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Despite the extraordinary success of deep learning on diverse problems, these

triumphs are too often confined to large, clean datasets and well-defined objectives. Face

recognition systems train on millions of perfectly annotated images. Commercial speech

recognition systems train on thousands of hours of painstakingly-annotated data. But

for applications addressing human activity, data can be noisy, expensive to collect, and

plagued by missing values. In electronic health records, for example, each attribute might

be observed on a different time scale. Complicating matters further, deciding precisely

what objective warrants optimization requires critical consideration of both algorithms
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and the application domain. Moreover, deploying human-interacting systems requires

careful consideration of societal demands such as safety, interpretability, and fairness.

The aim of this thesis is to address the obstacles to mining temporal patterns in

human activity data. The primary contributions are: (1) the first application of RNNs

to multivariate clinical time series data, with several techniques for bridging long-term

dependencies and modeling missing data; (2) a neural network algorithm for forecasting

surgery duration while simultaneously modeling heteroscedasticity; (3) an approach

to quantitative investing that uses RNNs to forecast company fundamentals; (4) an

exploration strategy for deep reinforcement learners that significantly speeds up dialogue

policy learning; (5) an algorithm to minimize the number of catastrophic mistakes made

by a reinforcement learner; (6) critical works addressing model interpretability and

fairness in algorithmic decision-making.
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Chapter 1

Introduction

Since the earliest conception of artificial intelligence, we have sought to build

systems that interact with humans in real-time. In Alan Turing’s groundbreaking paper

Computing Machinery and Intelligence, he proposes an “Imitation Game” which judges

a machine’s intelligence by its ability to convincingly engage in dialogue [Tur50]. The

same year, science fiction writer Isaac Asimov published I, Robot, a collection of short

stories about artificially intelligent robots that he wrote over the course of the preceding

decade. These stories describe robots that play with children, provide manual labor on a

mining operation on Mercury, pilot spaceships, and organize the world economy. Already

today some of the most widely anticipated applications artificial intelligence relate to

medical care, self-driving cars, and dialogue systems.

While Turing’s test remains unpassed and Asimov’s prognostications remain

unfulfilled, the field of artificial intelligence entered a period of accelerated development.

Over the past decade, deep neural networks have significantly advanced the state of the art

in pattern recognition. And in constrained settings, neural networks can now outperform

humans. For example, given large datasets of images where each image has a fixed size

and belongs to one of a limited set of categories, where each image is labeled, and where

1



2

each class is well-represented in the training data, and where the training and test data

are samples from the same underlying distribution, modern deep neural networks can

approach human-level performance.

Unfortunately, the real world does not always oblige, especially when learning

from the dynamics of human activities. Consider the hospital setting, where we might

want to design an artificially intelligent diagnostician. Real data collected in the hospital

might consist of complicated objects, like trajectories through time. Moreover the robo-

diagnositician can only access ground-truth labels at certain points in time, while at other

times labels are might be corrupted or missing altogether. Moreover, even the input data

are frequently missing. Take, for example, a patient who goes for a walk during hourly

rounds or momentarily detaches from a heart rate sensor. Complicating things further,

the set of available diagnosis codes and the protocol according to which they are applied

may change over time.

The limitations of current machine learning techniques become more pronounced

when we move from considering an inference-engine that only makes predictions to

an agent that takes actions in the real world, altering its environment in the process.

Following the success of deep reinforcement learning (DRL) agents on video games and

board games [MKS+13, SHM+16], we might hope to apply DRL directly to human-

interacting systems. However, subjecting human subjects to millions of failed dialogues,

for example, might exceed the budget of even a wealthy organization.

Finally, taking consequential actions based on the outputs of machine learning

systems in any social context raises several issues. First, if a machine learning agent,

such as a self-driving car can take potentially catastrophic actions, we need to mitigate

any potential harm that might come. Second, the law is concerned with the reasons

for which decisions are made. However, offering explanations for the output generated

by a pattern-recognition system is not straightforward. Finally, actions taken by an
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algorithmic decision-maker might affect various subpopulations differently, even those

delineated according to legally protected characteristics. Deploying decision-making

systems based on such models could potentially run afoul of legal and ethical principles.

Building human-interacting systems requires a sophisticated understanding of the trade-

offs between utility and various criteria for fairness.

1.1 Overview of Contributions

This dissertation presents a collection of works all of which aim to address the

challenges of building artificially intelligent agents that learn from human activities

and interact with humans in time. The primary contributions address several distinct

challenges: Learning patterns given long-term temporal dependencies; accounting for the

presence and significance of missing data; forecasting the future; modeling uncertainty

owing to heteroscedasticity in real-world datasets; exploring as efficiently as possible to

produce high-performing reinforcement learning policies. This thesis also contributes

critical explorations on the issues of safety, interpretability, and fairness.

The thesis is organized as follows: Chapter 2 provides a brief background on

feedforward and recurrent neural networks. Additional background on reinforcement

learning, dialogue systems, etc will be introduced in subsequent chapters as necessary. A

brief overview of the main contributions in each subsequent chapter follows:

Learning to Diagnose with LSTM Recurrent Neural Networks In this chapter, we

present the first paper to apply modern recurrent neural networks to recognizing diagnoses

in multivariate time series of clinical medical data. Focusing on the 13 most frequently

sampled features widely available in the electronic health records of intensive care unit

patients, we show that we can recognize a large number of diagnoses with surprising

accuracy.
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Modeling Missing Data in Clinical Time Series with RNNs Medical data tends to

be plagued by missing values. Each measurement is only observed for some patients.

Moreover re-sampling to discrete time series results in additional missing values - not

every measurement is observed in every time window. In this chapter, we present a simple

technique for capturing the signal in missing data showing substantial improvements in

predictive performance.

Optimal Thresholding of Multilabel Classifiers to Maximize F1 Score In many

real-world datasets, many labels are available. For example in the previous chapters,

we build classifiers that simultaneously recognize 128 different diagnoses. How best to

evaluate multi-label classifiers remains an open question, especially in the case when

each label has a distinct base rate. Macro-, micro-, and per-example-averaged F1-score

are popular metrics for evaluating multilabel classifiers. In this chapter, we characterize

the optimal thresholds to maximize these multi-label variants of F1 score, showing

that setting optimal thresholds for maximizing F1 score does not agree with reasonable

behavior for typical real-world tasks.

Predicting Surgery Duration with Neural Heteroscedastic Regression In medicine,

we often want to forecast future outcomes from current knowledge. This paper presents a

simple technique for predicting all the parameters of a predictive distribution using neural

networks. We predict surgery durations accurately, improving significantly on current

practice for scheduling surgeries. Moreover, we present useful estimates of uncertainty

by predicting the conditional variance.

Improving Factor-Based Quantitative Investing by Forecasting Company Funda-

mentals While supervised learning systems assume that training data is representative

of future data, this assumption rarely holds in the long run as concerns human activities.
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As one example, the stock market may behave according to different dynamics now

than in previous decades. In this paper we present the first academic paper to consider

the application of modern RNNs to fundamental stock market data. Considering the

full universe of publicly traded stock data over several decades, we show that owing

to nonstationarity, predicting price directly does not perform reliably out of sample.

However, by predicting more stable patterns such as the future fundamental reporting

data given a trailing window, we apply factor-based quantitative investing strategies to our

forecasted fundamentals, showing that the approach significantly outperforms traditional

factor models and those which predict price directly, as measured through industry-grade

simulations.

Efficient Exploration for Dialogue Policy Learning with BBQ Networks. Ultimately,

to build systems that not only make predictions but also take actions in time, we require

that they explore their environments efficiently. If a reinforcement learner required

millions of dialogues to become a competent interlocutor, it might have no commercial

or societal value. In this paper we present to our knowledge, the first paper to apply

Bayesian neural networks to achieve efficient exploration in deep reinforcement learners.

Critical Considerations - Safety, Interpretability, and Fairness Applying machine

learning in human-interacting systems brings up a number of critical questions. How

can we guard a reinforcement learner against causing catastrophic mistakes? How can

we explain the decisions of an algorithmic decision-maker as might be required under

the law? How can we be reconcile the utility of a machine learning system with certain

fairness criteria, as determined by society and the law? Answering these questions

requires interdisciplinary investigation and critical consideration of not only technical

ideas but of problem formulations themselves. In the final part of this thesis, we present

three papers addressing each of these issues in turn. We offer an algorithm to guard a
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reinforcement learner against repeatedly making catastrophic mistakes while exploring

its environment, a critical investigation of the foundations of model interpretability, and

a theoretical and empirical study of the irreconcilability of minimizing both disparate

treatment and disparate impact, two widely-referenced fairness criteria.



Chapter 2

Background on Recurrent Neural

Networks

Countless learning tasks require dealing with sequential data. Image captioning,

speech synthesis, music generation, and video game playing all require that a model

generate sequences of outputs. In other domains, such as time series prediction, video

analysis, and music information retrieval, a model must learn from sequences of inputs.

Significantly more interactive tasks, such as natural language translation, engaging in

dialogue, and robotic control, often demand both.

Recurrent neural networks (RNNs) are a powerful family of connectionist models

that capture time dynamics via cycles in the graph. Unlike feedforward neural networks,

recurrent networks can process examples one at a time, retaining a state, or memory,

that reflects an arbitrarily long context window. While these networks have long been

difficult to train and often contain millions of parameters, recent advances in network

architectures, optimization techniques, and parallel computation have enabled large-scale

learning with recurrent nets.

Over the past several years, systems based on state of the art long short-term
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memory (LSTM) and bidirectional recurrent neural network (BRNN) architectures have

demonstrated record-setting performance on tasks as varied as image captioning, language

translation, and handwriting recognition. In this chapter, we synthesize the body of

research that over the past three decades has yielded and reduced to practice these

powerful models. When appropriate, we reconcile conflicting notation and nomenclature.

Our goal is to provide a mostly self-contained explication of state of the art systems,

together with a historical perspective and ample references to the primary research.

2.1 Introduction

RNNs are a superset of feedforward neural networks, augmented with the ability

to pass information across time steps. They are a rich family of models capable of

nearly arbitrary computation. A well-known result by Siegelman and Sontag from

1991 demonstrated that a finite sized recurrent neural network with sigmoidal activation

functions can simulate a universal Turing machine [SS91]. In practice, the ability to

model temporal dependencies makes recurrent neural networks especially suited to tasks

where input and/or output consist of sequences of points that are not independent.

2.1.1 Why Recurrent Nets?

In this section, we address the fundamental reasons why recurrent neural networks

warrant serious study for modeling sequential input and output. To be clear, we are

motivated by a desire to achieve empirical results. This warrants clarification because

recurrent nets have roots in both cognitive modeling and supervised machine learning,

and owing to this difference of perspectives, many of these papers have different aims

and priorities. In the foundational papers, generally published in cognitive science and

computational neuroscience journals ([Hop82], [Jor97], [Elm90]), biologically plausible
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mechanisms are emphasized. In other papers ([SP97], [SKL+14], [KFF14]), biological

inspiration is downplayed in favor of achieving empirical results on important tasks and

datasets. Given the empirical aim, we now address three significant questions one might

reasonably want answered before reading further.

Why Model Time Explicitly?

In light of the practical success and economic value of time-agnostic models,

this is a fair question. Support vector machines, logistic regression, and feedforward

networks have proved immensely useful without explicitly modeling time. Arguably,

it is precisely the assumption of independence that has led to much recent progress in

machine learning. Further, many models implicitly capture time by concatenating each

input with some number of its immediate predecessors and successors, presenting the

machine learning model with a sliding window of context about each point of interest.

This approach has been used with deep belief nets for speech modeling in [MLO+12].

Unfortunately, despite the usefulness of the independence assumption, it precludes

modeling long-range time-dependencies. For example, a model trained using a finite-

length context window of length 5 could never be trained to answer the simple question,

“what was the data point seen 10 time steps ago?” For a practical application such as

call center automation, such a limited system might learn to route calls, but could

never participate in an extended dialogue. Besides dialogue systems, modern interactive

systems of economic importance include self-driving cars and robotic surgery, among

others.

Why Neural Networks and Not Markov Models?

Recurrent neural networks are not the first models to capture time dependencies.

Markov chains, which model transitions between observed sequences of states (s(1), s(2),
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... , s(T )), were first described in 1906. Hidden Markov models (HMMs), which model

observed data (o(1),o(2), ...,o(T )) as probabilistically dependent upon unobserved states,

were described in the 1950s and have been widely studied since the 1960s. However,

traditional approaches to sequence learning with HMMs are limited because their states

must be drawn from a modestly sized discrete state space s j ∈ S. The Viterbi algorithm,

which is used to perform efficient inference on hidden Markov models, scales in time

O(|S|2). Further, the transition table capturing the probability of moving between any

two adjacent states is of size |S|2. Thus, standard operations are infeasible with an HMM

when the set of possible hidden states is larger than roughly 106 states. Further, each

hidden state s(t) can depend only on the previous state s(t−1). While it is possible to

extend any Markov model to account for a larger context window by creating a new

state-space equal to the cross product of the possible states at each time in the window,

this procedure grows the state space exponentially with the size of the window, rendering

Markov models computationally impractical for modeling long-range dependencies.

Given the limitations of Markov models, we ought to explain why it is sensible

that artificial neural networks, should fare better. First, RNNs can capture long-range time

dependencies, overcoming one chief limitation of Markov models. This point requires

a careful explanation. As in Markov models, any state in a traditional RNN depends

only on the current input as well as the state of the network at the previous time step 1.

However, the hidden state at any time step can contain information from an arbitrarily

long context window. This is possible because the number of distinct states that can be

represented in a hidden layer of nodes grows exponentially with the number of nodes

in the layer. Even if each node took only binary values, the network could represent 2N

states where N is the number of nodes in the hidden layer. Given real-valued outputs,

1Bidirectional recurrent neural networks (BRNNs) [SP97] extend RNNs to model dependence on both
past states and future states. Traditional RNNs only model the dependence of each event on the past. This
extension is especially useful for sequence to sequence learning with fixed length examples.
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even assuming the limited precision of 64 bit numbers, a single hidden layer of nodes can

represent 264N distinct states. While the potential expressive power grows exponentially

with the number of nodes in the hidden representation, the complexity of both inference

and training grows only quadratically.

Second, from an empirical standpoint, it is generally reasonable to extend neural

networks to tackle any supervised learning problem because at present, they achieve

state-of-the-art results on a wide range of supervised learning tasks. Over the past several

years, storage has become more affordable, datasets have grown far larger, and the field

of parallel computing has advanced considerably. Given such large high-dimensional

datasets, linear models tend to under-fit data and under-utilize computing resources. Deep

neural networks (DNNs), and convolutional neural networks (CNNs), which exploit the

local dependency of visual information, have demonstrated record-setting results on

many important applications. Neural networks are especially well-suited for machine

perception tasks, where the raw underlying features are not individually informative. This

success is attributed to their ability to learn hierarchical representations, unlike traditional

algorithms, which rely upon hand-engineered features. However, despite their power,

feedforward neural nets have limitations. Most notably, they rely on the assumption of

independence among the data points. Additionally, these networks generally rely on

input consisting of fixed length vectors. Thus it is sensible to extend these powerful

learning tools to model data with temporal structure, especially in the many domains

where neural nets are already the state of the art.

Are RNNs Too Expressive?

As described earlier, finite-sized RNNs with sigmoidal activations are Turing

complete. The capability of RNNs to run arbitrary computation clearly demonstrates

their expressive power, but one could argue that the C programming language is equally
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capable of expressing arbitrary programs. And yet there are no papers claiming that the

invention of C represents a panacea for machine learning. Out of the box, C offers no

simple way of efficiently exploring the space of programs. There is no straightforward

way to calculate the gradient of an arbitrary C program to minimize a chosen loss function.

Further, the biggest problem with treating the set of programs expressible in C as a family

of machine learning models is that this set is far too large. Given any finite sized dataset,

there exist countless programs which can overfit the data, generating desired output but

failing to generalize to test data.

Why then should RNN’s not suffer from similar problems? First, given any fixed

architecture (set of nodes, edges, and activation functions), the recurrent neural networks

described in this chapter are fully differentiable end to end. The derivative of the loss

function can always be calculated with respect to each of the parameters (weights) in the

model. Second, while the Turing-completeness of finite-length RNNs is an impressive

property, given any fixed-size RNN and a specific architecture, it is not actually possible

to generate any arbitrary program. Further, unlike an arbitrary program composed in C,

a recurrent neural network can be regularized via standard techniques such as weight

decay, dropout, and limiting the degrees of freedom.

2.2 Preliminaries

We now introduce some formal notation and provide a brief background on neural

networks. RNNs are not limited to sequences which index time. They have been used

successfully on non-temporal sequence data, including genetic data [BP03]. However,

computation proceeds in time, and many important applications have an explicit or

implicit temporal aspect. While we refer to time steps throughout this thesis, the methods

described here are applicable to wider family of sequential tasks. Thesis concerns
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data points x(t) and and desired outputs y(t) that arrive in a discrete sequence of time

steps indexed by t. We use superscripts with parentheses and not subscripts to obviate

confusion between time steps and neurons. Our sequences may be of finite length or

countably infinite. When they are finite, we call the maximum time index of the sequence

T . Thus a sequence of consecutive inputs can be denoted (x(1),x(2), ...,x(T )) and outputs

can be notated (y(1),y(2), ...,y(T )) These time steps may be equally spaced samples from

a continuous real-world process. Examples would include the still images that comprise

the frames of videos or the discrete amplitudes sampled at fixed intervals to comprise

audio recordings. The time steps may also be ordinal, with no exact correspondence

to durations. In fact, these techniques can be extended to domains including genetic

sequences, where the sequence has a defined order but no real correspondence to time.

This is the case with natural language. In the word sequence “John Coltrane plays the

saxophone”, x(1) = John, x(2) = Coltrane, etc.

2.2.1 Neural Networks

Neural networks are biologically inspired models of computation. Generally, a

neural network consists of a set of artificial neurons, commonly referred to as nodes or

units, and a set of directed edges between them, which intuitively represent the synapses

in a biological neural network. Associated with each neuron j is an activation function l j,

which is sometimes called a link function. We use the notation “l j” and not “h j” (unlike

some other papers) to distinguish the activation function l j from the values of the hidden

nodes in a network, which is commonly notated h in the RNN literature.

Associated with each edge from node j′ to j is a weight w j j′ . Following the con-

vention adopted in several foundational recurrent net papers ([HS97], [Ger01], [GSC00],

[SMH11]), we index neurons with j and j′, and by w j j′ , we denote the weight corre-

sponding to the directed edge from node j′ to node j. It is important to note that in many
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papers, textbooks, and lecture notes, the indices are flipped and w j′ j 6= w j j′ denotes the

weight on the directed edge from the node j′ to the node j as in [Elk] and on Wikipedia

[Wik15].

The value v j of each neuron j is calculated by applying its activation function to

a weighted sum of its inputs (Figure 2.1):

v j = l j

(
∑
j′

w j j′ · v j′

)
.

For convenience, we term the weighted sum inside the parenthesis the incoming activation

and notate it as a j. We represent this entire process in figures by depicting neurons as

circles and edges as arrows connecting them. When appropriate, we mark the exact

activation function with a symbol, e.g., σ for sigmoid.

Common choices for the activation function include the sigmoid σ(z) = 1/(1+

e−z) and the tanh function φ(z) = (ez− e−z)/(ez + e−z) which has become common

in feedforward neural nets and was applied to recurrent nets in [SMH11]. Another

activation which has become the state of the art in deep learning research is the rectified

linear unit (ReLU) l j(z) = max(0,z). These units have been demonstrated to improve the

performance of many deep neural networks ([MLO+12], [NH10], [ZRM+13]) on tasks

as varied as speech processing and object recognition, and have been used in recurrent

neural networks by [BBLP13].

The activation function at the output nodes depends upon the task. For multi-

class classification, we apply a softmax nonlinearity to the layer. The softmax function

calculates

ŷk =
eak

∑
K
k′=1 eak′

where K is the total number of outputs. The denominator is normalization consisting

of a sum of exponentials over all output nodes, ensuring that the output sums to 1. For



15

multilabel classification the activation function is simply a point-wise sigmoid. For

regression we may have linear output. Due to the overwhelming number of current

applications involving multi-class classification, especially for recurrent nets, in this

thesis, unless otherwise specified, we assume that softmax is applied at the output.

Figure 2.1: An artificial neuron computes a nonlinear function of a weighted sum of its
inputs.

2.2.2 Feedforward Neural Networks

With a neural model of computation, one must determine the order in which

computation should proceed. Should nodes be sampled one at a time and updated,

or should the value of all nodes be calculated at once and then all updates applied

simultaneously? Feedforward neural networks (Figure 2.2) are a restricted class of neural

networks which deal with this problem by forbidding cycles in the graph. Thus all nodes

can be arranged into layers. The outputs in each layer can be calculated given the outputs

from the lower layers.

The input x to a feedforward network is presented by setting the values of the

lowest layer. Each higher layer is then successively computed until output is generated at
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Figure 2.2: A feedforward neural network. An example is presented to the network by
setting the values of the blue nodes. Each layer is calculated successively as a function
of the prior layers until output is produced at the topmost layer.

the topmost layer ŷ. These networks are frequently used for supervised learning tasks

such as classification and regression. Learning is accomplished by iteratively updating

each of the weights to minimize a loss function, L(ŷ,y), which penalizes the distance

between the output ŷ and the target y. Backpropagation, an algorithm introduced to neural

networks in [RHW85], computes the gradient of the loss with respect to each parameter

using the chain rule. While the optimization surfaces for neural networks are highly non-

convex, and exact optimization is known to be an NP-Hard problem, a large body of work

on heuristic pre-training and optimization techniques has led to impressive empirical

success on many supervised learning tasks. Convolutional neural networks [LCDH+90]

are a variant of feedforward neural network that, since 2012, accomplish state-of-the-art

results in many computer vision tasks, such as object recognition [KSH12], detection

[RDGF16], and semantic segmentation [LSD15].

Feedforward networks, however, have some limitations. After each example is

processed, the entire state of the network is lost. If each data point is independently
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sampled, this presents no problem. But if data points are related in time, this may not

be desirable. Frames from video, snippets of audio, and words pulled from sentences,

represent settings where the independence assumption fails.

2.2.3 Training Neural Networks via Backpropagation

The most successful algorithm for training neural networks is backpropagation,

introduced to neural networks by Rumelhart et al. in 1985 [RHW85]. Backpropagation

uses the chain rule to calculate the derivative of a loss function L with respect to each

parameter in the network. The weights are then adjusted by gradient descent. Because the

loss surface is non-convex, there is no assurance that backpropagation will reach a global

minimum. However, in practice, networks trained with backpropagation and gradient

following techniques have been remarkably successful. In practice, most networks are

trained with stochastic gradient descent (SGD) using mini-batches. Here, w.l.o.g. we

discuss only the case with batch size equal to 1. The stochastic gradient update equation

is given by

w← w−η∇wFi (2.1)

where η is the learning rate and ∇wFi is the gradient of the objective function with respect

to the parameters w as calculated on a single example (xi,yi).

In practice, many variants of SGD are used to accelerate learning. Some popular

heuristics, such as AdaGrad [DHS11], AdaDelta [Zei12], and RMSprop [TH12], adap-

tively tune the learning rate for each feature. AdaGrad, arguably the most popular, adapts

the learning rate by caching the sum of squared gradients with respect to each parameter

at each time step. The step size for each feature is scaled to the inverse of this cache.

This leads to fast convergence on convex error surfaces, but because the cached sum is

monotonically increasing, AdaGrad has a monotonically decreasing learning rate. This
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may be undesirable on highly non-convex loss surfaces. RMSprop modifies AdaGrad

by introducing a decay factor on the cache, transforming the monotonic growing cache

into a moving average. Momentum methods are another common SGD variant used to

train neural networks. These methods add to each update a decaying sum of the previous

updates. When the momentum parameter is well-tuned and the network is initialized

well, momentum methods can train deep nets and recurrent nets competitively with more

computationally expensive methods like the Hessian Free optimizer [SMDH13].

To calculate the gradient in a feedforward neural network, backpropagation

proceeds as follows. First, an example is forward propagated through the network to

produce a value v j at each node and outputs ŷ at the topmost layer. Then, a loss function

L(ŷk,yk) is assessed at each output node k. Subsequently, for each output node k, we can

calculate

δk =
∂L(ŷk,yk)

∂ŷk
· l′k(ak). (2.2)

Given these values δk, for each node in the level prior we can calculate

δ j = l′(a j)∑
k

δk ·wk j. (2.3)

This calculation is performed successively for each lower layer to calculate δ j

for every node j given the δ values for each node connected by an outgoing edge. Each

value δ j represents the derivative ∂L/a j of the total loss function w.r.t. that node’s

incoming activation. Given the values v j calculated on the forward pass, and the values

δ j calculated on the backward pass, the derivative of the loss L with respect a given

parameter w j j′ is given by
∂L

∂w j j′
= δ jv j′.

Large scale feedforward neural networks trained via backpropagation have set many
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large-scale machine learning records, most notably on the computer vision task of object

detection ([LXG+14], [KSH12]).

Several other methods have been explored for learning the weights in a neural

network. Early work, including Hopfield nets [Hop82], learned via a Hebbian principle

but did not produce networks useful for discriminative tasks. A number of papers from the

1990s ([BMS90], [G+94]) championed the idea of learning neural networks with genetic

algorithms with some even claiming that achieving success on real-world problems

by applying many small changes to a network’s weights was impossible. Despite the

subsequent success of backpropagation, interest in genetic algorithms persists. Several

recent papers explore genetic algorithms for neural networks, especially as means of

learning the architecture of neural networks, a problem not addressed by backpropagation

([BWTS09], [HS13]). By the architecture we mean the number of layers, the number

of nodes in each, the connectivity pattern among the layers, the choice of activation

functions, etc.

One open question in neural network research is how to exploit sparsity in training.

In a neural network with sigmoidal or tanh activation functions, the nodes in each layer

never take value exactly 0. Thus, even if the inputs are sparse, the nodes at each hidden

layer are not. However, a rectified linear units (ReLUs) introduce sparsity to hidden layers

[GBB11]. In this setting, a promising path may be to store the sparsity pattern when

computing each layer’s values and use it to speed up computation of the next layer in the

network. A growing body of recent work ([Car08], [LLZ09], [SD09], [LE15]), thus read

shows that given sparse inputs to a linear model with any standard regularizer, sparsity

can be fully exploited even if the gradient is not sparse (owing to regularization). Given

sparse hidden layers, these approaches can be extended to the layer-wise computations in

neural networks.
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2.3 Recurrent Neural Networks

Recurrent neural networks are a strict superset of feedforward neural networks,

augmented by the inclusion of recurrent edges that span adjacent time steps, introducing a

notion of time to the model. While RNNs may not contain cycles among the conventional

edges, recurrent edges may form cycles, including self-connections. At time t, nodes

receiving input along recurrent edges receive input activation from the current example

x(t) and also from hidden nodes h(t−1) in the network’s previous state. The output ŷ(t) is

calculated given the hidden state h(t) at that time step. Thus, input x(t−1) at time t−1

can influence the output ŷ(t) at time t by way of these recurrent connections.

We can show in two equations, all calculations necessary for computation at each

time step on the forward pass in a simple recurrent neural network:

h(t) = σ(Whxx+Whhh(t−1)+bh)

ŷ(t) = softmax(Wyhh(t)+by)

Here Whx is the matrix of weights between the input and hidden layers and Whh is the

matrix of recurrent weights between the hidden layers at adjacent time steps. The vectors

bh and by are biases which allow each node to learn an offset.

Most of the models discussed in this chapter consist of networks with recurrent

hidden layers. However, some proposed models, such as Jordan Networks, allow for

connections between the outputs in one state and the hidden layer in the next. Others,

such as Sutskever et al.’s model for sequence to sequence learning [SVL14], compute the

output at each time step and pass a representation of this information as the input at the

following time step.

A simple recurrent network is depicted in Figure 2.3. The dynamics of this
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Figure 2.3: A simple recurrent network. At each time step t, activation is passed along
solid edges as in a feedforward network. Dashed edges connect the source node j′ at
time t, i.e., j′(t) to the target node at the following time step j(t+1).

network across time steps can be visualized by unfolding the network (Figure 2.4). Given

this picture, the model can be interpreted not as cyclic, but rather as a deep network with

one layer per time step and shared weights across time steps. It’s then clear that the

unfolded network can be trained across many time steps using backpropagation. This

algorithm is called backpropagation through time (BPTT), and was introduced in 1990

[Wer90].

2.3.1 Training Recurrent Networks

Learning with recurrent neural networks has long been considered to be difficult.

As with all neural networks, the optimization is NP-Hard. But learning on recurrent

networks can be especially hard due to the difficulty of learning long-range dependencies

as described by Bengio et al in 1994 [BSF94] and expanded upon in [HBF01]. The well

known problems of vanishing and exploding gradients occur when propagating errors

across many time steps. As a trivial example, consider a network with a single input node,
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Figure 2.4: Visualizing the network unfolded across time steps.

a single output node, and a single recurrent hidden node (Figure 2.5). Now consider an

input passed to the network at time τ and an error calculated at time t, assuming input of

0 in the intervening time steps. Owing to the weight tying across time steps (the recurrent

edge at hidden node j always has the same weight), the impact of the input at time τ on

the output at time t will either explode exponentially or rapidly approach zero as t− τ

grows large, depending on whether the weight |w j j|> 1 or |w j j|< 1 and also upon the

activation function in the hidden node (Figure 2.6). Given activation function l j = σ, the

vanishing gradient problem is more pressing, but with a rectified linear unit max(0,x),

it’s easier to imagine the exploding gradient, even with this trivial example. In [PMB12],

Pascanu et al. give a thorough mathematical treatment of the vanishing and exploding

gradient problems, characterizing exact conditions under which these problems may

occur. Given these conditions under which the gradient may vanish or explode, they

suggest an approach to training via a regularization term, which forces the weights to

values where the gradient neither vanishes nor explodes.

Truncated backpropagation through time (TBPTT) is one solution to this problem
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for continuously running networks [WZ89]. With TBPTT, some maximum number of

time steps is set along which error can be propagated. While TBPTT with a small cutoff

can be used to alleviate the exploding gradient problem, it requires that one sacrifice the

ability to learn long-range dependencies.

Figure 2.5: A simple recurrent net with one input unit, one output unit, and one recurrent
hidden unit.

The optimization problem represents a more fundamental obstacle that cannot as

easily be dealt with by modifying network architecture. It has been known since at least

1993 that optimizing even a 3-layer neural network is NP-Complete [BR93]. However,

recent empirical and theoretical studies suggest that the problem may not be as hard in

practice as once thought. [DPG+14] shows that while many critical points exist on the

error surfaces of large neural networks, the ratio of saddle points to true local minima

increases exponentially with the size of the network

Fast implementations and improved gradient following heuristics have rendered

RNN training feasible. For example, implementations of forward and backward prop-
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Figure 2.6: A visualization of the vanishing gradient problem. If the weight along the
purple edge is less than one, the effect of the input at the first time step on the output
at the final time step will rapidly diminish as a function of the size of the interval in
between.

agation using GPUs, such as Theano ([BBB+10]) and Torch ([CKF11]), have made it

easy to implement fast training algorithms. In 1996, prior to the introduction of the

LSTM, attempts to train recurrent nets to bridge long time gaps were shown to perform

no better than random guessing [Hoc]. However, successfully trained RNNs are now

relatively common. Sutskever and Martens reported success training recurrent neural

networks with a Hessian-Free, i.e., truncated Newton approach [MS11] and applied it to

a network which learns to generate text one character at a time in [SMH11]. In the paper

that described the abundance of saddle points on the error surfaces of neural networks

([DPG+14]), the authors present a saddle-free version of Newton’s method. Unlike New-

ton’s method, which is attracted to critical points, including saddle points, this variant is

specially designed to escape from them. Experimental results include a demonstration

of improved performance on recurrent networks. Newton’s method requires computing



25

the Hessian, which is prohibitively expensive for large networks, scaling quadratically

with the number of parameters. While their algorithm only approximates the Hessian,

it is still computationally expensive compared to SGD. Thus the authors describe a

hybrid approach whereby the saddle-free Newton method is applied in places where SGD

appears to be stuck.

2.3.2 Modern RNNs

The most successful RNN architectures for sequence learning date to two pa-

pers from 1997. The first, Long Short-Term Memory, by Hochreiter and Schmidhuber,

introduces the memory cell, a unit of computation that replaces traditional artificial

neurons in the hidden layer of a network. With these memory cells, networks are able

to overcome some difficulties with training encountered in earlier recurrent nets. The

second, Bidirectional Recurrent Neural Networks, by Schuster and Paliwal, introduces

the BRNN architecture in which information from both the future and the past are used to

determine the output at any time t. This is in contrast to previous systems, in which only

past input can affect the output, and has been used successfully for sequence labeling

tasks in natural language processing, among others. Fortunately, the two innovations

are not mutually exclusive, and have been successfully combined by Graves et al. for

phoneme classification [GS05] and handwriting recognition [GLF+09].

Long Short-Term Memory (LSTM)

In 1997, to overcome the problem of vanishing gradients, Hochreiter and Schmid-

huber introduced the LSTM model. This model resembles a standard neural network

with a recurrent hidden layer, only each ordinary node (Figure 2.1) in the hidden layer

is replaced with a memory cell (Figure 2.7). The memory cell contains a node with a

self-connected recurrent edge of weight 1, ensuring that the gradient can pass across
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many time steps without vanishing or exploding. To distinguish that we are referencing a

memory cell and not an ordinary node, we use the index c.

Figure 2.7: LSTM memory cell The self-connected node is the internal state s. The
diagonal line indicates that no activation function is applied, Dashed lines indicate
recurrent edges and pink edges have fixed weight of 1.

The term “Long Short-Term Memory” comes from the following intuition. Sim-

pler recurrent neural networks have long term memory in the form of weights. The

weights change very slowly over time encoding general knowledge about the data. They

also have short term memory in the form of ephemeral activations, which pass from each

node’s output to successive nodes. The LSTM model introduces an intermediary sort of

memory via the memory cell. A memory cell is a composite of simpler units with the

novel addition of multiplicative nodes, represented in diagrams with Π. All elements of

the LSTM cell are enumerated and described below.

• Internal State: At the heart of each memory cell is a node s with linear activation,

which is referred to in the original paper as the “internal state” of the cell. We
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index cells with c and thus the internal state of a cell c is sc.

• Constant error carousel: The internal state sc has a self-connected (recurrent)

edge with weight 1. This edge, called the constant error carousel, spans adjacent

time steps with constant weight, assuring that error can flow across time steps

without vanishing.

• Input Node: This node behaves as an ordinary neuron, taking input from the

rest of the network (at the previous time step) as well as from the input. In

the original paper and most subsequent work the input node is labeled g. We

adhere to this convention but note that it may be confusing as g does not stand for

gate. In the original paper, the gates are called yin and yout but this is confusing

because y generally stands for output in the machine learning literature. Seeking

comprehensibility, we break with this convention and use i, f , and o to refer to

input, forget and output gates respectively as in [SVL14]. When we use vector

notation we are referring to the values of the nodes in an entire layer of cells. For

example, g is a vector containing the value of g at each memory cell in a layer.

When the subscript c is used, it is to refer to an individual memory cell.

• Multiplicative Gating: Multiplicative gates are distinctive features of the LSTM

model. Here a sigmoidal unit called a gate is learned given the input and the

incoming recurrent connections from the previous time step. Some value of interest

is then multiplied by this output. If the gate outputs 0, flow through the gate is cut

off. If the gate outputs 1, all activation is passed through the gate.

– Input gate: The original LSTM contains two gates. The first is an input gate

ic, which is multiplied by the input node gc.

– Output gate: The second gate is termed the output gate, which we notate

as oc. This gate is multiplied by the value of the internal state sc to produce
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the value of vc output by the memory cell . This then feeds into the LSTM

hidden layer at the next time step h(t+1) as well as the output nodes ŷ(t) at the

current time step.

Since the original LSTM was introduced, several variations have been proposed. Forget

gates, proposed in 2000 by Gers and Schmidhuber [GSC00], add a gate similar to

input and output gates to allow the network to flush information from the constant error

carousel. Also in 2000, Gers and Schmidhuber proposed peephole connections [GS00],

which pass from the carousel directly to the input and output gates of that same node

without first having to pass through the output gate. They report that these connections

improve performance on timing tasks where the network must learn to measure precise

intervals between events. While peephole connections are not common in modern papers,

forget gates have become a mainstay of LSTM work.

Figure 2.8: LSTM memory cell with forget gate as described by Felix Gers et al. in
[GSC00].

Put formally, computation in the LSTM model proceeds according to the follow-
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ing calculations which must be evaluated at each time step. This gives the full algorithm

for a modern LSTM with forget gates.

g(t)∗= ∗φ(Wgxx(t)+Wihh(t−1)+bg) (2.4)

i(t) = σ(Wixx(t)+Wihh(t−1)+bi) (2.5)

f (t) = σ(Wf xx(t)+Wf hh(t−1)+b f ) (2.6)

o(t) = σ(Woxx(t)+Wohh(t−1)+bo) (2.7)

s(t) = g(t)� i(i)+ s(t−1)� f (t) (2.8)

h(t) = s(t)�o(t) (2.9)

where � stands for element-wise multiplication. The calculations for the simpler

LSTM without forget gates is given by setting f (t) = 1 for all t. We use the tanh function

φ for the input node g following the latest state of the art setup of Zaremba and Sutskever

in [ZS14]. However, in the original LSTM paper [HS97], the activation function for g is

the sigmoid σ. Again, h(t−1) is a vector containing the values vc output by each memory

cell c in the hidden layer at the previous time step.

Intuitively, in terms of the forward pass, the LSTM can learn when to let activation

into the internal state. So long as the input gate takes value 0, no activation can get in.

Similarly, the output gate learns when to let the value out. When both gates are closed,

the activation is trapped in the LSTM, neither growing nor shrinking, nor affecting the

output at the intermediary time steps. In terms of the backwards pass, the constant error

carousel enables the gradient to propagate back across many time steps, neither exploding

nor vanishing. In this sense, the gates are learning when to let error in, and when to let it

out. In practice, the LSTM has shown a superior ability to learn long-range dependencies

as compared to simple RNNs.
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2.3.3 Bidirectional Recurrent Neural Networks (BRNNs)

Along with the LSTM, one of the most used RNN setups is the bidirectional

recurrent neural network (BRNN) (Figure 2.9) first described in [SP97]. In this architec-

ture, there are two layers of hidden nodes. Both hidden layers are connected to input and

output. The two hidden layers are differentiated in that the first has recurrent connections

from the past time steps while in the second the direction of recurrent of connections is

flipped, passing activation backwards in time. Given a fixed length sequence, the BRNN

can be learned with ordinary backpropagation. The following three equations describe a

BRNN:

h(t)f = σ(Wh f xx+Wh f h f h
(t−1)
f +bh f ) (2.10)

h(t)b = σ(Whbxx+Whbhbhb
(t+1)+bhb) (2.11)

ŷ(t) = softmax(Wyh f h f
(t)+Wyhbhb

(t)+by) (2.12)

Where h(t)f and h(t)b correspond to the hidden layers in the forwards and backwards

directions respectively.

One limitation of the BRNN is that cannot run continuously, as it requires a fixed

endpoint in both the future and in the past. Further, it is not an appropriate machine

learning algorithm for the online setting, as it is implausible to receive information

from the future, i.e., sequence elements that have not been observed. But for sequence

prediction over a sequence of fixed length, it is often sensible to account for both past

and future data. Consider the natural language task of part of speech tagging. Given a

word in a sentence, information about both the words which precede and those which

succeed it is useful for predicting that word’s part of speech. Karpathy et al. use such a

network for generating captions for images [KFF14].

The LSTM and BRNN are in fact compatible ideas. The former introduces a new
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Figure 2.9: Structure of a bidirectional recurrent neural network as described by
Schuster and Paliwal in [SP97].

basic unit from which to compose a hidden layer, while the latter concerns the wiring

of the hidden layers, regardless of what nodes they contain. Such an approach, termed

a BLSTM was used by Graves et al. to achieve state of the art results on handwriting

recognition and phoneme classification [GLF+09] [GS05].
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Part I

Mining Temporal Patterns in Medical

Data
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Chapter 3

Learning to Diagnose with LSTM

RNNs

Clinical medical data, especially in the intensive care unit (ICU), consist of multi-

variate time series of observations. For each patient visit (or episode), sensor data and

lab test results are recorded in the patient’s Electronic Health Record (EHR). While po-

tentially containing a wealth of insights, the data is difficult to mine effectively, owing to

varying length, irregular sampling and missing data. Recurrent Neural Networks (RNNs),

particularly those using Long Short-Term Memory (LSTM) hidden units, are powerful

and increasingly popular models for learning from sequence data. They effectively model

varying length sequences and capture long range dependencies. This chapter presents

the first study to empirically evaluate the ability of LSTMs to recognize patterns in

multivariate time series of clinical measurements.
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3.1 Introduction

Time series data comprised of clinical measurements, as recorded by caregivers

in the pediatric intensive care unit (PICU), constitute an abundant and largely untapped

source of medical insights. Potential uses of such data include classifying diagnoses

accurately, predicting length of stay, predicting future illness, and predicting mortality.

However, besides the difficulty of acquiring data, several obstacles stymie machine

learning research with clinical time series. Episodes vary in length, with stays ranging

from just a few hours to multiple months. Observations, which include sensor data,

vital signs, lab test results, and subjective assessments, are sampled irregularly and

plagued by missing values [MKKW12]. Additionally, long-term time dependencies

complicate learning with many algorithms. Lab results that, taken together, might

imply a particular diagnosis may be separated by days or weeks. Long delays often

separate onset of disease from the appearance of symptoms. For example, symptoms of

acute respiratory distress syndrome may not appear until 24-48 hours after lung injury

[MBM+10], while symptoms of an asthma attack may present shortly after admission

but change or disappear following treatment.

Recurrent Neural Networks (RNNs), in particular those based on Long Short-

Term Memory (LSTM) [HS97], model varying-length sequential data, achieving state-

of-the-art results for problems spanning natural language processing, image captioning,

handwriting recognition, and genomic analysis [AGQZ13, SVL14, VTBE14, KFF14,

LGBS07, GLF+09, PPRB02, Voh01, XWIF07]. LSTMs can capture long range de-

pendencies and nonlinear dynamics. Some sequence models, such as Markov models,

conditional random fields, and Kalman filters, deal with sequential data but are ill-

equipped to learn long-range dependencies. Other models require domain knowledge or

feature engineering, offering less chance for serendipitous discovery. In contrast, neural
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networks learn representations and can discover unforeseen structure.

This chapter presents the first empirical study using LSTMs to classify diagnoses

given multivariate PICU time series. Specifically, we formulate the problem as multilabel

classification, since diagnoses are not mutually exclusive. Our examples are clinical

episodes, each consisting of 13 frequently but irregularly sampled time series of clinical

measurements, including body temperature, heart rate, diastolic and systolic blood

pressure, and blood glucose, among others. Associated with each patient are a subset

of 429 diagnosis codes. As some are rare, we focus on the 128 most common codes,

classifying each episode with one or more diagnoses.

Because LSTMs have never been previously used in this setting, we first verify

their utility and compare their performance to a set of strong baselines, including both

a linear classifier and a MultiLayer Perceptron (MLP). We train the baselines on both

a fixed window and hand-engineered features. We then test a straightforward target

replication strategy for recurrent neural networks, inspired by the deep supervision

technique of [LXG+14] for training convolutional neural networks. We compose our

optimization objective as a convex combination of the loss at the final sequence step and

the mean of the losses over all sequence steps. Additionally, we evaluate the efficacy

of using additional information in the patient’s chart as auxiliary outputs, a technique

previously used with feedforward nets [CBM+96], showing that it reduces overfitting.

Finally, we apply dropout to non-recurrent connections, which improves the performance

further. LSTMs with target replication and dropout surpass the performance of the best

baseline, namely an MLP trained on hand-engineered features, even though the LSTM

has access only to raw time series.
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3.2 Data Description

Our experiments use a collection of anonymized clinical time series extracted

from the EHR system at Children’s Hospital LA [MKKW12, CKL+15] as part of an

IRB-approved study. The data consists of 10,401 PICU episodes, each a multivariate

time series of 13 variables: diastolic and systolic blood pressure, peripheral capillary

refill rate, end-tidal CO2, fraction of inspired O2, Glascow coma scale, blood glucose,

heart rate, pH, respiratory rate, blood oxygen saturation, body temperature, and urine

output. Episodes vary in length from 12 hours to several months.

Each example consists of irregularly sampled multivariate time series with both

missing values and, occasionally, missing variables. We resample all time series to

an hourly rate, taking the mean measurement within each one hour window. We use

forward- and back-filling to fill gaps created by the window-based resampling. When a

single variable’s time series is missing entirely, we impute a clinically normal value as

defined by domain experts. These procedures make reasonable assumptions about clinical

practice: many variables are recorded at rates proportional to how quickly they change,

and when a variable is absent, it is often because clinicians believed it to be normal

and chose not to measure it. Nonetheless, these procedures are not appropriate in all

settings. Back-filling, for example, passes information from the future backwards. This

is acceptable for classifying entire episodes (as we do) but not for forecasting. Finally,

we rescale all variables to [0,1], using ranges defined by clinical experts. In addition,

we use published tables of normal values from large population studies to correct for

differences in heart rate, respiratory rate [FTS+11], and blood pressure [Nat04] due to

age and gender.

Each episode is associated with zero or more diagnostic codes from an in-house

taxonomy used for research and billing, similar to the Ninth Revision of the International
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Classification of Diseases (ICD-9) codes [Wor04]. The dataset contains 429 distinct

labels indicating a variety of conditions, such as acute respiratory distress, congestive

heart failure, seizures, renal failure, and sepsis. Because many of the diagnoses are rare,

we focus on the most common 128, each of which occurs more than 50 times in the data.

These diagnostic codes are recorded by attending physicians during or shortly after each

patient episode and subject to limited review afterwards.

Because the diagnostic codes were assigned by clinicians, our experiments rep-

resent a comparison of an LSTM-based diagnostic system to human experts. We note

that an attending physician has access to much more data about each patient than our

LSTM does, including additional tests, medications, and treatments. Additionally, the

physician can access a full medical history including free-text notes, can make visual and

physical inspections of the patient, and can ask questions. A more fair comparison might

require asking additional clinical experts to assign diagnoses given access only to the

13 time series available to our models. However, this would be prohibitively expensive,

even for just the 1000 examples, and difficult to justify to our medical collaborators, as

this annotation would provide no immediate benefit to patients. Such a study will prove

more feasible in the future when this line of research has matured.

3.3 Methods

In this work, we are interested in recognizing diagnoses and, more broadly, the

observable physiologic characteristics of patients, a task generally termed phenotyping

[OCG+15]. We cast the problem of phenotyping clinical time series as multilabel

classification. Given a series of observations x(1), ...,x(T ), we learn a classifier to generate

hypotheses ŷ of the true labels y. Here, t indexes sequence steps, and for any example,

T stands for the length of the sequence. Our proposed LSTM RNN uses memory cells
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with forget gates [GSC00] but without peephole connections [GSS03]. As output, we

use a fully connected layer atop the highest LSTM layer followed by an element-wise

sigmoid activation function, because our problem is multilabel. We use log loss as the

loss function at each output.

3.3.1 LSTM Architectures for Multilabel classification

We explore several recurrent neural network architectures for multilabel clas-

sification of time series. The first and simplest (Figure 3.1) passes over all inputs in

chronological order, generating outputs only at the final sequence step. In this approach,

we only have output ŷ at the final sequence step, at which our loss function is the average

of the losses at each output node. Thus the loss calculated at a single sequence step is the

average of log loss calculated separately on each label.

loss(ŷ,y) =
1
|L|

l=|L|

∑
l=1
−(yl · log(ŷl)+(1− yl) · log(1− ŷl)). (3.1)

Figure 3.1: A simple RNN model for multilabel classification. Green rectangles
represent inputs. The recurrent hidden layers separating input and output are represented
with a single blue rectangle. The red rectangle represents targets.
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3.3.2 Sequential Target Replication

One problem with the simple approach is that the network must learn to pass

information across many sequence steps in order to affect the output. We attack this

problem by replicating our static targets at each sequence step (Figure 3.2), providing a

local error signal at each step. This approach is inspired by the deep supervision technique

that [LXG+14] apply to convolutional nets. This technique is especially sensible in our

case because we expect the model to predict accurately even if the sequence were

truncated by a small amount. The approach differs from [LXG+14] because we use the

same output weights to calculate ŷ(t) for all t. Further, we use this target replication to

generate output at each sequence step, but not at each hidden layer.

For the model with target replication, we generate an output ŷ(t) at every sequence

step. Our loss is then a convex combination of the final loss and the average of the losses

over all steps:

α · 1
T

T

∑
t=1

loss(ŷ(t),y(t))+(1−α) · loss(ŷ(T ),y(T )) (3.2)

where T is the total number of sequence steps and α ∈ [0,1] is a hyper-parameter which

determines the relative importance of hitting these intermediary targets. At prediction

time, we take only the output at the final step. In our experiments, networks using target

replication outperform those with a loss applied only at the final sequence step.

3.3.3 Auxiliary Output Training

Recall that our initial data contained 429 diagnostic labels but that our task is

to predict only 128. Given the well-documented successes of multitask learning with

shared representations and feedforward networks, we wish to train a stronger model

by using the remaining 301 labels or other information in the patient’s chart, such as

diagnostic categories, as auxiliary targets [CBM+96]. These additional targets serve
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Figure 3.2: An RNN classification model with target replication. The primary target
(depicted in red) at the final step is used at prediction time, but during training, the
model back-propagates errors from the intermediate targets (purple) at every sequence
step.

reduce overfitting as the model aims to minimize the loss on the labels of interest while

also minimizing loss on the auxiliary targets (Figure 3.3).

Figure 3.3: Our dataset contains many labels. For our task, a subset of 128 are of
interest (depicted in red). Our Auiliary Output neural network makes use of extra
labels as additional training targets (depicted in purple). At inference time we generate
predictions for only the labels of interest.

3.3.4 Regularization

Because we have only 10,401 examples, overfitting is a considerable obstacle.

Our experiments show that both target replication and auxiliary outputs improve perfor-

mance and reduce overfitting. In addition to these less common techniques we deploy
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`2
2 weight decay and dropout. Following the example of [ZSV14] and [PBKL14], we

apply dropout to the non-recurrent connections only. We first compute each hidden

layer’s sequence of activations in the left-to-right direction and then apply dropout before

computing the next layer’s activations. In our experiments, we find that dropout decreases

overfitting, enabling us to double the size of each hidden layer.

3.4 Experiments

All models are trained on 80% of the data and tested on 10%. The remaining

10% is used as a validation set. We train each LSTM for 100 epochs using stochastic

gradient descent (SGD) with momentum. To combat exploding gradients, we scale the

norm of the gradient and use `2
2 weight decay of 10−6, both hyper-parameters chosen

using validation data. Our final networks use 2 hidden layers and either 64 memory cells

per layer with no dropout or 128 cells per layer with dropout of 0.5. These architectures

are also chosen based on validation performance. Throughout training, we save the model

and compute three performance metrics (micro AUC, micro F1, and precision at 10) on

the validation set for each epoch. We then test the model that scores best on at least two

of the three validation metrics. To break ties, we choose the earlier epoch.

We evaluate a number of baselines as well as LSTMs with various combinations

of target replication (TR), dropout (DO), and auxiliary outputs (AO), using either the

additional 301 diagnostic labels or 12 diagnostic categories. To explore the regularization

effects of each strategy, we record and plot both training and validation performance after

each epoch. Additionally, we report performance of a target replication model (Linear

Gain) that scales the weight of each intermediate target linearly as opposed our proposed

approach. Finally, to show that our LSTM learns a model complementary to the baselines,

we evaluate an ensemble of the best LSTM with the best baseline.
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3.4.1 Multilabel Evaluation Methodology

We report micro- and macro-averaged versions of Area Under the ROC Curve

(AUC). By micro AUC, we mean a single AUC computed on flattened Ŷ and Y matrices,

whereas we calculate macro AUC by averaging each per-label AUC. The blind classifier

achieves 0.5 macro AUC but can exceed 0.5 on micro AUC by predicting labels in

descending order by base rate. Additionally, we report micro- and macro-averaged F1

score, computed in similar fashion to the respective micro and macro AUCs. F1 metrics

require a thresholding strategy, and here we select thresholds based upon validation set

performance. We refer to [LEN14] for an analysis of the strengths and weaknesses of

each type of multilabel F-score and a characterization of optimal thresholds.

Finally, we report precision at 10, which captures the fraction of true diagnoses

among the model’s top 10 predictions, with a best possible score of 0.2281 on the test

split of this data set because there are on average 2.281 diagnoses per patient. While F1

and AUC are both useful for determining the relative quality of a classifier’s predictions,

neither is tailored to a real-world application. Thus, we consider a medically plausible

use case to motivate this more interpretable metric: generating a short list of the 10

most probable diagnoses. If we could create a high recall, moderate precision list of 10

likely diagnoses, it could be a valuable hint-generation tool for differential diagnosis.

Testing for only the 10 most probable conditions is much more realistic than testing for

all conditions.

3.4.2 Baseline Classifiers

We provide results for a base rate model that predicts diagnoses in descending

order by incidence to provide a minimum performance baseline for micro-averaged

metrics. We also report the performance of logistic regression, which is widely used in
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clinical research. We train a separate classifier for each diagnosis but choose an overall

`2
2 penalty for all individual classifiers based on validation performance. For a much

stronger baseline, we train a multilabel MLP with 3 hidden layers of 300 hidden units

each, rectified linear activations, and dropout of 0.5. All MLPs were trained for 1000

epochs, with hyperparameters chosen based on validation set performance. Each baseline

is tested with two sets of inputs: raw time series and hand-engineered features. For raw

time series, we use the first and last six hours. This provides classifiers with temporal

information about changes in patient state from admission to discharge within a fixed-size

input, as required by all baselines. We find this works better than providing the first or

last 12 hours alone.

Our hand-engineered features are inspired by those used in state-of-the-art severity

of illness scores [PPR96]: for each variable, we compute the first and last measurements

and their difference scaled by episode length, mean and standard deviation, median and

quartiles, minimum and maximum, and slope of a line fit with least squares. These 143

features capture many of the indicators that clinicians look for in critical illness, including

admission and discharge state, extremes, central tendencies, variability, and trends. They

previously have been shown to be effective for these data [MKKW12, CKL+15]. Our

strongest baseline is an MLP using these features.

3.4.3 Results

Our best performing LSTM (LSTM-DO-TR) used two layers of 128 memory

cells, dropout of probability 0.5 between layers, and target replication, and outperformed

the MLP with hand-engineered features. Moreover simple ensembles of the best LSTM

and MLP outperformed both on all metrics. Table 3.1 shows summary results for all

models. Table 3.2 shows the LSTM’s predictive performance for six diagnoses with the

highest F1 scores. Full per-diagnosis results can be found in Section 3.7.
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Target replication improves performance on all metrics, accelerating learning and

reducing overfitting (Figure 3.6). We also find that the LSTM with target replication

learns to output correct diagnoses earlier in the time series, a virtue that we explore

qualitatively in Section 3.5. As a comparison, we trained a LSTM-DO-TR variant using

the linear gain strategy of [NHV+15, DL15]. In general, this model did not perform as

well as our simpler target replication strategy, but it did achieve the highest macro F1

score among the LSTM models.

Table 3.1: Results on performance metrics calculated across all labels. DO, TR, and
AO indicate dropout, target replication, and auxiliary outputs, respectively. AO (Diag-
noses) uses the extra diagnosis codes and AO (Categories) uses diagnostic categories as
additional targets during training.

Classification performance for 128 ICU phenotypes

Model Micro AUC Macro AUC Micro F1 Macro F1 Prec. at 10

Base Rate 0.7128 0.5 0.1346 0.0343 0.0788
Log. Reg., First 6 + Last 6 0.8122 0.7404 0.2324 0.1081 0.1016
Log. Reg., Expert features 0.8285 0.7644 0.2502 0.1373 0.1087
MLP, First 6 + Last 6 0.8375 0.7770 0.2698 0.1286 0.1096
MLP, Expert features 0.8551 0.8030 0.2930 0.1475 0.1170

LSTM Models with two 64-cell hidden layers

LSTM 0.8241 0.7573 0.2450 0.1170 0.1047
LSTM, AuxOut (Diagnoses) 0.8351 0.7746 0.2627 0.1309 0.1110
LSTM-AO (Categories) 0.8382 0.7748 0.2651 0.1351 0.1099
LSTM-TR 0.8429 0.7870 0.2702 0.1348 0.1115
LSTM-TR-AO (Diagnoses) 0.8391 0.7866 0.2599 0.1317 0.1085
LSTM-TR-AO (Categories) 0.8439 0.7860 0.2774 0.1330 0.1138

LSTM Models with Dropout (probability 0.5) and two 128-cell hidden layers

LSTM-DO 0.8377 0.7741 0.2748 0.1371 0.1110
LSTM-DO-AO (Diagnoses) 0.8365 0.7785 0.2581 0.1366 0.1104
LSTM-DO-AO (Categories) 0.8399 0.7783 0.2804 0.1361 0.1123
LSTM-DO-TR 0.8560 0.8075 0.2938 0.1485 0.1172
LSTM-DO-TR-AO (Diagnoses) 0.8470 0.7929 0.2735 0.1488 0.1149
LSTM-DO-TR-AO (Categories) 0.8543 0.8015 0.2887 0.1446 0.1161
LSTM-DO-TR (Linear Gain) 0.8480 0.7986 0.2896 0.1530 0.1160

Ensembles of Best MLP and Best LSTM

Mean of LSTM-DO-TR & MLP 0.8611 0.8143 0.2981 0.1553 0.1201
Max of LSTM-DO-TR & MLP 0.8643 0.8194 0.3035 0.1571 0.1218

Auxiliary outputs improved performance for most metrics and reduced overfitting.
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While the performance improvement is not as dramatic as that conferred by target

replication, the regularizing effect is greater. These gains came at the cost of slower

training: the auxiliary output models required more epochs (Figure 3.6 and Section 3.6),

especially when using the 301 remaining diagnoses. This may be due in part to severe

class imbalance in the extra labels. For many of these labels it may take an entire epoch

just to learn that they are occasionally nonzero.

Table 3.2: LSTM-DO-TR performance on the 6 diagnoses with highest F1 scores.

Top 6 diagnoses measured by F1 score

Label F1 AUC Precision Recall

Diabetes mellitus with ketoacidosis 0.8571 0.9966 1.0000 0.7500
Scoliosis, idiopathic 0.6809 0.8543 0.6957 0.6667
Asthma, unspecified with status asthmaticus 0.5641 0.9232 0.7857 0.4400
Neoplasm, brain, unspecified 0.5430 0.8522 0.4317 0.7315
Delayed milestones 0.4751 0.8178 0.4057 0.5733
Acute Respiratory Distress Syndrome (ARDS) 0.4688 0.9595 0.3409 0.7500

The LSTMs appear to learn models complementary to the MLP trained on hand-

engineered features. Supporting this claim, simple ensembles of the LSTM-DO-TR

and MLP (taking the mean or maximum of their predictions) outperform the constituent

models significantly on all metrics (Table 3.1). Further, there are many diseases for which

one model substantially outperforms the other, e.g., intracranial hypertension for the

LSTM, septic shock for the MLP (Section 3.7).

3.5 Hourly Diagnostic Predictions

Our LSTM networks predict 128 diagnoses given sequences of clinical measure-

ments. Because each network is connected left-to-right, i.e., in chronological order, we

can output predictions at each sequence step. Ultimately, we imagine that this capability

could be used to make continuously updated real-time alerts and diagnoses. Below, we

explore this capability qualitatively. We choose examples of patients with a correctly
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classified diagnosis and visualize the probabilities assigned by each LSTM model at

each sequence step. In addition to improving the quality of the final output, the LSTMs

with target replication (LSTM-TR) arrive at correct diagnoses quickly compared to the

simple multilabel LSTM model (LSTM-Simple). When auxiliary outputs are also used

(LSTM-TR,AO), the diagnoses appear to be generally more confident.

Our LSTM-TR,AO effectively predicts status asthmaticus and acute respiratory

distress syndrome, likely owing to the several measures of pulmonary function among our

inputs. Diabetic ketoacidosis also proved easy to diagnose, likely because glucose and pH

are included among our clinical measurements. We were surprised to see that the network

classified scoliosis reliably, but a deeper look into the medical literature suggests that

scoliosis often results in respiratory symptoms. This analysis of step-by-step predictions

is preliminary and informal, and we note that for a small number of examples our data

preprocessing introduces a target leak by back-filling missing values. In future work,

when we explore this capability in greater depth, we will reprocess the data.

3.6 Learning Curves

We present visualizations of the performance of LSTM, LSTM-DO (with dropout

probability 0.5), LSTM-AO (using the 301 additional diagnoses), and LSTM-TR (with

α = 0.5), during training. These charts are useful for examining the effects of dropout,

auxiliary outputs, and target replication on both the speed of learning and the regular-

ization they confer. Specifically, for each of the four models, we plot the training and

validation micro AUC and F1 score every five epochs in Figure 3.5. Additionally, we

plot a scatter of the performance on the training set vs. the performance on the validation

set. The LSTM with target replication learns more quickly than a simple LSTM and also

suffers less overfitting. With both dropout and auxiliary outputs, the LSTM trains more
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slowly than a simple LSTM but suffers considerably less overfitting.

3.7 Per Diagnosis Results

While averaged statistics provide an efficient way to check the relative quality

of various models, considerable information is lost by reducing performance to a single

scalar quantity. For some labels, our classifier makes classifications with surprisingly high

accuracy while for others, our features are uninformative and thus the classifier would not

be practically useful. To facilitate a more granular investigation of our model’s predictive

power, we present individual test set F1 and AUC scores for each individual diagnostic

label in Table 3.3. We compare the performance our best LSTM, which combines two

128-cell hidden layers with dropout of probability 0.5 and target replication, against the

strongest baseline, an MLP trained on the hand-engineered features, and an ensemble

predicts the maximum probability of the two. The results are sorted in descending order

using the F1 performance of the LSTM, providing insights into the types of conditions

that the LSTM can successfully classify.

3.8 Related Work

The research described in this chapter sits at the intersection of LSTMs, medical

informatics, and multilabel classification, three mature fields, each with a long history

and rich body of research. While we cannot do justice to all three, we highlight the most

relevant works below.
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3.8.1 Neural Networks for Medical Data

Neural networks have been applied to medical problems and data for at least

20 years [CBM+96, Bax95], although we know of no work on applying LSTMs to

multivariate clinical time series of the type we analyze here. Several papers have applied

RNNs to physiologic signals, including electrocardiograms [SM98, AC98, Übe09] and

glucose measurements [TB98]. RNNs have also been used for prediction problems

in genomics [PPRB02, XWIF07, Voh01]. Multiple recent papers apply modern deep

learning techniques (but not RNNs) to modeling psychological conditions [DC15], head

injuries [RDL+10], and Parkinson’s disease [HFA+15]. Recently, feedforward networks

have been applied to medical time series in sliding window fashion to classify cases of

gout, leukemia [LDL13], and critical illness [CKL+15].

3.8.2 Neural Networks for Multilabel Classification

Only a few published papers apply LSTMs to multilabel classification tasks, all

of which, to our knowledge, are outside of the medical context. [LR+14] formulates

music composition as a multilabel classification task, using sigmoidal output units. Most

recently, [YRJ+15] uses LSTM networks with multilabel outputs to recognize actions

in videos. While we could not locate any published papers using LSTMs for multilabel

classification in the medical domain, several papers use feedforward nets for this task.

One of the earliest papers to investigate multi-task neural networks modeled risk in

pneumonia patients [CBM+96]. More recently, [CKL+15] formulated diagnosis as

multilabel classification using a sliding window multilayer perceptron.
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3.8.3 Machine Learning for Clinical Time Series

Neural network methodology aside, a growing body of research applies ma-

chine learning to temporal clinical data for tasks including artifact removal [ARM+09,

QWM+09], early detection and prediction [SWF+14a, HHPS15], and clustering and

subtyping [MKKW12, SWS15]. Many recent papers use models with latent factors to

capture nonlinear dynamics in clinical time series and to discover meaningful represen-

tations of health and illness. Gaussian processes are popular because they can directly

handle irregular sampling and encode prior knowledge via choice of covariance functions

between time steps and across variables [MKKW12, GPN+15]. [SKP10] combined a

hierarchical dirichlet process with autoregressive models to infer latent disease “top-

ics” in the heart rate signals of premature babies. [QWM+09] used linear dynamical

systems with latent switching variables to model physiologic events like bradycardias.

Seeking deeper models, [SWF14b] proposed a second “layer” of latent factors to capture

correlations between latent states.

3.8.4 Target Replication

In this work, we make the task of classifying entire sequences easier by replicating

targets at every time step, inspired by [LXG+14], who place an optimization objective

after each layer in convolutional neural network. While they have a separate set of weights

to learn each intermediate objective, our model is simpler owing to the weight tying in

recurrent nets, having only one set of output weights. Additionally, unlike [LXG+14],

we place targets at each time step, but not following each layer between input and output

in the LSTM. After finishing this manuscript, we learned that target replication strategies

similar to ours have also been developed by [NHV+15] and [DL15] for the tasks of

video classification and character-level document classification respectively. [NHV+15]
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linearly scale the importance of each intermediate target, emphasizing performance

at later sequence steps over those in the beginning of the clip. [DL15] also use a

target replication strategy with linearly increasing weight for character-level document

classification, showing significant improvements in accuracy. They call this technique

linear gain.

3.8.5 Regularizing Recurrent Neural Networks

Given the complexity of our models and modest scale of our data, regularization,

including judicious use of dropout, is crucial to our performance. Several prior works

use dropout to regularize RNNs. [PBKL14], [ZSV14], and [DL15] all describe an

application of dropout to only the non-recurrent weights of a network. The former two

papers establish the method and apply it to tasks with sequential outputs, including

handwriting recognition, image captioning, and machine translation. The setting studied

by [DL15] most closely resembles ours as the authors apply it to the task of applying

static labels to varying length sequences.

3.8.6 Key Differences

Our experiments show that LSTMs can accurately classify multivariate time series

of clinical measurements, a topic not addressed in any prior work. Additionally, while

some papers use LSTMs for multilabel classification, this work is the first to address

this problem in the medical context. Moreover, for multilabel classification of sequential

clinical data with fixed length output vectors, this chapter describes the first work, to our

knowledge, to demonstrate the efficacy of a target replication strategy, achieving both

faster training and better generalization.
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3.9 Discussion

Our results indicate that LSTM RNNs, especially with target replication, can

successfully classify diagnoses of critical care patients given clinical time series data.

The best LSTM beat a strong MLP baseline using hand-engineered features as input, and

an ensemble combining the MLP and LSTM improves upon both. The success of target

replication accords with results by both [NHV+15] and [DL15], who observed similar

benefits on their respective tasks. However, while they saw improvement using a linearly

increasing weight on each target from start to end, this strategy performed worse in our

diagnostic classification task than our uniform weighting of intermediate targets. We

believe this may owe to the peculiar nature of our data. Linear gain emphasizes evidence

from later in the sequence, an assumption which often does not match the progression

of symptoms in critical illnesses. Asthma patients, for example, are often admitted to

the ICU severely symptomatic, but once treatment begins, patient physiology stabilizes

and observable signs of disease may abate or change. Further supporting this idea, we

observed that when training fixed-window baselines, using the first 6 and last 6 hours

outperformed using the last 12 hours only.

While our data is of large scale by clinical standards, it is small relative to

datasets found in deep learning tasks like vision and speech recognition. At this scale,

regularization is critical. Our experiments demonstrate that target replication, auxiliary

outputs, and dropout all work to reduce the generalization gap. as shown in Figure 3.6

and Section 3.6. However, some of these techniques are complementary while others

seem to cancel each other out. For example, our best model combined target replication

with dropout. This combination significantly improved upon the performance using target

replication alone, and enabled the effective use of larger capacity models. In contrast, the

benefits of dropout and auxiliary output training appear to wash each other out. This may
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be because target replication confers more than regularization, mitigating the difficulty

of learning long range dependencies by providing local objectives.

3.10 Conclusion

While our LSTMs produce promising results, this is only a first step in this line

of research. Recognizing diagnoses given full time series of sensor data demonstrates

that LSTMs can capture meaningful signal, but ultimately we would like to predict

developing conditions and events, outcomes such as mortality, and treatment responses.

In this chapter we used diagnostic labels without timestamps, but we are obtaining

timestamped diagnoses, which will enable us to train models to perform early diagnosis

by predicting future conditions. In addition, we are extending this work to a larger PICU

data set with 50% more patients and hundreds of variables, including treatments and

medications.

On the methodological side, we would like to both better exploit and improve the

capabilities of LSTMs. Results from speech recognition have shown that LSTMs shine

in comparison to other models using raw features, minimizing need for preprocessing

and feature engineering. In contrast, our current data preparation pipeline removes

valuable structure and information from clinical time series that could be exploited by

an LSTM. For example, our forward- and back-filling imputation strategies discard

useful information about when each observation is recorded. Imputing normal values for

missing time series ignores the meaningful distinction between truly normal and missing

measurements. Also, our window-based resampling procedure reduces the variability of

more frequently measured vital signs (e.g., heart rate).

In future work, we plan to introduce indicator variables to allow the LSTM to

distinguish actual from missing or imputed measurements. Additionally, the flexibility of
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the LSTM architecture should enable us to eliminate age-based corrections and to incor-

porate non-sequential inputs, such as age, weight, and height (or even hand-engineered

features), into predictions. Other next steps in this direction include developing LSTM

architectures to directly handle missing values and irregular sampling. We also are

encouraged by the success of target replication and plan to explore other variants of this

technique and to apply it to other domains and tasks. Additionally, we acknowledge

that there remains a debate about the interpretability of neural networks when applied to

complex medical problems. We are developing methods to interpret the representations

learned by LSTMs in order to better expose patterns of health and illness to clinical users.

We also hope to make practical use of the distributed representations of patients for tasks

such as patient similarity search.
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(a) Asthma with Status Asthmaticus (b) Acute Respiratory Distress Syndrome

(c) Diabetic Ketoacidosis (d) Brain Neoplasm, Unspecified Nature

(e) Septic Shock (f) Scoliosis

Figure 3.4: Probabilities assigned at each time step. LSTM-Simple uses targets at final
step, LSTM-TR uses target replication, LSTM-AO has auxiliary outputs (diagnoses),
and LSTM-TR,AO uses both. LSTM-TR tends to make accurate diagnoses earlier.
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(a) AUC learning curves (b) F1 learning curves

(c) AUC training vs. validation (d) F1 training vs. validation

Figure 3.5: Target replication appears to increase the speed of learning and confers a
small regularizing effect. Auxiliary outputs slow down the speed of learning but impart
a strong regularizing effect.

Figure 3.6: Training curves showing the impact of the DO, AO, and TR strategies on
overfitting.
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Table 3.3: F1 and AUC scores for individual diagnoses.

Classifier Performance on Each Diagnostic Code, Sorted by F1

LSTM-DO-TR MLP, Expert features Max Ensemble
Condition F1 AUC F1 AUC F1 AUC

Diabetes mellitus with ketoacidosis 0.8571 0.9966 0.8571 0.9966 0.8571 0.9966
Scoliosis, idiopathic 0.6809 0.8543 0.6169 0.8467 0.6689 0.8591
Asthma, unspecified with status asthmaticus 0.5641 0.9232 0.6296 0.9544 0.6667 0.9490
Neoplasm, brain, unspecified nature 0.5430 0.8522 0.5263 0.8463 0.5616 0.8618
Developmental delay 0.4751 0.8178 0.4023 0.8294 0.4434 0.8344
Acute respiratory distress syndrome (ARDS) 0.4688 0.9595 0.3913 0.9645 0.4211 0.9650
Hypertension, unspecified 0.4118 0.8593 0.3704 0.8637 0.3636 0.8652
Arteriovenous malformation of brain 0.4000 0.8620 0.3750 0.8633 0.3600 0.8684
End stage renal disease on dialysis 0.3889 0.8436 0.3810 0.8419 0.3902 0.8464
Acute respiratory failure 0.3864 0.7960 0.4128 0.7990 0.4155 0.8016
Renal transplant status post 0.3846 0.9692 0.4828 0.9693 0.4800 0.9713
Epilepsy, unspecified, not intractable 0.3740 0.7577 0.3145 0.7265 0.3795 0.7477
Septic shock 0.3721 0.8182 0.3210 0.8640 0.3519 0.8546
Other respiratory symptom 0.3690 0.8088 0.3642 0.7898 0.3955 0.8114
Biliary atresia 0.3636 0.9528 0.5000 0.9338 0.4444 0.9541
Acute lymphoid leukemia, without remission 0.3486 0.8601 0.3288 0.8293 0.3175 0.8441
Congenital hereditary muscular dystrophy 0.3478 0.8233 0.0000 0.8337 0.2727 0.8778
Liver transplant status post 0.3448 0.8431 0.3333 0.8104 0.3846 0.8349
Respiratory complications, prodecure status post 0.3143 0.8545 0.2133 0.8614 0.3438 0.8672
Grand mal status 0.3067 0.8003 0.3883 0.7917 0.3529 0.8088
Intracranial injury, closed 0.3048 0.8589 0.3095 0.8621 0.3297 0.8820
Diabetes insipidus 0.2963 0.9455 0.3774 0.9372 0.4068 0.9578
Acute renal failure, unspecified 0.2553 0.8806 0.2472 0.8698 0.2951 0.8821
Other diseases of the respiratory system 0.2529 0.7999 0.1864 0.7920 0.2400 0.8131
Croup syndrome 0.2500 0.9171 0.1538 0.9183 0.0000 0.9263
Bronchiolitis due to other infectious organism 0.2466 0.9386 0.2353 0.9315 0.2712 0.9425
Congestive heart failure 0.2439 0.8857 0.0000 0.8797 0.0000 0.8872
Infantile cerebral palsy, unspecified 0.2400 0.8538 0.1569 0.8492 0.2083 0.8515
Congenital hydrocephalus 0.2393 0.7280 0.2247 0.7337 0.1875 0.7444
Cerebral edema 0.2222 0.8823 0.2105 0.9143 0.2500 0.9190
Craniosynostosis 0.2222 0.8305 0.5333 0.8521 0.6154 0.8658
Anoxic brain damage 0.2222 0.8108 0.1333 0.8134 0.2500 0.8193
Pneumonitis due to inhalation of food or vomitus 0.2222 0.6547 0.0326 0.6776 0.0462 0.6905
Acute and subacute necrosis of the liver 0.2182 0.8674 0.2778 0.9039 0.2381 0.8964
Respiratory syncytial virus 0.2154 0.9118 0.1143 0.8694 0.1622 0.9031
Unspecified disorder of kidney and ureter 0.2069 0.8367 0.1667 0.8496 0.1667 0.8559
Craniofacial malformation 0.2059 0.8688 0.4444 0.8633 0.3158 0.8866
Pulmonary hypertension, secondary 0.2000 0.9377 0.0870 0.8969 0.2105 0.9343
Bronchopulmonary dysplasia 0.1905 0.8427 0.1404 0.8438 0.1333 0.8617
Drowning and non-fatal submersion 0.1905 0.8341 0.1538 0.8905 0.1429 0.8792
Genetic abnormality 0.1828 0.6727 0.1077 0.6343 0.1111 0.6745
Other and unspecified coagulation defects 0.1818 0.7081 0.0000 0.7507 0.1600 0.7328
Vehicular trauma 0.1778 0.8655 0.2642 0.8505 0.2295 0.8723
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Table 3.4: F1 and AUC scores for individual diagnoses, continuing

Classifier Performance on Each Diagnostic Code, Sorted by F1

LSTM-DO-TR MLP, Expert features Max Ensemble
Condition F1 AUC F1 AUC F1 AUC

Other specified cardiac dysrhythmia 0.1667 0.7698 0.1250 0.8411 0.0800 0.8179
Acute pancreatitis 0.1622 0.8286 0.1053 0.8087 0.1379 0.8440
Esophageal reflux 0.1515 0.8236 0.0000 0.7774 0.1739 0.8090
Cardiac arrest, outside hospital 0.1500 0.8562 0.1333 0.9004 0.1765 0.8964
Unspecified pleural effusion 0.1458 0.8777 0.1194 0.8190 0.1250 0.8656
Mycoplasma pneumoniae 0.1429 0.8978 0.1067 0.8852 0.1505 0.8955
Unspecified immunologic disorder 0.1429 0.8481 0.1000 0.8692 0.1111 0.8692
Congenital alveolar hypoventilation syndrome 0.1429 0.6381 0.0000 0.7609 0.0000 0.7246
Septicemia, unspecified 0.1395 0.8595 0.1695 0.8640 0.1905 0.8663
Pneumonia due to adenovirus 0.1379 0.8467 0.0690 0.9121 0.1277 0.8947
Insomnia with sleep apnea 0.1359 0.7892 0.0752 0.7211 0.0899 0.8089
Defibrination syndrome 0.1333 0.9339 0.1935 0.9461 0.2500 0.9460
Unspecified injury, unspecified site 0.1333 0.8749 0.0000 0.7673 0.1250 0.8314
Pneumococcal pneumonia 0.1290 0.8706 0.1149 0.8664 0.1461 0.8727
Genetic or other unspecified anomaly 0.1277 0.7830 0.0870 0.7812 0.1429 0.7905
Other spontaneous pneumothorax 0.1212 0.8029 0.0972 0.8058 0.1156 0.8122
Bone marrow transplant status 0.1176 0.8136 0.0000 0.8854 0.2353 0.8638
Other primary cardiomyopathies 0.1176 0.6862 0.0000 0.6371 0.1212 0.6635
Intracranial hemorrhage 0.1071 0.7498 0.1458 0.7306 0.1587 0.7540
Benign intracranial hypertension 0.1053 0.9118 0.0909 0.7613 0.1379 0.8829
Encephalopathy, unspecified 0.1053 0.8466 0.0909 0.7886 0.0000 0.8300
Ventricular septal defect 0.1053 0.6781 0.0741 0.6534 0.0833 0.6667
Crushing injury, unspecified 0.1017 0.9183 0.0952 0.8742 0.1200 0.9111
Malignant neoplasm, disseminated 0.0984 0.7639 0.0588 0.7635 0.0667 0.7812
Orthopaedic surgery, post status 0.0976 0.7605 0.1290 0.8234 0.0845 0.8106
Thoracic surgery, post status 0.0930 0.9160 0.0432 0.7401 0.0463 0.9137
Ostium secundum type atrial septal defect 0.0923 0.7876 0.1538 0.8068 0.1154 0.7998
Malignant neoplasm, in gastrointestinal organs 0.0853 0.8067 0.1111 0.7226 0.1412 0.7991
Coma 0.0833 0.7255 0.1111 0.6542 0.1250 0.7224
Pneumonia due to inhalation of food or vomitus 0.0800 0.8282 0.0923 0.8090 0.0952 0.8422
Extradural hemorrage from injury, no open wound 0.0769 0.7829 0.0000 0.8339 0.0988 0.8246
Prematurity (less than 37 weeks gestation) 0.0759 0.7542 0.1628 0.7345 0.1316 0.7530
Asthma, unspecified, without status asthmaticus 0.0734 0.6679 0.0784 0.6914 0.0678 0.6867
Gastrointestinal surgery, post status 0.0714 0.7183 0.0984 0.6999 0.0851 0.7069
Nervous disorder, not elsewhere classified 0.0708 0.7127 0.1374 0.7589 0.1404 0.7429
Unspecified gastrointestinal disorder 0.0702 0.6372 0.0348 0.6831 0.0317 0.6713
Pulmonary congestion and hypostasis 0.0678 0.8359 0.0000 0.8633 0.0000 0.8687
Thrombocytopenia, unspecified 0.0660 0.7652 0.0000 0.7185 0.0000 0.7360
Lung contusion, no open wound 0.0639 0.9237 0.0000 0.9129 0.2222 0.9359
Acute pericarditis, unspecified 0.0625 0.8601 0.0000 0.9132 0.0000 0.9089
Nervous system complications from implant 0.0597 0.6727 0.0368 0.7082 0.0419 0.7129
Heart disease, unspecified 0.0588 0.8372 0.0000 0.8020 0.0000 0.8264
Suspected infection in newborn or infant 0.0588 0.6593 0.0000 0.7090 0.0606 0.6954
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Table 3.5: F1 and AUC scores for individual diagnoses, continuing

Classifier Performance on Each Diagnostic Code, Sorted by F1

LSTM-DO-TR MLP, Expert features Max Ensemble
Condition F1 AUC F1 AUC F1 AUC

Anemia, unspecified 0.0541 0.7782 0.0488 0.7019 0.0727 0.7380
Muscular disorder, not elsewhere classified 0.0536 0.6996 0.0000 0.7354 0.1000 0.7276
Malignant neoplasm, adrenal gland 0.0472 0.6960 0.0727 0.6682 0.0548 0.6846
Hematologic disorder, unspecified 0.0465 0.7315 0.1194 0.7404 0.0714 0.7446
Hematemesis 0.0455 0.8116 0.0674 0.7887 0.0588 0.8103
Dehydration 0.0435 0.7317 0.1739 0.7287 0.0870 0.7552
Unspecified disease of spinal cord 0.0432 0.7153 0.0571 0.7481 0.0537 0.7388
Neurofibromatosis, unspecified 0.0403 0.7494 0.0516 0.7458 0.0613 0.7671
Intra-abdominal injury, no open wound 0.0333 0.7682 0.1569 0.8602 0.0690 0.8220
Thyroid disorder, unspecified 0.0293 0.5969 0.0548 0.5653 0.0336 0.6062
Hereditary hemolytic anemia, unspecifed 0.0290 0.7474 0.0000 0.6182 0.0000 0.6962
Subdural hemorrage, no open wound 0.0263 0.7620 0.1132 0.7353 0.0444 0.7731
Unspecified intestinal obstruction 0.0260 0.6210 0.2041 0.7684 0.0606 0.7277
Hyposmolality and/or hyponatremia 0.0234 0.6999 0.0000 0.7565 0.0000 0.7502
Primary malignant neoplasm, thorax 0.0233 0.6154 0.0364 0.6086 0.0323 0.5996
Supraventricular premature beats 0.0185 0.8278 0.0190 0.7577 0.0299 0.8146
Injury to intrathoracic organs, no open wound 0.0115 0.8354 0.0000 0.8681 0.0000 0.8604
Child abuse, unspecified 0.0000 0.9273 0.3158 0.9417 0.1818 0.9406
Acidosis 0.0000 0.9191 0.1176 0.9260 0.0000 0.9306
Infantile spinal muscular atrophy 0.0000 0.9158 0.0000 0.8511 0.0000 0.9641
Fracture, femoral shaft 0.0000 0.9116 0.0000 0.9372 0.0513 0.9233
Cystic fibrosis with pulmonary manifestations 0.0000 0.8927 0.0000 0.8086 0.0571 0.8852
Panhypopituitarism 0.0000 0.8799 0.2222 0.8799 0.0500 0.8872
Blood in stool 0.0000 0.8424 0.0000 0.8443 0.0000 0.8872
Sickle-cell anemia, unspecified 0.0000 0.8268 0.0000 0.7317 0.0000 0.7867
Cardiac dysrhythmia, unspecified 0.0000 0.8202 0.0702 0.8372 0.0000 0.8523
Agranulocytosis 0.0000 0.8157 0.1818 0.8011 0.1667 0.8028
Malignancy of bone, no site specified 0.0000 0.8128 0.0870 0.7763 0.0667 0.8318
Pneumonia, organism unspecified 0.0000 0.8008 0.0952 0.8146 0.0000 0.8171
Unspecified metabolic disorder 0.0000 0.7914 0.0000 0.6719 0.0000 0.7283
Urinary tract infection, no site specified 0.0000 0.7867 0.0840 0.7719 0.2286 0.7890
Obesity, unspecified 0.0000 0.7826 0.0556 0.7550 0.0000 0.7872
Apnea 0.0000 0.7822 0.2703 0.8189 0.0000 0.8083
Respiratory arrest 0.0000 0.7729 0.0000 0.8592 0.0000 0.8346
Hypovolemic shock 0.0000 0.7686 0.0000 0.8293 0.0000 0.8296
Hemophilus meningitis 0.0000 0.7649 0.0000 0.7877 0.0000 0.7721
Diabetes mellitus, type I, stable 0.0000 0.7329 0.0667 0.7435 0.0833 0.7410
Tetralogy of fallot 0.0000 0.7326 0.0000 0.6134 0.0000 0.6738
Congenital heart disease, unspecified 0.0000 0.7270 0.1333 0.7251 0.0000 0.7319
Mechanical complication of V-P shunt 0.0000 0.7173 0.0000 0.7308 0.0000 0.7205
Respiratory complications due to procedure 0.0000 0.7024 0.0000 0.7244 0.0000 0.7323
Teenage cerebral artery occlusion and infarction 0.0000 0.6377 0.0000 0.5982 0.0000 0.6507



Chapter 4

Modeling Missing Data in Clinical

Time Series

While the previous chapter deals with missing data by applying imputation

heuristics, this ignores an important source of information. Medical data are seldom

missing at random, and the patterns of missingness have predictive value. We build

on the work in the previous chapter by demonstrating a simple strategy to cope with

missing data in sequential inputs. Again, we address the task of multilabel classification

of diagnoses given clinical time series using data collected from the pediatric intensive

care unit (PICU) at Children’s Hospital Los Angeles. The measurements are irregularly

spaced, leading to missingness patterns in temporally discretized sequences. While these

artifacts are typically handled by imputation, we achieve superior predictive performance

by treating the artifacts as features.

59
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Figure 4.1: Missingness artifacts created by discretization

4.1 Introduction

EHRs record lab test results and medications as they are ordered or delivered by

physicians and nurses. As a result, EHRs contain rich sequences of clinical observations

depicting both patients’ health and care received. We would like to mine these time series

to build accurate predictive models for diagnosis and other applications. Recurrent neural

networks (RNNs) are well-suited to learning sequential or temporal relationships from

such time series. Medical time series data present modeling problems not found in the

clean academic datasets on which most RNN research focuses. Clinical observations

are recorded irregularly, with measurement frequency varying between patients, across

variables, and even over time. In one common modeling strategy, we represent these

observations as a sequence with discrete, fixed-width time steps. Problematically, the

resulting sequences often contain missing values [MKKW12]. These values are typically

not missing at random, but reflect decisions by caregivers. Thus, the pattern of recorded

measurements contain potential information about the state of the patient. However,

most often, researchers fill missing values using heuristic or unsupervised imputation

[LDL13], ignoring the potential predictive value of the missingness itself.

In this chapter we extend the methods described in the previous chapter and
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orginally published in [LKEW16] for RNN-based multilabel prediction of diagnoses.

We focus on data gathered from the Children’s Hospital Los Angeles pediatric intensive

care unit (PICU). Here, rather than approaching missing data via heuristic imputation,

we directly model missingness as a feature, achieving superior predictive performance.

RNNs can realize this improvement using only simple binary indicators for missingness.

However, linear models are unable to use indicator features as effectively. While RNNs

can learn arbitrary functions, capturing the interactions between the missingness indica-

tors the sequence of observation inputs, linear models can only learn substitution values.

For linear models, we introduce an alternative strategy to capture this signal, using a

small number of simple hand-engineered features.

Our experiments demonstrate the benefit modeling missing data as a first-class

feature. Our methods improve the performance of RNNs, multilayer perceptrons (MLPs),

and linear models. Additionally we analyze the predictive value of missing data infor-

mation by training models on the missingness indicators only. We show that for several

diseases, what tests are run can be as predictive as the actual measurements. While we

focus on classifying diagnoses, our methods can be applied to any predictive modeling

problem involving sequence data and missing values, such as early prediction of sepsis

[HHPS15] or real-time risk modeling [WHG12].

It is worth noting that we may not want our predictive models to rely upon the

patterns of treatment, as argued by [CLG+15]. Once deployed, our models may influence

the treatment protocols, shifting the distribution of future data, and thus invalidating

their predictions. Nonetheless, doctors at present often utilize knowledge of past care,

and treatment signal can leak into the actual measurements themselves in ways that

sufficiently powerful models can exploit. As a final contribution of this chapter, we

present a critical discussion of these practical and philosophical issues.
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4.2 Data

As in the previous chapter, our dataset consists of patient records extracted from

the EHR system at CHLA [MKKW12, CKL+15] as part of an IRB-approved study. In

all, the dataset contains 10,401 PICU episodes. Each episode describes the stay of one

patient in the PICU for a period of at least 12 hours. In addition, each patient record

contains a static set of diagnostic codes, annotated by physicians either during or after

each PICU visit.

4.2.1 Inputs

In their rawest representation, episodes consist of irregularly spaced measure-

ments of 13 variables: diastolic and systolic blood pressure, peripheral capillary refill rate,

end-tidal CO2 (ETCO2), fraction of inspired O2 (FIO2), total Glascow coma scale, blood

glucose, heart rate, pH, respiratory rate, blood oxygen saturation, body temperature, and

urine output. To render our data suitable for learning with RNNs, we convert to discrete

sequences of hourly time steps, where time step t covers the interval between hours t and

t +1, closed on the left but open on the right. Because actual admission times are not

recorded reliably, we use the time of the first recorded observation as time step t = 0. We

combine multiple measurements of the same variable within the same hour window by

taking their mean.

Vital signs, such as heart rate, are typically measured about once per hour, while

lab tests requiring a blood draw (e.g., glucose) are measured on the order of once per

day. In addition, the timing of and time between observations varies across patients and

over time. The resulting sequential representation have many missing values, and some

variables missing altogether.

Note that our methods can be sensitive to the duration of our discrete time step.
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For example, halving the duration would double the length of the sequences, making

learning by backpropagation through time more challenging [BSF94]. For our data, such

cost would not be justified because the most frequently measured variables (vital signs)

are only recorded about once per hour. For higher frequency recordings of variables with

faster dynamics, a shorter time step might be warranted.

To better condition our inputs, we scale each variable to the [0,1] interval, using

expert-defined ranges. Additionally, we correct for differences in heart rate, respiratory

rate, [FTS+11] and blood pressure [Nat04] due to age and gender using tables of normal

values from large population studies.

4.2.2 Diagnostic labels

As in the previous chapter, we formulate phenotyping [OCG+15] as multilabel

classification of sequences. Our labels include 429 distinct diagnosis codes from an

in-house taxonomy at CHLA, similar to ICD-9 codes [Wor04] commonly used in medical

informatics research. These labels include a wide range of acute conditions, such as

acute respiratory distress, congestive heart failure, and sepsis. A full list is given after

the discussion. We focus on the 128 most frequent diagnoses, each having at least 50

positive examples in our dataset. Naturally, the diagnoses are not mutually exclusive. In

our data set, the average patient is associated with 2.24 diagnoses. Additionally, the base

rates of the diagnoses vary widely.

The loss at a single sequence step is the average log loss calculated across all

labels:



64

4.3 Summary of Missing Data Statistics

In this section, we explain our procedures for imputation, missing data indicator

sequences, engineering features of missing data patterns.

4.3.1 Imputation

To address the missing data problem, we consider two different imputation

strategies (forward-filling and zero imputation), as well as direct modeling via indicator

variables. Because imputation and direct modeling are not mutually exclusive, we also

evaluate them in combination. Suppose that x(t)i is “missing.” In our zero-imputation

strategy, we simply set x(t)i := 0 whenever it is missing. In our forward-filling strategy,

we impute x(t)i as follows:

• If there is at least one previously recorded measurement of variable i at a time

t ′ < t, we perform forward-filling by setting x(t)i := x(t
′)

i .

• If there is no previous recorded measurement (or if the variable is missing entirely),

then we impute the median estimated over all measurements in the training data.

This strategy is motivated by the intuition that clinical staff record measurements at

intervals proportional to rate at which they are believed or observed to change. Heart

rate, which can change rapidly, is monitored much more frequently than blood pH. Thus

it seems reasonable to assume that a value has changed little since the last time it was

measured.

4.3.2 Learning with Missing Data Indicators

Our indicator variable approach to missing data consists of augmenting our

inputs with binary variables m(t)
i for every x(t)i , where m(t)

i := 1 if x(t)i is imputed and 0
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Figure 4.2: (top left) no imputation or indicators, (bottom left) imputation absent indi-
cators, (top right) indicators but no imputation, (bottom right) indicators and imputation.
Time flows from left to right.

otherwise. Through their hidden state computations, RNNs can use these indicators to

learn arbitrary functions of the past observations and missingness patterns. However,

given the same data, linear models can only learn hard substitution rules. To see why,

consider a linear model that outputs prediction f (z), where z = ∑i wi · xi. With indicator

variables, we might say that z = ∑i wi · xi +∑i θi ·mi where θi are the weights for each

mi. If xi is set to 0 and mi to 1, whenever the feature xi is missing, then the impact on

the output θi ·mi = θi is exactly equal to the contribution wi · x∗i for some x∗i = θi/wi. In

other words, the linear model can only use the indicator in a way that depends neither on

the previously observed values (x1
i ...x

t−1
i ), nor any other evidence in the inputs.

Figure 4.3: Depiction of RNN zero-filled inputs and missing data indicators.

Note that for a linear model, the impact of a missing data indicator on predictions
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must be monotonic. In contrast, the RNN might infer that for one patient heart rate is

missing because they went for a walk, while for another it might signify an emergency.

Also note that even without indicators, the RNN might learn to recognize filled-in vs

real values. For example, with forward-filling, the RNN could learn to recognize exact

repeats. For zero-filling, the RNN could recognize that values set to exactly 0 were likely

missing measurements.

4.3.3 Hand-engineered missing data features

To overcome the limits of the linear model, we also designed features from the

indicator sequences. As much as possible, we limited ourselves to features that are simple

to calculate, intuitive, and task-agnostic. The first is a binary indicator for whether a

variable was measured at all. Additionally, we compute the mean and standard deviation

of the indicator sequence. The mean captures the frequency with which each variable

is measured which carries information about the severity of a patient’s condition. The

standard deviation, on the other hand, computes a non-monotonic function of frequency

that is maximized when a variable is missing exactly 50% of the time. We also compute

the frequency with which a variable switches from measured to missing or vice versa

across adjacent sequence steps. Finally, we add features that capture the relative timing

of the first and last measurements of a variable, computed as the number of hours until

the measurement divided by the length of the full sequence.

4.4 Experiments

We now present the training details and empirical findings of our experiments.

Our LSTM RNNs each have 2 hidden layers of 128 LSTM cells each, non-recurrent

dropout of 0.5, and `2
2 weight decay of 10−6. We train on 80% of data, setting aside
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10% each for validation and testing. We train each RNN for 100 epochs, retaining the

parameters corresponding to the epoch with the lowest validation loss.

We compare the performance of RNNs against logistic regression and multilayer

perceptrons (MLPs). We apply `2 regularization to the logistic regression model. The

MLP has 3 hidden layers with 500 nodes each, rectified linear unit activations, and

dropout (with probability of 0.5), choosing the number of layers and nodes by validation

performance. We train the MLP using stochastic gradient descent with momentum.

We evaluate each baseline with two sets of features: raw and hand-engineered.

Note that our baselines cannot be applied directly to variable-length inputs. For the

raw features, we concatenate three 12-hour subsequences, one each from the beginning,

middle, and end of the time series. For shorter time series, these intervals may overlap.

Thus raw representations contain 2×3×12×13 = 936 features. We train each baseline

on five different combinations of raw inputs: (1) measurements with zero-filling, (2)

measurements with forward-filling, (2) measurements with zero-filling + missing data

indicators, (4) forward-filling + missing data indicators, and (5) missing data indicators

only.

Our hand-engineered features capture central tendencies, variability, extremes,

and trends. These include the first and last measurements and their difference, maximum

and minimum values, mean and standard deviation, median and 25th and 75th percentiles,

and the slope and intercept of least squares line fit. We also computed the 8 missing

data features described in Section 4.3. We improve upon the baselines in [LKEW16] by

computing the hand-engineered features over different windows of time, giving them

access to greater temporal information and enabling them to better model patterns of

missingness. We extract hand-engineered features from the entire time series and from

three possibly overlapping intervals: the first and last 12 hours and the interval between

(for shorter sequences, we instead use the middle 12 hours). This yields a total of
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4× 12× 13 = 624 and 4× 8× 13 = 416 hand-engineered measurement and missing

data features, respectively. We train baseline models on three different combinations of

hand-engineered features: (1) measurement-only, (2) indicator-only, and (3) measurement

and indicator.

We evaluate all models on the same training, validation, and test splits. Our

evaluation metrics include area under the ROC curve (AUC) and F1 score (with threshold

chosen based on validation performance). We report both micro-averaged (calculated

across all predictions) and macro-averaged (calculated separately on each label, then

averaged) measures to mitigate the weaknesses in each [LEN14]. Finally we also report

precision at 10, whose maximum is 0.2238 because we have on average 2.238 diagnoses

per patient. This metric seems appropriate because we could imagine this technology

would be integrated into a diagnostic assistant. In that case, its role might be to suggest

the most likely diagnoses among which a professional doctor would choose. Precision at

10 evaluates the quality of the top 10 suggestions.

4.4.1 Results

The best overall model by all metrics (micro AUC of 0.8730) is an LSTM

with zero-imputation and missing data indicators. It outperforms both the strongest

MLP baseline and LSTMs absent missing data indicators. For the LSTMs using either

imputation strategy, adding the missing data indicators improves performance in all

metrics. While all models improve with access to missing data indicators, this information

confers less benefit to the raw input linear baselines, consistent with theory discussed in

Section 4.3.2.

The results achieved by logistic regression with hand-engineered features indi-

cates that our simple hand-engineered missing data features do a reasonably good job

of capturing important information that neural networks are able to mine automatically.
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We also find that LSTMs (with or without indicators) appear to perform better with zero-

filling than with with imputed values. Interestingly, this is not true for either baseline.

It suggests that the LSTM may be learning to recognize missing values implicitly by

recognizing a tight range about the value zero and inferring that this is a missing value. If

this is true, perhaps imputation interferes with the LSTM’s ability to implicitly recognize

missing values. Overall, the ability to implicitly infer missingness may have broader

implications. It suggests that we might never completely hide this information from a

sufficiently powerful model.

4.5 Per Diagnosis Classification Performance

In this section, we provide per-diagnosis AUC and F1 scores for three representa-

tive LSTM models trained with imputed measurements, with imputation plus missing

indicators, and with indicators only. By comparing performance on individual diagnoses,

we can gain some insight into the relationship between missing values and different

conditions. Rows are sorted in descending order based on the F1 score of the imputation

plus indicators model. It is worth noting that F1 scores are sensitive to threshold, which

we chose in order to optimize per-disease validation F1, sometimes based on a very small

number of positive cases. Thus, there are cases where one model will have superior AUC

but worse F1.

4.6 Missing

In this section, we present information about the sampling rates and missingness

characteristics of our 13 variables. The first column lists the average number of mea-
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surements per hour in all episodes with at least one measurement (excluding episodes

where the variable is missing entirely). The second column lists the fraction of episodes

in which the variable is missing completely (there are zero measurements). The third

column lists the missing rate in the resulting discretized sequences.

4.7 Related Work

This work builds upon research relating to missing values and machine learning

for medical informatics. The basic RNN methodology for phenotyping derives from

[LKEW16], addressing a dataset and problem described by [CKL+15]. The methods rely

upon LSTM RNNs [HS97, GSC00] trained by backpropagation through time [HOT06,

Wer88]. A comprehensive perspective on the history and modern applications of RNNs

is provided by [LBE15], while [LKEW16] list many of the previous works that have

applied neural networks to digital health data.

While a long and rich literature addresses pattern recognition with missing data

[CC75, All01], most of this literature addresses fixed-length feature vectors [GLSGFV10,

Pig01]. Indicator variables for missing data were first proposed by [CC75], but we could

not find papers that combine missing data indicators with RNNs. Only a handful of papers

address missing data in the context of RNNS. [BG96] demonstrate a scheme by which

the RNN learns to fill in the missing values such that the filled-in values minimize output

error. In 2001, [PG01] built upon this method to improve automatic speech recognition.

[BGC01] suggests using a mask of indicators in a scheme for weighting the contribution

of reliable vs corrupted data in the final prediction. [TB98] address missing values by

combining an RNN with a linear state space model to handle uncertainty. This paper

may be one of the first to engineer explicit features of missingness patterns in order to
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improve discriminative performance. Also, to our knowledge, we are the first to harness

patterns of missing data to improve the classification of critical care phenotypes.

4.8 Discussion

Data processing and discriminative learning have often been regarded as separate

disciplines. Through this separation of concerns, the complementarity of missing data

indicators and training RNNs for classification has been overlooked. In this chapter, we

propose that patterns of missing values are an underutilized source of predictive power

and that RNNs, unlike linear models, can effectively mine this signal from sequences

of indicator values. Our hypotheses are confirmed by empirical evidence. Additionally,

we introduce and confirm the utility of a simple set of features, engineered from the

sequence of missingness indicators, that can improve performance of linear models.

These techniques are simple to implement and broadly applicable and seem likely to

confer similar benefits on other sequential prediction tasks, when data is missing not at

random. One example might include financial data, where failures to report accounting

details could suggest internal problems at a company.

4.8.1 The Perils and Inevitability of Modeling Treatment Patterns

For medical applications, the predictive power of missing data raises important

philosophical concerns. We train models with supervised learning, and verify their utility

by assessing the accuracy of their classifications on hold-out test data. However, in

practice, we hope to make treatment decisions based on these predictions, exposing a

fundamental incongruity between the problem on which our models are trained and those

for which they are ultimately deployed. As articulated in [Lip16], these supervised mod-

els, trained offline, cannot account for changes that their deployment might confer upon
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the real world, possibly invalidating their predictions. [CLG+15] present a compelling

case in which a pneumonia risk model predicted a lower risk of death for patients who

also have asthma. The better outcomes of the asthma patients, as it turns out, owed to

the more aggressive treatment they received. The model, if deployed, might be used

to choose less aggressive treatment for the patients with both pneumonia and asthma,

clearly a sub-optimal course of action.

On the other hand, to some degree, learning from treatment signal may be

inevitable. Any imputation might leak some information about which values are likely

imputed and which are not. Thus any sufficiently powerful supervised model might

catch on to some amount of missingness signal, as was the case in our experiments with

the LSTM using zero-filled missing values. Even physiologic measurements contain

information owing to patterns of treatment, possibly reflecting the medications patients

receive and the procedures they undergo.

Sometimes the patterns of treatments may be a reasonable and valuable source of

information. Doctors already rely on this kind of signal habitually: they read through

charts, noting which other doctors have seen a patient, inferring what their opinions

might have been from which tests they ordered. While, in some circumstances, it may be

problematic for learning models to rely on this signal, removing it entirely may be both

difficult and undesirable.

4.8.2 Complex Models or Complex Features?

Our work also shows that using only simple features, RNNs can achieve state

of the art performance classifying clinical time series. The RNNs far outperform linear

models. Still, in our experience, there is a strong bias among practitioners toward more

familiar models even when they require substantial feature engineering.

In our experiments, we undertook extensive efforts to engineer features to boost
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the performance of both linear models and MLPs. Ultimately, while RNNs performed

best on raw data, we could approach its performance with an MLP and significantly

improve the linear model by using hand-engineered features and windowing. A question

then emerges: how should we evaluate the trade-off between more complex models

and more complex features? To the extent that linear models are believed to be more

interpretable than neural networks, most popular notions of interpretability hinge upon

the intelligibility of the features [Lip16]. When performance of the linear model comes

at the price of this intelligibility, we might ask if this trade-off undermines the linear

model’s chief advantage. Additionally, such a model, while still inferior to the RNN,

relies on application-specific features less likely to be useful on other datasets and tasks.

In contrast, RNNs seem better equipped to generalize to different tasks. While the

model may be complex, the inputs remain intelligible, opening the possibility to various

post-hoc interpretations [Lip16].

4.8.3 Future Work

We see several promising next steps following this work. First, we would like

to validate this methodology on tasks with more immediate clinical impact, such as

predicting sepsis, mortality, or length of stay. Second, we’d like to extend this work

towards predicting clinical decisions. Called policy imitation in the reinforcement

literature, such work could pave the way to providing real-time decision support. Finally,

we see machine learning as cooperating with a human decision-maker. Thus a machine

learning model needn’t always make a prediction/classification; it could also abstain. We

hope to make use of the latest advances in mining uncertainty information from neural

networks to make confidence-rated predictions.
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Table 4.1: Performance on aggregate metrics for logistic regression (Log Reg), MLP,
and LSTM classifiers with and without imputation and missing data indicators.

Classification performance for 128 ICU phenotypes

Model Micro AUC Macro AUC Micro F1 Macro F1 P@10

Base Rate 0.7128 0.5 0.1346 0.0343 0.0788
Best Possible 1.0 1.0 1.0 1.0 0.2281

Logistic Regression

Log Reg - Zeros 0.8108 0.7244 0.2149 0.0999 0.1014
Log Reg - Impute 0.8201 0.7455 0.2404 0.1189 0.1038
Log Reg - Zeros & Indicators 0.8143 0.7269 0.2239 0.1082 0.1017
Log Reg - Impute & Indicators 0.8242 0.7442 0.2467 0.1234 0.1045
Log Reg - Indicators Only 0.7929 0.6924 0.1952 0.0889 0.0939

Multilayer Perceptron

MLP - Zeros 0.8263 0.7502 0.2344 0.1072 0.1048
MLP - Impute 0.8376 0.7708 0.2557 0.1245 0.1031
MLP - Zeros & Indicators 0.8381 0.7705 0.2530 0.1224 0.1067
MLP - Impute & Indicators 0.8419 0.7805 0.2637 0.1296 0.1082
MLP - Indicators Only 0.8112 0.7321 0.1962 0.0949 0.0947

LSTMs

LSTM - Zeros 0.8662 0.8133 0.2909 0.1557 0.1176
LSTM - Impute 0.8600 0.8062 0.2967 0.1569 0.1159
LSTM - Zeros & Indicators 0.8730 0.8250 0.3041 0.1656 0.1215
LSTM - Impute & Indicators 0.8689 0.8206 0.3027 0.1609 0.1196
LSTM - Indicators Only 0.8409 0.7834 0.2403 0.1291 0.1074

Models using Hand-Engineered Features

Log Reg HE 0.8396 0.7714 0.2708 0.1327 0.1118
Log Reg HE Indicators 0.8472 0.7752 0.2841 0.1376 0.1165
Log Reg HE Indicators Only 0.8187 0.7322 0.2287 0.1001 0.1020
MLP HE 0.8599 0.8052 0.2953 0.1556 0.1168
MLP HE Indicators 0.8669 0.8160 0.2954 0.1610 0.1202
MLP HE Indicators Only 0.8371 0.7682 0.2351 0.1179 0.1028
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Table 4.2: AUC and F1 scores for individual diagnostic codes.

Classifier Performance on Each Diagnostic Code, Sorted by F1

Msmt. Msmt. + indic. Indic.
Condition Base rate AUC F1 AUC F1 AUC F1

Diabetes mellitus with ketoacidosis 0.0125 1.0000 0.8889 0.9999 0.9333 0.9906 0.7059
Asthma with status asthmaticus 0.0202 0.9384 0.6800 0.8907 0.6383 0.8652 0.5417
Scoliosis (idiopathic) 0.1419 0.9143 0.6566 0.8970 0.6174 0.8435 0.5235
Tumor, cerebral 0.0917 0.8827 0.5636 0.8799 0.5560 0.8312 0.4627
Renal transplant, status post 0.0122 0.9667 0.2963 0.9544 0.4762 0.9490 0.5600
Liver transplant, status post 0.0106 0.7534 0.3158 0.8283 0.4762 0.8271 0.2581
Acute respiratory distress syndrome 0.0193 0.9696 0.3590 0.9705 0.4557 0.9361 0.3333
Developmental delay 0.0876 0.8108 0.4382 0.8382 0.4331 0.6912 0.2366
Diabetes insipidus 0.0127 0.9220 0.2727 0.9486 0.4286 0.9266 0.4000
End stage renal disease (on dialysis) 0.0241 0.8548 0.2778 0.8800 0.4186 0.9043 0.4255
Seizure disorder 0.0816 0.7610 0.3694 0.7937 0.4059 0.6431 0.1957
Acute respiratory failure 0.0981 0.8414 0.4128 0.8391 0.3835 0.8358 0.4542
Cystic fibrosis 0.0076 0.8628 0.2353 0.8740 0.3810 0.8189 0.0000
Septic shock 0.0316 0.8296 0.3363 0.8911 0.3750 0.8506 0.1429
Respiratory distress, other 0.0716 0.8411 0.3873 0.8502 0.3719 0.7857 0.2143
Intracranial injury, closed 0.0525 0.8886 0.2817 0.9002 0.3711 0.8442 0.3208
Arteriovenous malformation 0.0223 0.8620 0.3590 0.8716 0.3704 0.8494 0.2857
Seizures, status epilepticus 0.0348 0.8381 0.4158 0.8505 0.3704 0.8440 0.3226
Pneumonia due to adenovirus 0.0123 0.8604 0.1250 0.9065 0.3077 0.8792 0.1818
Leukemia (acute, without remission) 0.0287 0.8585 0.2783 0.8845 0.3059 0.8551 0.2703
Dissem. intravascular coagulopathy 0.0099 0.9556 0.5000 0.9532 0.2857 0.9555 0.2500
Septicemia, other 0.0240 0.8586 0.2400 0.8870 0.2812 0.7593 0.0000
Bronchiolitis 0.0162 0.9513 0.2667 0.9395 0.2703 0.8826 0.1778
Congestive heart failure 0.0133 0.8748 0.1429 0.8756 0.2703 0.8326 0.1364
Upper airway obstruc. (UAO), other 0.0378 0.8206 0.2564 0.8573 0.2542 0.8350 0.1964
Diabetes mellitus type I, stable 0.0064 0.7105 0.0000 0.9625 0.2500 0.9356 0.3333
Cerebral palsy (infantile) 0.0262 0.8230 0.2609 0.8359 0.2500 0.6773 0.0980
Coagulopathy 0.0131 0.7501 0.1111 0.8098 0.2449 0.8548 0.1667
UAO, ENT surgery, post-status 0.0302 0.9059 0.4058 0.8733 0.2400 0.8364 0.1975
Hypertension, systemic 0.0169 0.8740 0.2105 0.8831 0.2388 0.8216 0.2857
Acute renal failure, unspecified 0.0191 0.9242 0.2381 0.9510 0.2381 0.9507 0.3291
Trauma, vehicular 0.0308 0.8673 0.2105 0.8649 0.2381 0.8022 0.1395
Hepatic fail. (acute necrosis of liver) 0.0176 0.8489 0.2222 0.9239 0.2308 0.8598 0.1935
Craniosynostosis (anomalies of skull) 0.0064 0.7824 0.0000 0.9267 0.2286 0.8443 0.0315
Prematurity (<37 weeks gestation) 0.0321 0.7520 0.1548 0.7542 0.2245 0.7042 0.1266
Hydrocephalus, other (congenital) 0.0381 0.7118 0.2099 0.7500 0.2241 0.7065 0.1961
Pneumothorax 0.0134 0.8220 0.1176 0.7957 0.2188 0.7552 0.3243
Congenital muscular dystrophy 0.0121 0.8427 0.2500 0.8491 0.2143 0.7460 0.0800
Cardiomyopathy (primary) 0.0191 0.7508 0.1290 0.6057 0.2143 0.6372 0.1818
Pulmonary edema 0.0076 0.8839 0.0769 0.8385 0.2105 0.8071 0.0870
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Table 4.3: AUC and F1 scores for individual diagnostic codes, continuing.

Classifier Performance on Each Diagnostic Code, Sorted by F1

Msmt. Msmt. + indic. Indic.
Condition Base rate AUC F1 AUC F1 AUC F1

(Acute) pancreatitis 0.0106 0.8712 0.0769 0.9512 0.2000 0.8182 0.0571
Tumor, disseminated or metastatic 0.0180 0.7178 0.0938 0.7415 0.1967 0.6837 0.1062
Hematoma, intracranial 0.0299 0.7724 0.2278 0.8249 0.1892 0.7518 0.1474
Neutropenia (agranulocytosis) 0.0108 0.8285 0.0000 0.8114 0.1852 0.8335 0.2609
Arrhythmia, other 0.0087 0.8536 0.0000 0.8977 0.1818 0.8654 0.0000
Child abuse, suspected 0.0065 0.9544 0.2222 0.8642 0.1818 0.8227 0.0870
Encephalopathy, hypoxic/ischemic 0.0116 0.8242 0.1429 0.8571 0.1818 0.8009 0.0800
Epidural hematoma 0.0098 0.7389 0.0455 0.8233 0.1818 0.7936 0.1000
Tumor, gastrointestinal 0.0100 0.8112 0.1429 0.8636 0.1778 0.8732 0.0984
Craniofacial malformation 0.0133 0.8707 0.2667 0.8514 0.1778 0.6928 0.2286
Gastroesophageal reflux 0.0182 0.7571 0.1818 0.8554 0.1690 0.7739 0.1600
Pneumonia, bacterial (pneumococ.) 0.0186 0.8876 0.1333 0.8806 0.1600 0.8616 0.0000
Pneumonia, undetermined 0.0179 0.8323 0.1481 0.8269 0.1583 0.7772 0.0947
Cerebral edema 0.0059 0.8275 0.0000 0.9469 0.1538 0.9195 0.1500
Pneumonia due to inhalation 0.0078 0.7917 0.1111 0.8602 0.1538 0.8268 0.0566
Metabolic or endocrine disorder 0.0095 0.7718 0.0364 0.6929 0.1538 0.6319 0.2000
Disorder of kidney and ureter, other 0.0204 0.8486 0.2857 0.8650 0.1500 0.8238 0.2500
Urinary tract infection 0.0137 0.7478 0.1154 0.7402 0.1481 0.7229 0.0588
Subdural hematoma 0.0147 0.8270 0.1449 0.8884 0.1429 0.8190 0.0476
Near drowning 0.0068 0.8296 0.0741 0.7917 0.1404 0.6897 0.0397
Cardiac arrest, outside hospital 0.0118 0.8932 0.0976 0.8791 0.1379 0.8881 0.0556
Pleural effusion 0.0113 0.8549 0.1081 0.8186 0.1351 0.7605 0.1151
Bronchopulmonary dysplasia 0.0252 0.8309 0.1915 0.7952 0.1304 0.8503 0.1203
Hyponatremia 0.0056 0.5707 0.0187 0.7398 0.1176 0.8775 0.0000
Suspected septicemia, rule out 0.0143 0.7378 0.0923 0.7402 0.1029 0.6769 0.0000
Thrombocytopenia 0.0112 0.7381 0.0822 0.7857 0.1026 0.8585 0.0800
(Benign) intracranial hypertension 0.0099 0.8494 0.0000 0.9018 0.1020 0.8586 0.1224
Pericardial effusion 0.0055 0.8997 0.0870 0.9085 0.1017 0.9000 0.0714
Pulmonary contusion 0.0068 0.9029 0.0606 0.8831 0.0984 0.8197 0.0225
Surgery, gastrointestinal 0.0104 0.6705 0.0714 0.6666 0.0976 0.5545 0.0233
Respiratory Arrest 0.0062 0.8404 0.0000 0.8741 0.0952 0.8127 0.0444
Trauma, abdominal 0.0105 0.7426 0.1667 0.8623 0.0930 0.6991 0.0426
Atrial septal defect 0.0107 0.7766 0.0727 0.7765 0.0909 0.7197 0.0000
Genetic abnormality 0.0557 0.6629 0.1324 0.6470 0.0876 0.5705 0.1165
Arrhythmia, ventricular 0.0062 0.8532 0.0303 0.8703 0.0870 0.8182 0.1250
Hematologic disorder, other 0.0114 0.6736 0.0800 0.6898 0.0870 0.8074 0.0800
Asthma, stable 0.0171 0.7010 0.0925 0.6607 0.0870 0.5907 0.0741
Neurofibromatosis 0.0079 0.8022 0.0469 0.7984 0.0816 0.7388 0.0160
Tumor, bone 0.0090 0.8830 0.0727 0.8174 0.0800 0.7649 0.0417
Shock, hypovolemic 0.0088 0.7703 0.0000 0.8433 0.0741 0.8040 0.0000
Gastrointestinal bleed, other 0.0064 0.8325 0.0541 0.7974 0.0741 0.7996 0.0909
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Table 4.4: AUC and F1 scores for individual diagnostic codes, continuing.

Classifier Performance on Each Diagnostic Code, Sorted by F1

Msmt. Msmt. + indic. Indic.
Condition Base rate AUC F1 AUC F1 AUC F1

Chromosomal abnormality 0.0173 0.8047 0.1034 0.7197 0.0714 0.6300 0.1600
Encephalopathy, other 0.0093 0.8265 0.1250 0.8736 0.0688 0.8335 0.1250
Respiratory syncytial virus 0.0130 0.8876 0.2857 0.9145 0.0645 0.8716 0.0930
(Hereditary) hemolytic anemia, other 0.0088 0.7582 0.0548 0.8544 0.0645 0.9125 0.0513
Obstructive sleep apnea 0.0185 0.7564 0.0613 0.8200 0.0645 0.8087 0.1111
Apnea, central 0.0142 0.7871 0.1600 0.8134 0.0625 0.8051 0.0000
Neuromuscular, other 0.0132 0.7163 0.0452 0.7069 0.0619 0.6484 0.0392
Anemia, acquired 0.0056 0.7378 0.1017 0.7596 0.0615 0.8129 0.0519
Meningitis, bacterial 0.0070 0.4431 0.0000 0.7676 0.0606 0.5480 0.0000
Trauma, long bone injury 0.0096 0.8757 0.0952 0.9085 0.0597 0.7946 0.1176
Bowel (intestinal) obstruction 0.0104 0.7512 0.0984 0.6559 0.0597 0.6936 0.0424
Neurologic disorder, other 0.0288 0.7628 0.1481 0.6978 0.0588 0.5971 0.0769
Panhypopituitarism 0.0057 0.7763 0.0000 0.7724 0.0571 0.6415 0.0000
Thyroid dysfunction 0.0072 0.6310 0.0369 0.6420 0.0541 0.6661 0.0000
Coma 0.0056 0.6483 0.1250 0.6823 0.0513 0.7155 0.0000
Spinal cord lesion 0.0133 0.7298 0.0585 0.7052 0.0488 0.8168 0.0414
Pneumonia, other (mycoplasma) 0.0188 0.8589 0.1613 0.8792 0.0476 0.8424 0.1164
Trauma, blunt 0.0065 0.9156 0.0513 0.8138 0.0469 0.7426 0.0177
Surgery, thoracic 0.0058 0.7405 0.0000 0.6948 0.0469 0.6087 0.0909
Neuroblastoma 0.0059 0.6526 0.0306 0.7268 0.0360 0.7775 0.0346
Obesity 0.0098 0.7503 0.0365 0.6814 0.0351 0.6647 0.0667
Obstructed ventriculoperitoneal shunt 0.0073 0.6824 0.0267 0.7114 0.0331 0.7516 0.0667
Ventricular septal defect 0.0119 0.6641 0.1081 0.5680 0.0294 0.5593 0.0444
Croup Syndrome, UAO 0.0069 0.9418 0.2222 0.9834 0.0000 0.9682 0.2222
Sickle-cell anemia, unspecified 0.0080 0.6262 0.0000 0.9627 0.0000 0.8661 0.1250
Biliary atresia 0.0063 0.9383 0.2667 0.9164 0.0000 0.7589 0.0714
Metabolic acidosis (¡7.1) 0.0083 0.9475 0.1818 0.9046 0.0000 0.9143 0.1538
Immunologic disorder, other 0.0094 0.9539 0.1500 0.8868 0.0000 0.8969 0.1212
Pulmonary hypertension, other 0.0112 0.9259 0.2500 0.8826 0.0000 0.8098 0.0000
Trauma, chest 0.0051 0.9261 0.0000 0.8818 0.0000 0.7820 0.0000
Spinal muscular atrophy 0.0052 0.9666 0.0000 0.8658 0.0000 0.8362 0.0000
Trauma, unspecified 0.0065 0.7153 0.1481 0.8657 0.0000 0.8224 0.0594
Bone marrow transplant, status post 0.0097 0.8161 0.5217 0.8562 0.0000 0.8505 0.1695
Surgery, orthopaedic 0.0180 0.7839 0.1029 0.8192 0.0000 0.7331 0.0000
Gastrointestinal bleed, upper 0.0063 0.8388 0.0000 0.8078 0.0000 0.7256 0.0000
Arrhythmia, supraventricular tachy. 0.0055 0.8178 0.0385 0.7867 0.0000 0.8199 0.0000
Congenital central alveolar hypovent. 0.0057 0.7067 0.0000 0.7716 0.0000 0.7282 0.0000
Tetralogy of fallot 0.0061 0.5759 0.0000 0.7614 0.0000 0.7637 0.0000
Cardiac disorder, other 0.0071 0.7229 0.0519 0.7552 0.0000 0.6287 0.0000
Hydrocephalus, shunt failure 0.0083 0.7715 0.0000 0.7542 0.0000 0.7986 0.0635
Cerebral infarction (CVA) 0.0058 0.6766 0.0000 0.7495 0.0000 0.7148 0.1333
Congenital heart disorder, other 0.0084 0.7590 0.0000 0.7277 0.0000 0.7803 0.0583
Gastrointestinal disorder, other 0.0139 0.6755 0.0336 0.6821 0.0000 0.6465 0.1026
Aspiration 0.0072 0.6727 0.0533 0.6734 0.0000 0.6792 0.0333
Dehydration 0.0105 0.7356 0.0690 0.6636 0.0000 0.5899 0.0000
Tumor, thoracic 0.0077 0.6931 0.0513 0.6249 0.0000 0.6815 0.0292
UAO, extubation, status post 0.0085 0.8295 0.0672 0.6063 0.0000 0.6128 0.0000
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Table 4.5: Sampling rates and missingness statistics for all 13 features.

Variable Msmt./hour Missing entirely Frac. missing

Diabstolic blood pressure 0.5162 0.0135 0.1571
Systolic blood pressure 0.5158 0.0135 0.1569
Peripheral capillary refall rate 1.0419 0.0140 0.5250
End-tidal CO2 0.9318 0.5710 0.5727
Fraction inspired O2 1.3004 0.1545 0.7873
Total glasgow coma scale 1.0394 0.0149 0.5250
Glucose 1.4359 0.1323 0.9265
Heart rate 0.2477 0.0133 0.0329
pH 1.4580 0.3053 0.9384
Respiratory rate 0.2523 0.0147 0.0465
Pulse oximetry 0.1937 0.0022 0.0326
Temperature 1.0210 0.0137 0.5235
Urine output 1.1160 0.0353 0.5980



Chapter 5

Evaluating Multi-label Classifiers

The previous two chapters address multilabel classification of diagnoses. How

to best evaluate multilabel classifiers remains an open question and can depend on the

application of interest. This chapter provides new insight into maximizing F1 measures

in the context of binary classification and also in the context of multilabel classification.

The harmonic mean of precision and recall, the F1 measure is widely used to evaluate

the success of a binary classifier when one class is rare. Micro average, macro average,

and per instance average F1 measures are used in multilabel classification. For any

classifier that produces a real-valued output, we derive the relationship between the best

achievable F1 value and the decision-making threshold that achieves this optimum. As a

special case, if the classifier outputs are well-calibrated conditional probabilities, then the

optimal threshold is half the optimal F1 value. As another special case, if the classifier

is completely uninformative, then the optimal behavior is to classify all examples as

positive. When the actual prevalence of positive examples is low, this behavior can

be undesirable. As a case study, we discuss the results, which can be surprising, of

maximizing F1 when predicting 26,853 labels for Medline documents.

80
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5.1 Introduction

Performance measures are useful for comparing the quality of predictions across

systems. Some commonly used measures for binary classification are accuracy, precision,

recall, F1 score, and Jaccard index [SL09]. Multilabel classification is an extension of

binary classification that is currently an area of active research in supervised machine

learning [Tso07]. Micro averaging, macro averaging, and per instance averaging are

three commonly used variations of F1 measure used in the multilabel setting. In general,

macro averaging increases the impact on final score of performance on rare labels, while

per instance averaging increases the importance of performing well on each example

[Tan05]. In this chapter, we present theoretical and experimental results on the properties

of the F1 measure. For concreteness, the results are given specifically for the F1 measure

and its multilabel variants. However, the results can be generalized to Fβ measures for

β 6= 1.

Two approaches exist for optimizing performance on the F1 measure. Structured

loss minimization incorporates the performance measure into the loss function and then

optimizes during training. In contrast, plug-in rules convert the numerical outputs of

classifiers into optimal predictions [DKJ+13]. In this chapter, we highlight the latter

scenario, and we differentiate between the beliefs of a system and predictions selected

to optimize alternative measures. In the multilabel case, we show that the same beliefs

can produce markedly dissimilar optimally thresholded predictions depending upon the

choice of averaging method.

It is well-known that F1 is asymmetric in the positive and negative class. Given

complemented predictions and complemented true labels, the F1 measure is in general

different. It also generally known that micro F1 is affected less by performance on

rare labels, while macro F1 weighs the F1 achieved on each label equally [MRS08]. In
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this chapter, we show how these properties are manifest in the optimal threshold for

making decisions, and we present results that characterize that threshold. Additionally,

we demonstrate that given an uninformative classifier, optimal thresholding to maximize

F1 predicts all instances positive regardless of the base rate.

While F1 measures are widely used, some of their properties are not widely

recognized. In particular, when choosing predictions to maximize the expected F1

measure for a set of examples, each prediction depends not only on the probability that

the label applies to that example, but also on the distribution of probabilities for all other

examples in the set. We quantify this dependence in Theorem 2, where we derive an

expression for optimal thresholds. The dependence makes it difficult to relate predictions

that are optimally thresholded for F1 to a system’s predicted conditional probabilities.

We show that the difference in F1 measure between perfect predictions and opti-

mally thresholded random guesses depends strongly on the base rate. As a consequence,

macro average F1 can be argued not to treat labels equally, but to give greater emphasis

to performance on rare labels. In a case study, we consider learning to tag articles in

the biomedical literature with MeSH terms, a controlled vocabulary of 26,853 labels.

These labels have heterogeneously distributed base rates. Our results imply that if the

predictive features for rare labels are lost (because of feature selection or from another

cause) then the optimal thresholds to maximize macro F1 lead to predicting these rare

labels frequently. For the case study application, and likely for similar ones, this behavior

is undesirable.

5.2 Definitions of Performance Measures

Consider binary class prediction in the single or multilabel setting. Given training

data of the form {〈x1,y1〉, . . . ,〈xn,yn〉} where each xi is a feature vector of dimension
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Actual Positive Actual Negative
Predicted Positive t p f p
Predicted Negative f n tn

Figure 5.1: Confusion Matrix

d and each yi is a binary vector of true labels of dimension m, a probabilistic classifier

outputs a model that specifies the conditional probability of each label applying to each

instance given the feature vector. For a batch of data of dimension n× d, the model

outputs an n×m matrix C of probabilities. In the single-label setting, m = 1 and C is an

n×1 matrix, i.e. a column vector.

A decision rule D(C) : Rn×m→{0,1}n×m converts a matrix of probabilities C to

binary predictions P. The gold standard G ∈ {0,1}n×m represents the true values of all

labels for all instances in a given batch. A performance measure M assigns a score to a

prediction given a gold standard:

M(P,G) : {0,1}n×m×{0,1}n×m→ R ∈ [0,1].

The counts of true positives t p, false positives f p, false negatives f n, and true negatives

tn are represented via a confusion matrix (Figure 5.1).

Precision p = t p/(t p+ f p) is the fraction of all positive predictions that are

actual positives, while recall r = t p/(t p+ f n) is the fraction of all actual positives that

are predicted to be positive. By definition, the F1 measure is the harmonic mean of

precision and recall: F1 = 2/(1/r+ 1/p). By substitution, F1 can be expressed as a

function of counts of true positives, false positives and false negatives:

F1 =
2t p

2t p+ f p+ f n
. (5.1)

The harmonic mean expression for F1 is undefined when t p = 0, but the alternative
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Figure 5.2: Holding base rate and f p constant, F1 is concave in t p. Each line is a
different value of f p.
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Figure 5.3: Unlike F1, accuracy offers linearly increasing returns. Each line is a fixed
value of f p.

expression is undefined only when tn = n. This difference does not impact the results

below.

Before explaining optimal thresholding to maximize F1, we first discuss some

properties of F1. For any fixed number of actual positives in the gold standard, only

two of the four entries in the confusion matrix (Figure 5.1) vary independently. This is

because the number of actual positives is equal to the sum t p+ f n while the number of

actual negatives is equal to the sum tn+ f p. A second basic property of F1 is that it is

nonlinear in its inputs. Specifically, fixing the number f p, F1 is concave as a function of

t p (Figure 5.2). By contrast, accuracy is a linear function of t p and tn (Figure 5.3).

As mentioned in the introduction, F1 is asymmetric. By this, we mean that the
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score assigned to a prediction P given gold standard G can be arbitrarily different from

the score assigned to a complementary prediction Pc given complementary gold standard

Gc. This can be seen by comparing Figure 5.2 with Figure 5.5. The asymmetry is

problematic when both false positives and false negatives are costly. For example, F1

has been used to evaluate the classification of tumors as benign or malignant [Aka09], a

domain where both false positives and false negatives have considerable costs.

While F1 was developed for single-label information retrieval, as mentioned there

are variants of F1 for the multilabel setting. Micro F1 treats all predictions on all labels

as one vector and then calculates the F1 score. Specifically,

t p = 2
n

∑
i=1

m

∑
j=1
1(Pi j = 1)1(Gi j = 1).

We define f p and f n analogously and calculate the final score using (5.1). Macro F1,

which can also be called per label F1, calculates the F1 for each of the m labels and

averages them:

F1Macro(P,G) =
1
m

m

∑
j=1

F1(P: j,G: j).
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The per instance F1 measure is similar, but averages F1 over all n examples:

F1Instance(P,G) =
1
n

n

∑
i=1

F1(Pi:,Gi:).

Accuracy is the fraction of all instances that are predicted correctly:

Acc =
t p+ tn

t p+ tn+ f p+ f n
.

Accuracy is adapted to the multilabel setting by summing t p and tn for all labels and

then dividing by the total number of predictions:

Acc(P,G) =
1

nm

n

∑
i=1

m

∑
j=1
1(Pi j = Gi j).

The Jaccard Index, a monotonically increasing function of F1, is the cardinality of

the intersection of the predicted positive set and the actual positive set divided by the

cardinality of their union:

Jaccard =
t p

t p+ f n+ f p
.

5.3 Optimal Decision Rule for F1 Maximization

In this section, we provide a characterization of the decision rule that maximizes

the F1 measure, and, for a special case, we present a relationship between the optimal

threshold and the maximum achievable F1 value.

We assume that the classifier outputs real-valued scores s and that there exist two

distributions p(s|t = 1) and p(s|t = 0) that are the conditional probability of seeing the

score s when the true label t is 1 or 0, respectively. We assume that these distributions

are known in this section; the next section discusses an empirical version of the result.
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Figure 5.6: The expected F1 score of an optimally thresholded random guess is highly
dependent on the base rate.

Note also that in this section t p etc. are fractions that sum to one, not counts.

Given p(s|t = 1) and p(s|t = 0), we seek a decision rule D : s→{0,1} mapping

scores to class labels such that the resulting classifier maximizes F1. We start with a

lemma that is valid for any D.

Lemma 1. The true positive rate t p = b
∫

s:D(s)=1 p(s|t = 1)ds where the base rate is

b = p(t = 1).

Proof. Clearly t p =
∫

s:D(s)=1 p(t = 1|s)p(s)ds. Bayes rule says that p(t = 1|s) = p(s|t =

1)p(t = 1)/p(s). Hence t p = b
∫

s:D(s)=1 p(s|t = 1)ds.
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Using three similar lemmas, the entries of the confusion matrix are

t p = b
∫

s:D(s)=1
p(s|t = 1)ds

f n = b
∫

s:D(s)=0
p(s|t = 1)ds

f p = (1−b)
∫

s:D(s)=1
p(s|t = 0)ds

tn = (1−b)
∫

s:D(s)=0
p(s|t = 0)ds.

The following theorem describes the optimal decision rule that maximizes F1.

Theorem 2. An example with score s is assigned to the positive class, that is D(s) = 1,

by a classifier that maximizes F1 if and only if

b · p(s|t = 1)
(1−b) · p(s|t = 0)

≥ J (5.2)

where J = t p/( f n+ t p+ f p) is the Jaccard index of the optimal classifier, with ambiguity

given equality in (5.2).

Before we provide the proof of this theorem, we note the difference between

the rule in (5.2) and conventional cost-sensitive decision making [Elk01] or Neyman-

Pearson detection. In both the latter approaches, the right hand side J is replaced by a

constant λ that depends only on the costs of 0− 1 and 1− 0 classification errors, and

not on the performance of the classifier on the entire batch. We will later describe how

the relationship can lead to undesirable thresholding behavior for applications in the

multilabel setting.

Proof. Divide the domain of s into regions of fixed size. Suppose that the decision rule

D(·) has been fixed for all regions except a particular region denoted ∆ around a point s.

Write P1(∆) =
∫

∆
p(s|t = 1)ds and define P0(∆) similarly.
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Suppose that the F1 achieved with decision rule D for all scores besides those in

∆ is F1 = 2t p/(2t p+ f n+ f p). Now, if we add ∆ to the positive region of the decision

rule, D(∆) = 1, then the new F1 score is

F1′ =
2t p+2bP1(∆)

2t p+2bP1(∆)+ f n+ f p+(1−b)P0(∆)
.

On the other hand, if we add ∆ to the negative region of the decision rule, D(∆) = 0, then

the new F1 score is

F1′′ =
2t p

2t p+ f n+bP1(∆)+ f p
.

We add ∆ to the positive region only if F1′ ≥ F1′′. With some algebraic simplification,

this condition becomes
bP1(∆)

(1−b)P0(∆)
≥ t p

t p+ f n+ f p
.

Taking the limit |∆| → 0 gives the claimed result.

If, as a special case, the model outputs calibrated probabilities, that is p(t =

1|s) = s and p(t = 0|s) = 1− s, then we have the following corollary.

Corollary 3. An instance with predicted probability s is assigned to the positive class by

the decision rule that maximizes F1 if and only if s≥ F/2 where the F1 score achieved

by this optimal decision rule is F = 2t p/(2t p+ f n+ f p).

Proof. Using the definition of calibration and then Bayes rule, for the optimal decision

surface for assigning a score s to the positive class

p(t = 1|s)
p(t = 0|s)

=
s

1− s
=

p(s|t = 1)b
p(s|t = 0)(1−b)

. (5.3)
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Incorporating (5.3) in Theorem 2 gives

s
1− s

≥ t p
f n+ t p+ f p

and simplifying results in

s≥ t p
2t p+ f n+ f p

= F/2.

Thus, the optimal threshold in the calibrated case is half the maximum F1 value.

Above, we assume that scores have a distribution conditioned on the true class.

Using the intuition in the proof of Theorem 2, we can also derive an empirical version of

the result. To save space, we provide a more general version of the empirical result in the

next section for multilabel problems, noting that a similar non-probabilistic statement

holds for the single label setting as well.

5.4 Consequences of the Optimal Decision Rule

We demonstrate two consequences of designing classifiers that maximize the F1

measure, which we call the batch observation and the uninformative classifier observation.

We will later show with a case study that these can combine to produce surprising and

potentially undesirable predictions when macro F1 is optimized in practice.

The batch observation is that a label may or may not be predicted for an instance

depending on the distribution of conditional probabilities (or scores) for other instances

in the same batch. Earlier, we observed a relationship between the optimal threshold and

the maximum achievable F1 value, and demonstrated that this maximum depends on the

distribution of conditional probabilities for all instances. Therefore, depending upon the
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set in which an instance is placed, its conditional probability may or may not exceed the

optimal threshold. Note that because an F1 value cannot exceed 1, the optimal threshold

cannot exceed 0.5.

Consider for example an instance with conditional probability 0.1. It will be

classified as positive if it has the highest probability of all instances in a batch. However,

in a different batch, where the probabilities predicted for all other instances are 0.5 and n

is large, the maximum achievable F1 score is close to 2/3. According to the results above,

we will then classify this last instance as negative because it has a conditional probability

less than 1/3.

An uninformative classifier is one that predicts the same score for all examples.

If these scores are calibrated conditional probabilities, then the base rate is predicted for

every example.

Theorem 4. Given an uninformative classifier for a label, optimal thresholding to

maximize expected F1 results in classifying all examples as positive.

Proof. Given an uninformative classifier, we seek the threshold that maximizes E(F1).

The only choice is how many labels to predict. By symmetry between the instances, it

does not matter which instances are labeled positive.

Let a = t p+ f n be the number of actual positives and let c = t p+ f p be a

fixed number of positive predictions. The denominator of the expression for F1 in

Equation (5.1), that is 2t p+ f p+ f n = a+ c, is then constant. The number of true

positives, however, is a random variable. Its expected value is equal to the sum of the

probabilities that each example predicted positive actually is positive:

E(F1) =
2∑

c
i=1 b

a+ c
=

2c ·b
a+ c

where b = a/n is the base rate. To maximize this expectation as a function of c, we
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calculate the partial derivative with respect to c, applying the product rule:

∂

∂c
E(F1) =

∂

∂c
2c ·b
a+ c

=
2b

a+ c
− 2c ·b

(a+ c)2 .

Both terms in the difference are always positive, so we can show that the derivative is

always positive by showing that

2b
a+ c

>
2c ·b

(a+ c)2 .

Simplification gives the condition 1 > c/(a+ c). As this condition always holds, the

derivative is always positive. Therefore, whenever the frequency of actual positives in

the test set is nonzero, and the predictive model is uninformative, then expected F1 is

maximized by predicting that all examples are positive.

Figure 5.6 shows that for small base rates, an optimally thresholded uninformative

classifier achieves E(F1) close to 0, while for high base rates E(F1) is close to 1. We

revisit this point in the next section in the context of maximizing macro F1.

5.5 Multilabel Setting

Different measures are used to measure different aspects of a system’s perfor-

mance. However, changing the measure that is optimized can change the optimal

predictions. We relate the batch observation to discrepancies between predictions that

are optimal for micro versus macro averaged F1. We show that while performance on

rare labels is unimportant for micro F1, macro F1 is dominated by performance on these

labels. Additionally, we show that macro averaging F1 can conceal the occurrence of

uninformative classifier thresholding.

Consider the equation for micro averaged F1, for m labels with base rates bi.



93

Suppose that t p, f p, and f n are fixed for the first m−1 labels, and suppose that bm is

small compared to the other bi. Consider (i) a perfect classifier for label m, (ii) a trivial

classifier that never predicts label m, and (iii) a trivial classifier that predicts label m for

every example. The perfect classifier increases t p by a small amount bm ·n, the number

of actual positives for the rare label m, while contributing nothing to the counts f p and

f n:

F1′ =
2(t p+bm ·n)

2(t p+bm ·n)+ f p+ f n
.

The trivial classifier that never predicts label m increases f n by the same small amount:

F1′′ =
2t p

2t p+ f p+( f n+bm ·n)
.

Finally, the trivial classifier that predicts label m for every example increases f p by a

large amount n(1− bm). Clearly this last classifier leads to micro average F1 that is

much worse than that of the perfect classifier for label m. However, F1′ and F1′′ both

tend to the same value, namely 2t p/(2t p+ f p+ f n), as bm tends to zero. Hence, for a

label with very small base rate, a perfect classifier does not improve micro F1 noticeably

compared to a trivial all-negative classifier. It is fair to say that performance on rare

labels is unimportant for micro F1.

Now consider the context of macro F1, where separately calculated F1 scores

over all labels are averaged. Consider the two label case where one label has a base

rate of 0.5 and the other has a base rate of 0.1. The corresponding F1 measures for

trivial all-positive classifiers are 0.67 and 0.18 respectively. Thus the macro F1 for trivial

classifiers is 0.42. An improvement to perfect predictions on the rare label increases

macro F1 to 0.83, while the same improvement on the common label only increases

macro F1 of 0.59. Hence it is fair to say that macro F1 emphasizes performance on rare

labels, even though it weights performance on every label equally.
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For a rare label with an uninformative predictive model, micro F1 is optimized

by classifying all examples as negative, while macro F1 is optimized by classifying all

examples as positive. Optimizing micro F1 as compared to macro F1 can be thought

of as choosing optimal thresholds given very different batches. If the base rates and

distributions of conditional probabilities predicted for instances vary from label to label,

so will the optimal binary predictions. Generally, labels with small base rates and less

informative classifiers will be over-predicted when maximizing macro F1, and under-

predicted when maximizing micro F1. We present empirical evidence of this phenomenon

in the following case study.

5.6 Case Study

This section discusses a case study that demonstrates how in practice, thresholding

to maximize macro F1 can produce undesirable predictions. To our knowledge, a

similar real-world case of pathological behavior has not been previously described in the

literature, even though macro averaging F1 is a common approach.

We consider the task of assigning tags from a controlled vocabulary of 26,853

MeSH terms to articles in the biomedical literature based on their titles and abstracts. We

represent each abstract as a sparse bag-of-words vector over a vocabulary of 188,923

words. The training data consists of a matrix A with n rows and d columns, where n is the

number of abstracts and d is the number of features in the bag of words representation.

We apply a tf-idf text preprocessing step to the bag of words representation to account

for word burstiness [MKE05] and to elevate the impact of rare words.

Because linear regression models can be trained for multiple labels efficiently,

we choose linear regression as a predictive model. Note that square loss is a proper loss

function and yields calibrated probabilistic predictions [MJV+12]. Further, to increase
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Table 5.1: Selected frequently predicted MeSH terms. When F1 is optimized separately
for each term, low thresholds are chosen for rare labels (bold) with uninformative
classifiers.

MeSH term count maximum F1 threshold
Humans 2346 0.9160 0.458
Male 1472 0.8055 0.403
Female 1439 0.8131 0.407
Phosphinic Acids 1401 1.544 ·10−4 7.71 ·10−5

Penicillanic Acid 1064 8.534 ·10−4 4.27 ·10−4

Adult 1063 0.7004 0.350
Middle Aged 1028 0.7513 0.376
Platypus 980 4.676 ·10−4 2.34 ·10−4

the speed of training and prevent overfitting, we approximate the training matrix A by

a rank restricted Ak using singular value decomposition. One potential consequence of

this rank restriction is that the signal of extremely rare words can be lost. This can be

problematic when rare terms are the only features of predictive value for a label.

Given the probabilistic output of each classifier and the results relating optimal

thresholds to maximum attainable F1, we designed three different plug-in rules to maxi-

mize micro, macro and per instance average F1. Inspection of the predictions to maximize

micro F1 revealed no irregularities. However, inspecting the predictions thresholded to

maximize performance on macro F1 showed that several terms with very low base rates

were predicted for more than a third of all test documents. Among these terms were

“Platypus”, “Penicillanic Acids” and “Phosphinic Acids” (Figure 5.1).

In multilabel classification, a label can have low base rate and an uninformative

classifier. In this case, optimal thresholding requires the system to predict all examples

positive for this label. In the single-label case, such a system would achieve a low F1

and not be used. But in the macro averaging multilabel case, the extreme thresholding

behavior can take place on a subset of labels, while the system manages to perform well

overall.
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5.7 A Winner’s Curse

In practice, decision rules that maximize F1 are often set empirically, rather than

analytically. That is, given a set of validation examples with predicted scores and true

labels, rules for mapping scores to labels are selected that maximize F1 on the validation

set. In such situations, the optimal threshold can be subject to a winner’s curse [CCC71]

where a sub-optimal threshold is chosen because of sampling effects or limited training

data. As a result, the future performance of a classifier using this threshold is worse than

the anticipated performance. We show that threshold optimization for F1 is particularly

susceptible to this phenomenon.

In particular, different thresholds have different rates of convergence of empirical

F1 with number of samples n. As a result, for a given n, comparing the empirical

performance of low and high thresholds can result in suboptimal performance. This is

because, for a fixed number of samples, some thresholds converge to their true error rates

fast, while others have higher variance and may be set erroneously. We demonstrate these

ideas for a scenario with an uninformative model, though they hold more generally.

Consider an uninformative model, for a label with base rate b. The model is

uninformative in the sense that output scores are si = b+ ni for examples i, where

ni = N (0,σ2). Thus, scores are uncorrelated with and independent of the true labels.

The empirical accuracy for a threshold t is

At
exp =

1
n ∑

i∈+
1[si ≥ t]+

1
n ∑

i∈−
1[si ≤ t] (5.4)

where + and − index the positive and negative class respectively. Each term in Equa-

tion (5.4) is the sum of O(n) i.i.d random variables and has exponential (in n) rate of

convergence to the mean irrespective of the base rate b and the threshold t. Thus, for a

fixed number T of threshold choices, the probability of choosing the wrong threshold
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Perr ≤ T 2−εn where ε depends on the distance between the optimal and next nearest

threshold. Even if errors occur, the most likely errors are thresholds close to the true

optimal threshold, a consequence of Sanov’s theorem [CT12].

Consider how to select an F1-maximizing threshold empirically, given a validation

set of ground truth labels and scores from an uninformative classifier. The scores si can

be sorted in decreasing order (w.l.o.g.) since they are independent of the true labels for an

uninformative classifier. Based on the sorted scores, we empirically select the threshold

that maximizes the F1 measure F on the validation set. The optimal empirical threshold

will lie between two scores that include the value F/2, when the scores are calibrated, in

accordance with Theorem 2.

The threshold smin that classifies all examples positive (and maximizes F1 analyt-

ically by Theorem 4) has an empirical F1 close to its expectation of 2b
1+b = 2

1+1/b since

t p, f p and f n are all estimated from the entire data. Consider a threshold s that classifies

only the first example positive and all others negative. With probability b, this has F1

value 2/(2+b ·n), which is worse than that of the optimal threshold only when

b≥

√
1+ 8

n −1

2
.

Despite the threshold s being far from optimal, it has a constant probability of having

a better F1 score on validation data, a probability that does not decrease with n, for

n < (1−b)/b2. Therefore, optimizing F1 will have a sharp threshold behavior, where

for n < (1−b)/b2 the algorithm will incorrectly select large thresholds with constant

probability, whereas for larger n it will correctly identify small thresholds. Note that

identifying optimal thresholds for F1 is still problematic since it then leads to issues

identified in the previous section. While these issues are distinct, they both arise from

the nonlinearity of the F1 measure and its asymmetric treatment of positive and negative
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Figure 5.7: The distribution of experimentally chosen thresholds changes with varying
base rate b. For small b, a small fraction of examples are predicted positive even though
the optimal thresholding is to predict all positive.

labels.

Figure 5.7 shows the result of simulating this phenomenon, executing 10,000

runs for each setting of the base rate, with n = 106 samples for each run used to set the

threshold. Scores are chosen using variance σ2 = 1. True labels are assigned at the base

rate, independent of the scores. The threshold that maximizes F1 on the validation set

is selected. We plot a histogram of the fraction predicted positive as a function of the

empirically chosen threshold. There is a shift from predicting almost all positives to

almost all negatives as the base rate is decreased. In particular, for low base rate, even

with a large number of samples, a small fraction of examples are predicted positive. The

analytically derived optimal decision in all cases is to predict all positive, i.e. to use a

threshold of 0.
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5.8 Related Work

Motivated by the widespread use of the F1 measure in information retrieval and

in single and multilabel binary classification, researchers have published extensively on

its optimization. The paper [Jan07] proposes an outer-inner maximization technique for

F1 maximization, while [dCDB09] studies extensions to the multilabel setting, showing

that simple threshold search strategies are sufficient when individual probabilistic classi-

fiers are independent. Finally, [DWCH11] describe how the method of [Jan07] can be

extended to efficiently label data points even when classifier outputs are dependent. More

recent work in this direction can be found in [YCLC12]. However, none of this work

directly identifies the relationship of the optimal threshold to the maximum achievable

F1 score over all thresholds, as we do here.

While there has been work on applying general constrained optimization tech-

niques to related measures [MDC+01], research often focuses on specific classification

methods. In particular, the paper [SMI06] studies F1 optimization for conditional random

fields and [MKO+03] discusses similar optimization for SVMs. In our work, we study

the consequences of maximizing F1 for the general case of any classifier that outputs

real-valued scores.

A result similar to a special case below, Corollary 1, was recently derived in

[ZEPB13]. However, the derivation there is complex and does not prove the more general

Theorem 2, which describes the optimal decision-making threshold even when the scores

output by a classifier are not probabilities.

The batch observation is related to the note in [Lew95] that given a fixed classifier,

a specific example may or may not cross the decision threshold, depending on the other

examples present in the test data. However, the previous paper does not characterize

what this threshold is, nor does it explain the differences between predictions made to
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optimize micro and macro average F1.

5.9 Discussion

In this chapter, we present theoretical and empirical results describing properties

of the F1 performance measure for binary and multilabel classification. We relate the

best achievable F1 score to the optimal decision-making threshold and show that when

a classifier is uninformative, classifying all instances as positive maximizes F1. In the

multilabel setting, this behavior is problematic when the measure to maximize is macro F1

and for some labels their predictive model is uninformative. In contrast, we demonstrate

that given the same scenario, micro F1 is maximized by predicting those labels for all

examples to be negative. This knowledge can be useful as such scenarios are likely to

occur in settings with a large number of labels. We also demonstrate that micro F1 has

the potentially undesirable property of washing out performance on rare labels.

No single performance measure can capture every desirable property. For exam-

ple, for a single binary label, separately reporting precision and recall is more informative

than reporting F1 alone. Sometimes, however, it is practically necessary to define a

single performance measure to optimize. Evaluating competing systems and objectively

choosing a winner presents such a scenario. In these cases, it is important to understand

that a change of performance measure can have the consequence of dramatically altering

optimal thresholding behavior.
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Chapter 6

Predicting Surgery Duration with

Neural Heteroscedastic Regression

Scheduling surgeries is a challenging task due to the fundamental uncertainty

of the clinical environment, as well as the risks and costs associated with under- and

over-booking. We investigate neural regression algorithms to estimate the parameters

of surgery case durations, focusing on the issue of heteroscedasticity. We seek to

simultaneously estimate the duration of each surgery, as well as a surgery-specific notion

of our uncertainty about its duration. Estimating this uncertainty can lead to more nuanced

and effective scheduling strategies, as we are able to schedule surgeries more efficiently

while allowing an informed and case-specific margin of error. Using surgery records from

the UC San Diego Health System, we demonstrate potential improvements on the order

of 20% (in terms of minutes overbooked) compared to current scheduling techniques.

Moreover, we demonstrate that surgery durations are indeed heteroscedastic. We show

that models that estimate case-specific uncertainty better fit the data (log likelihood).

Additionally, we show that the heteroscedastic predictions can more optimally trade off

between over and under-booking minutes, especially when idle minutes and scheduling

102
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collisions confer disparate costs.

6.1 Introduction

In the United States, healthcare is expensive and hospital resources are scarce.

Healthcare expenditure now exceeds 17% of US GDP [Wor14], even as surgery wait

times appear to have increased over the last decade [BKT+11]. One source of inefficiency

(among many) is the inability to fully utilize hospital resources. Because doctors cannot

accurately predict the duration of surgeries, operating rooms can become congested

(when surgeries run long) or lie vacant (when they run short). Over-booking can lead to

long wait times and higher costs of labor (due to over-time pay), while under-booking

decreases throughput, increasing the marginal cost per surgery.

At present, doctors book rooms according to a simple formula: The default time

reserved is simply the mean duration of that specific procedure. The procedure code does

in fact explain a significant amount of the variance in surgery durations. But by ignoring

other signals, we hypothesize that the medical system leaves important signals untapped.

We address this issue by developing better and more nuanced strategies for

surgery duration prediction. Our work focuses on a collection of surgery logs recorded in

Electronic Health Records (EHRs) at a large United States health system. For each patient,

we consider a collection of pre-operative features, including patient attributes (age, weight,

height, sex, co-morbidities, etc.), as well as attributes of the clinical environment, such as

the surgeon, surgery location, and time. For each procedure, we also know how much

time was originally scheduled, in addition to the actual ‘ground-truth’ surgery duration,

recorded after each procedure is performed.

We are particularly interested in developing methods that allow us to better

estimate the uncertainty associated with the duration of each surgery. Typically, neural
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network regression objectives assume homoscedasticity, i.e., constant levels of target

variability for all instances. While mathematically convenient, this assumption is clearly

violated in data such as ours, as one might surmise intuitively that operations that typically

take a long time tend to exhibit greater variance than shorter ones. For example, among

the 30 most common procedures, epidural injections are both the shortest procedures and

the ones with the least variance (Figure 6.1). Among the same 30 procedures, exploratory

laparotomy and major burn surgery exihibit the greatest variance. All procedures exhibit

long (and one-sided) tails.

To model this data, we revisit the idea of heteroscedastic neural regression,

combining it with expressive, dropout-regularized neural networks. In our approach,

we jointly learn all parameters of a predictive distribution. In particular, we consider

Gaussian and Laplace distributions, each of which is parameterized by a mean and

standard deviation. We also consider Gamma distributions, which are especially suited

to survival analysis. Unlike the Gaussian and Laplace which are long tailed on both

ends, the gamma has a long right tail and has only positive support (i.e., it assigns zero

probability density to any value less than zero). The restriction to positive values suits the

modeling of durations or other survival-type data. While the gamma distribution (and the

related Weibull distribution) has been applied to medical data with classical approaches

[Ben83, SDAS97], this is, to our knowledge, the first to approximate the a parameters of

a gamma distribution using modern neural network approaches.

Our heteroscedastic models better fit the data (as determined by log likelihood)

compared to both current practice and neural network baselines that fail to account

for heteroscedasticity. Furthermore, our models produce reliable estimates of the vari-

ance, which can be used to schedule intelligently, especially when over-booking and

under-booking confer disparate costs. These uncertainty estimates come at no cost in per-

formance by traditional measures. The best-performing Gamma MLP model achieves a
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Figure 6.1: Distributions of durations for the 30 most common procedures.

lower mean squared error than a vanilla least squares (Gaussian) MLP, despite optimizing

a different objective.

6.2 Dataset

Our dataset consists of patient records extracted from the EHR system of the

University of California, San Diego Health System. Specifically, we selected 107,755

records corresponding to surgeries that took place between 2014 and 2016. These

surgeries span 995 distinct procedures, and were performed by 368 distinct surgeons.

Histograms of both are long-tailed, with over 796 procedures performed fewer than 100

times and 213 doctors performing fewer than 100 surgeries each. Moreover the data
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contains several clerical mistakes in logging the durations. For example, a number of

surgeries in the record were reported as running less than 5 minutes. Discussions with the

hospital experts suggest that this may indicate either clerical errors or an inconsistently

applied convention for logging canceled surgeries. Additionally, several surgeries were

reported to run over 24 hours, suggesting (rare) clerical errors in logging the end times of

procedures. We remove all surgeries reported to take less than 5 minutes or more than 24

hours from the dataset. This preprocessing left us with roughly 80% of our original data

(86,796 examples). For our experiments, we split this remaining data 80%/8%/12% for

training/validation/testing.

6.2.1 Inputs

For each surgery, we extracted a number of pre-operative features from the

corresponding EHRs. We restrict attention to features that are available for a majority

of patients and (to avoid target leaks) exclude any information that is charted during

or following the procedure. Our features fall into several categories: patient, doctor,

procedure, and context.

Patient features: For each of our patients, we include the following features:

• Size: Patient height and weight are real-valued features. We normalize each to

mean 0, variance 1.

• Age: A categorical variable, binned according to ten-year wide intervals that are

open on the left side (0−10],(10−20], . . . None of the patients in our cohort are

zero years old.

• ASA score: an ordinal score that represents the severity of a patient’s illness. For

example, ASA I denotes a healthy patient, ASA III denotes severe systemic disease,
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and ASA V denotes that the patient is moribund without surgery. ASA VI refers to

a brain-dead patient in preparation for organ transplantation.

• Anesthesia Type: This categorical feature represents the type of anesthesia

applied to sedate the patient. The values assigned to this variable include General,

Monitored anesthesia care (MAC)—in which a patient undergoes local anesthesia

together with sedation, Neuraxial, No Anesthesiologist, and other/unknown.

• Patient Class: This categorical feature indicates the patient’s current status.

The values assigned to this variable include Emergency Department Encounter,

Hospital Outpatient Procedure, Hospital Outpatient Surgery, Hospital Inpatient

Surgery, Trauma Inpatient Admission, Inpatient Admission, Trauma Outpatient.

• Comorbidities: We model the following co-morbidities as binary variables:

smoker status, atrial fibrillation, chronic kidney disease, chronic obstructive pul-

monary disease, congestive heart failure, coronary artery disease, diabetes, hyper-

tension, cirrhosis, obstructive sleep apnea, cardiac device, dialysis, asthma, and

dementia.

• Doctor: We represent the doctor performing the procedure (categorical) using a

one-hot vector. The doctor feature exhibits considerable class imbalance, with the

most prolific doctor performing 3770 surgeries and the least prolific doctor (in the

pruned dataset) performing 100.

• Procedure: We represent the procedure performed as a one-hot vector. The

most common operations tend to be minor GI procedures: the four most frequent

procedures are colonoscopy, upper GI endoscopy, cataract removal, and abdominal

paracentesis. This distribution is also long-tailed with 11,173 colonoscopies.
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• Context: We represent the context of the procedure with several categorical vari-

ables. First, we represent the hour of the day as a categorical variable with values

binned into 8 non-overlapping 3-hour width buckets. Second, we represent the day

of the week and month of the year each as one-hot vectors. Finally, we similarly

represent the location of the operations as a one-hot vector.

We summarize the number and kind of features in our dataset in Table 6.1. We

handle variables with missing values, including height, weight, and hour of the day,

by incorporating missing value indicators, following previous work on clinical datasets

[LKW16b].

6.3 Methods

This chapter addresses the familiar task of regression. We start off by refreshing

some basic preliminaries. Given a set of examples {xi}, and corresponding labels {yi},

we desire a model f that outputs a prediction ŷ = f (x). The task of the machine learning

algorithm is to produce the function f given a dataset D consisting of examples X and

labels y. Generally, we seek predictions that are somehow close to y, as determined

by some computable loss function L . Most often we minimize the squared loss L =

∑i(yi− ŷi)
2 for all instances (xi, yi).

One popular method for producing such a function is to choose a class of functions

f parameterized by some values θ. Linear models are the simplest examples of this

approach. To train a linear regression model, we define f (x) = θT x. Then we solve the

following optimization problem:

θ
∗ = argminθL(y, ŷ)
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Table 6.1: Summary of features.

Feature Abbreviation Type #Categories Mode

Age age Categorical 9 50-60
Sex sex Binary 2 Female
Weight weight Numerical - -
Height height Numerical - -
Time of Day hour Categorical 8 9:00-12:00
Day of Week day Categorical 7 Friday
Month month Categorical 12 March
Location location Categorical 10 -
Patient Class class Categorical 7 Hospital Outpatient
ASA Rating asa Categorical 6 None
Anesthesia Type anesthesia Categorical 5 General
Surgeon surgeon Categorical 155 -
Procedure procedure Categorical 199 Colonoscopy
Smoker smoker Binary 2 No
Heart Arrhytmia afib Binary 2 No
Chronic Kidney Disease ckd Binary 2 No
Congestive Heart Failure chf Binary 2 No
Coronoary Artery Disease cad Binary 2 No
Type II Diabetes diabetes Binary 2 No
Hypertension htn Binary 2 No
Liver Cirrhosis cirrhosis Binary 2 No
Sleep Apena osa Binary 2 No
Cardiac Device cardiac device Binary 2 No
Dialysis dialysis Binary 2 No
Asthma asthma Binary 2 No
Dementia dementia Binary 2 No
Cognitive Impairment cognitive Binary 2 No

over some training data and evaluate the model by its performance on previously unseen

data. For linear models, the error-minimizing parameters (on the training data) can be

calculated analytically. For all modern deep learning models, no analytic solution exists,

so optimization typically proceeds by stochastic gradient descent.

For neural network models, we change only the function f . In multilayer percep-

trons (MLP) for example, we transform our input through a series of matrix multiplica-

tions, each followed by a nonlinear activation function. Formally, an L-layer MLP for

regression has the simple form

ŷ =WL ·φ(WL−1 · . . . · φ(W1 · x+b1)+ . . .+bL−1)+bL ,
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where φ is an activation function such as sigmoid, tanh, or rectified linear unit (ReLU)

and θ consists of the full set of parameters Wl and bl .

We might view the loss function (squared loss) as simply an intuitive measure

of distance. Alternatively, it’s possible to derive the choice of squared loss by viewing

regression from a probabilistic perspective. In the probabilistic view, a parametric model

outputs a distribution P(y|x).

In the simplest case, we can assume that the prediction ŷ is the mean of a Gaussian

predictive distribution with some variance σ. In this view, we can calculate the probability

density of any y given x, and thus can choose our parameters according to the maximum

likelihood principle:

θ
MLE = max

θ

n

∏
i=1

1√
2πσ̂2

exp
(
−(yi− ŷi)

2

2σ̂2

)
= min

θ

n

∑
i=1

(
log(σ̂i)+

(yi− ŷi)
2

2σ̂2

)
. (6.1)

Assuming constant σ̂, this yields a familiar least-squares objective.

In this work, we relax the assumption of constant variance (homoscedasticity),

predicting both ŷ(θ,x) and σ̂(θ,x) simultaneously. While we apply the idea to MLPs, it

is easily applied to networks of arbitrary architecture. To predict the standard deviation σ̂

of the predictive distribution, we modify our MLP to have two outputs: The first output

has linear activation and we interpret its output as the conditional mean ŷ. The second

output models the conditional variance σ̂. To enforce positivity of σ̂, we run this output

through the softplus activation function softplus(z) = log(1+ exp(z)).

We extend the same idea to Laplace distributions, which turn out to better describe

the target variability for surgery duration, and are also maximum likelihood estimators

when optimizing the Mean Absolute Error (MAE). Mean Absolute Error corresponds

to the average number of minutes over or underbooked, and is typically the quantity of

interest for this type of scheduling task. The Laplace distribution is parameterized by
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b =
√

2σ:

θ
MLE = max

n

∏
i=1

1
2b

exp
(
−|yi− ŷi|

b

)
= min

θ

n

∑
i=1

(
logb+

|yi− ŷi|
b

)
. (6.2)

Finally, we apply the same technique to perform neural regression with gamma

predictive distributions. The gamma distribution has strictly positive support and is

long-tailed on the right. Since surgeries and other survival-type data have nonnegative

lengths, probability distributions with similarly nonnegative support such as the gamma

distribution (compared to the real-valued support of the Gaussian and Laplace distri-

butions), might better describe surgery duration. Formally, the expected time between

surgeries (or their associated durations) follows a gamma distribution when surgery start

times are modeled as a Poisson process.

The gamma distribution is parametrized by a shape parameter k and a scale

parameter Φ:

θ
MLE =max

n

∏
i=1

1
Γ(k)Φk yk−1

i exp
(
−yi

Φ

)
=min

θ

n

∑
i=1

(
log(Γ(k))+ k logΦ− (k−1) logyi +

yi

Φ

)
.

(6.3)

In this case, the model now needs to predict two values: k̂(θ,x) and Φ̂(θ,x). As before,

our MLP has two outputs, with both passed through a softplus activation to enforce

positivity.

6.4 Experiments

We now present the basic experimental setup. For all experiments we use the

same 80%/8%/12% training/validation/test set split. Model weights are updated on the

training set and we choose all non-differentiable hyper-parameters and architecture details

based on validation set performance. In the final tally, we have 441 features, the majority
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of which are sparse and accounted for by the one-hot representations over procedures

and doctors. We express our labels (the surgery durations) as the number of hours that

each procedure takes.

Baselines We consider three baselines for comparison. The first is to follow the current

heuristic of predicting the average time per procedure. Note that this is equivalent to

training an unregularized linear regression model with a single feature per procedure

and no others. Although the main technical contribution of this chapter is concerned

with modeling heteroscedasticity, we are also generally interested to know how much

performance the current approach leaves untapped. This baseline helps us to address

this question. We also compare against linear regression. While we tried applying `2

regularization, choosing the strength of regularization λ on holdout data, this did not lead

to improved performance. Finally, we compare against traditional multilayer perceptrons.

To calculate NLL for models that assume homoscedasticity, we choose the constant

variance that minimizes NLL on the validation set.

Training Details For all neural network experiments, we use MLPs with ReLU activa-

tions. We optimize each network’s parameters by stochastic gradient descent, halving the

learning rate every 50 epochs. For each experiment, we used an initial learning rate of

.1. To determine the architecture, we performed a grid search over the number of hidden

layers (in the range 1-3) and over the number of hidden nodes, choosing between 128,

256, 384, 512. As determined by our hyper-parameter optimization, for homoscedastic

models, all MLPs use 1 hidden layer with 128 nodes. All heteroscedastic models use 1

hidden layer with 256 nodes. All models use dropout regularization.

For our basic quantitative evaluation, we report the root mean squared error

(RMSE), mean absolute error (MAE), and negative log-likelihood (NLL). For het-

eroscedastic models, we evaluate NLL using the predicted parameters of the distribution.
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Table 6.2: Performance on test-set data (lower is better). MLP models outperform
alternatives at the 1% significance level or better.

Models RMSE MAE NLL
Change in NLL

vs. Current
Method

Current Method 49.80 28.87 1.2385 0.0000
Procedure Means 49.06 27.70 1.2222 0.0164
Linear Regression 45.23 25.07 1.1446 0.0939
MLP Gaussian 43.51 23.90 1.1102 0.1283
MLP Gaussian HS 44.03 24.23 0.7325 0.5060
MLP Laplace 44.24 23.14 1.0621 0.1765
MLP Laplace HS 45.07 23.41 0.5034 0.7351
MLP Gamma HS 43.38 23.23 0.4668 0.7717

For the Gamma distribution, we calculate its mean as k ·Φ. We use its mean as the

prediction ŷ for calculating RMSE. To calculate MAE, we use the median of the Gamma

distribution as ŷ. Although the median of a Gamma distribution has no closed form, it

can be efficiently approximated.

We summarize the results in Table 6.2. The heteroscedastic Gamma MLP per-

forms best as measured by both RMSE and NLL, while the Laplace MLP performs best

as measured by MAE. All heteroscedastic models outperform all homoscedastic models

(as determined by NLL) with the heteroscedastic Gamma MLP achieving an NLL of

.4668 as compared to 1.062 by the best performing homoscedastic model (Laplace MLP).

The significant quantity when evaluating log likelihood is the difference between NLL

values, corresponding to the (log of the) likelihood ratio between two models.

Plots in Figure 6.2 demonstrate that the predicted deviation reliably estimates

the observed error, and QQ plots (Figure 6.3) demonstrate that the Laplace distribution

appears to fit our targets better than a Gaussian predictive distribution. This gives some

(limited) insight into why the Laplace predictive distribution might better fit our data

than the Gaussian.



114

(a) Gaussian (b) Laplace (c) Gamma

(d) Gaussian (e) Laplace (f) Gamma

Figure 6.2: Plots of predicted σ̂ against absolute error with heteroscedastic Gaussian
(a), Laplace (b), and Gamma (c) models. Averaging over bins of width 0.05 (d) (e) (f),
shows that σ̂i is a reliable estimator of the observed error.

(a) Gaussian QQ Plot (b) Laplace QQ Plot

Figure 6.3: QQ plots of observed error for Gaussian and Laplace noise models. The
Laplace distribution better describes observed error, with shorter tails at both ends.

6.5 Related Work

Previous work in in the medical literature addresses the prediction of surgery

duration [EvHN+10, KKSS15, DRS12], accounting for both patient and surgical team
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characteristics. To our knowledge ours is the first work to address the problem with

modern deep learning techniques and the first to model its heteroscedasticity. The idea of

neural heteroscedastic regression was first proposed by [NW94], though they do not share

hidden layers between the two outputs, and are only concerned with Gaussian predictive

distributions. [Wil96] use a shared hidden layer and consider the case of multivariate

Gaussian distributions, for which they predict the full covariance matrix via its Cholesky

factorization. Heteroscedastic regression has a long history outside of neural networks.

[LSC05] address a formulation for Gaussian processes. Most related is [LPB16] which

also revisits heteroscedastic neural regression, also using a softplus activation to enforce

non-negativity. We show some successful modifications to the above work, such as the

use of the Laplace distribution, but our more significant contribution is the application of

the idea to clinical medical data.

6.6 Discussion

Our results demonstrate both the efficacy of machine learning (over current

approaches) and the heteroscedasticity of surgery duration data. In this section, we

explore both results in greater detail. Specifically, we analyze the models to see which

features are most predictive and examine the uncertainty estimates to see how they might

be used in decision theory to lower costs.

6.6.1 Feature Importance

First, we consider the importance of the various features. Perhaps the most

common way to do this is to see which features corresponded to the largest weights in

our linear model. These results are summarized in Figure 6.4. Not surprisingly, the top

features are dominated by procedures. In particular pulmonary thromboendarterectomy
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Figure 6.4: Top 30 linear regression features sorted by coefficient magnitude.

receives the highest positive weight. This procedure involves a high risk of mortality,

a full cardiopulmonary bypass, hypothermia and full cardiac arrest. Interestingly, even

after accounting for procedures, two doctors receive high weight. One (Doctor 266)

receives significant negative weight, indicating unusual efficiency and another (Doctor

296) appears to be unusually slow. For ethical reasons, we maintain the anonymity of

both the doctors and their specialties.

For neural network models, we evaluate the importance of each feature group by

performing an ablation analysis (Figure 6.5). As a group, procedure codes are again the

most important features. However, location, patient class, surgeon, anesthesia, and patient

sex all contribute significantly. The hour of day appears to influence the performance of

our models but the day of the week does not and the month appears to merely introduce

noise, leading to a reduction in test set performance. Interestingly, comorbidities also

made little difference in performance. However, it is possible that these features only

apply to a small subset of patients but are highly predictive for that subset.
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Figure 6.5: Ablation analysis of feature importance for neural models.
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Figure 6.6: Total over-booking and under-booking errors for different models as we
adjust predicted values.

6.6.2 Economic Analysis

Our aim in predicting the variance of the error is to provide uncertainty infor-

mation that could be used to make better scheduling decisions. To compare the various

approaches from an economic/decision-theoretic perspective, we might consider the

plausible case where the cost to over-reserve the room by one minute (procedure fin-

ishes early) differs from the cost to under-reserve the room (procedure runs over). We

demonstrate how the two quantities can be traded off in Figure 6.6.

For models that don’t output variance, we consider scheduled durations of the

form ŷ+ k and ŷ · k where k is a data-independent constant. In either case, by modulating

k, one books more or less aggressively. The multiplicative approach performed better,

likely because long procedures have higher variance than short ones. This approach is

equivalent to selecting a certain percentile of each predicted distribution given a constant
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sigma.

For heteroscedastic models we make the trade-off by selecting a constant per-

centile of each predicted distribution. When the cost of over-reserving by one minute and

under-reserving by one minute are equal, the problem reduces to minimizing absolute

error. Around this point on the curve the homoscedastic Laplace regression outperforms

all other models. However, given cost sensitivity, the heteroscedastic Gamma strictly

outperforms all other models.

6.6.3 Future Work

We are encouraged by the efficacy of simple machine learning methods both to

predict the durations of surgeries and to estimate our uncertainty. We see several promis-

ing avenues for future work. Most concretely, we are currently engaged in discussions

with the medical institution whose data we used about introducing a trial in which surg-

eries would be scheduled according to decision theory based on our estimates. Regarding

methodology, we look forward to expanding this research in several directions. First,

we might extend the approach to modeling covariances and more complex interactions

among multiple real-valued predictions. We might also consider problems like bounding

box detection, requiring more complex neural architectures.
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Chapter 7

Improving Factor-Based Quantitative

Investing by Forecasting Company

Fundamentals

On a periodic basis, publicly traded companies are required to report fundamen-

tals: financial data such as revenue, operating income, debt, among others. These data

points provide some insight into the financial health of a company. Academic research

has identified some factors, i.e. computed features of the reported data, that are known

through retrospective analysis to outperform the market average. Two popular factors are

the book value normalized by market capitalization (book-to-market) and the operating

income normalized by the enterprise value (EBIT/EV). In this chapter, we first show

through simulation that if we could (clairvoyantly) select stocks using factors calcu-

lated on future fundamentals (via oracle), then our portfolios would far outperform a

standard factor approach. Motivated by this analysis, we train deep neural networks to

forecast future fundamentals based on a trailing 5-years window. Quantitative analysis

demonstrates a significant improvement in MSE over a naive strategy. Moreover, in
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retrospective analysis using an industry-grade stock portfolio simulator (backtester), we

show an improvement in compounded annual return to 17.1% (MLP) vs 14.4% for a

standard factor model.

7.1 Introduction

Public stock markets provide a venue for buying and selling shares, which rep-

resent fractional ownership of individual companies. Prices fluctuate frequently, but

the myriad drivers of price movements occur on multiple time scales. In the short run,

price movements might reflect the dynamics of order execution, and the behavior of high

frequency traders. On the scale of days, price fluctuation might be driven by the news

cycle. Individual stocks may rise or fall on rumors or reports of sales numbers, product

launches, etc. In the long run,we expect a company’s market value to reflect its financial

performance, as captured in fundamental data, i.e., reported financial information such

as income, revenue, assets, dividends, and debt. In other words, shares reflect ownership

in a company thus share prices should ultimately move towards the company’s intrinsic

value, the cumulative discounted cash flows associated with that ownership. One popular

strategy called value investing is predicated on the idea that long-run prices reflect this

intrinsic value and that the best features for predicting long-term intrinsic value are the

currently available fundamental data.

In a typical quantitative (systematic) investing strategy, we sort the set of available

stocks according to some factor and construct investment portfolios comprised of those

stocks which score highest. Many quantitative investors engineer value factors by taking

fundamental data in a ratio to stocks price, such as EBIT/EV or book-to-market. Stocks

with high value factor ratios are called value stocks and those with low ratios are called

growth stocks. Academic researchers have demonstrated empirically that portfolios of
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Figure 7.1: Annualized return for various factor models for different degrees of clair-
voyance.

stocks which overweight value stocks have significantly outperformed portfolios that

overweight growth stocks over the long run [PL17, FF92].

In this chapter, we propose an investment strategy that constructs portfolios of

stocks today based on predicted future fundamentals. Recall that value factors should

identify companies that are inexpensively priced with respect to current company fun-

damentals such as earnings or book-value. We suggest that the long-term success of an

investment should depend on the how well-priced the stock currently is with respect to

its future fundamentals. We run simulations with a clairvoyant model that can access

future financial reports (by oracle). In Figure 7.1, we demonstrate that for the 2000-2014

time period, a clairvoyant model applying the EBIT/EV factor with 12-month clairvoyant

fundamentals, if possible, would achieve a 44% compound annualized return.

Motivated by the performance of factors applied to clairvoyant future data, we

propose to predict future fundamental data based on trailing time series of 5 years of

fundamental data. We denote these algorithms as Lookahead Factor Models (LFMs).

Both multilayer perceptrons (MLPs) and recurrent neural networks (RNNs) can make
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informative predictions, achieving out-of-sample MSE of .47, vs .53 for linear regression

and .62 for a naive predictor. Simulations demonstrate that investing with LFMs based

on the predicted factors yields a compound annualized return (CAR) of 17.1%, vs 14.4%

for a normal factor model and a Sharpe ratio .68 vs .55.

7.2 Related Work

Deep neural networks models have proven powerful for tasks as diverse as

language translations [SVL14, BCB14], video captioning [MXY+15, VTBE15], video

recognition [DAHG+15, TLBN16], and time series modeling [LKEW16, LKW16a,

CPC+16]. A number of recent papers consider deep learning approaches to predicting

stock market performance. [BE15] evaluates MLPs for stock market prediction. [DZLD]

uses recursive tensor nets to extract events from CNN news reports and uses convolutional

neural nets to predict future performance from a sequence of extracted events. Several

preprinted drafts consider deep learning for stock market prediction [CZD15, WM14,

Jia16] however, in all cases, the empirical studies are limited to few stocks and short time

periods.

7.3 Deep Learning for Forecasting Fundamentals

7.3.1 Data

In this research, we consider all stocks that were publicly traded on the NYSE,

NASDAQ or AMEX exchanges for at least 12 consecutive months between between

January, 1970 and September, 2017. From this list, we exclude non-US-based companies,

financial sector companies, and any company with an inflation-adjusted market capitaliza-

tion value below 100 million dollars. The final list contains 11,815 stocks. Our features
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consist of reported financial information as archived by the Compustat North America

and Compustat Snapshot databases. Because reported information arrive intermittently

throughout a financial period, we discretize the raw data to a monthly time step. Because

we are interested in long-term predictions and to smooth out seasonality in the data, at

every month, we feed in inputs with a 1-year lag between time frames and predict the

fundamentals 12 months into the future.

For each stock and at each time step t, we consider a total of 20 input features. We

engineer 16 features from the fundamentals as inputs to our models. Income statement

features are cumulative trailing twelve months, denoted TTM, and balance sheet features

are most recent quarter, denoted MRQ. First we consider These items include revenue

(TTM); cost of goods sold (TTM); selling, general & and admin expense (TTM); earnings

before interest and taxes or EBIT (TTM); net income (TTM); cash and cash equivalents

(MRQ); receivables (MRQ); inventories (MRQ); other current assets (MRQ); property

plant and equipment (MRQ); other assets (MRQ); debt in current liabilities (MRQ);

accounts payable (MRQ); taxes payable (MRQ); other current liabilities (MRQ); total

liabilities (MRQ). For all features, we deal with missing values by filling forward

previously observed values, following the methods of [LKEW16]. Additionally we

incorporate 4 momentum features, which indicate the price movement of the stock over

the previous 1, 3, 6, and 9 months respectively. So that our model picks up on relative

changes and doesn’t focus overly on trends in specific time periods, we use the percentile

among all stocks as a feature (vs absolute numbers).

7.3.2 Preprocessing

Each of the fundamental features exhibits a wide dynamic range over the universe

of considered stocks. For example, Apple’s 52-week revenue as of September 2016 was

$215 billion (USD). By contrast, National Presto, which manufactures pressure cookers,
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had a revenue $340 million. Intuitively, these statistics are more meaningful when scaled

by some measure of a company’s size. In preprocessing, we scale all fundamental features

in given time series by the market capitalization in the last input time-step of the series.

We scale all time steps by the same value so that the neural network can assess the relative

change in fundamental values between time steps. While other notions of size are used,

such as enterprise value and book equity, we choose to avoid these measure because they

can, although rarely, take negative values. We then further scale the features so that they

each individually have zero mean and unit standard deviation.

7.3.3 Modeling

In our experiments, we divide the timeline in to an in-sample and out-of-sample

period. Then, even within the in-sample period, we need to partition some of the data as

a validation set. In forecasting problems, we face distinct challenges in guarding against

overfitting. First, we’re concerned with the traditional form of overfitting. Within the

in-sample period, we do not want to over-fit to the finite observed training sample. To

protect against and quantify this form of overfitting, we randomly hold out a validation

set consisting of 30% of all stocks. On this in-sample validation set, we determine all

hyperparameters, such as learning rate, model architecture, objective function weighting.

We also use the in-sample validation set to determine early stopping criteria. When

training, we record the validation set accuracy after each training epoch, saving the model

for each best score achieved. When 25 epochs have passed without improving on the

best validation set performance, we halt training and selecting the model with the best

validation performance. In addition to generalizing well to the in-sample holdout set,

we evaluate whether the model can predict the future out-of-sample stock performance.

Since this research is focused on long-term investing, we chose large in-sample and

out-of-sample periods of the years 1970-1999 and 2000-2017, respectively.
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In previous experiments, we tried predicting price movements directly with RNNs

and while the RNN outperformed other approaches on the in-sample period, it failed to

meaningfully out-perform a linear model (See results in Table 7.1).

Given only price data, RNN’s easily overfit the training data while failing to

improve performance on in-sample validation. One key benefit of our approach is that

by doing multi-task learning, predicting all 16 future fundamentals, we provide the model

with considerable training signal and may thus be less susceptible to overfitting.

The price movement of stocks is extremely noisy [Shi80] and so, suspecting

that the relationships among fundamental data may have a larger signal to noise ratio

than the relationship between fundamentals and price, we set up the problem thusly:

For MLPs, at each month t, given features for 5 months spaced 1 year apart (t − 48,

t−36, t−24, t−12), predict the fundamental data at time t +12. For RNNs, the setup

is identical but with the small modification that for each input in the sequence, we predict

the corresponding 12 month lookahead data.

We evaluated two classes of deep neural networks: MLPs and RNNs. For each of

these, we tune hyperparameters on the in-sample period. We then evaluated the resulting

model on the out-of-sample period. For both MLPs and RNNs, we consider architectures

evaluated with 1, 2, and 4 layers with 64, 128, 256, 512 or 1024 nodes. We also evaluate

the use of dropout both on the inputs and between hidden layers. For MLPs we use ReLU

activations and apply batch normalization between layers. For RNNs we test both GRU

and LSTM cells with layer normalization. We also searched over various optimizers

(SGD, AdaGrad, AdaDelta), settling on AdaDelta. We also applied L2-norm clipping on

RNNs to prevent exploding gradients. Our optimization objective is to minimize square

loss.

To account for the fact that we care more about our prediction of EBIT over the

other fundamental values, we up-weight it in the loss (introducing a hyperparameter α1).
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Table 7.1: Out-of-sample performance for the 2000-2014 time period. All factor models
use EBIT/EV. QFM uses current EBIT while our proposed LFMs use predicted EBIT.
Price-LSTM is trained to predict price directly.

Strategy MSE CAR Sharpe Ratio

S&P 500 n/a 4.5% 0.19
Market Avg. n/a 7.7% 0.29
Price-LSTM n/a 11.3% 0.60
QFM 0.62 14.4% 0.55
Linear-LFM 0.53 15.9% 0.63
MLP-LFM 0.47 17.1% 0.68
RNN-LFM 0.47 16.7% 0.67
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Figure 7.2: MSE over out-of-sample period for MLP (orange) and naive predictor
(black).

For RNNs, because we care primarily about the accuracy of the prediction at the final

time step (of 5), we upweight the loss at the final time step by hyperparameter α2 (as

in [LKEW16]). Some results from our hyperparameter search on in-sample data are

displayed in Table 1. These hyperparameters resulted in MSE on in-sample validation

data of 0.6141 for and 0.6109 for the MLP and RNN, respectively.

7.3.4 Evaluation

As a first step in evaluating the forecast produced by the neural networks, we

compare the MSE of the predicted fundamental on out-of-sample data with a naive
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Table 7.2: Final hyperparameters for MLP and RNN

Hyperparameter MLP RNN

Hidden Units 1024 64
Hidden Layers 2 2
Input Dropout Keep Prob. 1.0 1.0
Hidden Dropout Keep Prob. 0.5 1.0
Recurrent Dropout Keep Prob. n/a 0.7
Max Gradient Norm 1.0 1.0
α1 0.75 0.5
α2 n/a 0.7

prediction where predicted fundamentals at time t is assumed to be the same as the

fundamentals at t − 12. To compare the practical utility of traditional factor models

vs lookahead factor models we employ an industry grade investment simulator. The

simulator evaluates hypothetical stock portfolios constructed on out-of-sample data.

Simulated investment returns reflect how an investor might have performed had they

invested in the past according to given strategy.

The simulation results reflect assets-under-management at the start of each month

that, when adjusted by the S&P 500 Index Price to January 2010, are equal to $100

million. We construct portfolios by ranking all stocks according to the factor EBIT/EV

in each month and investing equal amounts of capital into the top 50 stocks holding each

stock for one-year. When a stock falls out of the top 50 after one year, it is sold with

proceeds reinvested in another highly ranked stock that is not currently in the simulated

portfolio. We limit the number of shares of a security bought or sold in a month to

no more than 10% of the monthly volume for a security. Simulated prices for stock

purchases and sales are based on the volume-weighted daily closing price of the security

during the first 10 trading days of each month. If a stock paid a dividend during the period

it was held, the dividend was credited to the simulated fund in proportion to the shares

held. Transaction costs are factored in as $0.01 per share, plus an additional slippage
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factor that increases as a square of the simulations volume participation in a security.

Specifically, if participating at the maximum 10% of monthly volume, the simulation

buys at 1% more than the average market price and sells at 1% less than the average

market price. Slippage accounts for transaction friction, such as bid/ask spreads, that

exists in real life trading.

Our results demonstrate a clear advantage for the lookahead factor model. In

nearly all months, however turbulent the market, neural networks outperform the naive

predictor (that fundamentals remains unchanged) (Figure 7.2). Simulated portfolios

lookahead factor strategies with MLP and RNN perform similarly, both beating traditional

factor models (Table 7.1).

7.4 Discussion

In this chapter, we demonstrated a new approach for automated stock market

prediction based on time series analysis. Rather than predicting price directly, predict

future fundamental data from a trailing window of values. Retrospective analysis with an

oracle motivates the approach, demonstrating the superiority of LFM over standard factor

approaches. In future work we will thoroughly investigate the relative advantages of

LFMs vs directly predicting price. We also plan to investigate the effects of the sampling

window, input length, and lookahead distance.
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Chapter 8

Efficient Dialogue Policy Learning with

BBQ Networks

We present a new algorithm that significantly improves the efficiency of explo-

ration for deep Q-learning agents in dialogue systems. Our agents explore via Thompson

sampling, drawing Monte Carlo samples from a Bayes-by-Backprop neural network.

Our algorithm learns much faster than common exploration strategies such as ε-greedy,

Boltzmann, bootstrapping, and intrinsic-reward-based ones. Additionally, we show that

spiking the replay buffer with experiences from just a few successful episodes can make

Q-learning feasible when it might otherwise fail.

8.1 Introduction

Increasingly, we interact with computers via natural-language dialogue interfaces.

Simple question answering (QA) bots already serve millions of users through Amazon’s

Alexa, Apple’s Siri, Google’s Now, and Microsoft’s Cortana. These bots typically carry

out single-exchange conversations, but we aspire to develop more general dialogue agents,
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approaching the breadth of capabilities exhibited by human interlocutors. In this work,

we consider task-oriented bots [WY04], agents charged with conducting a multi-turn

dialogue to achieve some task-specific goal. In our case, we attempt to assist a user to

book movie tickets.

For complex dialogue systems, it is often impossible to specify a good policy

a priori and the dynamics of an environment may change over time. Thus, learning

policies online and interactively via reinforcement learning (RL) has emerged as a popular

approach [SKLW00, GJK+10, FEAS+16]. Inspired by RL breakthroughs on Atari and

board games [MKS+15, SHM+16], we employ deep reinforcement learning (DRL) to

learn policies for dialogue systems. Deep Q-network (DQN) agents typically explore

via the ε-greedy heuristic, but when rewards are sparse and action spaces are large (as in

dialogue systems), this strategy tends to fail. In our experiments, a randomly exploring

Q-learner never experiences success in thousands of episodes.

We offer a new, efficient solution to improve the exploration of Q-learners. We

propose a Bayesian exploration strategy that encourages a dialogue agent to explore

state-action regions in which the agent is relatively uncertain in action selection. Our

algorithm, the Bayes-by-Backprop Q-network (BBQN), explores via Thompson sampling,

drawing Monte Carlo samples from a Bayesian neural network [BCKW15]. In order to

produce the temporal difference targets for Q-learning, we must generate predictions

from a frozen target network [MKS+15]. We show that using the maximum a posteriori

(MAP) assignments to generate targets results in better performance (in addition to being

computationally efficient). We also demonstrate the effectiveness of replay buffer spiking

(RBS), a simple technique in which we pre-fill the experience replay buffer with a small

set of transitions harvested from a naı̈ve, but occasionally successful, rule-based agent.

This technique proves essential for both BBQNs and standard DQNs.

We evaluate our dialogue agents on two variants of a movie-booking task. Our
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agent interacts with a user to book a movie. Success is determined at the end of the

dialogue if a movie has been booked that satisfies the user. We benchmark our algorithm

and baselines using an agenda-based user simulator similar to [STY07]. To make the

task plausibly challenging, our simulator introduces random mistakes to account for the

effects of speech recognition and language understanding errors. In the first variant,

our environment remains fixed for all rounds of training. In the second variant, we

consider a non-stationary, domain-extension environment. In this setting, new attributes

of films become available over time, increasing the diversity of dialogue actions available

to both the user and the agent. Our experiments on both the stationary and domain-

extension environments demonstrate that BBQNs outperform DQNs using either ε-greedy

exploration, Boltzmann exploration, or the bootstrap approach introduced by [OBPVR16].

Furthermore, the real user evaluation results consolidate the effectiveness of our approach

that BBQNs are more effective than DQNs in exploration. Besides, we also show that all

agents only work given replay buffer spiking, although the number of pre-filled dialogues

can be small.

8.2 Task-completion dialogue systems

In this chapter, we consider goal-oriented dialogue agents, specifically one that

aims to help users to book movie tickets. Over the course of several exchanges, the agent

gathers information such as movie name, theater and number of tickets, and ultimately

completes a booking. A typical dialogue pipeline is shown in Figure 8.1. In every turn

of a conversation, the language understanding module converts raw text into structured

semantic representations known as dialog-acts, which pass through the state-tracker to

maintain a record of information accumulated from previous utterances. The dialogue

policy then selects an action (to be defined later) which is transformed to a natural
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Figure 8.1: Components of a dialogue system

language form by a generation module. The conversation continues until the dialogue

terminates. A numerical reward signal is used to measure the utility of the conversation.

Details of this process are given below.

8.2.1 Dialog-acts

Following [STY07], we represent utterances as dialog-acts, consisting of a single

act and a (possibly empty) collection of (slot=value) pairs, some of which are informed

while others are requested (value omitted). For example, the utterance, “I’d like to see

Our Kind of Traitor tonight in Seattle” maps to the structured semantic representation

request(ticket, moviename=Our Kind of Traitor, starttime=tonight, city=Seattle).

8.2.2 State tracker

Other than information inferred from previous utterances, the state-tracker may

also interact with a database, providing the policy with information such as how many

movies match the current constraints. It then de-lexicalizes the dialog-act, allowing

the dialogue policy to act upon more generic states. The tracked state of the dialogue,

consisting of a representation of the conversation history and several database features, is

passed on to the policy to select actions.
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8.2.3 Actions

Each action is a de-lexicalized dialog-act. In the movie-booking task, we consider

a set of 39 actions. These include basic actions such as greeting(), thanks(), deny(),

confirm question(), confirm answer(), closing(). Additionally, we add two actions for

each slot: one to inform its value and the other to request it. The pipeline then flows back

to the user. Any slots informed by the policy are then filled in by the state tracker. This

yields a structured representation such as inform(theater=Cinemark Lincoln Square),

which is then mapped by a natural language generation module to a textual utterance,

such as “This movie is playing tonight at Cinemark Lincoln Square.”

The conversation process above can be naturally mapped to the reinforcement

learning (RL) framework, as follows [LPE97]. The RL agent navigates a Markov decision

process (MDP), interacting with its environment over a sequence of discrete steps [SB98].

At step t ∈ {1,2, . . .}, the agent observes the current state st , and chooses some action at

according to a policy π. The agent then receives reward rt and observes new state st+1,

continuing the cycle until the episode terminates. In this work, we assume that the set of

actions, denoted A , is finite. In our dialogue scenario, the state-tracker produces states,

actions are the de-lexicalized dialog-acts described earlier, state transitions are governed

by the dynamics of the conversation, and a properly defined reward function is used to

measure the degree of success of a dialogue. In our experiment, for example, success

corresponds to a reward of 40, failure to a reward of−10, and we apply a per-turn penalty

of -1 to encourage pithy exchanges.

The goal of RL is to find an optimal policy to maximize long-term reward. The

Q-function measures, for every state-action pair (s,a), the maximum expected cumulative

discounted reward achieved by choosing a in s and then following an optimal policy

thereafter: Q∗(s,a) = maxπEπ

[
∑

∞
i=0 γirt+i | st = s,at = a

]
, where γ∈ (0,1) is a discount

factor. Owing to large state spaces, most practical reinforcement learners approximate
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the Q-function by some parameterized model Q(s,a;θ). An example, as we used in this

chapter, is a neural network, where θ represents the set of weights to be learned. Once a

good estimate of θ is found so that Q(·, ·;θ) is a good approximation of Q(·, ·), the greedy

policy, π(s;θ) = argmaxa Q(s,a;θ), is a near-optimal policy [SB98]. A popular way to

learn a neural-network-based Q-function is known as DQN [MKS+15].

8.3 Deep Q-Learning

An RL agent navigates a Markov decision process (MDP), interacting with its

environment over a sequence of discrete steps. At each step t, the agent observes the

current state st ∈ S , and chooses some action at ∈ A according to a policy π. The agent

then receives reward rt and observes new state st+1, continuing the cycle until the episode

terminates. Here, S represents the set of all possible states, A defines the space of

possible actions and the policy π : S → A maps states onto actions. In this work, we

assume actions to be discrete and |A | to be finite. Under a policy π and in state s the

value of action a is the expected cumulative discounted reward (also known as return):

Qπ(s,a) =Eπ

[
T

∑
i=0

γ
irt+i|st = s,at = a

]
(8.1)

where γ is a discount factor. An optimal policy is one whose Q-function uniformly domi-

nates others. Its value function, called the optimal value function, is denoted Q∗ [SB98].

Owing to large state spaces, most practical reinforcement learners approximate the Q

function by some parameterized model Q(s,a;θ) among which deep neural networks

have become especially popular.

Given the optimal value function Q∗, at any time-step t, the optimal move is for

the agent to choose action a∗= argmaxa Q∗(s,a). Thus, learning an optimal policy can be

reduced to learning the optimal value function. For toy problems, where an environment
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can be fully explored, we can maintain an estimate of the Q function as a table of values,

with rows indexing each state and columns for each action. In practice, the number of

states may be intractably large, and the sample complexity of exploration can grow at

least linearly with the number of states |S| and the size of the action space |A |. Thus,

most practical reinforcement learners approximate the Q function by some parameterized

model Q(s,a;θ), among which deep neural networks have become especially popular.

The definition of return specifies a recursion: the value of the current state, action

pair (s,a), depends upon the expected value of the successor state st+1 and the action

chosen in that state:

Q(st ,at) = rt + γmax
a′

Q(st+1,a′) . (8.2)

For a fixed policy, the value function can be iteratively improved by approximate value

iteration. We represent experiences as tuples (st ,at ,rt ,st+1). In Q-learning, we aim to

improve the value function (and, in turn, the greedy policy) by minimizing the squared

error between the current prediction and the one step look-ahead prediction

L(θt) =E
[
(yt−Q(st ,at ;θt))

2] (8.3)

for yt = rt + γmaxa′Q(st+1,a′;θt). Traditionally, the Q-function is trained by stochastic

approximation, estimating the loss on each experience as it is encountered, yielding the

update:

θt+1←θt +α(yt−Q(st ,at ;θt))∇Q(st ,at ;θt). (8.4)

A few tricks improve the effectiveness of DQNs. First, experience replay main-

tains a buffer of experiences, training off-policy on randomly selected mini-batches [Lin92,

MKS+15]. Second, it’s common to periodically cache DQN parameters parameters, us-
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ing the stale parameters to compute the training targets yt .

Other techniques such as double deep Q-learning [VHGS15] and prioritized

experience replay [SQAS16] appear effective for learning the Q-function. For simplicity

and because these techniques are straightforward to combine with ours, we build on the

basic DQN model and focus on the issue of exploration.

In order to expose the agent to a rich set of experiences, one must employ a

strategy for exploration. Most commonly in the DQN literature, researchers use the ε-

greedy exploration heuristic. In this work, we improve upon greedy exploration strategies

by using uncertainty information (in the predicted Q values) to make more intelligent

exploration choices.

8.4 Bayes-by-Backprop

We now introduce Bayes-by-Backprop [BCKW15], a method for extracting un-

certainty information from neural networks by maintaining a probability distribution

over the weights in the network. We confine the present discussion to multilayer percep-

trons (MLPs), i.e., feedforward neural networks composed entirely of fully connected

layers, without recurrent connections. A standard MLP for regression models P(y|x,w),

parameterized by weights w = {Wl,bl}L
l=1. MLPs have the simple architecture:

ŷ =WL ·φ(WL−1 · ... · φ(W1 · x+b1)+ ...+bL−1)+bL (8.5)

for a network with L layers (L−1 hidden) and activation function φ (commonly sigmoid,

tanh, or rectified linear unit (ReLU).

In standard neural network training, we learn the weights w given a dataset D =

{xi,yi}N
i=1 by maximum likelihood estimation (MLE), using some variant of stochastic

gradient descent: wMLE = argmaxw log p(D|w). Frequently, we regularize models by
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placing priors on the parameters w. The resulting optimization seeks the maximum a

posteriori (MAP) assignment wMAP = argmaxw log p(w|D). This yields `2
2 regularization

for Gaussian prior or `1 regularization for Laplace prior:

wMAP = argmax
w

log p(w|D)

= argmax
w

ln p(D|w)+ ln p(w).
(8.6)

Both MLE and MAP assignments produce point estimates of w, and thus capture

only the mode of the predictive distribution, But to enable efficient exploration, we prefer

a model that can quantify uncertainty. Thus, we consider a Bayesian treatment of neural

networks, learning a full posterior distribution p(w|D).

Problematically, p(w|D) may be intractable. The weights may be arbitrarily

correlated and the joint distribution might be of arbitrary complexity, and thus difficult

both to learn and to sample from. So we approximate the potentially intractable posterior

by a variational distribution q(w|θ). In this work, we choose q to be Gaussian with

diagonal covariance. Thus, we sample each weight wi from a univariate Gaussian

distribution parameterized by mean µi and standard deviation σi. To ensure that all σi

remain strictly positive, we parameterize σi by the softplus function σi = log(1+exp(ρi)),

giving variational parameters θ = {(µi,ρi)}D
i=1 for D-dimensional weight vector w.

Note that the true posterior is both multi-modal (owing to symmetry among the

nodes) and intractable. There is no reason to believe that the true posterior exhibits

conditional independence between every pair of two weights regardless of the values

taken by the others. So this is only an approximation in a very narrow sense. Nonetheless,

it proves useful in practice.

We learn these parameters by minimizing the Kullback-Liebler (KL) divergence
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between the variational approximation q(w|θ) and the posterior p(w|D)

θ
∗ = argminθKL[q(w|θ)||p(w|D)]

= argminθ

∫
q(w|θ) log

q(w|θ)
p(w)p(D|w)

dw

= argminθKL[q(w|θ)||p(w)]−Eq(w|θ)[log p(D|w)].

(8.7)

The expression minimized is termed by [HVC93] the variational free energy

F = KL[q(w|θ)||p(w)]−Eq(w|θ)[ln p(D|w)]. (8.8)

The term on the left term penalizes distance between the variational posterior q(w|θ)

and the prior p(w). Specifically, the KL divergence measures the amount of information

(measured in nats) that are lost when p(w) is used to approximate q(w|θ). Thus [HVC93]

describe this term as a penalty on the description length of weights. Assuming a Gaussian

predictive distribution, the rightmost term is simply the expected square loss. Sampling

from q, our cost function is f (D,θ) = logq(w|θ)− log p(w)− log p(D|w). When q(w|θ)

and p(w) are both parameterized as univariate Gaussian distributions, their distance

is minimized by setting µq = µp for every setting of the variances, and by setting the

standard deviations σq = σp for any setting of the means µq and µp.

We can learn the variational parameters θ by gradient descent, using the reparametriza-

tion trick popularized by [KW13]. In short, we want to differentiate the loss with respect

to the variational parameters θ, but the loss depends upon the random vector w∼ q(w|θ).

We can overcome this problem by expressing w as a deterministic function of θ, g(η,θ),

where η is a random vector. When we choose g and noise distribution p(η) such that

p(η)dη = q(w|θ)dw, we can express our optimization objective equivalently as an ex-

pectation over η. In our case, we take η to be a noise vector drawn from D-dimensional

standard normal N (0, I)D. Thus w = g(η,θ) = µ+ log(1+ exp(ρ))�η, where � is the
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element-wise product.

For any given value of η our loss is differentiable with respect to the variational

parameters. We can then proceed with backpropagation, treating η as a noise input

sampled for each batch. Thus, we minimize the loss by stochastic gradient descent, using

a single Monte Carlo sample η∼ p(η) at each iteration. In our case, we take η to be a

noise vector drawn from isotropic standard normal N (0, I)D.

8.5 BBQ-networks

We are now ready to introduce BBQN, our algorithm for learning dialogue policies

with deep learning models. BBQN builds upon the deep Q-network, or DQN [MKS+15],

and uses a Bayesian neural network to approximate the Q-function and the uncertainty in

its approximation. Since we work with fixed-length representations of dialogues, we use

an MLP, but extending our methodology to recurrent or convolutional neural networks is

straightforward.

8.5.1 Action selection

A distinct feature of BBQN is that it explicitly quantifies uncertainty in the Q-

function estimate, which can be used to guide exploration. In DQN, the Q-function is

represented by a network with parameter w. BBQN, in contrast, maintains a distribution

q over w. As described in the previous section, q is a multivariante Gaussian with

diagonal covariance, parameterized by θ = {(µi,ρi)}D
i=1. In other words, a weight wi has

a posterior distribution q that is N (µi,σ
2
i ) where σi = log(1+ exp(ρi)).

Given a posterior distribution q over w, a natural and effective approach to

exploration is posterior sampling, or Thompson Sampling [Tho33, CL11, ORR13], in

which actions are sampled according to the posterior probability that they are optimal in
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the current state. Formally, given a state st and network parameter θt in step t, an action

a is selected to be at with the probability Pr(at = a|st ,θt) =

∫
w

1{ Q(st ,a;w)> Q(s,a′;w),∀a′ 6= a} ·dq(w|θt) (8.9)

Computing these probabilities is usually difficult, but fortunately all we need is a sample

of an action from the corresponding multinomial distribution. To do so, we first draw

wt ∼ q(·|θt), then set at = argmaxa Q(st ,a;wt). It can be verified that this process samples

actions with the same probabilities given in the Equation 8.9. We have also considered

integrating the ε-greedy approach, exploring by Thompson sampling with probability

1− ε and uniformly at random with probability ε. But empirically, uniform random

exploration confers no supplementary benefit for our task.

8.5.2 BBQN

The BBQN is initialized by a prior distribution p over w. It consists of an isotropic

Gaussian whose variance σ2
p is a single hyper-parameter introduced by our model. We

initialize the variational parameters to match the prior. So µ is initialized to the zero

vector 0 and the variational standard deviation σ matches the prior σp for each weight.

Note that unlike conventional neural networks, we need not assign the weights randomly

because sampling breaks symmetry. As a consequence of this initialization, from the

outset, the agent explores uniformly at random. Over the course of training, as the

experience buffer fills, the mean squared error starts to dominate the objective function

and the variational distribution moves further from the prior.

Given experiences of the form T = {(s,a,r,s′)} consisting of transitions collected

so far, we apply a Q-learning approach to optimize the network parameter, in a way

similar to DQN [MKS+15]. To do so, we maintain a frozen, but periodically updated,
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copy of the same BBQN, whose parameter is denoted by θ̃ = {(µ̃i, ρ̃i)}D
i=1. For any

transition (s,a,r,s′) ∈ T , this network is used to compute a target value y for Q(s,a;θ),

resulting in a regression data set D = {(x,y)}, for x = (s,a). We then apply the Bayes-

by-backprop method described in the previous section to optimize θ, until it converges

when θ̃ is replaced by θ. There are two ways to generate the target value y.

The first uses a Monte Carlo sample from the frozen network, w̃ ∼ q(·|θ̃), to

compute the target y: y = r+ γmaxa′Q(s′,a′; w̃). To speed up training, for each mini-

batch, we draw one sample of w̃ for target generation, and one sample of w for sample-

based variational inference (see previous section). With this implementation, the training

speeds of BBQN and DQN are roughly equivalent.

The second uses maximum a posterior (MAP) estimate to compute y: y =

r+ γmaxa′Q(s′,a′; µ̃). This computationally more efficient choice is motivated by the

observation that, since we only require the uncertainty estimates for exploration, it may

not be necessary to sample from the frozen network for synthesizing targets. Furthermore,

early in training, the predictive distribution of the networks has high variance, resulting

in a large amount of noise in target values that can slow down training.

8.5.3 BBQN with intrinsic reward

Variational Information Maximizing Exploration (VIME) [HCD+16] introduces

an exploration strategy based on maximizing the information gain about the agent’s belief

of environment dynamics. It adds an intrinsic reward bonus to the reward function, which

quantifies the agent’s surprise: r′(st ,at ,st+1)= r(st ,at)+ηDKL[p(θ|ξt ,at ,st+1)||p(θ|ξt)],

and has demonstrated strong empirical performance. We explore a version of BBQNs

that incorporates the intrinsic reward from VIME, terming the approach BBQN-VIME-

MC/MAP. The BBQN-VIME variations encourage the agents to explore the state-action

regions that are relatively unexplored and in which BBQN is relatively uncertain in action
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selection. In our full-domain experiment, both BBQN and BBQN-VIME variations

achieve similar performance with no significant difference, but in domain-extension

experiments, we observe that BBQN-VIME-MC slightly outperforms BBQN-MAP.

8.5.4 Replay buffer spiking

In reinforcement learning, there are multiple sources of uncertainty. These include

uncertainty over the parameters of our model and uncertainty over unseen parts of the

environment. BBQN addresses parameter uncertainty but it can struggle given extreme

reward sparsity. Researchers use various techniques to accelerate learning in these

settings. One approach is to leverage prior knowledge, as by reward shaping or imitation

learning. Our approach falls into this category. Fortunately, in our setting, it’s easy to

produce a few successful dialogues manually. Even though the manual dialogues do not

follow an optimal policy, they contain some successful movie bookings, so they indicate

the existence of the large (+40) reward signal. Pre-filling the replay buffer with these

experiences dramatically improves performance (Figure 8.3). For these experiments, we

construct a simple rule-based agent that, while sub-optimal (18.3% success rate), achieves

success sometimes. In each experiment, we harvest 100 dialogues of experiences from

the rule-based agent, adding them to the replay buffer. We find that, in on our task, RBS

is essential for both BBQN and DQN approaches. Interestingly, performance does not

strictly improve with the number pre-filled dialogues (Figure 8.3). Note that replay buffer

spiking is different from imitation learning. RBS works well with even a small number of

warm-start dialogues, suggesting that it is helpful to communicate even the very existence

of a big reward. We find that even one example of a successful dialogue in the replay

buffer could successfully jump-start a Q-learner.
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8.6 Experiments

We evaluate our methods on two variants of the movie-booking task. In the

first, the agent interacts with the user simulator over 400 rounds. Each round consists

of 50 simulated dialogues, followed by 2 epochs of training. All slots are available

starting from the very first episode. In the second, we test each model’s ability to adapt to

domain extension by periodically introducing new slots. Each time we add a new slot, we

augment both the state space and action space. We start out with only the essential slots:

[date, ticket, city, theater, starttime, moviename, numberofpeople, taskcomplete] and train

for 40 training rounds up front. Then, every 10 rounds, we introduce a new slot in a

fixed order. For each added slot, the state space and action space grow accordingly. This

experiment terminates after 200 rounds. In both experiments, quantifying uncertainty in

the network weights is important to guide effective exploration.

To represent the state of the dialogue at each turn, we construct a 268 dimensional

feature vector, consisting of the following: (i) one-hot representations of the act and slot

corresponding to the current user action, with separate components for requested and

informed slots; (ii) corresponding representations of the act and slot corresponding to the

last agent action; (iii) a bag of slots corresponding to all previously filled slots over the

course of the dialog history; (iv) both a scalar and one-hot representation of the current

turn count; and (v) counts representing the number of results from the knowledge base

that match each presently filled-in constraint (informed slot) as well as the intersection of

all filled-in constraints. For domain-extension experiments, features corresponding to

unseen slots take value 0 until they are seen. When domain is extended, we add features

and corresponding weights to input layer, initializing the new weights to 0 (or µi = 0,

σi = σprior for BBQN), a trick due to [LVM15].
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Figure 8.2: Training plots with confidence intervals for the full domain (all slots
available from start) and domain extension problems (slots added every 10 rounds).

8.6.1 Training details

For training, we first use a naive but occasionally successful rule-based agent

for RBS. All experiments use 100 dialogues to spike the replay buffer. We note that

experiments showed models to be insensitive to the precise number. After each round

of 50 simulated dialogues, the agent freezes the target network parameters θ−, and then

updates the Q- function, training for 2 epochs, then re-freezes and trains for another 2

epochs. There are two reasons for proceeding in 50-dialog spurts, rather than updating

one mini-batch per turn. First, in a deployed system, real-time updates might not be

realistic. Second, we train for more batches per new turn than is customary in DQN

literatures owing to the economic considerations: computational costs are negligible,
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Table 8.1: Final performance of trained agents on 10k simulated dialogues, averaged
over 5 runs.

Agents Full Domain Domain Extension
Success Rate Reward Success Rate Reward

BBQN-VIME-MAP 0.4856 9.8623 0.6813 15.8223
BBQN-VIME-MC 0.4941 10.4268 0.7120 17.6261

BBQN-MAP 0.5031 10.7093 0.6852 17.3230
BBQN-MC 0.4877 9.9840 0.6722 16.1320
VIME-MAP 0.3893 5.8616 0.3751 4.9223
VIME-MC 0.3700 4.9990 0.3675 4.8270
Bootstrap 0.2516 -0.1300 0.3170 -0.6820

Boltzmann 0.2658 0.4180 0.2435 -3.4640
DQN 0.2693 0.8660 0.3503 4.7560

while failed dialogues either consume human labor (in testing) or confer opportunity

costs (in the wild).

8.6.2 Baseline methods

To demonstrate the efficacy of BBQN, we compare against ε-greedy in a standard

DQN. Additionally, we compare against Boltzmann exploration, an approach in which

the probability of selecting any action in a given state is determined by a softmax function

applied to the predicted Q-values. Here, affinity for exploration is parameterized by the

Boltzmann temperature. We also compare to the bootstrap method of [OBPVR16]. For

the bootstrap experiments, we use 10 bootstrap heads, and assign each data point to each

head with probability 0.5. We evaluate all four methods on both the full domain (static)

learning problem and on the domain extension problem.

We also tried comparing against Gaussian processes (GP) based approaches.

However, in our setting, due to the high-dimensional inputs and large number of time

steps, we were unable to get good results. In our experiments, the computation and mem-

ory requirement grow quadratically over time, and memory starts to explode at the 10th

(simulation) round. Limiting data size for GP was not helpful. Furthermore, in contrast

to [GJK+10] where the state is 3-dimensional, our experiments have 268-dimensional
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states, making scalability an even bigger challenge. A recent paper [FEAS+16] compares

deep RL (both policy gradient and Q-learning) to GP-SARSA [EMM05] on a simpler

dialogue policy learning problem. In order to make Gaussian processes computationally

tractable, they rely on sparsification methods [EMM05], gaining computation efficiency

at the expense of accuracy. Despite this undertaking to make GPs feasible and competi-

tive, they found that deep RL approaches outperform GP-SARSA with respect to final

performance, regret, and computational expense (by wall-clock). While we consider

Gaussian processes to be an evolving area, it is worthwhile to try the Gaussian processes

with sparsification methods to compare with deep RL approaches as future work.

8.6.3 Architecture details

All models are MLPs with ReLU activations. Each network has 2 hidden layers

with 256 hidden nodes each. We optimize over parameters using Adam [KB15] with a

batch size of 32 and initial learning rate of 0.001, determined by a grid search. To avoid

biasing the experiments towards our methods, we determine common hyper-parameters

using standard DQN. Because BBQN confers regularization, we equip DQN models

with dropout regularization of 0.5, shown by [BCKW15] to confer comparable predictive

performance on holdout data.

Each model has additional hyper-parameters. For example, ε-greedy exploration

requires an initial value of ε and an attenuation schedule. Boltzmann exploration requires

a temperature. The bootstrapping-based method of [OBPVR16] requires both a number

of bootstrap heads and the probability that each data point is assigned to each head. Our

BBQN requires that we determine the variance of the Gaussian prior distribution and the

variance of the Gaussian error distribution.
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8.6.4 Simulation results

As shown in Figure 8.2, BBQN variants perform better than the baselines. In

particular, BBQN-MAP performs the best on the full domain setting, BBQN-VIME-MC

achieves the best performance on the domain extension setting, with respect to cumulative

successes during training and final performance of the trained models (Table 8.1). Note

that the domain extension problem becomes more difficult every 10 epochs, so sustained

performance corresponds to getting better, while declining performance does not imply

the policy becomes worse. On both problems, no method achieves a single success

absent RBS. Evaluating our best algorithm (BBQN-MAP) using 0, 100, and 1000 RBS

dialogues (Figure 8.3), we find that using 1000 (as compared to 100) dialogues, our

agents learn quickly but that their long-term performance is worse. One heuristic to try

in the future may be to discard pre-filled experiences after meeting some performance

threshold.
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Figure 8.3: RBS with 100 dialogues improves both success rate (left) and reward
(right).

We also considered that perhaps some promising trajectories might never be

sampled by the BBQN. Thus, we constructed an experiment exploring via a hybridization

of the BBQN’s Thompson sampling with the ε-greedy approach. With probability

1− ε, the agent selects an action by Thompson sampling given one Monte Carlo sample
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from the BBQN and with probability ε the agent selects an action uniformly at random.

However, the uniformly random exploration confers no additional benefit.

8.6.5 Human evaluation

We evaluate the agents trained using simulated users against real users, recruited

from the authors’ affiliation. We conducted the study using the DQN and BBQN-MAP

agents. In the full-domain setting, the agents were trained with all the slots. In the

domain-extension setting, we first picked DQN (b-DQN) and BBQN (b-BBQN) agents

before the domain extension at training epoch 40 and the performance of these two

agents is tied, nearly 45% success rate. From training epoch 40, we started to introduce

new slots, and we selected another two agents (a-DQN and a-BBQN) at training epoch

200. In total, we compare three agent pairs: {DQN, BBQN} for full domain, {b-DQN,

b-BBQN} from before domain extension, and {a-DQN, a-BBQN} from after domain

extension. In the real user study, for each dialogue session, we select one of six agents

randomly to converse with a user. We present the user with a user goal sampled from our

corpus. At the end of each dialogue session, the user was asked to give a rating on a scale

from 1 to 5 based on the naturalness, coherence, and task-completion capability of the

agent (1 is the worst rating, 5 is the best). In total, we collected 398 dialogue sessions.

Figure 8.4a presents the performance of these agents against real users in terms of success

rate. Figure 8.4b shows the comparison in user ratings. In the full-domain setting, the

BBQN agent is significantly better than the DQN agent in terms of success rate and user

rating. In the domain-extension setting, before domain extension, the performance of

both agents (b-DQN and b-BBQN) is tied; after domain extension, the BBQN (a-BBQN)

agent significantly outperforms the DQN (a-DQN) in terms of success rate and user

rating.
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Figure 8.4: Performance of BBQN agent versus DQN agent tested with real users,
number of tested dialogues and p-values are indicated on each bar (difference in mean
is significant with p < 0.05).

8.7 Related work

This work touches on several areas of research, namely Bayesian neural networks,

reinforcement learning with deep Q-networks, Thompson Sampling, and dialogue sys-

tems. This work employs Q-learning [WD92a], a popular method for model-free RL. For

a broad resource on RL, we point to [SB98]. Recently, [MKS+15] achieved super-human

performance on Atari games using deep Q-learning and incorporating techniques such as

experience replay [Lin92].

Efficient exploration remains one of the defining challenges in RL. While provably

efficient exploration strategies are known for problems with finite states/actions or

problems with nice structures [Kak03, ALL+09, JOA10, LLWS11, ORR13], less is

known for the general case, especially when general nonlinear function approximation is

used. The first DQN papers relied upon the ε-greedy exploration heuristic [MKS+15].

More recently, [SLA15] and [HCD+16] introduced approaches to encourage exploration

by perturbing the reward function. [OBPVR16] attempts to mine uncertainty information

by training a neural network with multiple output heads. Each head is associated with a

distinct subset of the data. This works for some Atari games, but does not confer a benefit



152

for us. [CL11] empirically examine Thompson sampling, one of the oldest exploration

heuristics [Tho33], for contextual bandits, which is later shown to be effective for solving

finite-state MDPs [Str00, ORR13].

We build on the Bayes-by-backprop method of [BCKW15], employing the repa-

rameterization trick popularized by [KW13], and following a long history of varia-

tional treatments of neural networks [HVC93, Gra11]. After we completed this work,

[KPR+17] independently investigated parameter uncertainty for deep Q-networks to

mitigate catastrophic forgetting issues. [BCKW15] consider Thompson sampling for

contextual bandits, but do not consider the more challenging case of MDPs. This work

also builds on prior work in task-oriented dialogue systems [WY04, GJK+10, WGM+16]

and RL for learning dialogue policies [LPE97, SKLW00, WY07, GJK+10, FEAS+16].

Our domain-extension experiments take inspiration from [GKT+14] and our user simula-

tor is modeled on [STY07].

8.8 Conclusions

For learning dialogue policies, BBQNs explore with greater efficiency than tradi-

tional approaches. The results are similarly strong for both static and domain extension

experiments in simulation and real human evaluation. Additionally, we showed that

we can benefit from combining BBQ-learning with other, orthogonal approaches to

exploration, such as those that perturb the reward function to add a bonus for uncovering

surprising transitions, i.e., state transitions given low probability by a dynamics model,

or previously rarely seen states [SLA15, HCD+16, BSO+16]. Our BBQN addresses un-

certainty in the Q-value given the current policy, whereas curiosity addresses uncertainty

of the dynamics of under-explored parts of the environment. Thus there is a synergistic

effect of combining the approaches. On the domain extension task, BBQN-VIME proved
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especially promising, outperforming all other methods. We see several promising paths

for future work. Notably, given the substantial improvements of BBQNs over other

exploration strategies, we would like to extend this work to popular deep reinforcement

learning benchmark tasks (Atari, etc.) and other domains, like robotics, where the cost of

exploration is high, to see if it confers a comparably dramatic improvement.
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Chapter 9

Combating Deep Learning’s Sisyphean

Curse with Intrinsic Fear

Many practical reinforcement learning problems contain catastrophic states that

the optimal policy visits infrequently or never. Even on toy problems, deep reinforcement

learners periodically revisit these states, once they are forgotten under a new policy.

In this chapter, we introduce intrinsic fear, a learned reward shaping that accelerates

deep reinforcement learning and guards oscillating policies against periodic catastrophes.

Our approach incorporates a second model trained via supervised learning to predict

the probability of imminent catastrophe. This score acts as a penalty on the Q-learning

objective. Our theoretical analysis demonstrates that the perturbed objective yields the

same average return under strong assumptions and an ε-close average return under weaker

assumptions. Our analysis also shows robustness to classification errors. Equipped with

intrinsic fear, our DQNs solve the toy environments and improve on the Atari games

Seaquest, Asteroids, and Freeway.
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9.1 Introduction

Following success on Atari games [MKS+15] and the board game Go [SHM+16],

many researchers have begun exploring practical applications of deep reinforcement

learning (DRL). Some investigated applications include robotics [Lea16a], dialogue sys-

tems [FEAS+16, Lea16b], energy management [Nig16], and self-driving cars [SSSS16].

Amid this push to apply DRL, we might ask, can we trust these agents in the wild?

Agents acting in real-world environments might possess the ability to cause catastrophic

outcomes. Consider a self-driving car that might hit pedestrians or a domestic robot that

might injure a child. We might hope to prevent DRL agents from ever making catas-

trophic mistakes. But doing so requires extensive prior knowledge of the environment in

order to constrain the exploration of policy space [GF15].

Many conflicting definitions of safety and catastrophe exist, a problem that invites

further philosophical consideration. In this chapter, we introduce a specific but plausible

notion of avoidable catastrophes. These are states that prior knowledge dictates an

optimal policy should never visit. For example, we might believe that an optimal self-

driving algorithm would never hit a pedestrian. Moreover, we assume that an optimal

policy never even comes near an avoidable catastrophe state. We define proximity in

trajectory space, and not by the geometry of feature space. We denote states proximal

to avoidable catastrophes as danger states. While we don’t assume prior knowledge

of which states are dangerous, we do assume the existence of a catastrophe detector.

After encountering a catastrophic state, an agent can realize this and take action to avoid

dangerous states in the future.

Given this definition, we address two challenges: First, can we expect DRL

agents, after experiencing some number of catastrophic failures, to avoid perpetually

making the same mistakes? Second, can we use our prior knowledge that catastrophes
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should be kept at a distance to accelerate learning of a DRL agent? Our experiments

show that even on toy problems, the deep Q-network (DQN), a basic algorithm behind

many of today’s state-of-the-art DRL systems, struggles on both counts. Even in toy

environments, DQNs may encounter thousands of catastrophes before learning to avoid

them and are susceptible to repeating old errors. We call this latter problem the Sisyphean

curse.

This poses a formidable obstacle to using DQNs in the real world. How can we

hand over responsibility for consequential actions (control of a car, say) to a DRL agent

if it may be doomed to periodically remake every kind of mistake, however grave, so

long as it continues to learn? Imagine a self-driving car that had to periodically hit a

few pedestrians in order to remember that is undesirable. In the tabular setting, an RL

agent never forgets the learned dynamics of its environment, even as its policy evolves.

Moreover, if the Markovian assumption holds, eventual convergence to a globally optimal

policy is guaranteed. Unfortunately, the tabular approach becomes infeasible in high-

dimensional, continuous state spaces.

The trouble for DQNs owes to the use of function approximation [MO05]. When

training a DQN, we successively update a neural network based on experiences. These

experiences might be sampled in an online fashion, from a trailing window (experience

replay buffer), or uniformly from all past experiences. Regardless of which mode we use

to train the network, eventually, states that a learned policy never encounters will come

to form an infinitesimally small region of the training distribution. At such times, our

networks are subject to the classic problem of catastrophic interference [MC89, MMO95].

Nothing prevents the DQN’s policy from drifting back towards a policy that revisits

long-forgotten catastrophic mistakes.

More formally, we characterize the problem as unfolding in the following steps: (i)

Training under distribution D , our agent produces a safe policy πs that avoids catastrophes
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(ii) Collecting data generated under πs yields a new distribution of transitions D ′ (iii)

Training under D ′, the agent produces πd , a policy that once again experiences avoidable

catastrophes. To illustrate the brittleness of modern DRL algorithms, we introduce a

simple pathological problem called Adventure Seeker. This problem consists of a one-

dimensional continuous state, two actions, simple dynamics, and a clear analytic solution.

Nevertheless, the DQN fails. We then show that similar dynamics exist in the classic RL

environment Cart-Pole.

In this chapter, to combat these problems, we propose intrinsic fear. In this

approach, we train a supervised fear model that predicts which states are likely to lead to

a catastrophe within kr steps. The output of the fear model (a probability), scaled by a

fear factor penalizes the Q-learning target. Our approach draws inspiration from intrinsic

motivation [CBS04]. However, instead of perturbing the reward function to encourage

the discovery of novel states, we perturb it to discourage revisiting catastrophic states.

We validate the approach both empirically and theoretically. Our experiments

address both our Adventure Seeker problem and Cartpole as well as the Atari games

Seaquest, Asteroids, and Freeway. For these environments, we label each loss of a life

as a catastrophic state. On the toy environments, the intrinsic fear agent learns to avoid

death indefinitely, achieving unbounded reward per episode. On Seaquest and Asteroids,

the intrinsic fear agent improves markedly and on Freeway the improvement is dramatic.

Theoretically, we demonstrate the following: First, we prove that when the reward is

bounded and the optimal policy rarely visits the catastrophic states, the policy learned on

the altered value function has return similar to the optimal policy on the original value

function. Second we prove that the method is robust to noise in the danger model.
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9.2 Intrinsic fear

Over a series of turns, an agent interacts with its environment via a Markov

decision process, or MDP, (S ,A ,T ,R ,γ). At each step t, an agent observes a state

s ∈ S . The agent then chooses an action a ∈ A according to some policy π. In turn,

the environment transitions to a new state st+1 ∈ S according to transition dynamics

T (st+1|st ,at) and generates a reward rt with expectation R (s,a). This cycle continues

until each episode terminates.

The goal of an agent is to maximize the cumulative discounted return ∑
T
t=0 γtrt .

Temporal-differences (TD) methods [Sut88] such as Q-learning [WD92b] model the

Q-function, which gives the optimal discounted total reward of a state-action pair; the

greedy policy w.r.t. the Q-function is optimal [SB98]. Problems of practical interest tend

to have large state spaces, thus the Q-function is typically approximated by parametric

models such as neural networks.

In Q-learning with function approximation, an agent alternately collects expe-

riences by acting greedily with respect to Q(s,a;θQ) and updates its parameters θQ.

Updates proceed as follows. For a given experiences (st ,at ,rt ,st+1), we minimize the

squared Bellman error:

L = (Q(st ,at ;θQ)− yt)
2 (9.1)

for yt = rt + γ ·maxa′Q(st+1,a′;θQ). Traditionally, the parameterised Q(s,a;θ) is trained

by stochastic approximation, estimating the loss on each experience as it is encountered,

yielding the update:

θt+1←θt +α(yt−Q(st ,at ;θt))∇Q(st ,at ;θt) . (9.2)

Q-learning methods also require an exploration strategy for action selection. For simplic-
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ity, we consider only the ε-greedy heuristic.

A few tricks help to stabilize Q-learning with function approximation. Of par-

ticular relevance to this work is experience replay [Lin92]: the RL agent maintains a

buffer of past experiences, applying TD-learning on randomly selected mini-batches of

experience to update the Q-function.

In this chapter, we propose a new formulation of the safety problem. We suppose

there exists a subset C ⊂ S of states that an optimal policy encounters them very rarely

or never and denote them catastrophic states. Moreover, we assume that for some

environments, optimal policies are rarely within a short distance of a catastrophic state.

As a measure of distance, we consider steps in trajectory space. We define the distance

d(si,s j) to be length N of the smallest sequence of transitions {(st ,at ,rt ,st+1)}N
t=1 that

traverses state space from si to s j.1

Definition 9.2.1. Suppose that we are given a priori knowledge that acting according

to the optimal policy π∗, an agent never encounters states s ∈ S for which lie within

distance d(s,c) < kτ for any catastrophe state c ∈ C . Then each state s for which

∃c ∈ C s.t. d(s,c)< kτ is a danger state.

We also suppose that the agent can recognize the catastrophe states as they are

encountered.

Definition 9.2.2. A catastrophe detector is a function f : S 7→ {0,1} that returns 1 if and

only if a state is a catastrophe state.

We propose Intrinsic Fear (IF) (Algorithm 1), a novel algorithm for avoiding

catastrophes when learning online with function approximation. In our approach, we

maintain both a DQN and a separate, supervised fear model F : S 7→ [0,1]. Our fear

1In the stochastic dynamics setting, the distance is the minimum mean passing time between the states.
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model F provides an auxiliary source of reward, penalizing the Q-learner for entering

possibly dangerous states.

The goal in modeling danger states is twofold. First, by shaping rewards away

from suboptimal states, we encode prior knowledge about the environment and can

thus accelerates learning. Second, when catastrophic states correspond to especially

undesirable outcomes, the learned reward shaping can protect DQNs, which are suscepti-

ble to catastrophic forgetting, from drifting close to catastrophic states. Owing to this

self-assigned reward, once the fear model is trained, a Q-learner might update to avoid

catastrophes without having to actually repeat them, so long as the fear model is not

itself susceptible to catastrophic forgetting. We draw some inspiration from the idea of

a parent scolding a child for running around with a knife. The child can learn to adjust

its behavior without actually having to stab someone. We also draw inspiration from

the way humans appear to process traumatic experience, remembering especially bad

events vividly even as most other memories from the same time period fade. Perhaps this

selective memorization of bad events confers a benefit for avoiding similar outcomes in

the future.

Our instantiation of intrinsic fear works as follows: In addition to the DQN, we

maintain a binary classifier that we term a fear model. In our case, we use a neural

network of the same architecture as the DQN (but for the output layer). The fear model’s

purpose is to predict the probability that any state will lead to catastrophe within k moves.

Over the course of training, our agent adds each experience (s,a,r,s′) to its experience

replay buffer. As each catastrophe is reached at the nth turn of an episode, we add the kr

(fear radius) states leading up to the catastrophe to a list of danger states. We add the

preceding n− kr states to a list of safe states. When n < kr, all states for that episode

are added to the list of danger states. Then after each turn, in addition to making one

update to the Q-network, we make one mini-batch update to the fear model. To make
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Algorithm 1 Training DQN with Intrinsic Fear

1: Input: Two models: Q (DQN) and F (fear model), fear factor λ, fear phase-in
length kλ, fear radius kr

2: Output: Learned parameters θQ and θF
3: Initialize parameters θQ and θF randomly
4: Initialize replay buffer D , danger state buffer DD, and safe state buffer DS
5: Start per-episode turn counter ne
6: for t in 1:T do
7: With probability ε select random action at
8: Otherwise, select action at = argmaxa′Q(st ,a′;θQ)
9: Execute action at in environment, observing reward rt and successor state st+1

10: Store transition (st ,at ,rt ,st+1) in D
11: if st+1 is a catastrophe state then
12: Add states st−kr through st to DD
13: else
14: Add states st−ne through st−kr−1 to DS
15: end if
16: Sample random minibatch of transitions (sτ , aτ, rτ, sτ+1) from D
17: λτ←min(λ, λ·t

kλ
)

18: yτ←
{

rτ−λτ, for terminal sτ+1
rτ +maxa′Q(sτ+1,a′;θQ)−λ ·F(sτ+1;θF) for non-terminal sτ+1

}
19: θQ← θQ−η ·∇θQ(yτ−Q(sτ,aτ;θQ))

2

20: Sample random mini-batch s j with 50% of examples from DD and 50% from DS

21: y j←
{

1, for s j ∈DD
0, for s j ∈DS

}
22: θF ← θF −η ·∇θF lossF(y j,F(s j;θF))
23: end for
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this update, we sample 50% of samples in the batch from the danger states, assigning

them label 1 and the remaining 50% from the safe states, assigning them label 0.

For each update to the DQN, we perturb the TD target yt . Instead of updating

Q(st ,at ;θQ) towards rt +maxa′Q(st+1,a′;θQ), we introduce the intrinsic fear to the

model via the target:

yIF
t = rt +max

a′
Q(st+1,a′;θQ)−λ ·F(st+1;θF) (9.3)

where F(s;θF) is the fear model and λ is a fear factor determining the scale of the impact

of intrinsic fear on the Q-function update.

Note that IF perturbs the objective function. Thus, one might be concerned that

the perturbed reward might indicate a different optimal policy. Fortunately, if the labeled

catastrophe states and danger zone do not violate our assumptions, and if the fear model

reaches arbitrarily high accuracy, then this will not happen.

For an MDP, M = 〈S ,A ,T ,R ,γ〉, with 0≤ γ≤ 1, the average reward return is as

follows:

ηM(π) :=


limT→∞

1
T EM

[
∑

T
t rt |π

]
if γ = 1

(1− γ)EM

[
∑

∞
t rt |π

]
if 0≤ γ < 1

(9.4)

The optimal policy π∗ of the model M is the policy which maximizes the average

reward return, π∗ = maxπ∈P η(π) where P is a set of stationary polices.

Theorem 5. For a given MDP, M, with γ ∈ [0,1] and a catastrophe detector f , let π∗

denote the optimal policy of model M and π̃ denote the optimal policy of model M

equipped with fear model F. If the cost of λ prevents π̃ from visiting danger zone and the
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probability π∗ visits the states in the danger zone is less than ε, and Rmin ≤ R (s,a)≤

Rmax, then

η
∗
M− ε(Rmax−Rmin)≤ ηM(π̃)≤ η

∗
M. (9.5)

At the same time, the average return of the optimal policy π∗ on the environment

with intrinsic reward ηM,F(π
∗) is bounded as

ηM,F(π̃)−λε(Rmax−Rmin)≤ ηM,F(π
∗)≤ ηM,F(π̃).

Proof. Appendix 9.5

Since we learn the catastrophe detector f and fear model F empirically using the

collected data, our RL agent has access to an imperfect detector f̂ and imperfect fear

model F̂ , and therefore assumes the fear model is F̂ . In this case, the RL agent trains

with intrinsic fear generated by f̂ , learning a different value function than the RL agent

with perfect f . To show robustness against modeling errors, we are interested in the

average deviation in the value functions of the two agents.

In general, in practical RL problems, we use discount factors γ < 1 [KS06] in

order to reduce the planing horizon, and computation cost. Moreover, [JKSL15] suggests

that when we have estimation (up to the confidence intervals) of our MDP model, it is

better to use smaller discount factors in order to the estimated model from overfitting. We

show that under modeling errors, if the actual objective function to optimize for Eq. 9.4

has discount factor γeval , it’s better to use some γ≤ γeval because it reduces the average

deviation in the value functions.

For a given environment, with fear model F1 and discount factor γ1, let V
π∗F2,γ2
F1,γ1

(s), s∈
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S , denote the state value function under the optimal policy of a environment with fear

model F2 and the discount factor γ2. On the same environment, let ω
π∗F2,γ2
F1

(s) denote the

stationary distribution over states. Therefore we are interested in the average deviation

on value functions caused by an imperfect classifier:

L(F, F̂ ,γeval,γ) := (1− γeval)
∫

s∈S
ω

π∗
F̂ ,γ

F (s)
∣∣∣∣V π∗F,γeval

F,γeval
(s)−V

π∗
F̂ ,γ

F,γeval
(s)
∣∣∣∣ds

Theorem 6. For a given MDP model, the average deviation on the value functions,

L(F, F̂ ,γeval,γ), F, F̂ ∈ F , vanishes as the number of samples N increases

L = O

(
(λ+Rmax−Rmin)

1− γeval

1− γ

V C (F )+ log 1
δ

N
+

γeval− γ

1− γ

)
(9.6)

with probability at least 1− δ where V C (F ) is the V C dimension of the hypothesis

class F .

Proof. Appendix 9.6

Thm. 6 holds for both tabular MDPs and continuous state-action MDPs. In addi-

tion to proofs of these results, we provide a deeper theoretical analysis on deterministic

and stochastic fear models in the tabular setting in Appendix 9.6

Over the course of our experiments, we discovered the following pattern: Intrinsic

fear models are more effective when the fear radius kr is large enough that the model can

experience danger states at a safe distance and correct the policy, without experiencing

many catastrophes. When the fear radius is too small, the danger probability is only

nonzero at states from which catastrophes are inevitable anyway and intrinsic fear seems

not to help. We also found that wider fear factors train more stably when phased in over

the course of many episodes. So, in all of our experiments we gradually phase in the

fear factor λ from 0 to λ reaching full strength at predetermined time step kλ. In our
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Cart-Pole experiments, we phase λ in over 1M steps.

9.3 Environments

We demonstrate our algorithms on three environments. These include Adven-

ture Seeker, a toy pathological environment which we designed to demonstrate the

Sisyphean curse; Cartpole, a classic reinforcement learning environment; and three Atari

games, Seaquest, Asteroids, and Freeway, simulated in the Arcade Learning Environment

[BNVB13].

9.3.1 Adventure Seeker

We imagine a player placed on a hill, sloping upward to the right (Figure 9.1a).

At each turn, the player can move to the right (up the hill) or left (down the hill).

The environment adjusts the player’s position accordingly, adding some random noise.

Between the left and right edges of the hill, the player gets more reward for spending

time higher on the hill. But if the player goes too far to the right, he/she will fall off (a

catrastrophic state), terminating the episode and receiving a return of 0. Formally, the

state consists of a single continuous variable s ∈ [0,1.0], denoting the player’s position.

The starting position for each episode is chosen uniformly at random in the interval

[.25, .75]. The available actions consist only of {−1,+1} (left and right). Given an

action at in state st , T (st+1|st ,at) gives successor state st+1← st + .01 · at +η where

η ∼ N (0, .012). The reward at each turn is equal to st (proportional to height). The

player falls off the hill, entering the catastrophic terminating state, whenever st+1 > 1.0

or st+1 < 0.0.

This game admits an analytic solution: there exists some threshold above which

the agent should always choose to go left, and below which it should always go right. And
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(a) Adventure
Seeker (b) Cart-Pole (c) Seaquest (d) Asteroids (e) Freeway

Figure 9.1: In experiments, we consider two toy environments (a,b) and the Atari games
Seaquest (c), Asteroids (d), and Freeway (e)

yet a state-of-the-art DQN model learning online or with experience replay successively

plunges to its death. To be clear, the DQN does learn a near-optimal thresholding

policy quickly. But over the course of continued training, the agent oscillates between

a reasonable thresholding policy and one which always moves right, regardless of the

state. The pace of this oscillation evens out and all networks (over multiple runs) quickly

reach a constant catastrophe per turn rate that does not attenuate with continued training.

How could we trust a system that can’t solve Adventure Seeker to make consequential

decisions?

9.3.2 Cart-Pole

In this classic RL environment, an agent balances a pole atop a cart (Figure 9.1b).

Qualitatively, the game exhibits four distinct catastrophe modes. The pole could fall

down to the right or fall down to the left. Additionally, the cart could run off the right

boundary of the screen or run off the left. Formally, at each time, the agent observes

a four-dimensional state vector (x,v,θ,ω) consisting respectively of the cart position,

cart velocity, pole angle, and the pole’s angular velocity. At each time step, the agent

chooses an action, applying a force of either −1 or +1. For every time step that the

pole remains upright and the cart remains on the screen, the agent receives a reward of

1. If the pole falls, the episode terminates, giving a return of 0 from the penultimate
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state. In experiments, we use the implementation CartPole-v0 contained in the openAI

gym [Bea16]. Like Adventure Seeker, this problem admits an analytic solution. A perfect

policy should never drop the pole. But, as with Adventure Seeker, a DQN converges to a

constant rate of catastrophes per turn.

9.3.3 Atari games

In addition to these pathological cases, we address Freeway, Asteroids, and

Seaquest, games from the Atari Learning Environment. In Freeway, the agent controls

a chicken with a goal of crossing the road while dodging traffic. The chicken loses a

life and starts from the original location if hit by a car. Points are only rewarded for

successfully crossing the road. In Asteroids, the agent pilots a ship and gains points from

shooting the asteroids. She must avoid colliding with asteroids which cost it lives. In

Seaquest, a player swims under water. Periodically, as the oxygen gets low, she must rise

to the surface for oxygen. Additionally, fishes swim across the screen. The player gains

points each time she shoots a fish. Colliding with a fish or running out of oxygen result

in death. In all three games, the agent has 3 lives, and the final death is a terminal state.

We label each loss of a life as a catastrophe state.

9.4 Experiments

To assess the effectiveness of the intrinsic fear model, we evaluate both a standard

DQN (DQN-NoFear) and one enhanced by intrinsic fear (DQN-Fear). In both cases,

we use multilayer perceptrons (MLPs) with a single hidden layer and 128 hidden nodes.

We train all MLPs by stochastic gradient descent using the Adam optimizer [KB15] to

adaptively tune the learning rate.

Because, for the Adventure Seeker problem, an agent can escape from danger
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with only a few time steps of notice, we set the fear radius kr to 5. We phase in the fear

factor quickly, reaching full strength in just 1000 moves. On this problem we set the fear

factor λ to 40.

For Cart-Pole, we set a wider fear radius of kr = 20. We initially tried training this

model with a shorter fear radius but made the following observation. Some models would

learn well surviving for millions of experiences, with just a few hundred catastrophes.

This compared to a DQN (Figure 9.2) which would typically suffer 4000-5000 catastro-

phes. When examining the output from the fear models on successful vs unsuccessful

runs, we noticed that the unsuccessful models would output danger of probability greater

than .5 for precisely the 5 moves before a catastrophe. But by that time it would be too

late for an agent to correct course. In contrast, on the more successful runs, the fear model

typically outputs predictions in the range .1− .5. We suspect that the gradation between

mildly dangerous states and those with imminent danger provides a richer reward signal

to the DQN.

On both the Adventure Seeker and Cart-Pole environments, the DQNs augmented

by intrinsic fear far outperform their otherwise identical counterparts (Figure 9.2). We

cannot plot the reward per episode for the intrinsic fear models on these environments

because after the first several deaths, the episodes never terminate. In contrast, both the

DQN and related approaches like expected SARSA continue to visit the catastrophic

states regularly. We compared our approach against some traditional approaches for

mitigating catastrophic forgetting. For example, we tried a memory-based method in

which we preferentially sample the catastrophic states for updating the model, but they

did not improve over the DQN. It seems that the notion of a danger zone is necessary

here.

For Seaquest, Asteroids, and Freeway, we use a fear radius of 5 and a fear factor of

.5. For all Atari games, the IF models outperform their DQN counterparts. Interestingly
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(a) Seaquest (b) Asteroids (c) Freeway

(d) Seaquest (reward) (e) Asteroids (reward) (f) Freeway (reward)

Figure 9.2: On Seaquest, the IF model achieves a similar catastrophe rate but signifi-
cantly higher total reward. On Asteroids, the IF model outperforms DQN. For Freeway,
a randomly exploring DQN (under our time limit) never gets reward but IF model learns
successfully.

while for all games, the IF models achieve higher reward, on Seaquest, models trained

with Intrinsic Fear have similar catastrophe rates. More precisely, they appear to have

fewer catastrophes early on but eventually enter a different reward regime, exchanging

more catastrophes for higher reward. This result suggests an interplay between the

various reward signals that warrants further exploration. For Asteroids and Freeway,

the improvements are more dramatic. Over just a few thousand episodes of Freeway, a

randomly exploring DQN achieves zero reward. However, the reward shaping of intrinsic

fear leads to rapid improvement.

9.5 Loss in Optimal Value

The average return of the reward under a policy π is as follows:

ηM(π) = lim
T→∞

1
T
E

[
T

∑
t

rt |π

]
(9.7)
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Let’s assume that any stationary policy π, induces a stationary distribution ω(s), s ∈ S .

Therefore we can rewrite Eq. 9.7 in terms of stationary distribution [Put14].

ηM(π) = lim
T→∞

E
[
∑
t

rt |π
]
= ∑

s∈S
∑

a∈A
ω(s)π(a|s)R (s,a)

In RL, we are interested in a policy π∗ which maximize the the expected average reward.

π
∗ := argmax

π
ηM(π)

where η∗M = ηM(π∗). In a first place, the optimization in Eq. 9.7 looks linear in π but ac-

tually the policy π derives the stationary distribution ω(·), which makes the optimization

problem a bit harder.

Given the policy π, let’s define the joint distribution in (s,a) as follows:

µπ(s,a) := P(s,a|π) = ω(s)π(a|s), ∀s ∈ S ,a ∈ A

Then we can rewrite the optimization problem in terms of the joint probability distribution

µπ.

ηm(µπ) :== ∑
s∈S

∑
a∈A

µπ(s,a)R (s,a) (9.8)

We can see that this new formalization, makes our optimization problem as linear function

of µπ. Since µπ is join distribution of (s,a) under the model dynamics T it can not take

any arbitrary value. Let ∆ denote the set of feasible value for µπ,

∆ := {µπ(s,a) : ∑
a′

µ(s′,a′) = ∑
s,a

T (s′|s,a)µπ(s′,a′)} (9.9)

Since ∑s,a µπ(s,a) = 1 therefore ∆ is a polytope on the simplex in RS×A
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Now, we can rewrite the optimization problem Eq. 9.7 as an constraint linear

programing on µπ

η
∗
M = max

µπ∈∆
∑
s∈S

∑
a∈A

µπ(s,a)R (s,a)

This change of variable allows us to analyze the introduction of intrinsic fear in different

situations.

(i)− If the probability that at any time step the optimal agent happens to be in the

danger zone, ∑s∈C ,a µπ∗(s,a), is negligible, and the intrinsic fear reward assigned to the

states in this zone C is negative, then optimal policy in the original environment (without

intrinsic reward) is the same as the optimal policy in the model with intrinsic reward.

Moreover, the long term average reward provided under these models are same. (The

intrinsic fear helps to learn the optimal behavior faster in the RL framework).

(ii)− Now, we consider the situation where the ∑s∈C ,a µπ∗(s,a) is not negligible,

but less than ε. In this situation, let’s assume that the negative reward assigned to the

states in the danger zone is λ and the optimal policy π̃ of the environment with the

intrinsic fear has return of ηM,F(π̃).

If there exists a cost λ such that the ∑s∈C ,a µπ̃(s,a) under π̃ in either environments

is negligible, since the set ∆ is a convex polytope and Rmin ≤ R (s,a)≤ Rmax, then

η
∗
M ≥ ηM(π̃) = ηM(π̃)≥ η

∗
M− ε(Rmax−Rmin). (9.10)

At the same time, the average return of the optimal policy π∗ on the environment

with intrinsic fear, ηM,F(π
∗) is bounded as

ηM,F(π̃)≥ ηM,F(π
∗)≥ ηM,F(π̃)−λε(Rmax−Rmin). (9.11)
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9.5.1 Discounted Cumulative Reward

For the γ-discounted setting, we are interested in

η(π) = (1− γ) lim
T→∞

E

[
∑
t=0

γ
trt

]
(9.12)

Both of the above mentioned equations hold in this setting, i.e., η∗M ≥ ηM,F(π̃) =

ηM(π̃)≥ η∗M−ε(Rmax−Rmin), and ηM,F(π̃)≥ ηM,F(π
∗)≥ ηM,F(π̃)−λε(Rmax−Rmin).

9.6 Imperfect Classifier

In the previous section, we assumed that we have access to the perfect classifier

F which can exactly label the danger zone. This assumption does not hold in real world

where we train the classifier. In this section we derive an analysis in order to show that

imperfect classifier F̂ can not change the overall performance by much.

In general, in practical RL problems, we use discount factors γeval < 1 [KS06] in

order to reduce the planing horizon, and computation cost. Moreover, [JKSL15] suggest

that when we have an estimation (up to the confidence intervals) of our MDP model, it is

better to use γ≤ γeval . They show that since larger discount factor enriches the class of

optimal policies for a given set of plausible models, large discount factors enrich models

and end up over fitting to the noisy estimate of the environment.

In this section, we show how to choose the discount factor γ ≤ γeval such that

the learned value function stays close to the value function under the perfect classifier

F . Let, V
π∗F1,γ1
F2,γ2

(s), s ∈ S , denote the state value under the optimal policy of model with

classifier F1 under the discount factor γ1 on the environment equipped with classifier

F and discount factor γ2. On the same environment, ω
π∗F1,γ1
F2

(s) denotes the stationary

distribution over states. We are interested in the average deviation on value functions
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caused by the imperfect classifier:

L := (1− γeval) ∑
s∈S

ω
π∗

F̂ ,γ

F (s)
∣∣∣∣V π∗F,γeval

F,γeval
(s)−V

π∗
F̂ ,γ

F,γeval
(s)
∣∣∣∣

This quantity can be upper bounded by

L ≤ (1− γeval)‖V
π∗F,γeval
F,γeval

−V
π∗

F̂ ,γ

F,γeval
‖∞ (9.13)

The goal is to find an γ∗ which minimizes this loss, i.e. γ∗ = argminγ≤γeval L with high

probability. For simplicity and without loss of generality, let’s assume that all the rewards

adding intrinsic fears are in [0,1] and call λ′, the transformed version of λ 2. One can

decompose the upper bound in Eq. 9.13 as follows:

V
π∗F,γeval
F,γeval

(s)−V
π∗

F̂ ,γ

F,γeval
(s) =

(
V

π∗F,γeval
F,γeval

(s)−V
π∗F,γeval
F,γ (s)

)
+

(
V

π∗F,γeval
F,γ (s)−V

π∗
F̂ ,γ

F,γeval
(s)
)

(9.14)

The first term is the deviation on value function when applying same policy on the same

environment but with different discount factors. Since γ ≤ γeval we have V
π∗F,γeval
F,γ (s) ≤

2Shifting and then rescaling the reward is equivalent to shifting and rescaling the Q and value function,
and does not change the optimal policy. Moreover the mentioned transformation is r→ (r− (Rmin−
λ))/(Rmax−Rmin +λ), therefore, λ′ = (−Rmin)/(Rmax−Rmin +λ)
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V
π∗F,γeval
F,γeval

(s).

V
π∗F,γeval
F,γeval

(s)−V
π∗F,γeval
F,γ (s) = EF

[
∞

∑
t=0

γ
t
evalrt |s0 = s,π∗F,γeval

]
−EF

[
∞

∑
t=0

γ
trt |s0 = s,π∗F,γeval

]
(9.15)

= EF

[
∞

∑
t=0

(γt
eval− γ

t)rt |s0 = s,π∗F,γeval

]
≤
(

1
1− γeval

− 1
1− γ

)
(9.16)

The second part of Eq. 9.14 is the deviation in value function under different policies and

different classifiers. Again, since γ≤ γeval , we have V
π∗

F̂ ,γ

F,γeval
(s)≥V

π∗
F̂ ,γ

F,γ (s)

V
π∗F,γeval
F,γ (s)−V

π∗
F̂ ,γ

F,γeval
(s)≤V

π∗F,γeval
F,γ (s)−V

π∗
F̂ ,γ

F,γ (s)≤V
π∗F,γ
F,γ (s)−V

π∗
F̂ ,γ

F,γ (s) (9.17)

where the last inequality is due to the optimality of π∗F,γ on the environment of F,γ. To

bound this part we exploit the proof trick used in [JKSL15].

V
π∗F,γ
F,γ (s)−V

π∗
F̂ ,γ

F,γ (s) =
(

V
π∗F,γ
F,γ (s)−V

π∗F,γ

F̂ ,γ
(s)
)
+

(
V

π∗F,γ

F̂ ,γ
(s)−V

π∗
F̂ ,γ

F̂ ,γ
(s)
)
+

(
V

π∗
F̂ ,γ

F̂ ,γ
(s)−V

π∗
F̂ ,γ

F,γ (s)
)

(9.18)

since the middle term is negative we have

V
π∗F,γ
F,γ (s)−V

π∗
F̂ ,γ

F,γ (s)≤
(

V
π∗F,γ
F,γ (s)−V

π∗F,γ

F̂ ,γ
(s)
)
+

(
V

π∗
F̂ ,γ

F̂ ,γ
(s)−V

π∗
F̂ ,γ

F,γ (s)
)

≤ 2 max
{π∗

F̂ ,γ
,π∗

F̂ ,γ
}

∣∣∣V π

F̂ ,γ
(s)−V π

F,γ(s)
∣∣∣ (9.19)

This quantity V π

F̂ ,γ
(s)−V π

F,γ(s) is the difference between the performance of the same

policy on two different environments. These two value functions should satisfy the
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following bellman equations:

V π
F,γ(s) = R (s,π(s))+λ

′F(s)+ γ ∑
s′∈S

T (s′|s,π(s))V π
F,γ(s

′)

V π

F̂ ,γ
(s) = R (s,π(s))+λ

′F̂(s)+ γ ∑
s′∈S

T (s′|s,π(s))V π

F̂ ,γ
(s′)

To compute the solution two this equation, we use dynamic programing. Let initialize

V0,V̂ =V (an arbitrary value) and construct the following updates.

for i ∈ {1, . . .∞}

V π
i (s) = R (s,π(s))+λ

′F(s)+ γ ∑
s′∈S

T (s′|s,π(s))V π
i−1(s)

V̂ π
i (s) = R (s,π(s))+λ

′F̂(s)+ γ ∑
s′∈S

T (s′|s,π(s))V̂ π
i−1(s

′)

As i tends to infinity, these two dynamics updates converge to V π
F,γ(s), and V π

F̂ ,γ
(s)

respectively. To bound the right hand side of Eq. 9.19 we have

V π
i (s)−V̂ π

i (s) = λ
′F(s)−λ

′F̂(s)+ γ ∑
s′∈S

T (s′|s,π(s))
(

Vi−1(s′)−V̂i−1(s′)
)

≤ λ
′

i

∑
i′=0

γ
i′max

s

∣∣∣F(s)− F̂(s)
∣∣∣ (9.20)

As i tends to infinity, we have

∣∣∣∣V π∗F,γ
F,γ (s)−V

π∗
F̂ ,γ

F,γ (s)
∣∣∣∣= max

π

∣∣∣∣limi→∞

(
V π

i (s)−V̂ π
i (s)

)∣∣∣∣
≤ λ

′
i

∑
i′=0

γ
i′max

s,π

∣∣∣F(s)− F̂(s)
∣∣∣≤ λ

′max
s,π

∣∣∣F(s)− F̂(s)
∣∣∣

(1− γ)
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9.6.1 Lookup Table Classifier

If we consider the fear model as a lookup table, and deterministic, then observing

each state once is enough to exactly recover the classifier.

For the stochastic F , at time step N

∣∣∣F(s)− F̂(s)
∣∣∣≤
√

log N
δ

N(s)
(9.21)

with probability δ where N(s) is the number visits to a state s at time step N. The

trajectory produced by algorithm does not produce i.i.d. samples of state. Therefore, for

Eq. 9.21 we use Hoeffding’s inequality accompanied with union bound over time N. In

order to have this bound to hold for all the states at once, we need another union bounds

over states and all possibly optimal policies Πγ under noisy classifier , which requires to

replace δ→ δ/SAΠγ. Let’s assume a minimum number of visit N to each state,

‖V
π∗F,γ
F,γ −V

π∗
F̂ ,γ

F,γ ‖∞ ≤
λ′

1− γ

√
log NSAΠγ

δ

N
(9.22)

Finally, adding Eq. 9.15 and Eq. 9.22, the upper bound on L is as follows:

L ≤ λ
′1− γeval

1− γ

√
log NSAΠγ

1−δ

N
+

γeval− γ

1− γ

9.6.2 Classifier from set of functions

Let F denote a set of given binary classifiers and F ∈ F . In this case, let’s

assume that we are given a set of N i.i.d samples from the stationary distribution ω
π∗

F̂ ,γ

F .

Given a policy π, the MDP transition process reduces to a Markov chain with transition

probability T π. Now we rewrite the Eq. 9.20 in a matrix format where V π
i ,F ∈ RS are
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vectors of concatenation of V π
i (s) and F(s), ∀s ∈ S respectively.

V π
i −V̂ π

i = λ
′F−λ

′F̂ + γT π

(
V π

i−1−V̂ π
i−1

)
≤ λ

′
i

∑
i′=0

(γT π)i′
(

F− F̂
)

(9.23)

as i goes to infinity we have

V
π∗F,γ
F,γ −V

π∗
F̂ ,γ

F,γ ≤ λ
′ (1− γT π)−1

(
F− F̂

)

Using PAC analysis of binary classification in [Han16] a follow up to [Vap13],

we have

∣∣∣F− F̂
∣∣∣>ω

π∗
F̂ ,γ

F ≤ 3200
V C (F )+ log 1

δ

N

with probability at least 1−δ where V C (F ) is the V C dimension of the hypothesis class

and | · | is entry-wise absolute value. Since γ < 1, then αmax, the maximum eigenvalue of

(1− γT π)−1 is bounded above and we have

‖V
π∗F,γ
F,γ −V

π∗
F̂ ,γ

F,γ ‖1 ≤ 3200λ
′
αmax

V C (F )+ log 1
δ

N

and therefore,

L ≤ 3200λ
′
αmax(1− γeval)

V C (F )+ log 1
δ

N
+

γeval− γ

1− γ

The remaining part is to solve

γ
∗ = argminγ≤γeval

L
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to find the optimal γ.

The same analysis, up to a slight modification3, holds for the continuous state

and action spaces.

9.7 Related work

The chapter addresses safety in RL, intrinsically motivated RL, and the stability

of Q-learning with function approximation under distributional shift. Our work also has

some connection to reward shaping. We attempt to highlight the most relevant papers

here. Several papers address safety in RL. [GF15] provide a thorough review on the topic,

identifying two main classes of methods: those that perturb the objective function and

those that use external knowledge to improve the safety of exploration.

While a typical reinforcement learner optimizes expected return, some papers

suggest that a safely acting agent should also minimize risk. [HSSU08] defines a fatality

as any return below some threshold τ. They propose a solution comprised of a safety

function, which identifies unsafe states, and a backup model, which navigates away

from those states. Their work, which only addresses the tabular setting, suggests that

an agent should minimize the probability of fatality instead of maximizing the expected

return. [Heg94] suggests an alternative Q-learning objective concerned with the minimum

(vs expected) return.Other papers suggest modifying the objective to penalize policies

with high-variance returns [GF15]. Maximizing expected returns while minimizing

their variance is a classic problem in finance, where a common objective is the ratio of

expected return to its standard deviation [Sha66]. [MA12] gives a definition of safety

based on ergodicity. They consider a fatality to be a state from which one cannot return

3Instead of having V as a vector of state values indexed by states, it is a continuous function of states.
Furthermore, the transition kernel is over continuous distribution therefore the same bellman update in
Eq. 9.23 holds.
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to the start state. [SSSS16] theoretically analyzes how strong a penalty should be to

discourage accidents. They also consider hard constraints to ensure safety. None of the

above works address the case where distributional shift dooms an agent to perpetually

revisit known catastrophic failure modes. Other papers incorporate external knowledge

into the exploration process. Typically, this requires access to an oracle or extensive

prior knowledge of the environment. In the extreme case, some papers suggest confining

the policy search to the subset of policies known to be safe. For reasonably complex

environments or classes of policies this seems infeasible.

The potential oscillatory or divergent behavior of Q-learners with function ap-

proximation has been previously identified [BM95, B+95, Gor96]. Outside of RL, the

problem of covariate shift has been extensively studied [SK12]. [MO05] addresses the

problem of catastrophic forgetting owing to distributional shift in RL with function ap-

proximation, proposing a memory-based solution. Many papers address intrinsic rewards,

which are internally assigned, vs the standard (extrinsic) reward. Typically, intrinsic

rewards are used to encourage exploration [Sch91, BSO+16] and to acquire a modular

set of skills [CBS04]. Some papers refer to the intrinsic reward for discovery as curiosity.

Like classic work on intrinsic motivation, our methods perturb the reward function. But

instead of assigning bonuses to encourage discovery of novel transitions, we assign

penalties to discourage catastrophic transitions.

Key differences In this chapter, we undertake a novel treatment of safe reinforcement

learning, While the literature offers several notions of safety in reinforcement learning,

we see the following problem: Existing safety research that perturbs the reward function

requires little foreknowledge, but fundamentally changes the objective globally. On the

other hand, processes relying on expert knowledge may presume an unreasonable level of

foreknowledge. Moreover, little of the prior work on safe reinforcement learning, to our
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knowledge, specifically addresses the problem of catastrophic forgetting. This chapter

proposes a new class of algorithms for avoiding catastrophic states and a theoretical

analysis supporting its robustness.

9.8 Conclusions

Our experiments demonstrate that DQNs are susceptible to periodically repeating

mistakes, however bad, raising questions about their real-world utility when harm can

come of actions. While it’s easy to visualize these problems on toy examples, similar

dynamics are embedded in more complex domains. Consider a domestic robot acting

as a barber. The robot might receive positive feedback for giving a closer shave. This

reward encourages closer contact at a steeper angle. Of course, the shape of this reward

function belies the catastrophe lurking just past the optimal shave. Similar dynamics

might be imagines in a vehicle that is rewarded for traveling faster but could risk an

accident with excessive speed. Our results with the intrinsic fear model suggest that

with only a small amount of prior knowledge (the ability to recognize catastrophe states

after the fact), we can simultaneously accelerate learning and avoid catastrophic states.

This work represents a first step towards combating some issues relating to safety in RL

stemming from catastrophic forgetting.
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Chapter 10

The Mythos of Model Interpretability

Supervised machine learning models boast remarkable predictive capabilities.

But can you trust your model? Will it work in deployment? What else can it tell you

about the world? We want models to be not only good, but interpretable. And yet the

task of interpretation appears underspecified. Papers provide diverse and sometimes

non-overlapping motivations for interpretability, and offer myriad notions of what at-

tributes render models interpretable. Despite this ambiguity, many papers proclaim

interpretability axiomatically, absent further explanation. In this chapter, we seek to

refine the discourse on interpretability. First, we examine the desiderata sought in papers

addressing interpretability, finding them to be diverse and occasionally discordant. Then,

we explore model properties and techniques thought to confer interpretability, identifying

transparency to humans and post-hoc explanations as competing concepts. Throughout,

we discuss the feasibility and desirability of different notions of interpretability, and

question the oft-made assertions that linear models are interpretable and that deep neural

networks are not.
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10.1 Introduction

Until recently, humans had a monopoly on agency in society. If you applied

for a job, a loan, or bail, a human decided your fate. And if you went to the hospital,

a human would attempt to classify what was wrong with you and might recommend

whether to undergo surgery. For consequential decisions like these, you might demand

an explanation from the decision-making agent.

If your loan application was denied, you might want to understand the agent’s

reasoning in a bid to strengthen your next application. Or if the decision was based on a

flawed premise, you might contest this premise in the hope of overturning the decision.

From a doctor, an explanation might serve to educate you about your condition. In

societal contexts, the reasons for a decision often matter. For example, intentionally

causing death (murder) vs unintentionally (manslaughter) are distinct crimes. Whether a

hiring decision is based (directly or indirectly) on a protected characteristic like race has

bearing on its legality.

Over the past 20 years, rapid progress in machine learning (ML) has enabled

the deployment of automatic decision processes. Most ML-based decision-making in

practical use works in the following way: the ML algorithm is trained to take some

input and predict the corresponding output. Given a set of attributes characterizing a

financial transaction, predict the long-term return on investment. Given images from

a CT scan, assign a probability that it depicts a cancerous tumor. The ML algorithm

takes in a large corpus of (input, output) pairs, and outputs a model which can predict the

output corresponding to a previously unseen input. To fully automate decisions, one feeds

the model’s output into some decision rule. For example, a spam-filter programatically

discards emails predicted to be spam with confidence exceeding some threshold.

As ML penetrates critical areas like medicine, the criminal justice system, and
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financial markets, the inability of humans to understand these models seems problematic.

Some suggest model interpretability as a remedy, but the academic literature, few authors

articulate precisely what interpretability means or why the offered solution is useful.

Despite the lack of a definition, a growing body of literature proposes purportedly

interpretable algorithms. From this, we might conclude that either: (i) the definition of

interpretability is universally agreed upon, but no one has bothered to set it in writing, or

(ii) the term interpretability is ill-defined, and thus claims regarding interpretability of

various models exhibit a quasi-scientific character.

An investigation of the literature suggests the latter. Both the desiderata and

methods suggested in papers investigating interpretability are diverse, suggesting that

interpretability is not a monolithic concept, but several distinct ideas that ought to be

disentangled before we can make progress. We hope, through this critical analysis, to

bring focus to the dialogue.

In this chapter, we mainly consider supervised learning and not other machine

learning paradigms, such as reinforcement learning and interactive learning. This scope

derives from (1) the primacy of supervised learning in the real world, and (2) our

interest in the common claim that linear models interpretable while deep neural networks

are not [LCG12]. To gain conceptual clarity, we ask the refining questions: what is

interpretability? and why is it important?

To ground our discussion, we address the second question first (expanded in

§10.2). Many papers propose interpretability as a means to engender trust [Kim15,

RMRO98]. But this leaves us with a similarly vexing epistemological question: what

is trust? Does it refer to faith that a model will perform well? Or does interpretability

simply mean a low-level mechanistic understanding of our models? Is trust defined

subjectively?

Other papers suggest that an interpretable model is desirable because it might
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help to uncover causal structure in observational data [AI15]. The legal notion of a right

to explanation offers yet another lens on interpretability. Another goal of interpretability

might simply be to get more useful information from the model.

While the discussed desiderata of interpretability are diverse, they typically speak

to situations where an ML problem formulation is imperfectly matched to the complex

real-life task it is meant to solve. Consider medical research with longitudinal data. Our

real goal may be to discover potentially causal associations, as with smoking and cancer

[WFF+99]. But the optimization objective for most supervised learning models is simply

to minimize error, a feat that might be achieved in a purely correlative fashion.

Another example of such a mismatch is that available training data imperfectly

representats the likely deployment environment. For example, real environments often

have changing dynamics. Imagine training a product recommender for an online store,

where new products are periodically introduced and customer preferences can change

over time. In more extreme cases, actions from an ML-based system may alter the

environment, invalidating future predictions.

After addressing the desiderata of interpretability, we consider what properties

of models might render models interpretable (expanded in §10.3). Some papers equate

interpretability with understandability or intelligibility [LCGH13], i.e., that we can grasp

how the models work. In these papers, understandable models are sometimes called

transparent, while incomprehensible models are called black boxes. But what constitutes

transparency? We might look to the algorithm itself. Will it converge? Does it produce

a unique solution? Or we might look to its parameters: do we understand what each

represents? Alternatively, we could consider the model’s complexity. Is it simple enough

to be examined all at once by a human?

Other papers investigate so-called post-hoc interpretations. These interpretations

might explain predictions without elucidating the mechanisms by which models work.
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Examples of post-hoc interpretations include the verbal explanations produced by people

or the saliency maps used to analyze deep neural networks. Thus, human decisions might

admit post-hoc interpretability despite the black box nature of human brains, revealing a

contradiction between two popular notions of interpretability.

10.2 Desiderata of Interpretability Research

In this section we spell out the various desiderata of interpretability research

through the lens of the literature. The demand for interpretability arises when there is

a mismatch between the formal objectives of supervised learning (test set predictive

performance) and the real world costs in a deployment setting.

Evaluation 
Metric

Interpretation

Figure 10.1: Typically, evaluation metrics require only predictions and ground truth
labels. When stakeholders additionally demand interpretability, we might infer the
existence of desiderata that cannot be captured in this fashion.

Consider that most common evaluation metrics for supervised learning require

only predictions, together with ground truth, to produce a score. So the very desire for

an interpretation suggests that sometimes, predictions alone and metrics calculated on

them do not suffice to characterize the model (Figure 10.1). We should then ask, what

are these other desiderata and under what circumstances are they sought?

Often, real-world objectives are difficult to encode as simple mathematical func-

tions. Otherwise, we might just incorporate them into the objective function and consider

the problem solved. For example, an algorithm for making hiring decisions should
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simultaneously optimize productivity, ethics, and legality. But how would you go about

writing a function that measure ethics or legality? The problem can also arise when

we desire robustness to changes between the dynamics of the training and deployment

environments.

Trust Some papers motivate interpretability by suggesting it to be prerequisite for

trust [Kim15, RSG16]. But what is trust? Is it simply confidence that a model will

perform well? If so, a sufficiently accurate model should be demonstrably trustworthy

and interpretability would serve no purpose. Trust might also be defined subjectively.

For example, a person might feel more at ease with a well-understood model, even if

this understanding served no obvious purpose. Alternatively, when the training and

deployment objectives diverge, trust might denote confidence that the model will perform

well with respect to the real objectives and scenarios.

For example, consider the growing use of machine learning models to forecast

crime rates for purposes of allocating police officers. We may trust the model to make

accurate predictions but not to account for racial biases in the training data for the model’s

own effect in perpetuating a cycle of incarceration by over-policing some neighborhoods.

Another sense in which we might trust a machine learning model might be that we feel

comfortable relinquishing control to it. In this sense, we might care not only about

how often a model is right but also for which examples it is right. If the model tends

to make mistakes in regions of input space where humans also make mistakes, and is

typically accurate when humans are accurate, then it may be considered trustworthy in

the sense that there is no expected cost of relinquishing control. But if a model tends to

make mistakes for inputs that humans classify accurately, then there may always be an

advantage to maintaining human supervision of the algorithms.
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Causality Although supervised learning models are only optimized directly to make

associations, researchers often use them in the hope of inferring properties of the natural

world. For example, a simple regression model might reveal a strong association between

thalidomide use and birth defects or smoking and lung cancer [WFF+99].

The associations learned by supervised learning algorithms are not guaranteed

to reflect causal relationships. There could always exist unobserved causes responsible

for both associated variables. One might hope, however, that by interpreting supervised

learning models, we could generate hypotheses that scientists could then test experimen-

tally. [LRS05], for example, emphasizes regression trees and Bayesian neural networks,

suggesting that these models are interpretable and thus better able to provide clues about

the causal relationships between physiologic signals and affective states. The task of in-

ferring causal relationships from observational data has been extensively studied [Pea09].

But causal inference methods tends to rely on strong assumptions and are not widely

used by practitioners, especially on large, complex datasets.

10.2.1 Transferability

Typically we choose training and test data by randomly partitioning examples

from the same distribution. We then judge a model’s generalization error by the gap

between its performance on training and test data. However, humans exhibit a far richer

capacity to generalize, transferring learned skills to unfamiliar situations. We already

use machine learning algorithms in situations where such abilities are required, such as

when the environment is non-stationary. We also deploy models in settings where their

use might alter the environment, invalidating their future predictions. Along these lines,

[CLG+15] describe a model trained to predict probability of death from pneumonia that

assigned less risk to patients if they also had asthma. In fact, asthma was predictive of

lower risk of death. This owed to the more aggressive treatment these patients received.
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But if the model were deployed to aid in triage, these patients would then receive less

aggressive treatment, invalidating the model.

Even worse, we could imagine situations, like machine learning for security,

where the environment might be actively adversarial. Consider the recently discovered

susceptibility of convolutional neural networks (CNNs) to adversarial examples. The

CNNs were made to misclassify images that were imperceptibly (to a human) perturbed

[SZS+13]. Of course, this isn’t overfitting in the classical sense. The results achieved on

training data generalize well to i.i.d. test data. But these are mistakes a human wouldn’t

make and we would prefer models not to make these mistakes either.

Already, supervised learning models are regularly subject to such adversarial

manipulation. Consider the models used to generate credit ratings, scores that when

higher should signify a higher probability that an individual repays a loan. According to

their own technical report, FICO trains credit models using logistic regression [Fai11],

specifically citing interpretability as a motivation for the choice of model. Features

include dummy variables representing binned values for average age of accounts, debt

ratio, and the number of late payments, and the number of accounts in good standing.

Several of these factors can be manipulated at will by credit-seekers. For example,

one’s debt ratio can be improved simply by requesting periodic increases to credit lines

while keeping spending patterns constant. Similarly, the total number of accounts can be

increased by simply applying for new accounts, when the probability of acceptance is

reasonably high. Indeed, FICO and Experian both acknowledge that credit ratings can

be manipulated, even suggesting guides for improving one’s credit rating. These rating

improvement strategies may fundamentally change one’s underlying ability to pay a debt.

The fact that individuals actively and successfully game the rating system may invalidate

its predictive power.
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10.2.2 Informativeness

Sometimes we apply decision theory to the outputs of supervised models to take

actions in the real world. However, in another common use paradigm, the supervised

model is used instead to provide information to human decision makers, a setting consid-

ered by [KGJS15, HDM+11]. While the machine learning objective might be to reduce

error, the real-world purpose is to provide useful information. The most obvious way that

a model conveys information is via its outputs. However, it may be possible via some

procedure to convey additional information to the human decision-maker.

An interpretation may prove informative even without shedding light on a model’s

inner workings. For example, a diagnosis model might provide intuition to a human

decision-maker by pointing to similar cases in support of a diagnostic decision. In some

cases, we train a supervised learning model, but our real task more closely resembles

unsupervised learning. Here, our real goal is to explore the data and the objective serves

only as weak supervision.

Fair and Ethical Decision-Making At present, politicians, journalists and researchers

have expressed concern that we must produce interpretations for the purpose of assessing

whether decisions produced automatically by algorithms conform to ethical standards

[GF16]. Recidivism predictions are already used to determine who to release and who to

detain, raising ethical concerns. How can we be sure that predictions do not discriminate

on the basis of race? Conventional evaluation metrics such as accuracy or AUC offer little

assurance that ML-based decisions will behave acceptably. Thus demands for fairness

often lead to demands for interpretable models.



191

10.3 Properties of Interpretable Models

We turn now to consider the techniques and model properties that are proposed to

confer interpretability. These broadly fall into two categories. The first relate to trans-

parency, i.e., how does the model work? The second consists of post-hoc explanations,

i.e., what else can the model tell me?

10.3.1 Transparency

Informally, transparency is the opposite of opacity or blackbox-ness. It connotes

some sense of understanding the mechanism by which the model works. We consider

transparency at the level of the entire model (simulatability), at the level of individual

components (e.g. parameters) (decomposability), and at the level of the training algorithm

(algorithmic transparency).

Simulatability

In the strictest sense, we might call a model transparent if a person can contem-

plate the entire model at once. This definition suggests that an interpretable model is a

simple model. We might think, for example that for a model to be fully understood, a

human should be able to take the input data together with the parameters of the model

and in reasonable time step through every calculation required to produce a prediction.

This accords with the common claim that sparse linear models, as produced by lasso

regression [Tib96], are more interpretable than dense linear models learned on the same

inputs. [RSG16] also adopt this notion of interpretability, suggesting that an interpretable

model is one that “can be readily presented to the user with visual or textual artifacts.”

For some models, such as decision trees, the size of the model (total number of

nodes) may grow much faster than the time to perform inference (length of pass from
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root to leaf). This suggests that simulatability may admit two subtypes, one based on

the total size of the model and another based on the computation required to perform

inference.

Fixing a notion of simulatability, the quantity denoted by reasonable is subjective.

But clearly, given the limited capacity of human cognition, this ambiguity might only

span several orders of magnitude. In this light, we suggest that neither linear models,

rule-based systems, nor decision trees are intrinsically interpretable. Sufficiently high-

dimensional models, unwieldy rule lists, and deep decision trees could all be considered

less transparent than comparatively compact neural networks.

Decomposability

A second notion of transparency might be that each part of the model - each

input, parameter, and calculation - admits an intuitive explanation. This accords with the

property of intelligibility as described by [LCG12]. For example, each node in a decision

tree might correspond to a plain text description (e.g. all patients with diastolic blood

pressure over 150). Similarly, the parameters of a linear model could be described as

representing strengths of association between each feature and the label.

Note that this notion of interpretability requires that inputs themselves be indi-

vidually interpretable, disqualifying some models with highly engineered or anonymous

features. While this notion is popular, we shouldn’t accept it blindly. The weights of a

linear model might seem intuitive, but they can be fragile with respect to feature selection

and pre-processing. For example, associations between flu risk and vaccination might be

positive or negative depending on whether the feature set includes indicators of old age,

infancy, or immunodeficiency.
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Algorithmic Transparency

A final notion of transparency might apply at the level of the learning algorithm

itself. For example, in the case of linear models, we understand the shape of the error

surface. We can prove that training will converge to a unique solution, even for previously

unseen datasets. This may give some confidence that the model might behave in an online

setting requiring programmatic retraining on previously unseen data. On the other hand,

modern deep learning methods lack this sort of algorithmic transparency. While the

heuristic optimization procedures for neural networks are demonstrably powerful, we

don’t understand how they work, and at present cannot guarantee a priori that they will

work on new problems. Note, however, that humans exhibit none of these forms of

transparency.

10.3.2 Post-hoc Interpretability

Post-hoc interpretability presents a distinct approach to extracting information

from learned models. While post-hoc interpretations often do not elucidate precisely how

a model works, they may nonetheless confer useful information for practitioners and end

users of machine learning. Some common approaches to post-hoc interpretations include

natural language explanations, visualizations of learned representations or models, and

explanations by example (e.g. this tumor is classified as malignant because to the model

it looks a lot like these other tumors).

To the extent that we might consider humans to be interpretable, it is this sort of

interpretability that applies. For all we know, the processes by which we humans make

decisions and those by which we explain them may be distinct. One advantage of this

concept of interpretability is that we can interpret opaque models after-the-fact, without

sacrificing predictive performance.
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Text Explanations

Humans often justify decisions verbally. Similarly, we might train one model to

generate predictions and a separate model, such as a recurrent neural network language

model, to generate an explanation. Such an approach is taken in a line of work by

[KHF+16]. They propose a system in which one model (a reinforcement learner) chooses

actions to optimize cumulative discounted return. They train another model to map a

model’s state representation onto verbal explanations of strategy. These explanations are

trained to maximize the likelihood of previously observed ground truth explanations from

human players, and may not faithfully describe the agent’s decisions, however plausible

they appear. We note a connection between this approach and recent work on neural

image captioning in which the representations learned by a discriminative convolutional

neural network (trained for image classification) are co-opted by a second model to

generate captions. These captions might be regarded as interpretations that accompany

classifications.

In work on recommender systems, [ML13] use text to explain the decisions of

a latent factor model. Their method consists of simultaneously training a latent factor

model for rating prediction and a topic model for product reviews. During training they

alternate between decreasing the squared error on rating prediction and increasing the

likelihood of review text. The models are connected because they use normalized latent

factors as topic distributions. In other words, latent factors are regularized such that

they are also good at explaining the topic distributions in review text. The authors then

explain user-item compatibility by examining the top words in the topics corresponding

to matching components of their latent factors. Note that the practice of interpreting topic

models by presenting the top words is itself a post-hoc interpretation technique that has

invited scrutiny [CGW+09].
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Visualization Another common approach to generating post-hoc interpretations is to

render visualizations in the hope of determining qualitatively what a model has learned.

One popular approach is to visualize high-dimensional distributed representations with

t-SNE [VdMH08], a technique that renders 2D visualizations in which nearby data points

are likely to appear close together.

[MOT15] attempt to explain what an image classification network has learned by

altering the input through gradient descent to enhance the activations of certain nodes

selected from the hidden layers. An inspection of the perturbed inputs can give clues to

what the model has learned. Likely because the model was trained on a large corpus of

animal images, they observed that enhancing some nodes caused the dog faces to appear

throughout the input image.

In the computer vision community, similar approaches have been explored to

investigate what information is retained at various layers of a neural network. [MV15]

pass an image through a discriminative convolutional neural network to generate a

representation. They then demonstrate that the original image can be recovered with

high fidelity even from reasonably high-level representations (level 6 of an AlexNet) by

performing gradient descent on randomly initialized pixels.

Local Explanations

While it may be difficult to succinctly describe the full mapping learned by a

neural network, some papers focus instead on explaining what a neural network depends

on locally. One popular approach for deep neural nets is to compute a saliency map.

Typically, they take the gradient of the output corresponding to the correct class with

respect to a given input vector. For images, this gradient can be applied as a mask (Figure

10.2), highlighting regions of the input that, if changed, would most influence the output

[SVZ13, WdFL16].
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Note that these explanations of what a model is focusing on may be misleading.

The saliency map is a local explanation only. Once you move a single pixel, you may

get a very different saliency map. This contrasts with linear models, which model global

relationships between inputs and outputs.

Figure 10.2: Saliency map by [WdFL16] to convey intuition over what the value
function and advantage function portions of their deep Q-network are focusing on.

Another attempt at local explanations is made by [RSG16]. In this work, the

authors explain the decisions of any model in a local region near a particular point, by

learning a separate sparse linear model to explain the decisions of the first.

Explanation by Example

One post-hoc mechanism for explaining the decisions of a model might be to

report (in addition to predictions) which other examples the model considers to be most
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similar, a method suggested by [CKD+99]. After training a deep neural network or latent

variable model for a discriminative task, we then have access not only to predictions

but also to the learned representations. Then, for any example, in addition to generating

a prediction, we can use the activations of the hidden layers to identify the k-nearest

neighbors based on the proximity in the space learned by the model. This sort of

explanation by example has precedent in how humans sometimes justify actions by

analogy. For example, doctors often refer to case studies to support a planned treatment

protocol.

In the neural network literature, [MSC+13] use such an approach to examine the

learned representations of words after word2vec training. While their model is trained for

discriminative skip-gram prediction, to examine what relationships the model has learned,

they enumerate nearest neighbors of words based on distances calculated in the latent

space. We also point to related work in Bayesian methods: [KRS14] and [DVWA15]

investigate cased-base reasoning approaches for interpreting generative models.

10.4 Discussion

The concept of interpretability appears simultaneously important and slippery.

Earlier, we analyzed both the desiderata for which interpretability is purportedly an

answer and some attempts by the research community to produce models that confer

it. In this discussion, we consider the implications of our analysis and offer several

takeaways to the reader.
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10.4.1 Linear models are not strictly more interpretable than deep

neural networks

Despite this claim’s enduring popularity, its truth content varies depending on

what notion of interpretability we employ. With respect to algorithmic transparency, this

claim seems uncontroversial, but given high dimensional or heavily engineered features,

linear models lose simulatability or decomposability, respectively.

When choosing between linear and deep models, we must often make a trade-

off between algorithic transparency and decomposability. This is because deep neural

networks tend to operate on raw or lightly processed features. So if nothing else, the

features are intuitively meaningful, and post-hoc reasoning is sensible. However, in

order to get comparable performance, linear models often must operate on heavily hand-

engineered features. [LKW16b] demonstrates such a case where linear models can only

approach the performance of RNNs at the cost of decomposability.

For some kinds of post-hoc interpretation, deep neural networks exhibit a clear

advantage. They learn rich representations that can be visualized, verbalized, or used for

clustering. Considering the desiderata for interpretability, linear models appear to have

a better track record for studying the natural world but we do not know of a theoretical

reason why this must be so. Conceivably, post-hoc interpretations could prove useful in

similar scenarios.

10.4.2 Claims about interpretability must be qualified

As demonstrated in this chapter, the term does not reference a monolithic concept.

To be meaningful, any assertion regarding interpretability should fix a specific definition.

If the model satisfies a form of transparency, this can be shown directly. For post-hoc

interpretability, papers ought to fix a clear objective and demonstrate evidence that the
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offered form of interpretation achieves it.

10.4.3 In some cases, transparency may be at odds with the broader

objectives of AI

Some arguments against black-box algorithms appear to preclude any model

that could match or surpass our abilities on complex tasks. As a concrete example, the

short-term goal of building trust with doctors by developing transparent models might

clash with the longer-term goal of improving health care. We should be careful when

giving up predictive power, that the desire for transparency is justified and isn’t simply a

concession to institutional biases against new methods.

10.4.4 Post-hoc interpretations can potentially mislead

We caution against blindly embracing post-hoc notions of interpretability, es-

pecially when optimized to placate subjective demands. In such cases, one might -

deliberately or not - optimize an algorithm to present misleading but plausible expla-

nations. As humans, we are known to engage in this behavior, as evidenced in hiring

practices and college admissions. Several journalists and social scientists have demon-

strated that acceptance decisions attributed to virtues like leadership or originality often

disguise racial or gender discrimination [Mou14]. In the rush to gain acceptance for ma-

chine learning and to emulate human intelligence, we should be careful not to reproduce

pathological behavior at scale.

10.4.5 Future Work

We see several promising directions for future work. First, for some problems,

the discrepancy between real-life and machine learning objectives could be mitigated by
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developing richer loss functions and performance metrics. Exemplars of this direction

include research on sparsity-inducing regularizers and cost-sensitive learning. Second,

we can expand this analysis to other ML paradigms such as reinforcement learning.

Reinforcement learners can address some (but not all) of the objectives of interpretability

research by directly modeling interaction between models and environments. However,

this capability may come at the cost of allowing models to experiment in the world,

incurring real consequences. Notably, reinforcement learners are able to learn causal

relationships between their actions and real world impacts. However, like supervised

learning, reinforcement learning relies on a well-defined scalar objective. For problems

like fairness, where we struggle to verbalize precise definitions of success, a shift of ML

paradigm is unlikely to eliminate the problems we face.
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Chapter 11

Can We Reduce ML’s Disparate

Impact without Disparate Treatment?

Following related work in law and policy, two notions of prejudice have come to

shape the study of fairness in algorithmic decision-making. Algorithms exhibit disparate

treatment if they formally treat people differently according to a protected characteristic,

like race, or if they intentionally discriminate (even if via proxy variables). Algorithms

exhibit disparate impact if they affect subgroups differently. Disparate impact can arise

unintentionally and absent disparate treatment. The natural way to reduce disparate

impact would be to apply disparate treatment in favor of the disadvantaged group, i.e.

to apply affirmative action. However, owing to the practice’s contested legal status,

several papers have proposed trying to eliminate both forms of unfairness simultaneously,

introducing a family of algorithms that we denote disparate learning processes (DLPs).

These processes incorporate the protected characteristic as an input to the learning

algorithm (e.g. via a regularizer) but produce a model that cannot directly access the

protected characteristic as an input. In this chapter, we make the following arguments:

(i) DLPs can be functionally equivalent to disparate treatment, and thus should carry

201
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the same legal status; (ii) when the protected characteristic is redundantly encoded in

the nonsensitive features, DLPs can exactly apply any disparate treatment protocol;

(iii) when the characteristic is only partially encoded, DLPs may induce within-class

discrimination. Finally, we argue the normative point that rather than masking efforts

towards proportional representation, it is preferable to undertake them transparently.

11.1 Introduction

Effective decision-making relies on the ability of the decision maker to distin-

guish between options on the basis of available information. Selection processes, such as

hiring and admissions, are typically driven by human assessments of applicants’ quali-

fications. This much is unavoidable, unless we opt to make trivial decisions and either

select everyone, no one, or perform selection entirely at random. Yet some kinds of

selection criteria violate ethical and legal principles. In many domains, the law explicitly

prohibits adverse decisions made on the basis of an applicant’s irrelevant or protected

characteristics. For example, in the United States, in Title VII of the Civil Rights Act

of 1964 [Civ64], the law forbids employment decisions that discriminate on the basis of

the following protected characteristics: race, color, religion, sex, and national origin.

The interpretation of this law has led to two widely-referenced notions of unfairness:

disparate treatment and disparate impact.

Disparate treatment refers to intentional discrimination. This can include: (i)

making decisions explicitly on the basis of a protected characteristic or (ii) making inten-

tionally prejudiced decisions against members of a protected class via proxy variables.

For example, in the 1900s, literacy tests were used to determine voting eligibility in

order to disenfranchise racial minorities. Even absent disparate treatment, a facially

neutral decision-making policy might exhibit disparate impact; i.e., unequal outcomes,



203

for people in different classes with respect to some protected characteristic(s). This again

may occur due to correlations between protected and unprotected characteristics.

In some cases, observed disparities are evidence of unfair treatment. For example,

black defendants are sentenced to death more frequently than white defendants for the

same crimes [For14]. This might owe in part to the racial biases of judges and juries;

it also might owe to the correlation between race and wealth, and by extension, access

to legal services. But disparate impact can also stem from more benign sources. For

example, the over-representation of Asian students in prestigious US colleges appears

not to stem from pro-Asian discrimination; on the contrary, investigative reports suggest

that the over-representation actually arises despite admissions policies that set a higher

bar for Asian applicants [HS17].

Disparate treatment and disparate impact are concepts rooted in United States

labor law. In some texts, the terms have a more technical meaning (as defined above),

and in others the meaning is tied up in the legal doctrine associated with a specific

set of decisions, such as hiring. Throughout this chapter, we will apply the technical

definitions, following the convention in the existing Machine Learning (ML) literature

that interprets these notions as widely applicable fairness criteria. Our discussion of

disparate treatment and disparate impact in the context of algorithmic decision making

may not at every stage adhere to prevailing legal doctrine. We also note that because

current anti-discrimination laws were developed with human decision making in mind,

there is considerable debate over their applicability to governing algorithmic decision-

making systems [BS16, GW17, Kim17]. However, this topic exceeds the scope of the

current work.
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11.1.1 Algorithmic Decision Making

Automated decision-making systems, based on ML models, are now trusted

to make decisions of legal consequence, such as extending lines of credit, matching

employees with employers, etc. These systems are typically built atop supervised ML

models. In practice, the ML models do not take any actions themselves: they simply

estimate the conditional probability of a label given some features. As a concrete example,

a label might be a binary indicator {0,1} of whether a loan defaults, and the features

might be attributes related to a loan applicant’s financial history. Decisions are typically

made by feeding the conditional probabilities into some decision rule.

In the simplest systems, the decision rule consists of a threshold applied to the

prediction. For example, if P̂(default|x)> .2⇒ reject loan. In many cases, while model

outputs are generated programatically, decisions are made by humans. For example

recidivism scores – predicted probabilities that an individual will be rearrested after being

released – are taken into account as one among many criteria by judges when making

decisions about bail, parole and sentencing.

A major concern is that a decision-making system based on an ML model might

exhibit behavior that is unlawful with respect to protected characteristics. If the model

explicitly incorporates a protected characteristic as input, this amounts to disparate

treatment [Civ64, BS16, ZVGRG17]. An automated ML-based system can also exhibit

disparate impact, which could arise via several possible mechanisms: (i) The choice of

the target may be arbitrarily chosen among several that are all loose surrogates for the

real quantity of interest (e.g. credit-worthiness). Any one particular choice might then

benefit or disadvantage a given group; (ii) The targets themselves might reflect patterns

of historical prejudice. For example, if members of the dominant group are more likely

to keep their jobs during a layoff, then they may be more likely to repay their loans; (iii)

If a group is grossly under-represented in the dataset, that could potentially lead to a
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model that is not as accurate when evaluating members of that group. In some of the

literature on fairness in algorithmic decision-making, use of the protected characteristic

is called direct discrimination, while points (i-iii) are sometime described as indirect

discrimination [PRT08, KAS11].

Note that the behavior of an ML model depends on the dataset used for training,

and thus these mechanisms could induce disparate impact absent a data scientist’s

knowledge. As Barocas and Selbst note, “honest attempts to certify the absence of

prejudice on the part of those involved in the data mining process may wrongly confer the

imprimatur of impartiality on the resulting decisions” [BS16]. These issues have come

to light starting with the ground-breaking paper [FN96], which recognized the ability of

computer systems to disparately affect protected groups. Work specifically focused on

discrimination owing to data-mining became more common following [PRT08]. Recently,

several prominent cases of disparate impact garnered widespread media attention. For

example, a report by ProPublica suggested that automated recidivism risk scores, used in

sentencing and bail decisions, show racial bias [ALMK16]. Following the organization of

workshops and conferences addressing related topics, research into algorithmic methods

for mitigating disparate impact has accelerated.

11.1.2 An Overview of Disparate Learning Processes

To combat prejudice in ML-based decisions, there has been significant research

interest in developing algorithms that constrain the level of disparate impact. The

proposed approaches vary both in the working definition of fairness, and the algorithmic

mechanisms used to ensure it. Most problem setups assume a binary classification setting

in which the positive class is preferable. For example, the positive class might correspond

to the designation “credit-worthy” or “employable”, which would lead a decision system

to issue a loan, or recommend a job candidate, respectively. A common approach is then
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to cast the fairness problem as that of choosing a model that minimizes the disparate

impact with minimal reduction in accuracy. A number of these papers [PRT08, KAS11,

ZVGRG17, BL17] propose to remove disparate impact without resorting to disparate

treatment.

On the surface, this is a desirable goal. Disparate treatment and disparate impact

may be seen as complementary definitions, both describing discriminatory mechanisms.

In another sense, however, these definitions are in opposition. Given a decision-making

system that exhibits disparate impact, the most obvious fix is to apply disparate treatment

in favor of the disadvantaged group. Disparate treatment in the service of equality

or diversity is sometimes described as affirmative action and reverse-discrimination

[ZVGRG17]. In some cases, the courts have upheld the legality of applying disparate

treatment to improve diversity, but there is also popular resentment of affirmative action

and its future legality remains contested [BS16].

Many of the algorithmic proposals to reduce disparate impact while avoiding

disparate treatment—which we denote disparate learning processes (DLPs)—operate

according to the following principle: The protected characteristic may be used during

training, but is not available to the model at prediction time. In the earliest such approach

[PRT08], the protected characteristic was used to winnow the set of acceptable rules from

an expert system. In other papers, the protected characteristic is incorporated into the

learning objective (as a regularizer or constraint) or is used in pre-processing the training

data [KC09, KCP10, ZVGRG17]. These approaches are grounded in the premise that

DLPs are acceptable in cases where using a protected characteristic as a direct input to a

model would constitute disparate treatment and thus be impermissible.

In this paper, we call this premise into question on the following grounds:

1. Disparate treatment in the service of improving diversity has been upheld as legal.

2. As we will show, the optimal way to trade off accuracy for proportional representa-
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tion in the positive class is to apply disparate treatment directly.

3. When the protected characteristic is redundantly encoded in the other features, any

disparate treatment can be equally implemented through a DLP.

4. When the protected characteristic is partially encoded in the other features, dis-

parate treatment induces within-class discrimination applying the benefit of the

affirmative action unevenly, and can even harm some members of the protected

class.

The fact that DLPs and disparate treatment are functionally equivalent when the

protected attributes are redundantly encoded in non-protected features should cast doubt

on the legality of these algorithms in contexts where disparate treatment is prohibited. A

legal opinion by Grimmelmann and Westreich supports this view [GW17]:

In our view, Title VII does not permit an employer to do indirectly what
it could not do directly. An employer that explicitly selects applicants on the
basis of [group membership] violates Title VII under a disparate treatment
theory [...] regardless of whether it bears animus against particular [groups].
It is the selection on the basis of [group membership] that is the problem.
An employer that uses home address to infer applicants [group membership]
and then selects applicants from particular [groups] does exactly the same,
only in two steps rather than one. This too is a form of disparate treatment.

While to our knowledge none of the existing approaches have considered the task

of maximizing disparate impact, in principle similar mechanisms could be used to do so.

Applying a DLP to improve the fortunes of the dominant class might be judged by a court

to constitute intentional discrimination and thus be a form of disparate treatment. Such a

judgment might apply to the mechanism irrespective of the outcome it was used to effect.

This would undermine the chief argument for DLPs, since the same ends can be achieved

more effectively by proportional representation-promoting disparate treatment. It is worth

noting that an algorithm that disproportionately fortunes the dominant class is more likely
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to raise red flags (under disparate impact) than one that effects representative outcomes.

So the extent to which DLPs can mask intentional discrimination is limited to levels

that do not subject the practice to scrutiny on the basis of significant disparate impact.

Problematically, the law is often ambiguous, and the legal status of these algorithms has

not yet, to our knowledge, been tested in the courts, leaving practitioners and researchers

without clear guidelines.

One potential source of ambiguity lies in whether we consider the algorithms to

be correcting for biases in the dataset, or if the disparate learning process is deemed to be

an explicit diversity-promoting positive discrimination. Problematically, when a dataset

with discriminatory labeling (such as historical hiring decisions) arrives, it is seldom

accompanied by meta-data precisely quantifying the prejudice. This leaves researchers to

make extreme assumptions, e.g. that any correlation between the protected class and the

label is attributable to discrimination. That assumption would entail numerous erroneous

conclusions, such as that the high academic performance of Asian Americans is due to

systemic pro-Asian discrimination, despite the abundant evidence to the contrary [HS17].

11.1.3 A Note on Organization

The rest of this chapter is organized as follows: In Section 11.2, we give a

more technical description of DLPs. In Section 11.3, we demonstrate some simple

theoretical problems with disparate learning processes. In Section 11.4, we demonstrate

the tendency of DLPs to perpetrate within-class discrimination, applying them both

to a clean synthetic dataset and a real dataset of University admissions data. These

sections aim to be objective and aim to make no value judgments. Then, in Section 11.6,

we express the position that the policy and technical communities might benefit from

accepting the efficacy and transparency of explicit pro-diversity disparate treatment. We

conclude with a discussion of the challenges that remain such as the issues posed by data
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bias, and the difficulty in navigating the terrain between estimation and decision-making.

Throughout this paper we strive to maintain a distinction between the objective

question of whether an algorithm discriminates along a protected characteristic, and the

normative question of whether that discrimination should be permitted because it serves

a socially desirable goal, such as ensuring proportional representation. In an attempt to

distinguish between the descriptive and the normative, we use an organization scheme

that separates the discussion of these different questions. Sections 11.2, 11.3, and 11.4

are descriptive while Section 11.6 is normative.

11.2 Disparate Learning Processes

To begin our formal description of the prior work, we’ll introduce some formal

notation. A dataset X ,Y , consists of n examples, or data points {xi ∈ X ,yi ∈ Y }, each

consisting of a feature vector xi and a label yi. A supervised learning algorithm produces

a model ŷ : X → Y , which given a feature vector xi, predicts the corresponding output

yi. In this discussion, we’ll focus on binary classification, the setting in which the label

y takes values from the set {0,1}. We’ll also focus on probabilistic classifiers, which

produce estimates p̂(x) of the conditional probability P(y = 1 | x) of the label given a

feature vector x. To make a prediction ŷ(x) ∈ Y given an estimated probability p̂(x),

a thresholding strategy is applied such that ŷi = 1 if p̂ > t. The optimal choice of the

threshold t may depend on the performance metric being optimized. For instance, under

0−1 loss, the optimal decision rule thresholds P(y = 1 | x) at t = 0.5. To optimize F1

score, the optimal threshold depends on the classifier’s confidence [LEN14]. Following

prior work, we focus most of our analysis on the accuracy metric or 0−1 loss.

Note that a supervised learning algorithm is itself a function, mapping from

datasets to models f : (X n,Y n)→ (X → [0,1]). Additionally, some datasets possess a
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sensitive attribute Z, making each example a three-tuple xi,yi,zi. The protected charac-

teristic may be real-valued, like age, or categorical, like race or gender. Following the

related work, we focus on categorical characteristics, and look specifically at the binary

case where the protected characteristic divides the population into groups a and b. As

shorthand, we will refer to the number of members of classes a and b as na = ∑
n
i 1(zi = a)

and nb = ∑
n
i 1(zi = b), respectively.

The papers which propose DLPs generally consider training a classifier on the

protected characteristic, i.e. with feature vector x̃ = [x;z] to be impermissible, amounting

to disparate treatment. However, even if the protected features zi are discarded, the

model may still produce probabilities of belonging to the the positive class p̂(x) that are

correlated with z. Applying thresholds to make decisions, the ML-based decisions might

correlate with the protected characteristic: P(ŷ = 1 | z) 6= P(ŷ = 1). Empirically, we

could estimate the proportions assigned to the positive class by evaluating the quantities

qa = (∑i:zi=a1(ŷ(xi)> .5))/na and qb = (∑i:zi=b1(ŷ(xi > .5))/nb.

When our goal in learning is simply to maximize accuracy, the estimation of

P(y = 1|x) simplifies to the standard problem of binary classification. However, some

papers propose trading off the accuracy of the classifier for reduction in disparate impact

[PRT08, KC09, ZVGRG17]. Different papers address different measures of disparate

impact, but a few formulations are common. One approach addresses the Calders-

Verwer (CV) gap, which quantifies disparate impact as qb−qa, the difference between

the proportions assigned to the positive class in the disadvantaged group (a) and the

advantaged group (b) [KAS11]. This definition is asymmetric in that it assumes a

disadvantaged class, but could be made more generic by taking the absolute value of

the difference. In [ZVGRG17], the proposed measure of disparate impact is qa/qb,

following a book by Biddle on fair employment practices [Bid06], assuming that a is the
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disadvantaged group. They propose constraining a model to satisfy a p-% rule:

qa/qb > p/100. (11.1)

This generalizes the heuristic in [Bid06] that disparate impact can be diagnosed when

the ratio of proportions assigned to the positive class is less than .8 (a p-% rule of 80).

For simplicity, we focus on these two scores, but our results can be trivially extended to

some (but possibly not all) measures of disparate impact. For example, [BL17], proposes

another regularization-based scheme with two penalty terms. The first minimizes the

difference in the false negative rate between the two groups, and the other minimizes the

difference in the false positive rate. A similar analysis can be applied there.

Many papers propose to minimize their chosen measure of disparate impact to

within some acceptable range with minimal reduction of accuracy. But even calculating

these measures requires access to the sensitive feature. These papers state that incorpo-

rating the feature directly in determining the class assignments ỹi constitutes disparate

treatment. So they propose instead to incorporate the sensitive feature in the learning

algorithm, but not the model. The formal function signature for a disparate learning

process follows:

DLP : (X n,Y n,Zn)→ (X → Y ). (11.2)

Since z is not a direct input of the resulting model, it is often asserted that such a model

has a better legal standing than a model that uses z directly. We argue qualitatively that

this claim is unreasonable, both with respect to the law [GW17] and because under some

circumstances the DLP is technically equivalent to disparate treatment.

Before addressing any qualitative arguments, we first demonstrate some theoreti-

cal properties of disparate treatment, demonstrating among other things that it optimally

addresses the constrained optimization problem posed by several authors of DLP papers.
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11.3 Theoretical Issues

In this section we introduce theoretical arguments in support of counterarguments

(2-4) outlined in Section 11.1.2. We present a set of simple theoretical results that

demonstrate the optimality of disparate treatment, and highlight properties of DLPs. Our

optimality results are all derived in the population or “infinite data” setting where we

assume knowledge of the true conditional probability function pY |X ,Z(x,z)≡ P(Y = 1 |

X = x,Z = z). The main results can be summarized as follows.

1. Direct disparate treatment on the basis of z is the optimal strategy for minimizing

the expected 0−1 loss subject to CV and p-% constraints.

2. When X fully encodes Z, a sufficiently powerful DLP is equivalent to disparate

treatment.

3. When X only partially encodes Z, a DLP may be suboptimal and induce intra-group

disparity.

11.3.1 Disparate treatment is optimal

Absent disparate impact constraints, the Bayes-optimal decision rule for minimiz-

ing expected 0−1 loss (i.e., maximizing accuracy) is given by

d∗uncon(x,z) =


1 pY |X ,Z(x,z)≥ 0.5

0 otherwise
.

In this section we show that the optimal decision rule in the CV and p-% constrained

problems has a similar form. The optimal decision rule will again be based on thresh-

olding pY |X ,Z(x,z), but at group-specific thresholds. These rules can be be thought of

as operationalizing the following disparate treatment mechanism. Suppose that we start
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with the classifications of the unconstrained rule d∗uncon(x,z), and this allocated results in

a CV gap of qb−qa > γ. To reduce the CV gap to γ we have two mechanisms. We can

flip predictions of cases in group a from 0 to 1, and we can also flip predictions of cases

in group b from 1 to 0. The optimal strategy is to perform these flips on group a cases

that have the highest value of pY |X ,Z(x,z) and group b cases that have the lowest value of

pY |X ,Z(x,z).

The results in this section adapt the work of [CDPF+17], who establish optimal

decision rules d under different kinds of fairness constraints. In this work the authors

characterize the optimal decision rule d = d(x,z) that maximizes the immediate utility

u(d,c) = E[Y d(X ,Z)− cd(X ,Z)] (0 < c < 1) under different parity criteria. We begin

with a lemma showing that expected classification accuracy has the functional form of an

immediate utility function.

Lemma 7. Optimizing classification accuracy is equivalent to optimizing immediate

utility with c = 0.5.

Proof. The expected accuracy of a binary decision rule d(X) can be written as E[Y d(X)+

(1−Y )(1−d(X))]. Expanding and rearranging this expression gives

E[Y d(X)+(1−Y )(1−d(X))] = E(2Y d(X)−d(X))+E(Y )+1

= 2u(d,0.5)+E(Y )+1

The only term in this expression that depends on d is the immediate utility, u. Thus the

decision rule that maximizes u also maximizes accuracy.

For the next set of results, we follow [CDPF+17] and assume that pY |X ,Z(X ,Z)

viewed as a random variable has positive density on [0,1]. This ensures that the optimal

rules are unique and deterministic by disallowing point-masses of probability that would
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necessitate tie breaking among observations with equal probability. The first result that

we state is a direct corollary of two results in [CDPF+17]. It considers the case where

we desire exact parity; i.e., the constraint qa = qb.

Corollary 8. The optimal decision rules d∗ under various fairness constraints have the

following form, and are unique up to a set of probability zero.

1. Among rules satisfying statistical parity (the 100% rule), the optimum is

d∗(x,z) =


1 pY |X ,Z(x,z)≥ tz

0 otherwise

where tz ∈ [0,1] are constants that depend only on group membership z.

2. Among rules that have equal false positive rates across groups, the optimum is

d∗(x,z) =


1 pY |X ,Z(x,z)≥ sz

0 otherwise

where sz are constants that depend only on group membership z (but are different

from tz).

3. (1) and (2) continue to hold even in the resource-constrained setting where the

overall proportion of cases classified as positive is constrained.

Proof. (1) and (2) are direct corollaries of Lemma 7 combined with Theorem 3.2 and

Prop 3.3 of [CDPF+17].

The next set of results establish optimality under general p-% and CV rules.
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Proposition 9. Under the same assumptions as above, the optimum among rules that

satisfy the CV constraint 0≤ qb−qa < γ or the p-% rule also has the form

d∗(x,z) =


1 pY |X ,Z(x,z)≥ tz

0 otherwise
,

where tz ∈ [0,1] are constants that depend on the group membership z, and on the choice

of constraint parameter γ or p. The thresholds tz are different for the CV constraint and

p-% rule.

Proof. Suppose that the optimal solution under the CV or p-% rule constraint classifies

as positive qa proportion of disadvantaged cases and qb proportion of advantaged cases.

As shown in [CDPF+17], we can rewrite the immediate utility as

u(d,0.5) = E[d(X ,Z)(pY |X ,Z−0.5)].

From this expression it is clear that the utility will be maximized precisely when

d∗(X ,Z) = 1 for the qz proportion of individuals in each group that have the highest

values of pY |X ,Z . Since the optimal values of qz may differ between the CV constrained

solution and the p-% solution, the optimal thresholds may differ as well.

The final result in this section shows that a decision rule that does not directly

use z as an input variable or for determining the thresholds will have lower accuracy than

the optimal rule that uses this information. That is, we show that DLPs are suboptimal

for trading off between accuracy and disparate impact.

Theorem 10. Let d∗(X ,Z) be the optimal decision rule under a the CV-γ or p-% con-

straint. Let dDLP(X) be the optimal solution to a DLP. If d(X ,Z) and dDLP(X) satisfy CV
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or p-% constraints with the same qa and qb, the DLP solution results in lower or equal

accuracy. (Equal only if the solutions are the same.)

Proof. From Proposition 9 we know that the unique accuracy optimizing solution is

given by

d∗(x,z) =


1 pY |X ,Z(x,z)≥ tz

0 otherwise

where tz is the 1 - qz quantile of pY |X ,Z . The difference in immediate utility between the

two decision rules can be expressed as follows.

E[d∗(X ,Z)(pY |X ,Z−0.5)]−E[dDLP(X)(pY |X ,Z−0.5)]

= E[(d∗(X ,Z)−dDLP(X))(pY |X ,Z−0.5)]

= E[pY |X ,Z−0.5 | d∗ = 1,dDLP = 0]P(d∗ = 1,dDLP = 0)

−E[pY |X ,Z−0.5 | d∗ = 0,dDLP = 1]P(d∗ = 0,dDLP = 1)

=
(
E[pY |X ,Z−0.5 | d∗ = 1,dDLP = 0]

−E[pY |X ,Z−0.5 | d∗ = 0,dDLP = 1]
)
P(d∗ = 1,dDLP = 0)

≥ 0

The final inequality follows from the observation that d∗(X ,Z) = 1 for the highest values

of pY |X ,Z , so pY |X ,Z is stochastically greater on the event {d∗ = 1,dDLP = 0} than on

{d∗ = 0,dDLP = 1}. Note that equality holds only if P(d∗ = 1,dDLP = 0) = 0; that is, if

the two rules are equivalent with probability 1.

All of the results in this section continue to hold under “do no harm” constraints

where the proportion of cases in the disadvantaged group classified as positive is con-

strained to be no lower than the proportion under the unconstrained rule duncons(x,z) (or

no lower than some fixed value qmin
a ). This constraint imposes an upper bound on the
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optimal thresholds ta, but does not change the structure of the optimal rules.

11.3.2 Functional equivalence when protected characteristic is re-

dundantly encoded

Consider the case where the protected characteristic z is redundantly encoded

in the permissible data features x. More precisely, suppose that there exists a known

subcomputation g such that zi = g(xi)∀i. This allows for any function of the data f (x,z)

to be represented as a function of x alone via f̃ (x) = f (x,g(x)). While it remains the case

that f̃ (x) does not directly use z as an input variable, f̃ should be no less suspect from a

disparate impact perspective than the original function f that uses z directly. The main

difference for the purpose of our discussion is that f̃ is a valid possible result from a DLP

whereas f is not. Yet it is clear that f and f̃ are functionally equivalent in two senses: (i)

as mathematical objects; and more importantly, (ii) as mechanisms for classifying cases.

11.3.3 Within-class differentiation when protected characteristic is

partially redundantly encoded

When the protected characteristic is partially encoded in the other features, dis-

parate treatment may induce within-class discrimination by applying the benefit of the

affirmative action unevenly, and can even harm some members of the protected class.

This claim asserts a possibility, so it is sufficient to produce one example to support the

claim. In the following section, we establish the claim empirically using both synthetic

data and real university admissions data. The ease of producing such examples might

convince the reader that the highly varied effects of intervention with a DLP on members

of the disadvantaged group raise serious questions about the usefulness of DLPs.
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11.4 Empirical Analysis

This simple analysis that precedes makes plain several advantages to mitigating

disparate impact by applying disparate treatment:

• Optimality: As demonstrated for CV score and for p-% rule, the disparate

treatment intervention maximizes accuracy subject to a constraint on disparate

impact.

• Rational ordering: Within each group, individuals with higher probability of

belonging to the positive class are always assigned to the positive class ahead of

those with lower probabilities.

• Does no harm to the protected group: The disparate treatment intervention can

only benefit members of the disadvantaged class.

But DLPs do not directly apply disparate treatment. Instead, they must recover

a classifier that satisfies the disparate impact constraints, by relying upon the proxy

features to minimize the disparate impact measure. In many of these papers, this is

accomplished either by introducing constraints to a convex optimization problem, or by

adding a regularization term and tuning the corresponding hyper-parameter. Because the

CV score and p-% rule are non-convex in model parameters (scores only change when a

point crosses the decision boundary), [KAS11, ZVGRG17] introduce convex surrogates

aimed at reducing the correlation between the sensitive feature and the prediction.

All of these approaches assume that the proxy variables contain information about

the sensitive attribute. Otherwise, the model could only achieve fairness by arriving

at a trivial solution (e.g., assign everyone or no one to the positive class). So we must

consider two scenarios: (i) the proxy variables x fully redundantly encode z. In this case,

an sufficiently powerful DLP will implicitly reconstruct z, because this gives the optimal
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solution to the impact-constrained objective. However, when x doesn’t fully capture z,

then the DLP may (i) be sub-optimal, (ii) violate rational ordering within groups, and

(iii) harm members of the disadvantaged group.

11.4.1 Synthetic data example: work experience and hair length in

hiring

To begin, we confirm these arguments empirically with a simple synthetic data

experiment. To construct the data we sample nall = 2000 total observations from the data

generating process described below. 70% of the observations are used for training, and

the remaining 30% are reserved for model testing.

zi ∼ Bernoulli(0.5)

hair lengthi | zi = 1∼ 35 ·Beta(2,2)

hair lengthi | zi = 0∼ 35 ·Beta(2,7)

work expi | zi ∼ Poisson(25+6zi)−Normal(20,σ = 0.2)

yi | work exp∼ 2 ·Bernoulli(pi)−1, where

pi = 1/(1+ exp[−(−25.5+2.5work exp)])

This data generating process has the following key properties: (i) The historical hiring

process was based solely on the number of years of work experience; (ii) Because women

on on average have fewer years of work experience than men (5 years vs. 11), men have

been hired at a much higher rate than women; (iii) Women have longer hair than men, a

fact that was irrelevant to historical hiring practice.

Figure 11.1 shows the test set results of applying a DLP to the available historical

data to equalize hiring rates between men and women. We apply the DLP proposed by
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[ZVGRG17], using code available from the authors.1 While the DLP is successful in

equalizing hiring rates (satisfying a 100-% rule), it does so through a problematic within-

class discrimination mechanism. The DLP rule advantages individuals with very long

hair length over those with short hair length and considerably longer work experience.

We find that several women who would have been hired under historical practices owing

to their 11+ years of work experience would not be hired under the DLP due to their

short hair length (i.e., their male-like characteristics in the data). Similarly, several men

who would not have been hired based on work experience alone are advantaged by the

DLP on account of their longer hair length (i.e., their female-like characteristics in the

data). The DLP mechanism violates rational ordering, and also has the effect of harming

some of the most qualified individuals in the protected group. Group parity is achieved at

the cost of significant individual unfairness.

Granted, factors such as hair length could not knowingly and defensibly be used

as an input to a typical hiring algorithm. This example was constructed to illustrate a

more general point. Since DLPs do not have direct access to the protected attribute, they

must infer from the data cases that are most likely to be members of each subgroup.

Using the protected attribute directly yields more reasonable policies: ones that hire the

most qualified individuals in each group, rather than those that are most qualified among

those that appear, from their un-protected characteristics, to be the most feminine.

11.4.2 Case Study: Gender Bias in CS Graduate Admissions

For our next example, we considered data from the Master’s admissions process

of a large public university, considering a sample of ∼9,000 students considered for

admission over an 11-year period spanning 2006-2016. Half are withheld for testing.

The available attributes include basic demographic information, such as country of origin,

1https://github.com/mbilalzafar/fair-classification/
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interest areas, and gender, as well as quantitative information such as GRE scores. Finally,

it includes a label in the form of a decision provided by an admissions committee.2

Based on a superficial analysis, the data does not appear to exhibit gender bias

(the admissions rates for male and female applicants are within 1% of each other). So,

for the purposes of our experiments, we corrupt the data with synthetic discrimination.

Of all women who were admitted, i.e., zi = a,yi = 1, we flip 25% of those labels to 0:

giving noisy labels ȳi = yi ·η, for η∼ Bernoulli(.25). This simulates a setting in which

the training data exhibits a historical bias.

We then train three logistic regressors: (1) To predict the (prejudice-corrupted)

labels from the non-sensitive features {xi, ȳi}; (2) The same model, applying the fairness

constraint of [ZVGRG17]; and (3) A logistic regressor that predicts the sensitive feature

from the non-sensitive features {xi,zi}. The data contains limited information that can

predict gender, though such predictions can be made better than random (AUC=0.59)

due to different rates of gender imbalance across (e.g.) countries and interest areas.

Figure 11.2 (left) shapes our basic intuition for what is happening here: Consider-

ing the probability of admission for the unconstrained classifier (y-axis), students whose

decisions are ‘flipped’ (after applying the fairness constraint) tend to be those close to the

decision boundary. Furthermore, students predicted to be male (x-axis) tend to be flipped

to the negative class (left half of plot) while students predicted to be female tend to be

flipped to the positive class (right half of plot). This is shown in detail in Figure 11.2

(center and right). However, of the 19 students whose decisions are flipped to ‘admit,’

the majority (10) are males, each of whom has ‘female-like’ characteristics according to

their other features. Demonstrated here with real-world data, the DLP both disrupts the

within-group ordering, and violates the do no harm principle by disadvantaging some

2These decisions do not precisely determine whether a student is made an offer, but rather represent an
‘above-the-bar’ assessment that is used to guide admissions decisions, and can be considered as a binary
label.
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women who, but for the DLP, would have been admitted.

Comparison with Disparate Treatment

To demonstrate the better performance of disparate treatment, we implement a

simple thresholding scheme. Assuming that our model gives us calibrated probabilities,

and that this is all the information available to the decision maker, it’s easy to derive the

optimal thresholds for maximizing accuracy under linear constraints on the proportions

of predicted positives, like the CV-gap or p-% rule.

We now present a simple thresholding scheme for maximizing accuracy subject

to a p-% rule. Recall that the p-% rule requires that qa/qb > p/100. We can rewrite this

as:
p

100
qb−qa < 0 (11.3)

Like the CV-gap, the p-% rule imposes a linear constraint. We denote the quantity p
100qb−

qa the p-gap. To maximize accuracy subject to satisfying the p-% rule, we construct

a score, that quantifies reduction in p-gap per reduction in accuracy. Starting from the

accuracy-maximizing predictions (thresholded at .5), we then flip those predictions which

close the gap fastest:

1. Assign each example with {ỹi = 0,zi = a} or {ỹi = 1,zi = b}, a score ci equal to

the reduction in the CV-gap divided by the reduction in accuracy:

(a) For each example in group a with initial ỹi = 0,

ci =
n

na(1−2 p̂i)
.

(b) For each example in group b with initial ŷi = 1,

ci =
np

100nb(2p̂i−1) .

2. Flip examples in descending order according to this score until the desired CV-score

is reached.
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These scores do not change after each iteration. So the greedy policy is optimal.

Overall, the fairness constraint of [ZVGRG17] achieves a p-% rule of 77.59%,

compared to a p-% rule of 71.44% by naı̈ve classification (on unseen test data). Both have

similar accuracy: given that both positive labels and female applicants are a minority,

assigning negative labels to males close to the boundary impacts accuracy very little.

Both methods had accuracy of around 78% on this data. Critically though, by applying

an optimal thresholding strategy, we were able to obtain the same accuracy as the method

of [ZVGRG17], but with a higher p-% rule of 78.34%. Similarly, we could achieve a

modest improvement in accuracy (¡0.1%) while maintaining the same p-% rule as the

method of [ZVGRG17].

11.5 Related Work

In this section we provide a brief overview of some of the other approaches that

have been put forth for trading off between classification performance and disparate

impact. One common approach consists of preprocessing or “massaging” the training

data to reduce the dependence between the resulting model predictions and the sensitive

attribute [KC09, KC12, FFM+15, AFF+16, JL17]. These methods differ both in terms

of what variables are affected by the data processing, and the degree of independence

that is achieved. For instance, [KC09] propose flipping the negative labels of some

observations in the disadvantaged class. [ZWS+13] proposes learning representations

- in this case, cluster assignments - of each example such that each example maps to

a cluster with some probability. They seek statistical parity in the percentage withing

each group assigned to each cluster. [FFM+15] also investigates transformations of the

features X into a new set of features that are constructed to be marginally independent

from Z. [JL17] demonstrate how to construct transformations to ensure that the derived
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features are jointly independent of Z, and show that this produces distributional parity of

the resulting fitted model.

A second widely adopted approach is to modify existing classification methods

either through post-hoc corrections or in the training stage to constrain the level of

disparate impact in the resulting model. [KAS11, GCGF16, CV10, KCP10] consider

modifications to methods such as SVM, logistic regression, Naive Bayes and decision

trees. [ABDL17] show how disparate impact constraints can be framed as a cost-sensitive

classification problem.

11.6 Discussion

Following our description of the problem, theoretical analysis, and empirical

findings, we now offer a more normative take on these findings.

11.6.1 Coming to Terms with Disparate Treatment

At present, most legal scholarship and technical machine learning scholarship take

place in a disjoint set of journals. These communities occasionally intersect when some

paper, such as the widely influential California Law Review article by Barocas and Selbst

reaches a cross-disciplinary audience [BS16]. However, the subsequent interdisciplinary

technical work tends to be published in technical conferences, where the peer-reviewers

may be ill-equipped to identify shortcomings in problem formulation.

For instance, the interpretations of anti-discrimination law that motivate DLPs

appear not to consider that (i) present-day law might rule DLPs to be equivalent to

disparate treatment if tested under the law (see e.g., arguments in [GW17]); and, (ii)

disparate treatment may already be tolerated under the law in order to ensure more

fair outcomes. This latter view is supported by Pauline Kim in her paper Data-driven
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discrimination at work [Kim17]:

A formalist reading of Title VII might appear to prohibit any use of vari-
ables capturing sensitive characteristics in a data model. Certainly, a simple
model that relied on race or other protected characteristics as the basis for
adverse decisions would run afoul of Title VIIs prohibitions. However, when
dealing with a complex statistical model involving multiple variables, the
appropriate treatment of these sensitive variables is more complicated. If the
goal is to reduce biased outcomes, then a simple prohibition on using data
about race or sex could be either wholly ineffective or actually counterpro-
ductive due to the existence of class proxies and the risk of omitted variable
bias. Instead, avoiding classification bias may sometimes call for excluding
sensitive demographic variables and at other times call for including them.
Any response to biased data models must be sensitive to these nuances.

On the balance of these considerations, there are several compelling reasons for

practitioners to promote equality more transparently through direct disparate treatment,

rather than through hidden changes to the learning algorithm. As articulated earlier, a

disparate treatment based approaches have three principal advantages over DLPs: they (i)

optimally trade accuracy for representativeness; (ii) preserve rankings among members of

each group (as compared to the unconstrained scores); and (iii) do no harm to members

of the disadvantaged group.

In addition to these three properties, disparate treatment has another advantage. By

setting class-dependent thresholds, it’s much easier to quantify how disparate treatment

impacts individuals. Having an intuitive quantity to reason about might help policy-

makers to decide what magnitude of disparate treatment best trades off group equality and

individual fairness. For more indirect methods to satisfy disparate impact constraints, it

might be hard to reason about the the intervention. As an example, it seems doubtful that

policy-makers would similarly intuitive meaning in the setting of a specific regularization

coefficient.

Several key challenges still remain. The theoretical arguments in this paper

demonstrate that disparate treatment approaches are optimal in the setting where we
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assume complete knowledge of the data generating distribution. It is not always clear how

best to realize these gains in practice, where imbalanced or unrepresentative data sets can

pose a significant obstacle to accurate estimation. Furthermore, some of our results are

tailored to the CV or the p-% rule notions of fairness. As shown in [HPS+16, WGOS17]

and [DIKL17], the situation can much more complicated for other fairness criteria.

11.6.2 Separating Estimation and Decision-Making

In many algorithm-supported decision making contexts, it is desirable to obtain

not just a classification, but also an accurate probability estimate. These estimates could

then be incorporated into the decision-theoretic part of the pipeline and appropriate

measures could be taken at that stage to ensure the desired outcome properties. By

intervening at the modeling phase, DLPs risk distorting the probabilities themselves.

It is not clear what the probabilities that come out of the resulting classifiers actually

signify. In unconstrained learning approaches, even if the label itself may reflect historical

prejudice, one at least knows what is being estimated. This leaves open the possibility of

intervening at decision time to promote more equitable outcomes.

While the distinction between building a model and making decisions is stated

clearly in the first modern work on fairness in discrimination-aware classification

[PRT08], this distinction is frequently muddled in discussions of algorithmic fairness.

For example, [KC09] state that “a learned model may exhibit unlawfully prejudiced be-

havior”. The conflation of modeling and decision-making may lead to counterproductive

corrections to the models that do not adequately account for how the models are actually

used. For example, it is commonly assumed that decision makers desire to optimize

accuracy and hence that decisions will be made by thresholding probability estimates at

.5. This is often not the case. First, due to differences in the cost of false positives and

false negatives, accuracy is seldom a task-relevant metric. Furthermore, decision-makers



227

are often faced with a multi-objective problem that entails considerations beyond what

the algorithm is designed to predict.

11.6.3 Fairness beyond disparate impact

How best to quantify discrimination and unfairness remains an important open

question. The CV scores and p−% rules addressed in this paper offer one set of

definitions (often technically termed ‘disparate impact’), but there are many other notions

of fairness to which our results do not directly apply. For example, equality of opportunity

as introduced in [HPS+16]—requiring equality of true positive rates across groups—

has received considerable attention. Other conditional notions of fairness and trade-

offs between them have been studied by [JKM+16, KMR16, Cho17, BHJ+17, RSZ17].

The work of [ZVR+17] departs from parity-based definitions and proposes instead a

preference-based notion of fairness. [DIKL17] address the problem of how best to

incorporate information about protected attributes for several of these other fairness

criteria.

Problematically, research into fair algorithms is often motivated by the case in

which our ground-truth data is itself biased. It is not clear how to assess many of these

other fairness criteria in the presence of biased data. Characterizing different forms of

data bias and their impacts on fairness assessment remains an important outstanding

challenge.

Even if we accept that the solution for many proportional representation problems

will take the form of disparate treatment in favor of the disadvantaged class, a question

remains of “how much?”. At what point is the disparate treatment simply correcting for

biased labels? At what point does it more explicitly amount to affirmative action? Recent

work on identifying proxy discrimination [DFK+17] and causal formulations of fairness

[NS17, KRCP+17, KLRS17] offer approaches to framing such problems. To answer
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these questions, it would help to have a better understanding of by what mechanisms

and to what degree the data has been influenced by prejudice. Perhaps data mining and

machine learning have some role to play in asking these questions? The answers could

guide decisions about where and how strongly to intervene.
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diagonal) achieves parity at the cost of within-class differentiation based on an irrelevant
attribute (hair length).
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Figure 11.2: Left: probability of the sensitive variable versus (unconstrained) admission
probability, on unseen test data. Points above 0.5 are individuals who are classified
as ‘reject’ only after applying the fairness constraint; points below 0.5 are individuals
who are classified as ‘admit’ only after applying the fairness constraint; the remaining
∼4,000 individuals (whose labels were not altered by the fairness constraint) are shown
as blue/yellow dots. Note that most students admitted due to the fairness approach are
actually males who ‘look like’ females on the basis of their other features, whereas
females who reflect male characteristics are more likely to be rejected. Center: detail
view of the same plot. Right: summary statistics of the same plot.
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Louradour. Dropout improves recurrent neural networks for handwriting
recognition. In Frontiers in Handwriting Recognition (ICFHR), 2014
14th International Conference on. IEEE, 2014.

[Pea09] Judea Pearl. Causality. Cambridge university press, 2009.

[PG01] Shahla Parveen and P Green. Speech recognition with missing data using
recurrent neural nets. In NIPS, 2001.

[Pig01] Therese D Pigott. A review of methods for missing data. Educational
research and evaluation, 2001.

[PL17] Eero Ptri and Timo Leivo. A closer look at the value premium. Journal
of Economic Surveys, Vol. 31, Issue 1, pp. 79-168, 2017, 2017.

[PMB12] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. arXiv:1211.5063, 2012.

[PPR96] M. M. Pollack, K. M. Patel, and U. E. Ruttimann. PRISM III: an updated
Pediatric Risk of Mortality score. Critical Care Medicine, 1996.

[PPRB02] Gianluca Pollastri, Darisz Przybylski, Burkhard Rost, and Pierre Baldi.
Improving the prediction of protein secondary structure in three and eight
classes using recurrent neural networks and profiles. Proteins: Structure,
Function, and Bioinformatics, 2002.

[PRT08] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-
aware data mining. In KDD. ACM, 2008.

[Put14] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[QWM+09] John Quinn, Christopher KI Williams, Neil McIntosh, et al. Factorial
switching linear dynamical systems applied to physiological condition
monitoring. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2009.



247

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In CVPR, 2016.

[RDL+10] Anand I. Rughani, Travis M. Dumont, Zhenyu Lu, Josh Bongard,
Michael A. Horgan, Paul L. Penar, and Bruce I Tranmer. Use of an
artificial neural network to predict head injury outcome: clinical article.
Journal of Neurosurgery, 2010.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, DTIC
Document, 1985.

[RMRO98] Greg Ridgeway, David Madigan, Thomas Richardson, and John O’Kane.
Interpretable boosted naı̈ve bayes classification. In KDD, 1998.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i
trust you?”: Explaining the predictions of any classifier. KDD, 2016.

[RSZ17] Ya’acov Ritov, Yuekai Sun, and Ruofei Zhao. On conditional parity as
a notion of non-discrimination in machine learning. arXiv:1706.08519,
2017.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT Press, 1998.

[Sch91] Jurgen Schmidhuber. A possibility for implementing curiosity and bore-
dom in model-building neural controllers. In From animals to animats:
proceedings of the first international conference on simulation of adaptive
behavior (SAB90), 1991.

[SD09] Yoram Singer and John C Duchi. Efficient learning using forward-
backward splitting. In NIPS, 2009.

[SDAS97] Sujit K Sahu, Dipak K Dey, Helen Aslanidou, and Debajyoti Sinha. A
weibull regression model with gamma frailties for multivariate survival
data. Lifetime data analysis, 1997.

[Sha66] William F Sharpe. Mutual fund performance. The Journal of Business,
1966.

[Shi80] Robert J Shiller. Do stock prices move too much to be justified by
subsequent changes in dividends?, 1980.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine



248

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Master-
ing the game of go with deep neural networks and tree search. Nature,
2016.

[SK12] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-
stationary environments: Introduction to covariate shift adaptation. MIT
Press, 2012.

[SKL+14] Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning,
and Andrew Y Ng. Grounded compositional semantics for finding and
describing images with sentences. Transactions of the Association for
Computational Linguistics, 2014.

[SKLW00] Satinder P Singh, Michael J Kearns, Diane J Litman, and Marilyn A
Walker. Reinforcement learning for spoken dialogue systems. In NIPS,
2000.

[SKP10] Suchi Saria, Daphne Koller, and Anna Penn. Learning individual and
population level traits from clinical temporal data. In Proc. Neural In-
formation Processing Systems (NIPS), Predictive Models in Personalized
Medicine Workshop, 2010.

[SL09] Marina Sokolova and Guy Lapalme. A systematic analysis of perfor-
mance measures for classification tasks. Information Processing and
Management, 2009.

[SLA15] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing
exploration in reinforcement learning with deep predictive models.
arXiv:1507.00814, 2015.

[SM98] Rosaria Silipo and Carlo Marchesi. Artificial neural networks for auto-
matic ecg analysis. IEEE Transactions on Signal Processing, 1998.

[SMDH13] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In ICML,
2013.

[SMH11] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In ICML, 2011.

[SMI06] Jun Suzuki, Erik McDermott, and Hideki Isozaki. Training conditional
random fields with multivariate evaluation measures. In Proceedings of
the 21st International Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Linguistics.
ACL, 2006.



249

[SP97] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. Signal Processing, IEEE Transactions on, 1997.

[SQAS16] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. In ICML, 2016. arXiv:1511.05952.

[SS91] Hava T Siegelmann and Eduardo D Sontag. Turing computability with
neural nets. Applied Mathematics Letters, 1991.

[SSSS16] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-
agent, reinforcement learning for autonomous driving. arXiv:1610.03295,
2016.

[Str00] Malcolm J. A. Strens. A Bayesian framework for reinforcement learning.
In ICML, 2000.

[STY07] Jost Schatzmann, Blaise Thomson, and Steve Young. Statistical user
simulation with a hidden agenda. SIGDial, 2007.

[Sut88] Richard S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 1988.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In NIPS, 2014.

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. arXiv:1312.6034, 2013.

[SWF+14a] Ioan Stanculescu, Christopher K Williams, Yvonne Freer, et al. Autore-
gressive hidden markov models for the early detection of neonatal sepsis.
Biomedical and Health Informatics, IEEE Journal of, 2014.

[SWF14b] Ioan Stanculescu, Christopher KI Williams, and Yvonne Freer. A hierar-
chical switching linear dynamical system applied to the detection of sepsis
in neonatal condition monitoring. In Proceedings of the 30th Conference
on Uncertainty in Artificial Intelligence (UAI), 2014.

[SWS15] Peter Schulam, Fredrick Wigley, and Suchi Saria. Clustering longitudinal
clinical marker trajectories from electronic health data: Applications to
phenotyping and endotype discovery. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. CVPR, 2013.



250

[Tan05] Songbo Tan. Neighbor-weighted k-nearest neighbor for unbalanced text
corpus. Expert Systems with Applications, 2005.

[TB98] Volker Tresp and Thomas Briegel. A solution for missing data in recurrent
neural networks with an application to blood glucose prediction. In NIPS.
1998.

[TH12] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5- rmsprop: Divide
the gradient by a running average of its recent magnitude. https://www.
youtube.com/watch?v=LGA-gRkLEsI, 2012.

[Tho33] William R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
1933.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), 1996.

[TLBN16] Subarna Tripathi, Zachary C Lipton, Serge Belongie, and Truong Nguyen.
Context matters: Refining object detection in video with recurrent neural
networks. BMVC, 2016.

[Tso07] Ioannis Tsoumakas, Grigorios & Katakis. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining, 2007.

[Tur50] Alan M Turing. Computing machinery and intelligence. Mind, pages
433–460, 1950.
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