residue norm || .. Then

we have [f|,,, < 1 if and only if the sequence {|f™| .} with n € N is a zero

sup

sequence. We call such f as ‘topologically nilpotent’ with respect to |- ..

5. (Maximum Principle) Let A be an affinoid K algebra and f € A, there
exists a point x € MaxSpec A such that |f(x)| = |f]

sup*

6. Let A,B be affinoid K algebras and there is a morphism ¢ : B — A. Then

¢ is continuous with respect to residue norm.

2.2 Localization of Affinoid Algebras

Let A be an affinoid algebra. Assume that fp,..., fr € A without any common

zeroes that is V(fy...,f;) = @.

11



where f is a tuple (fg,..., ;)

2.3 Affinoid Space

A geometric object Sp(A) can be associated to every affinoid algebra A.

(2.4) Sp(A) :== MaxSpec (A) :={m :m is a maximal ideal of A}

The set of maximal ideals of A is called an affinoid space.

The crucial result which is useful is the Hilbert Nullstellensatz.

Theorem 2.3.1. Let m C T,, be a mazimal ideal then T /m s a finite field

extension of K.

We can extend the valuation on K to the finite field extension A/m.

2.3.1 Rational Affinoid Subdomain

Rigid geometry is built out of Affinoid spaces. We need to introduce holomor-
phic functions on an affinoid space. But, the biggest problem we face is the

natural topology of the field K which is totally disconnected. Thus, there is

12



a need to provide analytic space with extra topological structure to get a non
trivial notion of connectedness. This will give us (1) Analytic continuation and

(2) Global expansion of analytic function on polydiscs.

Let X = Sp(A) then we can define a rational affinoid subdomain of X

(2.5) Xj = X(fo/fj,...,fr/fj)

(2.6) ={xeX: [filx)] < |f]~(X)| fori=0,...,7}

The family Xo,...,X; is called a rational covering of X. We can give a

structure ring to X as follows

(20} Ox(X;):=A

13



Chapter 3

Adic Spaces

We will closely follow [Wedhorn, 2012] to describe basic properties of adic

spaces.

Definition 3.0.1. Let R be a set endowed with a structure of a topological
space such that (R,+) is a topological group R is a ring and the following map

1s continous

(3.1) AxA = A, (a,ad)— aa’.

We call R a topological ring.

Definition 3.0.2. Let R be a topological ring, where the ideal I defines the
topology of R, that is {I"},,cv forms a basis of neighborhood of 0 in R, and in

that case R is called adic. The ideal I is called an ideal of definition.
Example 3.0.3. Let Z,,) be localization of integers at the prime p. Then the

14



ideal of definition is pZ ). The ideals p™Z ) form a fundamental system of

neighborhoods of zero.

Definition 3.0.4. A ring R is called Huber Ring or f adic ring is there is an
open adic subring Rp C R such that the topology of Ry is defined by a finitely
generated ideal I, that is Ry admits an ideal of definition which is finitely

generated. The ring Ry is called the ring of definitzon of R.

Example 3.0.5. On the field of rational numbers R = Q we can put a p adic

topology with absolute value | - It follows that the ring of definition is

-

Ro = Z(p) and the ideal of definition pZ,).

Definition 3.0.6. A subset S C R is called bounded if for all neighborhood
U of zero, there is a neighborhood V of zero such that S-V C U, where
S-V={sv:seS,ve V5. An element f € R is power bounded if {f™ : n € IN}

1s bounded.

(3.2) R®:={f € R | f is power bounded}

An element f € R is called topologically nilpotent if limy, o f™ =0

(3.3) R°°:={f € R | f is topologically nilpotent}

Example 3.0.7. With the rationals @ we have the ring Z,,) which corresponds
to the subring Q° = Z,,) of power bounded elements, and Q°° = pZ,) is the

topologically nilpotent elements of Q.

Definition 3.0.8. Let R be a f adic or Huber ring with a topologically nilpo-

tent unit, then R is called a Tate Ring.

15



Example 3.0.9. Q, with the topological nilpotent unit as p, since p™ — 0 in

the topology generated by |-|p.

3.1 Valuation

Definition 3.1.1. A valuation on a ring R is a map || : R — I'U {0}, where I’

is a totally ordered group such that

i |ab] = al|b| for all a,b € R
ii |a+ bl <max(|al,|bl) for all a,b € A
iii |0l=0and |1]=1
The order on 'U{0} comes from the order on I' where 0 is the minimum element.

Im(]-])\{0} generates a subgroup of I' which is called the value group of |-|.

We also define the support of |-| as the set of elements of R that have zero

valuation.

(3.4) supp(|) :== -7 (0)

The multiplicative property of valuation forces the elements which have a
zero valuation (called support of valuation ) to be a prime ideal inside the

ring.

Definition 3.1.2. Let It and I'; be ordered groups. Two valuations |-|; :
R — I'1 U{0} and |-[, : R — > U{0} are equivalent if there is an isomorphism

@ : 7 — I and the following diagram commutes.

16



Equivalently two valuations |-|; and ||, are equivalent if for all a,b € R we
have |al; > |bl; if and only if |a|, > |b],
We now need the notion of a continuous valuation.

Definition 3.1.3. Let R be a topological ring with valuation ||, then the

valuation is called continuous if we have a continuous morphism

R
(3.5) R — Frac ( >
suppl|

The notion of prime ideals and continuous maps arising from supp|-| is

crucial for our purpose. We also need to define some more terms

Definition 3.1.4. Given a valuation |-| we define the following terms

(3.6) Valued Field K(|) := Frac(R/supp(|)))
(3.7) Valuation Ring R() == {x € K | x| < T}
(3.8) Maximal Ideal m(]) :={x € K | |x| < 1}
(3.9) Residue Field «(|-[) := R(|[)/m(l-)

The valuation ring A(||) is also written as O.

Remark 1. Since the [r"| = [r|™ for all r € K and n € IN (called power

multiplicative). We have

17



(3.10) Valuation Ring Ox =K° ={x e K | [x| < 1}
(3.11) Maximal Ideal m(|-|) = K*° ={x e K | [x| < 1}

(3.12)

Let K be a non archimedean field, with open valuation ring K°. Since, K
has non trivial valuation there is an element m < 1. The elements {t"}en
form a fundamental system of neighborhood of zero. Also, 7 is a topologically

nilpotent unit of K. Hence, K is a Tate ring.

3.2 Affinoid Rings

We now define affinoid rings and maps between them

Definition 3.2.1. An affinoid ring is a pair (R,R"), where R is a f adic ring
and R™ C R° is an open subring of R that is integrally closed in R (the ring of
integral elements of R). A morphism ¢ of affinoid pairs (R,R*) and (S,S™) is

continuous morphism ¢ : R — S such that ¢ : R — S such that @(R") C S+.

We can extend the above definition to a non-archimdean field K and define

an affinoid K algebra.

Definition 3.2.2. Let K be a non-archimdean field and K™ (C K°) integrally

closed subring, the pair (K,K™) is called an affinoid field.

An affinoid (K,K™) algebra is a pair of rings (R, R") such that

18



1. Ris a K algebra.
2. Ris f adic.
3. RT™ C R° and it is integrally closed in R, and topologically open inside

the ring R.

The morphism of (K,K™) affinoid algebras (R,R") and (S,S™) is continuous
morphism ¢ : R — S such that ¢ : R — S such that @(R") C S* and the

following diagram commutes

(R,R™) ¢ - (5,8)
\ /'
(K, KT)

Example 3.2.3. The most relevant example for our case is the Tate Algebra

K (T). The pair (K(T),K(T)°) is a (K,K°) affinoid algebra, where

(3.13) K(T)®:={f e K(T) | f| < 1}

3.3 Adic Spectrum

We can now define the adic spectrum of a pair (R,R™).

Definition 3.3.1. Let (R,R") be affinoid K algebra, then we define

1. adic spectrum as
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(3.14) Spa(R,R+) :={equivalence classes of continuous valuations ||

on R such that |f| < 1 for all f € R°}

2. Given a point x of the space X := Spa(R, R") we can talk about evaluation

of a function f € R at point x as the map

(3.15) f = [f],

3. Topology on Spa(R,R™) is generated by the subsets

(3.16) {x € Spa(R,R") such that ||, <|gl, #0,f,g € R}

3.4 Structure Presheaf on Adic Spaces
The basis of topology is given by rational subsets of the form
T +
(3.17) u S :={x € Spa(R,R™")| for all t € T we have [t], <|[s|, # 0}

If f1,f2,...,fn € R generate the unit ideal and g € Rthe rational subsets which

form the basis of the topology are

f1,...,f
(3.18) u (%) :={x € Spa(R,R") | Ifil, <lgl,i=1,...,n}

These rational subsets are analogous to open sets in Algebraic Geometry

20



which are used to contruct Affine Schemes. These open sets are of the form

D(f) = Spec(R[1/1]).

The core idea comes from maximal ideals in C which are of the form (x —
a),a € C. We form schemes by considering these ideals as a topological space.
But, we also can form a valuation ring with uniformizer as (x — a), and look
at the topology generated by the valuation. These two ideas are considered

together in adic spaces.
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Chapter 4

Introduction to Perfectoid

Spaces

We begin by a simple observation that the elements of Z, (ring of p adic

integers) and the elements of I, [[t]] look similar

(4.1) (10+(11p+(12p2+(13p3+...,(11EIFP

(4.2) ao + art+axt’ + azt> +...,a; € Fy

but the former has characteristic zero, whereas latter has characteristic p.
Informally, we have a correspondence t <+ p. We now get closer to perfection
(more precisely we are thinking perfect closure) by adding all p"-th roots (r >
1) by using an inverse limit with Frobenius as the transition map. Informally,

inverse limits are like vectors where adjacent elements are related via Frobenius
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(our transition maps). Let us record some informal correspondence given as

.

(4.3) (/PP L) e (/PP
(4.4) Zo[p"/P71/ (p) < Fp[t'/P7/ (1)
(4.5) Passing to fields Qp PP & Fp (t'/P%)

4.6 Completion p adic Q, (p'/?P”) < Fy((t'/P”)) Completion t adic
p p P P

We follow [Bhatt, 2014] and consider field of p adic numbers Q, and the
field of Laurent series over IF, given as I',,((t)). In both of the fields we can
represent elements as Laurent series, in particular for Q,, we replace t with p.

But, Q, has characteristic zero, whereas I, ((t)) has characteristic p.

(4.7) Qp(P"%")::UQp@#‘) and Fp((t‘/Pm)):UEp«t#))

A classical theorem of Fontaine and Wintenberger states that the absolute

Galois Groups of Qp (pv%) and IF, ((t)) are isomorphic.

The key observation is the following correspondence



4.1 Perfectoid Field

Let K be a complete non-archimedean field of characteristic 0 with a residue
field of characteristic p (called mixed characteristic (0,p)), which is equipped
with a non-discrete valuation of rank 1. Let K® C K denote the subring formed

by elements of norm < 1. We call K perfectoid if the Frobenius map

(4.10) K®/p — K°/p,x — xP

is surjective. The Frobenius map is a homeomorphism on topological spaces,

as well as on etale topoi.

More formally we state the definition from [Scholze, 2012]

Definition 4.1.1. A perfectoid field is a complete topological field K whose
topology is induced by a nondiscrete valuation of rank 1, such that the Frobe-

nius O is surjective on K°/p

Example 4.1.2. The basic examples are completions of Qy (p'/P*) and
Qp(1p=). A non example is the field Q, since its underlying value group Z is

discrete.

We now define tilting which is given as an inverse limit

(4.11) K = lim K

x—xP
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Elements of K” are sequences given as

(4.12) (x0,X1,%2,...) such that xP =x,_;

The examples include X — (X,XVP,X]/PZ, oJor X (XZ,XZ/p,XZ/pZ, o).
In general for the multiplicative (but non-additive) map K* — K, x ~— x is sim-
ply the projection on the first factor in most cases. A more precise definition

requires introduction of Witt vectors.

The big result linking these K and its tilt K” is the following

Theorem 4.1.3. The absolute Galois groups of K and K® are canonically

1somorphic.

We can explain the above theorem a bit more using an example given in
[Scholze, 2013]. Let K = m, the above theorem states that we have a
natural equivalence between the category of finite extensions [ /K and category
of finite extensions M/K®. For example say M is obtained by adjoining a root of
X2 —7tX +X5, the basic idea is t — p (as seen in introduction to this chapter).
But for p = 3 we have 7 = 1 mod 3, therefore, X — 7tX + t°> = X? —tX + t°

but the two polynomials are not the same if t is replaced by p
X2 —7pX +p° £ X2 —pX+p°

and hence Galois groups are different. We can resolve this issue by defining M

as the splitting field of X —7t"/P"X +t3/P" where n € Z> (this makes sense
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as K’ is perfect and we still have a quadratic polynomial). Let L,, denote the
splitting field of X — 7p'/P" X + p/P" as n varies. Letting n — oo the fields
L, stabilize and we get the desired field L. Further details can be obtained

from [Scholze, 2013].

A theorem of Scholze states that

Theorem 4.1.4. The categories of perfectoid K-spaces and perfectoid K’
spaces are canonically identified; this identification preserves the étale

topology.

We now focus on Example 2 [Bhatt, 2014]

Consider A’ = K°[X1/P*] a p adically complete K° algebra. Set
11
(4.13) A=A

It can be shown that A is perfectoid K algebra and it is denoted by K (X'/P™)
and A” :=K° <X1/p°°>.
We can the standard gluing maps to obtain the Projective perfectoid given

as K <Xi/p°°>. These are the perfectoid spaces we study in this Thesis.

4.2 Untilts of a perfectoid field

The primary reference for this section will be [Kedlaya, 2017, Weinstein, 2017].

Definition 4.2.1. An untilt of K is a pair (K%, 1), where t :— K" is an iso-

morphism, and K* is a perfectoid field.
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Let W(K®) denote the ring of Witt vectors associated with K°. Then

(4.14) K & K#° B Ko induces the map
(4.15) By : W(K®) — Kfe
(4.16) > lanlp™— ) dhp®

n=0 n=0

In the above mapping Ker 0y; is a primitive ideal of degree 1. We have the

following theorem from [Weinstein, 2017, pp18]

Theorem 4.2.2. Let I be the primitive ideal (of degree 1) of W(K®). Then

we have a bijection

(4.17) Primitive ideals of degree 1 ~ Isomorphism classes of untilts of K

(4.18) I (W(K°)/T) H

We now define Witt vectors concretely as in the book of

[Greenberg and Serre, 2013, pp 40].

4.3 Witt Vectors

Definition 4.3.1. Let p be a prime number and (Xo,Xj,...,Xn,...) be an

infinite sequence of indeterminates. For n > 0 we define the n-th Wittt Poly-
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nomaal as

n 1 —
(4.19) W= pX" = X3 4+ pX0" o £ p X
i=0

The first three Witt polynomials are

(4.20) Wo = Xo
(4.21) Wi =X§ +pXy
(4.22) W, = X2+ pXP + p2X,

Let (Yo,Y1,...,Yn,...) be another sequence of indeterminates, then we have

the following Theorem 6 on page 40 of [Greenberg and Serre, 2013]

Theorem 4.3.2. For every ® € Z[X,Y] there exists a unique sequence

(g wsms Prissns] Of elements of ZLXgyans5XKngsss) Yoyssss ¥ml such that:

(4.23) W@y -y By - ) = D(Wa (Xoy - )y Wa (Yo, - )

Using the above theorem we can define addition S; and multiplication P;

recursively via polynomials ¢j.

(4.24) Si associated with ®(X,Y)=X+Y
(4.25) P; associated with ®(X,Y)=X-Y
(4.26)
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Let R be an arbitrary commutative ring, and let A = (ap,as,...,) and

B = (bo, b1,...,) be elements of RN (Witt vectors with coefficients in R), set:

(4.27) Addition A + B = (So(A, B),...,Sn(A,B),...)

(4.28) Multiplication A - B = (Po(A,B),...,Pn(A,B),...)

Using the theorem 4.3.2 and setting So(A,B) = ¢o,S1(A,B) = d1,...,S; =

®i ..., we show explicit formulae for adding Witt vectors.

Wo(do,...) = ©(Wo(A), Wo(B))
= Wo(A) + Wy (B)
So(A,B) = do = ao + b
Wi(do, d1,...) = ©(W;(A),W;(B))
=W;(A) + W, (B)

8 +pd1 = af +par + by +pby
a§ + b — (ao +bo)?
P

S1(A,B)=¢d1=ar1+b1 +

Similarly product can be defined by setting P; = ;.
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Wo (o, ...) = @©(Wo(A), Wo(B))
=Wos(A) - Wo(B)
Po(A,B) = do = agby
Wi(do, d1,...) = (Wi (A), W:(B))
=W;(A) - Wi (B)
$§ +pd1 = (af +par)(b§ +pby)
pd1 = (af +pai)(b) +pbi) —afbh

P1(A,B) =d1 =bfar +afbr +paib;

Example 4.3.3. The Witt ring of the finite field of order p (W(IF},)) is the

ring of p-adic integers Z,,.

We now follow [Kedlaya and Liu, 2015]

Definition 4.3.4. A strict p ring is p adically complete and p torsion free

ring S for which S/(p) is perfect.

Given a strict p ring S and a padically complete ring U with a ring morphism
t:S/(p) — U/(p), we can lift elements of S/(p) to U uniquely via map
t:S/(p) — U. For any X € S/(p) we can talk about lifting t(x P") toy € U,
with t(X) = yP" mod (p™*'). We have a multiplicative section [-]: S/(p) — S

(called Teichmuller map); coming from the projection map S — S/(p). Each

x € S with X, € S/(p) can be written uniquely as Y o, p™[Xnl.
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We now state the lemma from [Kedlaya and Liu, 2015, pp. 72-73]

Lemma 4.3.5. Let S be a strict p-ring, let U be a p-adically complete ring,
and let t: U — U/(p) be the natural projection. Let t:S/(p) — U/(p) be a
ring homomorphism, and lift t to a multiplicative map t:S/(p) — U. The

formulae

(4.29) T (Z pn[xn]> =) pt(Xn)
n=0 n=0
defines a unique homomorphism T:S — U such that To [-] =t.

The above lemma is used as an input in the following theorem.

Theorem 4.3.6. The functor S ~~ S/(p) s an equivalence of categories

between strict p-rings and perfect IF,-algebras.
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Chapter 5

Grothendieck Topology

The topology that is induced by a non-archimedean valuation is always discon-
nected. Hence, we need to introduce Grothendieck Topology to counteract the

property of disconnectedness.

5.1 Introduction

We want to put a topology on a category, and thus require a notion of inter-
section and covering. Intersection can be interpreted as a fiber product (or
pullback) of a category. More concretely, if we are given two open sets U,V of
a topological space X we want a category theoretic notion of intersection UNV
on the topological space X. The inclusion maps U C X becomes a morphism
U — X and the intersection becomes fibered product U xx V. In other words,
if there are two morphism f: U — X and g: V — X, the fibre product is UxxV

and it comes equipped with two morphisms U xx V — U and U xx V — V.
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Let X be a topological space with topology . We can make & into a
category which has objects as open sets of X and morphisms as inclusion maps.

Let U,V be objects of 7 (or open sets of X). We can define morphisms as

2 ifugV
(5.1) Hom(U, V) =

Uu—-v}p ifucyv
The space X is the final object of the category 7.

We also need the notion of covering of a set U in some topological space.
If {Ui}ic forms a covering of U, we can consider covering more abstractly
as a set of morphisms U = {db; : Uy — U}icr. We follow the definition from
([Stacks Project Authors, 2016, Tag 03NG],[Stacks Project Authors, 2016, Tag

03NH)])
Definition 5.1.1. Let ‘6 be a category. The following data gives a a famaily
of morphisms with a fized target U = {di: Uy — Ulier
1. an object U € 6.
2. Index set I (which could be empty)
3. for all i € I, there is a morphism ¢; with target U given as ¢; : U; — U
If U is an object of the category, we can give a set of coverings to all objects
of the category.

Definition 5.1.2. A site (or topology) consists of two things a category 6
and a set Cov(6) called covering which consists of families of morphism with

a fixed target.
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1. (isomorphism) if ¢ : V — U is an isomorphism in €6, the ¢ is a covering.

2. (localilty) Let {¢; : U;y — Ul}ier be a covering of object U and furthermore
each U; has a covering {\j; : Uj; — Ui}jer, then we get a covering given

as

(5.2) {bi 0ij : Uy — Uly,5) where (i,j) € [ [ix L
iel

3. (base change) if {U; — Ul}ic is a covering and V — U is a morphism.

Then we can form a covering for V.
(a) the fibre product U; xy V exists

(b) there is a covering {U; xy V — V}ier

A site is also called a category with Grothendieck Topology. We will always
assume that collection of coverings of a site is a set, and collection of objects of

the category 6 underlying the site is a also a set (that is 6 is a small category).

Examples We now give some examples of Sites.

1. Every category can be turned into a Site in a canonical way. We just need
the notion of coverings which is simply the identity map {1 : Uy — U}ier

such that I is countable.

2. For a topological space X the associated site is denoted as Xgz,, and is

defined as follows:
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(a) Open sets of X are the objects of Xgzg;.
(b) Inclusion maps become morphisms.

(c) Usual topological coverings, become coverings in Xgzg;.
For open sets U,V C W C X the fiber product U xyw V =UNV exists.
3. Category of G-sets can be endowed with a site Jg.

(a) Objects are sets with left G action.
(b) Morphisms are G equivariant maps.
(c) Covering maps are families {¢; : U; — U}ic1 which satisfies

Uiel (bi(ui) =u

Definition 5.1.3. A presheaf of sets on a site with underlying category 6
is a contravariant functor from 6 to the category of sets. The presheaf & of
sets is called a separated presheaf on the site € if for all coverings {¢; : U; —

Ulicr € Cov(€6) the map

(5:3) FU) — [ Fu

is injective. Here the map is s — (s|u;)ier-

A sheaf on the site is a presheaf % which satisfies the equalizer condition

(5.4) FUW T Fu)= [ Flixuw)

(i,j)eIxI

The first map in the equalizer above is s — (s|y;,)ier and the two maps on the
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right are

(si)ier = (silusxyu;)

(si)ier = (sjluixuu;)

Definition 5.1.4. A Grothendieck Topos is a category of sheaves of sets on

a site.

5.2 Strong Grothendieck Topology
In order to work with rigid analytic spaces we need strong Grothendieck Topol-
ogy.
Definition 5.2.1. The strong Grothendieck Topology on an affinoid space
X = (SpA) and underlying category 6 (in the sense of Site) is given as:

1. @, X € category €.

2. (admissible open) Let U be a subset of X. U is called admzissible open
if there is a covering U = J; U; (this covering is not necessarily finite)
by affinoid subdomains U; of X such that for all morphisms of affinoid

spaces

(5.5) ¢ Y — X satisfying ¢(Y) Cc U

the covering {¢ ' (Ui)}icr of Y admits a refinement by a finite covering

with affinoid subdomains of Y.
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3. (admissible covering) Let V be an admissible open set of X and V = U;V;
is covering of V where each V; is admissible open. Such a covering is

called admzissible if for each morphism of affinoid spaces

(5.6) d Y — X satisfying ¢(Y) C U

the covering {¢ " (U;)}ier of Y admits a refinement by a finite covering
with affinoid subdomains of Y.
We often refer to Grothendieck Topology as G topology.

Definition 5.2.2. A rigid analytic variety over K is a locally G-ringed space

(X, 0x) which satisfies the following properties

1. X, o are admissible open sets.

2. X has admissible covering {U; }iec1 such that (U;0y, ) is an affinoid variety

foralliel.

5.3 Sheaves on Rigid Analytic Spaces

We are primarily concerned with affinoid spaces X = Sp A and the functor Gx
representing the structure sheaf. The space X has a finite covering by affinoid
subdomains {Xp ..., X} and we have the corresponding structure ring Ox(Xj)

for each subdomain Xj in the rational covering.
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5.4 Stalk

The stalk is obtained by putting an order on the admissible sets {U;}. The
following commutative diagram gives an order (V,v) < (U, u) over space (X, x).

The points u € U,v € V get mapped to x € X.

(V)V) (U., LL)

~

(X, %)

The stalk is given as

(5.7) Oxx = lim T(U,00)
(U,u)

It is important to note that the notion of stalk is very different from topol-
ogy. It is possible that a non-zero section s € € (X) has a zero stalk s, € Gy for
every x € X. This does not violate the gluability axiom of sheaves because it is

possible that {U,}x does not form an admissible cover of X.

5.5 Cohomology

Given a presheaf & on the site 6 with covering U = {U; — U} € Cov(6) we
can define the zeroth cohomology group as
(5.8)

HO(U, F) = {(Si)iel € Hiel F(U;) such that silu;x,u; =sj uixuuj} .
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The fundamental observation ([Stacks Project Authors, 2016, Tag 03NG]) is
that category of abelian sheaves on a site is an abelian category and therefore
has enough injectives. This helps us define cohomology as the right derived
functor of the sections functor %. Let ¥ — J® be an injective resolution where

F € Ab(6), and let U € Ob(€6) then

(5.9) HP (U, F) := RPT'(U,TF) = HP(I'(U,J*))

Since Ab(%6) is an abelian category the global sections functor I'(U, —) is

left exact.
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Chapter 6
Some properties of K (v!/P~

6.1 Notation

We start by defining the following K (vE!/P*)K-Algebras. Let a,b € IN U {0}

and i = a/p®,then we define

(6.1
T/ i i
K<v /P > - Zc(a,b)vl, C(ab) € K, a+1]1311_1>00|0(a,b)| -0
a,b
(6.2)
- 5 1 i
K<v 1/p > s Zc(a»b)ﬁ’ Clap) €K, Hm fe(a,p)l =0
a,b
(6.3)

K<vi1/pm> := Generated by o, 3 where € K<v1/pm> and B € K<v*1/pm>
For the ease of notation we will write c; (or even a;) in place of c(q,p).
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It is possible to put an order on the objects defined above. We give one

such order below.

6.1.1 Order and Grading

Polynomials come equipped with standard grading, but here we are working
with power series with degree of individual terms of the form a/p® € Q where
a,b € Z and p a prime. We have to fix a convention for expressing terms

as summation, and we make sure that there are finitely many terms in each

yood

grading. First we grade K[v,v!/P,v1/P’

Consider antidiagonal in the first quadrant, it consists of terms (a,b) with
a,b € NU{0}. The sum of the terms is fixed say k € INU{0}. For example,
corresponding to k = 3 we have the following tuples (0, 3), (1,2),(2,1),(3,0) as
(a,b), and every antidiagonal has a fixed number of terms in the first quadrant.
We will use this as a model for grading. The term (a,b) will correspond to
v9/P” The terms on the x axis of the form (a,0) give us the grading on
the polynomial in v, and as we go to higher and higher antidiagonal we keep
recovering higher powers of 1/p. The vertical line x = 1 gives us just the
powers of v in 1/p. As the reader would have noticed, the notation follows the

proof of countability of rationals, skipping any duplicate terms.

Our polynomials are finite sums of the form
(6.4) > aw®?’, ab,ie NU{0ha; €K
(there is no relation between a; and a) and can be clearly extended to power
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series by making the sum infinite, we denote power series by K (v). In case of
power series we also add an extra condition that |a;| — 0 as i — oco. Laurent
polynomials can be added by duplicating the above sum (we will still have

finitely many terms in the antidiagonal and thus grading).

6.2 Order and continuous automorphism

We want to give a unit of K (v'/P”) as degree zero, and since a; in the trail
end of series f € K (v!/P™) go to zero, we can always find a dominant term

somewhere in the tail and rewrite as the series as
(6.5) g Fon/P {unit of K <v1/p°°>}

We want to think of elements of K (v!'/P™) as polynomials with the series part

lying in some unit, this will also give us finite number of zeros for elements of
K (u1/P7).

We can formalize the above notion in terms of distinguished restricted power

series.

(6.6) Kn, ;:K<v}/p°°,...,vl/p°°>

Definition 6.2.1. Let f € K, be arestricted power series with f = ) 7 ;g v}, €

K <vll/pw> is called vy, distinguished of order s € @ if the following hold

1. gs is a unit in Ky 1.
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2. |gs| = || and |gs| > |gy| for v > s.

Notice that our definition satisfies our requirement as in (6.5).

Here we will follow [Bosch, 2014, Lemma 7,p 16] and apply the result to
our case with minimal changes. The only thing we have to notice that we have
fractional powers in addition to integer powers. We will split the fractional
power into an integer part and a fractional part (which would be less than
one). When we apply the automorphism in the lemma below we deliberately

avoid any changes to the fractional part.
Lemma 6.2.2. If we are given finitely many f1,...,T € K,\{0}, there 1s a

continuous automorphism

(vy)™ fori<n,meQ\Zn(0,1)

(6.7) 0:Kn = Kn, v{"+ (Vi +Va )™  fori<n,mEeEZ

(o)™ fori=n

with suitable exponents «y,...,an—1 € IN such that the elements
o(f1),...,0(fy) are v, distinguished. Furthermore, |o(f)| = |f| for all f €

Kn.

6.3 Weierstrafl Division

This theorem also appears in the thesis of [Das, 2016] following the proof of
Tate Algebras from [Fresnel and van der Put, 2012], here we translate from

[Bosch, 2014].
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Theorem 6.3.1. Let g € K;, be vy distinguished of some order s. Then,
for any f € Ky, there is a unique series € K, and a unique polynomsial

1€ Kno1ow/P] of degree r < s satisfying

(6.8) f=qg+r

Furthermore, |f| = max(|qllgl,|r]).

Proof. WLOG we assume |g| = 1. We consider the equation f = qg + r which
immediately implies |f| < max(|qllgl,[r]). If |f| is strictly smaller that the right
hand side and we could assume that max(|q||g|,|r]) = 1. Then we would have
qg +7 = 0 with @ # 0 # T and this contradicts the division algorithm in
k[v}/pw, . ,vll/poo]. Hence, we must have |f| = max(|q||gl,|r|]) (and uniqueness
follows). Now we show existence. Let g = ) ,° ,gyV), where g, € K, and
gs is a unit with |g,| < |gs| = 1 with s < v. Here we are indexing with
natural numbers, but we can put these natural numbers in correspondence
with rationals of the form a/p®. Let max,-s g, = € < 1. We will start with
a weaker version.

(Weak Version) For any f € K, there exists q,f; € K, and a polynomial

reKnq [vll/poo] of degree less than s with
(6.9) f=qg+T1+f
(6.10) ql, Ir] < [f| and [f] < €lf]
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If we prove this weaker condition, we can prove our theorem. Proceed induc-

tively starting with fo = f and get

fi=qig+ri+fir1,ieN

Iqil, Iril < €'If] and |fiy1] < €]

and thus we get the required result.

(611 = (S a) o+ (1)
i=0 A=

We now prove the weak version. First we approximate f € K, by a polynomial

f € Kn_1[L!/P™]. Set g’ as a polynomials in vy/? of distinguished order s and

o0 i, oo
g' =Y 3 50i <vll/p ) , where g’ is a polynomial in vll/p of distinguished

order s with |g’| = 1. The Euclid’s division algorithm in Ky 1 [vll/poo] yields

(6.12) f=qg'+1, g€Kn andrean[vll/pm]

degr <s
Since, |f| = max(|ql,[r|) we get

(6.13) g=dqg+T1+1f;

with f; = qg’ — qg. As |g—g'| = € and |q| < [f], we get |[f1] < €lf], giving us

the required result.
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6.4 Weierstrafl Preparation Theorem

Theorem 6.4.1. Consider g € K, be v, distinguished of order s. Then
there exists a unique monic polynomial ¢ € K1 [vll/poo] of degree s such
that g =ed for e € K, and e a unit. Additionally, || =1 so that ¢ 2s v

distinguished of order s.

Proof. By the Weierstra3 division formula, we get an equation

where q € K,, and there is a polynomial r € K,, 1 [vll/poo] with degr < s and

Ir| < 1. We can put ¢ =v5 —r to get ¢ = qg which satisfies |¢p| =1 and is vn
distinguished for order s. To show that g decomposes as qg, we need to show
q is a unit of K;,. If we assume that |g| = |q| = 1, we can look at the reduced
equation ¢ = q-g.Since, both ¢ and g are polynomials of degree s in v, and
since ¢ is monic, it follows that @ € K*. This implies that q € K, is a unit.
To prove uniqueness, we start by defining r = v}, — ¢ and decomposing

g=ed to get

(6.15) vi=e g+t

and the uniqueness of WeierstraB division shows us the uniqueness of e
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and r and, hence of e and ¢.

O

Corollary 6.4.2. The algebra K <v1/p°o> of restricted power series in Un

18 a Bezout domain.

Proof. We simply need to show that every finitely generated ideal is princi-
pally generated. We have defined degree for elements in K (v'/P™) at 7.2.2.
Let ideal I be finitely generated and every element in [ will have a degree,
using Weierstrafl division (Weierstral division is used analogous to Euclidean
Division in k[X], using order instead of degree) we conclude that I is generated

by element of lowest degree.

We need to note that some ideals in K (v!/P*) could be infinitely generated
and hence it might not be possible to know the minimal degree in the ideal,

thus leading to failure of PID condition. |

6.5 Maximum Principle

In this section we prove the maximum principle for perfectoid following the

case of Tate Algebras as given in [Bosch, 2014, Proposition 5,p 15].

Proposition 6.5.1. Let f € K,,. Then |[f(x)| < [f| for all points x in the unait
ball B™(K), and there is a point in the unit ball such that the mazimum is

obtained, that s [f(x)| = [f].

Proof. The first claim follows from the definition of | |. For the second asser-

tion assume that |[f| = 1 and consider the projection map 7 given as
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7 Kn = k17,00

T 1/p*
-

Kn — klv, v/ P

ey
eval eval

R k

Let 7t(f) = f be the non-trivial polynomial which will not be zero at some
x € k', where k is algebraic closure of k. Consider R as valuation ring of
K and k as the residue field. We choose a lifting x of X € B™(K), we get

[f(x)| =1 =]fl.

6.6 Morphisms

In this section we make sense of morphisms of the form

(6.16) Kn—1 = Kn = Kn/(g)

(6'17) Kn—1 = Kn/ <9> — Kn/a

Let a # 0 be an ideal in K;,, then we can choose an element 0 # g € a, such

that g is vn-distinguished of order s (using lemma 6.2.2).

Givenaf € K,, we have f =1 mod g wherer € K;,_; [L1/P*] and degr < s.

This gives us the first morphism.

The second one is obtained in the same manner by considering the map

Kn/(g) = Kn/ (a) obtained by adding the elements to g which generate a. In
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the case of Tate Algebras we get Noether Normalization because of finiteness

condition. Here the finiteness condition does not hold.
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Chapter 7

Vector Bundles over

Projectivoid Line

In this chapter we describe vector bundles over projectivoid line ]P:(’ad’perf in

Propostion 7.4.2. The description will be similar to vector bundles on P! as
described in [Hazewinkel and Martin, 1982, Proposition 2.3] . We reproduce

the proposition here (word for word),

Proposition 7.0.1. Isomorphism classes of m dimensional algebraic vector
bundles over P! correspond bijectively to equivalence classes of polynomial
m x m matrices A(s,s~ ') over k[s,s~ '] such that det A(s,s™ ') = s™,n € Z
where equivalence relation is the following: A(s,s~') ~ A’(s,s ') iff there

exist polynomial invertible m x m matrices U(s), V(s~ ") over k[s] and k[s ']
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respectively with constant determinant such that

(7.1) Al(s,s71) = V(s HA(s, s HU(s).

7.1 Vector Bundles over IP]](’ad’p i

The projectivoid line is covered by &l = Uy UUs, with ¢(U;y) = K (v'/P”) and
0(Uz) = K{(v~1/P"). Where U; is the perfectoid affine space A\:(’ad’perfand
0(Uy NUy) =K (uE!1/P7),

1,ad

Let E be a m-bundle over P Perf defined over K.

There are two trivilizations of this bundle over the cover corresponding to
U; and U,. The trivialization is of the form U; x A\f]?"‘“j’perf = A\.]L’ad’perf X
A\El’ad’perf. Let s € A\.]L’ad’perf andv € A\El’ad’perf. To construct the projectivoid
we identify the perfectoid affine spaces via the map s +— 1/s,s # 0. Now we
can glue the two trivializations of the vector bundle to get a vector bundle over

the projectivoid space.

U] \{O} X A{?aad,perf — uz\{O} « A?,ad,perf

(s,v) = (s, Als, s 1)v)

where A(s,s™ ') is a matrix with coefficients in 6(U; NU,) = K <vi1/P°°>. For

51



the correspondence to hold this matrix must have a determinant that is a unit

in the ring. The determinant is a power series.

(7.2) det(A(s,s7 1)) € K <vi1/pm> and det(A(s,s ")) #£0 for all v

As we see in the next section 7.2 the units of (7.2) are given as

(7.3) VP, mMEZbE Zoy,

where v is degree zero term of K (vE1/P™).

Notice that if we restrict to the case of k[s,s~'] we end up getting deter-

minant as s™, as in the proposition 7.0.1

7.2 Polynomials and Power Series

The units in the ring K[X] are precisely K*, and for the laurent polynomials

K[X, X~ '] the units are uX™,u € K*.

In the case of power series K[[X]] the units are formal power series with non

zero constant term.

(7.4) D anx™ € K[[X]] is a unit iff ao # 0.
n=0
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In the case of formal Laurent series K((X)), we notice that X is a unit, since
X~1.X =1. The set of units is K((X))\0, the proof can be seen in [mo1, ]. In

[Schwaiger, 1985] we find the complete description of roots of power series.

For a series f in Tate Algebra T,,, the series is a unit iff the constant coef-
ficient of f is bigger than all other coefficients of f [Bosch, 2014, Corollary 4,p

14] . For T, := K (v1,...,Vn) the units are

(7.5) Ta ™= { Z aiv' € T : laol > |y for all i # O}

ielNn
Equipping f € T, with a Gauss norm, |[f| = 1 is a unit iff the reduction of f

denoted as f lies in K* as described on [Bosch, 2014, pp 13-14].

7.2.1 Units of K<v1/p°°>

We now formally write down the units of K (v!/P™) which will be used for the

description of vector bundles.

Proposition 7.2.1. K <v1/p°°> 1s complete with respect to Gauss Norm.

Proof. This proof is an adaptation of a similar proposition for Tate Algebras
as given in [Bosch, 2014, Proposition 3, pl4]. We start with a Cauchy sequence
> ; fi and end up showing that it lies in K (v'/P™). We will use v as an index

for (a,b), this will help as streamline the proof to make it closer to the proof
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of units of Tate Algebra.

(7.6) lim f; =0 where f; = Z civv¥ € K <v1/pm>
1—00 v

First note that
(7.7) lciv| < |fi| thus lim [ciy| = O for all v.
1—00

Thus, the limit ¢, = ) {7 ,ci, exists (note that we are using GauB norm).
To finish the proof we need to show that the series f = } | c,v" is strictly

convergent and f =) ; f;.

In the section 6.1.1 we put an order on K(v!/P*). In order to make our
argument simpler, we jump a finite number of terms (we noticed in our ordering
that there are only finite number of terms for every grading) in the order given
in 6.1.1 and consider terms of the form (a,0) lying on the x axis. This helps

us in thinking directly in terms of natural numbers IN.

For any given € > O there is an integer N such that |ciy| < € for i > N
and all v. Since coefficients of the series fp,...,fn_1 form a zero sequence,
and almost all the coefficients of these sequences would have an absolute value
less than €. Thus, the elements |ci,| form a zero sequence in K. Since the
non Archimedean triangle inequality generalizes for a convergent series to an

inequality below

o0
(7.8) IZO ol < max oo
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we get that power series f = Y ; f; and f € K (v!/P™). 0

Corollary 7.2.2. A series f € K <v1/p°°> with |f| =1 s a unit iff 1ts reduc-

tion f € kKX,

Proof. Without loss of generality we can consider only elements with f &€
K(v!/P*) with GauB norm 1. If f is a unit in K(v!'/P¥)it is also a unit

in R <v1/p°°>, where

(7.9) R={aecK|lad<T}
(7.10) m={aecK]|lal <1}
(7.11) k = R/m

(7.12) R<v‘/P°°> k7P
(7.13) fio f

Thus, f is a unit in k[v'/P*] and hence in f € k*.

Conversely, if fe k*, the constant term f(0) satisfies [f(0)| = 1 (since f=0
iff |[f| < 1). But then we can put f =1 — g with |g| < 1, giving us an inverse of

f as a series } 2, g.

O

In the above corollary we showed f is of the type f = 1 — g with |g| < 1.

Thus, we can restate the above corollary as

Corollary 7.2.3. An arbitrary series f € K <v1/p°°> 15 a unit iff |t — £(0)] <
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[f(0)|. In other words the absolute value of other coefficients of f are less

than the absolute value of the constant coefficient.

o0 >< 3 o0

(7.14) K<v‘/1D > = { Z avt € K<v1/‘D > ¢ laol > lai| for all i+ O}
ielNn

We can carry the exact same procedure as above for K (v~1/P%) to get an

identical result as stated in 7.14.

7.2.2 Units of K<vi1/p°°>

We can consider algebra of the form K (X'/P* Y!/P™) An element

f € K(X'/P* YI/P™) is a series in which each individual term has a degree
=deg X +deg Y, where X and Y occur in the term. Thus, we can put an order
on these terms as given in section 6.1.1. If we have terms which have only X
or only Y appearing in them, we can still arrange them by degree. In case the
degree of X and Y term is same, we put an order by first writing the X term and
then the Y terms of the same degree. The order simply comes from observing

that rational numbers are countable.

Using the results (and procedure) from the previous section we get the units

of K (X'/P¥ Y1/P™) given below where  represents product of X and Y.

(7.15) { Z aifl e K<X1/pm,Y1/pm> . lapl > |ay| for all i # O}

ieINn
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Setting X =v and Y = 1/v we know that elements of the form below

(7.16) /P’ { > anie K<vi1/v°"> : laol > |ai| for all i # 0}
ieNn

are units in K (v¥'/P™). The units we are most interested in are of the

form vV™/P” . u where u is a degree zero term of K (vE'/P™). We take the

degree of the above element as n/p®.

It might seem that there are other units of K (v¥1/P™) that might not have

a clearly defined notion of degree.

For other units of K (vE"/P) we notice that the tail ends of series on both
positive and negative side tend to zero. Thus, there are only finitely many
terms that could be dominant. We can still define the degree to be maximum
degree of all dominant terms (which are finite in number). In case we just
have a polynomial with all the coefficients equal, then we have the degree is
the power of the highest term, which is same as degree of polynomial in the

classical case.

Hence we have a well defined notion of degree for units which might not
be of the form (7.16). We can take the degree term out and write the unit as

b .
v™V/P” .1/, where the degree of u’ is zero.
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7.3 Isomorphism Classes of Vector Bundles over per-

fectoid affine A]](’ad’perf

We now want to talk about vector bundle automorphism over the space

1,ad,perf m,ad,perf
A ) ) X A ) )
K K :

U.] X AEL,ad,perf i U.] X A;zl,ad,perf

(s,v) = (s, U(s)v)

where U(s) is a matrix with coefficients in K (v'/P™) and det(U(s)) # 0. From

the section 7.2 we get the units as
(7.17) { Elements of K <v1/p°°> such that |ag| > |ay| for all i # O}

Notice that there is no gluing condition just on the piece U;, therefore can
have v = 0. If we restrict this to k[s] we just get k\{0} as in the proposition
7.0.1.

Similarly we have a correspondence on U,
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m,ad,perf m,ad,perf
U, x AK — Uy x AK

(t,v) = (1, V(t)v)

where V(t) is a matrix with coefficients in K <v1 /poo> and det(V(t)) # 0. Notice
that to obtain the projectivoid space we will have t = 1/s. Thus, we write

V(s~ ') in place of V(t).

From the section 7.2 we get the units as
(7.18) { Elements of K <v*1/pm> such that |ap| > |a;| for all i # O}

Notice that there is no gluing condition just on the piece U,, therefore can
have v = 0. If we restrict this to k[t] we just get k\{0} as in the proposition
7.0.1.

We want an equivalence relation for transition matrix between two covers.
This can be obtained modulo the automorphisms U(s), V(s~') and is given as
(7.19).

—1 —1
m,ad,perf U(s) m,ad,perf Als,s ) m,ad,perf V(s ) m,ad,perf
U x Al 25U, x AT 25 LUy x AT 2 U, x AT

’ —1
U1 XA;L,ad,perf Al(s,s™7) UZ x AKm,ad,perf
(7.19) Al(s,s™") =V(s)A(s, s U(s)
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7.4 Degree of Vector Bundles

In this section we define the notion of degree of the vector bundles on the

projectivoid line, which is motivated by proposition 7.0.1. In this proposition

we have
(7.20) degdet U(s) = 0 = degdet V(s ') which implies
(7.21) degdet A(s,s™ ") = degdet A(s,s™ ")

Thus, isomorphic vector bundles on P! have the same degree of the determinant

Definition 7.4.1. Degree of the vector bundle is the degree of zeroth term of

the determinant of the vector bundle.

The consequence of the above definition is that (7.5) will have degree zero.
Thus, (7.17) and (7.18) will also have degree zero. Furthermore the degree of

(7.3) is n/p*°. From, (7.19) and the observations just made

(7.22) degdet A’(s,s™ ') =degdet A(s,s™ ")
Thus, isomorphic vector bundles on ]P]]("“d’perf have the same degree of the
determinant.

We have proved the following proposition

Proposition 7.4.2. Isomorphism classes of m dimensional analytic vector
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bundles over ]P:(’ad’perf

matrices A(s,s” ") over K <vi1/P°°> such that

correspond bijectively to equivalence classes of mxm

(7.23) det A(s,s™ ') = v/P° { Elements of K <vi]/pm> such that |ao| > |ai| for alli# O}

where equivalence relation is the following: A(s,s™') ~ A’(s,s™ ") iff
there ezist invertible m x m matrices U(s),V(s™') owver K<v1/p°°> and

K (v=1/P") respectively with determinants of U(s) and V(s) given as

(7.24)

det U(s) :{ Blements ofK<v‘/P°°> such that |ao| > |ai| for all i # o}

(7.25)

det V(s™') = { Elements of K <v*1/p°°> such that |ag| > |ai| for alli# O}

such that

(7.26) Al(s,s71) = V(s HA(s, s HU(s).
and

(7.27) degdet A’(s,s™ ') =degdet A(s,s™ ")
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7.5 Classification of Vector Bundles on IP:(’ad’perf

The classification of vector bundles over P! depends upon the fact that there
are only finitely many ways to partition an integer. But, this is no longer true
for fractions. For example, consider the following non equivalent (and infinitely

many) vector bundles with degree one.

Xe 0
(7.28) such that a+b=1and a,b € [0,1] N Z[1/p]
0 Xx°
A more subtle question is whether every vector bundle on ]P:(’ad’perf splits

as a sum of line bundles. This question was answered in the negative by Prof
Kiran Kedlaya and communicated to me via email. The counterexample is

mentioned in full detail in Lecture 3 of [Kedlaya, 2017, pp.80-81].
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Chapter 8

Line Bundles on IPE’ad’perf

8.1 Proj of Graded Ring

Let S = @454 be the graded homogeneous co-ordinate ring. Corresponding to
the graded ring S we have a sheaf of rings Op.;(S) which will give the scheme
(Proj(S),0pyoj(s)), as given in ( [Stacks Project Authors, 2016, Tag 01M3] or

[Hartshorne, 1977, p 117]).

Let M = ®zM,, be a graded S module, that is S;; M, C My then there

is a sheaf M on the basis of standard open sets.

(8.1) M(U) = M(g) = {mf~% € My such that m € Mg.qeg s}

We want to construct a graded ring for fractional power series.

63



8.1.1 Grading

Analogous to the case of standard grading of homogeneous polynomials, we
can construct a fractional grading with d € Z[1/p] arranged in the canonical

order.

(8.2) Sa = homogneous polynomials of degree d

8.2 Defining G (m)

Let B(n) denote the graded S-module defined by B(n)gq = Sy q. This will be

called twist of B. For a given X = Proj(S), let Gx(n) denote the Ox module

—

B(n). Let f € S be homogeneous of degree one (with affine open set D (f) ),

then we get
(83) B(Tl)(f) = an(f)
(8.4) Ox(M)lp, (r) = "Clp, (r)

Notice that n € Z, but we could choose n € Z[1/p] which would give us

rational degrees.

Informally, we can define G (m) with m € Z[1/p] as

f
(8.5) 6(m) = {5 where f,g € S and degf—degg = m}
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Remark

1. Note that since, f and g are homogeneous, degree is well defined for the

series (it is the same for all elements).

2. T(P*PG (1)) is generated by X, Y,...,X9Y%, ... where q; + q; = 1.
The basis reduces to X, Y if we take exponent of p in X¢/p® as 0. Thus,

1,ad

dim I'(Py¢ PG(1)) = 0o and reduces to 2 when we take exponent of p

to be 0.

8.2.1 Twisting the sheaf 6 (m)

We have an isomorphism between graded modules, which is given as

(8.6) ®aSa > ®aSa,  m € Z[1/p]
(8'7) Sda — Sda+n

We get the twist by tensoring with 6 (m) where m € Z[1/pl.

8.2.2 Injection into Picard Group

The tensor products of sheaves G (m) ® G (n) = 6G(m+mn) gives us an injection
into Picard group as Z[1/p]. This can also be directly seen from the transition
function of the vector bundles as shown in previous chapter. We can naturally

extend the theory of ample vector bundles to the sheaf just described.
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8.3 Weil Divisors

We have the notion of order in 6.2.1 (adapted from [Bosch, 2014, p 15] ) and

we want to utilize this for constructing Weil Divisors in Py>*“P*"". Consider a

rational function f on ]PE’ad’perf, we can get the order for each piece

(8.8) () =Y ord(AIAPPH] = 3 ni[AR*P) ny € Z[1/p]

Thus we have an abelian group just like in Weil divisors. This is a finite sum,
since there are only finite number of Affine pieces to consider. We have an

obvious homomorphisms from Weil divisors to Z[1/p] given as

(8.9) Zni[AE’ad’perf]i — Zni.
i i
The rational functions of ]P]Té"“d’perf have degree zero, and thus these are

precisely the functions that will get mapped to the kernel of the above mor-
phism. The degree of the numerator will get mapped to positive order and
degree in denominator will get mapped to negative order, and these will cancel
each other out in the summation. In particular, the sheaf 6(d) gets mapped

to d € Z[1/p] via (8.8).

We do not have a Krull Dimension for K <X}/pm, Tma Xll/pw>, but we have
this notion for the Tate Algebra. We want codimension one so that Weil

Divisors can be defined for K <X}/pm, o X:l/pw>.
Definition 8.3.1. The Krull Dimension for K <X} /pm, ceny Xll/pm> is set equal
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to the Krull Dimension of corresponding Tate Algebra K (Xj,...,X;). This
definition is also carried over to any algebras obtained by modding out the

ideals.

(8.10) (F)=) ordy(f)Y=) nyY, nie€Zll/p]
Y Y

The above definition makes sense only if ordy(f) = 0 except for finitely
many values. Since, we consider irreducible elements in Tate Algebras, that
the above definition makes sense. First we consider Y as K <X} /pw, ceny X:L/ﬂw>

and then replace it with K (Xy,...,Xn_1).

8.4 Cartier Divisors

We will represent cartier divisors as a system D := {(U;, fi);} where U; are the
open sets forming a cover of the space, and f; is the quotient of two regular

elements of @Pn,ad,perf(ui). On the intersection U; N'U; we have
K

(8.11) f1|uinuj S fj|uimuj6’x(ui N Uj)x for every 1i,j.

Two systems represent the same divisor if they differ by a multiplicative factor

in Ox (Ui N'U;) ™. In other words, fi/g; € Ox (Ui N'U;)™ and the two equivalent
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divisors are {(Uj, f;)i} and {(Vj, gj);}. The sum of two divisors is given as

(8.12) D1+ D2 ={(Ui NVj)i,;}

The divisor is effective iff it can be represented by f; € Ox(U;).

Alternatively we can represent Cartier Divisors as the global section of the

sheaf K% /Oy, arising from the short exact sequence of sheaves

(8.13) 0— 05 - K5 - Kx/0x =0

where O is subsheaf of groups of units of Ox and K5 is subsheaf of groups of

units of Kx. The sheaf KXx comes from the presheaf Frac(I'(U, Ox)).

The following result from [Liu, 2002, p 257] page 257 will hold here too.

Proposition 8.4.1. 1. The map p: D +— G(D) s additive, that is

(8.14) p(D1 + D3) =0x(D1)0x(D2) ~ 6x(D1) Q¢ 6x(D2)

2. We have an injective homomorphism from the isomorphism classes

of cartier divisors (denoted by CaCl(X)) to Pic(X).

3. The vmage of p corresponds to invertible sheaves contained in the

field of fractions associated to the scheme.
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In particular the above proposition shows that there is an isomorphism

(8.15) I'(X, X% /0%) ~ Invertible sheaves of Kx

Furthermore we have from [Hartshorne, 1977, Remark 6.12.1, p 143] we

have

(8.16) Pic(X) ~ H' (X, 0%)

8.5 Equivalence of Cartier and Weil Divisors

We want to use [Hartshorne, 1977, Proposition 6.11, p 141]. But, the ring
K<X}/pm,...,Xll/pm> is not Notherian, thus, we cannot invoke the propo-
sition. All is not lost, the space we are considering is ]PE’ad’perf. It comes

equipped with a finite standard affine cover which replaces Noetherian condi-

tion.

We can send a Weil divisor to a Cartier divisor by considering the cover by

affine spaces, defined by X; = 0.
(8,17) Z ny [A]Téaad,perf]i s {H X{Li) [A{(L,ad,perf]i}
i i

In the opposite direction , that is from Cartier to Weil Divisors we have the
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map

(818) {fi) [A]T(L,ad,perf]i} — Z Ord(_[:i)[A]T<L,23.d,FJe::f]i

1

where ord(f) is defined at the start of the section. The correspondence between
cartier and weil divisors gives the isomorphism Cl(]PE’ad’perf) = 7[1/p] with

the map given in(8.9).
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Chapter 9

Cohomology of Line Bundles

IPT]z,ad,perf

In this chapter we compute Cech cohomology of line bundles which agrees with

the derived functor cohomology as given in [Vakil, 2017, p 631].

9.1 Cohomology

In the previous chapter we defined the notion on degree of of an element in
K (X*1/%0). Here, we use this notion to concretely define line bundles on the

projective perfectoid.

Recall that global sections HO(P™, Gpn (m)) are generated by homogeneous
polynomials of degree m in n + 1 variables. For example, H(IP!,Gp1(2))

is generated by x2,xy,y?. We can similarly, define the global sections on
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]P:(,ad,perf, of degree d=2 being generated by Xﬂ]/Pnl . yaz/‘pnz such that

(9.1) ——+——=2and a; € Z-o,Nni € Zx>o

Thus, we see that the dimension of HO(]P:(’ad’perf,@P1,ad,perf(2)) is infinite, and
K
HO(P',6p1(2)) C HO(]P:(’ad’perf,@]P]](,ad,perf (2)). For n; = 0 we recover the global

sections HO (P!, Gp1(2)).

(92) d].m HO (PE,ad,perf, @]P‘r]z,ad,perf (m)) =0

The first theorem which just drops out of the Cech complex using the

arguments in [Hartshorne, 1977, p 225] is the following

Theorem 9.1.1. 1. HO(]PE’ad’perf,@Pz,ad,perf(m)) 18 a free module of infi-

nite rank.

2. Hn(ﬂ);,ad,perf,@Pﬁ,ad,perf(_m)) for m > n is a free module of infinite

rank.

We take the standard cover of ]P]Té"“d’perf by affine sets 4 = {U;}; where each

Uy :D(xi),i:O,...,n.

We get HO (P *¥P* | F) as the kernel of the following map
(93) [T5x, = T1Sxex,
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The element mapping to the Kernel has to lie in all the intersections S =

NiSx,, as given on [Hartshorne, 1977, pp 118|.

H“(]P{(L’ad’perf,ff") is the cokernel of the map

(9.4) d™ " T ] Sxogiexn = Sxovxn
k

Sxo-x, 18 @ free A module with basis xé" . -x}{l with each l; € ZI[1/p].
The image of d" ! is the free submodule generated by those basis elements
with atleast one 1l; > 0. Thus H™ is the free module with basis as negative

monomials

(9.5) {xé‘) .--xtn} such that 1; < 0

The grading is given by >_1; and there are infinitely many monomials with

degree —n — € where € is something very small and € € Z[1/p]. Recall, that in

the standard coherent cohomology there is only one such monomial x51 coexy !

. For example, in case of P2 we have x51x1*1x51 but in ]Pi’ad’perf in addition

—-1/2_—-1/2_ _
to above we also have X0 / Xq / xzz.

Recall that in coherent cohomology of P™ the dual basis of x5 - - - x]'™ is

—1

given by xgmo -..x;™»~T and the operation of multiplication gives pairing.

We do not have this pairing for ]P]T(L’ad’perf, but we can pair x5 with x; .

Theorem 9.1.2. Hi(JP{;’ad’P“f,@Pz,ad,perf) =0if0<i<n
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We will use the proof from [Vakil, 2017, pp 474-475], using the convention
that H° denotes global sections. We will work with ]P{(L’ad’perf,n = 2, the case

for general n is identical. The Cech complex is given in 9.1.
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3 negative exponents The monomial X5°-X{"-X52 where a; < 0. We cannot
lift it to any of the coboundaries (that is lift only to O coefficients). If Ko12
denotes the coefficient of the monomial in the complex (Figure 9.2), we

get zero cohomology except for the spot corresponding to Uy N Uy N Us>.

Figure 9.2: 3 negative exponents

2 negative exponents The monomial X5° - X7 - X3? where two exponents
are negative, say ap,a; < 0. Then we can perfectly lift to coboundary

coming from Uy N Uy, which gives exactness.

0 — Ko1
/@ @\
0O——0—0 0 Koi2 — 0

Figure 9.3: 2 negative exponents
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1 negative exponent The monomial X5° - X{" - X5? where one exponents is
negative, say ap < 0, we get the complex (Figure 9.4). Notice that Ko

maps injectively giving zero cohomology group.

Ko — Ko

PSR

O0——0——0 Koz — Ko12 — 0

Ne e

O0—0

Figure 9.4: 1 negative exponent

Furthermore, the mapping in the Figure 9.5 gives Kernel when f = g

which is possible for zero only. Again giving us zero cohomology groups.

Figure 9.5: Mapping for 1 negative exponent
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0 negative exponent The monomial X;° - X" - X5? where none of the expo-

nents is negative a; > 0, gives the complex Figure 9.6.

Ko — Koy
O—>KH0——>K1 K02—>Ko12——*0
Ky —— Ky2

Figure 9.6: 0 negative exponent

Consider the SES of complex as in Figure 9.7 . The top and bottom row
come from the 1 negative exponent case, thus giving zero cohomology.
The SES of complex gives LES of cohomology groups, since top and

bottom row have zero cohomology, so does the middle.

-0 — K2 Koz @ K12 Ko12 — 0

| l | ]

0
0 —— Kyjo —— Ko & Ky @& K2 —— Ko1 & Ko2 ® Kj2 —— Ko12 — 0
0

| | | -

Ko @ Kj » Ko1 -0 0

Figure 9.7: SES of Complex
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Chapter 10

Module of Differentials

We want to define differentials for K (X'/P*) and the Laurent case K (X*1/P%).
The guiding case will be that of polynomials as given on page 172 of

[Hartshorne, 1977] or page 559 of [Vakil, 2015].

Notice that for K (X'/P™) we cannot define differentials in the same way

since,
(10.1) dX = d(vX)? = 2vXdvX.

Thus, we will have to modulo out such relations. In other words the basis is

dX modulo X® = (Xa/P")P".

We do not face any such problems for the laurent case since

_ 2_ w1
(10.2) dX = d(vVX)? = 2vXdVX = z\/izﬁdx.

But, there are convergence issues. After taking the derivative of an element
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fek <Xi1/pm> we might have the problem that df might not be convergent.

We want to wish this problem away.

Let us recall that a similar problem is faced in calculus with respect to
continuous and differentiable functions, which is resolved by restricting to the
case of C* functions, and we will adopt the same point of view here. Instead
of considering the entire ring K (X*'/P™) we will consider a subring whose
elements are convergent after infinite differentiation. We will call this new

algebra of convergent series after infinite differentiation as des: algebra.

Definition 10.0.1. We define the differential forms over the intersection of the
open sets N;U; (that are glued together to make ]P{(L’ad’perf) to be generated
by @®i* ,fidX; where f; € K<X§1/pm,..., #/pm> are homogeneous power

series such that the coefficients converge to zero on the unit disc after infinite

differentiation.

(10.3) ZCIXI, cit €K, lim |cf|=0, whereIis multi-index
I | I| =00

The differential forms on the affine pieces are defined via pull back from

the common intersection.

10.1 Cech Complex

Let us build a Cech Complex following of [Hartshorne, 1977, Example 4.0.3 pp

219-220]. Let Q be the sheaf of differentials and XY =1
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(10.4) CoO=T(U,Q)xT(V,Q)

(10.5) C'=runv,qQ)

(10.6) ru, Q) =K<X‘/P°°>dx

(10.7) rv,Q) =K<Y‘/P°°> dy

(10.8) runv,Q) :K<X‘/P°°,X*‘/P°°>dx
(10.9)

The differential d : C° — C! is given by the map

(10.10) X X
1
10.11 —
( ) Y— X
1
(10.12) dY — —57dX
(10.13)

To compute H° we need to compute Ker d, which is a pair (f(X)dX, g(Y)dY)

such that

(10.14) f(X) = —%g (%)

Left hand side is a series in K (X'/P™) and the Right hand side is a series in

K(X~1/P*).X~2 and the equality would mean that f =0 =g. Thus H® = 0.
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KO

(1015) H = W such that
1 1
(10.17)

We can order the basis using first quadrant for the terms coming from K (X1/P™)
and using the second quadrant for the terms coming from K (X '/P™) as
given in 6.1.1. We then see that Imd is missing the term corresponding to
X"t i e (—2,0) N Z[1/p]. Therefore H' is infinite dimensional generated by

the image of X—'dX.

10.2 Riemann Roch

The Riemann Roch theorem critically depends upon the relation between Euler

Characteristic of SES of sheaves.

(10.18) 0=>F—=>GG->H—-0

(10.19) x(G) =x(F) +x(H)
But, we have infinite dimensional spaces for cohomology groups, which

in turn makes Euler Characteristic infinite. Hence, we cannot get standard

Reimann-Roch equation for projective perfectoid.
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10.3 Euler Sequence

We want to show that that an Euler sequence exists on ]P]Té"“d’perf similar to the

Euler sequence on P™. We can consider G(—1) as a line bundle whose elements
have deg equal to —1. We have defined degree of elements in K (X*!/P™) in

6.2.1.

Theorem 10.3.1. The sheaf of differentials Qpnaaperr satisfies the follow-
K

mng

(1020) O — Q]Pn,ad,perf —7 @(_1 )@(TL+1) — @Pn,ad,perf — O
K K

Proof. For the sake of clarity we will consider n = 2, the proof of the general
case is similar. We will follow page 578 [Vakil, 2015]. First we describe a degree

one map G (—1)9+1) 5 6.

(1021) @(_1)®(3) — @Pz,ad,perf

(10.22) (S0,S1,82) > X0S0 + X181 + X282

We now want to describe the Kernel of the map above as sheaf of dif-
ferentials. We consider the open set Uy where xo # 0, and co-ordinates

X1/0 = X1/%0 and x,0 = x2/xo. We define the following injective map
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over the open set Uy

-1 1 1
(10.23) f1dxq o + fadxz /0 — <—2(X1 f1 +x2f2), —f1, —fz>
X5 X0 X0

This map lies in the kernel of 6(—1)®(M+1) 5 @. In fact this map is surjective.

For any (go,g1,92) in the Kernel take f;1 = xpg; and f; = x0g2 to get

-1
(10.24) f1dxy /0 + f2dxa /0 — (X—O(M g1 +x292), 91, 92>

which maps to zero when 10.21 is applied.

Let us verify the construction applied to co-ordinate patches Uy and U;.

We will pass from dx;,o,i=1,2 to dx;,1,j =0,2

1 X2/1
f1 dX]/o + fzdxz/o =fid— + fod——
X0/1 X0/1

f1 +1f2x2/1 2
= —zid)(oﬂ + —dX2/1
Xo/1 X0/1

X1 X1
(10.25) = —2(X1f1 +X2fz)dxo/1 + —f2dxy /1
XO X0

In the co-ordinate patch U; # 0 with x; # 0 we have

1 -1 1
(10.26) godxo/1 + g2dxz 1 (-X 9o, —5 (X09go +X292),—92>
1 X] X1

We define go, g1 with reference to 10.25.
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X
go = ——(x1f1 +x2f2)

g2 :=—"

1 —1
—go = —5 (x1f1 +x2f2)
X1 XO

-1 -1 /—x;q X2X1q
— (X090 +x292) = — (—(X1f1 +x2f2) + ——f2
1
X0
IR
X1 92 = o 2

We see that the transition between patches works by mapping to (10.23).

(10.27)
— — 1.1

1 1 1
—dgo, —5 (X +x y — = | = (x1f1 +x2f2), —F7, —F
<X1 go X%( 090 +x292) n 92> (X%( 1f1 +x212) o Vi z)
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