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Preface

In this thesis I compile and slightly extend my research results found between 2011
and 2017, partly obtained in cooperation with other researchers. Compared to previ-
ously published articles the thesis includes additional explanations and all results are
presented in consistent notation.

The two topics of the thesis, quadratic inverse problems and `1-regularization, seem
to be quite different. The first is concerned with nonlinear mappings in a classical
Hilbert space setting, whereas the second deals with linear mappings in non-reflexive
Banach spaces. Both subjects met more or less by chance at my desk: work on qua-
dratic problems was heavily influenced by a project on measurement techniques in laser
optics between TU Chemnitz and Max Born Institute Berlin, work on `1-regularization
was instigated by colleagues knowing my articles on convergence rate theory in Ba-
nach spaces and asking how to obtain rates for `1-regularization in case of non-sparse
solutions.

At the second sight, both subjects have similar structures and their handling shows
several parallels. Nevertheless, I decided to devide the thesis into two independent
parts and to give hints on cross connections from time to time. The advantage of this
decisison is that the reader may study both parts in arbitrary order.

Next to some auxiliary material the appendix contains an unpublished result on
variational source conditions for convex regularization in Banach spaces.

Finishing this thesis would not have been possible without constant support and
advice by Prof. Bernd Hofmann (TU Chemnitz). I thank him a lot for his efforts in
several regards during all the years I have been working in his research group. I also
want to thank my colleagues and coauthors, especially Steven Bürger and Daniel Gerth,
for interesting and fruitful discussions. Last but not least I have to express my thanks to
the Faculty of Mathematics at TU Chemnitz as a whole for the cordial and cooperative
working atmosphere.

Chemnitz, April 2017
Jens Flemming
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Part I.

Quadratic inverse problems
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1. What are quadratic inverse problems?

Ill-posed inverse problems are frequently divided into two classes: linear and nonlinear
ones. The reason for this distinction is that for linear inverse problems there is a huge
and almost closed theory of regularization whereas for nonlinear ones there are only
weak theoretical results and each concrete nonlinear inverse problem has to be handled
in a different way. In the present part of the thesis we consider a subclass of nonlinear
inverse problems and develop theoretical results and algorithms which can be applied to
all inverse problems from this class. We call the subclass the class of quadratic inverse
problems.

1.1. Definition and basic properties

Let X and Y be Banach spaces over R or C and let F : X → Y be a (nonlinear)
mapping. The inverse problem under consideration is the equation

F (x) = y† (1.1)

with given y† in Y and sought-for x in X. We assume that there exists a solution, that
is, y† belongs to the range of F .

Definition 1.1. The mapping F is called quadratic if there is a continuous bilinear
mapping B : X ×X → Y such that

F (x) = B(x, x)

holds for all x in X.

Note that by definition quadratic mappings are always continuous.
The quadratic structure implies several simple facts which will be used throughout

the thesis. So let F be quadratic with underlying bilinear mapping B. Then we have

F (x+ u) = B(x+ u, x+ u) = B(x, x) +B(x, u) +B(u, x) +B(u, u)

= F (x) +B(x, u) +B(u, x) + F (u)

for x and u in X and also

F (t x) = B(t x, t x) = t2B(x, x)

= t2 F (x)

for scalars t. In particular, quadratic mappings cannot be injective because

F (x) = F (−x).

7



1. What are quadratic inverse problems?

We also see

F (0) = 0.

Note that there might be many different bilinear mappings B, the diagonals of which
produce the same quadratic mapping F . But restricting our attention to symmetric
bilinear mappings, we enforce uniqueness.

Proposition 1.2. Let F be quadratic. Then there is exactly one symmetric bilinear
mapping BF : X ×X → Y with

F (x) = BF (x, x)

for all x in X. The mapping BF is given by

BF (x, u) = F

(
x+ u

2

)
− F

(
x− u

2

)
(1.2)

for x and u in X.

Proof. Obviously, BF (x, x) = F (x) for all x and from

F

(
x− u

2

)
= F

(
−u− x

2

)
= F

(
u− x

2

)
we see that BF is symmetric. Assume that there is another symmetric bilinear mapping
B with B(x, x) = F (x). Then

B(x, u) =
1

4

(
B(x+ u, x+ u)−B(x− u, x− u)

)
= F

(
x+ u

2

)
− F

(
x− u

2

)
= BF (x, u)

for all x and u in X. That is, BF = B.

We already mentioned above that quadratic mappings cannot be injective because
F (x) = F (−x). We want to distinguish between mappings which only have this simple
non-injectivity and mappings which are really non-injective.

Definition 1.3. A quadratic mapping F is injective up to sign if for all x and u in X
equality F (x) = F (u) implies x = u or x = −u.

Injectivity up to sign can be characterized by the behavior of F around zero. This is
quite similar to linear mappings.

Proposition 1.4. A quadratic mapping F is injective up to sign if and only if for all
x and u in X equality BF (x, u) = 0 implies x = 0 or u = 0.

Proof. Injectivity up to sign is equivalent to

F (x̃) = F (ũ) ⇒ x̃ = ũ or x̃ = −ũ.
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1.1. Definition and basic properties

Setting x := x̃− ũ and u := x̃+ ũ this can be rewritten as

F

(
x+ u

2

)
= F

(
x− u

2

)
⇒ x = 0 or u = 0

and simplifying the equality on the left we obtain

BF (x, u) = 0 ⇒ x = 0 or u = 0.

Like for linear mappings global properties of quadratic mappings can be deduced
from their local behavior.

Proposition 1.5. Let F be quadratic and let ε be positive. The mapping F is uniquely
determined by its values on the closed ε-ball around any point x0.

Proof. For x in X \ {0} write

F (x) =
‖x‖2
ε2

(
1

2
F

(
x0 + ε

x

‖x‖

)
+

1

2
F

(
x0 − ε

x

‖x‖

)
− F (x0)

)
to verify the assertion.

Another similarity to linear mappings is that quadratic mappings constitute a normed
vector space. Obviously, (pointwise) sums and scalar multiples of quadratic mappings
are again quadratic mappings. It remains to define a norm on this vector space. But
since the vector space of all continuous bilinear mappings B carries the norm

‖B‖ := sup
x,u∈X

‖x‖≤1,‖u‖≤1

‖B(x, u)‖

we may define
‖F‖ := ‖BF ‖.

This immediately provides the estimate

‖F (x)‖ ≤ ‖F‖ ‖x‖2 (1.3)

for all x in X. Together with Proposition 1.2 we obtain that the space of quadratic
mappings is isometrically isomorphic to the space of continuous symmetric bilinear
mappings.

For later use we introduce the notion of the adjoint of a bilinear mapping. Given a
symmetric bounded bilinear mapping B : X ×X → Y and elements x from X and η
from Y ∗ the functional

u 7→ 〈η,B(x, u)〉
on X is obviously linear and bounded. Thus it can be represented by some element
from X∗ which we denote by B∗(x, η). In this way we obtain a bounded sesquilin-
ear mapping B∗ : X × Y ∗ → X∗, to which we refer as the adjoint mapping of B.
The mapping B is antilinear in its first component and linear in its second, that is,

9



1. What are quadratic inverse problems?

B∗(a x, b η) = a bB∗(x, η) for complex numbers a and b. The same construction works
for the functional u 7→ 〈η,B(u, x)〉 and, since B is symmetric, yields the same sesquilin-
ear mapping B∗. The adjoint B∗ is uniquely determined by

〈η,B(x, u)〉 = 〈B∗(x, η), u〉 for all u, x in X and all η in Y ∗. (1.4)

A last basic property of quadratic mappings we want to mention in this introductory
section is that quadratic mappings always are differentiable.

Proposition 1.6. Each quadratic mapping F is Fréchet differentiable on X. The
Fréchet derivative F ′[x] : X → Y at x is given by

F ′[x]h = 2BF (x, h) for h in X.

Proof. For x and h in X we have

‖F (x+ h)− F (x)− 2BF (x, h)‖
‖h‖ =

‖F (h)‖
‖h‖ ≤ ‖F‖ ‖h‖.

Taking the limit ‖h‖ → 0 completes the proof.

Quadratic mappings are also twice Fréchet differentiable. For F ′′ we have

F ′′[x](h1, h2) = 2B(h1, h2)

for all h1, h2 and x in X. Obviously, all higher derivatives are zero. Thus, the Taylor
expansion of F at x0 is

F (x) = F (x0) + 2B(x0, x− x0) +B(x− x0, x− x0)

for all x in X.

1.2. Examples

We provide several examples of quadratic mappings and corresponding inverse prob-
lems. The focus in this thesis is on different types of autoconvolutions but the results
apply to other quadratic mappings, too.

1.2.1. Autoconvolutions

Let X = L2(0, 1) be the space of real-valued or complex-valued square integrable func-
tions over the interval (0, 1). There are three common types of autoconvolution opera-
tions on this space.
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1.2. Examples

Autoconvolution of functions with uniformly bounded support

We may interpret functions in L2(0, 1) as functions defined on the whole real line, but
with support contained in (0, 1). In other words, the functions have uniformly bounded
support and without loss of generality we assume that the support is bounded by zero
and one. Then the usual autoconvolution of real-valued or complex-valued functions
over the real line reduces to

(
F (x)

)
(s) :=



s∫
0

x(s− t)x(t) dt, if s ∈ (0, 1),

1∫
s−1

x(s− t)x(t) dt, if s ∈ (1, 2)

or, which is the same,

(
F (x)

)
(s) =

min{s, 1}∫
max{0, s−1}

x(s− t)x(t) dt, s ∈ (0, 2). (1.5)

Proposition 1.7. The mapping F defined by (1.5) is a quadratic mapping from L2(0, 1)

into L2(0, 2) with
√

2
3 ≤ ‖F‖ ≤ 1. Further, F is injective up to sign.

Proof. With BF : L2(0, 1)× L2(0, 1)→ L2(0, 2) given by

(
BF (x, u)

)
(s) :=

min{s, 1}∫
max{0, s−1}

x(s− t)u(t) dt, s ∈ (0, 2) (1.6)

we have F (x) = BF (x, x). To prove that F is quadratic it remains to show that the
symmetric bilinear mapping BF is continuous. We write

‖BF (x, u)‖2 =

2∫
0

∣∣(BF (x, u)
)
(s)
∣∣2 ds

=

1∫
0

∣∣∣∣∣∣
s∫

0

x(s− t)u(t) dt

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
1∫
s

x(s+ 1− t)u(t) dt

∣∣∣∣∣∣
2

ds

and apply the Cauchy–Schwarz inequality to bound the first inner integral by∣∣∣∣∣∣
s∫

0

x(s− t)u(t) dt

∣∣∣∣∣∣
2

≤
∥∥x|(0,s)∥∥2 ∥∥u|(0,s)∥∥2

and the second by∣∣∣∣∣∣
1∫
s

x(s+ 1− t)u(t) dt

∣∣∣∣∣∣
2

≤
∥∥x|(s,1)

∥∥2 ∥∥u|(s,1)

∥∥2

=
(
‖x‖2 −

∥∥x|(0,s)∥∥2
)(
‖u‖2 −

∥∥u|(0,s)∥∥2
)
.
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1. What are quadratic inverse problems?

Thus, we see

‖BF (x, u)‖2

≤
1∫

0

‖x‖2 ‖u‖2 −
∥∥x|(0,s)∥∥2

(
‖u‖2 −

∥∥u|(0,s)∥∥2
)
−
∥∥u|(0,s)∥∥2

(
‖x‖2 −

∥∥x|(0,s)∥∥2
)

ds

=

1∫
0

‖x‖2 ‖u‖2 −
∥∥x|(0,s)∥∥2 ∥∥u|(s,1)

∥∥2 −
∥∥u|(0,s)∥∥2 ∥∥x|(s,1)

∥∥2
ds

and therefore

‖BF (x, u)‖2 ≤
1∫

0

‖x‖2 ‖u‖2 ds = ‖x‖2 ‖u‖2.

Next to the continuity of F we also obtain from this estimate that ‖F‖ ≤ 1.
Injectivity up to sign is a consequence of Titchmarsh’s theorem (see [Tit26, Theo-

rem VII]). It states that if BF (x, u) = 0 then either x = 0 or u = 0 has to be true. This
is exactly the characterization of injectivity up to sign provided by Proposition 1.4.

The lower bound for ‖F‖ follows from ‖F (x)‖ =
√

2
3 if x(t) = 1 for all t.

A proof of ‖F‖ ≤ 1 has already been given in [Bür16, Corollary 24]. But one seems
to be only an upper bound which is not sharp.

Conjecture 1.8. For F defined by (1.5) we conjecture that

‖F‖ =

√
2

3
.

This conjecture is based on two observations: For x(t) = 1, t ∈ (0, 1), we have

‖F (x)‖ =
√

2
3 and numerical approximation of ‖F‖ suggests that ‖F (x)‖ is maximized

by x ≡ 1 under the constraint ‖x‖ ≤ 1. Several attempts to prove this conjecture failed.
For real spaces in [FH96, Proposition 2.3] local ill-posedness (cf. Definition 1.13) of

F at every point was shown if the domain of F is restricted to non-negative functions.
Local ill-posedness in every point was shown in [BH15, Examples 3.1, 3.2] for the
complex case. The mapping F is known to be weakly continuous and to not being
compact, see [ABHS16, Proposition 1].

The type of autoconvolution discussed here appears for example if the density of two
identically and independently distributed random variables with density supported in
[0, 1] has to be computed. The corresponding inverse problem is to find the density of
the underlying random variables from the density of their sum.

Truncated autoconvolution of functions with uniformly bounded support

The autoconvolution operation introduced above maps from L2(0, 1) into L2(0, 2). Re-
stricting the images to the interval (0, 1) yields a mapping F : L2(0, 1)→ L2(0, 1) given
by (

F (x)
)
(s) :=

s∫
0

x(s− t)x(t) dt, s ∈ (0, 1). (1.7)

12



1.2. Examples

Proposition 1.9. The mapping F defined by (1.7) is a quadratic mapping from L2(0, 1)
into L2(0, 1) with 0.6860 ≤ ‖F‖ ≤ 1.

Proof. The proposition can be proven analogously to Proposition 1.7. The lower bound

for ‖F‖ follows from ‖F (x)‖ =
√

1
6 + 3

π2 ≥ 0.6860 if x(t) =
√

2 cos
(
π
2 t
)

for all t.

Obviously the mapping F is not injective up to sign because all functions with support
contained in (1

2 , 1) are mapped to zero. Note that the lower bound for ‖F‖ is greater
than the conjectured norm of F in the untruncated case, see previous subsection.

In [GH94] several further properties of F in case of real spaces were proven. For
instance, that F is weakly continuous on properly restricted domains, that F (x) is a
continuous function for all x, and that F is compact on certain subsets but not on
the whole space. Weak continuity on the whole (real) space was shown in [Bür16,
Proposition 8]. The mapping F between real spaces is locally ill-posed everywhere,
see [BH15, Example 2.1]. The same is true if the L2-spaces are replaced by spaces of
continuous functions, see [Bür14, Example 2.2].

Truncated autoconvolution mappings as discussed here play an important role in
spectroscopy. See, e. g. ,[Bau91] for an application in appearance potential spectroscopy.

Autoconvolution of periodic functions

We may interpret real-valued or complex-valued functions in L2(0, 1) as periodic func-
tions on the whole real line. Then the usual autoconvolution of periodic functions can
be written as

(
F (x)

)
(s) =

s∫
0

x(s− t)x(t) dt+

1∫
s

x(s+ 1− t)x(t) dt, s ∈ (0, 1). (1.8)

Proposition 1.10. The mapping F defined by (1.8) is a quadratic mapping from
L2(0, 1) into L2(0, 1) with ‖F‖ = 1.

Proof. The underlying symmetric bilinear mapping BF can be defined in the obvious
way, cf. proof of Proposition 1.7. To show its boundedness we write

‖BF (x, u)‖2 =

1∫
0

 s∫
0

x(s− t)u(t) dt+

1∫
s

x(s+ 1− t)u(t) dt

2

ds

and apply the Cauchy–Schwarz inequality to obtain

‖BF (x, u)‖2 ≤
1∫

0

(∥∥x|(0,s)∥∥∥∥u|(0,s)∥∥+
∥∥x|(s,1)

∥∥∥∥u|(s,1)

∥∥)2
ds.

Using again the Cauchy–Schwarz inequality, but now for vectors with two components,
we see ∥∥x|(0,s)∥∥∥∥u|(0,s)∥∥+

∥∥x|(s,1)

∥∥∥∥u|(s,1)

∥∥
≤
√∥∥x|(0,s)∥∥2

+
∥∥x|(s,1)

∥∥2
√∥∥u|(0,s)∥∥2

+
∥∥u|(s,1)

∥∥2
= ‖x‖ ‖u‖

13



1. What are quadratic inverse problems?

and therefore

‖BF (x, u)‖2 ≤ ‖x‖2 ‖u‖2.

Thus, BF is bounded and ‖F‖ ≤ 1. Equality ‖F‖ = 1 follows from F (x) = x for
x(t) = 1, t ∈ (0, 1).

Note that F defined by (1.8) is not injective up to sign, because we find x 6= 0 and
u 6= 0 with BF (x, u) 6= 0 (cf. Proposition 1.4). Choose, e.g.,

x(t) = sin(2π t) and u(t) = sin(4π t), t ∈ (0, 1).

Exploiting the Fourier convolution theorem we see that BF (x, u) = 0 if and only if the
Fourier transforms of x und u have disjoint supports.

This type of autoconvolution is well-known in many branches of mathematics. In
the sequel we will not consider the corresponding inverse problem, but we will use
this type of autoconvolution for proving results for the before mentioned variants of
autoconvolution (cf. Example 4.7).

1.2.2. Kernel-based autoconvolution in laser optics

The example of a quadratic mapping presented in this subsection originates from joint
research work of TU Chemnitz (professorship ‘Inverse Problems’) and Max Born Insti-
tute for Nonlinear Optics and Short Pulse Spectroscopy in Berlin (research group ‘Solid
State Light Sources’).

Ultra-short laser pulses

With today’s laser technology scientists are able to produce sequences of extremely
short laser pulses. Up to 100 million pulses per second, each lasting only five to 100
femtoseconds, can be generated with so called femtosecond lasers. Such ultra-short
pulses are the shortest events mankind can produce. To get a better idea of the duration
of a femtosecond we note that a femtosecond is related to a second in the same way as a
second is related to 31.7 million years. Also note that light travels only 0.3 micrometers
per femtosecond and that the period of visible light is about two femtoseconds. Since
the reaction time of the pigments in the human eye is at 200 femtoseconds we are not
able to see ultra-short laser pulses.

Applications of ultra-short laser pulse are manifold. They allow, for example, to
machine inside a material without affecting its surface or to drill and cut without
measurable burr and without build-up heat. Also the observation of chemical reactions
in realtime can be realized with the help of ultra-short laser pulses.

SD-SPIDER method

Characterizing ultra-short laser pulses is a major challenge due to the fact that no direct
measurements can be obtained. Each pulse lasts only few optical cycles and thus even
light is to slow to obtain full information about the variation of the electric field during
one pulse.
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Existing approaches for characterizing ultra-short laser pulses are autocorrelation
techniques, frequency-resolved optical gating (FROG) and spectral phase interferometry
for direct electric field reconstruction (SPIDER). In 2010 the research group ‘Solid State
Light Sources’ at Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy
in Berlin presented the self-diffraction SPIDER method (SD-SPIDER), which allows for
fully characterizing ultra-short pulses but requires the solution of an autoconvolution
problem.

Figure 1.1 shows the experimental setup at Max Born Institute Berlin and Figure 1.2
provides a scheme of the SD-SPIDER method.

Figure 1.1.: Experimental setup for SD-SPIDER method. The read lines indicate the path of
the laser pulses (photo courtesy by S. Birkholz from Max Born Institute Berlin, red
lines and text added by the author).

At first the beam of ultra-short pulses generated by the laser is split into two beams.
One passes through a long glass cylinder which results in chirped pulses, that is, due
to frequency-dependent speed of light in glass frequencies are segregated and the pulse
is stretched. The other beam is split again. After delaying one part slightly both parts
are rejoined, resulting in a doubling of each pulse. In practice the doubling is realized
by the first splitter since both sides of the splitter reflect the beam with a slight delay
between both reflected beams.

The two beams are rejoined inside a so called nonlinear optical material with such
a delay that a chirped pulse meets a doubled pulse, resulting in a beam of spectrally
sheared delayed pairs of pulses, which then enters a spectrograph. With the help of the
spectrograph the interferences in the frequency domain are recorded. The nonlinear
material used at Max Born Institute Berlin is barium fluoride.

The inverse problem

We do not go into the details of the full path from the measured data to absolute value
and phase of the original laser pulse. Figure 1.3 shows a data set from the experiments

15
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laser
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nonlinear
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Figure 1.2.: Scheme of experimental setup for SD-SPIDER method.

in Berlin and Figure 1.4 shows the data which results from preprocessing steps (mainly
the Takeda algorithm) and which is the relevant information for the inverse problem
part of the reconstruction process.

The inverse problem consists in solving a kernel-based autoconvolution equation.
Denote by L2

C(0, 1) the space of complex-valued square integrable functions over the
interval (0, 1) and let k : D(k)→ C be a bounded and continuous function with domain

D(k) =
{

(s, t) : 0 ≤ s ≤ 2, max{0, s− 1} ≤ t ≤ min{s, 1}
}
.

Then the mapping F : L2
C(0, 1)→ L2

C(0, 2) in (1.1) for the SD-SPIDER reconstruction
problem is given by

(
F (x)

)
(s) =

min{s, 1}∫
max{0, s−1}

k(s, t)x(s− t)x(t) dt, s ∈ (0, 2), (1.9)

which is the same as (1.5) if the kernel k is one everywhere.
The function x represents the Fourier transform of the desired electric field of the

ultra-short laser pulse over time and the function F (x) is some intermediate step be-
tween the original electric field and the recorded SD-interferogram. In practice the
absolute value of x can be measured, but the absolute value of F (x) is only accessible
with very low accuracy. These facts can be incorporated into the reconstruction process
and we refer to [ABHS16, Bür16] for such approaches.

The kernel function depends on properties of the experimental setup. Essential influ-
ence have the thickness of the nonlinear material and the angle between the two beams
arriving at it. Both parameters have to be measured as accurately as possible. The
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Figure 1.3.: SD-Interferograms with (black) and without (gray) nonlinear optical material
recorded at Max Born Institute Berlin. The interferogram without nonlinear ma-
terial is used for calculating the delay between the two pulses of a pair.

kernel always is bounded away from zero and it is bounded above. A typical kernel
function is plotted in Figure 1.5. Details on the kernel and an explicit formula can be
found in [Ger11a, Bür16].

Proposition 1.11. Let |k(s, t)| ≤ c for all (s, t) in D(k). Then the mapping F defined
by (1.9) is a quadratic mapping from L2

C(0, 1) into L2
C(0, 2) with ‖F‖ ≤ c.

Proof. The symmetric bilinear mapping BF from Proposition 1.2 is

(
BF (x, u)

)
(s) =

min{s, 1}∫
max{0, s−1}

k(s, t)
x(s− t)u(t) + u(s− t)x(t)

2
dt, s ∈ (0, 2)

and can be rewritten as

(
BF (x, u)

)
(s) =

min{s, 1}∫
max{0, s−1}

k(s, t) + k(s, s− t)
2

x(s− t)u(t) dt, s ∈ (0, 2).

Thus we have

‖BF (x, u)‖2 ≤ c2

2∫
0

 min{s, 1}∫
max{0, s−1}

|x(s− t)u(t)|dt


2

ds,

which yields ‖BF (x, u)‖ ≤ c ‖x‖ ‖u‖ as in the proof of Proposition 1.7.
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frequency in THz
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Figure 1.4.: Absolute value (black) and phase (gray) of right-hand side of the inverse prob-
lem (1.1). The phase is only sufficiently accurate where the absolute value is not
close to zero. Thus only frequencies between 392 THz and 407 THz are of interest.
This interval is rescaled to (0, 1) for simplicity. Implementation of the preprocessing
steps (Takeda algorithm) was done by Steven Bürger (TU Chemnitz).

In general the inverse problem with F defined in (1.9) is locally ill-posed everywhere,
because for k ≡ 1 we obtain the kernelless autoconvolution problem discussed above.
Fixing the amplitude and allowing only perturbations in the phase, locally well-posed
situations can be observed, see [BH15, Proposition 3.3].

Analogously to the case k ≡ 1 the mapping F is weakly continuous and not compact,
see [ABHS16, Propositions 1, 2].

1.2.3. Schlieren tomography

Ultrasound transducers are integral parts in medical diagnostics and treatment as well
as in material testing and many other fields. Next to the wanted effects of the produced
acoustic pressure also unwanted effects can occur (e.g. cavitation in medical applica-
tions). Therefore the shape and the intensity of the pressure distribution should be
known as accurately as possible. But direct measurements at sufficiently many points
inside the sonicated medium are too expensive and too time-consuming. Schlieren to-
mography is a widely applied and not too complex alternative to direct measurements,
which allows to visualize the pressure distribution in fluids with high resolution and
accuracy.

The principal construction of a Schlieren system is shown in Figure 1.6. A cylindrical
tank filled with water is illuminated by parallel light. The ultrasound transducer, the
pressure distribution of which shall be examined, is mounted at the top of the cylinder
and at the bottom a sound absorbing material avoids reflections. Due to variations in
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Figure 1.5.: A kernel function for (1.9) as it occurs in the SD-SPIDER method. The absolute
value is given on the vertical axis and the phase is indicated by the color.

the water’s density light is diffracted more or less. A lens focuses the diffracted light
onto a screen and the undiffracted light is filtered out. The results are dark and light
areas on the screen corresponding to negative and positive pressure regions along the
light’s path.

����������

light source

lense

water tank
ultrasound transducer

lense

screen (camera)

filter

undiffracted light

diffracted light

ultrasound absorber

Figure 1.6.: The principal setup of a Schlieren imaging system.

Up to negligible side effects the intensity of light arriving at a point of the screen
is proportional to the square of the integral over the pressure distribution along the
corresponding ray. Thus, up to the square, the relation between pressure and observed
image is the same as in X-ray imaging between density of the body and observed
image. Taking images from many sides of the cylinder, tomographic reconstruction of
the pressure distribution in space is possible. The corresponding mapping F in (1.1) is
the pointwise square of the Radon transform.
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To make things more precise we look at a horizontal slice

Ω := {(v, w) ∈ R2 : v2 + w2 < 1}

of the cylinder and denote by

S1 := {σ ∈ R2 : σ2
1 + σ2

2 = 1}

the set of all directions for which Schlieren images are taken. Here, the screen is
assumed to be in parallel to the chosen direction (σ and −σ yield the same image, but
for simplicity we do not exclude this doubling). By σ⊥ := (−σ2, σ1) we denote the
direction which is orthogonal to a given direction σ. Figure 1.7 shows a sketch of the
setting.

.

0

σ

screen

Figure 1.7.: Parametrization of two-dimensional slice through the cylinder.

With this notation at hand the Schlieren mapping is given by

(
F (x)

)
(s, σ) :=


√

1−s2∫
−
√

1−s2

x(s σ + t σ⊥) dt


2

, s ∈ (−1, 1), σ ∈ S1, (1.10)

where x is real-valued and defined on Ω.

Proposition 1.12. The mapping F : L2
R(Ω) → L1

R
(
(0, 1) × S1

)
defined by (1.10) is a

quadratic mapping with ‖F‖ ≤ 4π.

Proof. The underlying symmetric bilinear mapping BF is given by

(
B(x, u)

)
(s, σ) :=


√

1−s2∫
−
√

1−s2

x(s σ + t σ⊥) dt



√

1−s2∫
−
√

1−s2

u(s σ + t σ⊥) dt


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and we have

‖BF (x, u)‖ =

∫
(−1,1)×S1

∣∣∣∣∣∣∣
√

1−s2∫
−
√

1−s2

x(s σ + t σ⊥) dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
√

1−s2∫
−
√

1−s2

u(s σ + t σ⊥) dt

∣∣∣∣∣∣∣ d(s, σ).

The Cauchy–Schwarz inequality applied to both inner integrals and then to the outer
integral in combination with the estimate

√
1− s2 ≤ 1 yields

‖BF (x, u)‖

≤ 2

∫
(−1,1)×S1

√√√√√√
√

1−s2∫
−
√

1−s2

x(s σ + t σ⊥)2 dt

√√√√√√
√

1−s2∫
−
√

1−s2

u(s σ + t σ⊥)2 dt d(s, σ)

≤ 2

√√√√√√ ∫
(−1,1)×S1

√
1−s2∫

−
√

1−s2

x(s σ + t σ⊥)2 dtd(s, σ)

∫
(−1,1)×S1

√
1−s2∫

−
√

1−s2

u(s σ + t σ⊥)2 dtd(s, σ).

The first double integral reduces to

∫
(−1,1)×S1

√
1−s2∫

−
√

1−s2

x(s σ + t σ⊥)2 dt d(s, σ) =

∫
S1

1∫
−1

√
1−s2∫

−
√

1−s2

x(s σ + t σ⊥)2 dtds dσ

=

∫
S1

‖x‖2 dσ = 2π ‖x‖2

and the second analogously to 2π ‖u‖2. Thus, ‖BF (x, u)‖ ≤ 4π.

1.3. Local versus global ill-posedness

For nonlinear mappings there is no generally acknowledged definition of the terms well-
posed and ill-posed. The classical Hadamard definition requires injectivity, surjectivity
and continuity of the inverse mapping. In modern regularization theory for nonlinear
mappings existence of solutions is assumed, uniqueness is sometimes enforced by re-
striction to norm minimizing solutions or uniqueness is not required at all. The latter
is the case here, because quadratic equations always have at least two (norm minimiz-
ing) solutions. The most often used definition of well-posedness seems to be the one
in [HS98, Definition 1.1]. But that definition implies that solutions are isolated from
each other. We prefer a definition which includes no assumptions on the shape of the
solution set.

Definition 1.13. A mapping F : X → Y is locally well-posed at x0 if for each con-
vergent sequence (yk)k∈N in the range R(F ) with limit F (x0) each sequence (xk)k∈N of
preimages xk from F−1(yk) has a convergent subsequence and the corresponding limit
belongs to F−1(F (x0)). Otherwise F is locally ill-posed at x0.

21
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For our purposes this definition is the right one, because we consider norm minimizing
solutions, implying boundedness of the solution set. For the sake of completeness we
mention that in case of unbounded solution sets the following definition is more suitable,
since it allows to approximate the solution set with sequences which do not converge.

Definition 1.14. A mapping F : X → Y is locally well-posed at x0 if for each conver-
gent sequence (yk)k∈N in R(F ) with limit F (x0) each sequence (xk)k∈N of preimages xk
from F−1(yk) satisfies dist(xn, F

−1(F (x0)))→ 0. Otherwise F is locally ill-posed at x0.

In [LF12] different ill-posedness definitions for nonlinear mappings and their impli-
cations are discussed.

Quadratic mappings are nonlinear and ill-posedness properties may vary from point
to point. On the other hand Proposition 1.5 shows, that information about local ill-
posedness or well-posedness at each point is contained in an arbitrarily small ball around
zero (or any other point) and thus should have some structure. As a result in this direc-
tion the following proposition states that ill-posedness or well-posedness of quadratic
mappings does not vary on rays.

Proposition 1.15. If a quadratic mapping F is locally well-posed (or ill-posed) at x0

then it is locally well-posed (or ill-posed) at t x0 for all t in R \ {0}.

Proof. Let F be locally well-posed at x0. Denote by (yk)k∈N a sequence in R(F )
converging to F (t x0) and let (xk)k∈N be a sequence in X with F (xk) = yk for all k.
Then

F

(
1

t
xk

)
=

1

t2
yk →

1

t2
F (t x0) = F (x0).

Local well-posedness at x0 implies existence of a convergent subsequence of (1
t xk)k∈N

and the corresponding limit x satisfies F (x) = F (x0). Denoting the subsequence again
by (1

t xk)k∈N we obtain

F (xk) = t2 F

(
1

t
xk

)
→ t2 F (x0) = F (t x0).

This shows local well-posedness at t x0.

If F is locally ill-posed at x0 but not locally ill-posed at some point t x0, then the
proof’s first part would imply local well-posedness at x0 (use x̃0 := t x0). Thus, the
proof is complete.

There are quadratic mappings which are everywhere locally well-posed, for instance
strong quadratic isometries, see Section 3.1. There are also quadratic mappings which
are everywhere locally ill-posed. This is for instance the case for autoconvolution of
functions with uniformly bounded support presented in Subsection 1.2.1.

The problem, whether there exist quadratic mappings which are locally ill-posed at
some point but locally well-posed at another point, remains unsolved. The author tends
to the conjecture that such mappings do not exist. This would imply that ill-posedness
is not a local but a global property of quadratic mappings.
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1.4. Geometric properties of quadratic mappings’ ranges

Here we collect some observations on the geometric structure of the range of a quadratic
mapping. These observation will not be used in subsequent chapters, but may help to
get some intuition about the behavior of quadratic mappings. As we will see, ellipses
play a central role. Therefore we start with some remarks on the definition of ellipses.

In the plane R2 an ellipse with half-axis lengths a and b in standard form is the set
of all points (x1, x2) such that

x2
1

a2
+
x2

2

b2
= 1.

A diameter of an ellipse is a line segment between two points of the ellipse through
the ellipse’s center. Two diameters are called conjugate diameters if the one is in
parallel with the tangents to the ellipse at the other’s intersection points with the
ellipse. Analogously conjugate radii can be defined.

Now let E be an ellipse in the plane R2 with center (x1, x2) and with conjugate radii
represented by the vectors [r1, r2]T and [s1, s2]T. Then

E = {x+ α r + β s : α2 + β2 = 1}.

If, on the other hand, a set E can be represented in this form, then E is an ellipse with
corresponding center and conjugate radii. In analogy to convex combinations, we call
a linear combination, the squared coefficients of which add to one, elliptic combination.

The same way ellipses can be described as elliptic combinations of two conjugate
radii, n-dimensional ellipsoids are determined by there center and n conjugate radii
(tangents in the definition of conjugate radii have to be replaced by tangent planes).
With this technique finite-dimensional ellipsoids can be defined in infinite-dimensional
spaces, too. Given three elements x, r, s in a Hilbert space X, by

ell(x, r, s) := {x+ α r + β s : α2 + β2 = 1}

we denote the ellipse with center x and conjugate radii r, s.
In the following X and Y are real Hilbert spaces and F : X → Y is a quadratic

mapping.

Proposition 1.16. Each quadratic mapping maps two-dimensional subspaces to elliptic
cones. More precisely,

F
(
span {x, u}

)
=
⋃
t≥0

(
t ell

(
F (x) + F (u)

2
,
F (x)− F (u)

2
, BF (x, u)

))
.

Proof. For coefficients a, b with a2 + b2 = 1 we have

F (a x+ b u) = a2 F (x) + 2 a bBF (x, u) + b2 F (u)

=
a2 + b2

2
(F (x) + F (u)) +

a2 − b2
2

(F (x)− F (u)) + 2 a bBF (x, u)

=
1

2
(F (x) + F (u)) +

2 a2 − 1

2
(F (x)− F (u)) + 2 a bBF (x, u).
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Because
(2 a2 − 1)2 + (2 a b)2 = 4 a4 − 4 a2 + 1 + 4 a2 (1− a2) = 1,

we see that ell(0, x, u) is mapped to ell
(F (x)+F (u)

2 , F (x)−F (u)
2 , BF (x, u)

)
. The observation

span {x, u} =
⋃
t≥0

(
t ell(0, x, u)

)
completes the proof.

From the proof we immediately see that ellipses centered at the origin are mapped to
ellipses centered somewhere else. In particular, intersections of the unit sphere and two-
dimensional subspaces are mapped to ellipses. This observation instigates the idea that
intersections of the unit sphere and n-dimensional subspaces are mapped to ellipsoids.
But this is not the case if n > 2. Figure 1.8 shows the image of the unit sphere in
three-dimensional space under the quadratic mapping F : R3 → R3 defined by

F (x) :=
(
x2

1 +
√

2x2 x3, x
2
2 +
√

2x1 x3, x
2
3 +
√

2x1 x2

)
, x ∈ R3.

This is not an ellipsoid.
Nevertheless, the structure of the unit sphere’s image under quadratic mappings can

be described with the help of ellipses. Note, that the image of the whole space then is
the cone spanned by this image set.

Proposition 1.17. Let (ek)k∈N be an orthonormal basis in X and denote by Sn−1 the
intersection of the unit sphere in X with span {e1, . . . , en}. Then F (S1) is an ellipse
and

F (Sn−1) =
⋃

x∈Sn−1

ell

(
F (en) + F (x)

2
,
F (en)− F (x)

2
, BF (en, x)

)
for n > 1.

Proof. That F (S1) is an ellipse follows from the proof of Proposition 1.16. For each
element in Sn−1 there is some x in Sn−2 such that the element is contained in ell(0, en, x).
Thus,

F (Sn−1) =
⋃

x∈Sn−2

F
(
ell(0, en, x)

)
and the assertion follows as in the proof of Proposition 1.16.

1.5. Literature on quadratic mappings

There is only very few literature on quadratic mappings, especially on quadratic map-
pings in infinite-dimensional spaces. Most of the publications focus on autoconvolutions.
In this section we provide a brief overview of the literature relevant for the first part of
this thesis.

The core material this thesis builds up on are publications on de-autoconvolution as
an inverse problem. There was a first accumulation in the 1990s [GH94, FH96, Jan97],
followed by the articles [Jan00, Ram03, DL08]. A second accumulation started in the
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Figure 1.8.: Image of the unit sphere in R3 under the quadratic mapping (x1, x2, x3) 7→ (x21 +√
2x2 x3, x

2
2 +
√

2x1 x3, x
2
3 +
√

2x1 x2). Upper left: unit sphere, middle left: full
image, lower left: same as middle left but seen from the opposite direction, middle
right: same as middle left but with the cap cut off, lower right: same as lower left
but with the cap cut off.
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past five years with [Ger11a, GHB+14, Fle14, Bür14, BSK+15, BF15, BH15, ABHS16,
Bür16, BFH16, BM16] and this thesis.

In the engineering literature several practical methods for de-autoconvolution in
finite-dimensional settings are discussed. Some articles of this type can be found in
the reference list of [Bau91]. There are also relatively old works on convexity properties
of the range of quadratic mappings in finite dimensions, see [Toe18, Hau19, Din41]. For
extensions of those results see [She13, Xia14] and references therein.

In principle a quadratic mapping can be regarded as a special case of tensors. Thus,
results about tensors apply to some extend also to quadratic mappings. We mention
[KB09, GER11b] here, where singular value decompositions for tensors in finite dimen-
sions are discussed. Although such concepts could be useful for solving quadratic inverse
problems, closer inspection and numerical tests lead to the decision to not follow this
path.
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2. Tikhonov regularization

A simple but effective regularization method to approximate solutions of ill-posed non-
linear equations is the method of Tikhonov. We restrict our attention to separable
Hilbert spaces X and Y . Then Tikhonov’s method for quadratic equations (1.1) con-
sists in minimizing the Tikhonov functional

Tα(x, y) := ‖F (x)− y‖2 + α ‖x− x̄‖2, x ∈ X, y ∈ Y

with respect to x. The element y is an approximation to the exact right-hand side y†

of (1.1), the reference element x̄ in X deals as initial guess of the exact solution and
the positive regularization parameter α controls the trade-off between data fitting and
stabilization.

Classical results in [EKN89] on existence, stability and convergence of Tikhonov
minimizers are based an the assumption that the mapping F is sequentially weak-
to-weak continuous. In general, quadratic mappings do not have this property. An
example is the mapping F : X → R defined by F (x) = ‖x‖2. For an orthonormal basis
(ek)k∈N we have F (ek) = 1 although the sequence (ek) converges weakly to zero.

Verification of weak-to-weak continuity reduces to its verification at zero.

Proposition 2.1. A quadratic mapping is sequentially weak-to-weak continuous on X
if and only if it is sequentially weak-to-weak continuous at zero.

Proof. Let (xk)k∈N be a sequence in X converging weakly to some x in X. The mapping
F is weak-to-weak continuous if for each such sequence we have 〈η, F (xk)− F (x)〉 → 0
for all η in Y . Rewriting F (xk) − F (x) = F (xk − x) + 2BF (xk − x, x) and using the
notion of adjoint bilinear mappings defined by (1.4) we see

〈η, F (xk)− F (x)〉 = 〈η, F (xk − x)〉+ 2 〈η,BF (xk − x, x)〉
= 〈η, F (xk − x)〉+ 2 〈B∗F (x, η), xk − x)〉.

Thus, 〈η, F (xk) − F (x)〉 → 0 if and only if 〈η, F (xk − x)〉 → 0. In other words, F is
weak-to-weak continuous if and only if

xk − x ⇀ 0 ⇒ F (xk − x) ⇀ 0,

which by F (0) = 0 is simply the definition of weak-to-weak continuity at zero.

All examples of quadratic mappings provided in Section 1.2 are weak-to-weak con-
tinuous (see provided references there) and hence Tikhonov regularization is a stable
and convergent approximation method for the solutions of (1.1).
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2. Tikhonov regularization

Remark 2.2. The problem of non-injectivity of quadratic mappings carries over to
the Tikhonov functional. If the reference element x̄ is zero, we obviously have that
Tα(x, y) = Tα(−x, y) for all x and y. This issue cannot be solved by choosing x̄ 6= 0,
but only slightly tempered. For all x with 〈x, x̄〉 = 0 we still have Tα(x, y) = Tα(−x, y).
Thus, we have to expect multiple Tikhonov minimizers. Analogously, there might by
multiple norm minimizing solutions to (1.1) (i.e., solutions with minimal distance to
x̄), even if x̄ 6= 0.

For x̄ = 0 we want to mention the useful observation that the range of sensible
regularization parameters is bounded above. This behavior is typical only for Tikhonov
regularization with quadratic mappings and for sparsity promoting regularization with
linear mappings (cf. Proposition 6.7).

Proposition 2.3. Let y ∈ Y and set

αmax := 2 sup
x∈X
‖x‖≤1

Re 〈F (x), y〉.

If α ≥ αmax, then
0 ∈ argmin

x∈X
Tα(x, y).

If, in addition, α > αmax or F is injective up to sign, then

argmin
x∈X

Tα(x, y) = {0}.

Proof. If x 6= 0 we have

Tα(x, y) = ‖F (x)‖2 − 2 Re 〈F (x), y〉+ ‖y‖2 + α ‖x‖2

≥ ‖F (x)‖2 − 2 Re 〈F (x), y〉+ ‖y‖2 + 2 Re

〈
F

(
x

‖x‖

)
, y

〉
‖x‖2

= ‖F (x)‖2 + ‖y‖2 ≥ ‖y‖2 = Tα(0, y),

proving the first assertion. If α > αmax, the first inequality sign is strict. If F is injective
up to sign, x 6= 0 implies F (x) 6= 0, making the second inequality sign a strict one.

Remark 2.4. If αmax is chosen greater than in the proposition, the proposition remains
true. An easy to calculate replacement is 2 ‖F‖ ‖y‖.

Theory for Tikhonov regularization with nonlinear mappings is well developed. But
in practice this method suffers from the need for global minimizers. For quadratic
mappings the Tikhonov functional is not convex, which makes numerical minimization
challenging. The only available tailor-made algorithm for our concrete minimization
problem is the TIGRA method proposed in [Ram03].
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3. Regularization by decomposition

In this chapter we propose a regularization method which splits the ill-posed quadratic
problem (1.1) in real or complex separable Hilbert spaces X and Y into an ill-posed
linear problem and a well-posed quadratic one. The technique is based on the notion
of quadratic isometries, which we introduce in the first section of this chapter. Then
we present the decomposition approach and its application in a regularization method.
Numerical tests complete the chapter.

The results presented in this chapter were published in [Fle14, BF15], but only real
Hilbert spaces were considered there.

3.1. Quadratic isometries

It is well known that a linear operator preserves inner products if and only if it preserves
norms. In the quadratic case there are (strong) isometries, which preserve both inner
products and norms, and there are (weak) isometries, which only preserve norms.

Definition 3.1. A quadratic mapping F is a strong isometry if

〈F (x), F (u)〉 = 〈x, u〉2

for all x and u from X and a weak isometry if

‖F (x)‖ = ‖x‖2

for all x.

Obviously, each strong isometry is also weak. The following example shows that there
are weak quadratic isometries which are not strong.

Example 3.2. Define F : R2 → R2 by

F (x) :=

[
x2

1 − x2
2

2x1 x2

]
.

Then ‖F (x)‖2 = (x2
1 − x2

2)2 + 4x2
1 x

2
2 = ‖x‖2 for all x, but〈

F

([
1
0

])
, F

([
0
1

])〉
= −1 6= 0 =

〈[
1
0

]
,

[
0
1

]〉2

.

Thus, F is a weak isometry but not a strong one.

An example of a strong quadratic isometry in infinite-dimensional spaces will be given
in Section 3.2. Figure 3.1 visualizes a strong quadratic isometry mapping between R2

and R3.
For checking isometric properties of quadratic mappings we provide the following

criterion.
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3. Regularization by decomposition

Figure 3.1.: Example of a strong quadratic isometry acting between R2 and R3. The element

(x1, x2) is mapped to (x21,
√

2x1 x2, x
2
2). Left-hand side: unit disc in R2. Right-hand

side: image set of unit disc.

Proposition 3.3. Let (ei)i∈N be an orthonormal basis in X. A quadratic mapping
F : X → Y is a strong isometry if and only if the following two conditions hold:

(i) ‖BF (ei, ej)‖ =

{
1, if j = i,

1√
2
, j < i.

(ii) The set {BF (ei, ej) : i ∈ N, j ≤ i} is an orthogonal system.

Proof. Necessity follows from calculation of 〈BF (ei, ej), BF (ek, el)〉. With (1.2) we ob-
tain

〈BF (ei, ej), BF (ek, el)〉 =
1

2
〈ei, ek〉 〈ej , el〉+

1

2
〈ei, el〉 〈ej , ek〉

=


1, if i = j = k = l,
1
2 , if i = k 6= l = j or i = l 6= k = j,

0, else,

which directly yields the two conditions in the proposition.
For sufficiency we observe〈

F

( ∞∑
i=1

xi ei

)
, F

( ∞∑
k=1

uk ek

)〉

=
∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

xi xj uk ul 〈BF (ei, ej), BF (ek, el)〉

=

∞∑
i=1

∞∑
j=1

xi xj ui uj =

( ∞∑
i=1

xi ui

)2

=

〈 ∞∑
i=1

xi ei,

∞∑
k=1

uk ek

〉2

.

As one might expect from an isometry, each strong quadratic isometry is contin-
uously invertible. Remember that quadratic mappings cannot be injective because
F (x) = F (−x) for all x. Thus, we have to use a slightly generalized notion of con-
tinuous invertibility. In view of Definition 1.13 strong quadratic isometries always are
locally well-posed at each point.
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3.1. Quadratic isometries

Proposition 3.4. Let F be a strong quadratic isometry and denote by F−1(y) the full
preimage of F at some point y. If a sequence (yk)k∈N in Y converges to some y in Y
and if (xk)k∈N is a sequence of corresponding preimages xk from F−1(yk) and x is a
preimage of y, then (xk)k∈N converges to x or −x or it decomposes into two subsequences
(x+
k )k∈N and (x−k )k∈N such that x+

k → x and x−k → −x.

Proof. Define index sets

I+ := {k ∈ N : Re 〈xk, x〉 ≥ 0} and I− := {k ∈ N : Re 〈xk, x〉 < 0}.

If (xk) does not converge to x or −x both sets have infinitely many elements. Then
(x+
k )k∈N is the subsequence (xk)k∈I+ and (x−k )k∈N is the subsequence (xk)k∈I− .
Since F is a strong isometry we have

‖x+
k − x‖2 = ‖x+

k ‖2 − 2 Re 〈x+
k , x〉+ ‖x‖2 = ‖yk‖ − 2

∣∣Re
√
〈yk, y〉

∣∣+ ‖y‖

where
∣∣Re

√
〈yk, y〉

∣∣ yields the same value for both complex roots. The first summand
converges to ‖y‖ and the second to −2 ‖y‖. Thus,

‖x+
k − x‖2 → 0.

Analogously, we obtain

‖x−k − (−x)‖2 = ‖x−k ‖2 + 2 Re 〈x−k , x〉+ ‖x‖2 = ‖yk‖ − 2
∣∣Re

√
〈yk, y〉

∣∣+ ‖y‖ → 0.

The second equality follows from 〈x−k , x〉2 = 〈yk, y〉 and Re 〈x−k , x〉 < 0.

Remark 3.5. From the proposition we immediately see that strong isometries are
injective up to sign. If F (u) = F (x), choose y = F (x), yk = F (u) and xk = u in the
proposition to obtain u = x or u = −x.

For linear mappings continuous invertibility is equivalent to closedness of the range.
Since this in general is not true for nonlinear mappings we now prove the following
result.

Proposition 3.6. Let F be a weak quadratic isometry which is weak-to-weak continu-
ous. Then its range R(F ) is closed.

Proof. Let (F (xk))k∈N be a sequence in R(F ) which converges to some y in Y . Then

‖xk‖2 = ‖F (xk)‖ → ‖y‖.

Thus, there is a weakly convergent subsequence (xkl)l∈N with limit x and weak-to-weak
continuity of F implies

F (xkl) ⇀ F (x).

Together with F (xkl) ⇀ y we obtain y = F (x).

If we look at strong quadratic isometries F and replace the image space Y by the
closed subspace spanR(F ), then F is always weak-to-weak continuous and, thus, has
closed range.
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3. Regularization by decomposition

Proposition 3.7. Each strong quadratic isometry F : X → Y is weak-to-weak contin-
uous as a mapping between the Hilbert spaces X and spanR(F ).

Proof. Let (xk)k∈N be a sequence in X converging weakly to zero. Then for all x in X
we have

〈F (xk), F (x)〉 = 〈xk, x〉2 → 0,

that is, 〈F (xk), y〉 → 0 for all y in R(F ). Consequently this also holds for all y in
spanR(F ).

Now let y be an element from spanR(F ) and let (yl)l∈N be a sequence in spanR(F )
converging to y. Then

|〈F (xk), y〉| ≤ ‖F (xk)‖ ‖y − yl‖+ |〈F (xk), yl〉|

for all l and all k. Weak convergence of (xk) implies boundedness of (xk) and thus
‖F (xk)‖ ≤ c for all k with some c > 0. For arbitrary positive ε we may choose l̄
such that ‖y − yl̄‖ ≤ ε

2 c and k̄ such that |〈F (xk), yl̄〉| ≤ ε
2 for all k ≥ k̄. This shows

|〈F (xk), y〉| ≤ ε for k ≥ k̄.

We deduce weak convergence F (xk) ⇀ 0 if F is considered as a mapping between
X and spanR(F ), which proves weak-to-weak continuity of F at zero. Proposition 2.1
yields weak-to-weak continuity on X.

3.2. Decomposition of quadratic mappings

Bounded linear operators can be decomposed into a partial isometry and a selfadjoint
operator. In a similar spirit we suggest the decomposition of quadratic mappings into
a quadratic isometry and a linear operator.

Theorem 3.8. Each quadratic mapping F can be decomposed into a strong quadratic
isometry Q : X → `2(N) and a densely defined linear operator A : `2(N)→ Y such that

F (x) = AQ(x) (3.1)

for all x in X.

The proof is constructive and will be given in the following. The two lemmas provide
a possible choice of the quadratic part Q and the linear part A. But as we will discuss
below, other choices are possible and maybe advantageous.

For easier handling of indices we define the mapping

κ : {(i, j) ∈ N× N : 1 ≤ j ≤ i} → N

by

κ(i, j) := j +
i (i− 1)

2
. (3.2)

This is a bijection.
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3.2. Decomposition of quadratic mappings

Lemma 3.9. Let (ei)i∈N be an orthonormal basis of X. The mapping Q : X → `2(N)
defined by (

Q(x)
)
κ(i,j)

:=

{√
2 〈x, ei〉 〈x, ej〉, if j < i,

〈x, ei〉2, if j = i
(3.3)

for (i, j) in N× N with 1 ≤ j ≤ i and x in X is a strong quadratic isometry.

Proof. The underlying symmetric bilinear mapping of Q is given by

(
BQ(x, u)

)
κ(i,j)

:=

{
1√
2

(
〈x, ei〉 〈u, ej〉+ 〈x, ej〉 〈u, ei〉

)
, if j < i,

〈x, ei〉 〈u, ei〉, if j = i.
(3.4)

Thus, BQ(ei, ej) is one or 1√
2

at position κ(i, j) if i = j or i 6= j, respectively, and zero

at all other positions. The assertion of the lemma now follows from Proposition 3.3.

Lemma 3.10. Let (ei)i∈N be an orthonormal basis of X and let F be quadratic. Denote
by D(A) ⊆ `2(N) the set of all z in `2(N) for which

Az :=

∞∑
i=1

 i−1∑
j=1

√
2 zκ(i,j)BF (ei, ej) + zκ(i,i)BF (ei, ei)

 (3.5)

converges. Then the corresponding mapping A : D(A) → Y is linear and its domain
D(A) is dense in `2(N).

Proof. Linearity is obvious and since BF is bounded we have ‖BF (ei, ej)‖ ≤ ‖F‖ for
all i and j. Thus, the dense subspace `1(N) of `2(N) belongs to the domain of A.

Now the proof of the main theorem is quite simple.

Proof of Theorem 3.8. With Q from (3.3) and A from (3.5) we have F (x) = AQ(x) for
all x in X. Since F (x) is defined for each x, in particular we see that the range of Q
belongs to the domain of A.

The mapping A in the decomposition may be unbounded, even if F is injective up to
sign as the following example shows. In Section 3.5 we discuss a setting with bounded
A.

Example 3.11. This example is based on an idea by Steven Bürger (TU Chemnitz,
November 2016), which has not been published elsewhere. Let X = Y = `2R(N) and
define F by

[F (x)]1 := ‖x‖2 and [F (x)]1+k := [Q(x)]k, k ∈ N,

for all x ∈ `2R(N) with Q from (3.3). This mapping is injective up to sign because Q is
injective up to sign (cf. Remark 3.5) and A : `2R(N)→ `2R(N) is given by

[Az]1 =
∞∑
k=1

zκ(k,k) and [Az]1+k = zk, k ∈ N.

33



3. Regularization by decomposition

If we choose z(n) in `2R(N) with

z
(n)
κ(k,l) :=

{
1√
n
, if k = l and k ≤ n,

0, else,

then ‖z(n)‖ = 1 and

‖Az(n)‖2 ≥
∣∣[Az(n)]1

∣∣2 = n.

Thus, ‖Az(n)‖ → ∞ for n→∞, which proves unboundedness of A.

The constructed decomposition in the proof of the theorem is not the only one.
Choosing another quadratic isometry Q one can improve the properties of A. If, for
instance, A in the proof is injective and bounded, we can write it as A = Ã U with
selfadjoint Ã : Y → Y and a linear isometry U : `2(N) → Y . This follows from the
polar decomposition of the adjoint A∗. Then Q̃ := U Q is again a strong quadratic
isometry and F = Ã Q̃.

The following proposition states that the converse is also true: each strong quadratic
isometry is the composition of a linear isometry and Q from (3.3), with the underlying
basis (ei)i∈N chosen arbitrarily. Note that restriction to the image space `2(N) comes
from the context of the present section, but from the proof we immediately see that
`2(N) can be replaced by any separable Hilbert space.

Proposition 3.12. Let Q̃ : X → `2(N) be a strong quadratic isometry and let (ei)i∈N be

an orthonormal basis in X. Then there is a linear isometry U : span {R(Q̃)} → `2(N)
such that the strong quadratic isometry U Q̃ : X → `2(N) attains the form of Q in (3.3).

Proof. By Proposition 3.3 the set{
Q̃(ei) : i ∈ N

}
∪
{√

2BQ̃(ei, ej) : i, j ∈ N, j < i
}

is an orthonormal basis in span {R(Q̃)}. Let (fi)i∈N be the standard orthonormal basis

in `2(N) and define the linear mapping U : span {R(Q̃)} → `2(N) by

U Q̃(ei) := fκ(i,i) and U BQ̃(ei, ej) := fκ(i,j)

for all i and j with j < i (the index map κ is defined in (3.2)). Then U transfers an
orthonormal basis to an orthonormal basis and thus U is an isometry. From

U Q̃(x) =

∞∑
i=1

 i−1∑
j=1

√
2 〈x, ei〉 〈x, ej〉 fκ(i,j) + 〈x, ei〉2 fκ(i,i)

 for all x in X

we see that U Q̃ attains the form of Q in (3.3).

Regarding different choices of Q in the decomposition (3.1) the question arises wheth-
er boundedness of corresponding operators A depends on the choice of Q. The answer
is ‘No’.
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3.3. Inversion of quadratic isometries

Proposition 3.13. Let Q : X → `2(N) be as in (3.3) and let Q̃ : X → `2(N) be a
second strong quadratic isometry. Further let A, Ã : `2(N)→ Y be two linear mappings

such that Ã Q̃ = AQ. Then Ã is bounded on span {R(Q̃)} if and only if A is bounded
on `2(N).

Proof. By Proposition 3.12 there is a linear isometry U : span {R(Q̃)} → `2(N) such
that U Q̃ = Q. Consequently Ã Q̃ = AU Q̃ and hence Ã = AU on span {R(Q̃)} and

also A = Ã U−1 on `2(N). If A is bounded, then Ã is bounded on span {R(Q̃)}. If Ã is

bounded on span {R(Q̃)}, then A is bounded on `2(N).

The isometry Q defined by (3.3) has the advantage that it is weak-to-weak continuous.
This property will be used in the next section. As a consequence its range is closed (cf.
Proposition 3.6). The same is true for all isometries Q̃ := U Q constructed as described
above. The weak-to-weak continuity of Q is a direct consequence of Proposition 3.7.

Proposition 3.14. The isometry Q defined by (3.3) is weak-to-weak continuous.

Proof. We only have to show that the range of Q spans the whole space `2(N) (cf.
Proposition 3.7). Let (ei)i∈N be the orthonormal basis used in the definition of Q and
let (fi)i∈N be the standard orthonormal basis in `2(N). The range of Q spans the whole
space if (fi) belongs to spanR(Q). But this can easily be seen because

fκ(i,j) =

{
1√
2

(
Q(ei + ej)−Q(ei)−Q(ej)

)
, if j < i,

Q(ei), if j = i.

3.3. Inversion of quadratic isometries

With the decomposition (3.1) at hand regularization of a quadratic mapping F reduces
to regularization of one possibly unbounded linear operator. At least if A is bounded
this can be done by standard techniques. The interested reader finds information about
regularization of unbounded linear operators in [HMvW09].

After inverting A by some regularization method we have to invert the strong quadrat-
ic isometry Q. As shown in Proposition 3.4 such mappings are continuously invertible
and therefore no regularization is required. Only the fact that the solution z of the
regularized linear problem typically lies in the orthogonal complement of the null space
of A and possibly not in the range of Q has to be handled somehow. This can be done
by projecting z onto the range of Q. A more advanced approach to tackle this problem
will be presented in the next section.

In the present section we state results at first for general quadratic isometries Q and
then we apply them to the concrete Q defined in (3.3).

Projection of some element z in `2(N) onto the range of an isometry Q : X → `2(N)
can be realized by solving

‖Q(x)− z‖ → min
x∈X

. (3.6)

35



3. Regularization by decomposition

Existence and stability of minimizers can be shown for weak-to-weak continuous qua-
dratic mappings, especially for the strong isometry introduced in (3.3) (cf. Proposi-
tion 3.14).

Proposition 3.15. Let Q : X → `2(N) be a weak-to-weak continuous quadratic map-
ping. Then the minimization problem (3.6) has at least one solution. If (zk)k∈N is a
sequence in `2(N) with limit z and if (xk)k∈N is a sequence of corresponding minimizers,
then (xk) has a convergent subsequence and the limits of all convergent subsequences
are solutions to (3.6).

Proof. To prove existence, take a minimizing sequence (xk)k∈N and observe

‖xk‖2 = ‖Q(xk)‖ ≤ ‖Q(xk)− z‖+ ‖z‖ → inf
x∈X
‖Q(x)− z‖+ ‖z‖,

that is, (xk) is bounded. Thus, there is a weakly convergent subsequence and due to
weak lower semi-continuity of the norm limits of convergent subsequences are minimizers
of (3.6).

For proving stability take a sequence (zk)k∈N with limit z and a sequence of corre-
sponding minimizers (xk)k∈N. Then

‖xk‖2 = ‖Q(xk)‖ ≤ ‖Q(xk)− zk‖+ ‖zk‖ ≤ ‖Q(0)− z‖+ ‖z‖ = 2 ‖z‖,

that is, (xk) is bounded. Thus, there is a weakly convergent subsequence and the limit
x̄ of each weakly convergent subsequence satisfies (with (xk) denoting the subsequence)

‖Q(x̄)− z‖ ≤ lim inf
k→∞

‖Q(xk)− zk‖ ≤ lim inf
k→∞

‖Q(x)− zk‖ = ‖Q(x)− z‖

for all x. To obtain convergence in norm we observe

‖Q(x̄)− z‖ ≤ lim inf
k→∞

‖Q(xk)− z‖ ≤ lim sup
k→∞

‖Q(xk)− z‖

≤ lim sup
k→∞

(
‖Q(xk)− zk‖+ ‖zk − z‖

)
≤ lim sup

k→∞

(
‖Q(x̄)− zk‖+ ‖zk − z‖

)
= ‖Q(x̄)− z‖,

which yields
‖Q(x̄)− z‖ = lim

k→∞
‖Q(xk)− z‖.

Equivalently we may write

‖x̄‖4 − 2 Re 〈Q(x̄), z〉 = lim
k→∞

(
‖xk‖4 − 2 Re 〈Q(xk), z〉

)
.

Weak convergence Q(xk) ⇀ Q(x̄) implies Re 〈Q(xk), z〉 → Re 〈Q(x̄), z〉 and thus ‖xk‖
converges to ‖x̄‖. Now, weak convergence in combination with convergence of the norms
yields ‖xk − x̄‖ → 0.

Next we show how to calculate the minimizers of (3.6). We start with a lemma and
then provide two theorems, one for real Hilbert spaces and one for complex Hilbert
spaces. The adjoint B∗Q of BQ appearing in the two theorems has been defined in (1.4).
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3.3. Inversion of quadratic isometries

Lemma 3.16. Let Q be a weak quadratic isometry. If Re 〈Q(x), z〉 ≤ 0 for all x, then
zero is a solution to (3.6). Else the normalized minimizers of (3.6) coincide with the
maximizers of

Re 〈Q(x), z〉 → max
‖x‖=1

. (3.7)

and the minimizers of (3.6) have norm
√

Re 〈Q(x̃), z〉, where x̃ is a maximizer of (3.7).

Proof. If Re 〈Q(x), z〉 ≤ 0 for all x, then

‖Q(0)− z‖2 = ‖z‖2 ≤ ‖Q(x)‖2 − 2 Re 〈Q(x), z〉+ ‖z‖2 = ‖Q(x)− z‖2,

that is, zero is a minimizer of (3.6). Else set x := t u where t = ‖x‖ ≥ 0 and ‖u‖ = 1,
and minimize with respect to t for each u. The minimum of

hu(t) := ‖Q(t u)− z‖2 = t4 − 2 t2 Re 〈Q(u), z〉+ ‖z‖2

is at

t =

{
0, if Re 〈Q(u), z〉 ≤ 0,√

Re 〈Q(u), z〉, if Re 〈Q(u), z〉 > 0.
(3.8)

Thus, for each u with ‖u‖ = 1 we have

min
t≥0

hu(t) =

{
‖z‖2, if Re 〈Q(u), z〉 ≤ 0,

‖z‖2 − (Re 〈Q(u), z〉)2, if Re 〈Q(u), z〉 > 0,

and the minimization problem (3.6) turns out to be equivalent to

(Re 〈Q(u), z〉)2 → max
‖u‖=1

Re 〈Q(u),z〉>0

,

which can be rewritten as
Re 〈Q(u), z〉 → max

‖u‖=1
.

Theorem 3.17. Let Q be a weak quadratic isometry between real Hilbert spaces X and
`2R(N). If 〈Q(x), z〉 ≤ 0 for all x, then zero is a solution to (3.6). Else each minimizer
is of the form

√
λ x̃ where λ is the largest eigenvalue of the selfadjoint bounded linear

operator C : X → X defined by

C x := B∗Q(x, z) for all x in X

and x̃ is a corresponding normalized eigenelement. In particular, C has positive eigen-
values.

Proof. By Lemma 3.16 the minimization problem (3.6) is equivalent to (3.7). If x is a
maximizer of (3.7), which exists by Proposition 3.15, then it is a stationary point of
the Lagrange function (cf. [Zei85, Theorem 43.A]), that is, there is some non-zero real
number λ such that

C x− λx = 0.

37



3. Regularization by decomposition

Here we use that C is the Fréchet derivative of u 7→ 1
2〈Q(u), z〉.

It remains to show that the stationary points of the Lagrange function with largest
Lagrange multiplier λ are indeed maximizers of (3.7). Taking some stationary point x
with multiplier λ this follows from

〈Q(x), z〉 = 〈x,C x〉 = 〈x, λ x〉 = λ.

In addition we see that existence of a maximizer implies existence of positive eigenvalues.

Theorem 3.17 holds, in principle, also if X and `2(N) are considered over the complex
numbers. But we are faced with two more or less technical difficulties, which force us
to take some additional care of the complex case. On the one hand the mapping
x 7→ B∗Q(x, z) is antilinear, that is, B∗Q(a x, z) = aB∗Q(x, z) for complex numbers a.
Thus we would have to use spectral theory for antilinear operators, which is of course
quite similar to spectral theory of linear operators, but hardly covered in the literature.
On the other hand, optimization over complex Hilbert spaces is hardly covered in the
literature, too.

Our aim is to reduce the complex case to a problem in real Hilbert spaces. Before we
state the theorem we have to introduce some notation. Let (ek)k∈N be an orthonormal
basis in the complex Hilbert space X. By

XR :=

{∑
k∈N

ak ek : a ∈ `2R(N)

}
we denote the real Hilbert space spanned by (ek). For x in X we define

Rex :=
∑
k∈N

(Re 〈x, ek〉) ek, Imx :=
∑
k∈N

(Im 〈x, ek〉) ek.

Thus, Rex ∈ XR and Imx ∈ XR. Analogously, for z in `2C(N) we define

Re z := (Re z1,Re z2, . . .), Im z := (Im z1, Im z2, . . .),

which are elements of `2R(N).
The isometry Q : X → `2C(N) can be considered as a mapping on XR and we define

its real part R : XR → `2R(N) and its imaginary part S : XR → `2R(N) by

R(x) := ReQ(x) and S(x) := ImQ(x) for x in XR. (3.9)

The mappings R and S are quadratic mappings, too.

Theorem 3.18. Let Q be a weak quadratic isometry between complex Hilbert spaces X
and `2C(N) with real part R and imaginary part S as defined in (3.9). If Re 〈Q(x), z〉 ≤ 0
for all x, then zero is a solution to (3.6). Else each minimizer is of the form

√
λ x̃ where

λ is the largest eigenvalue of the selfadjoint bounded linear operator C : XR × XR →
XR ×XR defined by

C

[
u
v

]
:=

[
B∗R(u,Re z)−B∗S(v,Re z) +B∗S(u, Im z) +B∗R(v, Im z)
−B∗R(v,Re z)−B∗S(u,Re z)−B∗S(v, Im z) +B∗R(u, Im z)

]
for all u and v in XR and x̃ = ũ + i ṽ with [ũ, ṽ]T being a corresponding normalized
eigenelement. In paricular, C has positive eigenvalues.
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3.3. Inversion of quadratic isometries

Proof. The mapping C is obviously linear and bounded. Selfadjointness follows from〈
C

[
u
v

]
,

[
ũ
ṽ

]〉
=
〈
B∗R(u,Re z)−B∗S(v,Re z)−B∗S(u, Im z)−B∗R(v, Im z), ũ

〉
+
〈
−B∗R(v,Re z)−B∗S(u,Re z) +B∗S(v, Im z)−B∗R(u, Im z), ṽ

〉
= 〈Re z,BR(u, ũ)〉 − 〈Re z,BS(v, ũ)〉 − 〈Im z,BS(u, ũ)〉
− 〈Im z,BR(v, ũ)〉 − 〈Re z,BR(v, ṽ)〉 − 〈Re z,BS(u, ṽ)〉
+ 〈Im z,BS(v, ṽ)〉 − 〈Im z,BR(u, ṽ)〉

= 〈B∗R(ũ,Re z), u〉 − 〈B∗S(ũ,Re z), v〉 − 〈B∗S(ũ, Im z), u〉
− 〈B∗R(ũ, Im z), v〉 − 〈B∗R(ṽ,Re z), v〉 − 〈B∗S(ṽ,Re z), u〉
+ 〈B∗S(ṽ, Im z), v〉 − 〈B∗R(ṽ, Im z), u〉

=

〈
C

[
ũ
ṽ

]
,

[
u
v

]〉
=

〈[
u
v

]
, C

[
ũ
ṽ

]〉
.

By the definition of R and S we have

Q(x) = Q(Rex+ i Imx)

= Q(Rex)−Q(Imx) + 2 iBQ(Rex, Imx)

= R(Rex) + iS(Rex)−R(Imx)− iS(Imx)

+ 2 iBR(Rex, Imx)− 2BS(Rex, Imx)

and thus

ReQ(x) = R(Rex)−R(Imx)− 2BS(Rex, Imx),

ImQ(x) = S(Rex)− S(Imx) + 2BR(Rex, Imx).

From the definition of the inner product in `2C(N) we see

Re 〈Q(x), z〉 = 〈ReQ(x),Re z〉+ 〈ImQ(x), Im z〉,

where the first inner product is in `2C(N) and the second and third are in `2R(N). Now,
remembering the definition of C, we rewrite the objective function as

Re 〈Q(x), z〉 =
〈
Re z,R(Rex)−R(Imx)− 2BS(Rex, Imx)

〉
+
〈
Im z, S(Rex)− S(Imx) + 2BR(Rex, Imx)

〉
= 〈B∗R(Rex,Re z),Rex〉 − 〈B∗R(Imx,Re z), Imx〉
− 〈B∗S(Rex,Re z), Imx〉 − 〈B∗S(Imx,Re z),Rex〉
+ 〈B∗S(Rex, Im z),Rex〉 − 〈B∗S(Imx, Im z), Imx〉
+ 〈B∗R(Rex, Im z), Imx〉+ 〈B∗R(Imx, Im z),Rex〉

=

〈[
Rex
Imx

]
, C

[
Rex
Imx

]〉
.

From here on the proof is analogous to the proof of Theorem 3.17.

We now specify the mapping C from Theorems 3.17 and 3.18 for the strong isometry
Q from Lemma 3.9.
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3. Regularization by decomposition

Lemma 3.19. Let X be a real Hilbert space and let Q : X → `2R(N) be defined by (3.3)
with an orthonormal basis (ei)i∈N. The mapping x 7→ B∗Q(x, z) then has the symmetric

matrix representation Dz in RN×N with respect to (ei) given by

[Dz]i,j :=

{
1√
2
zκ(i,j), if j < i,

zκ(i,j), if j = i,

where κ is the index map defined in (3.2).

Proof. From

〈B∗Q(x, z), ei〉 = 〈z,BQ(x, ei)〉 =

〈
z,BQ

 ∞∑
j=1

〈x, ej〉 ej , ei

〉

=
∞∑
j=1

〈x, ej〉 〈z,BQ(ej , ei)〉

we see

[Dz]i,j = 〈z,BQ(ei, ej)〉 =
∞∑
k=1

k∑
l=1

zκ(k,l)

[
BQ(ei, ej)

]
κ(k,l)

and by the definition of BQ, see (3.4), for j ≤ i we have

[
BQ(ei, ej)

]
κ(k,l)

=


1√
2
, if j < i and k = i and l = j,

1, if j = i and k = l = i,

0, else,

which together with the previous equation shows the assertion of the lemma.

Proposition 3.20. Let Dz be the (infinite) matrix from Lemma 3.19 and let Q be
defined by (3.3) with an orthonormal basis (ei)i∈N. Then the mapping C in Theo-
rem 3.17 has the matrix representation Dz with respect to (ei) and the mapping C in
Theorem 3.18 has the matrix representation[

DRe z DIm z

DIm z −DRe z

]
,

which has to be understood as a mapping from `2R(N)× `2R(N) into `2R(N)× `2R(N).

Proof. The matrix representation of C in Theorem 3.17 is a direct consequence of
Lemma 3.19. To obtain the matrix representation for C in Theorem 3.18 we note that
the imaginary part S of Q is zero and the real part R is the mapping Q restricted to
the real Hilbert space XR. Consequently,

C =

[
B∗Q(·,Re z) B∗Q(·, Im z)

B∗Q(·, Im z) −B∗Q(·,Re z)

]
,

where BQ is considered as a mapping from XR×XR into `2R(N). Applying Lemma 3.19
to the four B∗Q-mappings in real spaces completes the proof.
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3.4. A regularization method

Remark 3.21. From the matrix representation of C (real and complex case) and the
fact that z is in `2(N) we immediately see that C is a Hilbert–Schmidt operator and
thus compact.

We close this section with two properties of projections onto the range of an quadratic
isometry.

Proposition 3.22. Denote by ζ an orthogonal projection of some z in `2(N) onto the
range of a weak quadratic isometry Q : X → `2(N). Then ‖ζ‖ ≤ ‖z‖.

Proof. Let x in X be such that Q(x) = ζ. If x = 0 then ζ = 0 and the assertion
is obviously true. If x 6= 0, Lemma 3.16 in combination with the Cauchy–Schwarz
inequality yields

‖ζ‖ = ‖x‖2 = Re

〈
Q

(
x

‖x‖

)
, z

〉
≤ ‖z‖.

Proposition 3.23. If zero is an orthogonal projection of some z in `2(N) and also of
−z onto the range of a weak quadratic isometry Q : X → `2(N), then z = 0.

Proof. By Lemma 3.16 we have

Re 〈Q(x), z〉 ≤ 0 and Re 〈Q(x),−z〉 ≤ 0

for all x in X. Thus, Re 〈z̃, z〉 = 0 for all z̃ in spanR(Q), that is, for all z in `2(N) (cf.
proof of Proposition 3.14), which is equivalent to z = 0.

As a consequence of the last proposition we immediately see that projecting a non-
trivial subspace onto the range of a quadratic isometry always yields a non-trivial set
of projections.

3.4. A regularization method

In view of Theorem 3.8 regularized inversion of a quadratic mapping can be realized
in two steps: regularized inversion of a linear mapping and inversion of a quadratic
isometry. The second has been discussed in the previous section. The first can be done
by standard regularization methods in Hilbert spaces, for example Tikhonov regulariza-
tion, Landweber iteration or spectral cut-off. Here we focus on Tikhonov regularization

‖Az − y‖2 + α ‖z‖2 → min
z∈`2(N)

with positive regularization parameter α and data y in Y for approximate but stable
solution of

Az = y†, , z ∈ `2(N). (3.10)

For Q we choose (3.3).
Throughout the present section we assume that the linear mapping A is bounded.

From Example 3.11 we know that this is not always the case, but in the next section
we apply the described regularization method to a mapping F for which one can prove
boundedness of A.
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3. Regularization by decomposition

An issue that only becomes visible at the second sight requires our attention and
will have essential influence on the regularization procedure to be developed: From
regularization theory in Hilbert spaces (cf. [EHN96]) we know that given noisy data yδ

with positive noise level δ, that is ‖yδ− y†‖ ≤ δ, corresponding regularized solutions zδα
converge to the norm minimizing solution z† of (3.10) if δ tends to zero and the regu-
larization parameter α is chosen in the right way depending on δ. Thus, the projections
onto the range of Q converge to the projections of z†. Here the question arises, whether
Q(x†) is a projection of z† onto the range of Q, where x† denotes a solution of (1.1).
Else we cannot expect convergence of the minimizers xδα of (3.6) with z = zδα to x†.

If A is injective then obviously z† belongs to the range of Q. If A is not injective
we have to modify the regularization procedure in a way which forces the regularized
solutions zδα to converge to some solution of (3.10) which lies in the range of Q. Such a
solution always exists because y† belongs to the range of F by assumption. Tikhonov
regularization can be modified to shift the limit of regularized solutions:

‖Az − yδ‖2 + α ‖z − ζ‖2 → min
z∈`2(N)

.

Corresponding minimizers then converge to a solution of (3.10) which minimizes the
distance to ζ over the set of all solutions. Choosing a suitable reference element ζ in
the penalty term may force convergence to Q(x†). In the method we propose below ζ
is chosen iteratively.

We first present the algorithm and then discuss its construction:

1. Choose α0 > 0, q ∈ (0, 1) and τ > 1. Set ζ(0) = 0 ∈ `2(N) and k = 1.

2. Set αk = q αk−1.

3. Solve (AA∗ + αk I) yk = yδ −Aζ(k−1) for yk.

4. Set z(k) = A∗ yk + ζ(k−1).

5. Find a minimizer xk of (3.6) with z = z(k).

6. Set ζ(k) = Q(xk).

7. If ‖Aζ(k) − yδ‖ ≤ τ δ then stop. Else increase k by one and go to 2.

The three main ingredients are Tikhonov regularization as described above, the dis-
crepancy principle for stopping the algorithm and an alternating projections approach
to determine reference elements for the Tikhonov penalty.

Solving the Tikhonov minimization problem

‖Az − yδ‖2 + αk ‖z − ζ(k−1)‖2 → min
z∈`2(N)

is equivalent to solving the first order optimality condition

(A∗A+ αk I) z = A∗ yδ + αk ζ
(k−1). (3.11)

This holds for both real and complex Hilbert spaces `2(N) and Y . In a finite-dimensional
situation (e. g. after discretization) the matrix A∗A is extremely large. To see this
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3.4. A regularization method

take an orthonormal basis (ei)i∈N in X and consider only the n-dimensional subspace
spanned by e1, . . . , en. Applying Q to this subspace yields a subset of `2(N) which

spans a subspace of dimension n (n+1)
2 . Consequently A would map this subspace to

some finite-dimensional subspace of Y with dimension m ≤ n (n+1)
2 . The corresponding

matrix A∗A then would have dimension n (n+1)
2 × n (n+1)

2 or, in other words, the matrix

would have more than n4

4 entries.

To avoid solving such a large system we rewrite the first order optimality condition
(3.11) in a way which involves AA∗ instead of A∗A. In finite dimensions the corre-

sponding matrix would have m×m entries and typically m is much smaller than n (n+1)
2 .

In the example presented in the next section we will have m = 2n.

We start rewriting (3.11) by substituting z̃ := z − ζ(k−1). Then (3.11) becomes

(A∗A+ αk I) z̃ = A∗ yδ −A∗Aζ(k−1)

or, equivalently,

z̃ = (A∗A+ αk I)−1A∗
(
yδ −Aζ(k−1)

)
.

A simple calculation shows

(A∗A+ αk I)−1A∗ = A∗ (AA∗ + αk I)−1,

which yields

z̃ = A∗ (AA∗ + αk I)−1
(
yδ −Aζ(k−1)

)
.

To obtain z̃ we thus have to solve

(AA∗ + αk I) yk = yδ −Aζ(k−1)

for yk and then calculate z̃ = A∗ yk or, equivalently, z = A∗ yk + ζ(k−1). This is done in
steps 3 and 4 of the algorithm.

Step 5 is based on Theorems 3.17 and 3.18 in connection with Proposition 3.20. Here
we have to find the largest eigenvalue and a corresponding eigenelement of a symmetric
Hilbert–Schmidt operator (or a symmetric matrix in finite dimensions). There are
several standard algorithms for this purpose. We mention the power iteration (also
known as Von Mises iteration).

The iteration is stopped in step 7 if the so called discrepancy principle is satisfied,
that is, if the obtained approximate solution xk fulfils ‖F (xk) − yδ‖ ≤ τδ where τ
should be slightly greater than one. Note that F (xk) = Aζ(k). The idea behind this
well-known principle is that there is no reason to get closer to the noisy data yδ than
the exact data y† is.

To complete the description of the algorithm the interplay of the Tikhonov mini-
mization problem and the projection in steps 5 and 6 has to be discussed. At first we
consider the idea without regularization. So the question is: How to iteratively ap-
proximate Q(x†)? Having approximations of Q(x†) we also have approximations of x†.
Thus, everything can be considered in `2(N). Obviously, Q(x†) belongs to the intersec-
tion of the range of Q and the shifted null space z†+N (A). The alternating projections
method can be used to find points in the intersection of two sets. One starts at some
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3. Regularization by decomposition

point (we use z†) by projecting it orthogonally onto one of the sets. Then this projected
point is projected orthogonally onto the other set. With this second projection point
the procedure is repeated. One can show that this alternating projections method con-
verges weakly to a point in the intersection of the two sets if both sets are closed and
convex (see [KR12, Theorem 1.3(a)]). The set z†+N (A) is closed and convex, but the
range of Q is only closed and not convex. Thus, it is not clear whether the method
converges and we were not able to solve this issue.

Now we incorporate regularization into the idea of alternating projections. Projecting
some ζ(k−1) onto z†+N (A) means that we search for the solution of (3.10) with minimal
distance to the original point ζ(k−1). Such a solution can be found approximately but
stable by minimizing a Tikhonov functional with reference element ζ(k−1) in the penalty
term. For fixed k the regularization parameter α in the Tikhonov functional can be
chosen by starting with a large value α0 and then decreasing α by some factor q until
some stopping rule (e. g. discrepancy principle) is fulfilled. In principle this parameter
choice has to be realized for each k. To save computation time parameter choice and
(outer) iteration with respect to k can be combined because in the first outer iterations
we do not need maximal accuracy. Thus, solving the Tikhonov minimization problem
only for one regularization parameter and decreasing the regularization parameter for
the next iteration with new reference element seems to be a valid approach. A similar
idea is used for instance in the TIGRA method (see [Ram03]).

Due to the lack of convexity of the range of Q we do not have a full convergence proof
for our proposed algorithm. We only have proven that it is stable, which is a consequence
of standard regularization theory in Hilbert spaces and of Proposition 3.15, and we gave
a precise motivation why we expect that the algorithm yields useful results.

3.5. Numerical example

To demonstrate practicality of the algorithm proposed in the previous section we im-
plemented it to solve the complex-valued autoconvolution problem with full data de-
scribed in Subsection 1.2.1. The corresponding quadratic mapping was introduced in
(1.5). This problem is very similar to the autoconvolution problem for the SD-SPIDER
method described in Subsection 1.2.2. The only difference is that in (1.9) we have an
additional kernel function k. Assuming that this kernel has a multiplicative structure

k(s, t) = k̃(t) k̃(s− t), (s, t) ∈ D(k)

with a function k̃ : (0, 1)→ C inverting the SD-SPIDER-related mapping is equivalent
to inverting (1.5) and dividing by k̃. Of course our method can be applied to the
kernel-based autoconvolution problem even if the kernel has not such a multiplicative
structure. The only additional difficulty would be that we no longer would be able
to explicitly calculate several expressions when discretizing our spaces and mappings.
Instead we would have to use numerical integration.

We discretize functions in X = L2
C(0, 1) by cutting off their Fourier coefficients. For

k in N set

γk := (−1)k
⌊
k

2

⌋
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and
ek(t) := e2π i γk t, t ∈ (0, 1).

Then (ek)k∈N is the usual Fourier basis, but re-indexed to avoid negative indices. The
indices k = 1, 2, . . . are mapped to γk = 0, 1,−1, 2,−2, . . .. For our computations we
only use the first n Fourier coefficients, that is, approximate solutions belong to the
span of e1, . . . , en.

The mapping Q from (3.3) satisfies [Q(x)]κ(k,l) = 0 for k > n, that is, only the first
n (n+1)

2 components of Q(x) are non-zero.
To obtain the linear mapping A we need BF (ek, el) for k = 1, 2, . . . and l = 1, . . . , k.

Evaluating the integral in (1.6) we obtain

(
F (ek)

)
(s) =

{
s e2π i γk s, if s ∈ (0, 1),

(2− s) e2π i γk s, if s ∈ (1, 2),
(3.12)

and

(
BF (ek, el)

)
(s) =

{
1

2π i (γk−γl)
(
e2π i γk s − e2π i γl s

)
, if s ∈ (0, 1),

−1
2π i (γk−γl)

(
e2π i γk s − e2π i γl s

)
, if s ∈ (1, 2),

(3.13)

for k = 1, 2, . . . and l = 1, . . . , k−1. Here we see that the images of F (x) = AQ(x) for x
in span {e1, . . . , en} are continuous. Thus, to discretize them we may use piecewise linear
interpolation on an equispaced grid with m+1 nodes in (0, 2) at 2 k

m for k = 0, 1, . . . ,m.

Proposition 3.24. The mapping A is bounded.

Proof. For z in D(A) we have

(Az)(s) =

∞∑
k=1

(
k−1∑
l=1

√
2 zκ(k,l)

2π i (γk − γl)
(
e2π i γk s − e2π i γl s

)
+ zκ(k,k) s e2π i γk s

)
.

We show that this series converges in L2
C(0, 2) for each z in `2C(N), that is, D(A) = `2C(N).

Then A is obviously bounded. We restrict our attention to convergence in L2
C(0, 1).

Analogous steps lead to convergence in L2
C(1, 2) and thus to convergence in L2

C(0, 2).
At first we show that

an(s) :=

n∑
k=1

k−1∑
l=1

zκ(k,l)

γk − γl
(
e2π i γk s − e2π i γl s

)
, s ∈ (0, 1),

defines a Cauchy sequence (an)n∈N and then that

bn(s) :=

n∑
k=1

zκ(k,k) s e2π i γk s, s ∈ (0, 1),

defines a Cauchy sequence (bn)n∈N.
We have

−
n∑
k=1

k−1∑
l=1

zκ(k,l)

γk − γl
e2π i γl s = −

n∑
l=1

n∑
k=l+1

zκ(k,l)

γk − γl
e2π i γl s =

n∑
k=1

n∑
l=k+1

zκ(l,k)

γk − γl
e2π i γk s
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and hence

an(s) =

n∑
k=1

(
k−1∑
l=1

zκ(k,l)

γk − γl
+

n∑
l=k+1

zκ(l,k)

γk − γl

)
e2π i γk s.

For m in N (without loss of generality we assume m < n) we obtain

‖an − am‖2 =

∥∥∥∥∥
m∑
k=1

(
n∑

l=m+1

zκ(l,k)

γk − γl

)
e2π i γk ·

+
n∑

k=m+1

(
k−1∑
l=1

zκ(k,l)

γk − γl
+

n∑
l=k+1

zκ(l,k)

γk − γl

)
e2π i γk ·

∥∥∥∥∥
2

L2
C(0,1)

=

m∑
k=1

∣∣∣∣∣
n∑

l=m+1

zκ(l,k)

γk − γl

∣∣∣∣∣
2

+

n∑
k=m+1

∣∣∣∣∣
k−1∑
l=1

zκ(k,l)

γk − γl
+

n∑
l=k+1

zκ(l,k)

γk − γl

∣∣∣∣∣
2

and the Cauchy–Schwarz inequality yields∣∣∣∣∣
n∑

l=m+1

zκ(l,k)

γk − γl

∣∣∣∣∣
2

≤
(

n∑
l=m+1

1

|γk − γl|2

) (
n∑

l=m+1

|zκ(l,k)|2
)

as well as∣∣∣∣∣
k−1∑
l=1

zκ(k,l)

γk − γl
+

n∑
l=k+1

zκ(l,k)

γk − γl

∣∣∣∣∣
2

≤
(
k−1∑
l=1

1

|γk − γl|2
+

n∑
l=k+1

1

|γk − γl|2

) (
k−1∑
l=1

|zκ(k,l)|2 +
n∑

l=k+1

|zκ(l,k)|2
)
.

Together with
∞∑
l=1
l 6=k

1

|γk − γl|2
≤ 2

∞∑
l=1

1

l2
=
π2

3

and an extensive re-indexing we see

‖an − am‖2 ≤
π2

3

(
m∑
k=1

n∑
l=m+1

|zκ(l,k)|2 +
n∑

k=m+1

(
k−1∑
l=1

|zκ(k,l)|2 +
n∑

l=k+1

|zκ(l,k)|2
))

=
2π2

3

(
n∑
k=1

k−1∑
l=1

|zκ(k,l)|2 −
m∑
k=1

k−1∑
l=1

|zκ(k,l)|2
)
.

Since
∞∑
k=1

k−1∑
l=1

|zκ(k,l)|2 ≤ ‖z‖2 <∞

we obtain ‖an − am‖ → 0 if m,n→∞.
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Now we come to (bn)n∈N. Here for m in N (again m < n) we have

‖bn − bm‖2 =

1∫
0

∣∣∣∣∣
n∑

m+1

zκ(k,k) s e2π i γk s

∣∣∣∣∣
2

ds =

1∫
0

|s|2
∣∣∣∣∣
n∑

m+1

zκ(k,k) e2π i γk s

∣∣∣∣∣
2

ds

≤
1∫

0

∣∣∣∣∣
n∑

m+1

zκ(k,k) e2π i γk s

∣∣∣∣∣
2

ds =

n∑
k=m+1

|zκ(k,k)|2,

which together with
∞∑
k=1

|zκ(k,k)|2 ≤ ‖z‖2 <∞

implies ‖bn − bm‖ → 0 if m,n→∞.
To complete the proof note that

Az = lim
n→∞

( √
2

2π i
an + bn

)

and this limit exists for all z in `2C(N).

The adjoint A∗ : L2
C(0, 2)→ `2C(N) of A is given by

[A∗ y]κ(k,l) =

{
〈y, F (ek)〉, l = k,√

2 〈y,BF (ek, el)〉, l < k
(3.14)

for k = 1, 2, . . . and l = 1, . . . , k.
To obtain a discretized version ofAA∗ mapping piecewise linear functions to piecewise

linear functions we calculate the inner products in (3.14) for k = 1, 2, . . . , nAA∗ and l ≤ k
analytically and then apply A and piecewise linear interpolation. These calculations are
elementary and were carried out with the help of a computer algebra system. Results
were copied directly to the source code of the implemented algorithm and we do not
provide the extensive formulas here.

From (3.12) and (3.13) we see that F applied to span {e1, . . . , en} spans a subspace
of dimension 2n− 1 and that (F (x))(0) = 0 = (F (x))(2) for all x in span {e1, . . . , en}.
Thus, we choose 2n − 1 + 2 = 2n + 1 nodes for linear interpolation in Y , that is
m = 2n. In our numerical experiments we use n = 200, nAA∗ = 200 and m = 400.
Further, choice of the regularization parameter is controlled by α0 = 1, q = 0.9 and
τ = 1.6 in all experiments.

Given a function x† in L2
C(0, 1) we calculate a piecewise linear approximation of

y† = F (x†) by numerical integration (to avoid an ‘inverse crime’ we do not use the
discretized A and Q). Then we add random noise following a Gaussian distribution to
the function values of y† at the interpolation nodes. This yields noisy data yδ. The
noise is scaled such that ‖yδ−y†‖ = δ. In the experiments below we provide the relative
noise level

δrel :=
δ

‖y†‖ .
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3. Regularization by decomposition

Remember that F (x) = F (−x) for all x. The algorithm outputs only one of the
two solutions. To improve presentation we manually flip the sign so that the signs of
calculated and exact solution coincide.

We consider three examples. The table below shows the exact solution x†, the relative
noise level δrel, the number of iterations the algorithm performed until the discrepancy
principle was satisfied and where to find corresponding plots.

exact solution noise level iterations figures

example 1 x† = t e8π i t δrel = 0.05 21 3.2–3.9
example 2 x† = t e8π i t δrel = 0.2 13 3.10–3.17
example 3 x† = t2 + i (|t− 1

2 | − 1
2) δrel = 0.1 22 3.18–3.25

We do not give extensive numerical results here. We only demonstrate with few
examples that the described method works well and discuss a number of features the
reconstructions show. The interested reader finds further numerical experiments and a
comparison to other methods in [BF15].

Figure 3.2 shows the exact solution x† for example 1. Figures 3.3 and 3.4 show corre-
sponding exact and noisy data. The output of the algorithm is depicted in Figure 3.5.
For better comparability real and imaginary parts are plotted in Figures 3.6 and 3.7 for
exact and noisy data and in Figures 3.8 and 3.9 for exact and reconstructed solution.
The same system is used for the figures belonging to examples 2 and 3.

The real part of the reconstructed solution in example 1 (Figure 3.8) shows some
oscillations near zero and one. The Fourier basis, which we used for discretization in
X, only contains 1-periodic functions. But if we look at the function we used in example
1 as a periodic function, we see a jump at zero (or one). To obtain a good reconstruction
of this jump we would have to reconstruct much more Fourier coefficients because the
elements of the Fourier basis are very smooth. Same effect can be seen in Figures 3.16
and 3.24.

In example 2 we use a four times higher noise level than in example 1, but the
reconstructions still are quite good. Here the reason lies in the fact that inverting a
quadratic mapping is of the same nature as taking the square root of a real number.
Thus, if the noise level in the data is multiplied by four, the solution error is multiplied
only by two. To our regret we did not find a rigorous proof for this intuitive explanation.

The exact solution in example 3 is not differentiable. Approximation of the kink by a
smooth basis requires more coefficients than we reconstruct. The result produced by our
algorithm is to some extent underregularized. This can be regarded as a compromise
between approximation of the kink and regularization of the problem.
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Figure 3.2.: Exact solution for example 1.
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Figure 3.3.: Exact data for example 1.
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Figure 3.4.: Noisy data for example 1.
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Figure 3.5.: Reconstructed solution for example 1.
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Figure 3.6.: Real parts of exact (blue) and noisy (red) data for example 1.
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Figure 3.7.: Imaginary parts of exact (blue) and noisy (red) data for example 1.
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Figure 3.8.: Real parts of exact (blue) and reconstructed (red) solution for example 1.
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Figure 3.9.: Imaginary parts of exact (blue) and reconstructed (red) solution for example 1.
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Figure 3.10.: Exact solution for example 2.
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Figure 3.11.: Exact data for example 2.

54



3.5. Numerical example

-0.3
0.3

-0.2

-0.1

0.2 2

0

0.1

0.1

1.50

0.2

0.3

1-0.1
0.5-0.2

-0.3 0

Figure 3.12.: Noisy data for example 2.
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Figure 3.13.: Reconstructed solution for example 2.
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Figure 3.14.: Real parts of exact (blue) and noisy (red) data for example 2.
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Figure 3.15.: Imaginary parts of exact (blue) and noisy (red) data for example 2.
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Figure 3.16.: Real parts of exact (blue) and reconstructed (red) solution for example 2.
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Figure 3.17.: Imaginary parts of exact (blue) and reconstructed (red) solution for example 2.
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Figure 3.18.: Exact solution for example 3.
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Figure 3.19.: Exact data for example 3.
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Figure 3.20.: Noisy data for example 3.
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Figure 3.21.: Reconstructed solution for example 3.

59



3. Regularization by decomposition

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.22.: Real parts of exact (blue) and noisy (red) data for example 3.
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Figure 3.23.: Imaginary parts of exact (blue) and noisy (red) data for example 3.
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Figure 3.24.: Real parts of exact (blue) and reconstructed (red) solution for example 3.
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Figure 3.25.: Imaginary parts of exact (blue) and reconstructed (red) solution for example 3.
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In this chapter we discuss a mathematical tool called variational source conditions in
the context of quadratic inverse problems. We start with a short introduction to the
topic and then discuss more or less classical alternatives and their deficiencies. The first
of the two main results of this chapter will state that variational source conditions are
the right tool for our purposes, and the second demonstrates a way to obtain concrete
variational source conditions for quadratic mappings.

4.1. About variational source conditions

Even for linear ill-posed inverse problems convergence of regularized solutions to an
exact solution of (1.1) can be arbitrarily slow. Thus, dependence of convergence speed
on properties of the exact solutions and also of the mapping F has to be investigated in
detail to obtain information about validity of a regularization method. Upper bounds
for the distance of regularized solutions to exact solutions in terms of some data noise
level are the typical form to express such convergence rates.

As before we restrict our attention to quadratic mappings F mapping between real
or complex separable Hilbert spaces. Denoting exact data in Y by y† and by δ the
positive noise level, available noisy data in Y will be denoted by yδ and we assume that

‖y† − yδ‖ ≤ δ.

If xδα is a regularized solution obtained from some regularization method based on noisy
data yδ with regularization parameter α and if S is the set of all solutions to (1.1) with
exact right-hand side y†, then we aim at estimates

dist(xδα, S)2 = O(ϕ(δ)) if δ → 0. (4.1)

Here, the function ϕ should be an index function:

Definition 4.1. A function ϕ : [0,∞)→ [0,∞) is called index function if it is contin-
uous, monotonically increasing, strictly increasing in a neighborhood of the origin and
satisfies ϕ(0) = 0.

A sufficient condition for convergence rates (4.1), which has a much wider scope of
applicability compared to previous techniques, was introduced in [HKPS07]. In princi-
ple one assumes that a certain inequality holds for all (or sufficiently many) elements
of the space X. Several different names were given to this technique. Often such in-
equalities are referred to as ‘variational inequalities’, but this term conflicts with the
already existing mathematical field with the same name. A second frequently used
term is ‘variational source condition’, which rouses associations to classical source con-
ditions. Because the new concept has no similarity to classical source conditions, most
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4. Variational source conditions

notably there is no source element, an alternative was introduced in the book [Fle12],
which bases on the author’s PhD thesis [Fle11]. There the term ‘variational smoothness
assumption’ is used, because several kinds of smoothness (not only of the underlying
exact solution as is the case for classical source conditions) are jointly described by one
expression. In most recent literature ‘variational source condition’ seems to be used
more often than ‘variational inequality’, whereas ‘variational smoothness assumption’
is not used by other authors. Thus, in the present thesis we use ‘variational source
condition’ to name the technique described and applied below and, to avoid drawing to
many parallels to source conditions, we read it as ‘variational replacement for source
conditions’.

The original concept of variational source conditions has been extended in [Pös08,
HH09, Gei09, FH10, BH10, Gra10a, Fle10, Fle11], for details on those extensions we
refer to [Fle12, page 37]. In this chapter we use the following form of variational source
conditions: Fixing y† and denoting by S the set of all norm minimizing solutions to (1.1)
we say that a variational source condition is satisfied if there are a positive constant β
and an index function ϕ such that

β dist(x, S)2 ≤ ‖x‖2 − ‖x†‖2 + ϕ(‖F (x)− F (x†)‖) for all x in X, (4.2)

where x† is an arbitrary element of S. Such a variational source condition is known
to yield convergence rates (4.1) with concave ϕ if Tikhonov regularization is used to
obtain regularized solutions, see, e. g., [Fle12, HM12]. But iterative methods can be
used, too, see [HW13, Wer15].

From here on we restrict our considerations to quadratic mappings which are injective
up to sign. Thus, given an exact right-hand side y†, there are only two solutions to
(1.1). We denote them by x† and −x†. The distance on the left-hand side of (4.2) then
becomes

dist(x, S)2 = min{‖x− x†‖2, ‖x+ x†‖2} = ‖x‖2 − 2 |Re 〈x, x†〉|+ ‖x†‖2.

4.2. Nonlinearity conditions

The classical way to prove convergence rates for nonlinear inverse problems is to verify
some nonlinearity condition for the mapping F , which in combination with a source
condition yields the desired rate. The same way one can prove variational source condi-
tions, which then imply the same rate. Here we briefly discuss nonlinearity conditions
for quadratic mappings and in the next section we have a closer look at source condi-
tions.

Starting with the paper [EKN89] a number of inequalities has been suggested to
describe or restrict the nonlinear behavior of nonlinear mappings. We do not list those
inequalities here, because in [BH15, Bür16] it was shown that only one of them can
be verified for (truncated or untruncated) autoconvolution of functions with bounded
support. Thus, we cannot expect them to hold for general quadratic mappings. The
interested reader finds relevant references in [BH15].

Only the original nonlinearity condition used in [EKN89] (cf. equations (2.8) and (2.9)
there) can be verified for autoconvolutions and also for general quadratic mappings:
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Proposition 4.2. For each x† in X the inequality

‖F (x)− F (x†)− F ′[x†](x− x†)‖ ≤ ‖F‖ ‖x− x†‖2 (4.3)

holds for all x in X.

Proof. By F ′[x†]x = 2BF (x†, x) we have

‖F (x)− F (x†)− F ′[x†](x− x†)‖ = ‖F (x− x†)‖.

The assertion thus follows immediately from (1.3).

4.3. Classical source conditions

The second ingredient used in [EKN89] to obtain convergence rates is a source condition.
The authors considered Tikhonov regularization with penalty term x 7→ ‖x−x0‖2, where
x0 is some fixed reference element in X, and assumed that the exact solution x† satisfies

x† − x0 = F ′[x†]∗ v (4.4)

for some v in Y . The element v is called source element. If v satisfies the smallness
condition

2 ‖F‖ ‖v‖ < 1, (4.5)

then one obtains that the distance between regularized solutions and x† converges to
zero with the rate

√
δ if α is chosen in the right way.

Verification of source conditions of the above type for autoconvolutions has been
discussed in [BH15]. We extend the results to general quadratic mappings here.

Proposition 4.3. For each reference element x0 in X there exist x† satisfying a source
condition (4.4) with some v. If x† and v satisfy (4.4) and (4.5), then

Re 〈x†, x0〉 ≤ 0 ⇔ x† = 0, x0 = 0,

Re 〈x†, x0〉 > 0 ⇔ ‖x† − x0‖ < ‖x†‖.

In particular, x0 = 0 implies x† = 0.

Proof. Let v satisfy (4.5) and define G : X → X by G(x) := x0 +F ′[x]∗ v. Then G is a
contraction, because

‖G(x)−G(u)‖ = 2 ‖B∗F (x− u, v)‖ ≤ 2 ‖B∗F (x− u, · )‖ ‖v‖
= 2 ‖BF (x− u, · )‖ ‖v‖ ≤ 2 ‖F‖ ‖v‖ ‖x− u‖

holds for all x and u and we have 2 ‖F‖ ‖v‖ < 1. Thus, Banach’s fixed point theorem
implies existence of x† with x† = G(x†), which is equivalent to (4.4).

Now let x† and v satisfy (4.4). Then

‖x† − x0‖ = ‖F ′[x†]∗ v‖ = 2 ‖B∗F (x†, v)‖ ≤ 2 ‖F‖ ‖v‖ ‖x†‖ ≤ ‖x†‖

65



4. Variational source conditions

and strict inequality ‖x† − x0‖ < ‖x†‖ holds if x† 6= 0. Simple manipulations lead to

‖x0‖2 ≤ 2 Re 〈x†, x0〉

and ‖x0‖2 < 2 Re 〈x†, x0〉 if x† 6= 0. From these two inequalities one easily obtains the
first equivalence. The second equivalence is not hard to prove, too, since Re 〈x†, x0〉 > 0
implies x† 6= 0.

The proposition shows that for non-trivial x† the a priori chosen reference element
x0 has to be close enough to the unknown solution x†. Typically, no useful a priori
information is available and one chooses x0 = 0. Then source condition and smallness
condition are only satisfied if x† = 0. Thus, the classical concept of source conditions
for obtaining convergence rates in case of nonlinear inverse problems is not applicable
for quadratic mappings.

4.4. Variational source conditions are the right tool

We now show that variational source conditions (4.2) are always satisfied in case of
quadratic inverse problems and thus are a suitable tool for proving convergence rates
(4.1). This results has not been published elsewhere.

Theorem 4.4. Let F be quadratic, weakly continuous and injective up to sign. Then
for each x† in X and for each positive β with β < 1 there is a concave index function
ϕ such that the variational source condition (4.2) holds on X.

Proof. Fix x† and note that due to injectivity up to sign we have S = {x†,−x†} for the
set of solutions in (4.2). Thus,

dist(x, S)2 = min
{
‖x− x†‖2, ‖x+ x†‖2

}
= ‖x‖2 + ‖x†‖2 + 2 min{−Re 〈x, x†〉, Re 〈x, x†〉}
= ‖x‖2 + ‖x†‖2 − 2 |Re 〈x, x†〉|

for all x in X.

The case x† = 0 will be excluded in the sequel because in this case a variational
source condition holds with arbitrary index function ϕ.

To obtain a variational source condition (4.2) we use the concept of approximate
variational source conditions introduced in [Fle12, Section 12.1.5] for a slightly different
setting. For fixed β with β < 1 we define a distance function Dβ : [0,∞)→ [0,∞) by

Dβ(r) := sup
x∈X

(
β dist(x, S)− ‖x‖2 + ‖x†‖2 − r ‖F (x)− F (x†)‖

)
.

We immediately see 0 ≤ Dβ(r) <∞ for all r and Dβ(0) > 0, else x† = 0. Further, Dβ is
convex, monotonically decreasing and continuous. The distance function Dβ expresses
the violation of a variational source condition with linear ϕ and allows to derive a
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variational source condition with some (nonlinear) ϕ if Dβ(r) → 0 for r → ∞. To see
this we estimate

β dist(x, S)2 − ‖x‖2 + ‖x†‖2

= inf
r≥0

(
β dist(x, S)2 − ‖x‖2 + ‖x†‖2 − r ‖F (x)− F (x†)‖+ r ‖F (x)− F (x†)‖

)
≤ inf

r≥0

(
Dβ(r) + r ‖F (x)− F (x†)‖

)
and show that

ϕ(t) := inf
r≥0

(
Dβ(r) + r t

)
, t ≥ 0,

defines a concave index function. Obviously, 0 ≤ ϕ(t) <∞ and ϕ is monotonically in-
creasing. Since ϕ is an infimum of affine functions, it is concave, upper semi-continuous
and continuous on (0,∞). Monotonicity and upper semi-continuity imply continuity
on [0,∞). The decay of Dβ to zero yields ϕ(0) = 0 and by Dβ(0) > 0 we see ϕ(t) > 0
for t > 0, that is, ϕ is strictly increasing in a neighborhood of zero.

Next, we show that for each r the supremum in the definition of Dβ(r) is attained
at some x. Rearranging the terms in the supremum and flipping the sign we obtain a
functional

x 7→ (1− β) ‖x‖2 − (1 + β) ‖x†‖2 + 2β |Re 〈x, x†〉|+ r ‖F (x)− F (x†)‖.

A sequence for which the values of the functional become arbitrarily close to the func-
tional’s infimum is bounded and thus has a weakly convergent subsequence. Weak lower
semi-continuity of the functional shows that the limit of this subsequence is a minimizer
of the functional. Consequently, the supremum in the definition of Dβ is attained for
each r.

Now let (rn)n∈N be a sequence in [0,∞) with rn →∞ and let (xn)n∈N be a sequence
of corresponding maximizers in the definition of Dβ. To complete the proof we have to
show Dβ(rn)→ 0. From

0 ≤ Dβ(rn) ≤ −(1− β) ‖xn‖2 + (1 + β) ‖x†‖2

we see that (xn)n∈N is bounded. Thus, there is a weakly convergent subsequence with
limit x̃. The subsequence again will be denoted by (xn)n∈N. Since xn realizes the
supremum in the definition of Dβ(rn) and because we have Dβ(rn) ≥ 0, we see

rn ‖F (xn)− F (x†)‖ ≤ β dist(xn, S)2 − ‖xn‖2 + ‖x†‖2 ≤ (1 + β) ‖x†‖2.

This implies F (xn) → F (x†) and together with the weak continuity of F we obtain
F (x̃) = F (x†), that is, x̃ = x† or x̃ = −x†. Eventually,

0 ≤ lim inf
n→∞

Dβ(rn) ≤ lim sup
n→∞

Dβ(rn) = − lim inf
n→∞

(
−Dβ(rn)

)
= − lim inf

n→∞

(
(1− β) ‖xn‖2 − (1 + β) ‖x†‖2 + 2β |Re 〈xn, x†〉|+ rn ‖F (xn)− F (x†)‖

)
≤ − lim inf

n→∞

(
(1− β) ‖xn‖2 − (1 + β) ‖x†‖2 + 2β |Re 〈xn, x†〉|

)
≤ −

(
(1− β) ‖x†‖2 − (1 + β) ‖x†‖2 + 2β |Re 〈x†, x†〉|

)
= 0,

which proves Dβ(rn)→ 0.
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Note that the technique used in the proof can also be applied to prove validity of
variational source conditions in quite general Banach space settings. This will be done
in Appendix C.

4.5. Sparsity yields variational source conditions

In the previous section we saw that there are always a constant β and an index function
ϕ such that a variational source condition (4.2) is satisfied for a fixed quadratic mapping
F . Now we demonstrate a method to obtain a concrete function ϕ depending on the
behavior of the exact solutions and of the mapping F . The core of this section has been
published in [BFH16].

First we consider general quadratic mappings and later we apply the results to au-
toconvolution of functions with uniformly bounded support. The following lemma pro-
vides a variational source condition for very specific quadratic mappings, which will be
the basis for the more general result.

Lemma 4.5. If there are an exact solution x† to (1.1) and an orthonormal basis (ek)k∈N
in X such that

(i)
(
F (ek)

)
k∈N is an orthonormal system in Y ,

(ii) BF (ek, el) = 0 for all k and l in N with k 6= l,

(iii) {k ∈ N : 〈x†, ek〉 6= 0} is finite, that is, x† is sparse with respect to (ek)k∈N,

then a variational source condition (4.2) is satisfied with

β = 1 and ϕ(t) = 2
√
n t,

where n is the number of non-zero coefficients of x†.

Proof. Set x†k := 〈x†, ek〉 and xk := 〈x, ek〉 for all x and all k. Further set fk := F (ek).
Then (fk)k∈N is an orthonormal system in Y . From

F (x) = F (x†) ⇔ (x†k)
2 = x2

k for all k

we see that the set S of all solutions to (1.1) is

S = {x ∈ X : xk = x†k or xk = −x†k for all k in N}.

Thus,

dist(x, S)2 =

∞∑
k=1

min
{
|xk − x†k|2, |xk + x†k|2

}
.

To simplify this expression further, for each x in X we define a sequence (ξk(x))k∈N by

ξk(x) :=

{
1, if Re (xk x

†
k) ≥ 0,

−1, else.
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4.5. Sparsity yields variational source conditions

Then we easily derive

dist(x, S)2 =

∞∑
k=1

|xk − ξk(x)x†k|2. (4.6)

Fix x and set

x̃† :=
∞∑
k=1

ξk(x)x†k ek.

Obviously, x̃† ∈ S. From (i) and (ii) in the lemma we thus obtain

‖F (x)− F (x†)‖2 = ‖F (x)− F (x̃†)‖2 =

∥∥∥∥∥
∞∑
k=1

x2
k fk −

∞∑
k=1

(x̃†k)
2 fk

∥∥∥∥∥
2

=
∞∑
k=1

∣∣x2
k − (x̃†k)

2
∣∣2 =

∞∑
k=1

∣∣xk − ξk(x)x†k
∣∣2 ∣∣xk + ξk(x)x†k

∣∣2
and a simple calculation shows ∣∣xk + ξk(x)x†k

∣∣2 ≥ ∣∣x†k∣∣2.
Denoting by I := {k ∈ N : x†k 6= 0} the support of (x†k)k∈N with cardinality n we obtain

‖F (x)− F (x†)‖2 ≥
∞∑
k=1

∣∣xk − ξk(x)x†k
∣∣2 ∣∣x†k∣∣2 =

∞∑
k=1

∣∣(xk − ξk(x)x†k
)
x†k
∣∣2

and by applying the Cauchy–Schwarz inequality and the triangle inequality we obtain
the estimate

‖F (x)− F (x†)‖2 ≥ 1

n

( ∞∑
k=1

∣∣(xk − ξk(x)x†k
)
x†k
∣∣)2

≥ 1

n

∣∣∣∣∣
∞∑
k=1

(
xk − ξk(x)x†k

)
ξk(x)x†k

∣∣∣∣∣
2

=
1

n

∣∣〈x̃†, x− x̃†〉∣∣2.
On the other hand, we have

dist(x, S)2 − ‖x‖2 + ‖x†‖2 = ‖x− x̃†‖2 − ‖x‖2 + ‖x̃†‖2

= −2 Re
〈
x̃†, x− x̃†

〉
≤ 2

∣∣〈x̃†, x− x̃†〉∣∣,
completing the proof.

Note that if F is the autoconvolution of periodic functions (see Subsection (1.2.1)),
then (i) and (ii) in the lemma are satisfied with (ek)k∈N being the Fourier basis in
L2(0, 1).

Theorem 4.6. Let F : X → Y be quadratic and injective up to sign and denote the
solutions to (1.1) by x† and −x†. If there exist an orthonormal basis (ek)k∈N in X and
a bounded linear operator A : Y → Y such that
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4. Variational source conditions

(i)
(
AF (ek)

)
k∈N is an orthonormal system in Y ,

(ii) ABF (ek, el) = 0 for all k and l in N with k 6= l,

(iii) {k ∈ N : 〈x†, ek〉 6= 0} is finite, that is, x† is sparse with respect to (ek)k∈N,

then a variational source condition (4.2) is satisfied for all x in

M := {x ∈ X : Re (xk x
†
k) ≥ 0 for all k or Re (xk x

†
k) ≤ 0 for all k}

with

β = 1 and ϕ(t) = 2 ‖A‖√n t,
where n is the number of non-zero coefficients of x†. The solutions x† and −x† are
interior points of M .

Proof. The solution x† of (1.1) is also a solution of AF (x) = Ay†, x ∈ X. Thus we
can apply Lemma 4.5 to the quadratic mapping AF and obtain the variational source
condition

dist(x, SAF )2 ≤ ‖x‖2 − ‖x†‖2 + 2
√
n ‖AF (x)−AF (x†)‖

for all x in X, where SAF denotes the set of all solutions to AF (x) = Ay†, x ∈ X.
The estimate

‖AF (x)−AF (x†)‖ ≤ ‖A‖ ‖F (x)− F (x†)‖
yields the right-hand side of the desired variational source condition.

From (4.6) in the proof of Lemma 4.5 we know that

dist(x, SAF )2 =
∞∑
k=1

|xk − x†k|2 = ‖x− x†‖2 ≥ dist(x, {x†,−x†})2

if Re (xk x
†) ≥ 0 for all k. On the other hand, if Re (xk x

†) ≤ 0 for all k, then

dist(x, SAF )2 =

∞∑
k=1

|xk + x†k|2 = ‖x+ x†‖2 ≥ dist(x, {x†,−x†})2.

Thus, for all x in M we have

dist(x, SAF )2 ≥ dist(x, {x†,−x†})2,

which proves the variational source condition on M .

To show that x† and −x† are interior points of M we show that balls centered at the
solutions with radius

r := min
k∈N:x†k 6=0

|x†k|

lie in M . From ‖x − x†‖ ≤ r we obtain |xk − x†k| ≤ |xk| for all k with x†k 6= 0. Thus,

|xk|2− 2 Re (xk x
†
k) ≤ 0, which yields Re (xk x

†
k) ≥ 0. Analogously, ‖x+x†‖ ≤ r implies

Re (xk x
†
k) ≤ 0.

70



4.5. Sparsity yields variational source conditions

Note that the variational source condition in the theorem does not hold on the whole
space, but only on a smaller set M . Nevertheless convergence rates can be obtained
from such a variational source condition because the exact solutions are interior points
of M and, thus, regularized solutions lie in M if the data noise level is small enough,
see, e. g. [Fle12].

Example 4.7. We consider autoconvolution of functions with uniformly bounded sup-
port, that is, X = L2

C(0, 1), Y = L2
C(0, 2) and F is given by (1.5). Let (ek)k∈N be the

Fourier basis as described in Subsection 3.5 and let A : Y → Y be defined by

(Ay)(s) := y(s) + y(s+ 1), s ∈ (0, 1).

Then one easily verifies that AF is the autoconvolution of periodic functions defined
in (1.8) and that ‖A‖ ≤

√
2. Thus, Theorem 4.6 is applicable because the convolution

theorem yields assumptions (i) and (ii) in the above theorem.

Lemma 4.5 can be extended to non-sparse solutions x†. With a technique very similar
to the proof of Theorem 8.9 in Part II we would obtain a variational source condition
(4.2) with some positive β and with an index function

ϕ(t) = inf
n∈N

 1

1− β
∑
|k|>n

|x†k|2 + 2
√

2n+ 1 t

 , t ≥ 0, (4.7)

which is essentially determined by the decay of the coefficients of x†. The variational
source condition on a subset M of X in Theorem 4.6 can be proven for non-sparse
x†, too. But x† and −x† are no longer interior points of M . Thus, we cannot ensure
that regularized solutions belong to M and the usual convergence rates proof does not
work.
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Part II.

Sparsity promoting regularization
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5. Aren’t all questions answered?

Sparsity promoting regularization techniques for linear operator equations, which will
be introduced in the next chapter, were a very active field of research during the first ten
years of the new millennium. Methods were suggested, algorithms were developed and
the theoretical backing had been extended extensively. The major sparsity promoting
regularization method is `1-regularization and this method is used in many applications
today and is an integral part of signal processing tool boxes.

Research in the inverse problems community started in 2004 with the influential pa-
per [DDDM04] and went on for several years. From about 2010 on the focus changed
to other, more involved sparsity promoting methods including regularization with non-
convex penalties and it seemed that the theory of `1-regularization was more or less
complete, at least complete enough to ensure proper behavior of corresponding algo-
rithms in applications.

In the second part of this thesis we resume research on the fundamentals of `1-regular-
ization and answer questions which were not posed in first years, but are of importance
for understanding the method and for verifying its applicability in a wide field of prob-
lems. These questions include:

• What happens if the frequent assumption, that the sought-for solution has a sparse
representation in a certain basis, fails? Is `1-regularization capable of producing
sufficiently precise approximations to such non-sparse solutions?

• Next to sparsity of the solution, which additional conditions have to be satisfied
to bound the distance between `1-regularized and exact solutions in terms of the
data noise level? What is the weakest set of such conditions?

• What about non-injective operators? Is it possible to prove error estimates if the
underlying linear operator is not injective, even not in a weakened sense?

These questions will be answered in detail in the following chapters. The presented
results were published in [BFH13, FH15, FHV15, FHV16, Fle16, FG17].

If we would aim at brevity, we could formulate a very technical theorem first and
then derive all results as corollaries. Instead, to increase readability, we start with the
less technical results and then go step by step to the more involved questions and their
answers. Following this longer path allows to reconstruct the core ideas of the final
theorem on convergence rates for `1-regularization with non-injective operators, which
else would be covered by technical and notational difficulties.

Depending on the reader’s knowledge in the fields of set theoretic topology, functional
analysis and convex analysis it might be beneficial to first look into Appendix A prior
to reading the next chapters.
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6. Sparsity and `1-regularization

In this section we describe the basic ideas of sparsity promoting regularization tech-
niques, introduce `1-regularization and briefly discuss alternative methods. In addition
we have a first look at several examples which will appear again later on in the text.

6.1. Sparse signals

Let X̃ and Y be real Banach spaces. For fixed y† in Y we aim to solve the operator
equation

Ã x̃ = y† (6.1)

for x̃ in X̃, where A : X̃ → Y is assumed to be linear and bounded. If this equation
is ill-posed, we have to take into account possible inaccuracies in the right-hand side,
that is, only some yδ in Y with

‖yδ − y†‖Y ≤ δ (6.2)

is accessible. Here, the positive constant δ denotes the noise level.

To stabilize the inversion process additional information on the exact solutions are
required. This is the point where sparsity comes into play. Especially in signal process-
ing applications, which include all kinds of image processing, one often knows a priori
that the sought-for solution to (6.1) is sparse or almost sparse in the following sense.

Definition 6.1. Let (ẽk)k∈N be a Schauder basis in X̃ and denote be (x̃k)k∈N corre-
sponding coefficients of some x̃ in X̃. The Banach space element x̃ is sparse with respect
to the basis (ẽk)k∈N if only finitely many coefficients do not vanish. The element x̃ is
almost sparse with respect to that basis if (x̃k)k∈N belongs to `1.

As usual, `1 denotes the Banach space of absolutely summable real sequences. If the
underlying space X̃ is a sequence space and no basis is explicitly specified, then sparsity
is considered with respect to standard basis (e(k))k∈N, where

e
(k)
l :=

{
1, if l = k,

0, else.

Note that existence of Schauder bases is not guaranteed for each Banach space.
Obviously, if there is a Schauder basis, then the space is separable. However, there
are separable Banach spaces which do not have a Schauder basis (see [Die84, page 35]
and references therein). A Schauder basis (ẽk)k∈N might be unbounded, but yields a
bounded Schauder basis if each element ẽk is divided by its norm ‖ẽk‖X̃ . Thus, existence
of Schauder bases is equivalent to existence of bounded Schauder bases. But note that
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6. Sparsity and `1-regularization

normalizing a Schauder basis as described changes the set of almost sparse elements,
whereas the set of sparse elements remains unchanged.

In most applications (and publications) X̃ is a separable Hilbert space and (ẽk)k∈N
is an orthonormal basis. Wavelet bases are a common choice. We do not restrict our
considerations to Hilbert spaces, because, on the one hand, the Banach space setting
does not imply ponderable additional expenses and, on the other hand, it allows us to
test our results and their limitations with a much wider class of examples.

Sparsity is a property of the coefficient sequence with respect to a basis and not of
a Banach space element itself. Thus, we may replace X̃ by some sequence space. A
good choice is `1 for two reasons: first, it is large enough to contain the coefficient
sequences of all almost sparse elements, and second, it is small enough to ensure that
each sequence is indeed a coeffcient sequence of some element in X̃. More precisely,
we could say that `1 contains exactly those sequences which are coefficient sequences
of almost sparse elements in X̃. Because we are looking for (almost) sparse solutions
to (6.1), there is no need to consider coefficient sequences which do not belong to `1.

Proposition 6.2. Let (ẽk)k∈N be a Schauder basis in X̃ and define L : `1 → X̃ by

Lx :=

∞∑
k=1

xk ẽk (6.3)

for x in `1. Then L is linear, injective and bounded with

‖L‖L(`1,X̃) = sup
k∈N
‖ẽk‖X̃ .

Proof. Linearity and injectivity are obvious. Boundedness and the upper bound for the
norm of L follow from

‖Lx‖X̃ ≤
∞∑
k=1

|xk| ‖ẽk‖X̃ ≤ ‖x‖`1 sup
k∈N
‖ẽk‖X̃

for x in `1. Choose x = ẽk to see that the upper bound is also a lower bound for the
norm of L.

Now define the bounded linear operator A : `1 → Y by A := Ã L and consider the
equation

Ax = y†, x ∈ `1. (6.4)

This is the equation we are going to deal with in the remaining chapters of this part
of the thesis. If we know a solution to (6.4), then applying L yields a solution to the
original equation (6.1).

6.2. `1-regularization

If equation (6.4) is ill-posed, exact solutions are not accessible, because they do not
depend continuously on the (noisy) right-hand side. Instead we have to seek for ap-
proximate but stable solutions. Knowing a priori that the sought-for solutions to (6.4)
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6.2. `1-regularization

are sparse, it is sensible to look for sparse approximations. One way to obtain such
sparse approximations is to minimize the Tikhonov-type functional

T δα(x) := ‖Ax− yδ‖pY + α ‖x‖`1 (6.5)

over x in `1. Here, p is some positive exponent for simplifying numerical minimization.
If Y is a Hilbert space, then p = 2 is a good choice. In any case we assume p > 1. The
trade-off between data fitting and stabilization is controlled by the positive regulariza-
tion parameter α. In [DDDM04] an algorithm for finding the minimizers numerically
had been proposed. That article popularized `1-regularization in the inverse problems
community and motivated numerous further publications on the subject.

The minimizers of T δα are referred to as `1-regularized solutions. To show that this
method is well-defined and regularizing and that the minimizers are sparse, we formulate
the theorem below. The assertions of the theorem are well known in the literature and
we repeat them here for the sake of completeness. The basic assumption required for
the theorem can be stated in several equivalent ways as shown in the lemma. As usual,
c0 denotes the Banach space of real sequences converging to zero. Remember that
(c0)∗ = `1.

Lemma 6.3. The following assertions are equivalent.

(i) (Ae(k))k∈N converges weakly to zero.

(ii) R(A∗) ⊆ c0.

(iii) A is weak*-to-weak continuous.

(iv) A is sequentially weak*-to-weak continuous.

Proof. Let (i) be satisfied. Then for each A∗ η from R(A∗) we have

[A∗ η]k = 〈A∗ η, e(k)〉`∞×`1 = 〈η,A e(k)〉Y ∗×Y → 0 if k →∞,

that is, A∗ η ∈ c0.

Now let (ii) be true. If we take a weakly* convergent net (x(κ))κ∈N with limit x, then
〈η,Ax(κ)〉Y ∗×Y = 〈A∗ η, x(κ)〉`∞×`1 and, since A∗ η belongs to c0 and `1 is the dual of
c0, we may write 〈A∗ η, x(κ)〉`∞×`1 = 〈x(κ), A∗ η〉`1×c0 . Thus,

lim
κ
〈η,Ax(κ)〉Y ∗×Y = lim

κ
〈x(κ), A∗ η〉`1×c0 = 〈x,A∗ η〉`1×c0 ,

showing

lim
κ
〈η,Ax(κ)〉Y ∗×Y = 〈η,Ax〉Y ∗×Y for all η ∈ Y ∗.

Finally, (iii) immediately implies (iv) and from (iv) and the obvious fact that (e(k))k∈N
converges weakly* to zero we immediately obtain (i).

Theorem 6.4. Let A be weak*-to-weak continuous. Then the following assertions are
true.
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6. Sparsity and `1-regularization

(i) Existence: There exist solutions to (6.4) with minimal norm (referred to as norm
minimizing solutions) and there exist minimizers of the Tikhonov-type functional
(6.5). Further, all minimizers of T δα are sparse.

(ii) Stability: If (yk)k∈N converges to yδ and if (x(k))k∈N is a corresponding sequence
of minimizers of (6.5) with yδ replaced by yk, then this second sequence has a
weakly* convergent subsequence and each weakly* convergent subsequence con-
verges weakly* to a minimizer of T δα.

(iii) Convergence: If (δk)k∈N converges to zero and if (yk)k∈N satisfies ‖yk − y†‖ ≤ δk,
then there is a sequence (αk)k∈N such that each corresponding sequence of mini-
mizers of T δkαk contains a weakly* convergent subsequence. Each such subsequence
converges in norm to some norm minimizing solution of (6.4).

Proof. Closed balls in `1 are weakly* compact, see [Meg98, Theorem 2.6.18], which
guarantees that bounded sequences have a weak* accumulation point and that the
`1-norm is weakly* lower semi-continuous. Taking also the weak*-to-weak continuity
of A and the weak lower semi-continuity of the norm in Y into account we may apply
standard results on Tikhonov-type regularization methods in Banach spaces, see [Fle12,
SKHK12]. Note that the `1-norm satisfies the so called weak* Kadec-Klee property,
which yields convergence in norm in item (iii) of the theorem.

It only remains to show that each minimizer of (6.5) has only finitely many non-
zero components. This is a consequence of R(A∗) ⊆ c0 (cf. Lemma 6.3). By standard
arguments from convex analysis we see that some x is a minimizer of T δα if and only if
there is some ξ in `∞ such that

−ξ ∈ α∂‖ · ‖(x) and ξ ∈ A∗ ∂(‖A · − yδ‖p)(x).

Thus, |ξk| = α whenever xk 6= 0 and ξ belongs to c0. This is only possible if x has at
most finitely many non-zero components.

The assumption that A is weak*-to-weak continuous is very weak, because it is au-
tomatically satisfied if A has a bounded extension to some `q-space with q > 1. To see
this, let Eq : `1 → `q be the bounded embedding of `1 into `q and let Aq : `q → Y be
the bounded extension of A to `q. Then Ae(k) = Aq Eq e

(k) = Aq e
(k) and (e(k))k∈N con-

verges weakly to zero in `q. The weak-to-weak continuity of bounded linear operators
thus implies Aq e

(k) ⇀ 0.

If the original space X̃ (cf. previous section) is a Hilbert space and (ẽk)k∈N is an
orthonormal basis, then A has a bounded extension to `2 and thus is weak*-to-weak
continuous.

Nevertheless there are bounded linear operators which are not weak*-to-weak con-
tinuous. An example is the identity mapping A = I if Y = `1. In `1 weak sequential
convergence coincides with norm convergence, but not with weak* convergence. Thus,
the identity mapping cannot be sequentially weak*-to-weak continuous. To cover also
this special case, we may weaken the assumption of weak*-to-weak continuity slightly
by demanding only weak*-to-weak* continuity. This is possible if Y is the dual space of
some other Banach space. If Y is reflexive then weak and weak* convergence coincide.
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6.2. `1-regularization

If Y is not reflexive, as it is the case for Y = `1, then weak convergence implies weak*
convergence but not vice versa.

The above lemma can be modified as follows to deal with the weaker condition. The
implication from (ii) to (iv) in the lemma was formulated and proven by Bernd Hofmann
(TU Chemnitz) and up to now has not been published elsewhere.

Lemma 6.5. Let Z be a Banach space and let Y = Z∗. Then the following assertions
are equivalent.

(i) (Ae(k))k∈N converges weakly* to zero.

(ii) R(A∗|Z) ⊆ c0.

(iii) A is weak*-to-weak* continuous.

(iv) A is sequentially weak*-to-weak* continuous.

Proof. Let (i) be satisfied. Then for each A∗ η from R(A∗|Z), that is, η ∈ Z ⊆ Y ∗, we
have

[A∗ η]k = 〈A∗ η, e(k)〉`∞×`1 = 〈η,A e(k)〉Y ∗×Y = 〈Ae(k), η〉Z∗×Z → 0 if k →∞,

that is, A∗ η ∈ c0.

Now let (ii) be true. If we take a weakly* convergent net (x(κ))κ∈N with limit x,
then 〈Ax(κ), η〉Z∗×Z = 〈η,Ax(κ)〉Y ∗×Y = 〈A∗ η, x(κ)〉`∞×`1 for all η in Z and, since A∗ η
belongs to c0 and `1 is the dual of c0, we may write 〈A∗ η, x(κ)〉`∞×`1 = 〈x(κ), A∗ η〉`1×c0 .
Thus,

lim
κ
〈Ax(κ), η〉Z∗×Z = lim

κ
〈η,Ax(κ)〉Y ∗×Y = limκ〈x(κ), A∗ η〉`1×c0 → 〈x,A∗ η〉`1×c0 ,

showing

lim
κ
〈Ax(κ), η〉Z∗×Z = 〈Ax, η〉Z∗×Z for all η ∈ Z.

Finally, (iii) immediately implies (iv) and from (iv) and the obvious fact that (e(k))k∈N
converges weakly* to zero we immediately obtain (i).

The above theorem on existence, stability and convergence remains true, except for
sparsity of minimizers, if weak*-to-weak continuity is replaced by weak*-to-weak* con-
tinuity, because the proof only relies on the fact that ‖A · − yδ‖ is weakly* lower
semi-continuous. This is the case in both variants, with or without *, since the norm
functional is weakly and also weakly* lower semi-continuous.

Note that the case Y = `1, A = I is mainly of theoretical interest. It is a tool
for exploring the frontiers of the theoretic framework we have chosen for investigating
`1-regularization. For practical applications it is irrelevant because one easily verifies
that with the natural choice p = 1 in (6.5) the `1-regularized solutions coincide with
the data yδ if α < 1.

For the sake of completeness we mention that there exist bounded linear operators
which not even are weak*-to-weak* continuous.
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6. Sparsity and `1-regularization

Example 6.6. If Y = `1 and

[Ax]k :=


∞∑
l=1

xl, if k = 1,

xk, else,

for all k in N and all x in `1, then Ae(k) = e(1) + e(k) if k > 1. Thus, Ae(k) ⇀∗ e(1) but
e(k) ⇀∗ 0. The same operator A considered as mapping into Y = `2 is an example of
a not weak*-to-weak continuous bounded linear operator in the classical Hilbert space
setting for `1-regularization.

We close this section with an observation about the maximum sensible regularization
parameter α. An analogous observation was made in Part I for standard Hilbert space
Tikhonov regularization applied to quadratic mappings, cf. Proposition 2.3. To the
author’s best knowledge the following proposition does not appear in the literature,
although its proof is quite simple.

Proposition 6.7. Let Y be a Hilbert space, let p = 2 in (6.5) and set

αmax := 2 sup
x∈X
‖x‖≤1

〈Ax, yδ〉Y×Y .

If α ≥ αmax, then

0 ∈ argmin
x∈X

T δα(x).

If, in addition, α > αmax or A is injective, then

argmin
x∈X

T δα(x) = {0}.

Proof. If x 6= 0 we have

T δα(x) = ‖Ax‖2Y − 2 〈Ax, yδ〉Y×Y + ‖yδ‖2Y + α ‖x‖`1

≥ ‖Ax)‖2Y − 2 〈Ax, yδ〉Y×Y + ‖yδ‖2Y + 2

〈
A

(
x

‖x‖`1

)
, yδ
〉
Y×Y

‖x‖`1

= ‖Ax‖2Y + ‖yδ‖2Y ≥ ‖yδ‖2Y = T δα(0),

proving the first assertion. If α > αmax, the first inequality sign is strict. If A is
injective, x 6= 0 implies Ax 6= 0, making the second inequality sign a strict one.

Remark 6.8. If αmax is chosen greater than in the proposition, the proposition remains
true. An easy to calculate replacement is 2 ‖A‖ ‖yδ‖Y .

Note that some of the results here and in the sequel can also be derived for nonlinear
equations, if the nonlinearity is controlled by additional assumptions, see [BH13]
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6.3. Other sparsity promoting regularization methods

6.3. Other sparsity promoting regularization methods

We briefly mention three other regularization methods which, under suitable assump-
tions, produce sparse approximate solutions to linear operator equations (6.4). The
first is the residual method, followed by so called non-convex regularization and the
elastic net method. All three methods are closely related to `1-regularization.

The residual method consists in solving the minimization problem

‖x‖`1 → min subject to ‖Ax− yδ‖Y ≤ δ.

In finite dimensions the method is investigated, for instance, in [CRT06]. For results in a
very general infinite-dimensional setting we refer to [GHS11b]. Under suitable assump-
tions, the residual method yields the same approximate solutions as `1-regularization
with α chosen by the discrepancy principle, see [GHS11b, page 2] for a reference.

The term non-convex regularization typically refers to Tikhonov-type methods with
non-convex penalty. That is, minimization problems of the form

‖Ax− yδ‖pY + αR(x)→ min
x∈`1

are considered, where R : `1 → [0,∞] is some non-convex stabilizing functional. A
common choice for R is

R(x) :=
∞∑
k=1

|xk|q

with q in (0, 1) and R(x) = ∞ if the series does not converge. Such methods yield
sparse minimizers, but are numerically very challenging. For details and references we
refer to [BL09, Gra10b].

Elastic net regularization is an extension of `1-regularization which aims at simpli-
fying numerical minimization of the Tikhonov-type functional. The idea is to add a
second, smooth regularization term, typically the `2 norm:

‖Ax− yδ‖pY + α1 ‖x‖`1 + α2 ‖x‖2`2 → min
x∈`1

.

Additional difficulties arise from the fact that here two regularization parameters have
to be chosen in the right way to guarantee proper behavior of the method. For details
we refer to [CHZ17] and references therein.

6.4. Examples

In this chapter we introduce several examples which will be discussed in more detail in
subsequent chapters to demonstrate certain features of the obtained results.

6.4.1. Denoising

Reconstructing a sparse signal from noisy measurements is an important application
of `1-regularization. Reduced to sequence spaces, that is, after representing the signal
with respect to a suitable basis, the task is to find a sparse approximation x to given yδ.
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6. Sparsity and `1-regularization

The noise is typically measured in a norm weaker than the `1-norm. Thus, let Y := `p

with p in (1,∞). The operator A in (6.4) is the bounded embedding Ep : `1 → `p of `1

into `p.
Because Ep obviously has a bounded extension to `p, the operator is weak*-to-weak

continuous, cf. discussion in Section 6.2. Thus, Theorem 6.4 applies. For later reference
we note

R(A∗) =

{
ξ ∈ `∞ :

∞∑
k=1

|ξk|
p
p−1 <∞

}
.

6.4.2. Bidiagonal operator

In [FH15, Example 2.6] a certain bidiagonal operator was considered. Set Y = `2 and
define A2 : `2 → `2 by

[A2 x]k :=
xk − xk+1

k

for all k in N and all x in `2. Let A be the restriction of A2 to `1. Both operators are
bounded and injective. From

‖A2 e
(1)‖2Y = ‖e(1)‖2Y = 1

and

‖A2 e
(k)‖2Y =

∥∥∥∥1

k
e(k) − 1

k − 1
e(k−1)

∥∥∥∥2

Y

=
1

k2
+

1

(k − 1)2
if k ≥ 2

we see that
∑∞

k=1 ‖A2 e
(k)‖2Y converges, that is, A2 is a Hilbert–Schmidt operator and

thus compact. Since the embedding of `1 into `2 is bounded, A is compact, too. Exis-
tence of the extension A2 ensures weak*-to-weak continuity of A.

The adjoint operator A∗ : `∞ → `1 has the explicit representation

[A∗ η]1 = η1 and [A∗ η]k =
ηk
k
− ηk−1

k − 1
if k ≥ 2

for all η in `2. For ξ in R(A∗) we have

ηk = k

k∑
l=1

ξl

for all k in N. In particular, we see

ξ ∈ R(A∗) ⇔
(
k 7→ k

k∑
l=1

ξl

)
∈ `2 ⇒

∞∑
k=1

ξk = 0.

6.4.3. Simple integration and Haar wavelets

The next example can be found in [FH15, Section 4]. With the notation of Section 6.1
we set X̃ = L2(0, 1) and Y = L2(0, 1) and define Ã : X̃ → Y by

(Ã x̃)(s) :=

s∫
0

x̃(t) dt, s ∈ (0, 1),
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6.4. Examples

for x̃ in X̃. This operator is linear, injective and bounded. The adjoint Ã∗ : L2(0, 1)→
L2(0, 1) is given by

(Ã∗ η)(t) =

1∫
t

η(s) ds, t ∈ (0, 1).

The range of Ã∗ consists exactly of those functions ξ̃ in the Sobolev space H1(0, 1)
which satisfy limt→1−0 x̃(t) = 0.

As basis, with respect to which we want to consider sparsity, we choose the Haar
basis. The first element of the Haar system is given by ẽ(1)(s) := 1 for s in (0, 1). All
other elements are scaled and translated versions of the function

ψ(s) :=

{
1, if s ∈ (0, 1

2),

−1, if s ∈ (1
2 , 1).

More precisely,

ẽ(1+2l+k)(s) := ψl,k(s) := 2
l
2 ψ(2l s− k), s ∈ (0, 1),

for l = 0, 1, 2 . . . and k = 0, 1, . . . , 2l − 1.

Given the synthesis operator

E : `1 → L2(0, 1), E x :=

∞∑
k=1

xk e
(k)

we define A : `1 → L2(0, 1) by A := Ã E. Since the Haar system is an orthonormal basis
in L2(0, 1), the operator A has a bounded extension to `2 and, thus, is weak*-to-weak
continuous. The adjoint A∗ : L2(0, 1)→ `∞ is given by

[A∗ η]k = 〈Ã∗ η, ẽ(k)〉L2(0,1)×L2(0,1)

for all k in N and for all η in L2(0, 1).

6.4.4. Simple integration and Fourier basis

Let Y := `2 and let A := P V ÃU be the composition of the Fourier synthesis operator
U : `1 → L2(0, 1) defined by

(U x)(t) := x1 +
√

2

∞∑
l=1

x2 l cos(2π l t) +
√

2

∞∑
l=1

x2 l+1 sin(2π l t), t ∈ (0, 1),

the integration operator Ã : L2(0, 1)→ L2(0, 1) defined by

(Ã x̃)(s) :=

s∫
0

x̃(t) dt, s ∈ (0, 1),
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6. Sparsity and `1-regularization

the Fourier transform V : L2(0, 1)→ `2 defined by

[V ỹ]1 :=

1∫
0

ỹ(s) ds,

[V ỹ]2 l :=

1∫
0

ỹ(s)
√

2 cos(2π l s) ds,

[V ỹ]2 l+1 :=

1∫
0

ỹ(s)
√

2 sin(2π l s) ds

for l in N, and the projection P : `2 → `2 defined by

[P ȳ]1 = ȳ1,

[P ȳ]2 l = 0,

[P ȳ]2 l+1 = ȳ2 l + ȳ2 l+1

for l in N. In other words, we aim to reconstruct derivatives of functions from incomplete
Fourier data under the a priori information that the derivatives are sparse or almost
sparse with respect to the Fourier basis. Only sums of the data’s cosine and sine
coefficients are available, making the operator highly non-injective.

The operator A : `1 → `2 turns out to map a sequence x to a sequence Ax defined
by

[Ax]1 =
1

2
x1 +

∞∑
l=1

1√
2π l

x2 l+1,

[Ax]2 l = 0,

[Ax]2 l+1 =
1

2π l

(
−
√

2x1 + x2 l − x2 l+1

)
for l in N. The adjoint A∗ = P ∗ V ∗ Ã∗ U∗ : `2 → `∞ thus is given by

[A∗ η]1 =
1

2
η1 −

∞∑
l=1

1√
2π l

η2 l+1,

[A∗ η]2 l =
1

2π l
η2 l+1,

[A∗ η]2 l+1 =
1

2π l

(√
2 η1 − η2 l+1

)
for l in N. The null space of A is

N (A) =

{
(0, w1, w1, w2, w2, . . .) ∈ `1 :

∞∑
l=1

1

l
wl = 0

}
.
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7. Ill-posedness in the `1-setting

Looking for solutions in `1 and considering weak*-to-weak continuous operators A de-
fined only on `1 makes equation (6.4), surprisingly, ill-posed regardless of ill-posedness
or well-posedness of the original equation (6.1). Following the ideas of [Nas87] ill-
posedness can be classified as type II. This chapter presents the details of these results.
The contents of this chapter were published in [FHV15] under stronger assumptions.
Here we content ourselves with the same assumptions as in Theorem 6.4.

Definition of the term ill-posed for linear equations in Banach spaces is a delicate
issue. On the one hand, we have the well established definition in Hilbert spaces, which
says that a linear equation (or its operator) is called ill-posed if the operator’s range is
not closed or, equivalently, if the Moore–Penrose inverse is unbounded. On the other
hand, we have definitions for ill-posedness of nonlinear mappings in Banach spaces like
Definition 1.13.

Having the Hilbert space concept in mind, one is tempted to say that linear equations
in Banach spaces are ill-posed if corresponding operator ranges are not closed. But this
definition is not equivalent to non-existence of bounded generalized inverses, due to
the fact, that the operator’s null space might be uncomplemented and there are no
generalized inverses at all. The articles [Nas87] and [NV76] are a good starting point
for the interested reader.

Taking a definition from the nonlinear theory is an alternative. But definitions in the
literature differ and in part assume injectivity of A if specialized to linear operators,
e. g. [HS98, Definition 1.1].

We are on the horns of a dilemma, which should be solved in future. In the following
we show that the range of A is not closed, which by [Nas87, Proposition 2.1] at least
implies that there is no bounded inner inverse. The following lemmas will prove useful
in subsequent chapters, too. We start with a very useful characterization of (`∞)∗,
which is a special case of [Tak02, Theorem 2.14].

Lemma 7.1. Each element of (`∞)∗ is the sum of an element of `1 and an element of
c⊥0 , that is,

(`∞)∗ = `1 ⊕ c⊥0 .

Proof. Let u ∈ (`∞)∗. Set

xk := 〈u, e(k)〉(`∞)∗×`∞ .

Then x = (xk)k∈N ∈ `1 because

n∑
k=1

|xk| =
n∑
k=1

(sgnxk) 〈u, e(k)〉(`∞)∗×`∞ =

〈
u,

n∑
k=1

(sgnxk) e
(k)

〉
(`∞)∗×`∞

≤ ‖u‖(`∞)∗ .
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7. Ill-posedness in the `1-setting

It remains to show u− x ∈ c⊥0 . Indeed, for each ξ in c0 we have

〈u− x, ξ〉(`∞)∗×`∞ = lim
n→∞

〈
u− x,

n∑
k=1

ξk e
(k)

〉
(`∞)∗×`∞

= lim
n→∞

n∑
k=1

(
ξk 〈u, e(k)〉(`∞)∗×`∞ − ξk 〈x, e(k)〉`1×`∞

)
= 0.

Lemma 7.2. If A : `1 → Y is weak*-to-weak continuous, then R(A∗∗) = R(A).

Proof. From Lemma 7.1 we know that A∗∗ maps `1 ⊕ c⊥0 into Y ∗∗. On the one hand,
for each x ∈ `1 and each η ∈ Y ∗ we see

〈A∗∗ x, η〉Y ∗∗×Y ∗ = 〈x,A∗ η〉(`∞)∗×`∞ = 〈x,A∗ η〉`1×`∞ = 〈Ax, η〉Y×Y ∗
= 〈Ax, η〉Y ∗∗×Y ∗ ,

that is, A∗∗|`1 = A. On the other hand, for each u in c⊥0 and each η in Y ∗ we see

〈A∗∗ u, η〉Y ∗∗×Y ∗ = 〈u,A∗ η〉(`∞)∗×`∞ = 0

because A∗ η ∈ R(A∗) ⊆ c0 as a consequence of weak*-to-weak continuity (cf. Lem-
ma 6.3). Thus, A∗∗|c⊥0 = 0 and consequently R(A∗∗) = R(A).

The following theorem was proven in [FHV15, Proposition 1.1] under the assumptions
that A is injective and that A has a bounded extension to `2. Here we drop the
injectivity assumption and we replace bounded extensibility by the weaker assumption
of weak*-to-weak continuity, which we already used to prove Theorem 6.4.

Theorem 7.3. If the bounded linear operator A : `1 → Y is weak*-to-weak continuous,
then either the range of A is finite-dimensional or the range is not closed.

Proof. By Lemma 7.2 we have R(A∗∗) ⊆ Y , which is equivalent to weak compactness of
A, see [Meg98, Theorem 3.5.8]. Weak compactness of A is equivalent to weak compact-
ness of A∗, see [Meg98, Theorem 3.5.13]. Thus, if R(A∗) would be closed, then R(A∗)
would be reflexive, see [Meg98, Proposition 3.5.6]. But Lemma 6.3 states that R(A∗) is
contained in c0 and c0 has no infinite-dimensional reflexive subspaces, see, e. g. [GT63,
Remark (ii) on page 335]. Therefore R(A∗) is either finite-dimensional or not closed.
To complete the proof we observe that R(A∗) is finite-dimensional or closed if and only
if R(A) is finite-dimensional or closed, respectively, see [Meg98, Theorem 3.1.21].

In [Nas87, Definition 3.1] bounded linear operators with non-closed range were classi-
fied into operators of type I and operators of type II. More precisely, the type is assigned
to regularizing families for an operator, but it turns out that the type only depends on
the operator itself. Equations with operators of type I can be regarded as less ill-posed
than equations with operators of type II. We use the following definition, which is an
equivalent reformulation of the original definition, see [Nas87, Theorem 4.5].
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Definition 7.4. A bounded linear operator A : X → Y between Banach spaces X
and Y with non-closed range is of type I, if the range R(A) contains a closed infinite-
dimensional subspace V and the nullspace N (A) is complemented in the full preimage
A−1 V . Otherwise, A is of type II.

Theorem 7.5. If the bounded linear operator A : `1 → Y has infintite-dimensional
range and is weak*-to-weak continuous, then A is of type II.

Proof. By Theorem 7.3 the range of A is not closed and therefore Definition 7.4 applies.
Assume V is a closed infinite-dimensional subspace of R(A). Boundedness of A

ensures closedness of U := A−1 V , that is, U is a Banach space itself. Since the weak
topology of U as a Banach space is the same as the weak topology of `1 restricted to
the subspace U , see [Meg98, Proposition 2.5.22], the restriction A|U : U → Y inherits
weak compactness from A, cf. proof of Theorem 7.3. Weak*-to-weak continuity of A is
equivalent to R(A∗) ⊆ c0, which implies R(A|∗U ) ⊆ c0.

Repeating the arguments in the proof of Theorem 7.3 for A|U yields the contradiction
that V cannot be closed. Consequently, A has to be of type II.
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8. Convergence rates

8.1. Results in the literature

The aim of this chapter is to derive error estimates for the distance between exact
solutions x† of (6.4) and `1-regularized solutions, that is, minimizers of (6.5). Such
estimates shall bound the error in terms of the noise level δ introduced in (6.2). More
specifically we aim at asymptotic estimates of the form

‖xδα − x†‖ = O(ϕ(δ)), if δ → 0, (8.1)

with an index function ϕ (cf. Definition 4.1), where the regularization parameter α has
to be chosen appropriately depending on the noise level δ and noisy data yδ. From The-
orem 6.4 we know that `1-regularized solutions converge to norm minimizing solutions.
Thus, x† always denotes such a norm minimizing solution. If there are more than one
norm minimizing solution, we aim at estimates

dist(xδα, S) = O(ϕ(δ)), if δ → 0, (8.2)

with S denoting the set of all norm minimizing solutions and dist(·, S) denoting the
`1-distance to this set. If there are more than one minimizer to (6.5), than estimates
(8.1) and (8.2) typically hold for all minimizers.

Before we come to our own convergence rates results, we summarize approaches and
results from the literature in the present section.

As already noted before, inverse problems related research on `1-regularization, in-
cluding convergence rates, started with the influencial paper [DDDM04]. There the
operator A is considered as defined on `2 and convergence rates with respect to the
`2-norm are derived. The authors restrict their attention to injective operators and
function spaces Y . Based on estimates with respect to Besov space norms they derive
convergence rates.

In [Lor08] convergence rates (8.1) with ϕ(δ) =
√
δ are obtained based on a typical

Banach space source condition, which originally was used to obtain rates in terms of so
called Bregman distances (see Appendix A). Such Bregman distances are no sensible
error measure in the context of `1-regularization, cf. discussion in [Lor08, Section 4].
Using a Bregman distance related source condition in connection with the `1-norm
might be the reason that the rate obtained this way turned out to be not optimal.

In [Gra09] a source-type condition requiring that the e(k) belong to the range of A∗

is used to obtain a rate (8.1) with ϕ(δ) = δ, but only if the `q-norm with q < 1 is used
as penalty in (6.5). The case q = 1, which is the one of interest in this thesis, has been
added in [GHS08] based on a variational source condition quite similar to the variant
we will use below.
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8. Convergence rates

Several different convergence rates results for sparsity promoting regularization are
derived in [BL09] with variational source conditions as the main tool. Results differ
with respect to the penalty functional and with respect to the error measure.

Without adhering to source-type conditions convergence rates for `q-penalties are
proven in [Gra10b], but again only for q < 1. We mention this result here because we
will add the rates result for q = 1 in this thesis.

Discussion of several details and extensions of the results to other penalty functionals
can be found in [RR10, GHS11a]. For all results cited so far the authors assume that
there is only one norm minimizing solution x† and that this solution is sparse. In
addition, the results rely on or imply some kind of injectivity of A. Either usual
injectivity of A or injectivity on the support of the solution x† (finite basis injectivity,
restricted isometry property) is assumed.

In the remaining sections of this chapter we will extend convergence rates results for
`1-regularization in several ways. Our main tool will be variational source conditions
of the form

β dist(x, S) ≤ ‖x‖`1 − ‖S‖`1 + ϕ(‖Ax−AS‖Y ) for all x in `1, (8.3)

where β is some positive constant, ϕ is an index function and S denotes the set of
all norm minimizing solutions. Note that all elements in S have the same norm and
the same image with respect to A, which justifies the non-standard notation ‖S‖`1 and
AS for norm and image of some norm minimizing solution. If there is only one norm
minimizing solution, then the variational source condition becomes

β ‖x− x†‖`1 ≤ ‖x‖`1 − ‖x†‖`1 + ϕ(‖Ax−Ax†‖Y ) for all x in `1. (8.4)

The above variational source conditions are known to imply the corresponding con-
vergence rates (8.1) and (8.2), see [Fle12, HM12]. For the reader’s convenience we
provide tailor-made proofs in Section 8.3.

8.2. Classical techniques do not work

Before we show how to obtain convergence rates for `1-regularization, we verify that
techniques based on classical source conditions do not work in this context. We consider
Banach space source conditions introduced in [BO04] and approximate source conditions
introduced for Hilbert spaces in [Hof06] and extended to Banach spaces in [HH09].

In [BO04] it was shown that if an exact solution x† to (6.4) satisfies

(∂‖ · ‖`1)(x†) ∩R(A∗) 6= ∅, (8.5)

then linear convergence rates in terms of Bregman distances can be obtained. But
condition (8.5) implies that x† is sparse if A is weak*-to-weak continuous, which is a
standard assumption to ensure proper behavior of `1-regularization. Indeed, if ξ† is a
subgradient of the `1-norm at x† which belongs to R(A∗), then ξ†k → 0 by Lemma 6.3.

Thus, only finitely many components of ξ† can equal 1 or −1 and therefore x†k 6= 0 is
only possible for finitely many k.
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Since we are interested not only in sparse solutions x† but also in almost sparse
solutions, the method of approximate source conditions seems to be a reasonable al-
ternative. For a fixed subgradient ξ† from (∂‖ · ‖`1)(x†) in [Hof06, HH09] the distance
function dξ† : [0,∞)→ [0,∞) defined by

dξ†(R) := inf
{
‖ξ† −A∗ η‖`∞ : η ∈ Y ∗, ‖η‖Y ∗ ≤ R

}
, R ≥ 0, (8.6)

has been introduced.
If dξ†(R) → 0 for R → ∞, convergence rates for the Bregman distance as error

measure can be shown. The rates then depend on the decay of the distance function at
infinity. The following proposition states that in our `1-setting distance functions may
only decay to zero if the solution x† is sparse.

Proposition 8.1. Let A be weak*-to-weak continuous, let ξ† be in (∂‖ · ‖`1)(x†) and let
dξ† be as in (8.6). If dξ†(R)→ 0 for R→∞, then x† is sparse. Moreover, if x† is not
sparse, then dξ†(R) ≥ 1 for all R.

Proof. If dξ†(R)→ 0, then ξ† ∈ R(A∗). By Lemma 6.3 we have R(A∗) ⊆ c0 and, since

c0 is closed in `∞, also R(A∗) ⊆ c0. Therefore, only finitely many components of ξ† can

equal 1 or −1, which implies that x†k 6= 0 is only possible for finitely many k.

If x† is not sparse, we find a subsequence (ξ†kl)l∈N of the components of ξ† with

|ξ†kl | = 1 for all l in N. Since R(A∗) ⊆ c0, for each η in Y ∗ we obtain

‖ξ† −A∗ η‖`∞ ≥ sup
l∈N
|ξ†kl − [A∗ η]kl | = 1,

which completes the proof.

In this section we saw two reasons, why (approximate) source conditions are not a
suitable tool in the `1-setting. First, they are rarely satisfied. Second, if they are satis-
fied, they only yield rates for the Bregman distance, which carries almost no information
in `1.

8.3. Variational source conditions imply convergence rates

In this section we prove that variational source conditions (8.3) imply rates (8.2). To
choose the regularization parameter we consider an a priori parameter choice α = α(δ)
specified below and an a posteriori parameter choice α = α(δ, yδ) known as discrepancy
principle. The later consists in choosing α such that

δ ≤ ‖Axδα − yδ‖Y ≤ τ δ (8.7)

with τ ≥ 1.
In case of the a priori choice we apply techniques from [HM12], but slightly improve

the constants in the error estimate. For the discrepancy principle we take the proof
from [Fle12] and specialize it to our setting. Both specialized proofs can also be found
in [FG17].

To shorten the two proofs we mention two properties of concave index functions ϕ.
Simple calculations show that t 7→ ϕ(t)

t is decreasing. As a consequence we see that
ϕ(c t) ≤ c ϕ(t) if c ≥ 1. Both observations will be used without further notice.
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Proposition 8.2. Let the variational source condition (8.3) be satisfied and choose α
in (6.5) such that

c1
δp

ϕ(δ)
≤ α ≤ c2

δp

ϕ(δ)

for all positive δ with positive constants c1, c2. Then

dist(xδα, S) ≤ 1

β

(
1 +

1

c1
+ (1 + 2 c2)

1
p−1

)
ϕ(δ)

for all positive δ.

Proof. Because xδα is a minimizer of (6.5) we have

‖xδα‖`1 − ‖x†‖`1 =
1

α

(
T δα(xδα)− α ‖x†‖`1 − ‖Axδα − yδ‖pY

)
≤ 1

α

(
‖Ax† − yδ‖pY − ‖Axδα − yδ‖

p
Y

)
≤ 1

α

(
δp − ‖Axδα − yδ‖pY

)
.

and thus the variational source condition (8.3) implies

β dist(xδα, S) ≤ 1

α

(
δp − ‖Axδα − yδ‖pY

)
+ ϕ

(
‖Axδα −Ax†‖Y

)
. (8.8)

Because β dist(xδα, S) ≥ 0, we obtain

‖Axδα − yδ‖pY ≤ δp + αϕ
(
‖Axδα −Ax†‖Y

)
.

If ‖Axδα−yδ‖Y ≤ δ, then the triangle inequality, the properties of ϕ and the parameter
choice imply

‖Axδα − yδ‖pY ≤ δp + αϕ(2 δ) ≤ δp + 2αϕ(δ) ≤ (1 + 2 c2) δp,

that is,

‖Axδα − yδ‖Y ≤ (1 + 2 c2)
1
p δ ≤ (1 + 2 c2)

1
p−1 δ.

If, on the other hand, ‖Axδα − yδ‖Y > δ, then

‖Axδα − yδ‖pY ≤ δp + αϕ
(
‖Axδα − yδ‖Y + δ

)
= δp + α

ϕ
(
‖Axδα − yδ‖Y + δ

)
‖Axδα − yδ‖Y + δ

(
‖Axδα − yδ‖Y + δ

)
≤ δp + α

ϕ(δ)

δ

(
‖Axδα − yδ‖Y + δ

)
≤ δp−1 ‖Axδα − yδ‖Y + 2α

ϕ(δ)

δ
‖Axδα − yδ‖Y

and thus,

‖Axδα − yδ‖Y ≤
(
δp−1 + 2α

ϕ(δ)

δ

) 1
p−1

≤ (1 + 2 c2)
1
p−1 δ.
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In both cases (8.8) can be further estimated to obtain

β dist(xδα, S) ≤ 1

α

(
δp − ‖Axδα − yδ‖pY

)
+ ϕ

(
‖Axδα − yδ‖Y + δ

)
≤ δp

α
+ ϕ

((
1 + (1 + 2 c2)

1
p−1

)
δ
)

≤ δp

α
+
(

1 + (1 + 2 c2)
1
p−1

)
ϕ(δ)

and the lower bound for α leads to

β dist(xδα, S) ≤ ϕ(δ)

c1
+
(

1 + (1 + 2 c2)
1
p−1

)
ϕ(δ).

Note that in the proof we used arguments similar to the ones in [HM12], but made
changes in the details leading to a better constant in the obtained error estimate.
Corresponding estimates in [HM12, Theorem 1] lead to

dist(xδα, S) ≤ 1

β

(
1 + 2 (2 + p)

1
p−1

)
ϕ(δ),

which has a greater constant factor than our estimate. Our estimate with the parameter
choice from [HM12], that is c1 = c2 = 1, reads

dist(xδα, S) ≤ 1

β

(
2 + 3

1
p−1

)
ϕ(δ).

Proposition 8.3. Let the variational source condition (8.3) be satisfied and choose α
in (6.5) according to the discrepancy principle (8.7). Then

dist(xδα, S) ≤ 1 + τ

β
ϕ(δ)

for all positive δ.

Proof. Because xδα is a minimizer of (6.5) we have

‖xδα‖`1 − ‖x†‖`1 =
1

α

(
T δα(xδα)− α ‖x†‖`1 − ‖Axδα − yδ‖pY

)
≤ 1

α

(
‖Ax† − yδ‖pY − ‖Axδα − yδ‖

p
Y

)
≤ 1

α

(
δp − ‖Axδα − yδ‖pY

)
and taking into account the left-hand inequality in (8.7) we obtain

‖xδα‖`1 − ‖x†‖`1 ≤ 0.

The variational source condition (8.3) thus implies

β dist(xδα, S) ≤ ϕ
(
‖Axδα −Ax†‖Y

)
≤ ϕ

(
‖Axδα − yδ‖Y + δ

)
and the right-hand side in (8.7) yields

β dist(xδα, S) ≤ ϕ
(
(1 + τ) δ

)
≤ (1 + τ)ϕ(δ).
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8.4. Smooth bases

As a first sufficient condition for convergence rates in `1-regularization we consider
bounded linear operators A : `1 → Y with respect to which the canonical basis (e(k))k∈N
is smooth. We say that a basis is smooth with respect to the operator A if the basis
is contained in the range of the adjoint A∗ : `∞ → Y ∗. This situation was considered
in [BL09, Assumption 4.1] and [Gra08, Theorem 5] in connection with sparse exact
solutions x† to (6.4). We use smooth bases to obtain convergence rates also in case of
almost sparse solutions and discuss implications of such a smoothness assumption as
well as sufficient conditions for it. The core results of this section were published in
[BFH13].

Assumption 8.4. For each k in N there is some fk in Y ∗ such that

e(k) = A∗ fk

holds.

At first we consider the relation of basis smoothness to injectivity of A.

Proposition 8.5. If A satisfies Assumption 8.4, then A is injective.

Proof. If Ax = 0, then

xk = 〈e(k), x〉`∞×`1 = 〈A∗ fk, x〉`∞×`1 = 〈fk, A x〉Y ∗×Y = 0

for all k. Therefore, x = 0.

The following example shows that the converse of the proposition is not true. Injec-
tivity does not imply smoothness of the basis.

Example 8.6 (bidiagonal operator). We consider the operator introduced in Subsec-
tion 6.4.2. There we saw that

ξ ∈ R(A∗) ⇒
∞∑
k=1

ξk = 0.

With ξ = e(k) we immediately see that Assumption 8.4 is violated. Nevertheless, A is
injective because Ax = 0 implies x1 = x2 = . . ., which is only possible if all xk are
zero.

In Section 6.1 we discussed operators Ã on general Banach spaces X̃ and sparsity
with respect to a Schauder basis (ẽk)k∈N. Assumption 8.4 will be reformulated in that
setting by the following proposition. For this purpose we denote by ẽ∗k the coordinate
functional associated with the basis element ẽk, that is,〈

ẽ∗k,

∞∑
l=1

x̃l ẽl

〉
X̃∗×X̃

= x̃l.

For Schauder bases the coordinate functionals always are bounded, see [Meg98, Corol-
lary 4.1.16].
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8.4. Smooth bases

Proposition 8.7. Let X̃, Ã and (ẽk)k∈N be as in Section 6.1 and denote by (ẽ∗k)k∈N
the coordinate functionals. Then Assumption 8.4 is satisfied if and only if for each k
in N there is some fk in Y ∗ such that

ẽ∗k = Ã∗ fk.

The fk here and in Assumption 8.4 coincide.

Proof. The adjoint L∗ : X̃∗ → `∞ of the synthesis operator L : `1 → X̃ defined in (6.3)
is given by

[L∗ ξ̃]k = 〈ξ̃, ẽk〉X̃∗×X̃
for all k in N and ξ̃ in X̃∗. Thus, by A∗ = (Ã L)∗ = L∗ Ã∗ the relation e(k) = A∗ fk is
equivalent to

〈Ã∗ fk, ẽl〉X̃∗×X̃ =

{
1, if l = k,

0, else.

In other words, Ã∗ fk coincides with the k-th coordinate functional ẽ∗k.

This reformulation shows, that the choice of the basis (ẽk)k∈N is the only factor
influencing validity of Assumption 8.4 if we assume that Ã and the Banach spaces X̃
and Y are preset by the application they model.

At the first glance Assumption 8.4 seems to be quite artificial and hard to satisfy.
But in [AHR13] it was shown that this is not the case. There X̃ is a Hilbert space with
a closed subspace Ũ , which gives rise for a Gelfand triple of the form Ũ ⊆ X̃ ⊆ Ũ∗. The
authors have shown that if Ã has a bounded and boundedly invertible extension to Ũ∗

and if (ẽk)k∈N is a basis in Ũ , then Assumption 8.4 is satisfied. An important example
here is the Radon transform, but also other classes of ill-posed inverse problems can be
handled this way, see [AHR13, Sections 3.1–3.5].

In Example 8.6 we already saw, that Assumption 8.4 may be violated. We provide a
less academic example for the violation of this assumption next.

Example 8.8 (simple integration and Haar wavelets). Consider the example introduced
in Subsection 6.4.3 again. Since X̃ is a Hilbert space and (ẽk)k∈N is an orthonormal
basis, the coordinate functionals ẽ∗k can be identified with the original basis elements
ẽk. All functions x̃ in the range of Ã∗ are continuous and satisfy limt→1−0 x̃(t) = 0.
By Proposition 8.7 Assumption 8.4 implies ẽ1 ∈ R(Ã∗). But ẽ1 is one on the whole
interval (0, 1) and therefore not a member of R(Ã∗). Consequently, Assumption 8.4 is
not satisfied.

Now we come the convergence rate result.

Theorem 8.9. Assume that Assumption 8.4 is true and denote by x† the uniquely
determined solution to (6.4). Then a variational source condition (8.4) with β = 1 and
a concave index function ϕ given by

ϕ(t) = 2 inf
n∈N

( ∞∑
k=n+1

|x†k|+ γn t

)
, t ≥ 0,
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is satisfied, where

γn := sup
σ∈{−1,0,1}n

∥∥∥∥∥
n∑
k=1

σk fk

∥∥∥∥∥
Y ∗

. (8.9)

Proof. Uniqueness of the solution follows from Proposition 8.5.

Fix n in N and x in `1 and denote by Pn : `1 → `1 the projection setting all but
the first n components of a sequence to zero. Further, let ξ := sgnPn (x − x†) be the
sequence of signs of Pn (x− x†). By Assumption 8.4 we may write

‖Pn (x− x†)‖`1 =

〈
n∑
k=1

ξk e
(k), x− x†

〉
`∞×`1

=

〈
n∑
k=1

ξk fk, A (x− x†)
〉
Y ∗×Y

≤
∥∥∥∥∥

n∑
k=1

ξk fk

∥∥∥∥∥
Y ∗

‖Ax−Ax†‖Y ≤ γn ‖Ax−Ax†‖Y .

Now

‖x− x†‖`1 − ‖x‖`1 + ‖x†‖`1
= ‖Pn (x− x†)‖`1 + ‖(I − Pn) (x− x†)‖`1 − ‖Pn x‖`1 − ‖(I − Pn)x‖`1

+ ‖Pn x†‖`1 + ‖(I − Pn)x†‖`1

together with

‖(I − Pn) (x− x†)‖`1 ≤ ‖(I − Pn)x‖`1 + ‖(I − Pn)x†‖`1

and

‖Pn x†‖`1 = ‖Pn (x− x† − x)‖`1 ≤ ‖Pn (x− x†)‖`1 + ‖Pn x‖`1
shows

‖x− x†‖`1 − ‖x‖`1 + ‖x†‖`1 ≤ 2 ‖(I − Pn)x†‖`1 + 2 ‖Pn (x− x†)‖`1 .

Combining this estimate with the previous estimate for ‖Pn (x− x†)‖`1 we obtain

‖x− x†‖`1 − ‖x‖`1 + ‖x†‖`1 ≤ 2 ‖(I − Pn)x†‖`1 + 2 γn ‖Ax−Ax†‖Y .

Taking the infimum proves the asserted form of ϕ.

It remains to show that ϕ is a concave index function. As an infimum of affine func-
tions ϕ is concave and upper semi-continuous. Concavity implies continuity on (0,∞)
and from ϕ(0) = 0, non-negativity and upper semi-continuity we obtain continuity of ϕ
on [0,∞). Monotonicity of ϕ follows from γn > 0 for all n. That ϕ is strictly increasing
in a neighborhood of the origin follows from ϕ(0) = 0 and ϕ(t) > 0 for all positive t,
where ϕ(t) > 0 is again a consequence of γn > 0 for all n.

If x† is sparse and n† is the highest index at which x† is not zero, the index function
ϕ in the theorem satisfies

ϕ(t) ≤ 2 γn† t
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for all t. This leads to a linear rate of convergence and coincides with the rates for
sparse solutions already obtained in [GHS08].

For non-sparse solutions x† the index function ϕ in the theorem is influenced by the
decay of the components of x† and by the growth of the source elements fk. Obviously,∑∞

k=n+1 |x
†
k| decreases to zero and (γn)n∈N grows. Moreover, we can show that the γn

grow to infinity.

Lemma 8.10. If A : `1 → Y is weak*-to-weak continuous, then A∗ : Y ∗ → `∞ is
weak*-to-weak continuous.

Proof. Let (ηκ)κ∈N be a net in Y ∗ converging weakly* to zero and remember that by
Lemma 7.2 we know R(A∗∗) ⊆ Y . Then for each u in (`∞)∗ we have

〈u,A∗ ηκ〉(`∞)∗×`∞ = 〈A∗∗ u, ηκ〉Y ∗∗×Y ∗ = 〈ηκ, A∗∗ u〉Y ∗×Y → 0,

that is, A∗ ηκ ⇀ 0.

Proposition 8.11. Let A be weak*-to-weak continuous and let Assumption 8.4 be true.
For (γn)n∈N defined by (8.9), we have γn →∞.

Proof. Set

Bn :=

{
n∑
k=1

ak fk : ak ∈ [−1, 1] for all k

}
for all n. Then, by convexity of the norm in Y ∗,

γn = sup
η∈Bn

‖η‖Y ∗ .

By Theorem 7.3 and [Meg98, Theorem 3.1.21] the range of R(A∗) is not closed and
by Lemma 6.3 we have R(A∗) ⊆ c0. Let ξ be some element from c0 which does not
belong to R(A∗) and satisfies ‖ξ‖`∞ ≤ 1. Set ξ(n) := Pn ξ for all n in N with Pn as in
the proof of Theorem 8.9. Then

ξ =
n∑
k=1

ξk A
∗ fk = A∗

(
n∑
k=1

ξk fk

)

and for

ηn :=
n∑
k=1

ξk fk

we see ηn ∈ Bn.

If (ηn)n∈N would be bounded, then there would be a weakly* convergent subsequence
with limit η. Denoting the subsequence again by (ηn)n∈N, Lemma 8.10 would imply
A∗ηn ⇀ A∗ η and from

‖A∗ ηn − ξ‖`∞ = ‖ξ(n) − ξ‖`∞ = ‖(I − Pn) ξ‖`∞ → 0

we would obtain the contradiction ξ = A∗ η. Thus, γn ≥ ‖ηn‖Y ∗ →∞.
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Example 8.12. We simplify ϕ in Theorem 8.9 for polynomial decay and growth. As-
sume that

∞∑
k=1

|x†k| ≤ c1 n
−µ

with positive constants c1 and µ and that

γn ≤ c2 n
ν

with positive constants c2 and ν. Then

ϕ(t) ≤ c t
µ
µ+ν

for all non-negative t with some positive constant c.

Example 8.13 (denoising). Consider again the example from Subsection 6.4.1. As-

sumption 8.4 is obviously satisfied with fk = e(k) and we have γn = n
p−1
p . If

∞∑
k=1

|x†k| ≤ c1 n
−µ

as in the previous example, then

ϕ(t) ≤ c t
µ

µ+1− 1
p

for all non-negative t. Here we see that the stronger the norm in the data space Y the
better the obtained convergence rate.

We close this chapter with a slight improvement of Theorem 8.9.

Remark 8.14. Let κ : N → N be a permutation of N such that (|x†κ(k)|)k∈N is de-
creasing. Then, slightly modifying the proofs, one can show that Theorem 8.9 holds
with

ϕ(t) = 2 inf
n∈N

( ∞∑
k=n+1

|x†κ(k)|+ γn(x†) t

)
, t ≥ 0,

and

γn(x†) := sup
σ∈{−1,0,1}n

∥∥∥∥∥
n∑
k=1

σk fκ(k)

∥∥∥∥∥
Y ∗

.

This function ϕ is bounded above by ϕ from Theorem 8.9 and, thus, possibly yields a
better rate. The drawback of this approach is, that now γn depends on x†, because κ
depends on x†.
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8.5. Non-smooth bases

8.5. Non-smooth bases

In Examples 8.6 and 8.8 we saw that the canonical basis (e(k))k∈N is not always smooth
with respect to the bounded linear operator A : `1 → Y , that is, Assumption 8.4 might
be violated and Theorem 8.9 is not applicable. In the present section we introduce a
weaker assumption for proving convergence rates, which will be satisfied by the opera-
tors from the above mentioned examples. Moreover, in the next section this assumption
will turn out to be satisfied for all injective and weak*-to-weak continuous operators.

The core results of this section have been published in [FH15, FHV15, FHV16].
Throughout this section Pn denotes the mapping sending a sequence to the sequence

with the same first n components and zeros else.

Assumption 8.15. For each n in N and each sequence σ taking values in {−1, 1} there

exists a sequence (η
(n)
k )k∈N with

(i) PnA
∗ η

(n)
k = Pn σ for all k in N,

(ii) lim
k→∞

(I − Pn)A∗ η
(n)
k = 0.

The assumption does not require that all e(k) and thus all Pn σ belong to R(A∗),

but there have to be certain approximations A∗ η
(n)
k of Pn σ in R(A∗). The first n

components of A∗ η
(n)
k have to coincide with Pn σ and the remaining components have to

converge uniformly to Pn σ, where the latter is simply zero in the remaining components.
Obviously, Assumption 8.15 is true if Assumption 8.4 is true.

To distinguish the assumptions from the previous and the present section we say that
the basis (e(k))k∈N is non-smooth with respect to the operator A if Assumption 8.4 is
not satisfied.

As for smooth bases, only injective A can be handled under Assumption 8.15.

Proposition 8.16. If A satisfies Assumption 8.15, then A is injective.

Proof. Let σ = (1, 1, . . .) and let (η
(n)
k )k∈N and (η

(n−1)
k )k∈N be corresponding sequences

as in Assumption 8.15 for n and n− 1. Then

e(n) = Pn σ − Pn−1 σ = PnA
∗ η

(n)
k − Pn−1A

∗ η
(n−1)
k

for k = 1, . . . , n. If Ax = 0, then

xn = 〈e(n), x〉`∞×`1 =
〈
PnA

∗ η(n) − Pn−1A
∗ η

(n−1)
k , x

〉
`∞×`1

=
〈
A∗
(
η

(n)
k − η(n−1)

k

)
, x
〉
`∞×`1

−
〈

(I − Pn)A∗ η
(n)
k − (I − Pn−1)A∗ η

(n−1)
k , x

〉
`∞×`1

≤
∥∥∥(I − Pn)A∗ η

(n)
k

∥∥∥
`∞
‖x‖`1 +

∥∥∥(I − Pn−1)A∗ η
(n−1)
k

∥∥∥
`∞
‖x‖`1

for all k. Both summands in the last line converge to zero if k → ∞. Thus, xn = 0.
Since n was chosen arbitrarily, we obtain x = 0.
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Here is the convergence rates result.

Theorem 8.17. Assume that Assumption 8.15 is true and denote by x† the uniquely
determined solution to (6.4). Then for each β in (0, 1) a variational source condition
(8.4) with a concave index function ϕ given by

ϕ(t) = 2 inf
n∈N

( ∞∑
k=n+1

|x†k|+ γn t

)
, t ≥ 0,

is satisfied, where the γn are of the following structure.

For fixed n in N and each σ in {−1, 1}N denote by
(
η

(n)
k (σ)

)
k∈N a sequence as in

Assumption 8.15. Choose k(σ) large enough to ensure
∥∥(I − Pn)A∗ η

(n)
k(σ)

∥∥
`∞
≤ 1−β

1+β .
Then

γn := sup
σ∈{−1,1}N

∥∥∥η(n)
k(σ)(σ)

∥∥∥
Y ∗
. (8.10)

Proof. Fix n in N and x in `1 and let σ in {−1, 1}N such that

σk =

{
1, if xk − x†k ≥ 0 and k ≤ n
−1, if xk − x†k < 0 and k ≤ n.

Choose η := η
(n)
k(σ) as described in the theorem. Then

‖Pn (x− x†)‖`1 = 〈Pn σ, x− x†〉`∞×`1 = 〈PnA∗ η, x− x†〉`∞×`1
= 〈PnA∗ η −A∗ η, x− x†〉`∞×`1 + 〈A∗ η, x− x†〉`∞×`1
= −〈(I − Pn)A∗ η, (I − Pn) (x− x†)〉`∞×`1 + 〈η,Ax−Ax†〉Y ∗×Y

≤ 1− β
1 + β

‖(I − Pn) (x− x†)‖`1 + γn ‖Ax−Ax†‖Y

and the triangle inequality yields

‖Pn (x− x†)‖`1 ≤
1− β
1 + β

(
‖(I − Pn)x‖`1 + ‖(I − Pn)x†‖`1

)
+ γn ‖Ax−Ax†‖Y . (8.11)

Now

β ‖x− x†‖`1 − ‖x‖`1 + ‖x†‖`1
= β ‖Pn (x− x†)‖`1 + β ‖(I − Pn) (x− x†)‖`1 − ‖Pn x‖`1 − ‖(I − Pn)x‖`1

+ ‖Pn x†‖`1 + ‖(I − Pn)x†‖`1

together with

β ‖(I − Pn) (x− x†)‖`1 ≤ β ‖(I − Pn)x‖`1 + β ‖(I − Pn)x†‖`1

and

‖Pn x†‖`1 = ‖Pn (x− x† − x)‖`1 ≤ ‖Pn (x− x†)‖`1 + ‖Pn x‖`1
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shows

β ‖x− x†‖`1 − ‖x‖`1 + ‖x†‖`1
≤ 2 ‖(I − Pn)x†‖`1 + (1 + β) ‖Pn (x− x†)‖`1
− (1− β)

(
‖(I − Pn)x‖`1 + ‖(I − Pn)x†‖`1

)
.

Combining this estimate with the previous estimate (8.11) we obtain

β ‖x− x†‖`1 − ‖x‖`1 + ‖x†‖`1 ≤ 2 ‖(I − Pn)x†‖`1 + (1 + β) γn ‖Ax−Ax†‖Y
≤ 2 ‖(I − Pn)x†‖`1 + 2 γn ‖Ax−Ax†‖Y .

Taking the infimum over all n in N proves the structure of ϕ.

That all γn are indeed finite numbers, is a consequence of the fact that the set
{Pn σ : σ ∈ {−1, 1}N} is finite for each n. As in the proof of Theorem 8.9 one shows
that ϕ is a concave index function.

As in the case of smooth bases, for sparse solutions x† the index function ϕ in The-
orem 8.17 is linear. With few modifications to the proof of Proposition 8.11 we see
γn →∞ if n→∞ in the theorem. Also Remark 8.14 carries over from the previous to
the present section.

The major difference between Theorems 8.9 and 8.17 is that in the latter the numbers
γn depend on β. This dependence is closely connected to Assumption 8.4.

Proposition 8.18. Let A be weak*-to-weak continuous, let Assumption 8.15 be true
and let (γn(β))n∈N for β in (0, 1) be as in Theorem 8.17. Then Assumption 8.4 is
satisfied if and only if

sup
β∈(0,1)

γn(β) <∞ for all n in N.

More precisely, for each n in N we have

sup
β∈(0,1)

γn(β) <∞ ⇔ e(n) ∈ R(A∗).

Proof. The non-trivial part is to show the implication ‘⇒’. Fix n in N and assume that

e(n) /∈ R(A∗). Let σ = (1, 1, . . .) and let (η
(n)
k )k∈N and (η

(n−1)
k )k∈N be corresponding

sequences as in Assumption 8.15 for n and n− 1. Then∥∥∥A∗ (η(n)
k − η(n−1)

k

)
− e(n)

∥∥∥
`∞

≤
∥∥∥PnA∗ η(n)

k − Pn−1A
∗ η

(n−1)
k − e(n)

∥∥∥
`∞

+
∥∥∥(I − Pn)A∗ η

(n)
k − (I − Pn−1)A∗ η

(n−1)
k

∥∥∥
`∞

≤
∥∥∥(I − Pn)A∗ η

(n)
k

∥∥∥
`∞

+
∥∥∥(I − Pn−1)A∗ η

(n−1)
k

∥∥∥
`∞

for all k. Both summands tend to zero if k →∞.
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If (βl)l∈N is a sequence in (0, 1) with limit one, we find subsequences (η
(n)
kl

)l∈N and

(η
(n−1)
kl

)l∈N such that∥∥∥(I − Pn)A∗ η
(n)
k

∥∥∥
`∞
≤ βl and

∥∥∥(I − Pn−1)A∗ η
(n−1)
k

∥∥∥
`∞
≤ βl

for all l in N. Thus, with

ηl := η
(n)
kl
− η(n−1)

kl

we obtain from the convexity of the Y ∗-norm that ‖ηl‖Y ∗ ≤ γn(βl).
Now assume that (ηl)l∈N is bounded. Then there is a weakly* convergent subse-

quence, again denoted by (ηl)l∈N, with limit η and weak*-to-weak continuity of A
implies A∗ ηl → A∗ η. But we already saw A∗ ηl → e(n), which yields the contradiction
e(n) = A∗ η. Thus, (ηl)l∈N is not bounded, resulting in γn(βl)→∞.

Example 8.19 (bidiagonal operator). We consider the example from Subsection 6.4.2
again. In Example 8.6 we saw that Assumption 8.4 is violated. Here we show that
Assumption 8.15 is true.

Fix n in N and σ in {−1, 1}N. We construct a sequence (ηk)k∈N as in Assumption 8.15,
where we omit the superscript (n) used there. Note that Y = Y ∗ = `2 and that [ηk]l
denotes th l-th component of the `2-element ηk. Given some η in `2, a formula for A∗ η
can be found in Subsection 6.4.2.

To ensure property (i) in Assumption 8.15, that is, PnA
∗ ηk = Pn σ for all k, we have

to choose

[ηk]l := l
l∑

m=1

σm

for l = 1, . . . , n and for all k in N. For property (ii) we fix some sequence (µk)k∈N of
positive numbers converging to zero and require that ‖(I −Pn)A∗ ηk‖`∞ ≤ µk for all k.
The latter is equivalent to

l

(
[ηk]l−1

l − 1
− µk

)
≤ [ηk]l ≤ l

(
[ηk]l−1

l − 1
+ µk

)
for l > n. Thus, we have some freedom in choosing [ηk]l for l > n and one easily sees
that Assumption 8.15 is true, that is, there is some ηk satisfying the bounds.

We go on and calculate γn in Theorem 8.17. Here we only have to consider one fixed
k with µk ≤ 1−β

1+β . On the one hand we can make ‖ηk‖`2 as large as we want be setting
[ηk]l = [ηk]n for finitely many l and then decay the [ηk]l to zero such that they belong
to `2. This would lead to arbitrarily large γn in the theorem. On the other hand we
could choose [ηk]l for l > n in a way which minimizes ‖ηk‖`2 , leading to the smallest
possible γn in the theorem. This is what we are going to do now.

The norm of ηk is the smaller the faster |[ηk]l| decays to zero with respect to l. For
l = 1, . . . , n these values are fixed and for l > n they can be decreased at most by l µk
in each component to stay between the above bounds. Thus, the minimum number of
non-zero components with l > n is

ak(n) :=

⌊
1

µk

∣∣∣∣∣
n∑

m=1

σm

∣∣∣∣∣
⌋
, k ∈ N.
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8.5. Non-smooth bases

With

s := sgn

n∑
m=1

σm

one easily verifies that the norm minimizing ηk satisfying the above bounds is given by

[ηk]l =


l

l∑
m=1

σm, if l ∈ {1, . . . , n},

l

(
[ηk]l−1

l − 1
− s µk

)
, if l ∈ {n+ 1, . . . , n+ ak(n)},

0, if l > ak(n).

The norm of this element is maximal with respect to σ if
∑n

m=1 σm is maximal. The
latter is the case for σ1 = . . . = σn = 1 and leads to

‖ηk‖2`∞ =

n∑
l=1

l4 +

n+
⌊
n
µk

⌋∑
l=n+1

l2
(
n− (l − n)µk

)2
=

n∑
l=1

l4 +

⌊
n
µk

⌋∑
l=1

(n+ l)2
(
n− l µk

)2
.

Both sums are of order n5 and therefore

γn = ‖ηk‖`2 ≤ c n
5
2

with some positive constant c. Closer inspection of the constant c shows that β → 1
implies c→∞ as already predicted by Proposition 8.18.

Example 8.20 (simple integration and Haar wavelets). Now we come back to the
example introduced in Subsection 6.4.3 and show that Assumption 8.15 is satisfied. The
derivation is quite elementary but longish and will be provided in detail in Appendix B.

Here we only present the results, that is, the elements η
(n)
k and γn.

Fix m in N0 and σ in {−1, 0, 1}N. In contrast to Assumption 8.15 we explicitly allow
vanishing components in σ, which will turn out to be a useful feature. For the moment
set n = 2m. Define the L2(0, 1)-functions h(j) for j in N by

h(j)(t) :=


2j

1−2−j
t, if t ∈ (0, 2−j),

1
1−2−j

, if t ∈ (2−j , 1− 2−j),
−2j

1−2−j
(t− 1), if t ∈ (1− 2−j , 1),

and set
h

(j)
l,k := 2

l
2 h(j)(2l · − k)

for l in N0 and k = 0, . . . , 2l − 1. These functions are continuous and piecewise differ-
entiable and their derivatives belong to L2(0, 1).

The sequence (η
(n)
j )j∈N defined by

η
(n)
j := −2−

m
2

2m−1∑
r=0

σ1 +
m−1∑
l=0

2l−1∑
k=0

σ1+2l+k ẽ1+2l+k

(
r − 1

2

2m

) (
h(j)
m,r

)′
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8. Convergence rates

satisfies Assumption 8.15 and the corresponding number γn in Theorem 8.17 can be
estimated above by

γn ≤
2
√

2√
2− 1

2
j(β)
2
(
2m
) 3

2

with

j(β) :=

⌈
2

ln 2
ln

1 + β

(2−
√

2) (1− β)

⌉
.

Now we drop the restriction of n to powers of two and choose m such that we have
2m−1 < n ≤ 2m. Only consider σ in {−1, 0, 1}N with σn+1 = . . . = σ2m = 0, which does

not restrict Pn σ. Then (η
(n)
j )j∈N can be chosen as above and the same bound for γn is

valid.

8.6. Convergence rates without source-type assumptions

In the previous two chapters we discussed sufficient conditions for convergence rates
in `1-regularization. Now we show that Assumption 8.15 is always satisfied and, thus,
weak*-to-weak continuity and injectivity of the operator A in (6.4) are the only require-
ments needed to proof convergence rates. Results of this section have been published
in [FG17].

Lemma 8.21. We have
R(A∗) = N (A∗∗)⊥.

Proof. See, e. g., [Meg98, Lemma 3.1.16 and Proposition 1.10.15(c)].

Lemma 8.22. The operator A is weak*-to-weak continuous if and only if

R(A∗) = N (A)⊥ ∩ c0.

Proof. Let A be weak*-to-weak continuous. Then Lemma 8.21 states

R(A∗) = {ξ ∈ `∞ : 〈u, ξ〉(`∞)∗×`∞ for all u in N (A∗∗)}

and from Lemma 7.1 we know that the elements of N (A∗∗) may be written as x + u
with x in `1 and u in c⊥0 . Inspecting the proof of Lemma 7.2 we see

N (A∗∗) = N (A)⊕ c⊥0 .

Thus,

R(A∗) = {ξ ∈ `∞ : 〈x+ u, ξ〉(`∞)∗×`∞ for all x in N (A) and all u in c⊥0 }
= {ξ ∈ `∞ : 〈x, ξ〉(`∞)∗×`∞ for all x in N (A)}
∩ {ξ ∈ `∞ : 〈u, ξ〉(`∞)∗×`∞ for all u in c⊥0 }

= N (A)⊥ ∩ (c⊥0 )⊥.

Noting (c⊥0 )⊥ = c0, see [Meg98, Proposition 1.10.15(b)], completes the proof’s first part.
If R(A∗) = N (A)⊥ ∩ c0, then R(A∗) ⊆ c0 and Lemma 6.3 yields weak*-to-weak

continuity of A.
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8.6. Convergence rates without source-type assumptions

Theorem 8.23. Let A be injective and weak*-to-weak continuous and let ε be positive
and n be in N. Then for each ξ in c0 there exists ξ̃ in R(A∗) such that

ξ̃k = ξk for k ≤ n and |ξ̃k − ξk| ≤ ε for k > n.

Proof. We proof the proposition by induction with respect to n. For ξ in c0 set

ξ+ := (ξ1 + ε, ξ2, ξ3, . . .) and ξ− := (ξ1 − ε, ξ2, ξ3, . . .).

By Lemma 8.22 we find ξ̃+ in R(A∗) and ξ̃− in R(A∗) with

‖ξ̃+ − ξ+‖`∞ ≤ ε and ‖ξ̃− − ξ−‖`∞ ≤ ε.

Consequently, ξ̃+
1 ≥ ξ1 ≥ ξ̃−1 and |ξ̃+

k − ξk| ≤ ε as well as |ξ̃−k − ξk| ≤ ε for k > 1. Thus

we find a convex combination ξ̃ of ξ̃+ and ξ̃− such that ξ̃1 = ξ1. This ξ̃ obviously also
satisfies |ξ̃k − ξk| ≤ ε for k > 1, which proves the proposition for n = 1.

Now let the proposition be true for n = m. We prove it for n = m + 1. Let ξ in c0

and set

ξ+ := (ξ1, . . . , ξm, ξm+1 + ε, ξm+2, ξm+3, . . .),

ξ− := (ξ1, . . . , ξm, ξm+1 − ε, ξm+2, ξm+3, . . .).

By the induction hypothesis we find ξ̃+ in R(A∗) and ξ̃− in R(A∗) with

ξ̃+
k = ξk = ξ̃−k for k ≤ m

and
|ξ̃+
k − ξ+

k | ≤ ε and |ξ̃−k − ξ−k | ≤ ε for k > m.

Consequently, ξ̃+
m+1 ≥ ξm+1 ≥ ξ̃−m+1 and |ξ̃+

k − ξk| ≤ ε as well as |ξ̃−k − ξk| ≤ ε for

k > m+ 1. Thus we find a convex combination ξ̃ of ξ̃+ and ξ̃− such that ξ̃m+1 = ξm+1.
This ξ̃ obviously also satisfies ξ̃k = ξk for k < m + 1 and |ξ̃k − ξk| ≤ ε for k > m + 1,
which proves the proposition for n = m+ 1.

Corollary 8.24. Let A be injective and weak*-to-weak continuous. Then Assump-
tion 8.15 is satisfied.

Proof. Fix σ in {−1, 1}N and n in N. With ξ := Pn σ Theorem 8.23 yields for arbi-
trarily small ε an element A∗ η (ξ̃ in the proposition) such that PnA

∗ η = Pn σ and
‖(I − Pn)A∗ η‖`∞ ≤ ε.

Complementing Corollary 8.24 one can show that Assumption 8.15 implies injectivity
of A if A is known to be weak*-to-weak continuous.

Proposition 8.25. If A is weak*-to-weak continuous, the following statements are
equivalent:

(i) Assumption 8.15 is true,

(ii) e(k) ∈ R(A∗) for all k in N,
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8. Convergence rates

(iii) R(A∗) = c0,

(iv) A is injective.

Proof. We show (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
(i)⇒(ii): Fix n in N and set ξ(n) := Pn (1, 1. . . .) as well as ξ(n−1) := Pn−1 (1, 1. . . .).

Let
(
η

(n)
k

)
k∈N and

(
η

(n−1)
k

)
k∈N be as in Assumption 8.15 with σ = (1, 1, . . .). Then∥∥e(k) −A∗

(
η

(n)
k − η(n−1)

k

)∥∥
`∞

=
∥∥ξ(n) − ξ(n−1) −A∗

(
η

(n)
k − η(n−1)

k

)∥∥
`∞

≤
∥∥ξ(n) −A∗η(n)

k

∥∥
`∞

+
∥∥ξ(n−1) −A∗η(n−1)

k

∥∥
`∞

=
∥∥(I − Pn)A∗η

(n)
k

∥∥
`∞

+
∥∥(I − Pn−1)A∗η

(n−1)
k

∥∥
`∞

and both summands in the last line converge to zero if k →∞.
(ii)⇒(iii): (e(k))k∈N is a Schauder basis in c0. Thus, c0 ⊆ R(A∗). In Lemma 6.3 we

find that weak*-to-weak continuity implies R(A∗) ⊆ c0 and hence also R(A∗) ⊆ c0.
(iii)⇒(iv): By Lemma 8.22 we have c0 = N (A)⊥∩ c0. Thus, c0 ⊆ N (A)⊥. If we have

some x in `1 with Ax = 0, then for each u in c0 we obtain

〈x, u〉`1×c0 = 〈u, x〉`∞×`1 = 0,

because x ∈ N (A) and u ∈ N (A)⊥. This is equivalent to x = 0.
(iv)⇒(i): See Corollary 8.24.

With the help of Corollary 8.24 it is easy to obtain convergence rates for `1-regular-
ization with linear operators: weak*-to-weak continuity is almost always satisfied by
construction of A from Ã (cf. discussion in Section 6.2) and injectivity, or one of the
equivalent conditions (ii) or (iii) in Proposition 8.25, is not hard to verify.

8.7. Convergence rates without injectivity-type assumptions

In this chapter we prove convergence rates for `1-regularization without assuming in-
jectivity of the operator A. The basic idea is to take a suitable variational source
condition as sufficient condition for convergence rates and to equivalently reformulate
this variational source condition as a source-type condition similar to Assumption 8.15.
The reformulated condition can be verified more easily than the original one, as will be
shown for several examples at the end of the chapter.

Up to minor improvements, the contents of this chapter have been published in
[Fle16].

Note that the results in this section also apply to injective operators and thus should
contain the results of previous sections as special cases. Although we use a slightly
different form of presentation than before to simplify notation where possible, the careful
reader will see the close connections between the non-injective and the injective world.
In particular, the careful reader will observe that Assumption 8.15 is not only sufficient
for a variational source condition with linear ϕ, but that Assumption 8.15 holds if and
only if variational source conditions with linear ϕ hold for all x† in `1 and all β with
β < 1.
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8.7. Convergence rates without injectivity-type assumptions

8.7.1. Distance to norm minimizing solutions

We do not assume injectivity of A. Thus, there might by many solutions to (6.4). We
denote the set of all solutions by

L := {x ∈ `1 : Ax = y†}.

Even restricting our attention to norm minimizing solutions does not guarantee unique-
ness, because the norm of `1 is not strictly convex. The set of all norm minimizing
solutions will be denoted by

S := {x ∈ L : ‖x‖`1 ≤ ‖x̃‖`1 for all x̃ in L}.

Obviously, all elements in S have the same norm and we denote this value by ‖S‖`1 . In
addition we immediately see that S is bounded, closed and convex.

For x in `1 we denote by

dist(x, S) := inf
x†∈S
‖x− x†‖`1

the distance of x to the set S of norm minimizing solutions.

Proposition 8.26. Let A be weak*-to-weak continuous. Then for each x in `1 there is
some x† in S such that dist(x, S) = ‖x− x†‖`1.

Proof. Set c := infx†∈S ‖x − x†‖`1 and let (x(n))n∈N be a sequence in S such that
‖x− x(n)‖`1 → c if n → ∞. This sequence is bounded and therefore contains a subse-
quence converging weakly* to some x†. Since A is weak*-to-weak continuous, x† is in
L. From the weak* lower semi-continuity of the norm and from the definition of c we
immediately derive ‖x− x†‖`1 = c. Thus, x† is in S.

The next proposition states that all norm minimizing solutions lie in the same orthant.

Proposition 8.27. For each k in N we have either x†k ≥ 0 for all x† in S or x†k ≤ 0
for all x† in S.

Proof. Assume that there are x† and x̃† in S with x†k < 0 and x̃†k > 0 for some k. Set

t :=
x̃†k

x̃†k − x
†
k

.

Then t ∈ (0, 1) and the convex combination t x†+ (1− t) x̃† belongs to S. We now have

‖t x† + (1− t) x̃†‖ =
∑
l 6=k
|t x†l + (1− t) x̃†l | ≤ t

∑
l 6=k
|x†l |+ (1− t)

∑
l 6=k
|x̃†l |

= ‖S‖`1 −
(
t |x†k|+ (1− t) |x̃†k|

)
< ‖S‖`1 ,

which is not possible for an element in S.

109
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Justified by the proposition we define a sequence σS = (σSk )k∈N by

σSk :=


1, if there are x† in S with x†k > 0,

−1, if there are x† in S with x†k < 0,

0, if x†k = 0 for all x† in S.

Further we introduce the set

1
S :=

{
(σk)k∈N : σk ∈ {−1, 0, 1} for all k and σk = 0 if σSk = 0

}
and for each σ in 1

S subsets S(σ) of S by

S(σ) := {x† ∈ S : there is some ξ ∈ NS(x†) with

ξk = σk if σk 6= 0, ξk ∈ (−1, 1) if σk = 0, σSk 6= 0}.

Here, Nx†(S) denotes the normal cone of S at x†. We can regard S(σ) as the face of S
visible from direction σ.

Lemma 8.28. Let A be weak*-to-weak continuous. If σ in 1
S has only finitely many

non-zero components, we have S(σ) 6= ∅.

Proof. Setting ξ := σ we show that there is some x† in S with ξ ∈ NS(x†), that is, x†

maximizes 〈ξ, x〉`∞×`1 over all x in S. Let (x(n))n∈N be a sequence in S with

〈ξ, x(n)〉`∞×`1 → c := sup
x∈S
〈ξ, x〉`∞×`1 .

This sequence is bounded and thus contains a subsequence converging weakly* to some
x† in `1. The weak*-to-weak continuity of A guarantees x† ∈ L and the weak* lower
semi-continuity of the `1-norm yields x† ∈ S. Denoting the subsequence again by
(x(n))n∈N and noting that ξ ∈ c0 we further obtain

c = lim
n→∞

〈ξ, x(n)〉`∞×`1 = lim
n→∞

〈x(n), ξ〉`1×c0 = 〈x†, ξ〉`1×c0 = 〈ξ, x†〉`∞×`1 . (8.12)

Thus, x† indeed maximizes 〈ξ, · 〉`∞×`1 over S.

Now we restrict our attention to subsets of `1 on which dist(x, S) is almost affine.
For σ in 1

S and x† in S we define

Mx†(σ) := {x ∈ `1 : xk ≥ x†k if σk = 1,

xk ≤ x†k if σk = −1,

xk = x†k if σk = 0, σSk 6= 0}.

The sets Mx†(σ) are obviously closed and convex and we always have x† ∈Mx†(σ).

Proposition 8.29. Let σ ∈ 1S and let x† ∈ S(σ). Then

dist(x, S) = 〈σ, x− x†〉`∞×`1 +
∑

k:σSk=0

|xk| for all x in Mx†(σ).
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Proof. As a standard result of convex analysis we have dist(x, S) = ‖x − x†‖`1 if and
only if there is some ξ in the normal cone NS(x†) such that ξ ∈ −∂‖x − · ‖`1(x†). On
the one hand we have

−∂‖x− · ‖`1(x†) = ∂‖ · ‖`1(x− x†) = {ξ̃ ∈ `∞ : ξ̃k = 1 if xk > x†k,

ξ̃k = −1 if xk < x†k,

ξ̃k ∈ [−1, 1] if xk = x†k}.

On the other hand, x† ∈ S(σ) and x ∈ Mx†(σ) imply that there is some ξ in NS(x†)
such that

ξk


= 1, if xk > x†k,

= −1, if xk < x†k,

∈ [−1, 1], if xk = x†k

for all k with σSk 6= 0.

If we now define ξ̃ by

ξ̃k :=


ξk, if σSk 6= 0,

1, if σSk = 0, xk ≥ 0,

−1, if σSk = 0, xk < 0,

we immediately see, that ξ̃ ∈ −∂‖x − · ‖`1(x†) (remember x†k = 0 if σSk = 0). From
ξ ∈ NS(x†) we have

〈ξ, x̃† − x†〉`∞×`1 ≤ 0 for all x̃† ∈ S,
which together with

〈ξ̃, x̃† − x†〉`∞×`1 =
∑

k:σSk 6=0

ξ̃k (x̃†k − x
†
k) =

∑
k:σSk 6=0

ξk (x̃†k − x
†
k) = 〈ξ, x̃† − x†〉`∞×`1

yields that ξ̃ is in NS(x†), too. This proves dist(x, S) = ‖x− x†‖`1 .
As the second step we observe that x ∈Mx†(σ) yields

|xk − x†k| = σk (xk − x†k) if σSk 6= 0.

Thus,

‖x− x†‖`1 =
∑

k:σSk 6=0

|xk − x†k|+
∑

k:σSk=0

|xk| = 〈σ, x− x†〉`∞×`1 +
∑

k:σSk=0

|xk|.

Corollary 8.30. For each σ in 1
S and each x† in S(σ) we have

S ∩Mx†(σ) = {x†}.

Proof. Assume that there is a second solution x̃† in S ∩Mx†(σ). Then from Proposi-
tion 8.29 (and even more easily from its proof) we obtain

0 = dist(x̃†, S) = ‖x̃† − x†‖`1 .

Thus, x̃† = x†.
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We close this subsection with the following important observation.

Proposition 8.31. The sets Mx†(σ) cover the whole space `1, that is,

`1 =
⋃
σ∈1S

⋃
x†∈S(σ)

Mx†(σ). (8.13)

Proof. For fixed x in `1 let x† be a minimizer of ‖x− · ‖`1 over S. Then there is some
ξ in the normal cone NS(x†) such that ξ ∈ −∂‖x− · ‖`1(x†). Thus, we know

ξk = 1 if xk > x†k, ξk = −1 if xk < x†k, ξk ∈ [−1, 1] if xk = x†k.

If we now define σ by

σk :=


1, if ξk = 1, σSk 6= 0,

−1, if ξk = −1, σSk 6= 0,

0, if ξk ∈ (−1, 1) or σSk = 0,

then σ ∈ 1S , x† ∈ S(σ) and x ∈Mx†(σ).

8.7.2. Sparse solutions

Having finished the study of the distance dist(x, S) between an element x in `1 and
the set S of norm minimizing solutions we now want to establish a variational source
condition (8.3) with a linear index function ϕ(t) = γ t, γ > 0. It suffices to consider β
in (0, 1], because a variational source condition with β > 1 always implies a variational
source condition with β ≤ 1.

At first we split the variational source condition into ‘smaller’ ones. Here and in the
sequel we use the notation introduced in Subsection 8.7.1.

Lemma 8.32. The variational source condition (8.3) on `1 is satisfied if and only if
for each σ in 1

S and each x† in S(σ) we have

β 〈σ, x− x†〉`∞×`1 + β
∑

k:σSk=0

|xk| ≤ ‖x‖`1 − ‖x†‖`1 + γ ‖Ax−Ax†‖Y (8.14)

for all x in Mx†(σ).

Proof. This is a direct consequence of Propositions 8.29 and 8.31.

Lemma 8.33. For σ in 1
S and x† in S(σ) the variational source condition (8.14) on

Mx†(σ) is satisfied if and only if there is some η in Y ∗ with ‖η‖Y ∗ ≤ γ
1+β such that

[A∗ η]k ∈ [−µ, µ], if σSk = 0,

σk [A∗ η]k ≤ µ, if σSk 6= 0, x†k = 0, σk 6= 0,

σSk [A∗ η]k ≤ µ, if x†k 6= 0, σk = σSk ,

σSk [A∗ η]k ≥ 1, if x†k 6= 0, σk = −σSk

for all k, where µ := 1−β
1+β ∈ [0, 1).
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8.7. Convergence rates without injectivity-type assumptions

Proof. We rewrite (8.14) as

‖x†‖`1 ≤ −β 〈σ, x− x†〉`∞×`1 + (1− β)
∑

k:σSk=0

|xk|+
∑

k:σSk 6=0

|xk|+ γ ‖Ax−Ax†‖Y

and, taking into account that x†k = 0 if σSk = 0, see that x† is a minimizer of the
convex functional on the right-hand side with respect to x in Mx†(σ). Thus, there is
some ξ in the normal cone NM

x† (σ)(x
†) such that −ξ belongs to the subdifferential of

the functional at x†. This subdifferential is the sum of the subdifferentials for each
summand. We have

NM
x† (σ)(x

†) = {ξ ∈ `∞ : ξk = 0 if σSk = 0,

ξk ≤ 0 if σk = 1,

ξk ≥ 0 if σk = −1},

∂(−β 〈σ, · − x†〉`∞×`1)(x†) = −β σ,

∂

x 7→ (1− β)
∑

k:σSk=0

|xk|

 (x†) = {ξ̃ ∈ `∞ : ξ̃k ∈ [−(1− β), 1− β] if σSk = 0,

ξ̃k = 0 if σSk 6= 0},

∂

x 7→ ∑
k:σSk 6=0

|xk|

 (x†) = {ξ̃ ∈ `∞ : ξ̃k = 0 if σSk = 0,

ξ̃k = 1 if x†k > 0

ξ̃k = −1 if x†k < 0

ξ̃k ∈ [−1, 1] if σSk 6= 0, x†k = 0},
and

∂(γ ‖A · −Ax†‖Y )(x†) = {A∗ η : η ∈ Y ∗, ‖η‖Y ∗ ≤ γ}.
From these equations we see that there is some η in Y ∗ with ‖η‖Y ∗ ≤ γ such that

−[A∗ η]k ∈ [−(1− β), 1− β], if σSk = 0,

−σk [A∗ η]k ≤ 1− β, if σSk 6= 0, x†k = 0, σk 6= 0,

−σSk [A∗ η]k ≤ 1− β, if x†k 6= 0, σk = σSk ,

−σSk [A∗ η]k ≥ 1 + β, if x†k 6= 0, σk = −σSk .
Replacing η by −(1 + β) η completes the proof.

Theorem 8.34. The variational source condition (8.3) on `1 with ϕ(t) = γ t, t > 0, is
satisfied if and only if for each σ in 1

S and each x† in S(σ) there is some η in Y ∗ with
‖η‖Y ∗ ≤ γ

1+β such that
[A∗ η]k ∈ [−µ, µ], if σSk = 0,

σk [A∗ η]k ≤ µ, if σSk 6= 0, x†k = 0, σk 6= 0,

σSk [A∗ η]k ≤ µ, if x†k 6= 0, σk = σSk ,

σSk [A∗ η]k ≥ 1, if x†k 6= 0, σk = −σSk

(8.15)
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for all k, where µ := 1−β
1+β ∈ [0, 1).

Proof. This is a direct consequence of Lemma 8.32 and Lemma 8.33.

Remark 8.35. Let A be weak*-to-weak continuous, that is, by Lemma 6.3,R(A∗) ⊆ c0.
Then Theorem 8.34 implies that a variational source condition (8.3) can only be satisfied
if all solutions in S are sparse. To see this choose σ = −σS . Then |[A∗ η]k| ≥ 1 on the
support of x†, which is only possible if the support is finite.

Remark 8.36. Obviously, condition (8.15) is weaker than Assumption 8.4 (smooth
basis) because each finitely supported element in R(A∗) is a linear combination of the
standard unit sequences e(k). In Proposition 8.5 we have shown that Assumption 8.4
implies injectivity of A whereas the new characterization (8.15) of a variational source
condition does not imply injectivity (cf. Subsection 8.7.5).

We close this section with three remarks which reduce the set of elements σ and x†

for which condition (8.15) has to be verified in order to obtain convergence rates.

Remark 8.37. For fixed σ in 1
S condition (8.15) is satisfied for all x† in S(σ) if and

only if it is satisfied for all x† in S(σ) having maximal support. Here we say that some

x† from S(σ) has maximal support if there is no x̃† in S(σ) with {k ∈ N : x̃†k 6= 0} )
{k ∈ N : x†k 6= 0}.

Remark 8.38. Let σ ∈ 1
S . If σk = σSk for all k with σk 6= 0 and with x†k 6= 0 for at

least one x† in S(σ), then condition (8.15) is satisfied with η = 0.

Remark 8.39. Let σ ∈ 1S and σ̃ ∈ 1S such that σ̃ has smaller support than σ, that is,
σk 6= 0 whenever σ̃k 6= 0. Further, let x† be in S(σ) and also in S(σ̃). Then condition
(8.15) is satisfied for σ̃ if it is satisfied for σ.

8.7.3. Sparse unique norm minimizing solution

We consider the case that the set of norm minimizing solutions contains only one
element, that is,

S = {x†}.
Note that this does not necessarily imply injectivity of A. The variational source con-
dition (8.3) now reads

β ‖x− x†‖`1 ≤ ‖x‖`1 − ‖x†‖`1 + γ ‖Ax−Ax†‖Y for all x in `1 (8.16)

and Theorem 8.34 can be refined as follows.

Theorem 8.40. Assume S = {x†}. Then the variational source condition (8.16) on
`1 is satisfied if and only if for each σ in 1

S there is some η in Y ∗ with ‖η‖Y ∗ ≤ γ
1+β

such that 
[A∗ η]k ∈ [−µ, µ], if x†k = 0,

σSk [A∗ η]k = µ, if x†k 6= 0, σk = σSk ,

σSk [A∗ η]k = 1, if x†k 6= 0, σk = −σSk
for all k, where µ := 1−β

1+β ∈ [0, 1).
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Proof. We apply Theorem 8.34 to the case S = {x†}. Note that σ belongs to 1S if and

only if its support coincides with the support of x†, and that σSk provides the sign of x†k
for each k. Further, the normal cone in the definition of S(σ) is NS(x†) = l∞, which
allows to choose ξ = σ in that definition. We immediately obtain S(σ) = {x†} for each
σ in 1

S and therefore Theorem 8.34 states the the variational source condition (8.16)
holds if and only if for each σ in 1

S there is some η with ‖η‖Y ∗ ≤ γ
1−β such that

[A∗ η]k ∈ [−µ, µ], if x†k = 0,

σSk [A∗ η]k ≤ µ, if x†k 6= 0, σk = σSk ,

σSk [A∗ η]k ≥ 1, if x†k 6= 0, σk = −σSk
(8.17)

for each k.

Now fix σ in 1
S and let k1, k2, . . . be an enumeration (finite or infinite) of all indices

k satisfying σk 6= 0. Note that x†kn 6= 0 for all n. We prove the theorem by induction
over n.

Let σ̄ in 1
S satisfy σ̄k1 = σSk1 and let σ̃ be the same except for σ̃k1 = −σSk1 . Then

there are η̄ and η̃ such that (8.17) holds with σ replaced by σ̄ and σ̃, respectively. At
index k1 we have σSk1 [A∗ η̄]k1 ≤ µ and σSk1 [A∗ η̃]k1 ≥ 1. Thus, there exists a convex

combination η(1)(σ̄) of η̄ and η̃ which satisfies σSk1 [A∗ η(1)(σ̄)]k1 = µ (if σk1 = σSk1) or

σSk1 [A∗ η(1)(σ̄)]k1 = 1 (if σk1 = −σSk1). In addition, such an element η(1)(σ̄) satisfies
(8.17) with σ replaced by σ̄ for all other indices k not equalling k1.

Now let σ̄ in 1
S satisfy σ̄kl = σkl for l = 1, . . . , n − 1 and σ̄kn = σSkn . Further,

let σ̃ be the same except for σ̃kn = −σSkn . Assume that there is η(n−1)(σ̄) such that
(8.17) holds for all k and such that for k1, . . . , kn−1 it holds with equality signs. The
existence of such an η(n−1)(σ̄) has been shown above for n = 2. Again there are η̄ and
η̃ such that (8.17) holds with σ replaced by σ̄ and σ̃, respectively. At index kn we have
σSkn [A∗ η̄]kn ≤ µ and σSkn [A∗ η̃]kn ≥ 1. Thus, there exists a convex combination η(n)(σ̄)

of η̄ and η̃ which satisfies σSkn [A∗ η(n)(σ̄)]kn = µ (if σkn = σSkn) or σSkn [A∗ η(n)(σ̄)]kn = 1

(if σkn = −σSkn). In addition, such an element η(n)(σ̄) satisfies (8.17) with σ replaced
by σ̄ for all other indices k not equaling kn.

So far we have shown that for each σ in 1S and each n we can construct η(n)(σ) which
satisfies (8.17), where we can replace inequality by equality signs at indices k1, . . . , kn.
Consequently we find η such that equality holds at all indices k at which σk 6= 0.

Remark 8.41. Analogously to Remark 8.39 we can replace 1S in Theorem 8.40 by the
set of all σ which satisfy σk = ±1 if σSk 6= 0 and σk = 0 else.

Corollary 8.42. Assume S = {x†}. Then the variational source condition (8.16) on
`1 is satisfied if and only if for each σ in 1

S with σk 6= 0 if σSk 6= 0 there is some η in
Y ∗ with ‖η‖Y ∗ ≤ γ

1+β such that{
[A∗ η]k = σSk , if x†k 6= 0, σk = −σSk ,
[A∗ η]k ∈ [−µ, µ], if x†k = 0 or x†k 6= 0, σk = σSk

(8.18)

for all k, where µ := 1−β
1+β ∈ [0, 1).
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Proof. This is a direct consequence of Theorem 8.40 (necessity) and Theorem 8.34
(sufficiency).

Corollary 8.43. Assume S = {x†} and denote by suppx† := {k ∈ N : x†k 6= 0} the
support of x†. Then the variational source condition (8.16) on `1 is satisfied if and only
if for each subset K of suppx† there is some η in Y ∗ with ‖η‖Y ∗ ≤ γ

1+β such that{
[A∗ η]k = sgnx†k, if k ∈ K,
[A∗ η]k ∈ [−µ, µ], if k /∈ K

for all k, where µ := 1−β
1+β ∈ [0, 1).

Proof. This corollary is a simple consequence of Corollary 8.42, because with

K = {k ∈ N : x†k 6= 0, σk = −σSk }

we have a one-to-one correspondence between the subsets of suppx† and the restrictions
of the sequences σ in Corollary 8.42 to suppx†.

Note that the condition [A∗ η]k ∈ [−µ, µ] if x†k = 0 in (8.18) and corresponding con-
ditions in Theorems 8.34 and 8.40 are closely related to a property called strict sparsity
pattern in [BL08, Definition 2] and strong source condition in [GHS11a, Condition 4.3].

8.7.4. Non-sparse solutions

We now extend Theorem 8.34 to solution sets S which may contain non-sparse solutions
(cf. Remark 8.35). The aim is to obtain a variational source condition (4.2) with concave
index function ϕ, which depends on the decay of the solutions’ components. Here, again,
‖S‖`1 denotes the norm of the norm minimizing solutions.

A sufficient condition for such a variational source condition can be deduced from
the characterization (8.15) in Theorem 1.1.

Theorem 8.44. Assume that

lim
n→∞

sup
x†∈S

∑
k>n

|x†k| = 0 (8.19)

and let (γn)n∈N be a sequence of positive numbers. Then the variational source condition
(8.3) on `1 is satisfied with

ϕ(t) = inf
n∈N

(
2 sup
x†∈S

∑
k>n

|x†k|+ γn t

)

if for each n in N, each σ in 1
S and each x† in S(σ) there is some η in Y ∗ with

‖η‖Y ∗ ≤ γn
1+β such that

[A∗ η]k ∈ [−µ, µ], if σSk = 0 or k > n,

σk [A∗ η]k ≤ µ, if σSk 6= 0, x†k = 0, σk 6= 0, k ≤ n,
σSk [A∗ η]k ≤ µ, if x†k 6= 0, σk = σSk , k ≤ n,
σSk [A∗ η]k ≥ 1, if x†k 6= 0, σk = −σSk , k ≤ n
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for all k, where µ := 1−β
1+β ∈ [0, 1).

Proof. Fix x in `1. By Proposition 8.31 there are σ in 1
S and x† in S(σ) such that x

is in Mx†(σ). Proposition 8.29 yields

β dist(x, S)− ‖x‖`1 + ‖x†‖`1 = β 〈σ, x− x†〉`∞×`1 + β
∑

k:σSk=0

|xk| − ‖x‖`1 + ‖x†‖`1 .

This can be written as a sum

β dist(x, S)− ‖x‖`1 + ‖x†‖`1 =
∑
k∈N

ak

with ak depending only on xk and x†k and we have

ak =



−(1− β) |xk|, if σSk = 0,

−(1− β) |xk − x†k|, if σSk 6= 0, x†k = 0, σk 6= 0

or if x†k 6= 0, σk = σSk ,

−β σSk xk − |xk|+ (1 + β) |x†k|, if x†k 6= 0, σk = −σSk ,
0 if σSk 6= 0, σk = 0.

Now let η be as in the theorem. Then

γn ‖Ax−Ax†‖Y ≥ −(1 + β) 〈η,Ax−Ax†〉Y ∗×Y = −(1 + β) 〈A∗ η, x− x†〉`∞×`1

and, because x ∈Mx†(σ), we see

γn ‖Ax−Ax†‖Y ≥ −(1 + β)
∑

k:σSk 6=0

[A∗ η]k σk |xk − x†k| − (1 + β)
∑

k:σSk=0

[A∗ η]k xk.

Using the properties of A∗ η we obtain

2
∑
k>n

|x†k| − γn ‖Ax−Ax†‖Y ≥
∑
n∈N

bn

with

bk ≥



−(1− β) |xk|, if σSk = 0,

−(1− β) |xk − x†k|, if σSk 6= 0, x†k = 0, σk 6= 0, k ≤ n,
or if x†k 6= 0, σk = σSk , k ≤ n,

(1 + β) |xk − x†k|, if x†k 6= 0, σk = −σSk , k ≤ n,
2 |x†k| − (1− β) |xk − x†k|, if σSk 6= 0, σk 6= 0, k > n,

2 |x†k| if σSk 6= 0, σk = 0.

It is not hard to show that ak ≤ bk for all k. Thus,

β dist(x, S)− ‖x‖`1 + ‖x†‖`1 ≤ 2
∑
k>n

|x†k| − γn ‖Ax−Ax†‖Y .
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Taking the supremum over all x† and the infimum over all n the variational source
condition (8.3) is proven and it remains to show that the function ϕ is a concave index
function.

Obviously, ϕ is non-negative. As an infimum of affine functions it further is concave
and upper semi-continuous. Thus, ϕ is continuous on the interior (0,∞) of its domain.
Together with

ϕ(0) = inf
n∈N

(
2 sup
x†∈S

∑
k>n

|x†k|
)

= 0

we obtain continuity on [0,∞). Monotonicity of ϕ follows from γn > 0 for all n. That ϕ
is strictly increasing in a neightborhood of the origin follows from ϕ(0) = 0 and ϕ(t) > 0
for all positive t, where ϕ(t) > 0 is again a consequence of γn > 0 for all n.

Note that condition (8.19) may be violated in some cases. For example if S is the
convex hull of the standard unit sequences {e(1), e(2), . . .} in `1, then

sup
x†∈S

∑
k>n

|x†k| ≥
∑
k>n

∣∣e(n+1)
k

∣∣ = 1 (8.20)

for all n.

8.7.5. Examples

We provide two very simple examples and a more realistic one to show how the de-
veloped results can be applied to non-injective operators. The first example considers
multiple norm minimizing solutions. The second and the third one have only one norm
minimizing solution and they show, by the way, that the constant β in a variational
source condition cannot be chosen arbitrarily close to one.

Example 8.45. For the first example take Y := R, y† := 1 and

Ax := x1 + x2.

Then the set of solutions is L = {x ∈ `1 : x2 = 1− x1} and the set of norm minimizing
solutions is

S = {x ∈ `1 : x2 = 1− x1, x1 ∈ [0, 1], xk = 0 for k > 2}.

Further,
A∗ η := (η, η, 0, . . .).

Figure 8.1 provides a sketch of the geometric situation.
We now verify condition (8.15) in Theorem 8.34 with β = 1. First note that σS =

(1, 1, 0, . . .) and that by Remark 8.39 we only have to consider

σ(1) = (1, 1, 0, . . .),

σ(2) = (1,−1, 0, . . .),

σ(3) = (−1, 1, 0, . . .),

σ(4) = (−1,−1, 0, . . .).
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R(A∗)

B1(0)

L

(0, 1, 0, . . .)

S

(1, 0, 0, . . .)

x2

x1

Figure 8.1.: Sketch for the first example of the x1-x2-plane with set S of norm minimizing
solutions, set L of all solutions, unit ball B1(0) and ‘subspace’ R(A∗).

The corresponding subsets S(σ(i)) of S are the faces of S looking in direction σ(i), that
is,

S(σ(1)) = S,

S(σ(2)) = {(1, 0, 0, . . .)},
S(σ(3)) = {(0, 1, 0, . . .)},
S(σ(4)) = S.

Taking into account Remark 8.38, only σ(4) remains to be considered. Here condi-
tion (8.15) is equivalent to η ≥ 1, which is obviously satisfied when choosing η = 1 (by
Remark 8.37 we only have to check the condition for x† = (1

2 ,
1
2 , 0, . . .) for example).

Consequently, Theorem (8.34) applies to our first example and yields convergence rates
although the operator A is not injective.

Example 8.46. For the second example take Y := R, y† := 1 and

Ax := x1 +
x2

2
.

Then the set of solutions is L = {x ∈ `1 : x2 = 2 − 2x1} and there is only one norm
minimizing solution

S = {(1, 0, . . .)}.
Further,

A∗ η := (η,
η

2
, 0, . . .).

Figure 8.2 provides a sketch of the geometric situation.

119



8. Convergence rates

R(A∗)

B1(0)

L

x2

S = {(1, 0, 0, . . .)}
x1

Figure 8.2.: Sketch for the second example of the x1-x2-plane with set S of norm minimizing
solutions, set L of all solutions, unit ball B1(0) and ‘subspace’ R(A∗).

We now verify condition (8.18) in Corollary 8.42. First note that σS = (1, 0, 0, . . .)
and so we only have to consider

σ(1) = (1, 0, . . .) and σ(2) = (−1, 0, . . .).

For σ(1) condition (8.18) is satisfied by η = 0. For σ(2) the condition is equivalent to

η = 1 and − 1− β
1 + β

≤ η

2
≤ 1− β

1 + β
,

which is only possible if β ≤ 1
3 . Consequently, Corollary 8.42 yields a variational source

condition with β ≤ 1
3 and corresponding convergence rates for our second non-injective

example.

If we had chosen the solution set L to be parallel to the x2-axis, then β = 1 would
be possible. On the other hand, the more slanting the set L in Figure 8.2 is, the closer
β has to be to zero. The limit case where only β = 0 would be possible then coincides
with the situation discussed in Example 8.45. Generalizing this observation we may
say that the constant β in a variational source condition is a ‘measure’ for paraxiality
of the nullspace of A or the range of A∗.

Example 8.47. Consider the example introduced in Subsection 6.4.4. We look at
the exact right-hand side y† := (0, 0,− 1

2π , 0,− 1
4π , 0, 0, . . .). One easily sees that x† =

(0, 1, 0, 1, 0, 0, . . .) is a corresponding solution and it turns out that this is the only
1-norm minimizing solution, that is, S = {x†} (here some very basic but longish calcu-
lations are necessary).
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To verify the assumptions of Corollary 8.42 we have to show that the elements

σ(1) = (0, 1, 0, 1, 0, 0, . . .),

σ(2) = (0, 1, 0,−1, 0, 0, . . .),

σ(3) = (0,−1, 0, 1, 0, 0, . . .),

σ(4) = (0,−1, 0,−1, 0, 0, . . .)

satisfy condition (8.18) for some η. We only mention how to choose η in each case
and do not provide all details of the (basic but longish) calculations. Since σS =
(0, 1, 0, 1, 0, 0, . . .) we may choose η = 0 in case of σ(1). For σ(2) one possible choice is

η =

(
2
√

2 +
4π − 4

2π +
√

2
, 0, 0, 0, 4π, 0, 0, . . .

)
if µ ≥ 2π − 2

2π +
√

2
.

Note that for smaller µ there is no η satisfying (8.18) if σ = σ(2). For σ(3) one possible
choice is

η =

(
2
√

2 +
2π − 4

π +
√

2
, 0, 2π, 0, 0, . . .

)
if µ ≥ π − 2

π +
√

2
.

Again for smaller µ there is no η satisfying (8.18) if σ = σ(3). Finally, for σ(4) we may
choose

η =

(
12

5
π, 0, 3π, 0, 4π, 0, 0, . . .

)
if µ ≥ 2

5

and for smaller µ there is no η.
Thus, if

µ ≥ 2π − 2

2π +
√

2
≈ 0.5564

we obtain a variational source condition with

β ≤ 2 +
√

2

4π − 2 +
√

2
≈ 0.2850

and corresponding convergence rates.
Playing around with this example one also sees that the more non-zero components x†

has the smaller is the best possible β in the variational source condition. Since β enters
the O-constant c in the convergence rate result (4.1) as a factor 1

β (cf. Propositions 8.2

and 8.3), the O-constant becomes greater if x† is ‘less sparse’. If the number of non-zero
components in x† goes to infinity, then β goes to zero and consequently the O-constant
blows up to infinity. Such situations then can be handled by Theorem 8.44, resulting
in slower convergence rates.
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9. Open Problems

To the author’s regret two problems closely related to this thesis remain unsolved. Here
we briefly describe both.

The first problem is the question whether source-type conditions (8.15) are always
satisfied in the non-injective case. For injective operators A we gave a positive answer
in Section 8.6. For non-injective operators the author conjectures that a similar result
holds true: if A is weak*-to-weak continuous and if N (A) does not ‘approximate’ a
face of the unit ball in `1 arbitrarily well, then the source-type condition (8.15) is
always satisfied. More precisely, the number constructed as follows has to be strictly
smaller than one: intersect N (A) with the unit ball of `∞, for each element in this
intersection take the maximal absolute value of the components not being 1 or −1, take
the supremum over all these maxima. This number then plays the role of µ in (8.15).

The second open problem is related to variational source conditions in general. For
linear ill-posed problems in Hilbert spaces it is known that variational source conditions
are not only sufficient but also necessary for corresponding convergence rates. In more
general settings, for example in our `1-setting, it is completely unclear whether an error
estimate with rate function ϕ implies a variational source condition with ϕ, that is,
whether variational source conditions yield the optimal rate. The author conjectures
that up to few special cases such converse results in Banach spaces can be shown.
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A. Topology, functional analysis, convex
analysis

We briefly summarize some definitions and results from set theoretic topology, func-
tional analysis and convex analysis used in the thesis. Everything can be found in
standard literature on the subjects. The focus is on `1 and related spaces. We recom-
mend the books [Die84, Meg98] to the reader interested in the precipices of non-reflexive
Banach spaces.

A.1. Topological spaces and nets

A topological space (X, τ) is a non-empty set X endowed with a topology τ . A topology
on X is a family of subsets of X with the following properties:

• ∅ ∈ τ and X ∈ τ ,

• intersections of finitely many sets in τ belong to τ ,

• unions of arbitrarily many sets in τ belong to τ .

A topology τ1 on X is weaker or coarser than a topology τ2 on X if τ1 ⊆ τ2. In this
case, τ2 is stronger or finer than τ1.

The sets in τ are called open sets, their complements closed sets. The interior intB
of a subset B of X is the union of all open sets contained in B. The closure B is the
intersection of all closed sets containing B.

A subset B of X is called compact if every covering of B with open sets contains a
finite covering of B. The set B is relatively compact if its closure is compact.

A neighborhood of an element x in X is a subset B of X which contains on open set
C with x ∈ C.

Given two topological spaces (X, τX) and (Y, τY ) and an element x in X, a mapping
f : X → Y is called continuous at x if the full preimage of each neighborhood of f(x) is
a neighborhood of x. The mapping f is continuous if it is continuous at every element
x. One can show that f is continuous if and only if the preimages of open sets are open
sets or, equivalently, if the preimages of closed sets are closed.

A mapping f : X → (−∞,∞] is lower semi-continuous if the sublevel sets {x ∈ X :
f(x) ≤ c}, c ∈ R, are closed.

A non-empty set I is directed if there is a relation � on I with the following properties:

• i � i for all i in I,

• i1 �2, i2 � i3 implies i1 � i3 for all i1, i2, i3 in I,
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• for all i1 and i2 in I there is some i3 in I such that i1 � i3 and i2 � i3.

Given a directed set I, a net (xi)i∈I is a mapping from I into X. A net (xi)i∈I converges
to x in X if for each neighborhood B of x there is some iB in I with xi ∈ B if i � iB.
A sequence is a net with index set N, where � is the usual ordering in N.

A convergent net may have more than one limit. A topological space is called Haus-
dorff space if for each pair of distinct elements there is a pair of corresponding disjoint
neighborhoods. Each net has at most one limit if and only if (X, τ) is a Hausdorff space.

A set B is closed if and only if all limits of convergent nets in B belong to B.
A mapping f : X → Y is continuous if and only if for each convergent net (xi)i∈I
with limit x0 the net (f(xi))i∈I converges to f(x0). A mapping f : X → (−∞,∞] is
lower semi-continuous if and only if for each net (xi)i∈I with limit x0 we have f(x0) ≤
lim infi∈I f(xi). Compactness of sets can be characterized in terms of net convergence,
too, but this requires introduction of subnets, which is beyond the scope of this chapter.

A set B is sequentially closed if and only if all limits of convergent sequences in B
belong to B. Analogously, sequential compactness, sequential continuity and sequential
semi-continuity can be introduced. The sequential and non-sequential versions coincide
if (X, τ) is an A1-space, that is, if for each x in X there is a sequence (Bk)k∈N of
neighborhoods of x such that for each neighborhood C of x we find k with Bk ⊆ C.
Compactness is an exception here, but one can show that in A1-spaces compactness
implies sequential compactness.

A.2. Reflexivity, weak and weak* topologies

A topological vector space (X, τ) is a vector space X endowed with a topology τ with
respect to which the vector space operations (addition, multiplication by scalars) are
continuous. Typical examples are normed vector spaces, where the topology is induced
by the norm. That is, the topology contains exactly the sets which are open with
respect to the norm.

In a normed vector space we may introduce another topology. The weakest topology
with respect to which all norm-continuous linear functionals are continuous is called
weak topology on X. The vector space X endowed with the weak topology is a topo-
logical vector space and a Hausdorff space but not necessarily an A1-space (cf. previous
section). Denoting the set of norm-continuous linear functionals on X by X∗, one can
show that a net (xi)i∈I converges weakly to x0 in X if and only if

lim
i∈I
〈ξ, xi〉X∗×X = 〈ξ, x0〉X∗×X for all ξ in X∗.

The set X∗ of norm-continuous linear functionals on X forms a normed vector space
itself and thus has a weak topology, too. X∗ is called the dual space of X. The dual
space X∗∗ of X∗ is closely related to X: Define the mapping E : X → X∗∗ by

〈E x, ξ〉X∗∗×X∗ := 〈ξ, x〉X∗×X , ξ ∈ X∗,

for all x in X. Then E is continuous (with respect to the norm topologies), isometric,
injective and continuously invertible on its range. In other words, E is an isometric
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isomorphism between X and R(E). If E is surjective, then X is said to be reflexive. If
we write x ∈ X∗∗ for some x in X, then this has to be understood as E x ∈ X∗∗.

The space `1 of absolutely summable sequences is not reflexive. Its dual is `∞, the
space of absolutely bounded sequences. In addtion, we know that `1 is the dual of c0,
the space of sequences converging to zero. The weak topology on `1 is strictly weaker
than the norm topology, but a sequence (not a general net) in `1 is weakly convergent
if and only if it is norm-convergent. This remarkable property is known as Schur’s
property.

Next to the norm topology and the weak topology the dual space X∗ of a normed
vector space X carries another useful topology. With E as above the weak* topology is
the weakest topology on X∗ with respect to which all norm-continuous linear functionals
on X∗ belonging to R(E) are continuous. This topology is obviously weaker than the
weak topology on X∗. A net (ξi)i∈I is weakly* convergent to ξ0 in X∗ if and only if

lim
i∈I
〈u, ξi〉X∗∗×X∗ = 〈u, ξ0〉X∗∗×X∗ for all u in R(E),

which by the definition of E is equivalent to

lim
i∈I
〈ξi, x〉X∗×X = 〈ξ0, x〉X∗×X for all x in X.

Weak and weak* topology on X∗ coincide if and only if X is reflexive. The use of
the weak* topology comes from the fact, that closed balls in X∗ are weakly* compact
(Banach–Alaoglu theorem). If X is separable, then closed balls in X∗ are weakly*
sequentially compact (sequential Banach–Alaoglu theorem). With respect to the norm
topology closed balls are compact if and only if the space is finite-dimensional (Heine–
Borel property). With respect to the weak topology closed balls are compact if and
only if the space is reflexive.

Because `1 is the dual of c0, the weak* topology is available on `1. The sublevel sets
of the `1-norm are weakly* compact and the `1-norm is a weakly* lower semi-continuous
functional.

In Hilbert spaces each closed subspace has a complement, that is, there is a second
closed subspace such that the direct sum of both subspaces equals the whole Hilbert
space. In infinite-dimensional Banach spaces there always exist closed subspaces which
do not have a complement, see [Meg98, page 301]. A complemented subspace is a closed
subspace with complement.

A.3. Subdifferentials and Bregman distances

Let X be a real normed vector space and let X∗ be its dual. In the following we consider
functionals on X which may attain the value +∞ or −∞, but not both. Addition and
multiplication by scalars are extended to such functionals whenever this extension is
intuitive, e. g. 1 +∞ = +∞ or 1 · (+∞) = +∞.

A functional Ω : X → (−∞,∞] is convex if

Ω(λx1 + (1− λ)x2) ≤ λΩ(x1) + (1− λ) Ω(x2)
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for all x1, x2 in X and all λ in [0, 1]. A functional Ω : X → [−∞,∞) is concave if −Ω
is convex. A functional is proper if it attains a finite value.

For a convex functional Ω : X → (−∞,∞] an element ξ in X∗ is called a subgradient
of Ω at x0 if

Ω(x) ≥ Ω(x0) + 〈ξ, x− x0〉X∗×X for all x in X.

The set of all subgradients at x0 is called subdifferential of Ω at x0 and is denoted by
∂Ω(x0). If Ω(x0) = ∞ and if there is some x in X with Ω(x) < ∞, then ∂Ω(x0) = ∅.
But also in case Ω(x0) <∞ it may happen that ∂Ω(x0) = ∅.

For X = `1 we have

ξ ∈ ∂(‖ · ‖`1)(x) ⇔ ξk


= 1, if xk > 1,

= −1, if xk < 1,

∈ [0, 1], if xk = 0,

k ∈ N.

An element x minimizes a lower semi-continuous proper convex functional Ω : X →
(−∞,∞] over X if and only if 0 ∈ ∂Ω(x). For minimization with constraints we have
to introduce normal cones: The normal cone of a convex set C at a point x in C is the
set

NC(x) := {ξ ∈ X∗ : 〈ξ, x̃− x〉X∗×X ≤ 0}.

Let Ω : X → (−∞,∞] be proper, convex and lower semi-continuous and let C be a
closed convex set. Then x in C minimizes Ω over C if and only if 0 ∈ ∂Ω(x) +NC(x).

Based on a convex functional Ω : X → (−∞,∞] one can define another convex
functional which expresses the distance between Ω and one of its linearizations at a
fixed point x0: For ξ0 in ∂Ω(x0) the functional BΩ

ξ0
(·, x0) : X → [0,∞] defined by

BΩ
ξ0(x, x0) := Ω(x)− Ω(x0)− 〈ξ0, x− x0〉X∗×X , x ∈ X,

is called Bregman distance with respect to Ω, x0 and ξ0. The Bregman distance can only
be defined for x0 in X with ∂Ω(x0) 6= ∅. Since Ω is assumed to be convex, the Bregman
distance is also convex. The non-negativity of BΩ

ξ0
(·, x0) follows from ξ0 ∈ ∂Ω(x0).

If X is a Hilbert space and Ω = 1
2‖ · ‖2, then ∂Ω(x0) = {x0} and the corresponding

Bregman distance is given by BΩ
x0(·, x0) = 1

2‖x − x0‖2. Thus, Bregman distances can
be regarded as a generalization of Hilbert space norms.
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B. Verification of Assumption 8.15 for
Example 8.20

Here we present the detailed derivation of the results in Example 8.20. The basic setting
for this example was introduced in Subsection 6.4.3. Remember X̃ = Y = L2(0, 1) and
that ẽ1+2l+k denotes the k-th element of level l of the Haar basis in L2(0, 1). The
mapping Ã assigns to a function its antiderivative and Ã∗ has a very similar structure.
The functions in the range of Ã∗ are continuous, have a (generalized) derivative and
are zero at the right end of the interval (0, 1). More precisely, for x̃ in L2(0, 1) and η in
L2(0, 1) we have

x̃ = Ã∗ η ⇔ η = −x̃′, x̃(1) = 0.

We use this observation to construct a sequence (η
(n)
j )j∈N as in Assumption 8.15. Fix

m in N0, j in N and σ in {−1, 0, 1}N and set n := 2m. To simplify notation we write η

instead of η
(n)
j . If we find some x̃ in L2(0, 1) such that

• the Haar transform ξ in `∞ of x̃ satisfies (i),

• ‖(I − Pn) ξ‖`∞ is bounded in terms of j and the bound goes to zero if j →∞,

• x̃ is continuous and piecewise differentiable,

• x̃(1) = 0,

then we are done.

A suitable function x̃ can be constructed as a linear combination of 2m hat-like
functions with disjoint supports, where the upper width of each hat depends on j. For
j = 1 we would have a triangular hat and for j → ∞ we would approximate a box-
shaped hat. Corresponding formulas for the initial hat-like function h(j) and the scaled

translates h
(j)
l,k were given in Example 8.20.

Denoting by ξ the Haar transform of x̃ we have to ensure Pn ξ = Pn σ. For this pur-

pose we construct functions g
(m)
i for i = 1, . . . , 2m such that Pn applied to corresponding

Haar transforms yields the standard unit vectors e(i). Here is the formula:

g
(m)
i := 2−

m
2

2m−1∑
r=0

ẽi

(
r + 1

2

2m

)
h(j)
m,r.

The Haar basis functions ẽi are constant on the intervals ( r
2m ,

r+1
2m ) and each such interval

is the support of the hat-like function h
(j)
m,r. The formula for g

(m)
i thus re-samples the

function graph of ẽi with the help of the hat-like functions. Simple calculations show

131



B. Verification of Assumption 8.15 for Example 8.20

that indeed Pn applied to the Haar transform of g
(m)
i yields the standard unit vector

e(i). Now set

x̃ :=
2m∑
i=1

σi g
(m)
i and η := −x̃′

and denote by ξ the corresponding Haar transform. Then Pn ξ = Pn σ.
Since x̃ is obviously continuous and piecewise differentiable and satisfies x̃(1) = 0 it

remains to calculate a sufficiently small upper bound for ‖(I−Pn) ξ‖`∞ . The symmetry

of the hat-like functions h
(j)
m,r ensures ξ1+2m+r = 0 for r = 0, . . . , 2m − 1. Thus, only

|ξ1+2p+q| for p > m and q = 0, . . . , 2p − 1 have to be considered.
Denote by E∗ the Haar transform operator (cf. Subsection 6.4.3). Then

|ξ1+2p+q| = 2−
m
2

∣∣∣∣∣∣
2m−1∑
r=0

σ1 +
m−1∑
l=0

2l−1∑
k=0

σ1+2l+k ẽ1+2l+k

(
r + 1

2

2m

) [E∗ h(j)
m,r]1+2p+q

∣∣∣∣∣∣
≤ 2−

m
2

2m−1∑
r=0

1 +
m−1∑
l=0

2l−1∑
k=0

∣∣∣∣∣ẽ1+2l+k

(
r + 1

2

2m

)∣∣∣∣∣
 ∣∣[E∗ h(j)

m,r]1+2p+q

∣∣.
From p > m we see that [E∗ h

(j)
m,r]1+2p+q 6= 0 for only one r in {0, . . . , 2m − 1}. Denote

this index r by r(p, q). From l < m we see that the inner sum of the inner double sum
has only one non-vanishing summand. Denote the corresponding index k by k(r, l).
Consequently

|ξ1+2p+q| ≤ 2−
m
2

(
1 +

m−1∑
l=0

∣∣∣∣∣ẽ1+2l+k(r(p,q),l)

(
r(p, q) + 1

2

2m

)∣∣∣∣∣
) ∣∣[E∗ h(j)

m,r(p,q)]1+2p+q

∣∣
≤ 2−

m
2

(
1 +

m−1∑
l=0

2
l
2

) ∣∣[E∗ h(j)
m,r(p,q)]1+2p+q

∣∣
= 2−

m
2

(
1 +

2
m
2 − 1√
2− 1

) ∣∣[E∗ h(j)
m,r(p,q)]1+2p+q

∣∣
=

(√
2− 2√
2− 1

2−
m
2 +

1√
2− 1

) ∣∣[E∗ h(j)
m,r(p,q)]1+2p+q

∣∣
≤ 1√

2− 1

∣∣[E∗ h(j)
m,r(p,q)]1+2p+q

∣∣
and∣∣[E∗ h(j)

m,r(p,q)]1+2p+q

∣∣
≤ sup

{∣∣[E∗ h(j)
m,r]1+2l+k

∣∣ : r ∈ {0, . . . , 2m − 1}, l > m, k ∈ {0, . . . , 2l − 1}
}
.

The supremum does not change if we only consider r = 0. In addition, from simple
geometric considerations we see that for r = 0 and fixed l the objective function is
maximized at k = 0. Hence,

|ξ1+2p+q| ≤
1√

2− 1
sup
{∣∣[E∗ h(j)

m,0]1+2l+0

∣∣ : l > m
}
.
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For m < l ≤ m+ j − 1 we have

∣∣[E∗ h(j)
m,0]1+2l+0

∣∣ =

∣∣∣∣∣∣
1∫

0

ψl,0(t)h
(j)
m,0(t) dt

∣∣∣∣∣∣ =

∣∣∣∣ 1

1− 2−j
2
l−m
2
−j−1

∣∣∣∣ ≤ ∣∣∣∣ 1

1− 2−j
2−

j
2
− 3

2

∣∣∣∣
and for l ≥ m+ j we have

∣∣[E∗ h(j)
m,0]1+2l+0

∣∣ =

∣∣∣∣∣∣
1∫

0

ψl,0(t)h
(j)
m,0(t) dt

∣∣∣∣∣∣ =

∣∣∣∣ 1

1− 2−j
2

3
2

(m−l)+j−2

∣∣∣∣ ≤ ∣∣∣∣ 1

1− 2−j
2−

j
2
−2

∣∣∣∣ .
In both cases

|ξ1+2p+q| ≤
1√

2− 1

∣∣∣∣ 1

1− 2−j
2−

j
2
− 3

2

∣∣∣∣ ≤ 1√
2− 1

∣∣∣2 · 2− j2− 3
2

∣∣∣ =
1

2−
√

2
2−

j
2 .

This proves the bound

‖(I − Pn) ξ‖`∞ ≤
2−

j
2

2−
√

2

and the bound goes to zero if j →∞.

Now, that Assumption 8.15 has been verified, we calculate the constant γn in Theo-
rem 8.17. We keep all the notation introduced so far. We have

‖η‖2Y ∗ = 2−m
2m−1∑
r=0

σ1 +
m−1∑
l=0

2l−1∑
k=0

σ1+2l+k ẽ1+2l+k

(
r + 1

2

2m

)2 r+1
2m∫
r

2m

(
h(j)
m,r

)′
(t)2 dt

and

r+1
2m∫
r

2m

(
h(j)
m,r

)′
(t)2 dt =

r+1
2m∫
r

2m

(
2

3
2
m
(
h(j)
)′

(2m t− r)
)2

dt = 22m

1∫
0

(
h(j)
)′

(t)2 dt,

which leads to

‖η‖2Y ∗ = 2m

 1∫
0

(
h(j)
)′

(t)2 dt

 2m−1∑
r=0

σ1 +
m−1∑
l=0

2l−1∑
k=0

σ1+2l+k ẽ1+2l+k

(
r + 1

2

2m

)2

.

Above, when estimating ξ1+2p+q, we saw that the inner double sum can be bounded
above by

m−1∑
l=0

2l−1∑
k=0

σ1+2l+k ẽ1+2l+k

(
r + 1

2

2m

)
≤ 2

m
2 − 1√
2− 1

.
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Thus,

‖η‖2Y ∗ ≤ 2m

 1∫
0

(
h(j)
)′

(t)2 dt

 2m−1∑
r=0

(
1 +

2
m
2 − 1√
2− 1

)2

= 22m

 1∫
0

(
h(j)
)′

(t)2 dt

 (
1 +

2
m
2 − 1√
2− 1

)2

= 22m

(
1 +

2
m
2 − 1√
2− 1

)2
2j+1

(1− 2−j)2

and therefore

γn ≤ ‖η‖Y ∗ ≤ 2m

(
1 +

2
m
2 − 1√
2− 1

)
2
j+1
2

1− 2−j
≤ 2m

2
m
2√

2− 1
2
j
2

+ 3
2 ≤ 2

√
2√

2− 1
2
j
2
(
2m
) 3

2 .

The index j has to be chosen large enough to ensure ‖(I − Pn)A∗ η‖`∞ ≤ 1−β
1+β for

prescribed β in (0, 1). Since we have already seen

‖(I − Pn)A∗ η‖`∞ ≤
2−

j
2

2−
√

2

a suitable choice for j is

j(β) :=

⌈
2

ln 2
ln

1 + β

(2−
√

2) (1− β)

⌉
.
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C. Variational source conditions for
nonlinear equations in Banach spaces

Complementing Theorem 4.4 we proof an analogous result for Tikhonov regularization
with convex penalties in Banach spaces, which has not been published elsewhere up to
now. Let X and Y be Banach spaces and let F : X ⊇ D(F ) → Y be a (nonlinear)
mapping. To obtain approximate but stable solutions to the possibly ill-posed equation

F (x) = y†, x ∈ D(F ), (C.1)

with exact right-hand side y† from the range of F we search for minimizers of the
Tikhonov-type functional

T δα(x) := ‖F (x)− yδ‖p + αΩ(x), x ∈ D(F ).

Here, yδ in Y is the available data and is assumed to satisfy

‖yδ − y†‖ ≤ δ

for a positive noise level δ and Ω : X → (−∞,∞] is a convex functional. We assume
p > 1 and α > 0.

To guarantee existence, stability and convergence of the minimizers the following
assumptions suffice (cf. [SKHK12, Section 4.1] or [Fle12, Chapter 3])

Assumption C.1. Let X, Y , F and Ω be as introduced above. In addition we assume
that

(i) F is weakly sequentially continuous,

(ii) D(F ) is weakly sequentially closed,

(iii) Ω is convex and proper,

(iv) the sublevel sets of Ω are weakly sequentially compact.

As sufficient condition for convergence rates one may consider variational source
conditions

β BΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ϕ(‖F (x)− F (x†‖), x ∈ D(F ), (C.2)

where β > 0, ϕ is a concave index function and BΩ
ξ†

denotes the Bregman distance with

respect to Ω and to a subgradient ξ† of Ω at an Ω minimizing solution x† to (C.1). Note
that Ω minimizing solutions always exist under Assumption C.1.
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Variational source conditions (C.2) are known to imply convergence rates

BΩ
ξ†(x

δ
α, x

†) = O(ϕ(δ)), if δ → 0,

with xδα denoting the Tikhonov minimizers, if α is chosen properly in dependence on δ,
see [SKHK12, Section 4.2] or [Fle12, Chapter 4].

The questions is, under which conditions variational source conditions are satisfied.
This question has been discussed extensively in [Fle12, Part III] and has been solved
there for linear mappings in Hilbert spaces, see also [AEdHS16, HW17]. The following
Theorem provides an answer in case of nonlinear mappings in Banach spaces.

Theorem C.2. Let Assumption C.1 be true and assume that there is only one solution
x† to (C.1). Then there are a positive constant β with β < 1 and a concave index
function ϕ such that the variational source condition (C.2) holds on D(F ).

Proof. To obtain a variational source condition (C.2) we use the concept of approximate
variational source conditions introduced in [Fle12, Section 12.1.5]. That is, for fixed β
with β < 1 we define a distance function Dβ : [0,∞)→ [0,∞) by

Dβ(r) := sup
x∈D(F )

(
β BΩ

ξ†(x, x
†)− Ω(x) + Ω(x†)− r ‖F (x)− F (x†)‖

)
.

We immediately see 0 ≤ Dβ(r) < ∞ for all r. Further, Dβ is convex, monotonically
decreasing and continuous. The distance function Dβ expresses the violation of a varia-
tional source condition with linear ϕ and allows to derive a variational source condition
with some (nonlinear) ϕ if Dβ(r)→ 0 for r →∞. To see this we estimate

β BΩ
ξ†(x, x

†)− Ω(x) + Ω(x†)

= inf
r≥0

(
β BΩ

ξ†(x, x
†)− Ω(x) + Ω(x†)− r ‖F (x)− F (x†)‖+ r ‖F (x)− F (x†)‖

)
≤ inf

r≥0

(
Dβ(r) + r ‖F (x)− F (x†)‖

)
and show that

ϕ(t) := inf
r≥0

(
Dβ(r) + r t

)
, t ≥ 0,

defines a concave index function. Obviously, 0 ≤ ϕ(t) <∞ and ϕ is monotonically in-
creasing. Since ϕ is an infimum of affine functions, it is concave, upper semi-continuous
and continuous on (0,∞). Monotonicity and upper semi-continuity imply continuity
on [0,∞). The decay of Dβ to zero yields ϕ(0) = 0 and by Dβ(0) > 0 we see ϕ(t) > 0
for t > 0, that is, ϕ is strictly increasing in a neighborhood of zero.

Next, we show that for each r the supremum in the definition of Dβ(r) is attained
at some x. Rearranging the terms in the supremum and flipping the sign we obtain a
functional

x 7→ (1− β)
(
Ω(x)− Ω(x†)

)
+ β 〈ξ†, x− x†〉+ r ‖F (x)− F (x†)‖. (C.3)

Let (xn)n∈N be a sequence for which the values of the functional become arbitrarily
close to the functional’s infimum. Then this functional is bounded by some constant c
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on this sequence. Weak compactness of the sublevel sets of Ω implies that there are a
positive constant c1 and a constant c2 such that

Ω(x) ≥ c1 ‖x‖+ c2 for all x in X,

see [Zăl02, Exercise 2.41 and pages 324–326]. With this observation we obtain

c ≥ (1− β)
(
Ω(xn)− Ω(x†)

)
+ β 〈ξ†, xn − x†〉+ r ‖F (xn)− F (x†)‖

≥ (1− β)
(
Ω(xn)− Ω(x†)

)
− β ‖ξ†‖

(
‖xn‖+ ‖x†‖

)
≥ (1− β)

(
Ω(xn)− Ω(x†)

)
+ β ‖ξ†‖ c2 − Ω(xn)

c1
− β ‖ξ†‖ ‖x†‖

≥
(

1− β
(

1 +
‖ξ†‖
c1

))
Ω(xn)− (1− β) Ω(x†) + β ‖ξ†‖ c2

c1
− β ‖ξ†‖ ‖x†‖.

Thus, if β is small enough, the sequence (Ω(xn))n∈N is bounded. Now weak compactness
of the sublevel sets of Ω implies that there is a weakly convergent subsequence and weak
lower semi-continuity of (C.3) implies that the corresponding limit minimizes (C.3).
Consequently, the supremum in the definition of Dβ is attained for each r.

Now let (rn)n∈N be a sequence in [0,∞) with rn →∞ and let (xn)n∈N be a sequence
of corresponding maximizers in the definition of Dβ. To complete the proof we have to
show Dβ(rn)→ 0. With the same arguments as above we see

0 ≤ Dβ(rn)

≤ −
(

1− β
(

1 +
‖ξ†‖
c1

))
Ω(xn) + (1− β) Ω(x†)− β ‖ξ†‖ c2

c1
+ β ‖ξ†‖ ‖x†‖,

which implies that (Ω(xn))n∈N is bounded. Therefore (xn)N contains a weakly conver-
gent subsequence with limit x̃. The subsequence again will be denoted by (xn)n∈N. Since
xn realizes the supremum in the definition of Dβ(rn) and because we have Dβ(rn) ≥ 0,
we see

rn ‖F (xn)− F (x†)‖ ≤ β BΩ
ξ†(xn, x

†)− Ω(xn) + Ω(x†)

and the right-hand side is bounded, again same arguments as above. This implies
F (xn) → F (x†) and together with the weak continuity of F we obtain F (x̃) = F (x†),
that is, x̃ = x† by assumption. Eventually,

0 ≤ lim inf
n→∞

Dβ(rn) ≤ lim sup
n→∞

Dβ(rn) = − lim inf
n→∞

(
−Dβ(rn)

)
= − lim inf

n→∞

(
(1− β)

(
Ω(xn)− Ω(x†)

)
+ β 〈ξ†, xn − x†〉+ rn ‖F (xn)− F (x†)‖

)
≤ − lim inf

n→∞

(
(1− β)

(
Ω(xn)− Ω(x†)

)
+ β 〈ξ†, xn − x†〉

)
≤ −

(
(1− β)

(
Ω(x†)− Ω(x†)

)
− β 〈ξ†, x† − x†〉

)
= 0,

which proves Dβ(rn)→ 0.

The theorem shows that variational source conditions are widely applicable. Assump-
tion C.1 is typically used to prove existence, stability and convergence of Tikhonov
minimizers. Without additional assumptions, except for uniqueness of the solution,
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C. Variational source conditions for nonlinear equations in Banach spaces

convergence rates can be obtained. The function ϕ is not given explicitly here, but
with the above result we now know that there is a function ϕ. That is, variational
source conditions are the right tool for convergence rate analysis in Banach spaces.

An analogous result has been obtained in [MH08] for general source conditions in
Hilbert spaces: there is always an index function such that the corresponding general
source condition is satisfied.
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Theses

1. Nonlinear ill-posed equations F (x) = y†, x ∈ X, are hard to handle without addi-
tional knowledge about the type of nonlinearity. In several applications, especially
in laser optics, nonlinear mappings with quadratic structure appear naturally.
Thus, there is a need for deeper investigation of quadratic inverse problems.

2. Standard Tikhonov regularization can be applied to quadratic mappings, but
numerical calculation of corresponding regularized solutions is difficult. Under
strong assumptions the TIGRA method is able to find the regularized solutions.

3. The set of quadratic mappings between two Hilbert spaces forms a normed vector
space. To some extent notions from the world of linear operators can be carried
over to quadratic mappings. For example, the notion of quadratic isometries can
be justified and utilized.

4. Every continous quadratic mapping F can be decomposed into a quadratic isom-
etry Q and a linear operator A, that is, F = AQ. Based on such decompositions,
stable solution methods for quadratic equations can be developed. Applying clas-
sical regularization techniques to the linear part A and then inverting the well-
posed isometry Q yields competitive numerical results.

5. Classical convergence rates theory for nonlinear equations bases on source condi-
tions. For quadratic mappings it turns out that this technique is not applicable.
Variational source conditions are a recourse. In case of quadratic mappings a
variational source condition is always satisfied if the involved index function is
chosen properly.

6. If the solution of a quadratic equation is sparse with respect to some basis and
the basis satisfies additional assumptions, then variational source conditions and,
thus, convergence rates for regularized solutions can be proven. The rates then
depend on the number of non-vanishing coefficients or, if this number is infinite,
on the decay of the coefficients.

7. Sparsity promoting regularization methods, especially `1-regularization, are wide-
ly used in signal processing. They have a strong theoretic backing, but some
questions had not been answered until recently. For example error estimates
for `1-regularization with linear operators in case of non-sparse solutions or non-
injective operators were lacking.

8. Operator equations with `1 as preimage space are always ill-posed and thus require
regularization.
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Theses

9. Source-type conditions, that is, Banach space source conditions and approximate
source conditions, never are satisfied for operators defined on `1. Therefore, error
estimates or convergence rates cannot be obtained this way.

10. Convergence rates in case of non-sparse solutions can be shown if the canonical
basis of `1 is smooth with respect to the operator, that is, the basis elements
belong to the range of the adjoint. This is the case in many applications, but
there exist operators, with respect to which the canonical basis is not smooth.

11. In case of non-smooth bases weakened assumptions also lead to convergence rates.
If the linear operator is injective and weak*-to-weak continuous, then such as-
sumptions are always satisfied.

12. For non-injective operators source-type conditions can be formulated which imply
convergence rates for sparse and non-sparse solutions. The error measure then is
the distance between a point and the set of solutions. The developed source-type
condition is quite technical, but can be verified for different concrete operators.
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