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Technological developments in the past thirty years have transformed se-

quencing-based microbiology into a data-intensive field. Here, computing and ef-

ficient representations are catalyzers of insight into omnipresent and complex mi-

crobial interactions. Notably, classical ecologists have set the foundations for the

way we analyze these systems, with some techniques dating back to the beginning

of the twentieth century. In this thesis, we expand and where possible reuse these

techniques to unravel the hidden patterns comprising the human gut microbiome.
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To set an appropriate motivation and context for the rest of this work,

Chapter 1 reviews recent discoveries on the human microbiome and how the com-

munities within can influence the e↵ectiveness of therapeutic agents. Next, in

Chapter 2, we introduce EMPeror, an interactive analysis and visualization tool

that is crucial to the findings presented in later chapters.

The following three chapters study concrete examples where the microbiome

has been implicated as a driver or marker for dysbiosis. Chapter 3 describes how

the microbial signature associated with Crohn’s Disease (CD) in humans, described

in our previous work [61], is overlapping but distinct to that of dogs a↵ected with

Inflammatory Bowel Disease (IBD). Surprisingly, unlike with humans, dog fecal

samples alone are strong indicators of the disease. In Chapter 4, we study IBD from

a longitudinal perspective, revealing increased volatility in the gut microbiomes of

subjects with IBD, a property that does not appear to be present in una↵ected

controls. Furthermore, we use this as a predicting feature of the disease, and

improve on the classification accuracy possible through a single fecal sample. In

Chapter 5, we study the e↵ect of Fecal Microbiota Transplants (FMTs) to treat

CDIs and, using the techniques described in Chapter 2, we show the first animated

visualization of this process, a dramatic microbial transformation as the subjects

recover from all CDI symptoms. In addition, for CDI patients who also su↵er

from a subtype of IBD, a treatment with a FMT results in an increased number

of relapses and decreased microbial diversity.

The closing chapter discusses these results and their possible applications,
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as well as future directions for computationally-centric microbiome research.
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Chapter 1

The hidden world within

ourselves

Recent years have seen an increased interest in the study of microbial com-

munities, partly driven by the a↵ordability of the enabling technologies. This

new focus provides a previously ignored axis of understanding to a vast number

of research fields. In addition, this has uncovered a number of associations and

demonstrated mechanisms, where microbial communities are key explanatory vari-

ables.

In fields where microbial communities were already taken into consideration,

these advancements allowed experiments to be conducted at an unprecedented scale

[83, 258, 63]. As a consequence, the underlying software and methods to analyze

these studies needed to accommodate volumes of information previously unseen.

Notably, most of the software used in this context has been developed to interpret
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and analyze interdisciplinary experiments that span a broad range of seemingly

disjoint fields (for example biofuel development [248], built environment [28, 44],

forensics [163, 54], etc). As such, we motivate the rest of the work in this thesis

by presenting a comprehensive survey focused on the human microbiome. The

following section appeared in the journal Annual Review of Pharmacology and

Toxicology, 2017.
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1.1 Impacts of the human gut microbiome on

therapeutics

The human microbiome contains a vast source of genetic and biochemical

variation, and its impacts on therapeutic responses are just beginning to be under-

stood. This expanded understanding is especially important because the human

microbiome di↵ers far more among di↵erent people than does the human genome,

and it is also dramatically easier to change. Here we describe some of the major

factors driving di↵erences in the human microbiome among individuals and pop-

ulations. We then describe some of the many ways in which gut microbes modify

the action of specific chemotherapeutic agents, ranging from Non-steroidal anti-

inflammatory drugs (NSAIDs) to cardiac glycosides, and outline the potential of

Fecal Microbiota Transplant (FMT) as a therapeutic. Intriguingly, microbes also

alter how hosts respond to therapeutic agents through various pathways acting

at distal sites. Finally, we discuss some of the computational and practical issues

surrounding use of the microbiome to stratify individuals for drug response, and

envision a future where the microbiome will be modified to increase everyone’s

potential to benefit from therapy.

1.1.1 Introduction

Although extensive work has linked the human genome to drug response,

the idea that the microbiome, the collection of genes in our microbial symbionts,
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could a↵ect drug response is much newer, with the majority of work conducted

in the past ten years. This lack of attention is surprising. As far back as the

1970s, it was estimated that the number of microbial cells, mostly bacteria, asso-

ciated with the human body was greater than the number of human cells carrying

the human genome [198]. This observation has held to the present, albeit with

narrowed error bars, leading to an estimate of 53% microbial cells to 47% human

cells [205]. An important and more recent observation is that the unique microbial

genes greatly outnumber the unique human genes, with estimates of the microbial

genome catalog typically numbering into the millions [83, 185, 227] and dwarfing

the 20,000 or so human genes [127]. What role all these microbial genes play in

drug metabolism, and what e↵ect drugs in turn have on the microbiome, are just

starting to be explored.

A key barrier was the inability to identify the specific types of organisms

associated with each individual. Traditionally, the limiting factor was the use of

culture-dependent approaches which enabled only a small percentage of microbial

strains from the gut to be cultured. Newer techniques, such as the use of initially

germ-free mice as a culture medium [228] and advances in microdrop culturing

[22], have greatly expanded this repertoire, but each system is still limited by the

requirement for active growth. The ability to sequence DNA directly from the

environment, pioneered by Pace and colleagues, revolutionized our view of the mi-

crobial world by eliminating the constraint of culture, with many studies focusing

on the 16S rRNA gene as a universal taxonomic marker [177]. The first study
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applying culture-independent analysis on a large scale to the human gastrointesti-

nal tract [45] revealed dramatic di↵erences among individuals, and sites in the

distal large intestine. As in prior studies, stool served as a useful proxy for the

intestinal contents (where most metabolism takes place) but failed to capture the

diversity of any site perfectly [45]. Highly multiplexed assays with next-generation

sequencing [74] allowed hundreds of microbiomes to be read out at once, dramati-

cally decreasing the cost of assessing the microbiome. Further improvements in se-

quencing methodology [83, 185] and software techniques [23, 108, 172] dramatically

expanded the accessibility of microbiome studies to a wide range of investigators,

both at the marker gene level and at the shotgun metagenomic level [66], where

total DNA is extracted and all the genes analyzed.

Results from these studies re-conceptualized our view of the microbiome.

For example, rather than a common core of shared organisms, di↵erent people have

very di↵erent collections of microbes, even if they share a home and/or genetic ma-

terial. Changes in the microbiome throughout the lifespan are dramatic, especially

in early life, and are greater than microbiome di↵erences among adult mammalian

species. Such di↵erences in di↵erent parts of the body are comparable to the dif-

ferences among microbial communities in di↵erent physical environments, such as

soil and water. These large di↵erences in species and gene composition and their

implications for drug metabolism are illuminated by studies that combine DNA

sequencing with other methods, including metabolomics analyses.

Now that identifying the taxa in a given microbiome sample is routine, and

5



identifying the gene repertoire increasingly accessible, one can link the individual

diversity in gene content to drug metabolism and other gut-related associations

(Figure 1.1.1). However, a complicating factor, especially for case/control study

designs, is the issue of causality: many drugs, ranging from the obvious (antibi-

otics) to the surprising (metformin), dramatically a↵ect the microbiome, so sepa-

rating cause and e↵ect can be di�cult. It is perhaps most useful to think of the

microbiome as a dynamic system in which the microbiome a↵ects how drugs are me-

tabolized and these products of metabolism in turn change the microbiome, which

then changes future responses even to the same pharmaceutical. Such dynamic

systems thinking is common in ecology, and although many current microbiome

research techniques stem from this discipline, its application remains relatively rare

in medicine.

In this review, we focus on the human gut microbiome, although, where

appropriate, we refer to studies using animal models, especially gnotobiotic mice

(germ-free mice colonized with a defined set of microbes, either pure strains or

fecal material from a rodent or human donor). As noted above, di↵erent parts of

the human body (e.g., mouth, skin, airways, and urogenital tract) have distinct

microbiomes from the gut microbiome, but the gut has been most studied in terms

of drug response, in part because it contains by far the greatest microbial biomass

in the human body, and therefore, the greatest capacity for drug metabolism. We

first provide an overview of the diversity of the human gut microbiome, identifying

key factors that structure the microbiome in healthy and diseased populations. We
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then describe connections between gut microbes and the action of several thera-

peutic agents, ranging from antibiotics to analgesics. Third, we describe how the

microbiome can alter host response to drugs, though not necessarily metabolizing

the drugs themselves. Fourth, we discuss prospects for identifying which patients

will respond to a given drug based on the whole microbiome and prospects for

exploiting the microbiome as a companion diagnostic to increase e�cacy or reduce

adverse events. Finally, we provide an outlook for the field in terms of improved

patient stratification, and raise the intriguing prospect that patients might be con-

verted from non-responders to responders via the use of companion therapies that

alter the microbiome to increase e�cacy of a specific drug.

1.1.2 Diversity of the human gut microbiome across pop-

ulations and life stages

There are very few germ-free humans; therefore, understanding di↵erences

among individuals colonized with di↵erent microbes is key for predicting those

who will respond similarly to drugs. However, many of the factors a↵ecting the

microbiome are highly counterintuitive. Here we focus primarily on a recent review

[39], five large-scale studies [9, 51, 83, 258, 266], and two large-scale meta-analyses

[141, 234] that summarize these findings.

As noted above, di↵erent sites in the human body host highly distinct

microbial communities: on a Principal Coordinates Analysis ‘map’ of the micro-

8



biome, they emerge as di↵erent ‘continents’ [34, 83]. However, the di↵erences in

microbiome composition between, for example, the mouth and the gut of the same

person are much greater than the di↵erences between soil samples collected from

di↵erent continents, and instead are more comparable to the di↵erence between soil

and seawater [133]. Although di↵erent body sites are highly distinct at the level of

microbial taxa, they are relatively similar in terms of major microbial metabolic

functions, at least as measured by Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways or other broad levels of gene function [83, 228].

This pattern of microbial biogeography extends to the human gut [12, 34,

45, 265]. The microbiome changes dramatically along the gastrointestinal tract,

with distinct populations in the oral cavity, esophagus, stomach, and small and

large intestine. The most abundant genera of the oral cavity include Actinomyces,

Streptococcus, Neisseria, and Veillonella, while the throat and stomach are dom-

inated by Streptococcus and Prevotella species. In the stomach, roughly half of

individuals are colonized by Helicobacteria pylori, which dominates the gastric

microbiome in these individuals [11]. The small intestine harbors fast-growing,

G+C rich organisms specialized in digesting simple carbohydrates [267] and is of-

ten dominated by genera such as Peptostreptococcus, which are rare in the large

intestine. The bulk of the microbiome and microbial metabolism is in the large

intestine. Typical bacterial loads are 105 CFU/ml in the jejunum, 106 CFU/ml

in the ileum, but 108 CFU/ml in the cecum [149], and 1011-1012 CFU/g in the

feces [212]. This, together with stool being a relatively good proxy for the large

9



intestine luminal contents but much more convenient to sample, means that most

attention has focused on stool. However, for some applications such as detect-

ing inflammatory bowel disease, microbiome analyses from biopsies dramatically

outperform analyses of stool in their ability to distinguish healthy from diseased

subjects [61]. The range of study designs where biopsies are essential is still hotly

debated; nonetheless, stool biomarkers are highly informative for many applica-

tions, as noted below.

The process of development from infancy to early childhood has the greatest

known e↵ect on the stool microbiome. This e↵ect is so profound that it traverses

the vast gulf in microbiome configuration among body sites (Figure 1.1.2). As

they pass through the birth canal, newborns are typically colonized by bacteria

resembling the constituents of the mother’s vaginal microbiome. By contrast, new-

borns delivered by C-section without labor lack these co-evolved vaginal microbes.

Instead their microbiome resembles the skin, either from direct contact with care-

givers and medical sta↵ or from dust, which largely consists of human skin flakes

and their associated microbes in indoor environments [14, 31, 43]. The first few

weeks of life are chaos in the infant gut microbiome [83, 178] with very large

di↵erences at successive time points and among children. The subsequent over-

all process of development to the adult state takes about 2-3 years [14, 83, 258],

although smaller changes continue throughout childhood [258]. Intriguingly, al-

though the process of development to the adult state is consistent cross-culturally,

the state that is reached varies across populations [258]. These major di↵erences
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in the microbiome may explain some of the di↵erences in drug response between

children and adults that are not explained by other factors.

Drugs that work in one human population may fail for unknown reasons in

other populations, though the reasons for this are often obscure. Large e↵orts (and

amounts of money) have sought the answer by studying human genomes. However,

human genomes are 99.9% the same but gut microbiomes can be 90% di↵erent [73].

Given the rate of microbial metabolism and diversity of microbially-encoded en-

zymes, it makes sense to inquire whether di↵erences in drug responses are linked

to the gut microbiome. Indeed, di↵erent human populations have markedly di↵er-

ent microbiomes, which are largely thought to be linked to diet, with an axis that

trades Prevotella in diets rich in sugar and grains for Bacteroides in diets rich in

animal protein. These trends have been observed in the US population [255] and

among US, South American, and African populations [258]. However, diet cannot

be the sole driver, or between-population microbiome variation would not exceed

the within-population variation, yet this is what one observes.

Even with hundreds of individuals, it is not yet possible to ascertain the

factors at the population level that are most important in structuring the adult gut

microbiome, because diet, environmental (including drug) exposures, host genetics,

and other factors vary among populations in complex ways. Studies encompassing

dozens of populations, with detailed tracking of individual- and population-level

information, are likely required to resolve these questions, just as for such questions

in human population genetics [183]. Hunter-gatherer populations, such as the

11



Figure 1.2: Principal coordinates analysis on unweighted UniFrac distances of the
process of microbiome assembly in the gut of one infant, contextualized with the
Human Microbiome Project. Panel (A) colored by the sample type, and (B) colored
by infant’s age. As time goes by, the microbial communities in the infant’s stool
shift from resembling healthy adult vaginal and skin communities to resemble stool
composition. This demonstrates how the process of gut microbiome development
spans some of the most profound changes in the microbiome, i.e. the distance
across di↵erent body sites.
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Yanomami in the Amazon basin and the Hadza in sub-Saharan Africa, have distinct

microbiomes harboring entire phyla, such as Spirochetes, that are even absent from

rural farming populations [33, 201, 229]. This suggests that the loss of diversity

from the microbiome of modern populations may have begun with the advent of

agriculture. However, other factors such as C-section, antibiotics, and hygiene

practices may be leading to continual depletion of our natural microbial symbionts

[19].

Several population-based studies that examine many variables have begun

to provide insights into factors that shape microbiomes within populations. Drugs,

especially antibiotics, but also metformin and proton pump inhibitors, have a

surprisingly large e↵ect on the microbiome and must be controlled for in studies

that seek to link microbiomes to disease [65]. Long-term diet has a large e↵ect,

especially the balance of carbohydrates and protein. Age and season have large

e↵ects, although it is not known whether these are mediated in part by diet. Having

a dog has an intermediate e↵ect, smaller in the gut than in the skin and in the

indoor environment [44, 214]. Many other factors, including sex, Body Mass Index

(BMI), and even amounts of sleep and exercise can be identified as di↵erences

among groups that contain hundreds of subjects per group but cannot be used

to classify individuals. Host genetics has a surprisingly small impact in humans

compared to other factors: although monozygotic twins are slightly more similar

to one another than are dizygotic twins, hundreds of twin pairs are needed to

see this e↵ect. However, some specific components of the microbiome are highly
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heritable and correlate with phenotype. For example, Christensenella, identified

by microbiome-wide heritability analysis, correlated with low BMI, including in

slimmed down germ-free mice that received an otherwise obesogenic microbiome

from an obese human donor. Replicating this feat to manipulate weight or other

phenotypes in humans remains a goal for future studies.

1.1.3 Connections between specific gut microbes and ac-

tion of therapeutic agents

The literature demonstrating how gut microbes a↵ect the e�cacy or toxicity

of specific drugs is expanding rapidly. Here we provide a few illustrative examples

see also Table 1.1 for a brief summary. For additional examples, readers should

consult recent reviews [217, 47].

Analgesics

NSAIDs are used for pain relief in many conditions. Multiple studies have

demonstrated that NSAID use is associated with damage to the small intestine;

the severity of this damage depends on the microbial community present at the

time of NSAID administration [83, 176]. Increased Gram-negative taxa have been

associated with more severe damage [176, 259]. However, the precise link be-

tween NSAID-induced damage and the microbiome remains poorly understood.

Antibiotic treatment can alter the existing microbial community enough to reduce

NSAID-associated small intestinal damage in humans [200], and can alter micro-
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bial metabolism of aspirin to potentiate its anti-thrombotic e↵ects in mice [109].

However, other known negative e↵ects of antibiotic treatment suggest risks in us-

ing antibiotics to reduce adverse events from specific combinations of microbiome

state and NSAID use. For example, antibiotic treatment of mice transplanted

with a microbiome considered to be ‘protective’ against NSAID damage produced

higher mortality with NSAID administration [257], underscoring that the associa-

tion between NSAID usage, microbiome community structure, and bowel damage

reduction is complex and must be approached carefully. Probiotic strains have been

deployed to prevent NSAID-induced bowel damage. For example, protective e↵ects

of Lactobacillus gasseri against aspirin-induced small intestinal damage have been

assessed in human subjects [223], and although results were promising, studies in

larger populations are needed to evaluate the e�cacy of this approach. In addi-

tion, the impact of the gut microbiome on the bioavailability, e�cacy and toxicity

of orally administered drugs, xenobiotics and dietary substances was studied for

>30 pro-drugs [216]. Many prodrugs that treat gut inflammation are converted

to active forms by the gut microbiome. These include sulfasalazine, olsalazine, ip-

salazide and balsalazide, for which the aminosalicylic acid needs to be released in

order to become active [181]. Gut bacteria of the genera Clostridia and Eubacteria

exhibit this ability [187].
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Antibiotics

Although antibiotics influence the composition of the microbiome, the ef-

fects of antibiotic treatment depend on its starting composition. The extent of

cellular damage induced by ex vivo antibiotic exposure of fecal samples depends

on the individual’s original microbiota [156]. This is consistent with previous data

demonstrating species-specific susceptibility to antibiotics [171]. Healthy adults

with similar microbial communities prior to treatment with cefprozil had similar

alterations in the abundance of Enterobacter cloaceae following treatment [189].

The gut microbiome may also regulate the e↵ect of antibiotics at distal sites of

infection. Resistance genes that lead to chemical modifications, such as hydrolysis

or chemical modification, may decrease the bioavailability of the antibiotic [18],

potentially leading to a lower e↵ective concentration at the primary site of infec-

tion. Future work is needed to investigate whether the overall gut microbiome

composition influences these resistance genes.

Cardiac glycosides

Cardiac glycosides are a family of organic compounds that increase the con-

tractility of the heart and are prescribed mainly for congestive heart failure and

cardiac arrhythmia. The bioavailability of one of the most common cardiac glyco-

sides, digoxin, varies greatly among patients. Early experiments showed that some

patients’ gut microbiota can metabolize digoxin into inactive metabolites and that

pretreatment with antibiotics in individuals harboring these microbiota increased
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the plasma level of digoxin [135]. Detailed metagenomic analysis identified a Car-

diac Glycoside Reductase (CGR) operon in some, but not other, strains of the

commensal gut bacteria Eggerthella lenta, which is responsible for the degradation

of this drug [70]. Studies in animal models revealed that supplementation with

the amino acid arginine can suppress the cgr operon and increase digoxin bioavail-

ability. These experiments underline the importance of the microbiome in drug

metabolism and provide an example where targeted therapeutic alternatives, in

this case arginine supplementation in place of antibiotic treatment, can improve

clinical outcomes.

Metformin

Metformin is used in the treatment of Type 2 Diabetes (T2D). Since its

introduction in the 1950s [153], many mechanisms of action have been proposed

to explain its e↵ects on the liver and insulin-sensitive tissues [110]. However, a

recent report of trans-species transmission of the therapeutic e↵ect of improved

glucose tolerance from the stool of metformin-treated humans into germ-free mice

[256] suggests that the insulin-sensitizing e↵ects of the drug may result from a

metabolic shift in the gut microbiome rather than direct e↵ects on the liver or other

tissues. Further evidence for this mechanism is suggested by the fact that most

common side-e↵ects of metformin are GI-centric (nausea, vomiting and diarrhea),

and delivery of metformin into the portal vein did not change hepatic glucose

production [158].
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Fecal microbiota transplants (FMT)

Microbiome transplants could potentially be used for many indications in

the gut, but also in skin, oral, eye and vaginal health. The most prominent example

is the treatment of recurrent Clostridium di�cile infection (CDI). The standard of

care for recurrent CDI is antibiotics, which inadvertently deplete other microbes

necessary for healthy gut function. FMT have outstanding e�cacy in treating

CDIs [233]. The procedure relies on finding a healthy donor (often a close-relative

or friend, although the evidentiary basis for this choice is weak), who donates

fecal microbes for transplant into the diseased subject. Changes occur in the mi-

crobial communities of the recipient in less than a day, and disease-associated

symptoms quickly disappear [244]. A meta-analysis of longitudinal datasets re-

vealed that post-FMT subjects also recover dynamic features common to healthy

humans [16]. FMTs are not 100% e↵ective and there is even anecdotal evidence

of unintended changes, such as sudden excessive weight gain post-FMT [10]. This

has led researchers to seek optimal conditions for e↵ective FMT, such as antibi-

otic pre-treatment [90, 99]. From an ecological standpoint, the logic behind this

is straightforward, because newly introduced communities need not compete with

an established community of bacteria, and can develop interactions likely already

present in the donor’s gut. Outside the gut, adding microbes from healthy individ-

uals to skin a✏icted with atopic dermatitis reduces symptoms [168] and vaginal

microbe transplants from healthy individuals may overcome bacterial vaginosis
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[clinical trial1]. The microbiome field is still young so other beneficial transplant

therapies will likely be developed in the future. However, public enthusiasm for

such treatments and for probiotics still greatly outstrips the available scientific

evidence.

1.1.4 Microbiome e↵ects on host responses to drugs

An important emerging area of investigation in drug response is the e↵ects

of the microbiome on host responses to chemotherapeutics. Although sequencing

tumors and pharmacogenomics plays a key role in precision medicine, our microbial

genomes can also a↵ect host gene expression throughout the body, altering drug

metabolism and e�cacy. Because the gut microbiome varies markedly among in-

dividuals, host-drug interactions mediated by microbial metabolism warrant close

consideration in tailoring patient treatment.

Studying drug ‘co-metabolism’ by the gut microbiota and the human host

is complicated by interindividual variability in human genetics, diet, and other

clinical factors. Additionally, the human intestine is relatively inaccessible for di-

rect examination. Animal and in vitro models can provide useful tools to simplify

the study of these interactions. Even non-mammalian models can be important

for exploring drug metabolism. For example, fluropyrimidines are among the most

widely used chemotherapeutics for treating colon cancer. Two detailed mechanis-

tic studies exploiting the power of large population sizes in C. elegans combined

1
https://clinicaltrials.gov/ct2/show/NCT02236429
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with the ability to associate specific components of the microbiome and mutant

bacterial strains allowed elucidation of the precise pathways by which components

of the microbiome such as E. coli and Comamonas upp enable the action of this

chemotherapeutic agent via bacterial pyrimidine metabolism, using proliferation

of gonad cells (and hence reproduction) as a bioassay for side-e↵ects [60, 203].

This is a new innovation as mammalian (mouse, rat, guinea pig, hamster, rabbit)

models are more widely used to study the interaction of microbial communities

and common pharmaceuticals.

Although human studies are the gold standard, they have many limitations.

They require Institutional Review Board (IRB) approval, are invasive, costly, and

there is high and uncontrolled inter-individual variability. Close medical super-

vision is required and toxicity must be carefully monitored. Animal studies are

less expensive, have logistical advantages with control of age and dietary variabil-

ity, and all tissues can be directly accessed. However, the results do not always

translate to humans (in part because the gastrointestinal physiology, diet and mi-

crobiome all di↵er markedly) and coprophagy can be an issue. Even so, animal

studies have considerable cost and ethical issues, especially when large sample sizes

are needed to set dosage ranges and identify sources of inter-individual variability.

In vitro systems are therefore attractive models and preferred in early preclinical

phases of drug discovery and screening. They are cheaper and provide easy ac-

cess to materials, logistical and scale advantages, and incur no ethical concerns

[216]. However, in vitro systems are often oversimplified and lack intestinal secre-
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tion, measures of absorption, and host-microbe interactions. Nonetheless, several

in vitro models have been developed and have had considerable utility. One is

a Simulator of the Human Intestinal Microbial Ecosystem (SHIME) consisting

of a six-stage reactor, simulating stomach, duodenum/jejunum, ileum, ascending,

transverse and descending colon [231] and provides a simpler model for growing

human fecal bacteria at scale [152]. Each experimental method has its own ad-

vantages and disadvantages; in vivo studies provide insight in the real life colonic

metabolism, while in vitro models are more cost-e↵ective and do not have ethi-

cal drawbacks. No perfect model exists and therefore a combination of di↵erent

methods is preferred to clarify the role of the gut microbiome in drug metabolism.

Diet can modify the gut microbiome and gene expression of the host and

thus influence epigenetic changes associated with diseases; such changes a↵ect host

gene expression through histone modifications, DNA methylation and non-coding

RNAs [85]. The epigenetic changes are heritable and persist from one cell gener-

ation to the next. Nutrition contributes to a large extent to the gut microbiome

and the gut microbiome has an important role in human metabolism. The gut mi-

crobiome is thus potentially the largest environmental factor a↵ecting the human

epigenome. Indeed, comparisons of germ-free mice with conventionally raised mice

show di↵erences in gene expression patterns throughout the body, including in the

liver and brain. Initially germ-free mice colonized early with microbes resembled

conventionally raised mice in physiology, gene expression and behavior, whereas

those colonized later resembled germ-free mice, suggesting microbiome-mediated
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critical periods for development [42]. However, the mechanistic basis for these ef-

fects is unknown. One specific interaction that has been well characterized is that

bacteria are responsible for short chain fatty acid formation, especially butyrate,

in the gut. Butyrate promotes cell turnover of colon epithelium cells. In colonic

cancer cells, glucose rather than butyrate is used as growth substrate. Butyrate ac-

cumulates in the nucleus, inhibits cell proliferation and induces cell apoptosis [144].

In addition to their impact on the colonic epithelium, many microbial products are

absorbed into the blood and lymph and can alter gene expression systemically.

In the human body small-molecule drugs are largely metabolized by human

cytochrome P450 enzymes in the liver (CYP450). These enzymes can also convert

prodrugs into their active molecules. P450 enzymes are highly polymorphic in

humans and greatly impact drug response [262]. The variability in CYP450 is

not limited to humans: bacterial CYP450 enzymes vary in copy number, function,

and substrate [98]. Germ-free mice have di↵erent CYP450 expression profiles than

conventionally raised mice and alterations in expression of other host genes linked

to xenobiotic metabolism [17]. Although di↵erences in the microbiome have not

been linked to CYP450 activity in humans, accurate prediction of drug metabolism

may ultimately require knowledge of both human CYP and the gut microbiota

genetics, since one of the functional roles of the gut is to partially digest and absorb

nutrients and therefore is a major component of metabolismi. Microbially-encoded

cytochromes can also be directly important for drug metabolism. For example, as

noted above, a classic example of microbiota-drug interactions is inactivation of
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the cardiac glycoside digoxin by Eggerthella lenta [135] with metabolism by the

cytochrome-encoding cgr operon in strains of E. lenta [71].

Bile acids are produced by hepatocytes and released by the gall bladder into

the duodenum to absorb fatty acids, cholesterol, and fat-soluble compounds [154].

They are highly e�cient detergents that digest, solubilize, and absorb dietary lipids

and vitamins, and are widely used in drug delivery systems with increasing interest

in using them directly as therapeutic agents [53]. Bile acids are metabolized by

the gut microbiota into secondary bile acids [191], which are reabsorbed via the

enterohepatic circulation and again back into the liver, biliary tract and gut. The

gut microbiome not only influences secondary bile acid formation in gut but also

modulates the enterohepatic system by regulating the bile acid synthesis in the liver

[199]. High levels of secondary bile acids are linked to gastrointestinal diseases,

colon cancer and gallstones [161]. For example, a meat-based diet is associated with

higher levels of taurine conjugation to bile acids and gut production of hydrogen

sulfide [145], which can lead to colon cancer. A high intake of saturated fats leads

to a higher abundance of Clostridium clusters XI/XIVa and sulfate- or sulfite-

reducing bacteria, which are linked to an increase in secondary bile acids produced

by the microbiota [208]. Similarly the gut microbiome can contribute to obesity

and type 2 diabetes since lipid and glucose metabolism are regulated by secondary

bile acids in the gut [242]. Considerable potential exists for using probiotics to

reduce the levels of specific secondary bile acids in the colon, although clinical

trials and validated outcomes are still lacking. In vitro models have shown the
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potential of lactobacilli and bifidobacteria to assimilate cholic acid in their cells

[125]. Thus modifying secondary bile acid production by modifying the microbiome

has promise, although validation in humans is yet to be established.

1.1.5 Prospects for stratifying patient response based on

the whole microbiome

The considerable interindividual variation of the gut microbiome, together

with the impact of the microbiome on drug metabolism opens up possibilities for

stratifying patients on the basis of predicted response to a given intervention.

Microbiome studies, including stratification, have been dramatically trans-

formed by computational tool development [20, 46, 122, 139, 190]. Most develop-

ments address only a specific problem within a long sequence of steps. Tools such

as Quantitative Insights into Microbial Ecology (QIIME) (Quantitative Insights

Into Microbial Ecology) [23] provide an integrated platform that allows scientists

to go directly from DNA sequences to actionable and interpretable results. More

recently these platforms are available in the form of web applications (MG-RAST

[67], MicrobiomeAnalyst [41], VAMPS [87], Qiita2. Such integrated platforms al-

low analysis and storage of microbiome data and reduce infrastructure problems

such as storage, data deposition and fault tolerance. These challenges must be

overcome even for small microbiome studies.

These microbiome analytic platforms have been used to look for di↵erences

2
https://qiita.ucsd.edu/
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in the microbiome and to stratify patients in terms of their therapeutic response

in a number of diseases. For example, Inflammatory Bowel Disease (IBD), a gas-

trointestinal autoimmune condition, has a history [195] and evidence supporting

a microbial-driven origin or regulation [61, 91, 251]. In the studies cited, mi-

crobial and metabolic features were inferred from microbiome and metabolomic

samples to distinguish between healthy and IBD-a↵ected subjects. This approach

is of value because current diagnostic methods rely on expensive tests, such as the

quantification of calprotectin present in fecal samples [117]. Further development

of microbiome biomarkers could provide non-invasive, a↵ordable methods to de-

tect a group of bacteria or molecules. However, the classification accuracy of this

method can be too low with fecal samples and even with rectal or ileal biopsies

(which show the best performance) [61]. A promising approach uses a dog model

of IBD [235], in which methods established and tested in humans were applied

to a cohort of IBD and non-IBD a↵ected dogs. In contrast to the sensitivity and

specificity of the approach in humans, the microbial signal present in a dog’s fecal

sample was su�cient to classify IBD in dogs, with better performance than that

obtained from biopsy samples in humans. These types of predictive models, using

the microbiome data and certain data classifiers, have been useful for predicting

which patients will best respond to specific drugs for Parkinson’s Disease [82], and

for predicting which dietary items have the greatest patient-specific impact on

blood glucose response[264].

Advances in untargeted metabolomics may be key for understanding mi-
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crobial metabolism and its impact on drug responses. For Mass Spectrometry

(MS), the advent of large and community-curated reference knowledgebases like

Global Natural Products Social Molecular Networking (GNPS) [239] provides a

crowd-sourced data repository and peer-reviewed family of annotations for natu-

ral products, xenobiotics and metabolites. This is an important step towards the

democratization and adoption of MS in a broad range of fields. GNPS further

provides an analytic infrastructure to help generate molecular networks [243] that

can be used to study drug metabolism [186]. Integrating MS and microbiome data,

whether 16S rRNA profiling or shotgun metagenomics, is not a simple task but will

ultimately provide key insights into complex problems for which the microbial char-

acteristics alone are not useful, and where, for example, the presence/absence of a

molecule could break ties or strengthen inferences in an algorithmic context. Co-

occurrence and co-exclusion detection models could potentially benefit, because

the current state of the art presents formidable challenges [126, 246]. However,

statistical obstacles must be addressed so as to improve the ability to correlate

microbiome and metabolite datasets. These dataset may have far more features

than samples, and applying pairwise correlations leads to many spurious correla-

tions. Finally, interpreting the results of these methods remains a major challenge,

because these methods do not output correlations for individual microbiomes and

molecules, but rather correlations between abstract axes that are composed of com-

plex and often uninterpretable combinations of microbes and molecules. Enabling

straightforward interpretation will be key for streamlining these methods so they
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can be applied clinically. Such interpretation will also become easier as MS refer-

ence data and data sets of microbes and microbial molecules become available, a

gap GNPS is aiming to fulfill.

1.1.6 Outlook

Recent advances have enabled the characterization of the human body from

an integrative perspective across many data axes (‘omes’: genome, gene expression,

microbiome, metabolome, virome, proteome, exposome, etc). When these hetero-

geneous data layers are combined, their full potential can address systems-level

problems even when mechanisms are not fully understood. An outstanding exam-

ple of this type of deep characterization is glycemic responses [264]: by combining

16S rRNA microbial profiling, food frequency questionnaires, anthropometric data,

and glucose monitoring, one can create a model that successfully predicts each in-

dividual’s blood glucose response to a specific meal and can create personalized

diets that to increase or decrease the glycemic response of a set of new subjects

not in the original study. These results are of utmost importance in this context,

as the glycemic responses are known to be a personalized feature [237, 238]. In a

separate study by the same group, researchers demonstrated that transitioning an

individual’s diet between industrial white bread, and whole grain sourdough bread,

resulted in small changes in the microbiome and glycemic responses that di↵ered

on an individual-by-individual basis [119]. These experiments, which could be ap-

plied equally well to drug responses, are leading examples of the possibilities in the
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as-yet nascent ability to personalize treatments, not only based on the traditional

one-dimensional approach (anthropometric data), but by modeling the body with

a holistic integrative approach.

The microbes and molecules present on and in our bodies can produce a

dysbiotic or healthy environment. Therefore, we must characterize the archetyp-

ical organizations of our microbiome in large populations. We caution against

attractive yet incorrectly oversimplified stratification approaches [13] that are very

sensitive to arbitrary parameter selections [114, 121]. Instead, one must embrace

the complexity of the microbiome, including its dynamic features (for example

the rate of change of groups of bacteria). It was recently shown that patients

with active IBD have microbiomes that experience more variability over time than

healthy controls [72] while microbiome ‘motion’ of healthy subjects was much more

restricted. Properly establishing a mechanism that describes these dynamics and

creating appropriate models that take them into account remains a challenge, given

the number of patients and samples obtained longitudinally that will be required

for validation.

Better models of drug action may require a microbiome component. In

a large-scale study analyzing over 1,000 Dutch participants, a series of lifestyle

descriptors (diet, smoking habits, medications, etc.) were used to model their bac-

terial composition, and these descriptors could recapture almost 20% of the total

microbial variation when using metagenomic sequences [266]. However, 80% of

variation remains unexplained. The microbiome may serve as a proxy to covari-
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ates that may not be readily available in all scenarios. For example, that study

also found that decreased microbial and functional diversity was linked to a higher

hemoglobin levels. Such studies need to unravel underlying mechanisms driving

these associations and must show consistency across cohorts.

Is it possible to change a patient’s microbiome to improve drug response?

An intriguing example of this is that bioavailability of the antiarrhythmic drug

amiodarone can be increased by concomitant administration E. coli Nissle 1917

in rats [47, 155]. Similarly, in germ-free mice colonized with the Eggerthella lenta

DSM2243, access to a high protein diet rich in arginine inhibits digoxin inactiva-

tion [70, 142], suggesting that dietary changes could also a↵ect the metabolism of

the native gut microbiota to modify e�cacy. Cheaper microbiome sampling and

analysis, combined with algorithms and visual displays to better interpret results,

could therefore open up a whole new area of modifying or drugging the microbiome

to convert drug non-responders into responders.
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Chapter 2

Exploratory microbiome data

analysis

As we learnt in Chapter 1, there’s a wealth of information that can be

acquired through the study of microbial communities. The acquisition of this

knowledge, however, is often only possible through the usage of specialized soft-

ware for analysis and visualization. QIIME, introduced previously, is a successful1

microbiome analysis pipeline that integrates a collection of bioinformatics tools

and makes these programs available through a unified user-interface. Until its

fifth release, QIIME relied on Kinemage, Next Generation (KiNG) to represent

three-dimensional �-diversity plots. KiNG was originally developed as a molecular

viewer and was hacked to act as a scatter-plot viewer. As datasets got larger and

1
At the moment of this writing the original paper has been cited over 8,000 times according

to Google Scholar, and the Python package has been downloaded over 34,000 times, data from

https://pypi.org and https://anaconda.org.
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more common, it became clear that we needed to develop our own solution, thus

we created Emperor.

Emperor is an interactive �-diversity viewer, tailored to fit the QIIME

ecosystem. �-diversity plots, commonly referred to as ordinations or dimensional-

ity reductions, are often the starting point when analyzing a microbiome dataset.

Their ability to overview the relative di↵erences of an unlimited number of sam-

ples with an unlimited number of covariates makes this representation invaluable

to diagnose and troubleshoot any problems that may have occurred during sample

collection, preparation, or processing. For example, batch e↵ects are often easy

to notice in this representation [62] but more challenging to see in feature-level

analyses, especially if those specific features are not a↵ected by the batch e↵ects.

As use-cases arose, these were integrated as part of the software, something

previously not possible with KiNG. A notable feature allowed users to animate

longitudinal sampling schemes, of key importance for the work in Chapter 4 and

Chapter 5. The following two sections introduce Emperor, further discussing some

of its statistical capabilities, and the use of animated ordinations as a way to

interact with microbiome data.

Chapter 2.1 was published in the journal GigaScience, 2013 and Chapter 2.2

was published in the journal Cell Host & Microbe, 2017. As the lead contributor

of these two sections, I co-wrote the text, generated the main figures, wrote the

software for the Python package, wrote documentation, and still maintain the

project in the context of QIIME and provide support through the QIIME Forum.
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2.1 EMPeror: a tool for visualizing high-through-

put microbial community data

Background

As microbial ecologists take advantage of high-throughput sequencing tech-

nologies to describe microbial communities across ever-increasing numbers of sam-

ples, new analysis tools are required to relate the distribution of microbes among

larger numbers of communities, and to use increasingly rich and standards-compli-

ant metadata to understand the biological factors driving these relationships. In

particular, the Earth Microbiome Project drives these needs by profiling the ge-

nomic content of tens of thousands of samples across multiple environment types.

Findings

Features of EMPeror include: ability to visualize gradients and categorical

data, visualize di↵erent principal coordinates axes, present the data in the form

of parallel coordinates, show taxa as well as environmental samples, dynamically

adjust the size and transparency of the spheres representing the communities on a

per-category basis, dynamically scale the axes according to the fraction of variance

each explains, show, hide or recolor points according to arbitrary metadata includ-

ing that compliant with the Minimum information about any (x) sequence (MIxS)

family of standards developed by the Genomic Standards Consortium, display

jackknifed-resampled data to assess statistical confidence in clustering, perform
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coordinate comparisons (useful for procrustes analysis plots), and greatly reduce

loading times and overall memory footprint compared to existing approaches. Ad-

ditionally, ease of sharing, given Emperor’s small output file size, enables agile

collaboration by allowing users to embed these visualizations via e-mails or web

pages without the need for extra plugins.

Conclusions

Here we present EMPeror, an open source and web browser enabled tool

with a versatile command line interface that allows researchers to perform rapid

exploratory investigations of 3D visualizations of microbial community data such

as the widely used principal coordinates plots. EMPeror includes a rich set of

controllers to modify features as a function of the metadata. By being specifically

tailored to the requirements of microbial ecologists, EMPeror thus increases the

speed with which insight can be gained from large microbiome datasets.

2.1.1 Background

Rapid increases in sequencing capacity are greatly expanding our ability to

understand the microbial world: scaling from a handful of samples to hundreds,

or thousands, allows a rich picture of trends over temporal and spatial scales that

were previously unattainable. Human microbiome studies are not the only benefi-

ciaries of this ability to perform increased sampling: large-scale patterns are now

being discovered in communities ranging from soils [129] to oceans [77] including
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the e↵orts from the International Census of Marine Microbes (ICoMM). We can

now process thousands of samples in a single sequencing run [24], and in turn

computational tools must also scale to fulfill these needs [68].

Although data visualization is an empowering tool that allows an e�cient

understanding of information [173], it remains a major challenge in this area of

study, specifically because with more samples comes richer information relating

the samples to one another (this contextual information is often referred to as ‘se-

quence metadata’) and to the study design itself. When analyzing large numbers

of samples, researchers need to know the patterns that link specific samples or mi-

crobes to overall patterns of diversity, and to di↵erent metadata variables: this is

typically critical for usable visualizations. A well know ecological metric to quickly

compare the microbial composition of the samples is beta diversity, which collates

them by creating a distance matrix of these di↵erences. Ordination methods such

as Principal Coordinates Analysis (PCoA) [69] are useful for dimensionality reduc-

tion and widely used in di↵erent fields to conceptualize distance matrices, however

determining how to visualize the samples to reveal clear patterns often remains a

challenge. Figure 2.1 A shows the samples colored by the body site each belong

to, a common approach that will make evident the main di↵erences explained in

the first two axes of variation, however when integrating metadata in the coloring

patterns (Fig 2.1 B-1, B-2), the plot clearly shows the age di↵erences between the

samples of an infant, compared to the samples belonging to healthy human adults.

There are several existing methods for displaying PCoA results, but none to

35



P
C

2
 (

8
 %

)

P
C

2
 (

8
 %

)

P
C

1
 (

1
4

 %
)

P
C

1
 (

1
4

 %
)

P
C

1
 (

1
4

 %
)

A
G

E
_

IN
_

Y
E

A
R

S

A
G

E
_

IN
_

Y
E

A
R

S

A
G

E
_

IN
_

Y
E

A
R

S

A

B
-2

B
-1

E
xt

e
rn

a
l A

u
d

ito
ry

 C
a

vi
ty

F
e

ce
s

H
a

ir
N

o
st

ri
l

O
ra

l C
a

vi
ty

S
ki

n
U

ri
n

e
V

a
g

in
a

Years

8
0 0

P
C

2
 (

8
 %

)

F
ig
u
re

2
.1
:
E
M
P
er
or

d
is
p
la
y
sh
ow

in
g
th
e
co
m
b
in
at
io
n
of

th
e
d
at
as
et
s
d
es
cr
ib
ed

in
[2
4,

34
,
83
,
83
],
co
n
si
st
in
g
of

57
40

sa
m
p
le
s
re
p
re
se
nt
in
g
hu

m
an

au
d
it
or
y
ca
n
al
,
sk
in
,
n
os
tr
il
,
fe
ce
s,

va
gi
n
a,

u
ri
n
e,

h
ai
r
an

d
or
al

b
od

y
h
ab

it
at
s.

(A
)
D
at
a

co
lo
re
d
by

b
od

y
h
ab

it
at
;
(B

-1
)
P
ri
n
ci
p
al

co
or
d
in
at
e
1
(P

C
1)

vs
.
P
C
2
w
it
h
th
e
sa
m
e
th
e
d
at
a
co
lo
re
d
ac
co
rd
in
g
to

th
e

ag
e
of

th
e
su
b
je
ct
s
(a

co
nt
in
u
ou

s
va
ri
ab

le
).

(B
-2
)
P
C
1
vs
.
an

ex
p
li
ci
t
ti
m
e
ax

is
.
T
h
e
re
su
lt
s
al
lo
w

u
s
to

se
e
by

im
m
ed
ia
te

vi
su
al

in
sp
ec
ti
on

th
at

th
e
b
od

y
h
ab

it
at
s
ar
e
re
m
ar
ka
b
ly

d
i↵
er
en
t
b
et
w
ee
n
ea
ch

ot
h
er

an
d
th
at

th
is

is
co
n
si
st
en
t
th
ro
u
gh

ti
m
e
as

a
hu

m
an

re
ac
h
es

ad
u
lt
h
oo

d

36



date specifically designed to account for the common use cases in this research field;

furthermore each of the most representative solutions allots di↵erent limitations.

For example, QIIME [23], an open source framework for upstream and downstream

analysis of microbial community samples generated via high-throughput sequenc-

ing instruments, typically generates 3D plots using KiNG [29] originally designed

as a molecular graphics viewer, which requires static files containing each meta-

data field to be produced in advance, replicating the coordinates for each of these

categories and resulting in long load times and large file sizes when the metadata

are rich. SpotFire [7] is a very expensive commercial solution, beyond the budget

of many research laboratories. Generic packages that provide 3D plotting function-

alities such as MATLAB [5], Mathematica [1], R [6], Excel [3] or Matplotlib [86]

can always be used, but custom code or manual approaches are typically required

to relate each point to a specific visual feature intended to highlight a given vari-

able. Consequently, this could become a time-consuming process, which as a side

e↵ect compromises its reliability, reusability and reproducibility. Moreover, none

of the previously mentioned applications are specifically modeled to support the

workflows of the modern microbial ecologist. Allowing the user to choose among

metadata coloring dynamically, and separating coloring from visibility, has a sur-

prisingly large e↵ect in encouraging interactive exploration, understanding and

analysis, and often allows insights into the main factors, as well as more subtle

ones, structuring the data to be obtained much more rapidly.
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2.1.2 EMPEROR

EMPeror is a thoroughly tested and open-source software package with an

interactive user interface and hardware-accelerated graphics, implemented with

HyperText Markup Language, version 5 (HTML5), Web Graphics Library (We-

bGL), Javascript and Python, and tightly integrated with QIIME [23] and PyCo-

gent [111]. EMPeror’s command line interface accepts QIIME principal coordinates

files and metadata mapping files, and produces an interactive 3D visualization that

can be delivered in the context of a web page independent of the command line

tool. As an example of EMPeror’s ability to deal with continuous variables (time,

alpha diversity, pH) that are part of the metadata, these factors can be integrated

as an explicit axis in the plot, lines connecting subsequent points of single trajec-

tories (treatments, subjects, sites, etc) or using a colormap to have each sample’s

color be a function of its position in the gradient. The main features that EMPeror

provides are:

1. easily change visibility features of data points in the plots based on metadata;

2. can be easily embedded into other tools, such as Evident2 as a reusable

visualization component;

3. scale to thousands of points with minimal load times (seconds versus many

minutes in KiNG);

2
http://github.com/qiime/evident
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4. ability to display auxiliary data to increase the understanding of the intrin-

sic data patterns; these include: biplots [81], procrustes analysis [167], and

jackknifed beta diversity plots [123].

To illustrate the e↵ectiveness of EMPeror, we show the combination of

[24, 34, 83, 83], see Table2.1, as generated with the QIIME web application3. This

combination represents 5740 samples (spheres), and 120 columns of metadata [4].

In KiNG, the resulting files for both the discrete and gradient coloring result in a

size of 1.85 GB, but in EMPeror only 26 MB4, meaning only 1.3% of the original

size, see Figure 2.1. Additionally, we can easily view the intrinsic age patterns

within the data, Figure 2.1 B, both panels. EMPeror installation instructions can

be found in the online documentation5.

2.1.3 Conclusions

EMPeror provides a user-friendly interface and set of tools for visualizing

large numbers of microbial community samples associated with increasingly ex-

tensive metadata, and interactively manipulating these data sets to add auxiliary

data and visualization techniques. Additionally, it contains several user interface

features, which enable straightforward modifications and customization of percep-

tible aspects in the plot plus the incorporation of statistical techniques, which also

help increase the ease and speed of exploratory analysis. We believe that EMPeror

3
http://www.microbio.me/qiime/

4
ftp://thebeast.colorado.edu/pub/emperor files/

5
http://qiime.org/emperor/installation index.html

39

http://www.microbio.me/qiime/
ftp://thebeast.colorado.edu/pub/emperor_files/
http://qiime.org/emperor/installation_index.html


T
a
b
le

2
.1
:
S
tu
d
ie
s
u
se
d
to

cr
ea
te

F
ig
u
re

2.
1

T
it
le

G
en
er
al

d
es
cr
ip
ti
on

C
ol
le
ct
ed

sa
m
p
le
s

R
ef
er
en
ce
s

M
ov
in
g
p
ic
tu
re
s
of

th
e
hu

m
an

m
i-

cr
ob

io
m
e

S
am

p
le
s
fr
om

tw
o
su
b
je
ct
s
ar
e
co
ll
ec
te
d
fo
r
u
p
to

15

m
on

th
s
in

th
re
e
b
od

y
si
te
s
(o
ra
l,
sk
in

an
d
gu

t)
19
64

[2
4,

55
]

B
ac
te
ri
al

co
m
m
u
n
it
y

va
ri
at
io
n

in

hu
m
an

b
od

y
h
ab

it
at
s
ac
ro
ss

sp
ac
e

an
d
ti
m
e

S
am

p
le
s
fr
om

h
ea
lt
hy

ad
u
lt

hu
m
an

sa
m
p
le
s
fr
om

ei
gh

t
su
b
je
ct
s
of

u
p
to

27
b
od

y
si
te
s

58
5

[3
4]

S
tr
u
ct
u
re

fu
n
ct
io
n

an
d

d
iv
er
si
ty

of

th
e
h
ea
lt
hy

hu
m
an

m
ic
ro
b
io
m
e

S
am

p
le
s
fr
om

24
2
h
ea
lt
hy

ad
u
lt
hu

m
an

sa
m
p
le
s
fr
om

u
p
to

ei
gh

te
en

d
i↵
er
en
t
b
od

y
si
te
s

31
31

[8
3]

S
u
cc
es
si
on

of
m
ic
ro
b
ia
l
co
n
so
rt
ia

in

th
e

d
ev
el
op

in
g

in
fa
nt

gu
t

m
ic
ro
-

b
io
m
e

G
u
t

sa
m
p
le
s

co
ll
ec
te
d

b
iw
ee
kl
y

fr
om

an
in
fa
nt

th
ro
u
gh

th
e
fi
rs
t
2.
5
ye
ar
s
of

li
fe

60
[8
3]

40



will have a large impact on the field, especially for large-scale environmental sam-

pling projects such as the Earth Microbiome Project [64], and large-scale clinical

projects such as the Human Microbiome Project [83].
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2.2 Bringing the Dynamic Microbiome to Life

with Animations

Our bodies and natural environment contain complex microbial commu-

nities, colloquially termed microbiomes. We previously created a web-based ap-

plication, EMPeror, for visualizing ordinations derived from comparisons of these

microbiome communities. We have now improved EMPeror to create interactive

animations that connect successive samples to highlight patterns over time.

2.2.1 Introduction

Recent developments in high throughput DNA sequencing, improvements

in molecular methods, and the continual increase in computational power have

enabled microbiome researchers to test ever-more sophisticated hypotheses and

study designs. Just a decade ago, a microbiome study with a few dozen samples was

considered large. However, new technologies now enable studies with thousands of

samples that can explore di↵erences at the scale of population or environmentals.

One iconic result of these studies is the presentation of aggregated micro-

biomes from di↵erent human body sites within a single plot, where samples from

equivalent body sites across many di↵erent individuals all cluster together (for

an example, see Figure 2.2). This body site clustering was initially observed in a

study of 9 people [34], and then replicated across hundreds of people in the Human

Microbiome Project (HMP) [83]. As useful as these static snapshots have been in
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examining the variation in diversity across populations, they do not reveal tempo-

ral dynamics, which may stem from intrinsic properties of the ecosystem such as

inter-species interactions or external drivers such as drugs or diet (in humans) or

envionmental perturbations. As seen in macroscopic ecology, changes in the rela-

tive abundance of organisms can occur on short time scales. Given that population

doubling times of some bacteria can be less than 20 minutes, these time scales can

be potentially very short for commensal communities. A single gram of stool can

contain over one billion microbial cells, 1000 times the density of microbes in the

ocean surface. These microbes are represented by hundreds of species, thousands

of strains, and an estimated 3.3 million microbial genes [185]. Individual species

and strains compete for resources (e.g., fiber), which can impose limitations on or-

ganism populations as the supply and demand of resources are dynamic overtime.

Additionally, there are time-dependent bacteriophages which target and kill spe-

cific bacteria, or in some cases, promote Horizontal Gene Transfer (HGT), which

can alter the strains (e.g., antibiotic resistance genes are commonly transferred

via HGT). Furthermore, many selective pressures act on the microbiome. For ex-

ample, the human immune system acts as a regulatory force for the constituent

organisms. This includes the innate and adaptive immune system, but also the

variety of white blood cells and their antimicrobial glycoproteins. Additionally, mi-

crobial cells, many of which are capable of highly optimized metabolic processes,

are subjected to a constantly changing set of compounds from the host’s diet, as

well as an intermittent exposure to antibiotics and other xenobiotics (in the case
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of diseased subjects, antibiotic use can lead to dysbiotic microbiomes, especially

when taken frequently and at high doses).

The emergence of quantitative microbial ecology dynamics will be impor-

tant for strengthening our basic scientific understanding of the microbial world.

Additionally, it will also quickly become an essential tool for medicine. Currently,

when antibiotics or other pharmaceuticals are given, the doctor does not know

the state of the microbiome or how it will be altered. Being able to read out and

predict changes in the microbiome will enable a field of precision medicine, for

restoring the altered ecology to a healthy one. Similarly, there is great hope that

designer pre- and probiotics will be powerful tools for ‘gardening’ one’s microbiome

back to health. However, until more quantitative and large-scale trials have been

performed with longitudinal tracking of the changes in the microbiome ecology,

the precise impact of these tools will remain, at best, a conjecture.

With the improved understanding of human microbial dynamics, the con-

ceptual framework of medicine will continue to experience big changes. As recently

described [35] many fundamental concepts from ecological theory are directly ap-

plicable to the host-microbiome ecology. However, these topics have not yet been

widely incorporated as part of general medical training. Concepts of succession and

community assembly in previously unoccupied habitats (infant growth of microbial

diversity), assembly after disturbance (recovery from antibiotics) and blooming of

invasive species (food poisoning by pathogens). Each of these topics will be elu-

cidated in the coming decade by analyzing time series of microbial ecologies, es-
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pecially in testings with defined perturbations, and integrated with metabolomics,

metatranscriptomics, metaproteomics, and host biomarkers.

2.2.2 Ordinations

Datasets that have been obtained from DNA sequencing often have very

high dimensionality, up to thousands of dimensions for each sample. Given the

high dimensionality of microbiome studies, the use of dimensionality reduction

techniques, otherwise known as ordinations, have been widely used in the field

(some examples include Principal Component Analysis (PCA), Principal Coordi-

nates Analysis (PCoA), Non-metric Multidimensional Scaling (NMDS), and Cor-

respondence Analysis (CA)). These techniques are analogous to modern photogra-

phy: photographs capture 2D images of a 3D environment, and although they do

not capture all of the information about the landscape, they can provide enough

information to di↵erentiate and identify objects. Similarly, ordination methods are

valuable tools for capturing snapshots of these microbial populations and better

understanding the major driving factors a↵ecting these populations.

Although it is clear that the frontier of microbiome research is shifting to

understanding microbiome dynamics, it remains a challenge to ‘see’ the dynam-

ics in these increasingly large datasets. Traditional time-series analysis techniques

were developed around densely sampled and evenly collected variables, restrictions

that are often impossible in clinical and ecological settings. Beyond these tech-

nical limitations with sampling, the complex dynamics of most microbial ecology
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datasets violate assumptions of periodicity and stationarity, used in many statis-

tical methods for time-series analysis. For an expanded discussion and review of

this topic, see [52].

A few pioneering studies have been published for microbiome time series,

but these visualizations were typically performed using custom ‘one-o↵’ software

that is generally harder to modify, maintain and reuse. However, these examples

showed the promise of visualizing microbiome dynamics. For instance [56], de-

scribed in detail the per-subject alpha and beta diversity variations, as well as

the individual variability observed in the time point to time point comparisons.

Another remarkable example presented by [36] examined pre- and post-dietary in-

tervention comparisons at the microbiome and gene expression level. Similarly,

[141] used the data from an infant’s first 27 weeks of life to show that you can

visualize the assembly of gut communities and contextualize it with the data of

healthy human adults of the HMP. This analysis shows a step-by-step transition

of the infant’s communities as they transition into one of a healthy adult. [24]

showcased the variability in the three body sites of the two surveyed subjects.

More importantly, it gradually painted a picture, sample by sample, of the overall

stability and dynamics present in the dataset.

2.2.3 EMPeror

EMPeror is a response to the many requirements that are specifically rele-

vant to high throughput microbiome studies. The core idea behind this software
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is to allow users to rapidly explore a dataset, traversing hundreds of sample meta-

data categories and minimizing the necessity of custom plotting code. All of this

can occur without requiring a complex software installation or domain-specific

knowledge.

EMPeror [236] is a web-enabled scatter plot viewer for microbiome analysis

that was originally made available in 2013 as part of the QIIME pipeline [23], and

developed for the Earth Microbiome Project6. To use EMPeror, two files need

to be provided, the first and most important is the sample metadata file, which

contains covariate information about each sample, and the second file is a matrix

specifying coordinate positions for each sample along a set of axes. In general,

for microbiome studies, the coordinate positions are derived using PCoA. Besides

allowing the easy exploration of high dimensional color ordination spaces (such

as PCA or PCoA), EMPeror supports more specialized techniques, ranging from

displaying jackknifed-resampled data to assess statistical confidence in clustering,

to displaying procrustes analysis plots to determine the goodness of fit between two

independent datatypes, and even being able to visualize biplots. As of version 0.9.5,

users can now create animations inside the user interface without the necessity of

any additional computation.

Like most functionality in EMPeror, animations themselves are made pos-

sible by selecting two metadata categories, a trajectory category and a gradient

category. The first category determines how the samples are grouped together

6
http://www.earthmicrobiome.org
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(e.g. individual), and the second category describes the order of the grouped sam-

ples. As readers might suspect, the ordering is only unambiguous when the values

in the gradient category are numeric; therefore, we recommend that only these data

types are used. Along with these metadata selectors, EMPeror displays a play, a

pause, and a rewind button. These control the state of the traces being presented

on screen.

With this mapping, samples that belong to the same trajectory are sub-

sequently connected by an animated trace (sample by sample). The traces are

created by linearly interpolating a series of points between two samples. The

number of points present in this interpolation depends on the absolute di↵erence

between the two samples in the gradient, meaning that samples that were collected

further apart along a gradient (e.g., if some samples are daily and some are weekly)

will take longer to be connected in the animation than samples that were collected

closer in the gradient. This allows heterogeneous sampling schemes, common in

clinical trials or when some samples are lost or destroyed during processing, to be

accommodated in the same animation.

Importantly, these animations do not interfere with the interactivity of

a plot. The rest of the controllers (used to manipulate the rotation, zooming,

coloring, size, opacity, etc.) remain available and can be used interactively to create

a narrative that is more relevant for the data. Lastly, EMPeror is a stand-alone

application, that can be easily integrated into a software workflow, for instance

using Jupyter notebooks [182].
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2.2.4 Example

To showcase the utility of this particular type of visualization, we will re-

produce the supplementary video presented in 2015 [244], where four Clostridium

di�cile infection (CDI) patients are surveyed before and after a Fecal Microbiota

Transplant (FMT) to ameliorate the consequences of this enteric infection.

To create this visualization, we must combine this indiviual dataset with

the 16S rRNA amplicon samples from the HMP [83], which includes thousands of

microbiome samples collected from 242 healthy individuals. These HMP samples

create a visual ‘map’ of normal oral, skin, vagina, and stool microbiomes and

provide context for the CDI samples. To combine these studies, we used Qiita7, an

open-source platform for analysis and visualization of microbiome datasets. Qiita

allows users to combine samples, perform the necessary computations for PCoA

(among other analyses), and allows for visualizing the result in EMPeror.

For this example, we selected the number of days since the FMT procedure

as the gradient category and we selected the subject as the trajectory category. By

animating these traces, we first observe that the original patients with CDI had gut

microbiomes that did not resemble healthy adult fecal communities. Immediately

after the FMT, we observe a rapid transition into a health state, which can be

inferred from the movement of the sample locations by the end of the trajectory

to the normal stool region defined by the HMP (Figure 2.2). Critically, these

transitions were associated with the patient’s immediate recovery from the illness.

7
https://qiita.ucsd.edu
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Clostridium dificille Patients (before transplant)
Fecal
Oral
Skin
Vaginal

PC2 (8.05 %) 

PC1 (18.61 %) 

PC3 (4.24 %) 

Figure 2.2: Case study: remission of Clostridium di�cile Infection. Prin-
cipal Coordinates Analysis Plot of unweighted UniFrac distances. After receiving
the fecal transplant, the patients undergo a dramatic transition in their gut mi-
crobiomes. Samples from healthy individuals are colored: blue for oral, green for
skin, pink for vaginal and brown for fecal communities. Patient samples (preced-
ing the transplant) are colored in orange, the traces indicate the trajectory they
follow over time (only four subjects receive a transplant). Access this interactive
animation using your web browser: http://emperor.microbio.me/animation/
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2.2.5 Limitations

The objective of ordinations is to find the dimensions that best describe

as much as possible the variation in a dataset, and therefore reduce the amount

of information that we have to interpret. This property is most often useful for

its ability to distinguish between groups of samples. However, it also makes this

technique sensible to outliers. Consequently, it is important to remember that

the variation explained in a statistical model does not necessarily correspond to

biological importance. In fact, some methods of measuring distance between sam-

ples and ordination techniques for reducing dimensionality can explain much of the

variation in a given dataset, but fail to reveal biologically important patterns [122].

In addition, PCoA is susceptible to an artifact called the horseshoe e↵ect, where

the shared absence of taxa in the middle of the gradient cause the ends to appear

similar and wrap around (other techniques such as Non-metric Multidimensional

Scaling are susceptible to a related problem called the arch e↵ect, where the sec-

ond axis is a distorted reflection of the first), and very sparse data matrices where

most samples are highly dissimilar to one another can produce artifacts resembling

spikes at 90 degree angles to one another, Consequently, choosing the wrong dis-

tance metric or dimensionality reduction method for a dataset can result in visual

artifacts that render those visualizations unusable. These problems are less fre-

quent, but still possible, when phylogenetic distance metrics such as UniFrac [139]

are used. Animating the transitions between samples provides a useful visual aid.
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However, the observed patterns of variation still need to be asessed using descrip-

tive statistics. Di↵erences among sets of community samples can be assessed using

the Analysis of Similarities (ANOSIM) or a Permutational Multivariate Analysis

of Variance (PERMANOVA). These statistical tests compare the groups using the

distance matrix to provide a statistic that measures whether sample category labels

tend to group similar samples together more often than a random shu✏ing of the

labels. Alternatively, feature-level di↵erences can be assessed using compositional

analyses, correlation networks or discriminant features between two groups (using

supervised and unsupervised machine learning techniques).

In our experience, the interpretability of animated ordinations is most com-

monly a↵ected in two cases. The first case can be observed when an inappropriate

frame of reference is used, or when only the animated traces are presented. For the

example above, the HMP data provides a relevant context due to the types of sam-

ples being characterized and the size of the study. However, a reference frame that

included only oral samples, or that contained only a single stool sample, would not

provide nearly as relevant a data frame for display, and the resulting animations

would be di�cult to interpret. The second case occurs when many trajectories are

animated simultaneously, making the ordination busy and increasing the di�culty

of correctly identifying the patterns of variation that are most biologically rele-

vant. This limitation can be overcome by choosing more similar sets of samples to

display, such as patients with more consistently defined clinical phenotypes.
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2.2.6 Conclusions

Microbiome studies are steadily increasing in size and complexity, challeng-

ing our ability to unravel the structure of the ecological interactions occurring at

the microbial scale. As researchers, the software we use greatly impacts our ability

to ask questions of the data. Platforms like the Jupyter Notebook have greatly fa-

cilitated reproducibility of analyses. The success of the Notebook has been in part,

due to building on top of an open and common web infrastructure, the same that

Emperor has adopted. Interactive animations like the example presented above,

can be directly shared with anyone that has access to a modern web browser,

whether it be in a personal computer or in a mobile device.

Sample information (also known as sample metadata) is indispensable to

data reuse and necessary for the creation of complex visuals, like in Figure 1. This

task was partly possible by leveraging the standardization of sample metadata

enforced in Qiita. Without standardization, future generations must undertake

the burden of post-hoc metadata curation, a process that is deeply frustrating and

impossible to automate.

Finally, although EMPeror provides a handful of ways to interrogate a

dataset, we urge the community to create other open source interactive tools that

democratize robust, reproducible and interactive analysis techniques. These tools

should not be usable by only a few experts, but instead must target broader audi-

ences that can benefit from these technological advances.
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2.2.7 Availability

The source code and documentation for version 0.9.60 can be found online8.

Additionally a tutorial (including the data) to generate Figure 2.2 can also be found

online9.
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Chapter 3

Inflammatory bowel disease in

Dogs and Humans

Inflammatory Bowel Disease (IBD) is a family of conditions divided into

two major categories, Ulcerative Colitis (UC) and Crohn’s Disease (CD), each

of which can be further divided into other subtypes specifying location, age of

diagnosis, severity, and behaviour of the disease [197]. In all cases IBD is associated

with diarrhea, inflammation, and flaring episodes of exacerbated discomfort. In

general, diagnostic methods rely on questionnaires, direct examinations of a↵ected

intestinal tissue, or quantification of calprotectin [211].

In this chapter, we introduce work motivated by our recent e↵orts at charac-

terizing the microbiome in new-onset and treatment-naive Crohn’s disease subjects

[61]. Specifically, we focus on comparing the microbiomes of IBD-a↵ected humans

and dogs. As a result, we further expanded the repertoire of features that we know
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and associate with IBD in dogs [164], and through a meta-analysis contextualize

them with human fecal samples [61].

As we did before [61], we create a dysbiosis network1 to statistically infer

the bacterial genera associated with the disease. This representation allows us to

directly compare microbial groups across datasets, and explore their relationship

to each other. We find that the human and dog dysbiosis networks are overlapping,

both in structure and in the microbes associated with IBD and non-IBD commu-

nities. However, we uncover a taxon that shifts from being non IBD-associated in

humans to being IBD-associated in dogs.

Chapter 3.1 appeared in the journal Nature Microbiology, 2016. As the

lead contributor of this project, I co-wrote the text, generated the main figures,

processed, analyzed, interpreted, and deposited the data into a public repository.

1
A dysbiosis network is a graph constructed using a correlation matrix as a weighted adjacency

matrix.
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3.1 Dog and human inflammatory bowel disease

rely on overlapping yet distinct dysbiosis net-

works

Inflammatory Bowel Disease (IBD) is an autoimmune condition that is di�-

cult to diagnose, and where animal models of this disease have questionable human

relevance [93]. Here we show that the dysbiosis network underlying IBD in dogs

di↵ers from that in humans, with some bacteria such as Fusobacterium switch-

ing roles between the two species (as Bacteroides fragilis switches roles between

humans and mice) [61]. For example a dysbiosis index trained on humans fails

when applied to dogs, but a dog-specific dysbiosis index achieves high correlations

with the overall dog microbial community diversity patterns. In addition, a ran-

dom forests classifier trained on dog-specific samples achieves high discriminatory

power, even when using stool samples rather than the mucosal biopsies required for

high discriminatory power in humans [61]. These relationships were not detected

in previously published dog IBD datasets due to their limited sample size and

statistical power [84]. Taken together, these results reveal the need to train host-

specific dysbiosis networks and point the way towards a generalized understanding

of IBD across di↵erent mammalian models.
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3.1.1 Introduction

Dogs are commonly used as large animal models for drug discovery and

safety assessment. The usefulness dogs as a model for IBD is yet unexplored,

though not unreasonable, as dogs have been useful for studying spontaneously

occurring disorders similar to those a↵ecting people [79]. For example, dogs live

in a close relationship with and share an environment with their owners, and

are, therefore, frequently exposed to similar environmental factors, including en-

teropathogens and toxins. It is well recognized that dogs and humans su↵er from

similar spontaneous and lifestyle associated diseases such as obesity, allergies, di-

abetes mellitus, and cancer, and are often treated with similar antibiotics and

drugs. IBD in humans is a chronic autoimmune disease of multifactorial aetiology

and has limited treatment options. Similarly, canine idiopathic IBD is a com-

monly observed chronic inflammatory enteropathy that occurs spontaneously due

to similar multifactorial aetiology, namely due to an interplay between an aber-

rant host immune system, genetics, environmental factors and gut microbiota [93].

Common clinical signs are vomiting, diarrhea, and weight loss. Histological evalua-

tion of intestinal biopsies reveal di↵use or multi-focal inflammatory cell infiltration

(most commonly lymphoplasmacytic, followed by eosinophilic and neutrophilic in-

filtration), with concurrent changes in mucosal architecture (e.g., villus atrophy

and fusion) [38]. Enteric protein loss may be observed in severe cases. Also, in

a subset of dogs, invasive and adherent E. coli have been described, and these
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share common features with strains isolated from humans with Crohn’s disease

[210]. Clinical signs may be controlled by single or combination therapy including

dietary modifications, antibiotics, and immunosuppressants. However, clinical re-

lapse occurs frequently, and life-long therapy may be needed. Previous small-scale

studies have revealed dysbiosis in the small and large intestine of dogs with IBD,

with some changes in bacterial taxa similar to those observed in humans with IBD

[84]. For example, in both humans and dogs with IBD, increases in Proteobacteria,

specifically Enterobacteriaceae [221], and decreases in Firmicutes, including Fae-

calibacterium and Blautia [222] have been reported. However, no detailed studies

comparing the changes in gut microbiota between humans and canines with IBD

have been reported to date. The aim of this study was to describe in detail the

microbiome changes in a large group of dogs with IBD, compare these to the mi-

crobiome of humans with IBD, assess host similarities and di↵erences, and to train

a dysbiosis index composed of non-IBD and IBD associated bacteria.

3.1.2 Results and Discussion

As expected based on results from human studies [57, 61], but not previously

clearly established in canine studies [164, 222], dog IBD cases and controls di↵er

substantially in both microbial community diversity and structure (Figure 3.1.2).

IBD dogs had a significantly lower alpha diversity (Mann-Whitney test, p=0.003)

compared to non-IBD a↵ected dogs (Figure 3.1.2A), however alpha diversity in

this population did not correlate with age, fat intake, weight, or protein intake
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(Supplementary Figure 12), nor with body condition scores (p > 0.05, see supple-

mental methods). Clear separation (using Permutational Multivariate Analysis of

Variance (PERMANOVA) grouping samples by disease status, p=0.001 see supple-

mental methods) between IBD dogs and controls was observed using unweighted

UniFrac (Figure 3.1.2B), and the biplot shows the most abundant taxa driving

these overall patterns. Consistent with [164]; antibiotic history did not reveal dif-

ferences within IBD a↵ected dogs (PERMANOVA p=0.501, abx=35, no abx=12),

on the contrary a significant e↵ect was observed in non-IBD dogs (PERMANOVA

p=0.01; abx=8, no abx=77). Finally when combined, the disease e↵ect was sig-

nificantly stronger (PERMANOVA p=0.001) than the history of antibiotic usage

(pseudo-F on IBD groups 1.99 and pseudo-F based on antibiotics groups 9.46; 1.99

< 9.46).

A random forests classifier [21] trained on the dog data achieved an Area

Under the Curve (AUC) of 0.93 (Figure 3.1.2C, see discriminant Operational Tax-

onomic Units (OTUs) in Supplementary Table 13), demonstrating excellent clas-

sification accuracy compared to human stool samples where the AUC was only

0.63 using a much larger training set [61], and achieved only AUC = 0.86 even

using mucosal biopsies. Consequently, in dogs, but not in humans, high classifier

accuracy is achievable for IBD using only stool samples.

Encouraged by these results, we tested whether a dysbiosis (see supplemen-

2
https://images.nature.com/original/nature-assets/nmicrobiol/2016/nmicrobiol2016177/

extref/nmicrobiol2016177-s1.pdf
3
https://images.nature.com/original/nature-assets/nmicrobiol/2016/nmicrobiol2016177/

extref/nmicrobiol2016177-s1.pdf
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Figure 3.1: Diversity overview and a comparison against humans. (a)
Comparison between disease states and species of Faith’s phylogenetic diversity
(whiskers extend for 1.5 times the IQR past the low and high quartiles). (b)
Weighted UniFrac beta diversity biplot, for the dog samples colored by disease
status. (c) Performance comparison of a random forest classifier trained to separate
the healthy from the diseased samples in both humans and dogs.
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tal methods) network trained on stool samples alone could be used to interpret the

pattern of IBD in dogs, and whether this pattern overlapped the human network.

We previously found that in humans, substantially better correlation networks

could be achieved from the mucosal biopsies, because many taxa contributing to

these networks were not seen in stool. Accordingly, we used the techniques de-

scribed [61] to generate correlation networks and a dysbiosis index for dog samples

(see supplemental methods for more information). Using the network together with

the biplots (Figure 3.1.2 B) we see that Gammaproteobacteria (specifically Enter-

obacteriaceae) were significantly associated with IBD, whereas various Firmicutes

such as Clostridium and Ruminococcus were associated with non-IBD samples.

When these features are compared with the discriminant OTUs, obtained from

the random forests classifier, we observe a general overlap of the lineages (see Sup-

plementary Table 1 and Supplementary Table 24). However we also see OTUs that

are not highlighted by the correlation network. Specifically Erysipelotrichaceae Al-

lobaculum and Lachnospiraceae Blautia producta, this is likely because these do not

consistently co-occur with or co-exclude other taxa.

The human dysbiosis index failed to negatively correlate with alpha diver-

sity in dog samples (Figure 3.1.2 A.1 and A.2 correlation, A.3 Principal Coordinates

Analysis (PCoA) plot), while a dog-specific dysbiosis index showed a statistically

significant negative correlation in the same samples (Figure 3.1.2 B.1 and 2 B.2

4
https://images.nature.com/original/nature-assets/nmicrobiol/2016/nmicrobiol2016177/

extref/nmicrobiol2016177-s1.pdf
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correlation, C.3 PCoA plot, see for a reference the two groups in Figure 3.1.2

D). Additionally we tested the index with previous data [164], and although the

sample size is limited, we observed similar patterns (see Supplementary Figure

24). Similarly to humans, the dysbiosis index in dogs is negatively correlated with

phylogenetic diversity (r = -0.45, p < 0.001). However, the list of ‘non-IBD’ (co-

occurring in non-IBD samples) and ‘IBD’ (co-occurring in IBD samples) bacteria

only partially overlaps between host species (see Supplementary Table 24). Com-

paring the correlation networks of the taxa for humans (as described in [61]) and

the network generated for the dog data (Figure 3.1.2 C) revealed overlapping, and

discordant taxa. In particular, Fusobacterium appears to be associated with IBD

[61] and colorectal cancer [27] in humans but with non-IBD dog samples. Of note,

we previously observed high levels of Fusobacterium sp. in dogs [220] but also car-

nivores of multiple species [132, 167], and noted higher levels of Fusobacterium in

dogs with more access to the outdoors [214], which may correlate with a wide intake

of other immunomodulatory environmental bacteria. Given the limited adaptation

(approximately 8.9 Mya when humans split from Gorillas [80]) of the human lin-

eage (historically omnivorous [184]) to a carnivorous diet, as compared to the base

of the Carnivora 40-45 Mya [249], it is possible that this taxon has yet to be in-

corporated into the non-IBD portion of the network in humans. Nonetheless, it is

important to remember this is only a statistical association, and further research

would need to be developed to properly validate this. Consistent between human

and canine networks and former studies were findings in regards to decreased Fae-
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calibacterium and increased Escherichia coli in IBD [222], and these taxa seem to

be important in this disease across animal hosts. Other taxa (Enterococcus and

Allobaculum) from the canine network that were associated with IBD or non-IBD

are generally consistent with previous results based on either small scale studies

or targeted Polymerase Chain Reaction (PCR) [164], but additional taxa were

discovered here, such as Butyricoccus which was associated with non-IBD dogs.

To measure the relative e↵ect size of host-species and IBD, we combined

humans and dogs into a single PCoA plot, marked by clinical status (Supplemen-

tary Figure 45). We demonstrate that at a microbial level the disease e↵ect is

smaller than the host e↵ect (human vs. dog, Supplementary Figure 4 A5). Simi-

larly the disease e↵ect was weaker than the species e↵ect when analyzing PICRUSt

[128] metagenome prediction data (PERMANOVA test grouping samples by dis-

ease status and by host-species using a binary Jaccard matrix, p=0.001, pseudo-F

by disease 14.61, pseudo-F by species 52.59, Supplementary Figure 4 B6), indicat-

ing that at both the compositional and predicted functional level, species is a more

significant influence on the microbial community than disease (see supplemental

methods and Supplementary Figure 36). In both dogs and humans, predicted

pathways were relatively similar across IBD and non-IBD samples, with the most

abundant pathways across both groups in both species including ‘housekeeping’

pathways such as transporters, ABC transporters, DNA repair and recombination

5
https://images.nature.com/original/nature-assets/nmicrobiol/2016/nmicrobiol2016177/

extref/nmicrobiol2016177-s1.pdf
6
https://images.nature.com/original/nature-assets/nmicrobiol/2016/nmicrobiol2016177/

extref/nmicrobiol2016177-s1.pdf
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Figure 3.2: Human and dog dysbiosis index. (a.1), (a.2) Human dysbiosis
index describing the dog samples grouped by disease status, (a.3) weighted UniFrac
PCoA plot colored by dysbiosis index. (b.1) and (b.2) Dog dysbiosis index describ-
ing the dog samples grouped by disease state, (b.3) weighted UniFrac PCoA plot
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in solid lines. (d) Unweighted UniFrac PCoA plot of the dog data. Figures A.1,
A.2, B.1 and B.2 all display 95% confidence intervals.
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proteins, ribosome, purine metabolism, transcription factors, peptidases, pyrim-

idine metabolism, and chromosome (Supplementary Figure 56). Although these

most abundant pathways were not significantly associated with health or disease,

the abundance of several lower abundance pathways was significantly di↵erent

across IBD and non-IBD samples in dogs, see Supplementary Table 36. No path-

ways were significantly higher in between disease statuses in humans.

Taken together, these results have important implications for translational

medicine and for understanding IBD in dogs. Also, the major functional gene

content was conserved across non-IBD and IBD humans and dogs. While some

significant predicted functions were identified between non-IBD and IBD dogs, the

human sample population did not have enough non-IBD individuals analyzed for

proper statistical power. This together with previous work suggests similar func-

tional changes within the microbiota of dogs and humans with IBD. Previous stud-

ies have already shown that some treatment approaches to IBD that target the mi-

crobiome are conserved across dogs and humans, such as antibiotics, dietary mod-

ulation, and probiotics. For example, specific probiotic therapy has been shown

to have similar e↵ects on fecal and mucosa-adherent microbiota and host immune

response (i.e., increase of tight junction proteins, increase in beneficial mucosa-

adherent bacteria) in humans, dogs, and rat models of colitis [148, 194, 230]. Our

study also revealed that the dysbiosis networks clearly di↵er in some key bacterial

groups. Better understanding of the similarities in these microbial networks and

functional changes may extend the abilities to test therapeutic approaches across
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multiple host species.

Data Processing

Demultiplexed and quality controlled sequences were then clustered against

the Greengenes [160] database (release 13 8) using the closed reference OTU pick-

ing protocol [46] as implemented in Quantitative Insights into Microbial Ecology

(QIIME) [23] 1.9.0; these processing steps were performed using the default param-

eters. The OTU table used for primary analysis was filtered to include only samples

from subjects that presented inflammatory bowel disease or that were healthy con-

trols. Blank samples, and subjects with diarrhea were removed. Finally the table

was rarefied to normalize for sampling e↵ort [247] at 15,000 sequences per sample,

this cuto↵ was selected as having the best trade-o↵ between sequences and samples

per disease status category.

Samples from [164] were processed with the same pipeline as described

above, except these were rarefied at 4,500 sequences per sample.

To address the di↵erences in sequencing length, the combination of samples

with the human dataset [61] was preceded by trimming the sequences to an even

100 nucleotides per sequence, the rest of the pipeline was performed as described

above. The same OTU picking protocol and reference database were used, therefore

allowing the combination of the studies using the OTU tables. We only used the

fecal samples from the human dataset.
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Statistical analysis

Jupyter Notebooks [182] with the analysis of this dataset are available on

online7. Briefly, alpha and beta diversity calculations of weighted and unweighted

UniFrac [139] were performed using QIIME version 1.9.1. To assess statistical

significance in these comparisons we used PERMANOVA, grouping the samples

by disease status (healthy vs IBD), p=0.001 in both cases; pseudo-F statistics were

9.46 for unweighted UniFrac and 39.65 for weighted UniFrac. Receiver Operating

Characteristic (ROC) curves and feature importance were calculated using Caret

[124] and hack ml 8.

Statistical significance between diversity distributions were calculated using

Mann-Whitney’s test, linear regressions and correlation coe�cients were calculated

using NumPy 1.10.4 [232] and SciPy version 0.17, and visualized using Seaborn

0.7.0 [241]. Principal coordinates analysis plots were created using Emperor 0.9.51-

dev [236].

Metagenome predictions were performed using the Galaxy implementation

of PiCRUST version 1.9.0. Significant di↵erences in predicted KEGG Pathways

between healthy and IBD groups were calculated using a Kruskal-Wallis test with

multiple corrections (FDR and Bonferroni corrected p-values). The 16S data is

comprised of 85 healthy dogs, 64 IBD-a↵ected dogs, 29 healthy humans and 450

humans with IBD. On the other hand the PICRUSt predicted data is comprised of

7
https://www.github.com/ElDeveloper/dogs

8
https://github.com/RNAer/hack ml
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85 healthy dogs, 42 IBD-a↵ected dogs, 23 healthy humans and 344 humans with

IBD.

The Jaccard distance was used to compare the PICRUSt predicted data.

This metric compares the samples on a presence/absence basis, and is not con-

cerned with the similarity in the abundances of the OTUs but rather with the

overlap in their presence. Each value is computed as one minus the ratio of shared

OTUs to total OTUs present in the two samples.

To assess the quality of the predictions in the dog samples, we computed

the ‘nearest sequenced taxon index’ (see Supplementary Figure S39), and verified

that the samples had acceptable values (below 0.15).

Dysbiosis Network

The dysbiosis network was calculated as described in [61], using CCREPE

[202] and visualized using Cytoscape [207]. The index is calculated by taking the

log transform of the abundance of the ratio of IBD-associated microbes to non-IBD

associated microbes as determined by the correlation network.

This network is created by first scoring the co-occurrence and co-exclusion

patterns in the samples. CCREPE uses a compositionally adjusted version of

the checkerboard score [219]; the results are filtered to remove non-statistically

significant relationships, and to preserve the largest connected component only.

We represent the results as a graph where vertices are microbes and edges are

9
https://images.nature.com/original/nature-assets/nmicrobiol/2016/nmicrobiol2016177/

extref/nmicrobiol2016177-s1.pdf
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interaction types. Vertices are of one of two classes (IBD-associated and Healthy-

associated) as determined by the class where they were dominantly abundant,

and edges between vertices have a weight given by their adjusted checkerboard

score (negative values represent co-exclusions, and positive values represent co-

occurrences). The specifics of this processing are described in the supplemental

Jupyter notebooks.

A description of the DNA analysis and sample processing is provided in

Appendix A
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Chapter 4

Dynamic features of inflammatory

bowel disease

In recent years, clinical research in IBD has benefited from multi-’omic

(genomic [58], metabolomic [92], and metagenomic [113]) characterizations of the

condition. Each of these approaches describes a new component of relationships

that, one by one, seem to uncover the processes regulating the inflammation and

well-being of the a↵ected hosts. Nonetheless, longitudinal descriptions (and as a

consequence representations) of IBD were largely unexplored.

This chapter introduces two pioneering longitudinal studies of IBD. One

where the sampling is sparse (every three months) and another where the sampling

is dense (as much as every day). Both cohorts present increased rates of microbial

variation. Specifically, we see that this appears to be di↵erent for the di↵erent

subtypes of IBD. In order to visualize the increased variation, we rely on the
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techniques introduced in Chapter 2, and on the definition of a reference plane that

acts as a proxy for healthy variation.

Motivated by these findings, we use an classification model to determine

the benefits of increased longitudinal sampling. For both (independently collected

and sequenced) datasets, we observe that including more than one sample per

subject increases the performance of a classifier. This property is only possible

when we transform the original representation of the data and create per-subject

consensus features based on multiple timepoints. Briefly, these features aggregate

multiple samples together and exploit the increased instability as an informative

classification feature.

Although we exercise and test this method with human-gut data, the ap-

proach is not restricted in any way to this environment. This approach could po-

tentially benefit other applications, specially where longitudinal descriptors might

be predictive of a state of interest.

Chapter 4.1 appeared in Nature Microbiology, 2017. My role in this project

was to act as the lead analyst of the project, I developed a collection of new

algorithms to represent the data, produced a series of visualizations used in the

paper, co-wrote the text, and interpreted the results. Chapter 4.2 appeared in the

journal Gut, 2017. As the lead contributor of this project, I co-wrote the text,

generated the main figures, wrote the software used for analysis, interpreted the

results, and deposited the data into a public repository.
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4.1 Dynamics of the human gut microbiome in

Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is characterized by flares of inflammation

with periodic need for increased medication and sometimes even surgery. Inflam-

matory Bowel Disease (IBD) etiology is partly attributed to a deregulated immune

response to gut microbiome dysbiosis. Cross-sectional studies have revealed mi-

crobial signatures for di↵erent IBD diseases, including Ulcerative Colitis (UC),

Colonic Crohn’s Disease (CCD), and Ileal CD (ICD). Although IBD is dynamic,

microbiome studies have primarily focused on single timepoints or few individuals.

Here we dissect the long-term dynamic behavior of the gut microbiome in IBD and

di↵erentiate this from normal variation. Microbiomes of v subjects fluctuate more

than healthy individuals, based on deviation from a newly-defined Healthy Plane

(HP). ICD subjects deviated most from the HP, especially subjects with surgical

resection. Intriguingly, the microbiomes of some IBD subjects periodically visited

the HP then deviated away from it. Inflammation was not directly correlated with

distance to the healthy plane, but there was some correlation between observed

dramatic fluctuations in the gut microbiome and intensified medication due to a

flare of the disease. These results help guide therapies that will re-direct the gut

microbiome towards a healthy state and maintain remission in IBD.
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4.1.1 Results and Discussion

Both the state and the dynamics of the human gut microbiome in healthy

individuals are highly personalized [34, 45, 56, 83, 151, 185, 83, 263]. Although

cross sectional studies have revealed dysbiosis of the gut microbiome in IBD [61,

188, 213, 252, 253], little is known about the individual nature of microbiome dy-

namics in IBD, beyond a study of 3 UC patients before and after ileostomy, and

two small studies of IBD patients in remission or during changes in disease activity

[150, 254, 260]. Here we studied the long-term dynamics of the gut microbiome

from an IBD cohort of 128 individuals (49 Crohn’s Disease (CD), 60 UC, 4 Lym-

phocytic Colitis (LC), 15 Collagenous Colitis (CC)) and 9 Healthy Controls (HC).

We sampled at three-month intervals, collecting 110 samples per individual for a

total of 683 samples (Supplementary Table 11). The microbiome composition in

each sample was determined by sequencing the V4 region of the 16S rRNA gene

for a total of 248 million 16S rRNA gene amplicons. To determine links between

the gut microbiome and clinical factors, we collected clinical data, including fecal

calprotectin (f-calprotectin) concentration and surgical resection status. To con-

trol sampling bias, we restricted our statistical analyses of volatility to a subset

of the cohort that had sequence data from the first four time points and that

had matching f-calprotectin concentrations; yielding 276 samples from 69 patients

1
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(Supplementary Table 11, Supplementary Dataset 12); results were similar when

all subjects were considered). We also included patient Genetic Load Scores (GLS)

based on 163 known IBD risk loci for 29 patients to assess potential links between

the host genetics, IBD and the microbiome [94].

As expected from previous work [61, 253], we found that HC and IBD

subtypes formed distinct clusters by Principal Coordinates Analysis (PCoA) of

unweighted UniFrac distances, with ICD patients least similar to healthy controls

(Supplementary Figure 11), ADONIS stratified by time point, p < 0.001). As in

previous studies [188, 253, 254], we found di↵erences in alpha and beta diversity

of the microbiome according to IBD subtype and between subtypes and healthy

controls and identified several families that correlated with health or disease state,

e.g. Enterobacteriaceae with ICD and Ruminococcaceae with HC (Supplemen-

tary Figure 1-23). Individual taxa that are di↵erentially abundant between IBD

subtypes compared to HC are listed in Table 4.1 (DESeq2, log2 fold change).

The IBD microbiomes contained significantly lower abundances of putative bene-

ficial Operational Taxonomic Units (OTUs) present in HC, as previously reported

[61, 188, 213, 252, 253, 254], including Prevotella copri and the butyrate-producing

bacterium Faecalibacterium prauznitzii (Table 4.1; Supplementary Figure 33).

From the animated ordination of the samples (Supplementary Video 14),
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Table 4.1: Di↵erential abundance in specific taxa according to disease phenotype
comparisons (DESeq2)

Groups compared BaseMean log2FoldChange padj Taxonomic annotation

ICD-r over ICD-nr 13,32 -7,05 0,0000000 Faecalibacterium prausnitzii

4,08 -5,57 0,0000011 Lachnospiraceae

3,32 -5,08 0,0000001 Ruminococcaceae

6,49 -5,40 0,0000009 Ruminococcaceae

19,85 -6,11 0,0000005 Ruminococcaceae

94,87 -5,87 0,0000001 Ruminococcaceae

53,59 -8,10 0,0000012 Ruminococcaceae Ruminococcus

72,13 -5,14 0,0000241 Clostridiales

ICD-r over HC 14,91 7,20 0,0000000 Alteromonadales [Chromatiaceae]

13,32 -7,22 0,0000000 Faecalibacterium prausnitzii

2,94 -5,34 0,0000007 Ruminococcaceae

2,33 -5,62 0,0000000 Clostridiales

10,41 -7,47 0,0000000 Lachnospiraceae

15,12 -7,62 0,0000001 Lachnospiraceae Coprococcus

4,13 -8,43 0,0000000 Lachnospiraceae

19,85 -7,15 0,0000000 Ruminococcaceae

5,43 -8,72 0,0000000 Ruminococcaceae

7,16 -6,98 0,0000151 Clostridiales

3,78 -6,69 0,0000249 Clostridiales

2,10 -6,53 0,0000000 Ruminococcaceae

5,76 -7,85 0,0000000 Ruminococcaceae

53,59 -8,64 0,0000000 Ruminococcaceae Ruminococcus

72,13 -5,71 0,0000000 Clostridiales

121,13 -9,95 0,0000000 Prevotella copri

5,87 -7,58 0,0000000 Methanobrevibacter

ICD-nr over HC 14,91 6,47 0,0000185 Alteromonadales [Chromatiaceae]

2,94 -7,00 0,0000756 Ruminococcaceae

5,43 -8,17 0,0000682 Ruminococcaceae

121,13 -7,82 0,0000185 Prevotella copri

CCD over HC 5,43 -8,65 0,0000000 Ruminococcaceae

121,13 -7,94 0,0000000 Prevotella copri

UC over HC 6,53 6,32 0,0000978 Alistipes massiliensis

Criteria for inclusion: BaseMean > 1 and padj < 0.0001. Brackets indicate putative taxonomy

based upon phylogenetic placement as given in the Greengenes taxonomy. BaseMean is the mean of

normalized counts for all samples. padj is the BenjaminiHochberg adjusted p-value.
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we observed that although microbiome samples from the healthy individuals var-

ied over time, they were restricted to a small volume of the ordination space. In

contrast, IBD subtypes traversed far more of the total volume, sporadically vis-

iting the area where healthy samples resided. To summarize these dynamics, we

identified a ‘healthy plane’ (hereafter referred to as HP). Briefly, this plane is cal-

culated in a space derived from PCoA of unweighted UniFrac distances of healthy

subjects (Supplementary Video 14). We constructed a model using the samples

from the HC patients, and fit them to a two-dimensional plane embedded in a

three-dimensional space using the least squares method (Figure 4.1). The plane

is then restricted to only span the three-dimensional ranges of the HC samples.

This plane was used as a proxy to represent the normal microbial variation within

healthy subjects and to summarize the abnormal, intermittent dysbiosis associated

with IBD.

The procedure was as follows: let S be a set of n samples s1, s2, . . . sn

corresponding to a group of trajectories, each trajectory pertaining to a subject

with at least four samples collected at distinct points in time. Each sample is

represented as a three-dimensional vector corresponding to sample coordinates in

ordinated space i.e. s1 = (x1, y1, z1); s2 = (x2, y2, z2); . . . sn = (xn, yn, zn). We fit a

linear model to S by the least squares method to obtain coe�cients for the equation

of a three dimensional surface T , next we restricted a segment of this surface to

the ranges given by [minx(S),maxx(S)] and [miny(S),maxy(S)], we defined this

to be a plane representative of S or PS. When S is the set of samples from healthy
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Figure 4.1: Defining a healthy plane. Diagram summarizing the procedure
for creating a representative plane for a group of samples S: a, sample selection,
b, model fitting and c, distance calculations for all samples. The healthy plane is
then located in UniFrac space by d, fitting a line to the major axis of the points,
and e, defining a least-squares fit to identify a plane that minimizes the sum of
squares of distances to the nearest point on the plane. f, Verification that the
position of the healthy plane is not driven by proteobacteria-dominated outliers:
Procrustes Analysis comparing original samples and those with Proteobacteria
removed. A vector connects each original sample (red) with the same samples
after Proteobacteria have been omitted (black). p < 0.001, M2 = 0.018, 999
permutations. g, The short length of most vectors indicates that the relative
composition of most samples does not change when proteobacteria are filtered out.
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subjects in an ordination space, we refer to PS as the HP. Finally, we defined dk to

be the Euclidean distance from a sample k to the nearest point lying on PS. After

measuring dk for all samples in our study, we grouped samples according to their

diagnosis, and compared the distributions of distances. Figure 4.1 a-c demonstrates

this procedure, and Figure 4.1 d-e demonstrates the placement of the HP in the

context of our full IBD dataset. Samples from the HP are co-located with one

another, while many samples from IBD patients are further away. To investigate

whether this e↵ect is due to ‘outlier’ groups of samples that are dominated by

taxa that are typically rare in healthy individuals, we excluded all Proteobacteria

from the dataset, and compared the location of samples in unweighted UniFrac

space with and without Proteobacteria using Procrustes analysis. As shown in

Figure 1f-g, the omission of Proteobacteria is significant (p < 0.01), but this e↵ect

is largest in the already dysbiotic ICD-r patients and aligns with PC3. The e↵ect

on healthy controls is minimal, and healthy samples are still located only near the

HP (Figure 4.1 f-g).

Calculation of the mean Euclidean distance from each sample to the HP

revealed that all subtypes of IBD significantly deviated from the HP (Generalized

Linear Mixed e↵ects model (GLM), all p < 0.00268, Figure 4.2a). Samples from

patients with CCD and UC were closer to the HP, and some samples did not di↵er

significantly from healthy controls, whereas ICD samples were the most distant

from the HP (Supplementary Video 15; Figure 4.2). The highest volatility was

5
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observed for ICD patients that had previously undergone ileocecal resection (ICD-

r), followed by ICD patients without surgery (ICD-nr) based on UniFrac distances

between successive samples (Figure 2b). ICD-r patients also had low gut micro-

bial richness (Supplementary Figure 26). Ileocecal resection is a major modifier

of intestinal physiology, and the observed pronounced volatility in ICD-r patients

might be partly explained by removal of the ileocecal valve per se. Ileal inflam-

mation may also influence bile salt uptake and, consequently, colonic transit time

and microbiome volatility. Interestingly, several IBD patients had complex trajec-

tories that sporadically moved to and from the HP (Figure 4.2c, Supplementary

Video 15).

Although our study represents the largest longitudinal analysis of the IBD

microbiome to date, the small number of patients in specific subgroups limited some

statistical comparisons. Furthermore, the number of healthy controls was lower

than the number of IBD patients. To address this limitation of unequal sampling

of healthy individuals and IBD patients, we compared the volatility of our healthy

controls to healthy participants in two published studies, the Student Microbiome

Project (SMP) and the Moving Pictures (MP) datasets [24, 56]. There was less

variability over time in healthy individuals across all three cohorts compared to

those with IBD (Figure 2b). This result emphasizes that IBD is characterized by

volatile dysbiosis not found in healthy people, and confirms earlier preliminary

extref/nmicrobiol20174-s3.mov
6
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/

extref/nmicrobiol20174-s1.pdf

80

https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s3.mov
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s1.pdf
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/extref/nmicrobiol20174-s1.pdf


 
 

 
 

 
Pa

tie
nt

s (
so

rt
ed

 b
y 

m
ea

n 
di

st
an

ce
 to

 th
e 

he
al

th
y 

pl
an

e)

Figure 4.2: The gut microbiomes of di↵erent IBD subtypes display dif-
ferent distributions relative to a healthy plane (HP). a, Median distances
from HP for each IBD subtype. All IBD subtypes were significantly di↵erent from
healthy controls (GLM, all p < 0.00261). b, UniFrac distances between subsequent
samples. c, Distance to HP for each individual patient. HP was defined using data
shown in Supplemental Video 15. See Supplementary Table 16 for composition of
downstream analysis cohort. Boxes show interquartile range (IQR). Whiskers de-
note the lowest and highest values within 2.5 IQR of the median. Circles represent
outliers.
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results and meta-analysis of much smaller studies [147, 150, 254, 260].

To extend our understanding of the mechanisms underlying the microbiome

dynamics, we explored the correlation between the dynamics and inflammatory ac-

tivity in each sample using f-calprotectin > 150 µg/g as a surrogate for inflamma-

tory activity. The concentration of f-calprotectin in stool samples has previously

been correlated with endoscopic and histopathologic activity, and is used in daily

clinical practice because it is non-invasive [131]. We observed that concentra-

tions of f-calprotectin were higher in all IBD subtypes than in healthy controls

(Figure 4.3). However, we did not observe a significant correlation between f-

calprotectin and distance from the HP (Figure 4.3, GLM p = 0.275). Although

recent microarray analyses of the gut microbiome in a cohort of anti-TNF treated

pediatric IBD patients[116] and experiments with gnotobiotic fecal transplants

suggest that microbial composition and function are causally associated with in-

flammatory activity [192], our di↵erential abundance testing revealed only weak

trends and no specific OTUs that varied significantly with active inflammation,

using f-calprotectin > 150 µg/g as cut-o↵. However, the use of f-calprotectin as a

proxy for inflammatory activity might have introduced bias, because f-calprotectin

is a less accurate marker of ileal than colonic inflammation [211] and ICD patients

displayed the greatest distance from the HP.

Examples of the microbiome dynamics for one representative HC and one

from each IBD subgroup are shown in addition to changes in f-calprotectin con-

centrations, distance to HP, and Shannon diversity in Figure 4.4 (all individual
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profiles are shown in Supplementary Figure 37), illustrating the more stable dy-

namics over time for HC and UC compared to the other clinical phenotypes of

IBD, with the most fluctuations occurring for patient 69 that had undergone sur-

gical resection. The f-calprotectin levels were low and relatively stable for the HC

compared to the IBD patient (Figure 4.4). In these examples, there were also

substantial fluctuations in diversity for the HC, ICD-r, and CCD by contrast to

UC and ICD-nr patients.

We further explored the individual dynamics of the gut microbiome in IBD

patients who experienced increased clinical disease activity, according to the physi-

cian’s global assessment (Supplementary Figure 47). Recently, the short-term (6

weeks) dynamics of the microbiome in pediatric patients with active IBD treated

with anti-TNF indicated that initiation of medical treatment changes the micro-

bial composition at the genus level [116]. Because we had few anti-TNF exposed

patients, and our patients received a course of corticosteroids at flare as first line

therapy, we explored how corticosteroid administration influenced microbiome dy-

namics. Our data demonstrate that change in medication influenced the volatil-

ity of the microbiome (Supplementary Figure 48). Patients receiving a course

of oral corticosteroids (n=7) had more microbiome fluctuations than patients on

stable medication (n=49), based on calculations of unweighted UniFrac distance

between time points (Wilcoxon Signed-rank test; p=0.04). Our dynamic model
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Figure 4.3: Correlation between fecal calprotectin concentrations and
distance to a defined healthy plane (HP) in 3D ordination space. Data
represent a correlation of f-calprotectin levels and distance to the here defined
healthy plane in 3D ordination space (see Supplementary Video 15) for each in-
dividual and time point for di↵erent inflammatory bowel disease (IBD) subtypes.
To compare the relationship between f-calprotectin and the healthy plane, a gener-
alized linear mixed e↵ects model was fit, with a conditional Gamma distribution,
using f-calprotectin and disease type as fixed e↵ects and including a random subject
e↵ect; f-calprotectin was not significant (p = 0.27501).
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Figure 4.4: Microbiome dynamics of selected individuals from each IBD
subtype and a healthy control. From each IBD subtype and healthy control
group, representative individuals sampled over the most time points and having
complete clinical and sequence data were selected. Data represent f-calprotectin
values, distance to the healthy plane, and Shannon diversity and rarified abun-
dances of most common taxa at the family level. Note that taxa unclassified at
the family level are represented in the f ’ category.
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suggests that beyond the association with IBD subtype and the weak correlation

with inflammation, the dynamics of the microbiome composition are influenced by

changes in medication. The extent to which other factors, such as dietary changes

and smoking, may have influenced the observed volatility remains speculative, be-

cause the collected information was insu�ciently detailed to include these factors

as covariates.

To evaluate the microbiome as a predictive tool, we combined the microbial

and clinical data and used a supervised learning Random Forests model to predict

IBD subtypes [21, 138]. To avoid overfitting, our models were built using OTU

abundances from the first time points only, along with clinical metadata (Body

Mass Index (BMI), f-calprotectin concentrations, sex, and Distance to the HP).

Accuracy was evaluated using the remaining three time points, which were not

used to train the model. Using this model, the IBD subtypes were discriminated

from healthy controls and correctly predicted for 66.6% of samples (Supplementary

Table 29), consistent with the findings reported in Gevers et al. (2014). Feature

importance scores from this model revealed several potential microbial indicators of

IBD subtypes, including OTUs matching to Lachnospira, Clostridium, Oscillospira,

and many unidentified Ruminococcaceae (Supplementary Table 39). Intriguingly,

the accuracy of the model increased slightly if f-calprotectin concentrations were

omitted, but decreased by at least 10% if the distance to the HP was removed
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(Supplementary Tables 2 and 39), suggesting that the HP is a more important

factor in the model. Comparable levels of accuracy were previously achieved using

rectal samples [61], but here we show that the same can be achieved with fecal

samples, which are easier to collect. When immunochip data were included for

a subset of 29 IBD individuals and the Random Forests model was repeated, the

samples were still classified into the four IBD subtypes (UC, CCD, ICD-r, ICD-

nr) (Supplementary Tables 2 and 39). While distance to the HP remained as

the single most important feature for classification,GLS were more predictive than

sex, f-calprotectin, or BMI when included in the model (Supplementary Table 29).

However, including GLS only increased the overall accuracy of the model by about

2%, demonstrating the predictive potential of the microbiome. Interestingly, in a

recent study of obesity covering 339,224 individuals, the 97 risk loci for obesity

accounted for only 2.7% of BMI variation [137], whereas the microbiome classified

lean from obese individuals with 90% accuracy [115], providing precedent for the

predictive value of the gut microbiome over human genetics in chronic disease.

In summary, by analyzing fecal samples collected every 3 months from a

large IBD cohort, we determined the long-term volatility of the gut microbiome in

IBD. Our data revealed that although the microbiome of healthy individuals varied

it was only within a newly defined HP, whereas there was considerable volatility

away from the HP for several of the IBD cohorts. Devising improved methods to

detect the healthy state with non-invasive sampling, to predict when the healthy

state will be departed, and to sustain the microbiome in this healthy state by
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erecting barriers that prevent the slip back into dysbiosis, will be an important

focus of future work.

4.1.2 Methods

Cohort demographics, sample collection and sample processing details can

be found in Appendix B.1.

Phylogenetic Analysis

Sequence data were processed using QIIME 1.9.0-dev through the online

platform QIITA10[23]. Four HiSeq lanes of data were demultiplexed with default

quality filtering settings and subsequently combined, resulting in 248,547,926 to-

tal sequences. These sequences were clustered using SortMeRNA at 97% identity

against the Greengenes rRNA reference database May 2013 release [118, 160].

Sequences that failed to match the database were discarded. 237,653,256, or ap-

proximately 95.6% of the sequences, clustered against the Greengenes reference

dataset. Even sampling was performed at 14,553 sequences per sample for beta di-

versity and supervised learning analyses. The beta diversity principal coordinates

plot of unweighted UniFrac distances was constructed using the same rarefied OTU

table, and visualized in Emperor [139, 236]. Clinical matched metadata, including

f-calprotectin concentrations, were included when available. From each patient,

the first four microbiome samples with matched f-calprotectin concentrations were

10
https://qiita.ucsd.edu
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sub-selected for use in downstream analysis.

Statistical Analysis.

The R package phyloseq was used to import and graph data, while the

packages DESeq2, randomForest, and vegan were used to perform di↵erential abun-

dance testing and supervised learning [89, 134, 138, 162, 174]. Statistical signif-

icance of unweighted UniFrac distance matrices comparing healthy controls and

IBD subtypes was assessed using the ADONIS test. The variation of the microbial

community over time was calculated with vector lengths produced by summing the

total distance between each subject’s time points over the first three PCoA axes

of unweighted UniFrac space. The Random Forests model was constructed using

the first time point from each patient in the downstream analysis cohort and pre-

diction accuracy was measured using the subsequent three time points (CCD = 11

patients, ICD without resection (ICD-nr) = 4 patients, ICD with resection (ICD-r)

= 15 patients, UC = 30 patients, and HC = 7 patients). The following metadata

categories used as features for supervised learning: BMI, f-calprotectin (continu-

ous), sex, and Distance to the Healthy Plane. For classification on the subset of

samples with immunochip data, the above process was used while adding GLS. We

used a dataset of 29 IBD samples (25 CD, 4 UC) with available immunochip data

to estimate a GLS for each sample. In particular, GLS was calculated summing

the number (counts) of risk alleles (0,1,2) at lead Single Nucleotide Polymorphism

(SNP) from each IBD risk locus (n = 163) according to Jostins et al. [94].
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After performing principal coordinates analysis of the unweighted UniFrac

distance matrix, the samples of HC were used to fit using the least squares method

on the first three principal coordinates. The distance from each sample to this

plane was measured and added to the sample metadata both for weighted and

unweighted UniFrac. To compare distribution of samples relative to this healthy

plane, a generalized linear mixed e↵ects model was fit, with a conditional Gamma

distribution, using disease type as a fixed e↵ect and including a random subject

e↵ect.

To assess the variation between samples in an orderly manner (as described

by the time point), we measured the UniFrac (weighted and unweighted) distance

between samples that occur sequentially for any given subject; samples represent-

ing the final collection point do not have a value in these columns, as there is no

subsequent sample to compare to.

We examined the power of di↵erential abundance tests for the 16S data.

DESeq2 [138] assumes that counts can be modeled as a negative binomial distribu-

tion with a mean parameter, allowing for size factors, and a dispersion parameter.

The test for di↵erential abundances fits a generalized linear model with a negative

binomial family and a log link function.

A power analysis was conducted by using samples from the downstream

analysis cohort (Supplementary Table 411). The power of the di↵erential abun-

11
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/

extref/nmicrobiol20174-s1.pdf
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dance test is dependent on the sample size of groups, di↵erence in mean counts,

type 1 error rate, and the dispersion value. Here we used a conventional type 1

error rate of 0.05 and assumed that we have two groups with sample sizes of n1

= 25 and n2 = 80. A total of 1000 OTUs were randomly selected from the data

and dispersion parameters were estimated for each OTU. Data was then simulated

from a negative binomial distribution, as specified by DESeq2, for each estimated

dispersion value with means giving 2 fold, 1.5 fold, and 1.25 fold di↵erences. For

each mean fold di↵erence value and dispersion value, a total of 5000 data sim-

ulations were done and a Wald test for di↵erence in means using a generalized

linear model was conducted. Based on these simulations, where data is generated

with true di↵erences, the fraction of times that the null hypothesis is correctly

rejected (the power), was calculated and our comparisons were well powered given

our subset sample sizes (Supplementary Table 412).

Code Availability

Our analysis methods make use of standard, open source software. R soft-

ware packages are available on CRAN13, bioconductor14, and GitHub15. Python

software is available in the bioconda and biocore Conda channels, and is maintain

on GitHub16.
12
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/

extref/nmicrobiol20174-s1.pdf
13
cran.r-project.org

14
bioconductor.org

15
github.com/joey711/phyloseq

16
github.com/biocore,github.com/ElDeveloper/reference-plane
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4.2 Guiding longitudinal sampling in inflamma-

tory bowel diseases cohorts

The volatile microbial signatures of Crohn’s Disease (CD) patients greatly

hinder our ability to classify healthy from a↵ected subjects using 16S rRNA profiles

from stool. The recent work by Pascal et al. [180] overcomes this issue and other

complications [196], producing a decision tree that classifies subjects with CD,

Ulcerative Colitis (UC), irritable bowel syndrome and anorexia. Although the

authors note that both subtypes of Inflammatory Bowel Disease (IBD), particularly

CD, have increased microbial community instability, this information is not used

as a feature to improve classifier accuracy. Could microbiome instability become

actionable by creating a new classifier that benefits from repeated measurements?

If so, how many samples per individual are needed to assess instability?

We collected daily stool samples for up to six weeks from 19 CD subjects

and 12 controls (see the analysis notebook for cohort description17) over 2 separate

periods of 2 or 4 weeks spread over 2 and 5 months, for a total of 960 samples. We

believe this is the most densely sampled longitudinal study of CD; previous studies

collected samples every 1-3 months [72, 180]. Our cohort shows decreased alpha

diversity and increased stability, as previously reported in CD and other subtypes

of IBD [58, 61, 72, 180]. We also noted that subjects who underwent resection have

lower alpha diversity than other CD-a↵ected subjects (see analysis notebooks17).

17
https://github.com/knightlab-analyses/longitudinal-ibd
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A critical experimental design question for clinical studies is whether a finite

budget should best be spent collecting samples from more patients, or collecting

more serial samples from each patient? Therefore, we created a Random Forests

[21] model based on per-subject aggregation of longitudinal data for alpha diversity

[49], beta diversity [139] and abundances of two phylogenetic factors found to be

associated with CD in ileal biopsies [61, 240] (Figure 4.5). With one sample per

subject, our model performs worse than a classifier that uses microbial relative

abundances at a single time point, but when more samples per-subject are added,

the classifier outperforms that approach and results previously only attained with

biopsy samples [61]. Furthermore, we replicate this observation with a di↵erent

cohort (Table 4.2).

Novel analyses aggregating features over time and combining both alpha

and beta diversity over time using our intensive daily sampling demonstrates that

the main benefits are already obtained by collecting between 3-5 fecal specimens,

and no additional benefits are obtained beyond 7 serial samples. Similar results

are found for monthly sampling. These results highlight the importance of treat-

ing CD as a volatile, time-varying condition, even during clinical remission, but

provide hope to clinicians in that a relatively small number of samples yields large

additional benefits, facilitating patient compliance. This information can be used

to design collection of fecal samples for a large prospective cohort of CD patients

for longitudinal studies of host-microbial interactions over time.

The methods demonstrated here have not previously been used for micro-
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Table 4.2: Performance summary of the classifier at increased samples per subject
for this cohort (daily samples) and a previously published cohort. The area under
the curve (AUC) summarizes the performance; closer to 1 is better, of the model
trained on the di↵erent sample sizes as described by the other columns. The
row marked with represents the performance of a classifier that relies on non-
longitudinal relative abundances only.

AUC Samples per Subject Controls Crohn’s Disease Sampling

0.80 1 12 19

Daily samples

0.77 1 12 19

0.82 2 12 19

0.85 3 12 18

0.86 4 12 18

0.87 5 12 18

0.87 6 12 18

0.88 7 12 18

0.88 8 12 18

0.87 9 12 18

0.87 10 12 17

0.86 11 12 16

0.80 1 9 19

Monthly samples [72]

0.80 1 9 19

0.83 2 9 15

0.86 3 8 14

0.92 4 8 12
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biome analyses but have been used for other engineering applications, for example

in production lines to predict product specification outcomes in a steel manufac-

turer’s facility [30]. We expect the results to generalize in other systems, including

other gastrointestinal and hepatic disorders, where dynamic features of the micro-

biome, host gene expression, or other accessible features can act as indicators of

underlying dysbiotic states.

4.2.1 Methods

Data Processing

Demultiplexed sequences were filtered using Quantitative Insights into Mi-

crobial Ecologys (QIIMEs) [23] default parameters for quality control using (ver-

sion 1.8.0-dev). To account for the fact that a subset of the sequences were pro-

cessed using a MiSeq instrument and the rest using a HiSeq instrument, the re-

sulting reads were trimmed to an even length of 99 nucleotides [25, 136]. The re-

sulting sequences were clustered using the closed-reference Operational Taxonomic

Unit (OTU)-picking protocol (utilizing UCLUST as the clustering algorithm [46])

against the Greengenes database (release 13 8) [160]. Distance matrices were cal-

culated using the UniFrac [139] distance metric. Bimodality tests were performed

using Hartigan’s dip test [78]. To account for uneven sampling e↵orts in the sam-

ples, the resulting OTU table was rarefied at 7,400 sequences per sample. The

number was selected so the main category of interest (health status of the patient)
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had a balanced number of classes.

Classifier

To assess the benefits of increased number of samples per subject, we used

a Random Forests [21] model and we created the features following these steps.

First we randomly selected N samples for each subject. For this set of N sam-

ples, we created features based on alpha diversity, beta diversity and microbial

relative abundances. We then split the dataset into training and testing subsets

and evaluated the classifier’s sensitivity and specificity. Finally, we repeated the

selection of N random samples for M iterations, and summarized the results using

a Receiver Operating Characteristic (ROC) curve and the Area Under the Curve

(AUC). After the M iterations, we increased N by one and repeated the procedure

until we reached N 0. The result is a total of N 0 �N ROC curves and AUC scores

(one for each number of samples per subject).

The features are created based on longitudinal patterns of the di↵erent data

types (alpha diversity, beta diversity and relative abundances). In all cases, we

relied on the sample collection date to order the data and measured a series of

summary statistics. For alpha diversity and the microbial relative abundances,

the per-sample summaries were ordered and treated as vectors. For beta diversity,

we considered only the distances between ordered and subsequent timepoints and

treated this as a vector. Features were extracted from these vectors as described in

the TSFRESH package [30], for example by counting the number of samples where
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an individual OTU is not zero, to include the mean of alpha or beta diversity

distances, the mean rate of change of the alpha diversity vector, etc.

In the case of the microbial abundances, we performed a feature selection

step using phylofactor [240]. Phylofactorization was performed by maximizing the

F-statistic from logistic regression on disease state in patients with CD. Over 200

factors were found as significant predictors of CD in the terminal ileum, even when

controlling for multiple comparisons by a Bonferroni correction. Two factors iden-

tified large clades (>100 OTUs) used for feature selection. Factor 3 identified a

monophyletic clade of 518 OTUs in the Lachnospiraceae family which decreases

in the terminal ileum of patients with CD relative to healthy patients, and factor

26 identified a monophyletic clade containing 737 OTUs of the Gammaproteobac-

teria and Betaproteobacteria classes which increases in relative abundance in the

terminal ileum of patients with CD relative to healthy patients (Supplementary

Figure 118). The dataset used for feature selection [61], was not used during the

training or testing stages of the classifier construction.

Jupyter notebooks and source code describing all the analyses in this paper

can be found online19.

Cohort demographics, sample collection and sample processing details can

be found in Appendix B.2.

18
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-017-0269-3/

MediaObjects/40168 2017 269 MOESM2 ESM.tif
19
https://github.com/knightlab-analyses/longitudinal-ibd
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Chapter 5

Restoring a lost ecosystem

Clostridium di�cile infection (CDI) is a hospital-acquired infection result-

ing from antibiotic administration for an unrelated condition. Paradoxically, the

treatment for CDI is to prescribe more antibiotics. This treatment generally trans-

latesto depleted microbial diversity. As a consequence, resources that could be con-

sumed by other communities are now available for Clostridium di�cile to thrive

on. More recently CDI has been treated through the administration of Fecal Micro-

biota Transplants (FMTs), with a success rate above 90% [233]. A FMT consists of

reintroducing bacteria into the Gastro Intestinal (GI) tract of an a↵ected patient.

Frequently, after a day, the symptoms of CDI disappear and the recipients recover.

In this chapter, we examine two cohorts and focus on the short and long-term

changes in the gut microbiota after a FMT.

In the first cohort, relying on an animated �-diversity plot (as introduced

in Chapter 2.2), we visualize the immediate changes in the gut microbiome after
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a FMT. In addition, we also visualize the stability of the microbiome after the

transplant and note that the only point of instability occurs immediately after the

FMT.

The second cohort is composed of patients su↵ering from CDI and in some

cases with underlying Inflammatory Bowel Disease (IBD). We find that, while

both groups recover from the CDI, the micro-ecological e↵ects of FMT appear to

be dampened in subjects with underlying IBD. Overall, individual phylogenetic

diversity is lower, and the number of taxa di↵erentially present before and after

the transplant is also smaller (when compared to the non-IBD counterparts).

Chapter 5.1 appeared in the journal Microbiome, 2015. As the lead analyst

in this project, I contributed to the text, analyzed and interpreted the data, wrote

software used for the analysis, and generated the main visuals. Chapter 5.2 appered

in the journal Microbiome, 2017. As the co-lead contributor to this project, I co-

wrote the text, generated the figures, analyzed, interpreted, and deposited the data

into a public repository.
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5.1 Dynamic Changes in Short- and Long-Term

Bacterial Composition Following Fecal Mi-

crobiota Transplantation for Recurrent Clostrid-

ium di�cile Infection

FMT is an e↵ective treatment for recurrent CDI that often fails standard

antibiotic therapy. Despite its widespread recent use, however, little is known

about the stability of the fecal microbiota following FMT. Here we report on

short- and long-term changes, and provide kinetic visualization of fecal microbiota

composition in patients with multiply recurrent CDI (R-CDI) that were refrac-

tory to antibiotic therapy and treated using FMT. Fecal samples were collected

from four patients before and up to 151 days after FMT, with daily collections

until 28 days and weekly collections until 84 days post-FMT. The composition of

fecal bacteria was characterized using high throughput 16S rRNA gene sequence

analysis, and compared to microbiota across body sites in the Human Microbiome

Project (HMP) database, and visualized in a movie-like, kinetic format. FMT re-

sulted in rapid normalization of bacterial fecal sample composition from a markedly

dysbiotic state to one representative of normal fecal microbiota. While the micro-

biome appeared most similar to the donor implant material one day post-FMT,

the composition diverged variably at later time points. The donor microbiota

composition also varied over time. However, both post-FMT and donor samples
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remained within the larger cloud of fecal microbiota characterized as healthy by

the HMP. Dynamic behavior is an intrinsic property of normal fecal microbiota,

and should be accounted for in comparing microbial communities among normal

individuals and those with disease states. This also suggests that more frequent

sample analyses are needed in order to properly assess success of FMT procedures.

5.1.1 Introduction

FMT has emerged in recent years as a highly e↵ective treatment for re-

fractory CDI that cannot be cured with antibiotics alone [107]. The procedure

leads to prompt engraftment of donor microbiota, attainment of donor-like bac-

terial diversity, and normalization of the overall microbial community structure

[59, 76, 105, 204, 206, 233, 245]. However, existing data characterizing long-term

stability of engrafted microbiota are limited. One recent study suggests the mi-

crobiota of patients after FMT may not fully recover until 16 weeks after the

procedure [215]. This type of analysis, however, is complicated by the fact that

the microbial communities are intrinsically dynamic, and a↵ected by daily fluctu-

ations in the host’s diet, activities, and health [37, 40, 114]. In addition, multiple

fixed host factors, such as di↵erent states of immune competence, genetics, or gas-

trointestinal anatomy, likely also a↵ect the composition, stability, or resilience of

colonic microbiota [15, 95, 120, 140, 143]. Therefore, it is unclear whether di-

vergence in post-FMT microbiota from that of donor implant material represents

continued recovery, or whether these temporal changes are a general characteristic
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of host-associated gut microbiota in a changing host environment.

Here we describe both short- and long-term dynamic changes of fecal bacte-

rial composition in four patients following FMT. All patients received microbiota

from the same pre-qualified donor according to the standardized FMT protocol we

described previously [75]. Three patients received freshly prepared microbiota and

one patient received microbiota that had previously been frozen. We compared

pre- and post-FMT fecal microbial communities from these patients, as well as

pre-FMT communities from 10 additional patients with multiply R-CDI, to the

sequences of normal subjects described in the Human Microbiome Project [227].

In addition, we compared temporal changes in fecal bacterial composition in re-

cipients following FMT to temporal changes observed within samples from the

donor.

5.1.2 Materials and Methods

A description of sample collection and processing is provided in Appendix C.1.

Sequence processing and analysis

Sequence data was processed and analyzed using Quantitative Insights into

Microbial Ecology (QIIME) [23] according to the Illumina demultiplexing and pro-

cessing protocol [25] and current quality-filtering recommendations [20], using the

1.8.0 pipeline and the default parameters in split libraries fastq.py. After quality

control and demultiplexing, we picked close references at 97% similarity against
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the 97% similarity Greengenes database [160] version 13 8. All further analyses

were performed at a rarefied depth of 5,000 reads/sample. EMPeror [236] was used

for data visualization of BIOM-format [159] Operational Taxonomic Unit (OTU)

tables. OTU analyses were performed by clustering at the 97% level with UCLUST

[46], and data were integrated with the HMP dataset according to the protocols

used for similar previous meta-analyses [120, 55]. Sequences were analyzed by us-

ing both weighted and unweighted UniFrac [139], followed by principal coordinate

analysis [23]. Data were visualized using Phinch. The Phinch program provides

an easy-to-use, browser-based, platform to visualize contingency tables along with

their sample metadata (Bik et al., manuscript in preparation1).

Analysis of microbiome stability and centrality

For each set of post-transplant patient samples we assessed the similarity

of that set to the set of reference samples from the donor (2,000 reads/sample).

To reduce noise and compare patient samples along only relevant dimensions in

UniFrac distance space, we applied Principal Coordinates Analysis (PCoA) to the

unweighted UniFrac distance matrix containing only the post-transplant and donor

samples for that donor-patient pair, then recalculated the distances using only the

first n principal coordinates axes required to explain at least 80% of the variation

in the distance matrix. An 80% cuto↵ was chosen to balance bias and overfitting.

Distances were recalculated using Euclidean distances between points in PCoA

1
https://github.com/PitchInteractiveInc/Phinch
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space in order to convert PCoA coordinates to a distance matrix. The empirical

p-values for the ‘normality’ were obtained by comparing the mean distance between

patient and donor samples to the histogram of within-donor distances (generated

using all samples from a given donor by enumerating the pairwise distance between

those samples). The empirical p-values for the ‘dynamic range’ (stability) were

obtained by comparing the mean distance within patient samples to the histogram

of within-donor distances. These analyses were also performed using alternative

parameters including, weighted UniFrac, Jensen-Shannon, root Jensen-Shannon,

and Bray-Curtis.

5.1.3 Results

Bacterial composition of fecal samples from patients with R-CDI be-

comes healthy and donor-like following FMT

Four patients (CD1-CD4) with R-CDI were treated with FMT using mate-

rial obtained from a single donor but from di↵erent time points, and fecal samples

were collected from these patients before and after the procedure as well as from

the donor at times of donation. Bacterial communities from these fecal samples

were characterized by sequencing the V4 region of the 16S rRNA gene. Following

trimming and quality filtering from a total of 12,536,492 sequences, we randomly

subsampled to 5,000 sequences/sample in order to normalize read depth across all

samples. All further analyses were performed using this rarefied read depth.
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To better understand changes in bacterial communities following FMT, we

compared the bacterial composition of patient fecal samples to those of microbial

communities from various body sites from the 252 healthy individuals characterized

in the HMP [227] (Figure 5.1) using unweighted UniFrac [139] followed by PCoA

[23] (see Movie Supplement2). The composition of pre-FMT fecal samples from

patients CD1-CD4 and 10 additional patients with R-CDI was distinct from both

fecal samples from healthy individuals and microbial communities at other body

sites, including mouth, vagina, and skin, demonstrating severe alterations in pre-

FMT communities compared to healthy fecal communities as has been previously

shown [76, 233]. In contrast, microbial communities from the donor fell within the

range of healthy fecal samples. Using an animated visualization of FMT-associated

changes in patients’ fecal microbial communities, we observed rapid and dramatic

shifts after FMT towards the communities found in the feces of healthy individuals

and of the original donor (see Movie Supplement3).

Fecal microbial communities remain dynamic following FMT

To more closely examine temporal changes in recipient fecal samples follow-

ing FMT, we analyzed fecal microbial communities from patients CD1-CD4 and

donor, as well as from 10 additional donor samples, using weighted and unweighted

UniFrac [139] followed by PCoA [23]. This analysis demonstrated that fecal bac-

2
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-015-0070-0/

MediaObjects/40168 2015 70 MOESM1 ESM.mp4
3
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-015-0070-0/

MediaObjects/40168 2015 70 MOESM1 ESM.mp4
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Figure 5.1: Fecal bacterial communities of recurrent CDI patients shift towards
HMP fecal bacterial communities after FMT. Red circles = pre-FMT patient sam-
ples; green circle = post-FMT patient samples; blue line = trajectory of patient
fecal communities after FMT.
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terial communities continued to undergo compositional fluctuation following FMT

(Figure 5.2A and S1; individuals OTUs listed in Table S1).

To determine whether this dynamic range of post-FMT microbial com-

position fits within the range seen across healthy individuals, we also compared

communities in our samples to those in the HMP via weighted UniFrac and PCoA

(Figure 5.2B). Again, fecal microbial communities prior to FMT were highly dis-

tinct from healthy fecal microbial communities, and following the procedure these

communities more closely resembled those of healthy individuals. Similar to the

comparison with donor communities above, fecal microbial communities of R-CDI

patients following FMT shifted within the cluster of communities from healthy

individuals.

Rapid and substantial changes to Enterobacteriales in feces following

FMT

While overall fecal microbial communities were dramatically altered fol-

lowing FMT, we also examined the e↵ects of the procedure on the abundance

and dynamics of individual bacterial taxa within the four original CDI patients.

As shown previously [59, 76, 105, 204, 206, 233, 245], the relative abundance of

bacterial phyla in patient fecal samples shifted substantially following FMT, with

relative decreases in Proteobacteria and relative increases in Bacteroidetes and

Firmicutes (Figure 5.3). These Proteobacteria are primarily the order Enterobac-

teriales, which were also substantially decreased in relative abundance following
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FMT (Figure 5.4A).

We focused on these changes by examining the relative abundance of Enter-

obacteriales alone in each patient before and after FMT. The relative abundance

of this taxon ranged from 44 to 82% in all four patient samples prior to FMT, and

rapidly dropped to undetectable levels within one week after the procedure. More-

over, abundance of this taxon remained low at 26 days after FMT, the latest time

point shared by all four patients (Figure 5.4A), although other members of the Pro-

teobacteria remain detectable if decreased in relative abundance (Figure 5.3). In

addition, we generated individual value control charts based on the average abun-

dance of this taxon in R-CDI patients. Compared to relative abundance, these

control charts displayed the expected variation of the abundance of Enterobacte-

riales in these fecal samples. In all patients, the abundance of Enterobacteriales

was above the expected variation (i.e. more than three standard deviations above

the mean relative abundance [Standard Upper Control Limit (UCL)] of this order

across all samples) prior to FMT, and rapidly fell below the upper control limit

within 1-2 days after the procedure (Fig 5.4B). These results suggest that the rel-

ative abundance of Enterobacteriales significantly decreased in all patients soon

after FMT to levels similar to donor samples, and remained within a statistically

expected range for the duration of sample collection (up to 151 days post-FMT).
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Post-FMT communities are initially similar to donor samples but can

later diverge

Next, we compared fecal microbial communities within each patient over

time to that of the initial donor sample. We generated heat maps based on Pearson

correlations between every sample within a given patient set, including respective

donor samples and samples from 10 additional pre-FMT patients (Figure 5.5A).

This analysis revealed that while microbiota in samples from patients after FMT

quickly became similar to microbiota in donor samples, the similarity of samples

taken at later time points after FMT fluctuated.

To further investigate how fecal microbial communities in these patients

correlate to donor communities, we examined Pearson and Spearman correlations

between donor and patient samples, which were common to each patient (pre-

FMT samples and those up to 26 days post-FMT; Figure 5B and C and Figure

S2). While fecal microbial communities from patients before FMT were highly

distinct from those in the donor, fecal microbial communities from samples one day

after the procedure were highly correlated to donor communities via both Pearson

and Spearman analyses in all patients. After the initial time point after FMT,

the Pearson correlation values of patient to donor samples were highly variable

within and across patients, although Spearman correlations remained high for three

patients. To examine whether this variation is similar in healthy individuals, we

determined Pearson and Spearman correlations within the four donor samples used
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in FMT, as well as eight additional donor samples from the same individual as a

control. Results of this analysis revealed that donor microbiota also changed over

time (Figure 5D). These findings suggested that the level of variability seen across

patient post-FMT fecal microbial communities was within the range of normal

microbiota behavior in a healthy individual.

Normalization and dynamic range of post-FMT patient fecal microbial

communities are similar to donor communities

Because of the observed variability in later post-FMT patient fecal commu-

nities relative to single donor communities, we compared the communities of these

patient samples to an expanded set of 17 samples taken from the same donor. We

generated two metrics to evaluate the relationships between these communities:

normalization and dynamic range (stability). Normalization refers to the mean

between-sample distance for each set of patient samples versus the set of donor

samples, while dynamic range is the mean distance between each sample within

a single patient set. E↵ectively, the normality of a post-FMT patient sample set

is a measure of how similar it is to the donor (healthy) sample set, while dy-

namic range is a measure of variability within a given patient sample set. We

found that neither the normalization nor the dynamic range of any post-FMT pa-

tient sample set was significantly di↵erent than the donor set following analysis

using unweighted UniFrac (Table 5.1). This suggested that although fecal mi-

crobial communities of patients post-FMT do not remain identical to the donor,
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they nonetheless fall within expected parameters relative to the healthy donor.

Similar results were obtained when these analyses were repeated with other pa-

rameters, including weighted UniFrac, Jensen-Shannon, and root Jensen-Shannon,

and Bray-Curtis (data not shown).

Table 5.1: P-values of normalization and dynamic range of patient samples sets
versus donor set.

Patient CD1 CD2 CD3 CD4

Normalization 0.154 0.429 0.165 0.484

Dynamic Range 0.484 0.429 0.308 0.473

5.1.4 Discussion

It is now well understood that the fecal microbiota change substantially fol-

lowing FMT, typically shifting to fecal microbial communities more similar to those

of the donor after transplant [59, 76, 105, 204, 206, 233, 245]. Here we show that

these communities shift away from a dysbiotic state towards a composition that is

representative of fecal microbial communities from hundreds of healthy individuals,

collected in the HMP [227]. Similarly to previous studies [59, 76, 204, 233, 245],

the dysbiotic state in these patients with multiply R-CDI is characterized by a

large expansion of Proteobacteria (primarily members of the order Enterobacteri-

ales, which contains the family Enterobacteriaceae), and FMT is associated with

reemergence of dominance by members of the Bacteroidetes and Firmicutes phyla.
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Analysis of multiple donor and post-FMT samples demonstrates the dy-

namic behavior of fecal microbial communities over time. Both donor and recipient

samples are characterized by highly dynamic shifts that nonetheless remain within

the compositional range of normal fecal microbiota. This observation is consistent

with known rapid responsiveness of the fecal microbiome to environmental inputs,

such as dietary variations [37], and drifts in microbiota composition over time in

healthy individuals [50].

The dynamic nature of intestinal microbiota is an intrinsic property, which

should be taken into account when considering how therapeutic interventions, in-

cluding FMT, impact its composition over time. In long-term post-FMT follow-up,

Song and colleagues also noted dynamic changes in the fecal microbiome of R-CDI

patients up to 16 weeks post-FMT [215]. These investigators concluded that the

fecal microbiome of post-FMT patients did not fully recover over this time, despite

clinical recovery. Indeed, we observed divergence of microbiome in some of the pa-

tients away from the original implanted material over time. However, analysis of

multiple donor samples showed that this movement is within the same dynamic

range observed in the donor’s fecal microbiome. We therefore conclude that the

dynamic behavior of microbiota needs to be taken into account in making compar-

isons between individuals, and should become an integral part of analysis of the

success of FMT.

Three of the recipients in this study received freshly prepared microbiota,

while one received frozen/thawed preparation. Use of frozen microbiota prepa-
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rations is increasing in clinical practice [261], and its equivalency has not been

rigorously established in randomized clinical trials. The ability to store microbiota

allows the most up-to-date testing of the donor and fecal material for infectious

pathogens, as some of the current tests may take several weeks to complete. There-

fore, ability to preserve donor microbiota long-term is critical for its development

as a therapeutic agent in clinical practice. Our results here, although limited

in the number of patients, demonstrate indistinguishable behavior of fresh and

frozen/thawed microbiota preparation.

The patients in this study did not have any significant gastrointestinal co-

morbidities. However, a significant proportion of patients with R-CDI have un-

derlying inflammatory bowel disease, take potent immunosuppressive medications,

or have multiple other medical problems [75, 24]. The importance of these host

factors in contributing to microbiota behavior is currently unknown, but is a sub-

ject of great interest [61]. Understanding these influences will require analysis of

multiple samples. Recently, Fuentes and colleagues [59] reported that some spe-

cific microbial groups and interactive networks are likely to be very important for

the maintenance of microbiota in healthy individuals. However, although there is

a great deal of e↵ort focused on discovery of compositional di↵erences in micro-

biota between normal subjects and individuals with di↵erent gastrointestinal and

medical conditions, the dynamic behavior of fecal microbiota constitutes another

dimension that may distinguish these cases. Thus, predictors of stable or dysbiotic

intestinal microflora may also change over time. Further detailed studies of dy-
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namic behavior of post-FMT microbiota may improve our understanding of causal

connections between microbial communities and di↵erent disease states.
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5.2 Changes in Microbial Ecology after Fecal Mi-

crobiota Transplantation for recurrent C. dif-

ficile Infection A↵ected by Underlying In-

flammatory Bowel Disease

Background

Gut microbiota play a key role in maintaining homeostasis in the human

gut. Alterations in the gut microbial ecosystem predispose to CDI, and gut in-

flammatory disorders such as IBD. FMT from a healthy donor can restore gut

microbial diversity and pathogen colonization resistance; consequently it is now

being investigated for its ability to improve inflammatory gut conditions such as

IBD. In this study, we investigated changes in gut microbiota following FMT in

38 patients with CDI with or without underlying IBD.

Results

There was a significant change in gut microbial composition towards the

donor microbiota, and an overall increase in microbial diversity consistent with

previous studies after FMT. FMT was successful in treating CDI using a diverse

set of donors, and varying degrees of donor stool engraftment suggesting that donor

type and degree of engraftment are not drivers of a successful FMT treatment of

CDI. However, patients with underlying IBD experienced an increased number of
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CDI relapses (during a 24-month follow-up), and a decreased growth of new taxa,

as compared to the subjects without IBD, note that the test used presents some

limitations in sample size and statistical assumptions (see methods). Moreover, the

need for IBD therapy did not change following FMT. These results underscore the

importance of the existing gut microbial landscape as a decisive factor to success-

fully treat CDI, and potentially for improvement of the underlying pathophysiology

in IBD.

Conclusions

FMT leads to a significant change in microbial diversity in patients with

recurrent CDI and complete resolution of symptoms. Stool donor type (related

or unrelated) and degree of engraftment are not key for successful treatment of

CDI by FMT. However, CDI patients with IBD have higher proportion of the

original community after FMT and lack of improvement of their IBD symptoms

and increased episodes of CDI on long-term follow-up.

5.2.1 Background

Gut microbiota play a key role in maintaining homeostatic host functions

and deleterious shifts in the gut microbial ecosystem, often referred to as dysbiosis,

are associated with CDI, IBD and other systemic inflammatory conditions [103]. A

diverse gut microbial community confers colonization resistance against pathogens

such as C. di�cile, and disruption of a diverse community structure from antibi-
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otics, comorbidities, altered gastrointestinal transit or other risk factors can lead

to pathogen colonization and infection [101].

With increasing incidence of community and hospital acquired CDI, high

rates of recurrent CDI (estimated 20-30% after a first and 50-60% after a third

infection), high mortality ( 29,000 deaths annually) in the United States, and

an urgent need for newer non-antibiotic therapies has led to the emergence of

microbiome based therapies [130]. FMT in CDI patients restores phylogenetic

diversity to levels more typical of a healthy person, with response rates >85% by

enema, oral capsule or endoscopic delivery modes [96, 102, 175]. A recent study

suggests significantly lower response of CDI to FMT in patients with underlying

IBD [106]. We have also previously described a higher rate of recurrence of CDI

following FMT in patients with CDI and underlying IBD [104]. It remains unclear

if changes in gut microbial ecology play a role in long-term success of FMT in these

patients.

FMT has not shown consistent success in treating other diseases associated

with microbial dysbiosis such as IBD. Three clinical trials to treat Ulcerative Colitis

(UC) with FMT have shown conflicting results and one highlighted the potential

role of specific gut microbial members in donor stool in determining success after

FMT in UCs [165, 179, 193]. The underlying host or donor factors that may be

important for success of FMT in treatment of IBD remain unclear.

In this study, we assessed the e↵ect of donor type (standard donor versus

related donor) and changes in gut microbial ecology on response to FMT in R-CDI
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with and without underlying IBD as well as clinical response to FMT.

5.2.2 Methods

Patient recruitment, sample collection and clinical analysis can be found in

Appendix C.2.

Alpha diversity values were calculated using Faith’s phylogenetic diversity

[49]. To assess di↵erential abundance between the groups, we used ANCOM [146],

as implemented in scikit-bio 0.5.14. This is tested by looking at the individual

OTUs across the patient types (with and without underlying IBD); OTUs of the

same genus are grouped for displaying purposes. We note that ANCOM makes

the statistical assumption that fewer than 25% of taxa change, not met in all these

comparisons (before FMT and post FMT communities are expected to be very

di↵erent [244]).

The donor-plane is created using all the donor samples, and serves as a proxy

for where their microbiomes are in the ordination space, and how as time goes by

this proximity changes. This procedure was originally presented by Halfvarson et

al. [72].

Beta diversity matrices were created using unweighted UniFrac [139], and

plotted using Emperor [236] (all other plotting was done using the Seaborn visu-

alization package).

4
http://scikit-bio.org/docs/0.5.1/
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Processed tables and sample information can be found in Qiita5 under study

id 10057, alternatively the data can be found under accession number ERP021216

at the European Bioinformatics Institute.

SourceTracker Analysis

To assess the proportion of pre-transplant communities that were retained in

the patients’ microbiota, we used SourceTracker [112]. The pre-transplant samples

and the donor samples were described as sources ; all the other samples were used

as sinks. For all samples at day seven and twenty-eight, SourceTracker estimated

the proportion of communities that were attributed one of three environments,

(1) the donor, (2) the patient pre-transplant, and (3) and unknown community.

Using these proportions, we grouped the samples according to their IBD status

and compared their distributions using the Mann-Whitney test (as implemented

in SciPy 0.15.1[160]).

5.2.3 Results

FMT leads to resolution of CDI

In order to assess gut microbiota changes following FMT, 38 patients with

recurrent CDI were enrolled in the study and a fecal sample was obtained prior

to transplant, as well as 7 and 28 days post-transplant. Sample handling, donor

and recipient sample collection, sample processing and data analyses are detailed

5
https://qiita.ucsd.edu
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in supplementary methods. FMT was accomplished by colonoscopy using fresh

donor stools from related (n=12) or unrelated (n=26) donors. None of the IBD

patients received stool from a related donor. The demographic, disease and treat-

ment characteristics are outlined in Table 5.2. Detailed characteristics of IBD

patients are shown in supplementary table 1. Twelve patients (31.6%) had IBD (6

with UCs and 6 with Crohn’s disease), with median age 27.6 years (range, 23.3-

74.9), and median IBD duration 5 years (range, 2-33). 58.3% percent of patients

were on 5-ASA (amino salicylic acid) agents, 50% on biologics and 33.3% on im-

munomodulators and 58.3% on steroids. Among patients with IBD, at the time of

colonoscopy, 2 had normal colonoscopy, 1 had pseudopolyps, 5 had severe pancol-

itis, 1 had moderate colitis, 1 had mild colitis, 1 had mild procto-sigmoiditis and

1 had moderate ileo-colitis (Supplementary Table 1).

All patients responded to FMT with regards to clinical or microbiologic

remission of CDI (negative C. di�cile testing), 92.1% (n=35) of patient symptoms

returned to baseline bowel pattern (as before CDI) and resolution of CDI, 5.3%

(n=2, both with IBD) had worsening diarrhea (C. di�cile negative), and 2.6%

(n=1) had new onset constipation after FMT. Upon long-term follow-up of 24

months; 13.2% (n=5/38; of these n=1 within 56 days, n=1 from 56 days to 1 year

and n=3 beyond 1 year, Supplementary Table 2) had another episode of CDI and

10.5% (n=4/38) required a second FMT due to multiply R-CDI. One patient with

R-CDI was treated with vancomycin. The risk of another episode of CDI after

FMT in IBD patients was 25% (n=3/12) compared to 7.7% (n=2/26) in non-IBD
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patients (p=0.16, chi-square test). Seven of the 12 patients with IBD were on

systemic immunosuppression. None of the patients with IBD had improvement in

their IBD course after FMT, and none were able to withhold, de-escalate or stop

IBD treatment. This is not an unexpected finding as one time FMT would not be

expected to alter the disease course in IBD patients.

FMT decreases microbial dysbiosis

FMT led to a significant increase in alpha diversity based on Faith’s phy-

logenetic diversity, Shannon’s diversity index and observed species, both at day 7

and day 28 (Mann-Whitney p<0.05; Supplementary Figure 1, comparing pre- and

post-FMT in patients with CDI with or without underlying IBD). Also, patient’s

stool closely resembled donor stool, as evidenced by a rapid and sustained change

in unweighted and weighted UniFrac-based beta diversity following FMT at day 7

and 28 post-transplant (Figure 5.6A; PERMANOVA p<0.05) [139].

To characterize the changes in community composition, we use the Micro-

bial Dysbiosis (MD) index as a reference to describe the dominance of individual

taxa (Supplementary Table 3). The MDs index is composed of 18 taxonomic

groups, as defined by Gevers et al, with a higher value correlated with greater

disease severity in IBD, and lower values associated with healthier states [61]. As

CDI is also associated with dysbiosis and inflammation, we wanted to determine

the e↵ect of FMT on dysbiosis. The MDs index values were significantly higher

in patients with CDI compared to donors (Mann-Whittney’s U, p < 0.05, Fig-
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ure 5.6B). However, on day 7 and 28 after the transplantation, the MDs index

values were similar to donors (Mann-Whitney’s U p > 0.05, Figure 5.6B) and this

change was independent of whether recipients had IBD or not.

In order to determine if the changes seen in our subjects following FMT

were similar to other published studies we compared our samples with recently

published data from Weingarden et al. 2015 (Supplementary Figure 2A) wherein

4 patients with R-CDI (but not IBD) received FMT from a single donor [244].

Similar to our findings, there was a rapid and sustained change in beta diversity

(Supplementary Figure 2A) following FMT and the regression to the donor plane

(change in microbial composition to resemble healthy donors) following FMT was

remarkably similar in the two studies (Supplementary Figure 2B). In this context,

we refer to the donor plane as a proxy to the region in thePCoA: a dimensionality

reduction method to visualize beta-diversity distance matrices) space where the

donors are located; we do this by fitting a three-dimensional plane (using the least

squares method) to the samples from the donors. As the communities change

post-FMT, the distance to this plane is reduced.

Clinical response of CDI to FMT is independent of engraftment or donor

type but underlying IBD influences changes in gut microbial ecology

after FMT

In order to determine if the response of CDI to FMT was dependent on

donor stool engraftment, we determined Spearman’s correlation coe�cient between
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fecal microbial communities prior to and 7 and 28 days post-transplant. The fecal

microbial communities from patients with CDI were distinct from donor communi-

ties prior to transplant (Spearman’s r<0.2 for all subjects, Figure 5.6C). Following

transplant the communities showed an increase in correlation to donor stool at day

7 (Spearman’s r>0.4 for 85% of the subjects, Figure 5.6C) and a spread for all sub-

jects at day 28 ranging from below 0.2 up to 0.6 (Figure 5.6C). Using SourceTracker

[112], we found that after FMT, subjects with IBD retained a higher proportion

of their original communities (Mann-Whitney p < 0.05 at day 7, and p = 0.06 at

day 28; Figure 5.7A and 5.7B) and a significantly lower proportion of new com-

munities (Mann-Whitney p < 0.05 at day 7 and 28), as compared to the patients

without IBD. The expansion of new taxa following FMT represents a beneficial

ecological change following FMT as seen in patients without IBD, while those with

IBD are more prone to revert to the original community structure. Consequently,

in patients with IBD we observed a smaller group of taxa that change significantly

seven days after FMT. In both groups, Bacteroides, and Faecalibacterium showed

a significant increase in relative abundance, with Blautia, only being increased for

patients without IBD. Additionally, these patients showed a decrease in relative

abundance of Lactobacillus, Veillonella, Enterobacter, Klebsiella, Erwina, Proteus,

Salmonella, and Trabulsiella (Figure 5.7C and 5.7D, ANCOM p < 0.05, corrected

for multiple comparisons using Bonferroni-Holm’s method [146]).

All patients had either clinical or microbiological remission, confirming that

initial response of CDI to FMT is not dependent on the degree of donor stool

132



Figure 5.7: (A) and (B) Subjects with IBD retain a higher proportion of their
original communities (Mann-Whitney p < 0.05 at day 7, and p = 0.06 at day 28 and
a significantly lower proportion of new communities (Mann-Whitney p < 0.05 at
day 7 and 28), as compared to the patients without IBD using SourceTracker. (C)
Bacterial taxa that change significantly in patients with IBD after FMT (ANCOM
p < 0.05, corrected for multiple comparisons using Bonferroni-Holm’s method).
(D) Bacterial taxa that change significantly in patients without IBD after FMT
(ANCOM p < 0.05, corrected for multiple comparisons using Bonferroni-Holm’s
method). (E) Change in phylogenetic diversity based alpha diversity 7 and 28 days
following fecal microbiota transplant in patients with CDI with and without IBD
(Mann-Whitney’s U p < 0.001).
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engraftment. In this small cohort of patients, those with underlying IBD had

higher number of late relapses of CDI. We found no significant di↵erences in gut

microbiota composition following FMT from standard donors or related donors

(Mann-Whitney p> 0.05 at day 7 and 28), suggesting that engraftment of donor

stool was independent of donor type. Furthermore as all patients had ongoing

clinical remission with microbiological response (if measured), donor type does not

appear to a↵ect CDI related clinical response.

Change in bacterial diversity after FMT is dependent on underlying

IBD.

IBD disease course, as measured by the need for specific IBD therapies,

did not change after FMT, and patients with CDI and underlying IBD retained a

higher proportion of the pre-transplant communities and lower proportion of new

communities following FMT. Thus, underlying IBD appears to a↵ect the change

in gut microbial ecology resulting in a less significant increase in overall diversity.

In subjects without IBD, Faith’s phylogenetic diversity (which measures the to-

tal branch length of a phylogenetic tree that a given sample covers [48]) reached

a level comparable to healthy donors (Mann-Whitney’s U p ¡ 0.001, Figure 2E).

The di↵erences in phylogenetic diversity following FMT between subjects with and

without IBD became evident on day 7 and persisted on day 28 (Mann-Whitney,

day -1 p = 0.163, day 7 p = 0.0058, and day 27 p = 0.008, Figure 2E). A linear re-

gression of phylogenetic diversity vs MDs index (Supplementary Figure 3) shows a
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significantly lower negative correlation between the increase in phylogenetic diver-

sity and the increase of the MDs index in patients with IBD (Pearson’s correlation

coe�cient, IBD R=-0.68, No IBD R=-0.83; p < 0.0001; Supplementary Figure 3)

suggesting a lack of recovery of phylogenetic diversity in patients with IBD as the

MDs index improves.

5.2.4 Discussion

In this study, we found that gut microbiota diversity changes rapidly follow-

ing FMT for treatment of CDI and resembles donor microbiota diversity, similar

to previous studies. A successful response of CDI to FMT was seen with a diverse

group of donors and at levels of engraftment (as measured by correlation to donor

stool) varying from 50-94% (at day 7) and 34-93% (at day 28) based on the pro-

portion of communities attributed to the donor following FMT per SourceTracker,

suggesting these are not critical factors in determining response. Similarly, a re-

cent study that evaluated pre- and post-FMT (for recurrent CDI) gut microbiome

samples from a subset of patients enrolled in a randomized controlled trial [97],

compared donor FMT to autologous FMT suggested that complete engraftment

of donor bacteria may be not necessary, if functionally critical taxa are present

in subjects following initial antibiotic therapy for CDI [218]. This study excluded

patients with IBD but was able to compare autologous to donor FMT unlike our

study. There was a higher number of R-CDI following FMT in patients with CDI

and IBD but this was not statistically significant, likely given the small sample size.

135



However we have previously reported similar findings in a larger cohort of patients

with CDI and IBD [104], where gut microbiota changes were not monitored. In-

terestingly, in this cohort all patients had an initial clinical or microbiological

remission of CDI following FMT and we did not see a di↵erence in initial response

reported in a recent study [106], which is also likely due to the smaller sample size

of our study and di↵erences in underlying disease characteristics.

We also did not see changes in need for IBD therapy in the subset of pa-

tients with IBD underlying CDI. While dynamic variations can be seen in patients

following FMT [244], patients with underlying IBD in our study show a higher

proportion of the original pre-transplant microbial community and lower recovery

of phylogenetic diversity following FMT compared to those without IBD. This lack

of beneficial change in microbial ecology may be relevant for long term response

of CDI in patients with IBD and the lack of clinical response of IBD to FMT

seen in our and previous studies [106]. Future studies designed to study the e↵ect

of compositional and functional changes in gut microbiota on clinical outcomes

following FMT in patients with IBD will be needed to definitively address the

potential importance of changes in microbial ecology, donor selection [165], under-

lying disease characteristics and multiple-dose FMTs, in correcting the underlying

pathophysiology of IBD.
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5.2.5 Conclusions

There is a significant increase in microbial diversity in patients with re-

current CDI after FMT. Both, the degree of microbial engraftment or donor type

(related or unrelated) are not key for successful treatment of R-CDI by FMT.

Compared to CDI patients without IBD, CDI patients with IBD have higher pro-

portion of the original microbial communities after FMT and increased episodes

of future CDI on long-term follow-up.
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Chapter 6

Future Work

138



This thesis presents a collection of static and dynamic snapshots of diverse

microbial systems. Although our new methods are in no way specific to the human

gut, part of our focus has been to bridge the gap between computation and biology,

to get us closer towards a future where drug prescription, diet and recreational

activities can be further personalized – through a layer invisible to the naked eye

but perceivable in most respects of life.

It seems impossible to accurately predict the impact of scientific discoveries.

Historically, we have seen great evidence of seemingly anachronistic findings (for

example neural networks [225]) that later, usually when other technologies catch

up, become new fields of research or cornerstones in consumer applications. There-

fore, while acknowledging this is a tough problem, I present my personal view on

future directions that can build up from the contributions in this thesis. I divide

these into three sections: diagnostic methods, treatment and analysis.

6.1 Diagnostic Methods

In Chapter 3 and Chapter 4, we presented examples of biomarkers for IBD

and Crohn’s Disease (CD) from two di↵erent analytical perspectives. First, in a

dog cohort, we showed that we can reformulate the dysbiosis index we originally

developed for humans [61], and make it specific for a di↵erent host-species. Both

in humans and dogs, this log-ratio of bacterial groups is associated with decreased

phylogenetic diversity, and in humans, it is also associated with increased inflam-
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mation. Next, after noticing the increased volatility in the microbiome of subjects

with IBD, we benchmarked microbial variability in fecal samples as an e↵ective

classifier for disease. By collecting more samples per subject, we can overcome the

low classification accuracy of fecal samples.

Although both approaches are encouraging, translating research into con-

sumer-level applications, commonly presents formidable challenges that might only

be solvable by future generations. Take for example the Electrocardiograph (ECG),

it took almost 125 years, between the first observation of biopotentials1, and the

moment when the first table ECG2 became commercially available [268]. Even af-

ter the tremendous progress, proper validation of computer-generated diagnostics

only appeared more than 200 years after the initial discovery [250].

I use the example of the ECG, because much like raw heart biopotentials, (i)

microbiome data is plagued with noise, and (ii) determining the appropriate filters

and thresholds directly depends on the use-case. However, unlike with the early

developments of the ECG, we live in digital and connected world. As such, the

following focuses will shorten the time between future discoveries and innovation:

Mechanistic Studies The novelty characteristic of microbiome studies, has pro-

duced a large amount of descriptive studies. Contrastingly, mechanistic ex-

periments have lagged in validating several of these findings (likely due to

the more expensive requirements). If the goal is to relate the presence or

1
Credited to Luigi Galvani in 1787.

2
Willem Einthoven’s ectrocardiograph was manufactured by the Cambridge Scientific Instru-

ment Company of London in 1911.
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abundance of a microbiome feature to a disease state or biochemical process,

the underlying methods must be informed by biological inferences in order

for these biomarkers to gain credibility.

Open Data Medical research is especially a↵ected by human factors, being able

to consistently collect samples from a subject is not always easy or deter-

ministic (think of bowel problems and fecal samples). A powerful practice

used to counter underpowered studies is to improve on the current sample

size through the reuse of previously published data. This approach is only

possible through open resources, like Qiita3, that make data reuse seamless.

Importantly, the work in this thesis was only possible through the reuse of

existing datasets (see Chapter 2 through Chapter 5). Although making data

openly available is an important first step, proper standardization of process-

ing protocols will also be key to maximizes data re-usability. A remarkable

example of this practice is the Earth Microbiome Project (EMP) [63].

6.2 Treatment

Microbiome-based treatments are generally based on the transplantation

of microbial communities from a healthy donor into an a↵ected recipient. Three

spearheading examples are: FMTs to treat CDI [233], skin microbiomes transplants

to treat atopic dermatitis [169], and (although still in early stages) a capsule full

3
https://qiita.ucsd.edu/
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of microbial spores to treat UC by Seres Therapeutics4.

Although most FMTs succeed at treating CDI, what makes a successful

transplant is not clear yet. The number of variables implicated in answering this

question is immense. From a computational complexity standpoint, a priori deter-

mination of whether or not a new community can colonize an existing ecosystem is

considered a hard computational problem, belonging to the#-P class [88]. As such

our focus should be on strengthening our systematic understanding of the trans-

plant, and characterize not only what makes a successful transplant but also what

makes a failed one. For example, the impact of the work presented in Chapter 5.2

could have been magnified if we had included subjects for which the FMT failed.

With appropriate sample sizes, we could have applied a number of techniques to

single out (if any) the common features that lead to a failed transplant. With

this knowledge, we could pre-screen donors and recipients to ensure a successful

treatment and avoid unexpected side-e↵ects.

6.3 Analysis

Much as our microbial symbionts depend on the host environment (and

vice versa), the development and funding of analytical tools depends on the ever-

growing necessity to unravel complex patterns in a number of experimental setups

(cross-sectional, longitudinal, multi-’omic, etc). Thus, these tools must take into

4
http://www.serestherapeutics.com
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consideration the ability to be flexible, scalable, and when possible interactive.

Novel analytical methods and software infrastructure should be built mak-

ing scalability a priority. We have seen a steady increase in our capability to

generate data, and it is likely that this trend will continue. Emperor (Chapter 2.1)

was partly a response to the limitations in existing software, and more recently we

had to re-architect the underlying implementation to cope with modern and larger

datasets.

Flexibility and compliance with community standards makes software avail-

able to a wider audience. Take the count table, often acting as the core data-

structure for metabolomic, transcriptomic, proteomic, (and other ’omics) analyses.

If the software producing this data complies with a standard, like the Biological

Observation Matrix (BIOM)-format, the end user is now free to select from a va-

riety of methods as opposed to being limited to niche-software. This idea is being

taken a step further with QIIME-2, where a semantic type system defines the

methods and visualizations that can be applied to any given dataset (regardless of

its biological origin).

Finally, the value of interactively exploring a dataset lies in our ability

to quickly test hypotheses and iteratively develop new ones. Future exploratory

analysis tools should be developed with interactivity and interoperability in mind.

For example, brushing to select a group of samples in a view of data might act

as a filter for a di↵erent representation. Modern web technologies, and software

development frameworks like QIIME-2, will likely be the pioneers of these global
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overviews of microbial diversity.
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Appendix A

Sample collection and processing

for Chapter 3

A.1 Methods

Naturally passed fecal samples were analyzed from 85 healthy dogs and

65 dogs with chronic signs of gastrointestinal disease and confirmed inflammatory

changes on histopathology. All dogs participated in di↵erent clinical studies and

leftover fecal samples were utilized for this study. The protocol for sample collec-

tion was approved by the Clinical Research Review Committee of the College of

Veterinary Medicine, Texas A&M University (CRRC#09-06).

Dogs with clinical signs of chronic GI disease (i.e., vomiting, diarrhea,

anorexia, weight loss, etc.) were diagnosed with idiopathic IBD based on theWorld

Small Animal Veterinary Association (WSAVA) criteria: (i) chronic (i.e., > 3
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weeks) GI signs; (ii) histopathologic evidence of mucosal inflammation; (iii) in-

ability to document other causes of GI inflammation; (iv) inadequate response to

dietary, antibiotic, and anthelmintic therapies, and (v) clinical response to anti-

inflammatory or immunosuppressive agents. Histological samples were obtained

endoscopically. The clinical status of each dog was evaluated using a published

clinical Clinical Canine IBD Activity Index (CIBDAI). Within the IBD dogs, 41

dogs had histological confirmed inflammation in the small intestine, 18 dogs had

histological changes in both small intestine and colon, and 5 dogs had only his-

tological changes reported in the colon. Histological changes were predominantly

of lymphoplasmacytic infiltrates, with a subset of dogs also showing eosinophilic

and/or neutrophilic components. The mean (SD) CIBDAI for IBD dogs was 6.4

(3.1).

Dogs were excluded if they received antibiotics within the past 2 weeks of

sample collection. Data on antibiotic history was nevertheless collected: 34/65

dogs with IBD had no history of prior antibiotics administration, while 13 dogs

received antibiotics several weeks (>2) or months before sample collection. The

remaining 18 dogs in the IBD group had no information about prior antibiotic use.

In the healthy group (n=85), 76 dogs had not received any antibiotics, and 9 dogs

had a history of antibiotic use, but not within the last 2 weeks of sample collection.

No technical replicates were generated in this study.

Sample and animal information (i.e., age, weight, gender, breed, duration of

clinical signs, histopathology, antibiotic usage) was obtained from clinical records.
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Also, if the owner provided the information, the exact diet (trade name and manu-

facturer) fed at time of sample collection was recorded in the clinical records, and

the dietary macronutrients (protein, fat, and carbohydrate content) were recorded

from manufacturer’s provided data on the labels.

Body weights ranged from 2.9 to 55 kg (mean 22 kg, SD: 14.9 kg), which

was not significantly di↵erent from (MannWhitney test; p=0.087) the healthy dogs

(range 0.9 to 50 kg; mean 20.3 kg, SD: 10.7g). Mean age (SD) was 5.4 (3.07) in the

IBD group, which was not significantly (Mann Whitney test; p=0.311) di↵erent

from healthy dogs (4.7, 3.2). There was a wide breed distribution with 37 di↵erent

breeds in the IBD group and 42 di↵erent breeds in the control group. In the IBD

group, Yorkshire terrier, German Shepherd dogs and Labrador Retrievers (n=5

each) were most commonly represented.

Body Condition Scores (BCS) were assessed according to the WSAVA cri-

teria. BCS is rated in a 9-point scale that visually evaluates a dog’s body com-

position. This score has been validated against the standard dual-energy X-ray

Absorptiometry (DEXA) [157]. For this dataset, the BCS was restricted to a sub-

set of the healthy samples, therefore IBD vs. Healthy comparisons could not be

made in this case.

A.1.1 DNA Extraction and Sequencing

DNA isolation was performed as described by the EMP Protocol (version

4 13) for 16S rRNA[8]. The full cohort included 192 samples, of which 15 were
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removed because those subjects had acute hemorrhagic diarrhea, and had little

clinical information available. The remaining 28 samples did not recover enough

sequences after quality control including screening for low counts of reads per

sample. All samples were sequenced using the Illumina HiSeq platform (2 x 100

nucleotide sequences and an index read).

A.1.2 Accession Numbers

Raw sequences for the dog samples have been deposited to the European

Nucleotide Archive (ENA) at the following accession number ERP014919, equiv-

alent processed OTU tables and metadata can be accessed through Qiita1 under

study 833 - ‘Dog models of inflammatory bowel disease’.

The data for the human dataset[61] can be found in the ENA at the fol-

lowing accession numbers ERP015241 and ERP015242, equivalent processed OTU

tables and metadata can be accessed through Qiita1 under study identifiers 1939

and 1998 -‘The Treatment-Naive Microbiome in New-Onset Crohn’s Disease’.

Data for the additional dog study [164] can be found at the Sequence Read

Archive (SRA) of the under accession number SRP040310.

1
https://qiita.microbio.me

148

https://qiita.microbio.me


Appendix B

Sample collection and processing

for Chapter 4

B.1 Methods for Chapter 4.1

B.1.1 Cohort Demographics

Patients with CD or UC, the two major forms of IBD, attending the outpa-

tient clinic were consecutively invited to take part. After obtaining written consent,

Body Mass Index (BMI) was recorded and patients were asked to provide a fecal

sample and to fill in a questionnaire with clinical disease activity, present medica-

tion, dietary habits, use of antibiotics and use of Non-steroidal anti-inflammatory

drugs (NSAIDs). Disease phenotype was classified according to the Montreal clas-

sification [209]. Individuals were then followed prospectively, asked to provide fecal
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samples and to fill in the questionnaire every third month for a two-year period.

If a patient did not provide a fecal sample at any of the three months periods,

a reminder letter was sent. In total 109 patients with IBD (CD; n=49 and UC;

n=60) took part. Nine additional individuals with no IBD or any other gastroin-

testinal conditions were recruited as Healthy Controls (HC) as well as 19 patients

with other chronic inflammatory gastrointestinal diseases (4 Lymphocytic Colitis

(LC) and 15 Collagenous Colitis (CC)). All 137 individuals were Caucasians and

together they provided 683 fecal samples during the two-year period (Supplemen-

tary Table 41). The study was approved by the Ethical Committee of the Medical

Faculty, Uppsala University (2007/291).

B.1.2 Sample Collection

Fecal samples were self-collected in sterile plastic containers and stored at

-80 C until shipping on dry ice and processing.

B.1.3 Fecal calprotectin

To assess the degree of inflammatory activity at the collection of each fecal

sample, the concentration of f-calprotectin was assessed by commercially avail-

able ELISA, Calprotectin Elisa Buhlmann Laboratories AG, Basel, Switzerland,

according to the manufacturer’s protocol.

1
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/

extref/nmicrobiol20174-s1.pdf
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B.1.4 DNA Extraction and Amplification

Genomic DNA was extracted from 0.25 g of fecal material from each sample

using the Earth Microbiome DNA extraction protocol [2]. Briefly, DNA was ex-

tracted using the 96-well format MoBio Powersoil DNA kit on an EpMotion 5075

robot with vacuum (Eppendorf, Hamburg, Germany). DNA was quantified with

the Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA) according to the manufac-

turer’s instructions.

PCR amplification and library preparation were performed similarly to the

protocol described by Caporaso et al. [26]. 515F/806R Illumina primers with

unique reverse primer barcodes were used to target the V4 region of the 16S rRNA

gene. Samples were amplified in triplicate and cleaned using the MO BIO 69 htp

PCR cleanup kit. Each PCR reaction included 1X PCR bu↵er, 10 µM each forward

and reverse primer, 200 M dNTPs, 1 U/ml Taq polymerase, 15 ng template DNA,

and PCR grade water, with a total reaction volume of 25 µL. Reactions were kept

at 94°C for 3 minutes for denaturation to occur. Amplification was performed by

25 cycles of 94°C for 45s, 58°C for 60s, and 72°C for 90s. The V4 amplicons were

sequenced on the Illumina HiSeq 2000 platform, yielding single end, 100 base pair

reads. Sequencing and quality assessment were performed at the Yale Center for

Genome Analysis.
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B.1.5 Data Availability

Microbiome data from this study is available on Qiita under study ID 1629

(https://qiita.ucsd.edu/study/description/1629) and using the EBI accession num-

ber ERP020401. Patient clinical information is available on Qiita and in Supple-

mental Dataset 12.

B.2 Methods for Chapter 4.2

B.2.1 Fecal collection

Stool was collected daily using a swab technique [34], which enables the

study subject to collect stool samples from the toilet paper. Samples were stored

on a -20°C freezer. Fifteen patients collected daily stool for two 2-week periods

separated by an interval of 4 weeks, during which no stool was collected. The short

Clinical Disease Activity Index (CDAI) was evaluated at entry and at the end of

collection period 1 and 2 [226]. The collection periods for the family substudy,

which included 4 patients with inactive CD with same exclusion criteria as above

and 3 una↵ected family members of each CD patient were two separate 4 weeks

periods interrupted by a 3 month collection-free interval.

Patients with proven CD diagnosed for at least 3 months and in clinical

remission were recruited at the University of North Carolina (see Table 4.2). Serial

2
https://images.nature.com/original/nature-assets/nmicrobiol/2017/nmicrobiol20174/

extref/nmicrobiol20174-s2.txt
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stool samples as outlined below were submitted for analysis. Exclusion criteria for

entry into the study were active CD as defined by a short CDAI score > 150;

fistulizing CD, concomitant use of azathioprine (AZA), 6-mercaptopurine (6-MP),

methotrexate or anti-TNF agents for less than 3 months; or concomitant use of

systemic steroids or budesonide. Steroids or budesonide had to be discontinued at

least 8 weeks before inclusion, and local, rectally administered therapies containing

5-ASA (enemas, suppositories) or steroid enemas/foams should have not been used

for the previous 4 weeks. Also, NSAIDs were not allowed as regular treatment,

which was defined as use for at least 4 days a week each month. Patients were

excluded if they were on antibiotic therapy �5 days each month or had antibiotic

therapy �5 days in the previous 24 weeks. No probiotics were allowed in the

last 24 weeks before inclusion and patients on long-term therapy with narcotics

>2 days weekly were excluded. Further subject exclusions were known Hepatitis

B, Hepatitis C or PSC or regular, high dose alcohol consumption (more than

seven drinks per week). All trial participants were prohibited from consuming

specific diets (e.g. Atkins diet, low carbohydrate diet). In the second subset

we also included nona↵ected family members to collect serial fecal samples. The

requirement for the family subjects was one sibling age � 8 years without known

CD or ulcerative colitis and two living parents without CD or ulcerative colitis.

The same exclusion criteria for antibiotics, probiotics, narcotics and concomitant

diseases as in the main study were applied.
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Table B.1: Summary of the demographic data of the 19 CD patients.

Male/Female (n) 8 / 11

Age (years, median; range) 31 (15-51)

Duration of Crohn’s disease (years median; range) 9 (0.5-35)

Location of Crohn’s disease (n)

Ileal 5

Ileo-colonic 10

Colonic 4

History of ileocecal resection 7

History of isolated small intestinal resection 2

Concomitant therapies (n)

Steroids 0

Azathioprine/6-MP/methotrexate 8

anti-TNF agent 12

5-ASA 2

CDAI end of week 2 (mean; SD) 63 (51)

CDAI end of week 4 (mean; SD) 72 (61)
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B.2.2 DNA Extraction

Fecal DNA isolation was performed according to the 16S Earth Microbiome

Project Protocol [8]. Of the 960 samples analyzed, the initial subset (384 samples)

were processed using the Illumina MiSeq platform (150 nucleotide sequences), and

for the second subset (576 samples) were processed using the HiSeq platform (100

nucleotide sequences).

B.2.3 Data Availability

The sequences have been deposited on EBI and are available under the

following accession number ERP104742. In addition, the processed sequences and

sample information can be found in the Qiita3 database under the study identifier

2538.

3
https://qiita.ucsd.edu/study/description/2538
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Appendix C

Sample collection and processing

for Chapter 5

C.1 Methods for Chapter 5.1

C.1.1 Patients and donors

All patients su↵ered from multiply R-CDI refractory to standard antibi-

otic therapies. A single standard donor was used in the preparation of all fecal

microbiota material as described previously [75]. The Institutional Review Board

at the University of Minnesota approved prospective collection of fecal specimens

and their analysis. All patients satisfied the inclusion criteria for the FMT within

our program, which included at least two spontaneous recurrences of CDI within a

month of discontinuation of antibiotics and failure of at least one advanced antibi-
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otic regimen such as a vancomycin pulse/taper protocol or vancomycin treatment

followed by administration of rifaximin or fidaxomicin for 2-3 weeks. The spe-

cific clinical characteristics of patients involved in this study are summarized in

Supplementary Table 11.

C.1.2 Fecal microbiota transplantation

FMT was done using a standardized preparation of concentrated fresh or

frozen fecal bacteria via colonoscopy as previously described [75]. All patents were

treated with oral vancomycin, 125 mg four times daily, until two days prior to the

procedure [75]. The day before the procedure, patients received a polyethylene

glycol-based colonoscopy prep (GoLYTELY® or MoviPrep®) to remove residual

antibiotics and fecal material. Donor fecal microbiota was placed into the terminal

ileum and/or cecum via the biopsy channel of the colonoscope. A total of 17

donor samples from the same individual were used in these studies. The CD1-CD4

donor samples were given to patients CD1-CD4, respectively. Patients CD1, CD3,

and CD4 received freshly prepared fecal microbiota, while patient CD2 received a

previously frozen preparation of fecal microbiota, all from the same standardized,

anonymous donor.

1
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-015-0070-0/

MediaObjects/40168 2015 70 MOESM3 ESM.xlsx

157

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-015-0070-0/MediaObjects/40168_2015_70_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-015-0070-0/MediaObjects/40168_2015_70_MOESM3_ESM.xlsx


C.1.3 Sample collection

Fecal samples were collected at home by the patients using swabs to sample

feces deposited into a toilet hat immediately after production, and stored frozen

at approximately -20°C. Samples were subsequently transferred to the laboratory

and stored at -80°C until used. Donor samples for DNA extraction were collected

during processing of material for FMT, and stored frozen at -80°C until used.

Samples from patients CD1- 4 were obtained prior to FMT and between 1 to 151

days post-FMT, with daily collection until day 28, and weekly collection until day

84. Fecal material prior to FMT was obtained from patients CD5-CD14.

C.1.4 DNA extraction

DNA was extracted from donor and recipients’ pre- and post-FMT fecal

samples using MOBIO PowerSoil DNA extraction kits (MOBIO, Carlsbad, CA),

according to the manufacturer’s instructions. Fecal DNA concentrations were mea-

sured using a QuBit DNA quantification system (Invitrogen, Carlsbad, CA).

C.1.5 PCR amplification

Extracted DNA was amplified using the EMP standard protocols2 following

the recommendations of Caporaso et al. [25]. Briefly, F515/R806 primers were

used, with 12-base Golay codes introduced on the 806 end to provide unique sample

indices. Cycling and annealing conditions were as previously described [25].

2
http://www.earthmicrobiome.org/
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C.1.6 DNA sequencing

DNA sequencing was performed as previously described [25] on an Illumina

MiSeq platform using 2 x 150 bp paired-end reads and the Illumina v3 reagent

chemistry.

C.2 Methods for Chapter 5.2

C.2.1 Patient selection

Patients undergoing FMT for R-CDI were prospectively recruited in this

study. Informed consent was obtained to collect clinical data and stool samples.

Data collected included demographics, clinical history, CDI treatment history, co-

morbid conditions and response to FMT. A donor fecal sample was collected prior

to FMT. Stool samples from the recipients were collected before FMT, and at day

7 and day 28 and were stored at -80°C. The donors were either related (genetically

related family members) or unrelated (screened hospital employee volunteer donors

or unrelated family members) and a fresh sample was obtained on the day of FMT.

All donors underwent extensive screening in accordance with standard practice and

guidelines from the Food and Drug Administration [100]. Donor selection criteria

and experience from our group have been previously published [224]. The donor

stool sample is weighed and divided into 50 grams aliquots. Each aliquot of 50

grams is diluted in normal saline in a 1:5 ratio (50 grams of stool diluted with
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250 ml of normal saline) and is placed in the blender bag (a 2 bag system with

a semipermeable membrane in the inner bag and the outside bag is plastic). The

stool is placed in the inner bag and normal saline is added. The bag is placed in

a sealed compartment in the stomacher 400 (Seward) and blended for 60 seconds

at 230 rotations per minute. The filtrate is then placed into 50 ml conical tubes

using 50 ml pipettes and placed on an ice pack prior to the procedure. R-CDI

was defined as another episode of CDI within 56 days after symptom resolution

with recurrence of symptoms and a positive stool polymerase chain reaction test.

For this study, future C. di�cile episodes after FMT up to 2 years were captured.

These were categorized as up to 56 days, 56 days to 1 year and beyond 1 year.

C.2.2 Sequencing and analytic methods

After fecal DNA isolation (MoBio, Carlsbad, CA fecal DNA kit), ampli-

cons spanning the variable region 4 of bacterial 16S rRNA were generated and

sequenced using Illumina MiSeq platform at the Mayo Clinic Medical Genome

Facility, Rochester, MN. The 16S rRNA sequencing data from the Illumina runs

were quality controlled, trimmed, demultiplexed and assigned to OTUs following

the closed reference at 97% similarity (using SortMeRNA as a clustering algorithm

[118] protocol against the Greengenes [160] database 13 8 release, as implemented

in QIIME 1.9.0 software [23], default parameters were used for all these steps un-

less otherwise noted. After quality control, 10,583,052 sequences were obtained,

for a mean of 76,688 sequences per sample (min: 33,559, max: 154,200).
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C.2.3 Clinical Statistics

Statistical analyses for clinical data were performed with JMP version 11.0

(SAS institute, NC). Data analysis included descriptive statistics, t-tests for nor-

mally distributed variables, non-parametric tests for skewed variables, chi-square

tests and ANOVA tests as applicable. A p-value less than 0.05 was considered

statistically significant.
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