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Summary 

Organ formation is an important step during development of an organism that combines 

different scales from the molecular to the tissue level. Many organogenesis phenomena 

involve epithelial morphogenesis, where sheets of cells undergo rearrangements to form 

complex architectures – organ precursors, which subsequently develop into mature organs. 

Timely development of the characteristic architectures of the organ precursors is crucial for 

successful organogenesis and is determined by the choice of epithelial rearrangements that 

organise the constituent cells in space and time. However, for many organogenesis events 

the cellular dynamics underlying such epithelial rearrangements remain elusive. 

 

In the work presented here, I investigated the morphogenesis of the hemispherical retinal 

neuroepithelium (RNE), that serves as an organ precursor of the neural retina. Formation of 

RNE is an important event in vertebrates that shapes the optic cup and sets the stage for 

subsequent eye development. I investigated RNE morphogenesis in the developing 

zebrafish embryo by visualising and investigating the cellular dynamics of the process in 

vivo. My findings show that the zebrafish RNE is shaped by the combined action of two 

different epithelial rearrangements – basal shrinkage of the neuroepithelial cells and 

involution of cells at the rim of the developing optic cup. The basal shrinkage of the 

neuroepithelial cells bends the neuroepithelial sheet and starts the process of invagination. 

However, my results show that the major player in RNE morphogenesis is rim involution. 

Rim involution translocates prospective RNE cells to their designated location in the 

invaginating layer and contributes to RNE invagination. My work unravelled the so far 

unknown mechanism of rim involution. I show that the rim cells involute by collective 

epithelial migration using directed membrane protrusions and dynamic cell-matrix contacts. 

If rim migration is perturbed, the prospective RNE cells cannot reach the invaginating layer. 

As a result, these migration-defective cells attain the RNE fate at an ectopic location and 

disrupt the tissue architecture. Therefore, rim migration coordinates the cellular location with 

the timing of RNE fate determination and orchestrates RNE morphogenesis in space and 

time. Overall, my work highlights how morphogenetic processes shape the organ precursor 

architecture and ensure timely organ formation. These findings provide important insights 

not only for eye development but also for epithelial morphogenesis and organogenesis in 

many other systems.  
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Zusammenfassung 

Für die Entwicklung eines Organismus ist die Bildung von Organen (Organogenese) von 

zentraler Bedeutung. Organogenese umfasst Prozesse auf allen Ebenen der Längenskala: 

von der molekularen Ebene, der Gewebeebene, bis hin zur Ebene des ganzen Organismus. 

Viele Phänomene der Organogenese beinhalten dabei Veränderungen von Epithelien, bei 

der sich Schichten von Zellen zu komplexen Strukturen - Organvorläufern - umwandeln. 

Diese entwickeln sich später zu vollständigen Organen. Die rechtzeitige Entwicklung der 

charakteristischen Architektur der Organvorläufer ist entscheidend für eine erfolgreiche 

Organogenese und wird durch die Wahl der epithelialen Umwandlungsprozessen bestimmt, 

welche die Zellen in Raum und Zeit koordinieren müssen. Für viele dieser Prozesse ist 

jedoch genau diese zugrundeliegende Zelldynamik unklar. 

 

In der hier vorgestellten Arbeit untersuchte ich die Bildung des hemisphärischen retinalen 

Neuropepithels (RNE). Das RNE ist der Organvorläufer der neuralen Retina, weshalb 

dessen korrekte Bildung die Voraussetzung für die korrekte Entwicklung der Augen ist. Ich 

untersuchte die RNE-Morphogenese in sich entwickelnden Zebrafisch-Embryos durch 

Visualisierung und Untersuchung der zellulären Dynamik der beteiligten Prozesse in vivo. 

Meine Ergebnisse zeigen, dass das RNE in Zebrafischen durch die kombinierte 

Umwandlung von zwei verschiedenen Epithelien geformt wird. Zum einen findet eine 

Verkleinerung des basalen Prozesses der neuroepithelialen Zellen statt, zum anderen die 

Involution von Randzellen. Die basale Verkleinerung der neuroepithelialen Zellen verbiegt 

die neuroepitheliale Schicht und führt zur Einstülpung des RNE. Meine Ergebnisse zeigten 

allerdings, dass Involution von Randzellen noch bedeutsamer für die RNE-Morphogenese 

ist. Die involution von Randzellen transportiert potenzielle RNE-Zellen in das Neuroepithel 

und trägt zur RNE-Einstülpung bei. Die Bedeutung meiner Arbeit liegt darin, den bisher 

unbekannten Mechanismus der Randzell-Involution entdeckt zu haben. Ich zeigte, dass die 

Randzellen sich aktiv durch kollektive epitheliale Migration bewegen indem sie gerichtete 

Membranforsätze und dynamische Zell zu Matrix Kontakte etablieren. Wird die Migration der 

Randzellen inhibiert, so führt dies dazu, dass diese Zellen die eingestülpte RNE Schicht 

nicht erreichen. Sie landen dann an den falschen Positionen, wo sie die Gewerbearchitektur 

stören können. Daher koordiniert die Randzellmigration die Position der Zellen und 

orchestriert die RNE-Morphogenese in Raum und Zeit. Insgesamt zeigt meine Arbeit, wie 

morphogenetische Prozesse die Organvorläuferarchitektur prägen und eine rechtzeitige 

Organbildung sicherstellen. Diese Erkenntnisse sind sowohl für das Verständnis der 

Augenentwicklung, als auch für das der epithelialen Morphogenese und Organogenese in 

anderen Systemen von großer Bedeutung.  
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1. Introduction 

A milestone in the evolution of multicellular organisms has been the hierarchical organisation 

of cells into tissues and in turn into organs/organ systems. It has allowed division of labour 

for different physiological functions and has led to the emergence of a wide range of organs, 

varying in their function, size and shape. For example, formation of photosensitive cells 

allowed the early bilaterians to sense light. Later, the coevolution of an ‘eye-vesicle’ and a 

translucent layer of skin cells over this light sensing organ probably allowed the detection of 

shadows. Finally, the invagination of the translucent cells to form a simple lens allowed 

image-forming capabilities and led to the basic design of the vertebrate camera-like eye 

(Gregory, 2008; Lamb et al., 2007). Thus, the hierarchical organisation of cells into more 

complex structures has possibly improved the fitness of organisms by supporting and 

elaborating novel biological structures such as an eye or a wing and complex traits such as 

sensory perception, locomotion, immunity or cognition. Not surprisingly, a defect in the 

structure and function of the organs may impact the fitness and even survival of the 

organisms. Therefore, it is important to understand how cells form organs and what 

determines the final structure and possibly the function of a given organ. 

 

To answer the above questions, one needs to inspect the development of an organism and 

study organogenesis, the process of organ formation. The importance of organogenesis is 

highlighted by various developmental disorders resulting from genetic or environmental 

factors that disturb the process of organogenesis and lead to organ malfunction. For 

example, autosomal recessive primary microcephaly, characterised by small brain size, 

results from the defects in neurogenesis during fetal brain development (Cox et al., 2006; 

Megraw et al., 2011). In another example, the drug Thalidomide shows teratogenic effects 

when prescribed to pregnant women and severely affects the fetal limb development 

(D'Amato et al., 1994). Therefore, understanding how different organs form is a fundamental 

question in biology, relevant for wide topics including developmental biology, evolutionary 

biology, synthetic biology (for tissue and organoid engineering) as well as biomedical 

research.  

 

In this chapter, I will discuss the general principles of organogenesis and its spatiotemporal 

organisation (1.1). Next, I will introduce epithelial organogenesis (1.2) and I will describe the 

molecular and cellular features of epithelial cells (1.2.1). Then, I will summarise different 

cellular rearrangements involved in diverse contexts of morphogenesis of epithelial tissues 

(1.2.2) and focus on two major epithelial rearrangements, namely invagination (1.2.3) and 
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collective epithelial migration (1.2.4). Finally, I will introduce the organogenesis process that 

is focus of my work: morphogenesis of the retinal neuroepithelium during vertebrate optic 

cup formation (1.3). I will discuss the current literature with open questions, the model 

system of choice and finish with the specific aims of my work.  

1.1 Organogenesis: From organ precursor to mature organs, a cellular 

choreography in space and time  

Organogenesis is a complex multi-scale process that involves changes at the molecular, 

cellular and tissue level that collectively build a biological structure to perform a certain 

bodily function. It is an emergent feature of collective action of genetic (patterning, signalling 

and gene regulation), cellular (intracellular machineries of cytoskeleton, adhesion, polarity 

etc.) and mechanical factors (forces generated and/or experienced by a cell) that feedback 

onto each other to shape the organ (Gilmour et al., 2017) (Summarised in Figure 1.1). 

Organogenesis starts after gastrulation, when the embryonic cells are organised into 

different germ layers, and continues throughout the development of the organism and even 

after the birth in case of some organs. Initially, the cells in the germ layers are organised into 

distinct ‘tissue anlage’ either as sheets of connected cells, the so-called ‘epithelia’ or lumps 

of loose cells, the so-called ‘mesenchyme’. At specific locations guided by patterning cues, 

such sheets or lumps of cells (sometimes alternating in their form) organise into distinct 

architectures to build ‘organ precursors’. Subsequently, these organ precursors grow and 

mature to give rise to the adult organs. For instance, during embryonic development of 

Drosophila, at specific locations epithelial cells of the ectoderm invaginate to form the 

imaginal discs. These imaginal discs serve as organ precursors and subsequently develop 

into different organs in the adult fly such as the eyes and the appendages (Morata, 2001). In 

another example, the vertebrate presomitic mesoderm, which is mesenchymal in nature, 

organises into somites that later give rise to structures such as vertebrae and muscles 

(Maroto et al., 2012). Thus, organogenesis is a hierarchical process and understanding it 

requires studying two important aspects: A. Processes that regulate ‘spatial organisation’ of 

cells and govern the organ architecture and B. ‘Temporal regulation’ of events that couple 

different processes to coordinate the timely organ formation. These two aspects are 

discussed below. 

1.1.1 Spatial organisation during organogenesis 

Organogenesis is regulated at the global level by external signals (developmental signaling, 

extracellular matrix (ECM) and mechanics) and locally orchestrated by the intracellular 

machinery (cytoskeleton, adhesion, polarity, trafficking etc.). Both global and local factors 
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ultimately influence the morphology, number and location of cells to guide their spatial 

organisation and 3D architecture (Lecuit and Le Goff, 2007). Often, the 3D architecture of a 

mature organ is crucially linked with its function and hence it is important to specify the 

correct architecture of the organ precursor early on during organ development. If the 

formation of the organ precursor architecture is impaired, the structure and function of the 

mature organ can be compromised. For instance, early defects in the formation of the wing 

imaginal disc can later result in blistered wings (Dominguez-Gimenez et al., 2007). Similarly, 

problems in closure of the neural tube, the organ precursor of the brain and the spinal cord, 

can generate severe birth defects in mammals such as spina bifida (incomplete closure of 

bones around the spinal cord raising the risk of nerve damage) or anencephaly (missing part 

of forebrain) (Greene and Copp, 2014). Therefore, the formation of organ precursors lays 

the foundation for subsequent organogenesis steps. Thus, understanding how cells are 

organised spatially into distinct tissue architectures is an important aspect in organogenesis. 

It requires investigating the role of the external signals as well as the cellular machinery. 

 

 

Figure 1.1: A schematic cartoon of hierarchical organisation of organogenesis and its 

regulators. 

Under the influence of the genetic, cellular and mechanical factors, cells organise into tissues and 

organ precursors which later mature and grow to form organs. The process is well-coordinated in 

space and time. The schematic shows an example of the hierarchical organisation of development of 

an insect wing. 
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1.1.2 Temporal regulation of organogenesis  

An additional crucial component of organogenesis is ‘time’. Timely development of the 

organs is important to start their function at the appropriate developmental stage, which can 

be crucial for the survival of the organism. This ‘time management’ occurs at multiple levels. 

At the cellular level, timely gene expression regulates the cell cycle, the cell differentiation 

program and the cellular behaviours. This is best exemplified by the segmentation clock that 

regulates somitogenesis. The periodic expression of genes in the presomitic mesoderm is 

coupled with the differentiation program to form a new somite boundary and sets the pace of 

somitogenesis (Maroto et al., 2012). The timely coordination of development also occurs at 

the tissue level. Development of different tissues and organs is often interdependent (e.g. 

through signaling mechanisms or mechanical coupling) and thus, requires the respective 

tissues to develop on time. For example, the development and growth of the brain and the 

skull are coordinated in time. Premature fusion of one or more cranial sutures 

(craniosynostosis) has severe impact on brain development and results in distortion of skull 

shape and associated cognitive defects (Johnson and Wilkie, 2011). Finally, the timing of 

organogenesis is also regulated at the organismal level. Every species has a very 

stereotypic developmental time course. For instance, the teleost fish, medaka and zebrafish 

differ significantly in their developmental timeline (Furutani-Seiki and Wittbrodt, 2004). Even 

in such species from the same class, the development of the same organs can differ in time, 

indicating possible differences in the mechanisms utilised during organogenesis. 

Deciphering the reasons underlying such differences is also crucial to understand the aspect 

of timing in organogenesis.  

 

Taken together, organogenesis is an important step in the life history of an organism. An 

early defect in organ formation can impact the functioning of the mature organ and possibly 

the fitness of the organism, depending on the organ and the severity of the phenotype. Yet, 

in majority of the cases the development is robust. Many of the genetic and environmental 

perturbations are tolerated by the organisms and cause very low phenotypic variation (Felix 

and Barkoulas, 2015). Such robustness is partly achieved by the use of multiple redundant 

strategies for a biological process (Felix and Barkoulas, 2015) and allows formation of 

stereotypic organ structures in a reproducible and timely manner. Therefore, to understand 

organogenesis in a holistic manner it is also crucial to understand how the mechanisms 

regulating spatial and temporal organisation of the process contribute to the robustness of 

organ formation. 
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1.2 Epithelial organogenesis: Transforming epithelial sheets into 

diverse 3-dimensional architectures 

Many organs in the metazoan body including the central nervous system, the epidermis, and 

the organs of the gut develop from epithelia. Epithelia are a type of tissue composed of 

sheet of cells adhering to each other via cell-cell junctions. They have remarkable ability to 

remodel their cellular organisation and shape. Furthermore, the mechanical coupling of the 

epithelial cells allows tissue-wide coordination of cellular behaviours. These properties 

possibly make epithelia a good choice of tissue to build various organs. In this section, I 

introduce the hierarchical organisation of epithelial organogenesis. I first discuss the typical 

features of an epithelial cell and its molecular toolkit. Next, I discuss how the epithelial cells 

use the molecular toolkit to create cellular changes. Finally, I describe how the cellular 

changes drive tissue rearrangements to shape the 3-D architecture of epithelial organs and 

organ precursors. 

1.2.1 The molecular toolkit and cellular attributes of epithelial cells 

Cellular adhesion and polarity are the defining features of epithelia that guide epithelial 

properties, morphogenesis as well as function (Fristrom, 1988). Epithelial cells are polarised 

with distinct apical and basolateral plasma membrane domains with different lipid and 

protein composition. The apicobasal polarity also translates into polarised distribution of 

various cellular organelles and components and allows the two membrane domains to have 

distinct features. The prominent cellular features showing polarised localisation are the 

components of the adhesion and cytoskeletal machinery. Apically, epithelial cells are 

attached to each other by adherens junctions. The adherens junctions closely interact with 

apical actin cytoskeleton and stabilise the cell shape by maintaining the cell-cell contacts 

(Harris and Tepass, 2010). More mature epithelia are further connected apically via 

tight/septate junctions that segregate the apical and basolateral plasma membrane domains. 

In the majority of epithelia, the centrosome is also located apically, where it anchors the 

primary cilium and organises apico-basal microtubule arrays (Tang and Marshall, 2012). At 

the basal side, epithelia are lined by a layer of ECM, the basal lamina, rich in proteins such 

as laminin, nidogen, perlecan and type IV collagen (Jayadev and Sherwood, 2017; 

Yurchenco, 2011). The basal lamina is crucial for the survival of the epithelial cells and 

serves as the initial cue to establish apicobasal polarity in many systems (Morrissey and 

Sherwood, 2015). Epithelial cells attach to the basal lamina using integrin based focal 

adhesions, which closely interact with the actin cytoskeleton and stabilise the cellular 

location on the lamina. Together these features define the archetypical epithelial 

characteristics (summarised in Figure 1.2) that build stable sheets of cells. 
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Figure 1.2: Cellular attributes of an epithelial cell 

Schematic cartoon of an epithelial sheet and a typical epithelial cell showing the hallmark features of 

apicobasal polarity and adhesion. 

 

In addition, epithelial cells also share the basic molecular toolkit common to many other cells 

in the body. It includes the cytoskeleton, cytoskeletal regulators and trafficking machinery. 

1) The actin and microtubule cytoskeleton play an important role in defining the cell shape. 

An important player in this process is the cell cortex, a thin crosslinked actin network located 

beneath the plasma membrane (Salbreux et al., 2012). The myosin motor activity makes the 

cell cortex contractile and other components of the cortex such as the ERM family proteins 

connect this contractile actomyosin network to the plasma membrane. Therefore, the 

contractile properties of the cortex directly feedback onto the plasma membrane and thereby 

regulate the cellular stiffness and the cell shape (Salbreux et al., 2012). For example, an 

increase in the cortical contractility shrinks the surface area of the cell. A local detachment of 

the cortex from the plasma membrane releases the local cortical tension and can result in 

formation of a membrane protrusion called ‘bleb’ (Charras and Paluch, 2008). 2) All the 

cytoskeletal assemblies are controlled by ‘cytoskeletal regulators’ that regulate nucleation, 

elongation, cross-linking and depolymerisation of the cytoskeletal filaments. For example, 

Rho GTPases play an important role in forming growing-actin-networks by facilitating actin 

polymerization or in forming contractile actin-networks by activating myosin contractility 

(Heasman and Ridley, 2008). 3) The cytoskeleton also plays an important role in trafficking 

of cellular components. The trafficking machinery includes machineries of endocytosis and 

exocytosis that deliver membrane and proteins to different cellular locations. All these 

components together form the basic molecular toolkit of cells. However, this raises the 

question: how do epithelial cells use this generic molecular toolkit to bring about specific 

cellular changes that can guide epithelial tissue rearrangements? 

 

The unique property of epithelial cells to remodel their cellular organisation and shape is 

attributed to polarity and adhesion that help in localised activation of the cytoskeletal 
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regulators and polarised trafficking machinery. Ultimately, the action of these factors 

modulates the plasma membrane/cortical domains, the adherens junctions or the focal 

adhesions to bring about the cellular changes. This way the molecular toolkit of epithelial 

cells produces cellular changes that can drive tissue-level changes (summarised in Figure 

1.3).  

1) Modulating plasma membrane domains: Uniform change in the plasma membrane 

area allows the cells to change in size. On the other hand, change in the area of specific 

plasma membrane domains allows the cells to change their shape. For example, a change 

in the lateral domains can modulate the cell height (Figure 1.3A) and a change in the apical 

or basal membrane area can transform the cell morphology to cone-like (Figure 1.3B). Such 

plasma membrane modulations often involve polarised trafficking (endocytosis/exocytosis) 

and change in cortical actomyosin contractility. Alternatively, the plasma membrane can be 

modulated by extending membrane protrusions. The force for the protrusion formation is 

often supported by local actin polymerisation and generates different types of cellular 

protrusions. Activation of Rho GTPase Rac promotes branched actin networks and broad, 

flat protrusions called lamellipodia (Heasman and Ridley, 2008). On the other hand, 

activation of Rho GTPase Cdc42 promotes bundled actin networks and thinner and longer 

protrusions called filopodia (Heasman and Ridley, 2008). Such protrusions are usually 

transient and allow the cell to explore its environment. If they persist long enough, these 

protrusions can support formation of new integrin-mediated adhesions to the basal lamina 

and thus cell migration (Figure 1.3E) (Krause and Gautreau, 2014). 

2) Modulating adherens junctions: Adherens junctions and the associated actin 

cytoskeleton resist the cortical tension and stabilise the cell shape by maintaining the cell-

cell contacts. Therefore, activation of actomyosin contractility at specific cell-cell contacts 

can modulate the epithelial cell shape (Harris and Tepass, 2010). Constricting all cell-cell 

contacts can drive apical constriction (Figure 1.3B). In contrast, constricting specific cell-cell 

contacts can help the cells in intercalation (Figure 1.3C). Adherens junctions are also 

essential for epithelial integrity and loss of adherens junction can result in delamination of 

the cell, a mechanism utilised in epithelial-to-mesenchymal transition (Figure 1.3D) (Harris 

and Tepass, 2010).  

3) Modulating cell-ECM attachment: Turnover of cell-matrix attachment supports 

migration. The lamellipodia-like plasma membrane protrusions provide the cell an 

opportunity to form new integrin mediated adhesions to the basal lamina at this new ‘leading 

edge’. The detachment from the other ‘rear edge’ allows the cell to contract its rear side and 

propel forward using the traction force generated by the new focal contacts. Repeated 

cycles of directed leading edge protrusions, focal contact turnover and lagging-edge 

contraction brings effective cell migration (Ridley et al., 2003) (Figure 1.3D,E).  
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Figure 1.3: Epithelial morphogenesis: molecular toolkit, cellular changes and tissue 

rearrangements.  

Schematic drawing showing the molecular modulations and the effective cellular changes, which 

shape the epithelial tissues.  

A) Epithelial thinning and thickening creates different forms of epithelia.  

B) Epithelial bending or invagination 

C) Epithelial convergent extension changes the aspect ratio of the tissue.  

D) Epithelial-to-mesenchyme transition (EMT): Cells lose epithelial integrity and become migratory. 

E) Collective epithelial migration. 
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1.2.2 Epithelial rearrangements: different cellular strategies to mold the 

epithelial tissues 

The molecular and cellular changes described in the previous section support tissue level 

rearrangements and shape different epithelial 3-D architectures. These cellular modulations 

combined with proliferation and apoptosis ultimately result in combinations of changes in the 

size, shape, number or location of epithelial cells (Lecuit and Le Goff, 2007), which guide the 

shape and architecture of the epithelium. Here, I highlight the major epithelial 

rearrangements commonly seen in epithelial morphogenesis and describe how the cellular 

changes can shape the tissues with some examples (Figure 1.3). In addition, Table 1 enlists 

a few examples of well-studied epithelial organogenesis systems and the underlying tissue 

rearrangements that shape the distinct tissue architectures. The diverse ways in which 

epithelial sheets rearrange enable generation of the varied and distinct organ architectures.  

 

1. Epithelial thinning or thickening: A uniform change in the shape of the cells in the plain 

of the epithelium can lead to epithelial thinning or thickening. These rearrangements 

commonly use modulations of the cortex and the plasma membrane across the whole 

epithelium. Based on the resulting organisation of the cells the epithelial tissues are 

classified as squamous, cuboidal, columnar or pseudostratified epithelia (Figure 1.3A). Such 

transformation of the epithelial organisation is often observed during development. For 

instance, during Drosophila egg chamber development, the outer follicle cell layer consisting 

of cuboidal cells undergoes different cell shape changes. On the anterior side the cells 

stretch to assume squamous morphology whereas on the posterior side the follicle cells 

adopt a columnar morphology (Horne-Badovinac and Bilder, 2005).  

 

2. Epithelial convergence-extension: The epithelial tissue can also change dimensions in 

the plane of the epithelium by elongating in one direction (extension), while constricting in 

the other (convergence). Such convergent extension movements can involve various 

mechanisms including cell intercalation, oriented cell divisions and cell shape changes. The 

most studied system of convergent extension is that of germ band extension in Drosophila. 

In this case, the cells modulate their adherens junctions. The cell-cell contacts perpendicular 

to direction of extension shrink whereas new contacts are made and stabilized in the 

direction of extension. Such junctional modulation results in exchange of neighbours and the 

formation/resolution of multicellular rosette structures that drive the convergent extension 

process (Figure 1.3C) (Kong et al., 2017).  
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Table 1: Organogenesis based on epithelial rearrangements 

System of epithelial 

organogenesis 

Tissue 

architecture 

Epithelial 

rearrangements 

Cellular processes References 

Drosophila egg-shell 

appendages 

Tube Epithelial bending and 

convergent extension 

Apical constriction, 

ordered cell intercalation 

and basal filopodia-based 

crawling 

(Dorman et al., 2004; Osterfield et 

al., 2017; Osterfield et al., 2013; 

Osterfield et al., 2015; Peters and 

Berg, 2016; Peters et al., 2013) 

Vertebrate neural 

tube closure 

(anterior part) 

Tube Epithelial thickening, 

bending and 

convergent extension 

Cell elongation, apical 

constriction, and cell 

intercalation 

(Davidson and Keller, 1999; Haigo 

et al., 2003; Kinoshita et al., 2008; 

Nishimura et al., 2012; Nishimura 

and Takeichi, 2008; Rolo et al., 

2009; Schoenwolf and Franks, 

1984; Schroeder, 1970; Suzuki et 

al., 2012; Ybot-Gonzalez et al., 

2007) 

Drosophila egg 

chamber follicle cell 

layer morphogenesis 

Sheet Epithelial thinning and 

thickening 

Cell shape changes, 

posterior follicle cells: 

cuboidal to columnar, 

anterior follicle cells: 

cuboidal to squamous 

(Gomez et al., 2012; Grammont, 

2007; Kolahi et al., 2009; Ng et al., 

2016; Wang and Riechmann, 

2007) 

Vertebrate 

ectodermal placodes 

(Molar dental 

placode or hair 

follicle placode) 

placode/pit Epithelial stratification 

and bending 

Epithelial proliferation, 

migration and cell 

intercalation 

(Ahtiainen et al., 2014; Li et al., 

2016; Panousopoulou and Green, 

2016; Prochazka et al., 2015) 

Lens placode of 

vertebrates 

Placode/pit epithelial thickening 

and invagination 

Cell elongation and apical 

constriction  

(Chauhan et al., 2009; Gato et al., 

2001; Greiling and Clark, 2009; 

Huang et al., 2011; Lang et al., 

2014; Plageman et al., 2011; 

Plageman et al., 2010) 

Drosophila wing 

imaginal disc 

Sac-like Epithelial thinning and 

thickening 

Cell shape changes: 

Peripodium: cuboidal to 

squamous, Disc proper: 

cuboidal to 

pseudostratified 

(Dominguez-Gimenez et al., 2007; 

Eaton et al., 1995; McClure and 

Schubiger, 2005; Widmann and 

Dahmann, 2009a, b) 

Drosophila trachea branched 

tubes 

collective epithelial 

migration and 

convergent extension 

(tube elongation). 

Tip cells: epithelial 

migratory motion, stalk 

cells: cell intercalations 

(Caussinus et al., 2008; Ghabrial 

et al., 2011; Okenve-Ramos and 

Llimargas, 2014; Ribeiro et al., 

2002; Ribeiro et al., 2004) 

Vertebrate lung 

epithelium 

branched 

network 

Epithelial folding and 

tube elongation 

Invagination, cell 

proliferation. 

(Kadzik et al., 2014; Kim et al., 

2013; Tang et al., 2011) 

 

3. Epithelial-to-mesenchymal transition (EMT): Epithelial tissues can also be very plastic 

and modulate their epithelial features. At many instances during development epithelial cells 

born at one location move to different locations further away in the body. These movements 

are often supported by the loss of epithelial features to adopt migratory mesenchymal 

behaviour. It often involves downregulation of the components of adherens junction (Figure 

1.3D). For instance, this is seen during development of vertebrate neural crest cells, where 

cells delaminate from the neural tube by undergoing EMT and then migrate away to give rise 

to tissues such as the facial cartilage and bone and the peripheral nervous system (Sauka-
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Spengler and Bronner-Fraser, 2008). EMT is also observed in cancer cells and can aid in 

metastasis (Campbell and Casanova, 2016; Nieto, 2013). 

 

4. Epithelial sheet movement: Epithelial sheets can also move to a new place without 

undergoing EMT. This movement could occur by active epithelial migration by modulating 

the focal adhesions (Figure 1.3E) or by passive displacement in response to external stress. 

More details are discussed in 1.2.4.  

 

5. Epithelial bending: Unlike the epithelial arrangements mentioned so far, epithelial cells 

can also undergo out-of plane shape changes to mold into complex 3-D shapes by changing 

dimension of one face (apical or basal) of the sheet with respect to the other. Such apico-

basally polarised dimension change results in the formation of wedge-shaped cells and 

enables bending of the epithelium (Figure 1.3B). The phenomenon of epithelial bending 

helps in shaping majority of diverse epithelial architectures; however, the underlying cellular 

mechanisms are diverse. More details are discussed in 1.2.3. 

 

Two epithelial rearrangements important for my work are invagination and collective 

epithelial migration which are discussed below in detail.  

1.2.3 Invagination: Epithelial bending 

Epithelial bending is a significant epithelial rearrangement that transforms a flat sheet of 

cells into a fold or a pit or a tube through coordinated action of many cells. Depending on the 

direction of the bending with respect to the body/organ axis, the epithelial folding is called as 

invagination (inward bending) or evagination (outward bending). However, similar 

mechanisms can play a role in both the processes. Often, epithelial bending occurs via the 

apical side, where the apical area of the cells shrinks with respect to their basal areas 

resulting in wedge shaped cells (Figure 1.3B) (Martin and Goldstein, 2014). This has been 

extensively studied for the ventral furrow formation during gastrulation in Drosophila (Leptin 

and Grunewald, 1990). Now it is clear that some epithelial systems invaginate from the basal 

side where the cells adopt a wedge shape with shrunken basal side, e.g. the midbrain 

hindbrain boundary in the developing neural tube of zebrafish (Gutzman et al., 2008). 

However, the mechanisms of basal invagination remain elusive. In contrast, the process of 

apical invagination is extensively studied and commonly involves the interplay of apical 

junctions and the actomyosin cytoskeleton (Martin and Goldstein, 2014; Pearl et al., 2017). 

A few mechanisms observed in different morphogenetic systems are outlined below and 

combinations of these are used a system-specific way.  
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1. Apical constriction: One of the best-studied mechanisms of apical invagination is apical 

constriction. It involves action of apically localised contractile actomyosin that constricts the 

apical surface of the cells and creates wedge shaped cells. Although the upstream 

regulation of the process is tissue/species dependent, it ultimately regulates localised 

activation of the Rho GTPase RhoA and its effector Rho-kinase (ROCK) that regulate 

phosphorylation of the myosin regulatory light chain (MRLC) (Martin and Goldstein, 2014). 

MRLC phosphorylation activates myosin and is important for its contractile function 

(Bresnick, 1999). Thus, apically polarised Rho-ROCK mediated myosin contractility drives 

apical constriction. The apical contractile actomyosin can be arranged as circumferential 

actomyosin fibers, cortical actomyosin flows or actomyosin pulses (Martin and Goldstein, 

2014). It is localised either medially in the apical cortex as seen for ventral furrow formation 

in Drosophila (Dawes-Hoang et al., 2005; Martin et al., 2009; Young et al., 1991) or laterally 

along the junctions as observed during chick neurulation (Nishimura et al., 2012; Nishimura 

and Takeichi, 2008). Eventually, as a crucial feature of apical constriction, the apical 

contractile actomyosin network is coupled with the adherens junctions to modulate cell-cell 

contacts and to ensure effective cell shape change (Martin and Goldstein, 2014).  

 

2. Basal relaxation: Instead of active accumulation of contractile actomyosin on one side of 

the cell, this mechanism rather involves disassembly of actomyosin on the non-contracting 

side of the cells. Basal relaxation is reported for chick otic placode invagination (Sai and 

Ladher, 2008). However, such mechanism can also coexist with apical constriction. It has 

been proposed for Drosophila ventral furrow formation that basal relaxation helps in 

reducing the rigidity of the basal surface, while maintaining the cell volumes and is sufficient 

to drive ventral furrow formation in combination with the apical constriction (Polyakov et al., 

2014). 

 

3. Structural weakening: A different strategy towards invagination involves making a 

structurally weaker point in the epithelium that would facilitate buckling of the sheet. Such 

mechanism is reported during formation of tracheal pits, where mitotic cell rounding creates 

a weak point in the tissue (Kondo and Hayashi, 2013). On the other hand, during 

morphogenesis of the Drosophila leg epithelium, selective apoptosis of cells induces 

structural weakening and marks the sites of epithelial bending (Manjon et al., 2007; Monier 

et al., 2015). Both these mechanisms cause apical bending of the epithelium.  

 

4. Crowding induced bending: When a less stiff epithelium is physically constrained within 

stiffer boundaries, increased proliferation or crowding of cells can cause bending of the 

sheet by passive buckling. Such mechanism is seen for in vitro optic cup morphogenesis 
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from mouse embryonic stem cells (Eiraku et al., 2012; Eiraku et al., 2011). In some other 

cases, the proliferation of cells can cause local stratification, which coupled with migratory 

action of the new cells drives invagination. In this scenario, the pushing force by the 

migrating cells causes bending of the stratified structure (similar to a punch in the dough). 

Such mechanism is observed during morphogenesis of the molar tooth placode and the hair 

follicle placode (Ahtiainen et al., 2014; Li et al., 2016; Panousopoulou and Green, 2016; 

Prochazka et al., 2015). 

 

Thus, there are several ways in which an epithelium can bend. However, there are still many 

open questions. It is not clear how different mechanisms determine the speed of 

invagination. It is further not understood how different mechanisms determine the extent or 

depth of the invaginated structure and decide whether it should be a tube or a pit or a 

hemisphere. Moreover, although we now understand different mechanisms of apical 

invagination, basal invagination and the process of basal constriction still remain poorly 

understood. It would be interesting to investigate which basal cellular structures are involved 

in the basal invagination and if it is also dependent on the actomyosin cytoskeleton. 

Therefore, further research is required to understand the processes of epithelial bending in 

different model systems.  

1.2.4 Collective epithelial migration  

Epithelial cells can undergo movements as a sheet without losing their epithelial nature. 

Such epithelial movements are common during development (morphogenesis), homeostasis 

(wound healing) and can be reinitiated in mature tissues during cancer (Friedl and Gilmour, 

2009; Haeger et al., 2015; Rorth, 2009). Although coordinated cell shape changes and 

addition/removal of cells can cause passive displacement of cells (Friedl and Gilmour, 

2009), epithelial cells can also show active migratory behaviour by modulating their focal 

adhesions as described in 1.2.1. Such active migration of connected epithelial cells as a 

group is commonly called as collective epithelial migration. The mechanisms of single cell 

migration are quite well studied (Friedl and Wolf, 2010; Krause and Gautreau, 2014; Petrie 

and Yamada, 2012), however, the mechanisms underlying collective migration are diverse 

and hence less well understood (Friedl and Gilmour, 2009; Haeger et al., 2015; Rorth, 

2009). Here, I discuss some of the common themes and variations in collective epithelial 

migration. Some prominent examples of collective epithelial migration phenomena are 

included in Table 2. 

 

1. Cell-cell adhesion and epithelial organisation: In contrast to individual cell migration, 

collective cell migration features cell-cell adhesion, which coordinates the cellular behaviour 
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across the group of cells. Loss of adhesion leads to detachment of cells and can result in 

delamination/loss of cells or an EMT-like phenotype (Friedl and Gilmour, 2009). 

Nevertheless, depending upon the adhesion and arrangement of the cells, the migrating 

epithelia can adopt different architectures and different modes of collective migration. The 

different modes of collective migration include A) 2D sheet moving as a monolayer B) 

multilayered 3D strands and C) isolated group or cluster of cells (Friedl and Gilmour, 2009; 

Rorth, 2009) (Table 2). However, how the migratory behaviour is regulated in such diverse 

collective migration phenomena still remains an active area of research. 

Table 2: Collective epithelial migration phenomena 

Model system Epithelial 

organisation 

Guidance cue and 

polarisation 

Important references 

in vitro 

Scratch or gap induced 

migration in epithelial and 

endothelial cell cultures 

Epithelial sheet Growth factor-induced leader 

cell behaviour distinct from 

behaviour of follower cells. 

(Poujade et al., 2007),(Vitorino 

and Meyer, 2008),(Block et al., 

2004; Farooqui and Fenteany, 

2005; Nikolic et al., 2006) 

(Simpson et al., 2008) 

Mammary epithelial branching 

in 3D mammary gland 

cultures 

Multilayered 3D strands Extracellular matrix, tip/leader 

cells lack membrane 

protrusions 

(Ewald et al., 2008) 

in vivo 

Border cell migration in 

Drosophila egg chamber. 

Isolated group of cells Chemokine growth factors, cells 

migrate through the group of 

nurse cells 

(Bianco et al., 2007; Duchek and 

Rorth, 2001; Duchek et al., 2001) 

Follicle cell migration during 

Drosophila egg chamber 

rotation 

Epithelial sheet Planar cell polarity and ECM 

pattern, lack any specific leader 

cells 

(Cetera et al., 2014; Diaz de la 

Loza et al., 2017; Haigo and 

Bilder, 2011; Viktorinova et al., 

2009) 

Posterior lateral line 

primordium in zebrafish 

Isolated group of cells Chemokine, Polarisation of 

primordium through combined 

action of FGF and Wnt 

signalling to restrict chemokine 

receptor expression to the 

leading edge. 

(Aman and Piotrowski, 2008; 

Dambly-Chaudiere et al., 2007; 

David et al., 2002; Dona et al., 

2013; Friedl and Gilmour, 2009) 

Tracheal sprouting 

morphogenesis in Drosophila 

Multilayered 3D strands Chemokines, distinct tip cell 

and stalk cell behaviours 

(Caussinus et al., 2008; Ribeiro et 

al., 2002) 

Vascular sprouting during 

formation of vasculature in 

mouse 

Multilayered 3D strands Chemokines, distinct tip cell 

and stalk cell behaviours 

(Gerhardt et al., 2003) 

 

2. Guidance cues for migration, epithelial polarisation and the leader-follower model:  

An important aspect of collective migration is directionality. External guidance cues polarise 

the migrating group of cells and ensure directional migration. The specific guidance cues 

used during migration are context specific and differ from system to system (Haeger et al., 

2015). The cells can respond to specific chemical cues and exhibit directed migration by 

chemotaxis. For example, chemokine signalling regulates the directionality of migration of 
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the zebrafish lateral line primordium (Aman and Piotrowski, 2008; Dambly-Chaudiere et al., 

2007; David et al., 2002) (Dona et al., 2013) and the border cell migration in Drosophila egg 

chamber (Bianco et al., 2007; Duchek and Rorth, 2001; Duchek et al., 2001). Alternatively, 

the polarised migration can also occur in response to a gradient of stiffness of the ECM, a 

process termed as durotaxis or haptotaxis. Experiments on various cultured epithelia 

showed that the cell collectives migrate faster and more persistently towards the stiffer edge 

(Sunyer et al., 2016). The different guidance cues used in some important examples of 

collective epithelial migration are summarised in Table 2.  

 

Such guidance cues subsequently polarise the migrating epithelium into distinct cell 

populations, classically called as leader cells and follower cells. Leader cells are defined as 

the cells at the migrating front/ the leading edge that respond to the guidance cue and 

initiate the migratory response with prominent membrane protrusive activity. The follower 

cells form the bulk of the migrating tissue and follow the path of leader cells. However, in 

majority of scenarios, the follower cells are not passive but show active migratory features 

(Rorth, 2009). Such leader-follower module forms the functional unit of many collective 

migration phenomena. Nevertheless, there are also systems such as the follicle cell 

migration in the Drosophila egg chambers, in which cells undergo collective epithelial 

migration without any specific leader cells (Haigo and Bilder, 2011). Thus, the leader-

follower model does not seem to be a common feature of all epithelial migration phenomena 

as previously thought and needs to be carefully addressed by studying more systems 

involving epithelial cell migration. 

 

3. Membrane protrusions and dynamic cell-matrix contacts: Most of the collective 

epithelial migration phenomena share certain common features with systems of single cell 

migration (Friedl and Wolf, 2010; Krause and Gautreau, 2014; Petrie and Yamada, 2012). 

These include membrane protrusions and dynamic cell-matrix contacts. Indeed, the screens 

to identify regulators of collective cell migration revealed specific modules of core cell motility 

genes (cytoskeletal regulators and cell-matrix adhesion regulators), acting downstream of 

the guidance and polarising cues (Simpson et al., 2008; Vitorino and Meyer, 2008). The 

membrane protrusions of collective migrating cells are usually lamellipodial or filopodial in 

nature (Friedl and Gilmour, 2009; Rorth, 2009). The protrusive activity is enriched in the so-

called ‘leader cells’. However, careful analysis has shown that often the follower cells also 

show protrusions, sometimes referred to as ‘cryptopodia’ (Farooqui and Fenteany, 2005). 

For productive cell movement, the protrusions are coupled with dynamic contacts of cells 

with the environment, the ECM or the peripheral cells (Friedl and Gilmour, 2009; Rorth, 

2009). This is supported by the findings that many collective migration events such as the 
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follicle cell migration in the Drosophila egg chamber (Diaz de la Loza et al., 2017; Frydman 

and Spradling, 2001; Haigo and Bilder, 2011; Lewellyn et al., 2013) or the mammary gland 

morphogenesis (Klinowska et al., 1999) crucially depend on the function of ECM component 

laminin and its cellular receptor integrin1. Thus, the basic migration toolkit involving 

cytoskeletal organisation, membrane protrusions and modulation of the cell-matrix contacts 

is used similarly in different collective migration phenomena.  

 

To conclude, in this section 1.2, I introduced various epithelial rearrangements used to 

shape epithelial structures. However, it remains challenging to understand how different 

organs and tissues adopt specific combinations of these strategies to achieve the unique 

tissue architectures and timely organogenesis. This has been the central theme of my work. 

1.3 Shaping the retinal neuroepithelium: A case of epithelial 

morphogenesis  

An interesting yet underexplored epithelial morphogenetic event is the formation of the 

vertebrate optic cup, which includes morphogenesis of the retinal neuroepithelium (RNE) 

and the retinal pigment epithelium (RPE) (Figure 1.4). The RNE forms the bulk of the optic 

cup and serves as the organ precursor for the neural retina (Figure 1.4). It consists of the 

retinal progenitor cells that later in development give rise to the different retinal neurons. 

Across vertebrates, RNE has a conserved characteristic hemispherical architecture, which is 

maintained even later in development in the neural retina. The developing lens is located in 

the curvature of the optic cup and this unit paves the way for building the vertebrate camera-

type eye (Figure 1.4) (Fernald, 2000; Lamb et al., 2007). The hemispherical architecture of 

the retina is thought to have co-evolved with the lens. The earliest known invaginated RNE 

in the early craniate hagfish is correlated with the emergence of the lens placode. Later in 

evolution, the optic cup invagination and lens development were further elaborated, as seen 

even in the most primitive vertebrate, lamprey (Lamb et al., 2007). The curvature of the 

retina is proposed to provide visual acuity, improved sense of depth and better ability to 

detect light coming from different directions. This possibly also explains the advantage of the 

curved retina in cephalopods, although the cephalopod retina has a very different 

developmental origin (Fernald, 2000). Thus, morphogenesis of the hemispherical RNE and 

the optic cup has been an evolutionary milestone and serves as an important initial step for 

the vertebrate eye development. Additionally, defects in the optic cup architecture can cause 

structural eye defects such as microphthalmia (small eye) and coloboma (optic fissure 

closure defects) (Fuhrmann, 2010; Williamson and FitzPatrick, 2014). Therefore, 
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understanding OCM is not only an attractive model for developmental biology but is also 

important from a disease point of view to investigate the origin of ocular defects. 

 

 

 

Figure 1.4: Vertebrate eye development  

Optic vesicle undergoes morphogenesis to form the hemispherical optic cup that consists of the inner 
retinal neuroepithelium and the outer retinal pigment epithelium. The retinal neuroepithelium serves 
as an organ precursor to the neural retina. 

 

Recently, it has also been possible to form such hemispherical optic cups from mouse and 

human embryonic stem cells under in vitro culture conditions (Eiraku et al., 2011; Nakano et 

al., 2012). These in vitro-formed optic cups further differentiate to give rise to the retinal 

neurons. This organoid culture approach is particularly useful to generate different retinal 

neurons for therapeutic research. Interestingly, these optic cups develop in absence of 

accessory structures in the developing eye such as the developing lens and the periocular 

mesenchyme. Hence, it is postulated that the retinal cells have the inherent property to self-

organise into an optic cup (Eiraku et al., 2012; Eiraku et al., 2011). However, it is not 

understood if the in vitro RNE formation follows the same morphogenetic principles as that 

of the in vivo situation. Therefore, to understand the principle of organogenesis, it is 

important to investigate how this hemispheric architecture comes into shape in vivo in the 

given developmental time window. 

 

In this section, I will outline the current understanding of early eye development, with special 

focus on the morphogenetic processes, epithelial rearrangements and underlying cellular 

changes. Beginning with the formation of eye-field, I will describe the formation of optic 

vesicles and the subsequent the formation of the hemispherical optic cup. I will discuss the 

important literature on the organogenesis principles of optic cup mophogenesis (OCM) in the 

in vitro system as well as in different in vivo animal models and highlight the open questions.  
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1.3.1 Early eye development: From eye field to the optic vesicle 

The cells that give rise to the future retina and the retinal pigment epithelium are set aside 

early on during forebrain development. Under the control of patterning cues, the expression 

of so-called ‘eye-field transcription factors’ (ET, Rx1, Six3, Pax6, Lhx2, Optx2) specifies eye-

field cells and demarcates them from the rest of the forebrain tissue (Fuhrmann, 2010; 

Graw, 2010). The importance of some of these transcription factors is shown by the loss-of-

function mutants that feature anophthalmia (absence of eyes) or microphthalmia (highly 

reduced eye) and ectopic expression studies that can induce ectopic eye-fields (Fuhrmann, 

2010; Graw, 2010). As the development proceeds, the eye field splits along the midline into 

two parts, each of which gives rise to an optic vesicle. A failure to split the eye field results in 

cyclopia, formation of one big eye instead of two. Signaling pathways of Sonic hedgehog, 

TGF-β/nodal involved in midline/axis specification are important for this process (Fuhrmann, 

2010; Graw, 2010). Alongside the patterned expression of the eye-field transcription factors, 

morphogenetic movements guide early eye development (England et al., 2006). In teleosts, 

it has been shown that the eye field transcription factor rx3 plays an important role in the 

process. Rx3 regulates expression of ephs and ephrins, which help in segregating the eye-

field cells from the remaining cells of the anterior neural plate (Cavodeassi et al., 2013). 

Similarly, Rx3 downregulates the expression of cell adhesion molecule nlcam, which also 

helps in segregation of the eye-field cells and prevents them from converging at the midline 

(Brown et al., 2010). Thus, the early transcriptional programs in the eye-field also regulate 

the cell behaviours that lead to splitting of the eye-fields.  

 

In case of mammalian early eye development, although the role of patterning and 

transcription factors has been established (Fuhrmann, 2010), the morphogenetic studies 

have been tricky due to the difficulty of in vivo imaging. The in vitro matrigel-based organoid 

cultures of mouse and human embryonic stem cells allow specification of the eye-fields 

(Eiraku et al., 2011; Nakano et al., 2012). However, due to the lack of global patterning cues 

the embryonic stem cell aggregates develop multiple eye fields which also do not split. As a 

result, little is known about the dynamics of mammalian eye field morphogenesis and this 

field requires further research. 

 

After eye-field specification and splitting, each of the two groups of cells grows outwards 

from the anterior neural tube by a process called as evagination, which forms the optic 

vesicle. The mechanism of optic vesicle formation depends on the mode of neurulation, the 

formation of the neural tube. In case of amniotes, the anterior neural tube is formed by 

invagination of the epithelial neural plate to form a hollow epithelial tube. As a result, the 
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optic vesicle bulges out of the neural tube in the form of a hollow epithelial pocket (Figure 

1.5) (Araya et al., 2016; Lowery and Sive, 2004). This phenomenon is also observed in the 

matrigel cultures of embryonic stem cells, however with low efficiency (Eiraku et al., 2011; 

Nakano et al., 2012). Currently, the evagination step is considered to be rate limiting for 

efficient in vitro optic cup formation (Volkner et al., 2016). Therefore, understanding the 

underlying molecular mechanisms might aid in improving the efficiency of in vitro optic 

vesicle evagination and optic cup formation. A few studies have investigated the cellular 

rearrangements that drive the optic vesicle evagination in amniotes. In case of mouse, 

analysis of cell shape changes by analysing electron microscopy images predicted that the 

evagination process involves apical constriction and associated remodelling of the ECM 

(Svoboda and O'Shea, 1987). A quantitative description of chick optic vesicle evagination 

using 3D imaging suggests that intercalation of epithelial cells drives evagination by 

deforming the tissue anisotropically in the mediolateral axis (Morishita et al., 2017). 

Interestingly, inhibiting cell proliferation had minimal effect on the process of evagination 

(Morishita et al., 2017). Nevertheless, the molecular mechanisms underlying optic vesicle 

formation in amniotes remain elusive. 

 

 

Figure 1.5: Optic vesicle evagination  

Schematic drawing of optic vesicle evagination in amniotes and in teleosts. In amniotes, pre-polarised 
eye field cells form optic vesicle by cellular rearrangements. In teleosts, eye field cells simultaneously 
undergo epithelial polarisation and intercalations to form the optic vesicles.  

 

In contrast to amniotes, optic vesicle evagination process has been extensively studied in 

teleosts due to the ease of in vivo imaging. However, it should be noted that teleost 

neurulation happens differently than in the higher vertebrates. The anterior neural tube forms 

by convergence of neural plate cells which are rather mesenchymal in morphology and lack 

epithelial polarity (Araya et al., 2016; Lowery and Sive, 2004). Based on live tracking of 
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nuclei, it was postulated that migration of these mesenchymal cells is responsible for the 

optic vesicle evagination (Rembold et al., 2006). However, it was later shown that the cells 

simultaneously undergo epithelial polarisation in response to the ECM component laminin. 

Interestingly, the eye field cells undergo this apicobasal polarisation prior to the remaining 

forebrain cells and a subset of them adopts the epithelial morphology (Ivanovitch et al., 

2013). This prioritised polarisation of the eye-field cells helps the efficient segregation of eye 

fields and the development of the optic vesicles (Ivanovitch et al., 2013). Later, the cellular 

rearrangements of evagination involve cell intercalations similar to the chick optic vesicle. 

These intercalations, help in integrating more cells undergoing apicobasal polarisation into 

the optic vesicle epithelium (Ivanovitch et al., 2013). Thus, during teleost (zebrafish) 

development, neurulation, eye field specification, epithelial polarisation, and cell 

intercalations occur concurrently and drive the process of evagination (Figure 1.5). 

1.3.2 Optic cup morphogenesis: Patterning and fate specification  

The evaginated optic vesicles are exposed to different signals from the surrounding tissues: 

the forebrain, the surface ectoderm that later forms the lens placode, and the periocular 

mesenchyme. Under the influence of the signalling cues, the optic vesicle is patterned in the 

dorso-ventral, proximo-distal and naso-temporal axes (Table 3). Consequently, the 

equipotential cells of the optic vesicle adopt different fates either as RPE or RNE that form 

the optic cup or the optic stalk that connects the optic cup to the developing forebrain and 

later forms the optic nerve (Fuhrmann, 2010; Graw, 2010). A vast amount of research has 

contributed to our understanding of different signalling pathways involved in the induction 

and maintenance of these fates (summarised in Table 3) (Fuhrmann, 2010; Graw, 2010). 

These patterning and signalling events ultimately determine the expression patterns of 

specific transcription factors involved in cell fate determination (summarised in Table 3). 

FGF signalling is important for the RNE fate and induces expression of the homeobox 

transcription factor Vsx2 (Chx10), which is an established marker for the RNE (Liu et al., 

1994; Zou and Levine, 2012). On the other hand, Wnt signalling is important for the RPE 

fate via suppression of the RNE fate and it activates expression of the RPE-specific 

transcription factor Mitf and its downstream effectors (Fuhrmann, 2010). As a result of these 

expression patterns, the distal domain of the optic vesicle develops into the RNE and dorsal 

proximal domain forms the RPE. Such subdivision is also recapitulated in the in vitro retinal 

organoid cultures (Eiraku et al., 2011; Hasegawa et al., 2016). However, how these 

patterning signals influence the behaviour of the cells and in turn OCM remains poorly 

understood. Conversely, it also needs to be investigated, if the morphogenetic processes 

themselves have a role to establish these patterned domains.  
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Table 3: Signaling pathways in optic cup morphogenesis 

Signaling pathway Role in optic cup morphogenesis Reference 

Fibroblast growth factor (Fgf) 

signaling 

Specification of retinal neuroepithelial fate 

and Vsx2 expression. Proliferation of the 

retinal neuroepithelium. Naso-temporal axis 

specification. 

(Picker and Brand, 2005; Picker et al., 2009; 

Pittack et al., 1997) (Horsford et al., 2005; 

Nguyen and Arnheiter, 2000) 

Wnt signaling 

Specification of retinal pigment epithelial 

fate and Mitf expression. Repression of the 

retinal neuroepithelial fate. 

(Fujimura et al., 2009; Hagglund et al., 2013; 

Schepsky et al., 2006; Veien et al., 2008; 

Westenskow et al., 2009; Yasumoto et al., 2002; 

Zhou et al., 2008) 

Bone morphogenetic protein 

(BMP) signaling 

Dorso-ventral patterning of the optic cup. 

Imparts dorsal identity and promotes Tbx5 

expression, inhibits Vax2 expression. 

(Adler and Belecky-Adams, 2002; Behesti et al., 

2006; Heermann et al., 2015; Pandit et al., 

2015; Sasagawa et al., 2002) 

Sonic hedgehof (Shh) 

signaling 

Dorso-ventral patterning of the optic cup. 

Imparts ventral identity. Regulates optic 

stalk development. Promotes Pax2 

expression. 

(Ekker et al., 1995; Macdonald et al., 1995; Mui 

et al., 2005; Sasagawa et al., 2002; Schwarz et 

al., 2000; Zhao et al., 2010) 

Retinoic acid (RA) signaling 
Ventral retina invagination and 

morphogenesis 

(Lupo et al., 2011; Mic et al., 2004; Molotkov et 

al., 2006; Sasagawa et al., 2002) 

Hippo Pathway (Yap/Taz 

signaling) 
Specification of the RPE fate (Kim et al., 2016; Miesfeld et al., 2015) 

 

1.3.3 Optic cup morphogenesis: Epithelial rearrangements and 

morphogenetic principles  

Along with acquisition of the new fates, the initially similar looking cells of the optic vesicle 

also adopt new morphologies as they shape the optic cup. These epithelial changes are 

crucial for proper optic cup architecture and the subsequent eye development. The 

predominant epithelial rearrangement that occurs during OCM is the invagination of the 

distal part of the optic vesicle that forms the RNE. This invagination occurs by bending the 

epithelial layer from the basal side. There are various conflicting models proposed for this 

invagination process. 1) In case of mouse, it has been proposed that mechanical coupling 

between the developing lens and the future RNE through filopodia-like connections bends 

the RNE rather passively in response to the invagination of the lens (Chauhan et al., 2009) 

(Figure 1.6A). This proposal is based on the observation that optic cup invagination is 

weaker in Cdc42 conditional mutant that lacks the filopodial connections (Chauhan et al., 

2009). However, it does not explain the residual invagination still observed in the conditional 

mutant. Additionally, a previous study using chick showed that ablation of the lens placode 

does not affect the invagination of the optic cup and concluded that the role of the surface 

ectoderm is limited mainly as a signaling centre at early stages (Hyer et al., 2003). 

Furthermore, it has been shown in in vitro organoid cultures that the optic vesicle epithelium 

can self-organize into a hemispherical shape even in the absence of any lens-like structure 

(Figure 1.6B) (Eiraku et al., 2012; Eiraku et al., 2011). Thus, the role of the lens in 
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invagination seems to be limited than proposed before. 2) Alternatively, in the retinal 

organoid cultures, the RNE invaginates in response to high cell proliferation in the space 

confined by the stiff RPE (Figure 1.6B) (Eiraku et al., 2011; Nakano et al., 2012). However, 

work in zebrafish and Xenopus shows that RNE development continues even when cell 

proliferation is blocked (Harris and Hartenstein, 1991; Kwan et al., 2012). Thus, this model 

does not seem to function in the in vivo scenario. 3) An additional model proposed for 

mouse OCM is a bimetallic strip model, which proposes the RPE as a major driver of the 

process of invagination (Carpenter et al., 2015). This model is based on the observations 

that conditional loss of Wnt signals from the surface ectoderm reduces the proliferation of 

prospective RPE, affects the RPE architecture and results in perturbed RNE with mild 

invagination. However, the study also reports accompanying defects in periocular 

mesenchyme, an important signaling centre (McMahon et al., 2009) and retinoic acid 

signaling known to play a role in RNE invagination (Lupo et al., 2011; Mic et al., 2004). 

Therefore, it is not clear whether the observed defects can solely be attributed to the RPE. A 

new report using chick system predicts that the bimetallic strip model could work, but with 

the constraint being the ECM (Oltean et al., 2016). Given these conflicting observations, the 

biological mechanism of optic cup invagination and the underlying cellular dynamics still 

remain elusive. 

 

 

Figure 1.6: Optic cup morphogenesis 

Schematic drawing of optic cup morphogenesis in amniotes (A), in in vitro cultures of embryonic stem 

cell aggregates (B), and in teleosts (C). In in vitro culture, optic cup forms in absence of the 

developing lens. 
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Furthermore, in all vertebrates the invagination of the optic cup is asymmetric. It starts at the 

dorsal side and progresses towards the ventral side. Such asymmetric invagination creates 

the choroid fissure and helps in formation of the optic stalk (Bazin-Lopez et al., 2015). 

However, none of the invagination mechanisms proposed so far can explain this asymmetry 

in invagination. Therefore, in order to investigate the mechanisms that shape the RNE into a 

hemisphere it is important to consider this asymmetry. To this end, it is important to study 

the regional differences in the cell behaviours across the developing optic up that could 

support such an asymmetric invagination.  

 

An important aspect of studying morphogenesis is visualising the dynamic cell behaviours 

and the associated molecular changes. Studies based on lineage tracing in the chick and 

Xenopus system have reported occurrence of cell movements in RNE morphogenesis (Holt, 

1980; Kwan et al., 2012). Nevertheless, so far, the teleost systems of zebrafish and medaka 

OCM have provided the most detailed cellular understanding of OCM (Figure 1.6C). Live 

imaging and cellular tracking of the whole morphogenetic event have revealed presence of 

several complex cell movements in the process (Heermann et al., 2015; Kwan et al., 2012; 

Li et al., 2000; Picker et al., 2009). It has been proposed that similar to the role of apical 

constriction in apical bending of the epithelium, the basal bending of the RNE could be 

supported by basal constriction of cells (Martinez-Morales et al., 2009). Indeed, cell-ECM 

contacts located at the basal side are shown to be important for this process. Integrins are 

the cellular receptors that bind to the ECM and form cell-matrix adhesion. Investigating the 

medaka mutant ojoplano revealed that perturbed trafficking of integrins affects the process 

of RNE invagination (Bogdanovic et al., 2012; Martinez-Morales et al., 2009). Additionally, a 

mutant allele for the basal lamina component laminin-1 shows various defects in the optic 

cup architecture (Bryan et al., 2016). Both of these studies indicate a role of basal dynamics 

in the process of optic cup invagination. However, unlike higher vertebrates the teleost optic 

vesicle is not shaped as a hollow epithelial pouch but rather as an epithelial fold (Figure 

1.6C). As a result, a subpopulation of prospective RNE cells is located in the proximal 

epithelial layer. Therefore, it is not clear whether basal constrictions in the distal part can 

alone drive RNE morphogenesis or whether the proximal cells play an additional role. These 

proximally located cells have been observed to move into the distal, invaginating 

neuroepithelium along the rim of the cup (Heermann et al., 2015; Kwan et al., 2012; Li et al., 

2000; Picker et al., 2009). I refer to these cells as ‘rim cells’ and their movement as ‘rim 

involution’. These rim cells are shown to include the progenitors of the future retinal stem 

cells, which later localise to a special region in the teleost eye called the ciliary margin zone 

(Heermann et al., 2015; Tang et al., 2017). However, to date, it remains unclear which 

molecular mechanisms drive rim involution and whether it is actively involved in RNE 
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morphogenesis. Taken together, in vivo OCM is far from understood and requires further 

investigation using an experimentally amenable system. 

1.4 Aims of the thesis 

The main goal of this work is to understand how epithelial morphogenesis shapes complex 

architectures by investigating the formation of hemispherical RNE. I have approached this 

question from the morphogenesis angle to understand the cellular dynamics involved in the 

process. Due to its unmatched imaging potential, the zebrafish is an excellent model to 

understand in vivo organogenesis including OCM at both the cellular and the tissue level. 

Zebrafish system also allows easy genetic manipulation by microinjections of DNA/RNA 

constructs and reverse genetic approach by morpholino-mediated knockdown of genes. The 

ease of transgenesis, cell transplantations and small molecule treatment further make 

zebrafish an experimentally amenable model system. Lastly and importantly, the faster 

development of the zebrafish embryos enables easy imaging of the entire OCM event in a 

living embryo within one experiment. Therefore, I set out to investigate the process of RNE 

morphogenesis in developing zebrafish embryos. 

 

Aim 1: Verifying the basal constriction hypothesis 

The current prevalent hypothesis for zebrafish OCM proposes that basal constriction of 

neuroepithelial cells drives RNE invagination. Therefore, my first aim was to test the basal 

constriction hypothesis and if true to understand the cellular mechanisms that drive it. 

 

Aim 2: Understanding rim involution and its potential role in OCM 

Many cells move across the rim of the developing optic cup by process of rim involution. 

However, this process is understudied and it is not clear, if these cells move passively or 

actively, and if they move as individual cells or as a collective. Therefore, I aimed to 

characterise and to understand the cellular mechanism of rim involution. Furthermore, the 

role of such cell movement remains unknown. Hence my next goal was to decipher the role 

of rim involution by investigating the impact of perturbed rim involution on OCM. 

 

Aim 3: Understanding collective effect of different epithelial rearrangements in OCM 

Morphogenesis of many epithelial structures involves collective action of different epithelial 

rearrangements. Interestingly, the different epithelial rearrangements seen during OCM 

occur at different regions of a single continuous epithelium. Therefore, I aimed to understand 

how the different epithelial rearrangements that occur during zebrafish RNE morphogenesis 

cooperate to achieve efficient and timely OCM. 
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2. Results 

The vertebrate retinal neuroepithelium (RNE) has a characteristic hemispherical architecture 

that shapes and defines the optic cup and lays the foundation for the subsequent eye 

development. Its formation involves complex epithelial morphogenesis. However, the cellular 

basis of the epithelial rearrangements is not yet completely clear. Therefore, using the 

developing zebrafish embryo as a model system, I set out to understand the cellular 

dynamics driving this morphogenetic event. My experimental workflow followed the common 

framework of morphogenesis studies aptly summarised in a review by Osterfield et al. 

(Osterfield et al., 2017). I began with documenting and measuring the cell and tissue level 

changes occurring in the developing RNE, followed by characterising the localisation of key 

components of the molecular toolkit of the cells (See section 1.2). Lastly, based on these 

observations, I investigated the underlying cellular mechanisms through genetic and 

chemical perturbations of the morphogenetic process.  

2.1 Zebrafish optic cup morphogenesis: complex cellular 

rearrangements shape the retinal neuroepithelium. 

The oviparous development and transparency of the developing zebrafish embryos allowed 

easy microscopic recording of the entire process of optic cup morphogenesis (OCM). In 

zebrafish embryos, OCM begins soon after the evagination of the optic vesicles at around 16 

hours post fertilisation (hpf) or 15 somite stage (15 ss) (Kwan et al., 2012). The optic vesicle 

in the zebrafish embryos is shaped as an epithelial fold, with the eye-field neuroepithelium 

folded onto itself. This creates two tightly apposed layers with their apical sides facing 

inwards (Figure 2.1). During OCM, this epithelial fold transforms into a hemisphere through 

elaborate epithelial rearrangements (Kwan et al., 2012). A transgenic line, which labels the 

cells with a membrane marker (HRAS-GFP) allowed me to visualise these cellular 

rearrangements (Figure 2.1A, Movie 1). The cells in the distal layer (brown) began the 

epithelial folding or invagination (Figure 2.1). Simultaneously, the cells in the proximal layer 

also showed rearrangements. A group of cells (blue) located at the rim of the developing 

optic cup, hence called rim cells, moved along the rim into the invaginating layer. This 

movement is similar to the morphogenetic movement commonly referred to as involution 

(Solnica-Krezel, 2005), hence called ‘rim involution’ (Figure 2.1). It should be noted that the 

rim involution was more prominent on the ventro-temporal side of the optic cup than the 

nasal side (Figure 2.1, Movie 1). Simultaneously, a small group of cells underwent epithelial 

thinning and formed the outer layer of the squamous retinal pigment epithelium. Thus, I 

could capture the entire morphogenetic event, which is completed by 24 hpf or 30 ss and I 
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could observe the different epithelial rearrangements reported before (Heermann et al., 

2015; Kwan et al., 2012; Picker et al., 2009). Importantly, the entire developmental event 

occurred in a timeframe similar to the wild-type development, using both the light sheet 

microscope as well as the spinning disk confocal microscope. Therefore, these initial 

experiments helped me to establish the sample mounting and imaging system and to 

choose the right developmental time windows to understand the cellular dynamics of this 

morphogenetic event. 

 

Figure 2.1: Epithelial rearrangements during RNE morphogenesis in zebrafish embryos.  

A) Time-lapse imaging of RNE morphogenesis in membrane marker line Tg(actb1:HRAS-EGFP). 

Invagination (Arrowhead). Rim involution (Arrow). Movie started around 15 ss. Time in h:min. Frames 

from Movie 1. Scale bar = 50 µm. 

B) Schematic representation of RNE morphogenesis from 15 ss to 30 ss showing RNE cells that 

undergo invagination (brown) and rim cells undergoing involution (blue). Direction of the rim involution 

(dashed arrow). 

2.2 Invagination of the retinal neuroepithelium involves basal cell 

surface reduction 

The major epithelial rearrangement occurring during OCM is the invagination or inward 

bending of the distal layer of the optic vesicle (Figure 2.2A). Invagination of epithelial sheets 

is driven by cell shape changes that expand/shrink one side of the epithelial layer with 

respect to the other (Davidson, 2012). Most of the well-studied invagination phenomena 

feature apical bending of the epithelial sheet guided by apical constriction of cells (Pearl et 

al., 2017). However, the morphogenesis of the RNE involves basal folding of the epithelium 

(Figure 2.2A). Therefore, it was proposed that basal constriction of cells drives retinal 

invagination and formation of the hemispheric optic cup (Martinez-Morales et al., 2009). To 

test this idea, I analysed the shape of the invaginating neuroepithelial cells during OCM. I 

labelled the cell outlines by staining the cell cortex with F-actin marker phalloidin to visualise 

and measure the apical and basal area of the invaginating cells. I found that the cell density 
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at the basal side of the neuroepithelium increased over time (Figure 2.2B,C). Accordingly, 

the average basal area of the cells reduced by about 45%. This reduction occurred during 

the initial phase of OCM until around 21 ss (Figure 2.2D). Concurrently, the average apical 

area of the cells increased (Figure 2.2E). Thus, the invaginating cells underwent an overall 

shape change from apically narrower to basally narrower wedge shape. Similar results were 

also recently reported by Martinez-Morales group using live imaging of the invaginating cells 

(Nicolás-Pérez et al., 2016). These observations confirmed that the invaginating RNE cells 

undergo basal shrinkage, which potentially drives retinal invagination and OCM. 

 

Figure 2.2: Analysis of basal and apical area of invaginating RNE cells 

A) Schematic representation of RNE morphogenesis from 15 ss to 30 ss showing RNE cells that 

undergo invagination (brown). 

B) Average number of cells per 100 µm2 basal area of RNE at different stages of development. 

Mean±SD, N  10 embryos each. 

C) Confocal scans of the basal side of the RNE cells stained with phalloidin at different developmental 

stages. Scale bar = 2 µm. 

D,E) Average area of RNE cells at basal (D) and apical (E) sides during RNE morphogenesis with 

mean±SD. N  10 embryos. 
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2.3 Invagination of the retinal neuroepithelium involves basal 

accumulation of contractile actomyosin 

Next, I investigated which molecular mechanisms could drive the basal cell shrinkage and in 

turn the invagination of the RNE. Constriction mechanisms often involve preferential 

localisation and action of contractile actomyosin at the shrinking side of the epithelial cells 

(Davidson, 2012; Martin and Goldstein, 2014). To check if there was any preferential 

localisation of actomyosin at the basal side of the RNE cells, I visualised actomyosin 

dynamics during OCM. Live imaging of embryos expressing F-actin marker GFP-

UtrophinCH (Burkel et al., 2007) or myosin marker myl12.1-GFP (Iwasaki et al., 2001) 

revealed an enrichment of both markers at the basal side of the cells, specifically in the 

invaginating zone (Figure 2.3A,B, Movie 2). Such basal enrichment was not observed in 

other parts of the developing optic cup, such as the developing RPE or the rim zone, where 

the epithelium folded (Figure 2.3A,B, Movie 2). This observation was corroborated by 

immunostainings using the F-actin marker phalloidin and anti-phosphomyosin antibody 

(Figure 2.4A). The anti-phosphomyosin antibody marks the phosphorylated form of myosin 

that is active and contractile (Matsumura, 2005). Thus, the staining further confirmed that the 

basally enriched actomyosin was contractile. A quantification of the intensity distribution of 

the actomyosin markers in a 3D tissue volume showed that the actomyosin enrichment was 

localised to about 15% of the cell height from the base (Figure 2.4B-D). Taken together, 

these results showed that the invaginating RNE cells accumulate contractile actomyosin at 

their basal side as they undergo basal shrinkage and as the tissue invaginates.  

 

 

Figure 2.3: Analysis of actomyosin localisation during RNE morphogenesis. 

A,B) Time-lapse imaging of RNE morphogenesis in actin marker line Tg(bactin::GFP-UtrophinCH) (A) 

and myosin marker line Tg(bactin::myl12.1-EGFP) (B). Basal enrichment in RNE (Arrowhead). Rim 

zone lacking basal enrichment (Arrow). Movies started around 15 ss. Time in h:min. Frames from 

Movie 2. Scale bar = 10 µm. 
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Figure 2.4: Analysis of actomyosin distribution during RNE invagination. 

A) Confocal scans of different stages of RNE morphogenesis stained for phalloidin and 

phosphomyosin. Basal enrichment (Arrowhead). Scale bar = 10 µm. 

B) Schematic drawing of a typical tissue volume used for actomyosin intensity distribution analysis 

(yellow). The average intensity was measured from basal to apical side of the tissue volume (green 

arrow) and normalised to the highest intensity value along the axis.  

C,D) Normalized average intensity distributions of phalloidin (C) and phosphomyosin (D) in the tissue 

volume along the apicobasal axis of the RNE at 30 ss. Mean±SEM. Tissue sections, n = 14 for 

phalloidin and n = 15 for phosphomyosin; N = 5 embryos.  

2.4 Actomyosin driven basal constriction accelerates invagination 

process but is not the main driver of RNE morphogenesis 

Asymmetric actomyosin contractility is shown to sufficiently drive various invagination 

phenomena (Pearl et al., 2017). Therefore, I hypothesized that the basal enrichment of 

contractile actomyosin drives retinal invagination and OCM. Accordingly, a disruption of the 

basal actomyosin network should inhibit invagination and OCM. To test this hypothesis, I 

treated the embryos with 50 µM blebbistatin, a potent inhibitor of myosin-II contractility 

(Straight et al., 2003), that blocks myosin in an actin-detached state (Kovacs et al., 2004). 

However, the prolonged blebbistatin treatment severely affected the overall embryonic 
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development, including the developing eye (data not shown). Not surprisingly, such broad 

myosin-II inhibition induced severe cell death (data not shown), given the role of actomyosin 

in interkinetic nuclear migration in the neuroepithelium (Norden et al., 2009; Strzyz et al., 

2015) and its requirement for cytokinesis (Straight et al., 2003). Therefore, this is not a good 

approach to investigate the role of basal actomyosin in the retinal invagination.  

 

Hence, instead of broad inhibition of overall myosin activity, I focused on the specific rho-

kinase (ROCK) regulated actomyosin contractility. ROCK phosphorylates the regulatory light 

chain of myosin II and thus activates the actomyosin contractility (Amano et al., 1996). I 

used a chemical inhibitor of ROCK, Rockout, that acts as a competitive inhibitor of myosin 

phosphorylation by competing with ATP (Yarrow et al., 2005). A dose-response experiment 

at different concentrations of Rockout revealed that low concentration of 50 µM did not have 

obvious morphological phenotypes. In contrast, treatment with 150 µM concentration 

resulted in severe cell death. Therefore, 100 µM concentration was chosen for the treatment. 

The treatment was started around 13–14 ss, a timepoint when the optic vesicle is 

evaginated, so as to give sometime for the drug to penetrate and act at the right stages of 

retinal invagination. Upon 7 h long Rockout treatment, the basal actomyosin enrichment was 

markedly reduced, without disrupting the whole tissue architecture (Figure 2.5A,B,C,D). The 

overall anti-phosphomyosin staining was also weaker in the treated embryos, confirming the 

action of the drug (Figure 2.5B,D). In spite of the reduction in the basal actomyosin 

enrichment, the effect on the morphology of the optic cup was surprisingly weak. When I 

scored the embryos for the phenotypic effects, I observed that 40% of embryos showed an 

accumulation of cells at the rim of the cup, whereas 30% of embryos showed a milder optic 

cup phenotype (n=30 embryos per experiment, N=5 experiments) (Figure 2.5A). Remaining 

30% of embryos showed stalled development and were thus excluded from the analysis. To 

assess the effect of basal actomyosin perturbation on the extent of invagination, I measured 

the angle of invagination: the angle held by the inner lips of the optic cup at the centre of the 

RNE (see schematic, Figure 2.5E). The invagination angle was moderately wider in the 

Rockout treated embryos than the control embryos (Figure 2.5E), indicating that the 

invagination process was not as efficient in the Rockout treated embryos. Nevertheless, 

RNE invagination was initiated and was not inhibited upon marked reduction in the basal 

actomyosin enrichment.  
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Figure 2.5: Effect of Rockout treatment on the RNE  

A) Confocal scan of optic cup at 30 ss stained for phalloidin. Control (left), phenotypes after 7 h of 

Rockout treatment: mild invagination defect in 30% embryos (middle), invagination defect with 

epithelial accumulation in 40% embryos (right), (n = approx. 30 embryos, N = 5 experiments). Basal 

side of the RNE (Arrowhead). Epithelial accumulation outside the RNE (Arrow). Developing lens 

(Asterisk). Angle of invagination (Dashed line).  

B) Confocal scan of 30 ss RNE in control (left) and Rockout treated (right) embryo stained for 

phosphomyosin.  

C,D) Normalized average intensity distributions of phalloidin (C) and phosphomyosin (D) in the tissue 

volume along the apicobasal axis of the RNE at 30 ss. Mean±SEM. Control (brown), Rockout treated 

(grey). Tissue sections, n = 25; N = 5 embryos.  

E) Invagination angle at 30 ss. Mean±SD. The schematic shows the invagination angle as the angle 

held at the base of central RNE by the inner lips of the optic cup. Mann-Whitney test, p = 0.0004. 

All scale bars = 10 µm. Rockout treatment was performed for 7 h starting from 13-14 ss.  

To better understand the effect of reduced basal actomyosin enrichment on invagination, I 

performed live imaging of RNE morphogenesis in control and Rockout treated embryos 

labelled with GFP-UtrophinCH. Use of a chambered glass-bottom dish allowed me to mount 

the Rockout treated and control embryos in separate chambers of the same dish and to treat 

them with the respective media, while being imaged simultaneously on the same microscope 

set-up. The simultaneous imaging revealed that in spite of the reduced basal enrichment of 

actomyosin, the RNE did invaginate in the Rockout-treated embryos, although with slower 

kinetics (Figure 2.6A, Movie 3). Similar slower kinetics were also revealed upon analysing 

the change in the basal cell surface area over different stages of OCM using fixed samples 

(Figure 2.6B). However, the cell area analysis indicated that at the end of OCM (30ss), the 

basal surface area of the invaginated cells was similar in control and Rockout-treated 

embryos (Figure 2.6B). Thus, these results indicated that the basal actomyosin mainly 

makes the process of invagination faster and efficient to ensure timely morphogenesis 
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(Figure 2.6C). However, it is not the sole driver of invagination. This argued for the role of 

additional factors that guide the invagination of the RNE. 

 

 

 

Figure 2.6: Effect of Rockout treatment on progression of RNE morphogenesis 

A) Time-lapse of RNE morphogenesis in DMSO Control (upper) and Rockout-treated (lower) embryos 

expressing actin marker GFP-UtrophinCH. N = 5 embryos each. Rockout treatment was started 2 h 

before imaging around 13–14 ss. Imaging started at around 18 ss. Both movies were imaged 

simultaneously and under identical imaging conditions. Scale bar = 10 µm. Time in h:min. Frames 

from Movie 3. 

B) Average basal area of RNE cells with mean±SD. Each dot represents an embryo. Mann-Whitney 

test for 30 ss p = 0.0952. 

C) Schematic drawing showing role of basally enriched actomyosin in regulating timing of 
invagination. 

2.5 Cell proliferation has limited role in RNE morphogenesis 

Alternative to the cell intrinsic contractile mechanism, cell shape changes and invagination 

can also be aided passively by crowding-induced compaction by the neighbouring cells in 

the epithelial layer (Davidson, 2012). An increase in the number of cells inhabiting the RNE 

could support such crowding and hence compaction. One way to increase the number of 

cells in the sheet is cell proliferation. Indeed, development of the RNE is accompanied with 



 

 
 

Results 

 41 

high cell proliferation (Kwan et al., 2012). Furthermore, such proliferation based mechanism 

has been suggested to drive optic cup formation in in vitro retinal organoids (Eiraku et al., 

2012; Eiraku et al., 2011). In the proposed mechanism, high proliferation in a physically 

confined space forces the epithelial sheet to buckle and bend. Indeed, blocking proliferation 

inhibits the process of the in vitro optic cup formation (Eiraku et al., 2011). However, 

experiments in zebrafish and Xenopus have shown that inhibition of proliferation influences 

the size of the optic cup but does not prevent the invagination of the RNE (Kwan et al., 2012; 

William A. Harris, 1991).  

 

Nevertheless, the previous studies did not analyse the basal shrinkage of the RNE cells. 

Therefore, it is not clear if the proliferation based mechanism influences the basal shrinkage 

during invagination of the RNE. To test this, I analysed the effect of proliferation inhibition on 

the basal shrinkage of the RNE. Cell proliferation was blocked using hydroxyurea (HU) and 

aphidicolin (Aphi), known cell cycle blocking agents (Ikegami et al., 1978; Young and Hodas, 

1964), from 10ss onwards. The efficacy of the treatment was assessed by staining with 

mitotic marker pH3. The treated embryos indeed showed a marked reduction in pH3 staining 

(Figure 2.7A). In line with the previous report (Heermann et al., 2015; Kwan et al., 2012), the 

neuroepithelium still underwent invagination and the angle of invagination was comparable 

to that of the control, in spite of the reduced proliferation (Figure 2.7B,C). Additionally, this 

treatment did not affect the basal actomyosin enrichment, which was similar to the controls 

(Figure 2.7F,G). This raised the question of what makes RNE invagination robust? To test if 

basal actomyosin and proliferation were acting together to make the process robust, I 

combined the Rockout and HU + Aphi treatment. However, the combined treatment was 

lethal for the embryos and therefore, I could not assess the role of basal actomyosin in the 

cell proliferation inhibition condition.  

 

Nevertheless, upon taking a closer look at the cellular morphologies of the RNE cells in the 

HU and Aphi treated embryos, I observed that the cells exhibited rather columnar 

morphology with an average basal area wider than the control condition (Figure 2.7B,D,E). 

This observation indicated that the cell shapes and basal surface area are not solely 

dependent on the actomyosin enrichment at the basal side of cells but are also influenced by 

the total number of cells in the invaginating RNE. It further suggests that the basal shrinkage 

of the neuroepithelium includes contribution by crowding-induced compaction. However, in 

the reduced proliferation condition, RNE can invaginate even when cells show broader basal 

area. Therefore, it was important to test the crowding-induced compaction hypothesis using 

other methods. It raised the question, if any other process could support crowding and 

compaction of the RNE.  
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Figure 2.7: Effect of Hydroxyurea and aphidicolin treatment on RNE morphogenesis 

A) Confocal scans of 30 ss RNE in control (left) and HU+Aphi treated (right) embryos stained for 

DAPI (cyan), mitotic marker phosphohistone-3 (yellow) and phalloidin (magenta). 

B) Confocal scans of 30 ss RNE in control (left) and HU+ Aphi-treated (middle and right) embryos 

stained with phalloidin. Areas marked by yellow box are shown in D. 

C) Invagination angle at 30 ss. Mean±SD. The schematic shows the invagination angle as the angle 

held at the base of central RNE by the inner lips of the optic cup. Mann-Whitney test p = 0.3282. 

D) Confocal scans of RNE cells stained with phalloidin (zoomed images of regions marked in B. 

Control (top), HU+Aphi treated (middle and bottom). 

E) Average basal area of RNE cells with mean±SD. Each dot represents an embryo. Mann-Whitney 

test p = 0.0011. 

F,G) Normalized average intensity distributions of phalloidin (F) and phosphomyosin (G) in the tissue 

volume along the apicobasal axis of the RNE at 30 ss. Mean±SEM. Control (brown), HU+Aphi treated 

(orange). Tissue sections, n = 25; N = 5 embryos.  

All scale bars = 10 µm. 
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2.6 RNE morphogenesis involves active cell migration at the rim of the 

optic cup 

Next, I investigated which additional mechanisms could support the crowding and 

compaction in the RNE. Apart from proliferation, the number of cells can also be increased 

by displacing more cells into the invaginating layer. Indeed, previous studies have reported 

movement of cells from the proximal layer to the distal layer along the rim of the developing 

optic cup, a process called rim involution (Figure 1, Figure 2.8A) (Heermann et al., 2015; 

Kwan et al., 2012; Li et al., 2000; Picker et al., 2009). Rim involution does not occur 

uniformly along the rim of the developing optic cup but predominantly along the ventral and 

temporal rim (Heermann et al., 2015; Kwan et al., 2012; Picker et al., 2009). This suggests 

that rim involution is not merely a passive response to the symmetric pulling force of 

invagination. Supporting this argument, rim involution continued in the Rockout treated 

embryos, which lacked basal actomyosin enrichment (Figure 2.6A, Movie 3). Rim involution 

has been shown to translocate a substantial number of cells to the invaginating 

neuroepithelium (Picker et al., 2009). Furthermore, rim involution is also shown to continue 

in embryos treated with the cell proliferation inhibitors (Heermann et al., 2015). Therefore, 

rim involution may support the crowding-induced compaction and invagination of the RNE. 

Furthermore, it could possibly explain the continued invagination in Rockout-treated and 

proliferation-inhibited embryos. However, the cellular dynamics underlying rim involution 

were unknown and needed to be investigated in order to address the role of rim involution in 

the process of optic cup formation. Therefore, I first set out to characterise the cellular 

dynamics during rim involution. 

 

During the process of optic vesicle formation, cells attain the epithelial polarity and form a 

fold of opposing short pseudostratified epithelia (Ivanovitch et al., 2013). In line with this 

observation, the rim cells at the fold localised the centrosomes and primary cilia at the apical 

side, which formed the interface between the two epithelial layers (Figure 2.8B). Additionally, 

these cells were proliferative and underwent apical mitoses as seen for other 

pseudostratified epithelia (Strzyz et al., 2016) (Figure 2.8B, C). Live imaging of rim cells 

marked with apical marker Par3-GFP showed that the cells were apico-basally polarised and 

the polarity was maintained throughout the involution process (Figure 2.8D, Movie 4). 

Furthermore, the cells maintained an apical actin pool associated with the adherens 

junctions as revealed by live imaging using the actin marker GFP-Utrophin (Figure 2.8E, 

Movie 4), indicating that these cells were part of a continuous epithelial sheet. Thus, rim 

cells exhibited pseudostratified epithelial morphology, epithelial cell-cell adhesion and 

polarity. 
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Figure 2.8: Cellular characterisation of rim cells. 

A) Schematic representation of RNE morphogenesis from 15 somite stage (ss) to 30 ss showing cells 

that undergo rim involution (blue). Direction of involution (dashed arrow). 

B) Confocal scans of rim zone in 21 ss embryo stained for DAPI (grey), centrosome marker centrin-

GFP (green) and acetylated tubulin (magenta). Zoom-in image of the area marked by yellow box 

(right). Primary cilia (arrow). 

C) Time-lapse imaging of rim zone with mosaic expression of EMTB-tdTomato. Cell dividing during 

rim involution (Arrow). Apical side (Dashed line). N = 4. 

D) Time-lapse imaging of rim zone with mosaic expression of Par3-GFP and mKate2-ras. Membrane 

protrusions (Arrow). Frames from Movie 4. N = 5. 

E) Time-lapse imaging of rim zone with mosaic expression of GFP-UtrophinCH and ras-mKate2. 

Apical actin localization at adherens junctions (Arrow). Frames from Movie 4. N = 6. 

All scale bars = 10 µm. All movies started around 17–18 ss. Time in h:min. 

The above observations showed that rim cells were epithelial in nature. But it remained 

unclear how they moved along the rim of the cup. To answer this question, I investigated the 

potential cellular features that could move these polarised epithelial cells along the rim of the 

cup. mRNA injections at 16–32 cells stage allowed me to sparsely label the cells in the optic 
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vesicle and to visualise the dynamics of the marked cellular components. Live imaging of the 

membrane dynamics during rim involution using mKate2-ras marker showed that in 

comparison to the apical side, the basolateral side of the rim cells was highly dynamic and 

cells formed dynamic basal membrane protrusions (Figure 2.8D, movie 4). In order to 

understand the molecular basis of these basal dynamics, I investigated the cytoskeletal 

dynamics during rim involution. Microtubules did not show any major rearrangement during 

the involution process, suggesting a limited role in rim involution (Figure 2.8C). In contrast, 

live imaging of actin marker GFP-UtrophinCH revealed that the basal protrusion in rim cells 

were actin rich, similar to the lamellipodial/filiopodial protrusions (Figure 2.9A, Movie 5). This 

suggested that the epithelial rim cells use basal protrusive activity to move along the rim and 

involute. Therefore, I asked if these protrusions were polarised in any direction. To this end I 

counted the number of protrusions at the basal side of the cell at the leading edge facing the 

invaginating region and the opposite trailing edge (Figure 2.9C). The analysis revealed that 

the basal protrusions were indeed preferentially extended in the direction of movement, at 

the leading edge of the cell (Figure 2.9C,D). Notably, the directed protrusive activity was not 

affected in the Rockout-treated embryos (Figure 2.9E,F, Movie 6). These results indicated 

that the rim cells use directed membrane protrusions to support their directional movement 

during rim involution. Directed actin-based protrusions and rearward myosin contractility are 

used by variety of actively migrating cells for their locomotion (Vicente-Manzanares et al., 

2009). Therefore, I probed the myosin dynamics at the basal side of rim cells. Indeed, 

myosin marker DD-myl12b-GFP formed dynamic foci at the basal side (Figure 2.9B, Movie 

7). Thus, while being integrated in the epithelial layer, rim cells exhibited migratory behaviour 

and actively extended directed protrusion in the direction of migration.  

 

Importantly, the migratory behaviour was restricted only to the rim zone. Upon entering the 

invaginating layer, the basal dynamics of these cells changed dramatically. The protrusive 

activity ceased and actomyosin markers localised stably at the basal side similar to the 

invaginating RNE cells (Figure 2.9A, B, Movie 4, 5,7).  

 

Taken together, these results suggest that the rim cells use active migratory behaviour to 

move along the epithelial fold or rim of the cup as a collective to reach the inner invaginating 

layer. This indicates a collective epithelial migration-like phenomenon. At this stage, these 

cells showed epithelial features of polarity and adhesion as well as mesenchymal-like active 

migratory behaviour. However, this behaviour changed once the cells resided in the RNE 

where they attained a stable epithelial state. 
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Figure 2.9: Cellular characterisation of rim cells and the protrusive activity. 

A) Time-lapse imaging of rim zone with mosaic expression of GFP-UtrophinCH and ras-mKate2. 

Inlays show zoomed marked area. Actin localization in the protrusions (Arrow). Basally enriched 

stable actin pool in the RNE (Arrowhead). Frames from Movie 5. N = 6. 

B) Time-lapse imaging of rim zone with mosaic expression of DD-myl12b-GFP and mKate2-ras. 

Inlays show zoomed marked area. Basal myosin punctae in the rim cells (Yellow arrow). Adherens 

junctions (White arrow). Basally enriched stable actin pool in the RNE (Arrowhead). Frames from 

Movie 7. Imaging started at 15–16 ss. N = 5. 

C) Schematic of a rim cell exhibiting actin-based protrusions at the basal side. The arrow marks the 

direction of involution. The leading and lagging edges indicate the sides referred in (D) and (E). 

D) Number of actin protrusions observed per hour in the rim cell in control condition. Each pair of 

datapoints represents two sides of the same rim cell. n = 9 cells from 6 different embryos.  

E) Number of actin protrusions observed per hour in the rim cell in Rockout treatment condition. Each 

pair of datapoints represents two sides of the same rim cell. n = 6 cells from 6 different embryos. 

F) Confocal scan of rim zone in Rockout-treated embryos with mosaic expression of GFP-UtrophinCH 

and ras-mKate2. Inlays show enlarged marked area. Actin localization in the protrusions (Arrows). 

Frames from Movie 6. N=6 

Scale bars = 10 µm, Movies started around 17–18 ss. Time h:min. 
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2.7 Rim cell migration involves dynamic cell-ECM adhesion 

My results so far suggest that while being integrated in an epithelium, rim cells exhibit 

collective migratory behaviour driven by directed basal lamellipodial activity. It is known that 

lamellipodial migration often depends on dynamic contacts with the underlying extracellular 

matrix (ECM) (Friedl and Wolf, 2010). Most epithelia, including the epithelium of the optic 

cup, are lined basally by ECM in the form of the basal lamina (Kwan, 2014; Mouw et al., 

2014). Therefore, to assess if similar phenomenon also occurs during rim involution, I 

assessed the spatial distribution of ECM components during RNE morphogenesis by 

immunostaining for the basal lamina components Laminin, Chondroitin sulfate and 

Fibronectin. The stainings revealed that all three components were present already since the 

optic vesicle stage and weakly localised under the developing RPE (Figure 2.10A, B). 

Laminin and chondroitin sulfate were enriched in the rim zone, under the invaginating RNE 

and the lens placode (Figure 2.10A). On the other hand, Fibronectin was preferentially 

enriched in the rim zone and under the lens placode but was weakly localised under the 

invaginating RNE (Figure 2.10B). Furthermore, over development the fibronectin staining 

showed a shift in the localisation pattern correlating with the shift and shrinking of the rim 

zone. Thus, the rim cells were exposed to various components of ECM that could serve as a 

scaffold for migration. 

 

Cells adhere to the ECM by focal contacts or focal adhesion, using cell surface molecules 

integrins. Integrins are transmembrane proteins that bind directly to the ECM components on 

the extracellular side. On the intracellular side, they bind indirectly to the actin cytoskeleton 

via scaffolding proteins such as vinculin, talin and paxillin (Berrier and Yamada, 2007; 

Iskratsch et al., 2014). During migration, cells make transient contacts with the ECM and 

these focal contacts show fast turnover (Berrier and Yamada, 2007; Iskratsch et al., 2014). 

Therefore, if the rim cells indeed underwent active migration, rim cells would not be stably 

attached to the underlying basal lamina. Instead, rim cells would have dynamic contact to 

the basal lamina. To test this idea, I analysed the dynamics of components of focal contacts. 

Time-lapse imaging revealed that both markers, Integrin b1b-mKate2 and paxillin-mKate2, 

localised as transient foci during rim movement (Figure 2.11A,B, Movie 8). However, when 

the rim cells reached the inner invaginating layer of the cup, the localisation pattern changed 

and both markers were stably enriched at the basal side indicative of stable attachment 

(Figure 2.11A,B, Movie 8). This finding was corroborated by simultaneous imaging of 

markers of actin and paxillin. While the cells in the rim zone lacked basal enrichment of actin 

and paxillin, cells in the invaginating region showed stable basal enrichment of Paxillin 

coinciding with the basal accumulation of actin (Figure 2.11C, Movie 9). This suggested that 
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the rim cells use dynamic contacts to reach the invaginating layer, strengthening the active 

migration hypothesis. In addition, these results showed that upon reaching the inner layer of 

the optic cup, the cells become stably attached to the basal lamina and enrich basal 

actomyosin to participate in the ongoing invagination. This further highlighted that the 

migratory behaviour was restricted to the rim zone and was absent in the other regions of 

the optic cup. 

 

 
Figure 2.10: Analysis of ECM distribution during optic cup morphogenesis. 

A) Confocal scans of immunostainings for laminin (middle), chondroitin sulfate (bottom) and GFP(top) 

in Tg(actb1:HRAS-EGFP) embryos across different stages of RNE morphogenesis.  

B) Confocal scans of immunostainings for Fibronectin (top) and phalloidin across different stages of 

RNE morphogenesis. Merge (bottom). Shifting rim zone localisation of fibronectin (Arrowhead)  

All scale bars = 10 µm. 
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Figure 2.11: Analysis of cell-matrix adhesion during RNE morphogenesis 

A) Time-lapse imaging of rim zone with mosaic expression of GFP-ras and Integrin-b1b-mKate2. 

Inlays show enlarged marked area. Integrin foci during migration (Arrow). Basally enriched stable 

integrin pool in the RNE cell (Arrowhead). Frames from movie 8. N = 4. Imaging started at 17–18 ss. 

B) Time-lapse imaging of rim zone with mosaic expression of paxillin-mKate2. Short-lived paxillin foci 

(Arrow). Stable basal paxillin localization in the RNE (Arrowhead). Frames from movie 8. N = 6. 

Imaging started at 17–18 ss.  

C) Time-lapse imaging of RNE morphogenesis in embryos expressing Paxillin-mKate2 and GFP-

UtrophinCH. Paxillin enrichment coinciding with UtrophinCH enrichment (Arrowhead). Frames are 

from Movie 9. Imaging started at 15 ss.  

All scale bars = 10 µm. Time h:min. 
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Figure 2.12: Working model of rim involution 

Schematic drawing of the working model of rim involution showing the cellular dynamics occurring 

when rim cells migrate along the rim of the optic cup and become part of the invaginating layer. 

2.8 Rim cell migration depends on dynamic cell-ECM adhesion 

Next, I investigated if the dynamic cell-ECM adhesion was indeed important for rim cell 

movement. The requirement of cell-ECM attachment has been established before for the 

process of optic vesicle evagination, where role of laminin is critical for the polarisation of the 

eye field cells (Ivanovitch et al., 2013). Additionally, cell-ECM adhesion is also important for 

the RNE invagination in zebrafish and medaka (Bogdanovic et al., 2012; Bryan et al., 2016; 

Martinez-Morales et al., 2009). These reports were based on the phenotypes of loss-of-

function mutants for laminin-ɑ1 (Bryan et al., 2016) and integrin regulator opo (Martinez-

Morales et al., 2009). However, the role of cell-ECM attachment in rim migration remains 

elusive. It is known that laminin-ɑ1 and opo are expressed at mRNA levels throughout the 

optic vesicle, including the rim zone (Gago-Rodrigues et al., 2015; Pickering, 2012). 

Therefore, it is tempting to speculate that Laminin-ɑ1 and opo could also play a role during 

rim involution. 

 

In case of laminin-ɑ1, three different alleles of the mutant bashful have been described 

before (Paulus and Halloran, 2006; Semina et al., 2006). However, earlier investigations of 

the alleles were focused on the role of laminin in lamination of retinal neurons and did not 

investigate the effect of loss of laminin on early eye development. A recent study 

investigated one of the alleles during OCM and reported profound polarity defects resulting 

in a very severe optic cup phenotype (Bryan et al., 2016). Such drastic phenotype would not 

allow to study the role of laminin in other cellular processes during OCM. Therefore, I opted 

for morpholino-mediated knockdown of laminin-ɑ1 and opo using previously published 
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morpholinos (Martinez-Morales et al., 2009; Pollard et al., 2006). The efficacy of the 

morpholino-mediated laminin-ɑ1 knockdown was checked using antibody staining and 

western blot using anti-laminin antibody. Both experiments confirmed efficient knockdown 

(Figure 2.13A,C). In case of opo morphants, due to unavailability of a commercial anti-opo 

antibody, I performed a functional test for integrin localisation. Indeed, concurrent with the 

original study (Martinez-Morales et al., 2009), opo morphants showed reduced basal integrin 

localisation, confirming efficient knockdown (Figure 2.13B,D). 

 
Figure 2.13: Analysis of knockdown efficiency of laminin-ɑ1 and opo morpholinos.  

A) Confocal scan of 30 ss RNE in control (top) and laminin-ɑ1 morphants (bottom) marked with GFP-

ras stained for laminin. Morphant shows S-shaped RNE and reduced laminin staining.  

B) Confocal scan of side view of 30 ss RNE in GFP-ras and Integrin-β1-mKate2 RNA injected control 

(top) and opo morphant (bottom) embryo. Morphant shows S-shaped RNE with secondary 

invagination zone and highly reduced basal localization of integrin. N = 5.  

C) Western blot for laminin and alpha-tubulin in control and laminin-ɑ1 morphant. 

D) Ratio of average integrin β1-mKate2 signal at the basal to central region in the RNE in optical 

section along the apicobasal axis of the RNE at 30 ss. Mean±SD, N = 5 embryos.  

All scale bars = 10 µm. 

Laminin acts as a cross-linker molecule in the basal lamina and organises the other matrix 

components (Hohenester and Yurchenco, 2013; Mouw et al., 2014). Therefore, I analysed 

the distribution of the other ECM component fibronectin in laminin-ɑ1 morphants. 

Interestingly, I observed that upon laminin knockdown, fibronectin distribution changed. 

Fibronectin, which in control embryos stained the basal lamina in the invaginating zone very 

weakly, showed overall enrichment upon laminin-ɑ1 knockdown in the rim zone as well as 
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the invaginating zone (Figure 2.14A). Thus, laminin-ɑ1 knockdown provided a condition to 

assess the effect of altered ECM composition on rim involution and OCM. On the other 

hand, knockdown of opo, a regulator of integrin trafficking, affected basal integrin localisation 

in the developing RNE without strong effect on fibronectin localisation (Figure 2.13B,D,14B). 

Thus, it provided an additional tool to address the role of cell-ECM attachment in rim 

migration and OCM.  

 
Figure 2.14: Analysis of fibronectin distribution in laminin and opo morphants.  

Confocal scan of 30 ss RNE in control (A) and laminin-ɑ1 morphant (B) and opo morphant (C) stained 

for phalloidin and fibronectin. Enhanced fibronectin staining (Arrows). The right panels show a 

zoomed image of the area marked by the red box. N = 6. Scale bar = 10 µm.  

 

 
Figure 2.15: Analysis of polarity marker aPKC localisation in laminin-ɑ1 and opo morphants. 

A) Confocal scan of 30 ss RNE in control (left), laminin-ɑ1 morphant (middle) and opo morphant 

(right) stained for aPKC. apical domain marked by aPKC (blue arrow). Delaminated cells in the 

laminin-ɑ1 morphant (yellow arrowhead). N = 5. Scale bar = 10 µm. 
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Importantly, unlike the mutant phenotype described before (Bryan et al., 2016), laminin-ɑ1 

morphants did not show a very severe polarity defect. A few delaminated cells showed 

ectopic localisation of apical markers, but the overall tissue polarity was not severely 

perturbed (Figure 2.15A). Similarly, the opo morphants did not show any polarity defects 

(Figure 2.15A). Therefore, the morpholino-mediated knockdown allowed me to address the 

role of ECM composition and cell-ECM attachment in rim migration.  

 

 

 

Figure 2.16: Analysis of RNE morphogenesis in laminin-ɑ1 and opo morphants. 

A) Brightfield images of dorsal view of 30 ss embryo head. Control (left), laminin-ɑ1 morphant 

(middle) and opo morphant (right). Epithelial accumulation outside the RNE (Arrow). Scale bar = 50 

µm. 

B) Confocal scan of optic cup at 30 ss stained for phalloidin. Control (left), laminin-ɑ1 morphant 

(middle) and opo morphant (right). Epithelial accumulation outside the RNE (Arrow). Angle of 

invagination (Dashed line). Developing lens (Asterisk). Scale bar = 10 µm. 

C) Migration speed of rim cells (Mean±SD). Mann Whitney test, laminin-ɑ1 Mo p = 0.0004, opo Mo p 

= 0.0176. 

D,E) Time-lapse imaging of RNE morphogenesis in laminin-ɑ1 morphant (D) and opo morphant (E) 

injected mosaically with mKate2-ras RNA. Rim cells that failed to move (Arrow). Outline of the 

developing RNE (dashed line). Frames from movie 10. Time in h:min. Scale bar = 10 µm. Movies 

started at 16–17 ss. 
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Figure 2.17: Analysis of RNE invagination in laminin-ɑ1 and opo morphants. 

A) Invagination angle at 30 ss. Mean±SD. Mann-Whitney test p < 0.0001  

B,C) Normalized average intensity distributions of phalloidin (B) and phosphomyosin (C) in tissue 

volume along the apicobasal axis of the RNE at 30 ss. Mean±SEM. Control (brown) n = 25, laminin-

ɑ1 Mo (green) n = 19 and opo Mo (blue) n = 20. Tissue sections (n); embryos, N = 5. 

Having established the two experimental systems, I assessed the effect of perturbed cell-

matrix attachment on overall RNE architecture. Loss of Laminin-ɑ1 and loss of Opo both 

resulted in a RNE with perturbed architecture. Instead of the C-shaped RNE morphology 

seen in controls, the morphant RNEs exhibited a shape that rather appeared like an S, due 

to an accumulation of epithelial cells at the ventro-temporal side (Figure 2.16A, B). It should 

be noted that the ventro-temporal side of the optic cup is the part where rim involution is 

predominant (Figure 2.1). This suggested a possible defect in rim migration that perturbed 

RNE morphogenesis. To test this, I performed time-lapse imaging of the morphant RNE 

development. Indeed, rim migration was defective in the morphant conditions with the 

average speed of the rim cells being lower than the control (Figure 2.16C). Some migration 

defective rim cells did not undergo rim involution and accumulated outside the invaginating 

region (Figure 2.16D,E, Movie 10). 

 

Previous studies have established the role of laminin and opo in invagination of the RNE 

(Bogdanovic et al., 2012; Bryan et al., 2016; Martinez-Morales et al., 2009). Hence, I 

analysed if in my experiments, the rim involution defect was accompanied with perturbed 

invagination. Analysing the angle of invagination revealed that the invagination angles were 

wider in the laminin-ɑ1 and opo morphants than the controls (Figure 2.17A). This 

observation confirmed a defect in invagination. The previous results using Rockout 

treatment had shown that the perturbation of the basal actomyosin lead to slowed 

invagination and wider invagination angles (Figure 2.5). Therefore, I tested if this defect in 

invagination was due to similar effect on basal actomyosin enrichment. Analysis of the 

actomyosin distribution in laminin-ɑ1 and opo morphants revealed a reduction in the basal 

enrichment of the actomyosin in the RNE (Figure 12.17B,C). This suggests that the basal 
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actomyosin enrichment is dependent on cell-matrix adhesion. The effect on invagination was 

more severe in the laminin condition, possibly due to the combined defect in ECM 

composition, and cell-ECM attachment. Additionally, opo being a regulator of integrin 

trafficking, the opo knockdown condition is possibly a milder perturbation of cell-ECM 

attachment. Nevertheless, these results suggested that the observed S-shaped optic cup 

phenotype was probably due to combined effect on invagination as well as rim migration. 

2.9 Perturbed cell-matrix adhesion correlates with perturbed basal 

lamellipodial activity  

To understand the contribution of rim involution to RNE morphogenesis without directly 

affecting invagination, I needed a condition that perturbs rim migration selectively. Therefore, 

to identify the cellular process that selectively affects the rim migration, I analysed the single 

cell behaviour of the rim cells in the migration-defective conditions of laminin-ɑ1 and opo 

morphants. Characterisation of rim cells showed that in the control condition, these cells 

form lamellipodia-like protrusions (Figure 2.8D, Movie 4) and exhibit transient paxillin foci 

(Figure 2.11B, Movie 8). Interestingly, these cellular features were perturbed in both the 

morphants. In laminin-ɑ1 morphants, the cells did not possess dynamic foci of paxillin, 

instead paxillin localised stably to the basal side of the cell (Figure 2.18A, Movie 11). Such 

paxillin localisation could possibly result from the fibronectin enrichment in laminin-ɑ1 

morphants (Figure 2.14B). Additionally, the lamellipodial protrusive activity was replaced by 

bleb-like protrusive activity at the basal side of the cell (Figure 2.18A, Movie 11). Blebs are 

plasma membrane protrusions resulting from detachment of the plasma membrane from the 

underlying actomyosin cortex. They are devoid of myosin and contain actin only during 

retraction phase (Charras and Paluch, 2008). I observed similar localisation of actomyosin 

markers in the bleb-like protrusion in the morphants. Myosin did not localise in the 

membrane protrusion but was restricted at the base of the protrusion, whereas actin marker 

localised to the protrusion in the retraction phase (Figure 2.18B). This confirmed that the 

aberrant protrusions in the laminin-ɑ1 morphant were true blebs. It is known that certain cells 

undergo bleb-based migration (Charras and Paluch, 2008). However, the rim cells with basal 

blebs did not show productive movement upon loss of lamellipodial protrusions (Movie 11). 

The lamellipodial protrusions were also affected in the opo morphants. Although, the paxillin 

foci remained dynamic in opo condition, the lamellipodial activity was replaced by formation 

of blebs at the basal side of the cells and the cells did not show any productive movement 

(Figure 2.18C, movie 12). Importantly, these bleb-like protrusions were also observed in opo 

morphant cells transplanted into WT embryos, suggesting that the perturbed cell-matrix 

attachment lead to the blebbing phenotype in a cell-autonomous manner (Figure 2.18D, 
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Movie 13, N=4 out of 5 transplanted embryos). These results suggest that perturbed cell-

matrix adhesion also perturbs the normal lamellipodial protrusive activity of the rim cells, 

which in turn affects their migration (Figure 2.18E). 

 

 
 

Figure 2.18: Analysis of rim cell protrusive activity in laminin-ɑ1 and opo morphants. 

A) Confocal scan of rim cell in laminin-ɑ1 morphant embryos with mosaic expression of mKate2-ras 

and paxillin-mKate2. Bleb (blue arrowhead). Stable paxillin localization (Red arrowhead). Frames 

from Movie 11. N = 3. Scale bar = 10 µm. 

B) Confocal scan of rim cells exhibiting blebs (blue arrowhead) in laminin-ɑ1 morphants mosaically 

labelled by mKate2-ras with DD-myl12b-GFP (left) and GFP-UtrophinCH (right). Yellow arrowhead 

marks the localization of DD-myl12b-GFP outside and UtrophinCH inside the bleb. Scale bar = 2 µm. 

C) Confocal scan of rim cell in opo morphant embryos with mosaic expression of mKate2-ras and 

paxillin-mKate2. Bleb (blue arrowhead). Transient paxillin localization (Red arrowhead). Frames from 

Movie 12. N = 3. Scale bar = 10 µm. 

D) Confocal scans of rim zone showing GFP-ras-expressing opo morphant clone in control embryos. 

N=4 out of 5 transplanted embryos. Basal blebs exhibited by the transplanted morphants cells (blue 

arrows). Frames from Movie 13. Scale bar = 5 µm. 

E) Schematic drawing of membrane blebbing in the laminin-ɑ1 and opo morphant rim cells. 

2.10 Perturbed basal lamellipodial activity affects migration of rim cells 

and leads to defects in RNE architecture 

The finding that the cells that failed to undergo active rim migration exhibited blebs instead 

of lamellipodia raised the question if the perturbation of the normal protrusive activity could 

by itself interfere with rim migration. Rac proteins, members of Rho GTPase family, are 

important lamellipodial regulators that activate Arp2/3-mediated actin polymerisation and 

formation of lamellipodial protrusions or membrane ruffles (Heasman and Ridley, 2008). 

Therefore, in order to disrupt the lamellipodia formation in rim cells, I opted to use a 

dominant negative version of Rac1 (DN-Rac, Rac1-T17N), which traps the activating partner 

GEF proteins and thus hampers the function of endogenous Rac (Subauste et al., 2000).  
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Figure 2.19: Analysis of cellular phenotypes upon expression of DN-Rac 

A) Confocal scans of F-actin distribution marked by heat shock induced EGFP-Utrophin in peridermal 

cells of the epidermis (left), RNE cells (middle) and rim cells (right). Cells expressing heat shock-

induced mKate-DN-Rac (Yellow asterisk). Control cells (Red asterisk). Note that upon DN-Rac 

expression, the pattern of actin microridges is affected in the epidermis and actin organisation shows 

filamentous arrangement in the RNE and rim cells. 

B) Time-lapse imaging of RNE morphogenesis in embryos showing mosaic expression of 

hsp70::EGFP-DN-Rac. Inlays show the abnormal protrusions in DN-Rac expressing cell. Outline of 

the developing RNE (Yellow dashed line). Apical side (Blue line). Heat-shock at 12 ss. Imaging 

started 3 hours after heat shock. Time in h:min. 

All scale bars = 10 μm. 
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I expressed the DN-Rac under the heat-shock promoter, to precisely activate its expression 

during OCM. To evaluate the efficiency of the construct, I assessed its effects on the actin 

cytoskeleton in different cell types. I noted that actin arrangements were altered in both RNE 

cells and epidermal cells (Figure 2.19A). Thus, I concluded that the construct was functional 

and can be used to interfere with lamellipodia formation. However, expression of DN-Rac 

induced milder effect on the protrusions and rim involution. The DN-Rac-expressing rim cells 

formed aberrant filopodia-like protrusions, which could still support the movement of cells 

and the effect on rim involution was weaker even in the embryos expressing larger clones of 

DN-Rac (Figure 2.19B). Therefore, the formation of filopodia-like protrusions made it difficult 

to interpret the results. 

 

As expression of DN-Rac did not allow efficient disruption of migration of rim cells, I opted 

for another strategy to perturb the lamellipodial protrusions and rim cell migration. Ezrin is a 

member of ERM family of proteins that link the actin cortex to the plasma membrane (Fehon 

et al., 2010). Ezrin knockdown has been shown to cause increased blebbing and reduced 

migration rates of zebrafish prechordal plate precursor cells (Schepis et al., 2012). As the 

cells in the laminin-ɑ1 and opo morphants also featured membrane blebs at the basal side, I 

decided to mimic the blebbing phenotype by ezrin knockdown. For ezrin knockdown, I used 

previously published morpholinos (Link et al., 2006). The efficiency of knockdown was 

assessed by western blot with the phospho-ERM antibody which showed a reduction in the 

protein levels (Figure 2.20A). However, it should be noted that I used a milder knockdown of 

ezrin as severe knockdown of ezrin resulted in gastrulation defects (Link et al., 2006) and 

high cell death in the neural tube. Indeed, knockdown of ezrin changed the protrusive 

dynamics and resulted in basal blebbing in the rim cells (Figure 12.20B). These blebs were 

seen only at the basal side of the cells and the lateral edges were not affected. Furthermore, 

similar blebbing was observed in ezrin morphant cells transplanted into WT embryos (Figure 

12.20C, N=2 out of 4 transplanted embryos). This variability in the blebbing could be due to 

varying morpholino concentration within transplanted cells as they come from different 

donors. ERM proteins are also known to play a role in regulating the epithelial polarity 

(Fehon et al., 2010). However, immunostainings for apical marker aPKC did not show any 

defect in the polarity of the tissue (Figure 2.20D). Thus, ezrin knockdown provided me a tool 

to perturb the rim cell protrusive activity. 

 

Next, I asked if the perturbation of rim cell activity had any impact on rim involution and RNE 

morphogenesis. Indeed, phenotypic observation of the ezrin morphants revealed that the 

RNE architecture was affected. This phenotype resembled what was seen in laminin-ɑ1 and 

opo morphants, an S-shaped optic cup with epithelial cells accumulated at the ventro-
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temporal side (Figure 2.21A,B). Live imaging of the ezrin morphants confirmed that defective 

rim migration lead to the observed accumulation of cells (Figure 2.21C, Movie 14). The 

average speed of rim migration was also lower in the ezrin morphants as compared to the 

controls (Figure 2.21D). However, unlike laminin-ɑ1 and opo morphants, the basal 

accumulation of actomyosin was not affected in the ezrin morphants (Figure 2.21E,F). To 

confirm this, I compared the instantaneous slopes of phalloidin intensity distribution in the 

different conditions. Rockout, laminin-ɑ1 morphant and opo morphant conditions, which 

caused a reduction in the basal actomyosin showed a similar pattern of the instantaneous 

slope curve. On the other hand, ezrin morphants showed a pattern closer to the control 

condition (Figure 2.21G). Also, the angle of invagination was only mildly affected in ezrin 

morphant and was not as severe as seen in laminin-ɑ1 morphants (Figure 2.21H). Thus, the 

defect in optic cup architecture upon loss of ezrin was mainly due to perturbed rim migration 

and was not due to a defect in basal actomyosin accumulation. 

 

Taken together, my results highlight the importance of dynamic cell-matrix adhesion and 

lamellipodial activity in rim migration. Furthermore, the data show that rim migration plays an 

important role in shaping the RNE.  

 

 
 

Figure 2.20: Analysis of ezrin morphants. 

A) Western blot for p-ERM and alpha tubulin in control and ezrin morphant. 

B) Confocal scan of rim cells in mKate2-ras injected ezrin morphant. Basal blebs (arrow). Scale bar = 

5 µm. 

C) Confocal scan of rim zone showing GFP-ras expressing ezrin morphant clone in a control embryo. 

N = 2 out of 4 transplanted embryos. Basal blebs (arrowhead). Scale bar = 5 µm. 

D) Confocal scan of 30 ss RNE in control (left), ezrin morphant (right) stained for aPKC. N = 5. Scale 

bar = 10 µm. 
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Figure 2.21: Analysis of RNE morphogenesis in ezrin morphant. 

A) Brightfield images of side view of 30 ss optic cup. Control (left) and ezrin morphant (right). 

Epithelial accumulation outside the RNE (Arrow). Scale bar = 50 µm. 

B) Confocal scan of optic cup at 30 ss stained for phalloidin. Control (left) and ezrin morphants (right). 

Epithelial accumulation outside the RNE (Arrows). Lens (Asterisk). Lookup table indicates the 

minimum and maximum intensity values. Scale bar = 10 µm. 

C) Time-lapse imaging of RNE morphogenesis in ezrin morphant injected mosaically with ras-mKate2 

RNA. Rim cells that failed to move (arrow). Outline of developing RNE (dashed line). Frames from 

movie 14. Time in h:min. Scale bar = 10 µm. Imaging started at 17–18 ss. 

D) Migration speed of rim cells (Mean±SD). Mann Whitney test. p < 0.0001.  

E,F) Normalized average intensity distributions of phalloidin (E) and phosphomyosin (F) in the tissue 

volume along the apicobasal axis of the RNE at 30 ss. Mean±SEM. Control (brown) ezrin Mo 

(magenta). Tissue sections, n = 25 for control and n=30 for ezrin Mo; N = 5 embryos.  

G) Instantaneous slope of the average intensity curves for phalloidin plotted for the basal 20% height 

of the neuroepithelial volume. The position on the X-axis marks the position along the apicobasal axis. 

The analysis was performed using the data from Figure 2.4C, 2.5C, 2.17B and 2.21E. 

H) Invagination angle at 30 ss. Mean±SD. The schematic shows the invagination angle as the angle 

held at the base of central RNE by the inner lips of the optic cup. Mann-Whitney test p < 0.0001.  
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2.11 Rim cell migration ensures timely entry of RNE cells into the optic 

cup 

The results so far revealed that the rim cells involute by collective epithelial migration to 

reach the invaginating layer, and a failure in rim involution perturbs the RNE architecture. 

This raises the question, what happens to the cells that failed to undergo rim involution and 

accumulated at the ventro-temporal side of the optic cup? In the control situation, the rim 

cells form stable focal adhesions marked by paxillin only upon reaching the inner 

invaginating layer, where they attained the RNE morphology (Figure 2.11, 2.22A). In 

contrast, the rim cells in ezrin morphants that failed to undergo rim migration featured stable 

paxillin staining prematurely, before reaching the invaginating layer (Figure 2.22A,B). This is 

similar to the observation in laminin-ɑ1 morphants, where the blebbing cells exhibited stable 

paxillin localisation even without reaching the RNE (Movie 11). This suggested that the cells 

attained RNE-like morphology at an ectopic location. Such RNE-like stable adhesion to the 

basal lamina might additionally hamper their movement, adding to the severity of the 

phenotype. In some embryos, depending upon how many cells accumulated outside of the 

invagination zone, the migration defect had profound effects. These phenotypes persisted 

until 36 hpf, when neurogenesis in the RNE is known to start (Weber et al., 2014), resulting 

in abnormal architecture of the optic cup (Figure 2.23A). In some ezrin morphants, these 

displaced RNE cells even initiated a second invagination zone (Figure 2.23B). This 

observation again highlighted that the migration defective cells showed RNE-like behaviour 

and underwent a similar morphogenetic program but at a wrong location.  

 

The premature attainment of RNE-like morphology suggested presence of a developmental 

timer in the cells. Even when the cells are not at their right location, the developmental timer 

induces the cells to attain RNE-like morphology. Such a developmental timer could be acting 

through the fate determination program, that determines the fate of the cells in the 

developing optic cup as RNE or RPE. Therefore, I asked if the ectopic attainment of RNE-

like morphology was also accompanied by determination of RNE fate. Homeobox 

transcription factor Vsx2 is a well-known marker specifically expressed in the retinal 

progenitors and responsible for their fate determination (Kimura et al., 2006). Live imaging of 

the fate determination using a reporter line Tg(vsx2::GFP) showed that in controls, the rim 

cells showed very weak GFP signal outside the invaginating layer. However, the GFP signal 

became brighter as the rim cells involuted and became part of the invaginating layer (Figure 

2.24A, Movie 15). This indicated that the cell fate determination was intricately linked with 

rim involution. Upon following the fate determination in the rim involution-perturbed condition 

of ezrin morphant, it was observed that in the cells that failed to migrate the GFP signal of 



 

 
 
Results 
 

 62 

vsx2::GFP was brighter already outside the invaginating layer (Figure 2.24A, Movie 15). As 

a result, vsx2::GFP positive cells accumulated ectopically. This was observed in ezrin as 

well as laminin-ɑ1 and opo morphants (Figure 2.24B). Together, these results showed that 

the cellular determination occurred independent of their position. As a result, failed rim 

migration resulted in ectopic accumulation of cells determined to be part of the RNE. 

 

 

Figure 2.22: Analysis of rim cells that failed to undergo involution in ezrin morphant. 

A) Confocal scan of 30 ss optic cup expressing paxillin-mKate2 and GFP-ras. Control (top), ezrin Mo 

(bottom). Paxillin enrichment at the basal side of the invaginating layer (Arrowhead). Premature 

paxillin enrichment (Arrow). N = 7. Scale bar = 10 µm. 

B) Confocal scan of paxillin-mKate2 and GFP-ras expressing cells. Control RNE cells (top), ectopic 

RNE cell in ezrin morphant (bottom). Paxillin enrichment at the basal side (Arrow). Scale bar = 5 µm. 

 

 

Figure 2.23: Analysis of late optic cup morphology upon failed rim cell migration. 

A) Brightfield images of 36 hpf control embryos, ezrin morphants and opo morphant. 

B) Brightfield image of 30 ss ezrin morphant showing secondary optic cup phenotype. Arrow marks 

secondary invagination zone. 

Scale bars = 50 µm.  

 

 

 



 

 
 

Results 

 63 

 

 

Figure 2.24: Analysis of RNE fate determination 

A) Time-lapse imaging of control and ezrin morphant condition in Tg(vsx2::GFP, bactin::mKate2ras) 

background. Rim zone in control (Arrowheads). Rim cells that failed to migrate in ezrin morphant 

(Arrows). Frames from movie 15. Time in h:min. Movies started at 16–17 ss. N = 9. 

B) Confocal scans of optic cups at 30 ss in control, laminin morphant, opo morphant and ezrin 

morphant conditions in Tg(vsx2::GFP, bactin::mKate2-ras). Embryos were stained for GFP and 

mKate2. Ectopic RNE cells (Arrow). N = 7. 

Scale bars = 10 µm. 

A previous study has suggested that the cell behaviours in the optic cup are regulated by the 

upstream signalling events and developmental patterning of the optic vesicle (Picker et al., 

2009). The naso-temporal patterning of the optic vesicle has been proposed to underlie the 

behavioural difference at the nasal and temporal sides (Picker et al., 2009). In this study, the 

rim cells were shown to express markers of the temporal retina and to contribute to the 

temporal retina development (Picker et al., 2009). This raised the question, if the defects in 

rim migration were due to naso-temporal patterning defects in the optic vesicle. To 

investigate this, I analysed the expression of naso-temporal markers in the ezrin morphant 

condition, where rim involution is perturbed. To this end, I used the transgenic lines for the 

nasal marker Tg(-8.0 Cldb::lyn-GFP) (Haas and Gilmour, 2006; Picker et al., 2009) and the 

temporal marker Tg(HGn42A::EGFP) (Nagayoshi et al., 2008; Picker et al., 2009). I 

observed that the ezrin morphants were correctly patterned along the naso-temporal axis. 

The migration-defective rim cells could not reach their destination, nonetheless they 
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expressed the right markers (Figure 2.25A,B). These results highlighted that the defects 

observed in the ezrin morphants were not due to patterning defects, but due to genuine 

defects in morphogenetic movements.  

 

 

Figure 2.25: Analysis of naso-temporal patterning 

A) Confocal scans of optic cups at 30 ss in control (left) and ezrin morphant (right) conditions in Tg(–

8.0 ClaudinB::lyn-GFP) stained for GFP and phalloidin. Ectopic RNE cells (Arrow). N = 7. 

B) Confocal scans of optic cups at 30 ss in control (left) and ezrin morphant (right) conditions in 

Tg(HGn42A::GFP) stained for GFP and phalloidin. Ectopic RNE cells (Arrow). N = 7. 

Scale bars = 10 µm. 

 

Taken together, my results show that rim involution is a crucial process in RNE 

morphogenesis that links morphogenetic and cell fate programs in the developing optic cup. 

It functions as a mechanism to ensure that initially ‘misplaced’ prospective RNE cells are 

moved to their correct location before they adopt RNE fate, making it a crucial step for 

subsequent retinal development. 
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3. Discussion 

My work presented here has revealed important insights into the cellular dynamics during 

morphogenesis of the retinal neuroepithelium (RNE) of the zebrafish embryos. I show that 

basal shrinkage of the neuroepithelial cells and rim involution shape the RNE collectively. 

Basal shrinkage and RNE invagination are partly accelerated by an enrichment of contractile 

actomyosin at the basal side of the cells. However, the major contributor to RNE 

morphogenesis is rim involution. My work has revealed the so far unknown cellular 

mechanism of rim involution. I show that rim involution is a process of active collective 

epithelial migration. This collective rim migration translocates the prospective RNE cells to 

their right location in the invaginating neuroepithelium and contributes more cells to the 

ongoing invagination. A failure in rim migration results in perturbed RNE architecture. Thus, 

rim involution is important for the spatial organisation of the RNE. Furthermore, rim 

involution ensures that the prospective RNE cells reach their destined location at the right 

time. A defect in rim migration results in ectopic cell determination of the prospective RNE 

cells and has long-lasting effect on the RNE architecture. Therefore, rim involution couples 

the morphogenetic program with cell fate determination and coordinates timely development 

of RNE, the organ precursor of the retina. Overall this work highlights how morphogenetic 

processes coordinate epithelial organogenesis both in space and time to shape an epithelial 

organ precursor efficiently (summarised in Figure 3.1). 

 

In this chapter, I discuss the significance and implications of my findings and also the new 

exciting questions they raise. 

3.1 Multiple morphogenetic strategies ensure efficient morphogenesis  

3.1.1 Basal RNE cell shrinkage and active rim migration together ensure 

efficient hemispheric RNE formation 

My work highlights the importance of the combined action of two epithelial rearrangements 

to drive efficient and timely optic cup morphogenesis (OCM) in the zebrafish embryo. The 

shape of the optic vesicle as an epithelial fold might influence the choice of the epithelial 

rearrangements for invagination. The initial ‘proximal layer’ localisation of many presumptive 

RNE cells, possibly makes basal shrinkage in the distal layer a less efficient way to achieve 

RNE morphogenesis in the given developmental time window. This is suggested by the ezrin 

morphant phenotype, in which in spite of having actomyosin enrichment at the basal side, 

rim cells fail to involute on time (Figure 3.1Cii). Therefore, an interplay of cell shape changes  



 

 
 
Discussion 
 

 66 

 

 

 

Figure 3.1: Concerted action of basal cell shrinkage and rim involution shapes the 

hemispheric RNE. 

A) Schematic representation of RNE morphogenesis. The cells in the optic vesicle shape the RNE 

into a hemispheric cup. RNE cells in the distal layer (brown) contribute to invagination and 

prospective neuroepithelial cells (blue) undergo rim involution to reach the inner layer of the cup. 

B) In control conditions, invagination is driven by basal area reduction that is guided by basally 

enriched actomyosin-driven constriction and overall compaction by increasing number of cells. Rim 

involution is driven by collective and directed migration of the epithelium at the rim of the developing 

optic cup. Protrusive migratory dynamics of rim cells change to adherent behaviour when cells reach 

the inner layer. 

C) Effect of cellular perturbations on the RNE architecture. i) Loss of basal actomyosin enrichment 

slows the invagination process, which can result in a wider optic cup. ii) Perturbation of lamellipodial 

membrane protrusions affects the migratory behaviour and the optic cup architecture, resulting in an 

S-shaped optic cup. iii) Perturbation of cell-ECM adhesion results in both loss of basal actomyosin 

accumulation in the invaginating zone and perturbed lamellipodial membrane protrusions in the rim 

zone. Such combined effect leads to a severe optic cup phenotype.  
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and epithelial migration transforms the optic vesicle into an optic cup efficiently. When either 

basal actomyosin enrichment or rim involution were affected alone (Rockout-treated and 

ezrin morphant conditions) the effect on invagination was weak (Figure 3.1Ci,ii). However, 

when both the processes are perturbed (laminin-ɑ1 morphant condition), it resulted in a 

severe phenotype with very wide angle of invagination (Figure 3.1Ciii). Thus, both the 

epithelial rearrangements contribute to the process of morphogenesis individually, and their 

crosstalk determines the final architecture of the organ precursor.  

 

Such combinations of epithelial rearrangements are possibly important to achieve 

organogenesis in short developmental time windows and are observed in other 

developmental events. For instance, during zebrafish posterior lateral line development, a 

group of cells in the form of a primordium migrates collectively across the body of the larva. 

On its way, subsets of cells form small rosettes, leave the primordium, and get deposited 

along the path. In this system, the coordination in epithelial rearrangements of rosette 

formation and the primordium migration determines the spacing between rosettes and in turn 

the lateral line architecture (Durdu et al., 2014). As an additional example, Drosophila germ 

band extension was thought to be driven solely by intercalation of cells using tissue-

autonomous mechanisms. However, a recent study has revealed the additional importance 

of posterior midgut invagination that exerts a pulling force on the germ band and thus helps 

in oriented growth of junctions and tissue extension (Collinet et al., 2015). Such collective 

effort of different epithelial rearrangements possibly makes developmental processes more 

efficient and robust. The redundancy of approaches ensures that a defect in one of the 

processes does not completely block the organogenesis event. Furthermore, the collective 

effort possibly accelerates the process of organogenesis and regulates the timing of organ 

formation. Thus, the collective action and interplay of diverse cell behaviours is a common 

developmental strategy that orchestrates various organogenesis events.  

3.1.2 Role of RPE morphogenesis: A riddle in RNE morphogenesis 

Apart from basal shrinkage and rim involution, the optic vesicle epithelium undergoes an 

additional epithelial rearrangement that could play a role in RNE morphogenesis: formation 

of the retinal pigment epithelium (RPE). Although the biology of the mature RPE and the 

gene regulatory network involved in determination and specification of the RPE is well-

understood (Fuhrmann et al., 2014; Kim et al., 2016; Miesfeld et al., 2015), we still lack an 

understanding of RPE morphogenesis. The RPE morphology differs between amniotes 

(columnar) and teleosts (squamous), however the morphogenetic strategies in both the 

groups involve cell shape changes. The teleost RPE morphogenesis involves epithelial 
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thinning, a drastic cell shape change from columnar to squamous shape. However, the 

cellular mechanisms of RPE flattening remain unknown, which makes it difficult to address 

its role in OCM. Nevertheless, I would like to discuss two important points revealed from my 

work that could be useful in this direction. 1) None of the perturbations described here 

(Rockout, laminin-ɑ1 morphant, opo morphant, and ezrin morphant) affected RPE 

morphogenesis. Neither have the previous opo and laminin-ɑ1 mutant studies reported any 

RPE phenotype (Bryan et al., 2016; Martinez-Morales et al., 2009). This argues that cell-

matrix adhesion or actomyosin-dependent mechanisms probably do not play a role in RPE 

morphogenesis. 2) The developing RPE is a part of the continuous epithelium in the optic 

vesicle and thus it is physically linked to the developing RNE. Therefore, RPE 

morphogenesis could possibly exert a pushing force, which induces rim cell involution. 

Nevertheless, in laminin-ɑ1, opo, and ezrin morphants, which show rim involution defects, 

RPE morphogenesis occurred normally. Thus, the pushing force from RPE flattening is 

probably not sufficient for rim involution and rim cells require active collective migration to 

involute. Future studies need to address the mechanism of RPE morphogenesis and its 

possible role in RNE invagination. 

3.1.3 Role of accessory tissues in RNE formation 

The vertebrate eye also contains other accessory tissues that develop in parallel with the 

RNE. These structures include the lens and the periocular mesenchyme (POM). The 

concurrent development of these structures is important for timely eye development and 

possibly influences RNE morphogenesis. Interestingly, under in vitro culture conditions it is 

possible to form an optic cup and the hemispherical RNE in absence of any lens or POM 

(Eiraku et al., 2011). This argues against the requirement of these accessory structures for 

RNE morphogenesis and highlights the self-organising power of the RNE. However, their 

presence and possible influence in the in vivo scenario cannot be ignored and needs more 

attention. 

  

Multiple studies have shown the role of the lens as a signaling center but whether it also 

plays an active role in driving RNE invagination is debated (Chauhan et al., 2009; Hyer et 

al., 2003; Pandit et al., 2015). Nevertheless, the invagination of the lens and the RNE are 

highly coordinated and occur simultaneously (Fuhrmann, 2010). Therefore, I speculate that 

in vivo the lens placode might play a mechanical role in the invagination process. It could 

boost the kinetics of RNE invagination and thus contribute to the temporal regulation of 

OCM. In future, it would be interesting to compare the speeds of invagination with and 

without the developing lens placode. It has been proposed for mouse and medaka that the 

lens and the RNE are linked through filopodial connections (Chauhan et al., 2009; 
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Porazinski et al., 2015). However, I did not observe such filopodia in any of my experiments 

and this mechanism has not been tested for zebrafish OCM. It is possible that the filopodial 

mechanism is species specific. Therefore, to understand OCM in a holistic manner, more 

research is required to dissect the role of the lens. 

 

 

Figure 3.2: RNE morphogenesis in lmx1b double morphant 

A,B) Time-lapse imaging of lmx1b.1, lmx1b.2 morphant condition in Tg(vsx2::GFP, 

bactin::mKate2ras) background. Membrane marker (A) and vsx2::GFP signal (B). Rim cells with 

ectopic vsx2 expression (Arrowhead). Outline of the developing optic cup (dashed line). Time in 

h:min. Movies started at 17–18 ss. N = 5. Scale bar = 10 µm. 

C) Brightfield image of 30 ss lmx1b morphant showing secondary optic cup phenotype. Arrows mark 

secondary invagination zone. Scale bar = 50 µm. 

 

The second accessory tissue in the developing eye is the periocular mesenchyme (POM). It 

originates from the cranial neural crest-derived population of cells that migrates adjacent to 

the optic cup to reside initially near the rim zone and later near the ciliary margin zone. It 

later gives rise to the accessory structures such as the cornea and the iris. These cells are 

shown to be important signaling centers that regulate the FGF-mediated retinal patterning 

and the morphogenesis of the ventral optic cup including the choroid fissure closure (Lupo et 

al., 2011; McMahon et al., 2009; Sedykh et al., 2017). The Lmx1b transcription factor is 

shown to be crucial for survival of cranial neural crest cells and POM (McMahon et al., 

2009). Morpholino-mediated knockdown of Lmx1b isoforms lmx1b.1 and lmx1b.2 in 
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zebrafish results in optic cups with very little POM and causes coloboma (McMahon et al., 

2009). My preliminary data show that combined morpholino-mediated knockdown of lmx1b.1 

and lmx1b.2 leads to a rim involution defect. It results in ectopic RNE cells that can initiate a 

secondary invagination zone (Figure 3.2). These observations further support the role of 

POM in RNE morphogenesis. Interestingly, also the severe ezrin morphants showed 

significant cell death in the region where cranial neural crest cells reside, which could 

possibly affect the POM organisation. However, it remains unknown if the role of the POM 

would be merely signaling based or if the POM also secretes some ECM molecules. 

Therefore, in the future it would be interesting to study the role of POM and its influence on 

rim cell behaviour and RNE morphogenesis. 

3.2 Distinct dynamics at the basal side of the epithelium drive RNE 

morphogenesis 

A highlight from my work is the importance of the basal membrane domain dynamics in 

epithelial morphogenesis of the RNE. During both, rim involution and invagination, the cells 

modulate the membrane and cell-matrix adhesion dynamics at their basal side. During rim 

involution cells extend basal lamellipodial protrusions and exhibit transient contacts with the 

matrix. During invagination, the cells accumulate contractile actomyosin at the basal side 

and form stable focal adhesions. The phenotypes of laminin-ɑ1, opo, and ezrin knockdown 

show that perturbed basal dynamics affect RNE morphogenesis. Similar role for basal 

dynamics also seems to be important for in vitro OCM. The addition of matrigel or purified 

ECM components laminin and enactin to the culture medium is crucial to generate optic 

cups from the aggregates of embryonic stem cells (Eiraku et al., 2011). Thus, RNE 

morphogenesis provides an example of how epithelial morphogenesis can be guided by 

modulating the basal domain dynamics of the cells.  

 

Other known systems where basal domain dynamics drive epithelial morphogenesis include 

the formation of the zebrafish midbrain-hindbrain boundary, where the ECM is important for 

basal shrinkage of the boundary cells (Gutzman et al., 2008), the Drosophila follicular 

epithelium, where cell-ECM adhesion plays a crucial role in follicle rotation and egg 

elongation (Diaz de la Loza et al., 2017; Haigo and Bilder, 2011) and the Drosophila wing 

imaginal disc, where the cell-matrix interaction also crucially shapes the tissue architecture 

(Dominguez-Gimenez et al., 2007; Ma et al., 2017; Pastor-Pareja and Xu, 2011). 

Additionally, now it is becoming clear that systems such as gastrulation movements in 

Drosophila embryogenesis, for which apical dynamics were considered as the main 

morphogenetic drivers, also involve interesting dynamics at the basal side. For instance, a 
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recent study on germ band extension shows the importance of basal membrane dynamics 

(Sun et al., 2017). The cells in the germ band often form rosette, by shrinking their specific 

apical contacts. The new study now shows that these cells feature basal protrusions, which 

are also important for rosette formation and the subsequent convergent extension. 

Interestingly, these basal protrusions precede the known apical changes of rosette formation 

and open an exciting series of new questions on basal dynamics (Sun et al., 2017). All these 

examples highlight that to understand the cellular mechanisms of epithelial morphogenesis, 

it is important to consider the cellular dynamics at the apical as well as the basal side.  

 

Below I discuss a few points related to the basal dynamics in RNE morphogenesis. 

3.2.1 Basal shrinkage: a combination of constriction and compaction  

My work shows that the invaginating neuroepithelial cells shrink the basal area and adopt a 

basally narrower cone shape. However, this raises the question whether the basal shrinkage 

occurs by active contraction, compaction or a combination of both phenomena. The 

accumulation of basal contractile actomyosin argues for an active contractile force in the 

invaginating cells. A parallel study from the Martinez-Morales group (Nicolás-Pérez et al., 

2016) has reported that the invaginating cells exhibit basal membrane fluctuations similar to 

the apical pulsatile behaviour observed during other processes of epithelial cell shape 

changes (Martin and Goldstein, 2014). This further supports presence of active contractile 

basal constriction. However, my results showed that the effect of the loss of basal 

actomyosin accumulation on invagination was surprisingly weak. The loss of basal 

actomyosin only affected the kinetics of the invagination but did not grossly perturb the final 

RNE architecture. This observation argues that apart from basal constriction, additional 

mechanisms drive RNE invagination. My data suggest that rim involution and cell 

proliferation together increase the cell density in the invaginating layer. Additionally, the 

flattening RPE and the involuting rim cells could create a stiffer boundary that inhibits a 

within-plane expansion of the neuroepithelial layer. Such crowding within a stiff boundary 

could result in the compaction of cells and shrinking of the basal processes of the 

neuroepithelial cells. Thus, the process of invagination is possibly a combination of 

constriction and compaction mechanisms. Thus, both of the previously proposed 

mechanisms, basal constriction (Martinez-Morales and Wittbrodt, 2009) and crowding-

induced invagination (Eiraku et al., 2012; Eiraku et al., 2011) play a role to a certain extent. 

The coupling of the actomyosin contractility, rim migration and cell proliferation possibly 

supports an efficient, faster, and robust way to invaginate the RNE. 
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3.2.2 Epithelial feature to support basal contractility: a form of actin 

stress fiber assembly? 

I showed that the invaginating cells accumulate actomyosin at the basal side. However, the 

cellular structure of the basal contractile actomyosin remains elusive. Based on the basal 

localisation close to the focal adhesions and its contractile nature, it is tempting to speculate 

that the basal actomyosin structure is similar to the actin stress fibers (Burridge and 

Wittchen, 2013; Tojkander et al., 2012). The dependency of this actomyosin localisation on 

cell-ECM attachment and Rho-Rock pathway supports this hypothesis. Furthermore, a 

treatment with CK-666, a chemical inhibitor of actin nucleator Arp2/3 complex, did not 

disrupt the basal actomyosin enrichment (data not shown). Such independence from Arp2/3 

complex is in line with the dorsal stress fiber hypothesis (Hotulainen and Lappalainen, 

2006). Unlike the well-studied apical actomyosin networks involved in apical constriction 

(Martin and Goldstein, 2014), the actomyosin structure playing a role in basal constriction 

remains elusive. Therefore, to understand the epithelial feature that could support basal 

contractility, it would be important to investigate the structure and composition of this basally 

enriched actomyosin network. 

3.2.3 The role of apical components in RNE morphogenesis seems 

limited.  

So far, I mentioned the role of basal dynamics in RNE morphogenesis. However, majority of 

epithelial morphogenetic phenomena such as gastrulation movements in Drosophila, and 

vertebrate neurulation involve modulation of apical components (see section 1.2), 

importantly the polarity complexes and the adherens junctions. This raises the question if 

apical components play any role in RNE morphogenesis. For in vitro optic cup formation, it is 

proposed that the apical constriction of the so called ‘hinge cells’, the cells at the boundary 

between the RPE and RNE is crucial for RNE invagination (Eiraku et al., 2012; Eiraku et al., 

2011). Such apical constriction is accompanied with apical enrichment of phospho-myosin in 

the hinge cells. However, my work shows that there are no specific hinge cells in the teleost 

optic cup. Due to rim involution, the rim cells turnover continuously. Hence it is not clear how 

the apical constriction mechanism should work in this case. Imaging of the apical marker 

Par3-GFP showed that rim cells undergo a transient apical surface area reduction as the 

cells reach the fold of the epithelium (Figure 2.8D, Movie 4). Once, the rim cells turned 

around the fold and reached the invaginating layer, the apical area expanded again (Figure 

2.8D, Movie 4). However, the molecular mechanism of such transient apical constriction 

remains unknown. Nevertheless, different studies aimed at understanding the role of apical 

components in eye and retinal development indicate that the apical components seem to be 
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mainly important for the epithelial integrity, regulation of neuronal differentiation and 

lamination of the retina. Studies using mutants/morphants for important polarity regulators 

aPKC (Horne-Badovinac et al., 2001), crumbs (Malicki and Driever, 1999; Omori and 

Malicki, 2006), stardust, (Wei and Malicki, 2002; Yamaguchi et al., 2010), lgl (Clark et al., 

2012), and pac mutant of junctional component N-cadherin (Masai, 2003) have not reported 

any OCM defect but rather defects in retinal lamination. The only reports of apical 

components affecting optic cup architecture are that of mutants for par3 (Wei et al., 2004) 

and the glass onion mutant of N-cadherin (Malicki et al., 2003; Pujic and Malicki, 2001). 

However, these mutants also show rather early defects. In par3 mutant, the polarity defect 

already affects eye-field splitting and evagination process resulting in cyclopia (Wei et al., 

2004). This phenotype is consistent with the role of Par3 in establishing polarity during optic 

vesicle evagination (Ivanovitch et al., 2013). In case of the glass onion mutant for N-

cadherin, all neuroepithelia in the embryo disintegrate due to adhesion defects and hence its 

role in driving RNE morphogenesis is difficult to interpret (Malicki et al., 2003; Pujic and 

Malicki, 2001). Thus, the role of apical components as drivers of RNE morphogenesis 

seems limited. In contrast, the major mutants with well-described RNE morphogenesis 

defects include laminin-ɑ1 (Bryan et al., 2016) and opo (Martinez-Morales et al., 2009), both 

regulating basal dynamics of cells. All these studies indicate that RNE morphogenesis 

seems to be mainly driven by basal epithelial morphogenesis.  

3.3 Rim cells migrate collectively 

My work has revealed that rim involution is a new example of collective epithelial migration. 

Rim cells involute using migratory behaviour while being apically connected to each other 

via adherens junctions. Interestingly, cellular movements in RNE morphogenesis are not 

only seen in zebrafish, but have also been reported using cellular tracing in chick (Kwan et 

al., 2012) and Xenopus (Holt, 1980). Therefore, it would be interesting to see if collective 

migration phenomena are a conserved feature of vertebrate RNE morphogenesis.  

 

There are several interesting points about the collective migration of rim cells.  

1) This collective migration occurs only in the rim zone of the optic vesicle epithelium. 

Therefore, how the migratory behaviour is limited to the rim zone is an interesting question in 

itself. Nonetheless, such selective migratory behaviour only in a part of a continuous 

epithelial sheet represents a novel mode of collective epithelial migration. This mode is 

different from the known systems of collective epithelial migration, which include migration of 

entire 2D sheets, multi-layered 3D strands and isolated group or cluster of cells (Friedl and 

Gilmour, 2009; Rorth, 2009).  
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2) As the optic vesicle epithelium is continuous, it does not have a specific leading edge. 

This means that rim cells do not have any specially demarcated leader cells, which are 

common to many collective migration phenomena (see section 1.2.4). Lack of leader cells is 

also seen in case of follicle cell migration in the Drosophila egg chamber, where the follicle 

cells form a continuous sheet that encapsulates the germ cells and the future oocyte (Haigo 

and Bilder, 2011). Therefore, the presence of leader cells does not seem to be universal to 

all the collective epithelial migration phenomena as thought before (Friedl and Gilmour, 

2009). 

3) Even though the rim cells lack leader cells, they are still polarised in the direction of 

migration as revealed by the directed protrusions. However, the guidance cues that facilitate 

directed rim involution still remain unknown. In case of follicle cells, the directionality is given 

by planar cell polarity (PCP) that results in polarised distribution of cytoskeletal regulators 

and actomyosin cytoskeletal components in the plain of the epithelium (Lewellyn et al., 2013; 

Viktorinova et al., 2009). However, it is not known if PCP plays a role in OCM. Alternatively, 

the direction could also be given by the force distribution in the tissue. The pulling force of 

invagination and a mechanical barrier from the flattening RPE could possibly guide the cells 

to move into the invaginating region. Additionally, the basal lamina could also play a role in 

guidance by durotaxis. The patterns and mechanical properties of the ECM influence the 

migration of cells in variety of systems (Charras and Sahai, 2014). Similarly, migrating cells 

can also influence and change the underlying matrix (Loganathan et al., 2016). Indeed, the 

cells of the optic vesicle actively secrete ECM components, such as laminin (Pickering, 

2012) and thus the whole morphogenetic process probably involves complex ECM 

remodelling. Therefore, the micropatterns in the basal lamina architecture and composition 

might guide the cellular movement and need to be investigated (See section 4.1).  

Thus, rim involution is not only important to understand eye development, but offers an 

epithelial system to understand the cellular mechanisms of collective epithelial migration. 

3.4 RNE morphogenesis occurs by spatio-temporal transition of cell 

behaviour from a migratory to an adherent epithelial state 

During development, cells rarely exhibit archetypal epithelial or mesenchymal characteristics 

but rather a mixture of both. This is well-described by the emerging concept of a continuum 

between the mesenchymal and epithelial state (Bernadskaya and Christiaen, 2016; 

Campbell and Casanova, 2016). For example, during zebrafish gastrulation, the 

mesendodermal cells lack obvious apicobasal polarity but require cadherin based cell-cell 

adhesion for the gastrulation movements (Solnica-Krezel, 2006). The mesendodermal cells 

exhibit an intermediate state between the epithelial and mesenchymal archetypes. Thus, 



 

 
 

Discussion 

 75 

cells resort to different states along this continuum in a context and morphogenetic process-

dependent manner. My work shows that rim cells represent such an example and exhibit 

both epithelial (apicobasal polarity and cell-cell adhesion) and mesenchymal properties 

(directed protrusive activity and dynamic cell-matrix contacts). However, when the rim cells 

involute and become part of the invaginating RNE they stop their protrusive activity, adhere 

stably to the ECM and attain the archetypal epithelial state. Thus, rim cells traverse along 

the continuum of cellular states by modulating their cell behaviour in space and time to 

shape the RNE. Furthermore, the spatiotemporal regulation of this transition seems crucial, 

as a premature transition to the stably attached epithelial state perturbs subsequent retinal 

morphogenesis. However, the cue for the behavioural change in rim cells remains unknown 

and further research is required to understand how the cell behaviour is modulated in space 

and time (see section 4.2). Interestingly, similar cellular transitions are observed at earlier 

stages of teleost eye development. During optic vesicle evagination, the eye field cells, 

which are mesenchymal in nature, change their morphology and acquire apicobasal polarity 

to form the optic vesicle (Bazin-Lopez et al., 2015; Ivanovitch et al., 2013). Thus, the teleosts 

early eye development from the eye field to hemispherical retina utilizes gradual transition 

from the mesenchymal to epithelial state. Such strategy of parallel progression of 

neurulation, epithelial polarisation and evagination or that of parallel rim involution and 

invagination sets the timing of organogenesis and possibly makes the whole process 

suitable for the fast development of the zebrafish embryos. 

3.5 Defects in rim migration cause ectopic RNE fate specification and 

interfere with future retinal development 

I show that rim migration is indispensable for shaping the RNE, the organ precursor that 

gives rise to the retina. Rim involution positions the prospective RNE cells to their right 

location at the right time before they acquire the RNE fate and change their cellular 

behaviour. A defect in rim migration leads to ectopic determination and change of cell 

behaviour of prospective RNE cells. As a result, the migration-defective cells attach stably to 

the matrix prematurely, outside the primary invagination zone of the RNE. Such stable 

adhesion to the matrix possibly further hampers their movement and in turn the RNE 

architecture. This suggests that RNE cell behaviour is independent of the cellular position 

and is guided by some internal developmental timer. Similar observations were made for 

zebrafish neural tube development, where it was shown that the schedule of epithelial 

polarisation depends on the developmental time rather than the local environment (Girdler et 

al., 2013). The developmental timer in this process remains unknown and the effect is 

attributed to the number of cell cycles in the developmental history of the cells (Girdler et al., 
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2013). However, I would like to speculate that since laminin is shown to be important for the 

polarisation of the neural tube cells (Ivanovitch et al., 2013), local cell-autonomous secretion 

of ECM could be the timer for the polarisation. As for the rim cells, it should be noted that rim 

cells also originate from the neural tube and similarly undergo the gradual transition from 

mesenchymal to epithelial morphology (Section 3.4). Therefore, the ectopic determination of 

RNE fate observed upon defective rim migration might be induced by prolonged exposure to 

the locally secreted ECM. Hence, it would be interesting to investigate if the local secretion 

of ECM by the optic vesicle cells and the duration of exposure to the local ECM could act as 

the developmental timer for RNE-like fate and behaviour. Overall, my work shows that rim 

involution serves as an important morphogenetic program to correctly localise the ‘pre-

programmed’ presumptive RNE cells. It highlights that although developmental patterning 

and signalling are crucial, the morphogenetic movements are equally important drivers of 

organogenesis.  

3.6 Developmental patterning of cell behaviours is a conserved theme 

in vertebrate optic cup morphogenesis 

Interplay of morphogenesis and developmental patterning is crucial for successful 

organogenesis. Developmental patterning is commonly studied in terms of expression of 

specific transcription factors and downstream genes. However, at the most downstream 

level, such pattern can also be seen in the cell behaviours (Bernadskaya and Christiaen, 

2016; Levine and Davidson, 2005). A pattern of cell behaviours is also apparent during 

OCM. The dorsal or distal layer of the optic vesicle starts invagination whereas the ventral 

region contributes to rim involution, predominantly in the ventral-temporal part of the retina 

(Schmitt and Dowling, 1994; Heermann et al., 2015; Picker et al., 2009; Kwan et al., 2012). 

In line with this, the phenotypes I observed upon perturbation of rim migration result in 

accumulation of rim cells specifically at the ventral-temporal side of the optic cup. In 

contrast, cells at the dorsal and nasal side are much less affected. In addition to the dorso-

ventral pattern, patterning by FGF signaling also distinguishes the cell behaviours along the 

naso-temporal axis and makes the nasal cells more cohesive (Picker et al., 2009). This 

raises the question if such behavioural pattern is limited to the teleost optic vesicle or 

whether it is also conserved in higher vertebrates. Ventral-temporal cell movements have 

not only been observed in teleosts but also during Xenopus and chick RNE morphogenesis 

(Holt, 1980; Kwan et al., 2012). Furthermore, studies in mouse have indicated that the 

invagination of the dorsal and ventral RNE can be uncoupled (Molotkov et al., 2006). 

Therefore, I speculate that the specific cell behaviour at play might depend on the species 

and the shape of the optic vesicle. However, the use of differential morphogenetic strategies 
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for dorsal and ventral retinal morphogenesis seems a conserved feature of the vertebrate 

eye development.  

 

It is possible that such ‘pattern’ of morphogenetic strategies segregates cells into distinct 

domains that experience different environments. It is tempting to speculate that such 

segregation of cells in the optic vesicle could help the cells to attain the RNE fate in a 

stepwise manner to prepare for the later retinal developmental programs. Interestingly, the 

early patterning of the retina already specifies the expression domains of the axon guidance 

molecules required later in the retinal development (Harada et al., 2007; Picker and Brand, 

2005). Thus, the morphogenetic movements during OCM possibly impact the later retinal 

development and its connection to the brain. 

3.7 Studying organogenesis using in vitro versus in vivo systems 

The pioneer work from the Sasai group that reported the formation of optic cups from 

embryonic stem cells in organoid cultures, showcased the self-organising power of cells to 

build the hemispherical RNE in a minimalistic system (Eiraku et al., 2011; Nakano et al., 

2012). The authors also reported successful recapitulation of retinal development and 

generation of retinal neurons (Eiraku et al., 2011; Nakano et al., 2012). This work paved the 

way for numerous more studies on the generation of retinal neurons or pigment epithelium in 

3D cultures (Boucherie et al., 2013; Decembrini et al., 2014; Gonzalez-Cordero et al., 2013; 

Nakano et al., 2012; Santos-Ferreira et al., 2016; Volkner et al., 2016; Zhong et al., 2014; 

Zhu et al., 2013). Such an in vitro approach has provided a great tool for therapeutic and 

pharmaceutical research. However, when it comes to understanding the mechanism of 

organogenesis, there are various differences between the in vitro and in vivo scenarios of 

optic cup formation. Unlike in the animal model systems (Kwan et al., 2012; Young and 

Hodas, 1964), optic cup formation in culture conditions crucially depends on cell proliferation 

(Eiraku et al., 2011). The basal actomyosin enrichment revealed from my work, has not been 

observed in the in vitro optic cups (Eiraku et al., 2011). Furthermore, the efficiency of 

invagination is lower in these 3D culture systems and does not occur reproducibly (Volkner 

et al., 2016). Therefore, the conclusions about the organogenesis mechanisms proposed 

from in vitro studies should be interpreted with caution. The use of different molecular and 

cellular strategies in the different species highlights the fact that distinct morphogenetic 

strategies can be used to reach a similar architecture. In simple terms, there could be 

various ways to solve a problem that finally give the same solution. Thus, although in vitro 

optic cup formation exemplifies a reductionist approach to understand organogenesis, it 

does not explain the actual in vivo process of organ formation. Therefore, it is important to 
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complement such approaches by studying organogenesis using in vivo systems, which has 

been a central theme of my work. 

 

To summarise, my work has made an important contribution to understand how epithelial 

morphogenesis shapes the retinal neuroepithelium in the developing zebrafish embryos. 

Beyond this particular organogenesis event and biology of the eye, it gives important 

insights into diverse fields of morphogenesis, epithelial cell biology, collective cell migration, 

cell-matrix interaction and developmental control of cell behaviours.  
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4.  Experimental outlook 

My work presented here has expanded our understanding on the morphogenesis of the 

zebrafish retinal neuroepithelium (RNE). In this chapter, I would like to discuss some of the 

open questions that me and future lab members will follow upon, the experimental strategies 

to investigate these questions and some preliminary data. 

4.1 Investigating the dynamics of the basal lamina components during 

RNE morphogenesis 

The extracellular matrix of epithelia – the basal lamina and cell-matrix attachment play a key 

role in RNE morphogenesis. This was shown by the defects in RNE invagination resulting 

from perturbed integrin trafficking and loss of laminin-ɑ1 (lama1) (Bogdanovic et al., 2012; 

Bryan et al., 2016; Kwan, 2014; Martinez-Morales et al., 2009). In addition, my work 

presented here highlights the importance of basal lamina and cell-matrix attachment for the 

collective cell migration during rim involution. To this date, the localisation of different ECM 

components at different stages of RNE morphogenesis has been investigated using fixed 

sample immunohistochemistry (Kwan, 2014). However, the basal lamina is not just a static 

substratum for the epithelial cells, but plays an active role in epithelial morphogenesis 

(Jayadev and Sherwood, 2017; Morrissey and Sherwood, 2015). It is becoming clear that in 

many systems the basal lamina undergoes constant remodelling in structure as well as 

composition (Loganathan et al., 2016; Morrissey and Sherwood, 2015). However, so far, all 

the studies on RNE morphogenesis, including my work, lack an understanding of the 

dynamics of basal lamina during optic cup formation. 

 

Visualising the dynamics of basal lamina components by live-imaging has been challenging 

due to lack of proper tools. Fluorescently labelled primary antibodies against matrix 

components have been used in chick (Aleksandrova et al., 2012), hydra (Aufschnaiter et al., 

2011) and mammalian explant cultures (Harunaga et al., 2014) to visualise and track the 

convective movement of the matrix or the relative movement between cells and the lamina 

(Loganathan et al., 2016). However, this approach should be interpreted with caution 

because antibody binding can also abrogate the interactions of matrix component with cells 

or other matrix molecules. For example, anti-laminin antibodies block the function of laminin 

and perturb the induction of epithelial polarity (Ekblom, 1989; Klein et al., 1988). 

Nevertheless, new advancements in systems of C. elegans and Drosophila have generated 

tagged-version of basal lamina components. In C. elegans transgenic lines expressing 

fluorescently labelled laminin and collagen have been established (Hagedorn and 
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Sherwood, 2011; Kao et al., 2006) and have allowed live-imaging of the basal lamina. For 

instance, live-imaging of laminin dynamics has given important insights into the role of 

laminin deposition in epithelial polarity establishment (Rasmussen et al., 2012). In 

Drosophila, a protein trap screen identified a transgenic line that tagged the collagen IV 

gene (Morin et al., 2001). It has allowed visualisation of Collagen IV dynamics in Drosophila 

development and to study its role in shaping the Drosophila egg chamber (Haigo and Bilder, 

2011) and the wing imaginal disc (Ma et al., 2017; Pastor-Pareja and Xu, 2011). However, 

such tools to visualise ECM dynamics have been lacking for zebrafish (Jessen, 2015). A 

recent study used fibronectin construct fn1a-GFP under a tissue specific promoter, to 

visualise fibronectin localisation during somitogenesis (Julich et al., 2015). However, it will 

be ideal to express the tagged version of matrix components under endogenous gene 

expression loci to avoid misexpression at the wrong place, at the wrong time or in the wrong 

amount. Therefore, I set out to develop tagged versions of some of the zebrafish basal 

lamina components. 

 

I decided to tag ECM components laminin and fibronectin. Laminin is one of the earliest 

components of the basal lamina and plays a crucial rule in the organisation of other matrix 

components (Hohenester and Yurchenco, 2013; Mouw et al., 2014). I opted for lama1, which 

is expressed in the optic vesicle (Pickering et al., 2016) and I have shown is important for 

rim involution and OCM. Additionally, my data for anti-fibronectin immunostaining have 

shown a temporal shift in the pattern of fibronectin staining, which follows the rim cells. 

Therefore, as an additional ECM component, I decided to tag fibronectin fn1a. As cloning 

strategy, I opted to use bacterial artificial chromosome (BAC) recombineering to add the 

fluorescent tag to the proteins. BACs contain several kilobases long pieces of chromosomes 

and thus this approach preserves the endogenous gene regulatory regions. This is 

especially important for lama1, for which the important enhancer element lies in intron-1 

(Pickering et al., 2016). Hence, cloning only the coding sequence would result in loss of 

important regulatory information. Thus, with the help of Aleksandra Syta and Mihail Sarov 

from the transgenomics facility at MPI-CBG, we generated BACs with C-terminal tagged 

version of lama1 and fn1a with sfGFP, mKate2 and dendra tags (See section 5.2.2). 

Additionally, we also inserted a tol2 transposon unit in the construct to allow transgenesis in 

zebrafish, when injected together with the transposase RNA (See section 5.2.2). 

 

To test, if the constructs were functional, I injected the BACs in the zebrafish embryos with 

transposase RNA. I tested the embryos for fluorescence. The lama1::lama1-GFP construct 

gave positive results. I fixed the embryos showing a fluorescent signal and immunostained 

with anti-laminin and anti-GFP antibodies. I could detect the secreted laminin-GFP in the 
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optic cup as well at the somite boundaries, where laminin is also located endogenously 

(Figure 4.1A). Furthermore, a few cells showing high expression of laminin-GFP, were also 

stained with laminin antibody (Figure 4.1A). Thus, the lama1::lama1-GFP construct most 

likely generates full length laminin-GFP, which is capable of being secreted from the cells. 

Importantly, the uninjected controls did not show GFP signal and further confirmed the 

specificity of the stainings (Figure 4.1B). Having established the laminin construct, I am 

currently growing the F0 injected fish to find germline carriers and testing the functionality of 

fibronectin constructs.  

 

This strategy will allow me to visualise when and how laminin is synthesized and secreted. 

Additionally, investigating the fluorescence recovery after photobleaching (FRAP) would 

allow me to address the diffusion and turn-over dynamics of laminin in the basal lamina. This 

tool will further help to investigate if the rim cells move relative to the basal lamina or the 

basal lamina is also carried with the cells in a convective way. In summary, this construct will 

provide a great tool to investigate laminin dynamics in RNE morphogenesis and beyond. It 

will be a good tool for the entire zebrafish community to visualise and investigate the basal 

lamina dynamics.  

 

 

Figure 4.1: Analysis of lama1::lama1-sfGFP injected fish. 

A) Confocal scan of the optic cup (left) and flank region (right) in lama1::Lama1-sfGFP injected 

embryo stained with anti-laminin and anti-GFP antibody. Secreted lama1-sfGFP staining (arrowhead), 

cell with high expression of lama1-sfGFP (arrow) 

B) Confocal scan of the flank region an uninjected embryo stained with anti-laminin and anti-GFP 

antibody. 

Scale bars = 10 µm. 
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4.2 Understanding the mechanisms that change the cellular behaviour 

of rim cells from migratory to adherent state: a transcriptomic 

approach. 

My work showed that the rim cells change their behaviour and traverse along a 

mesenchymal to epithelial continuum of cellular states (see section 3.3). Upon involution, rim 

cells change to an adherent morphology and participate in the RNE invagination. This opens 

a new question: what regulates and modifies the cell behaviour from a migratory to adherent 

state? To answer this question, one needs to understand the differences in migratory rim 

cells and adherent RNE cells. Since, this migratory movement is coupled with the cell 

determination program, I wondered if these changes in cell behaviour are associated with 

transcriptional changes in the cells. Therefore, I opted for a transcriptomic analysis to 

identify the genes differentially expressed in the migratory versus adherent cells in the optic 

vesicle. Such unbiased approach would provide me information on novel candidate genes 

and pathways that could potentially play a role in RNE morphogenesis. Additionally, the 

transcriptomic analysis would provide a comprehensive list of genes expressed in the rim 

cells and the RNE cells, e.g. the different ECM components or the specific isoforms of any 

particular gene. Thus, this analysis would serve as an important resource to understand 

gene function in the developing eye. Such resource would also help to identify potential 

markers that label the rim cells specifically. Hence, to gain a genome-wide understanding of 

the transcriptional profile of rim and RNE cells, I opted for an RNA-seq approach.  

 

First, I needed a strategy to isolate rim cells from the RNE cells. This was challenging since 

both cell populations are part of a continuous epithelium and lack any known non-

overlapping markers. To this end, I made use of the observation that in control condition the 

GFP expression in the Tg(vsx2::GFP) embryos correlated with the cellular position in the 

optic vesicle. In the rim zone, the GFP signal was weak and in the invaginating region the 

GFP signal was much brighter (Figure 2.24). Therefore, I used the GFP signal from 

vsx2::GFP line as a marker to sort my cells. I chose 18–20 ss embryos for the experiment as 

they contained population of rim cells as well as RNE cells. I isolated optic vesicles from 

vsx2::GFP embryos and dissociated the cells mechanically. The dissociated cells were 

sorted by fluorescence-activated cell sorting (FACS). FACS allowed the segregation of not 

only the GFP negative cells, which contained prospective RPE cells and contaminant tissue 

if any, but also specific populations of GFP positive cells showing high and low signal. Within 

the GFP positive cells, I set thresholds to collect the extremities of this population and 

discarded the middle population to avoid a mixed group of cells (Figure 4.2B). Thus, 

separate ‘low GFP/rim cells’ and ‘high GFP/RNE cells’ samples were collected and used to 
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extract the total RNA, make a cDNA library, followed by deep sequencing and transcriptomic 

analysis (Figure 4.2A). The samples were collected in 4 replicates from different 

experiments. The sequencing was performed by the next generation sequencing facility at 

Biotec, TU-Dresden and the bioinformatic analysis was performed by Mathias Lesche.  

 

Figure 4.2: Sample preparation and initial analysis of RNA-seq data 

A) Experimental pipeline for the RNA-seq experiment from sample preparation to data analysis. 

B) Typical spread of cells during FACS. Q4 contains the cluster of GFP positive cells. Low GFP cells 

(Yellow box), High GFP cells (White box) 

C,D,E) Normalised counts for vsx2 (C), rx2 (D) and tuba1a (E) in low GFP and high GFP samples. 

Each dot represents the value from a replicate. 

 

Initial quality-control assessment of the data confirmed that the quality of the data was 

suitable for further analysis. On average, 92% of the reads mapped to unique locations in 

the zebrafish genome and more that 85% mapped to exonic regions (see section 5.5, Table 

10,11). Furthermore, initial exploratory analysis also confirmed the fidelity of cell sorting. 

Indeed, the total normalised counts for vsx2 were almost double in the high GFP sample 

than the low GFP sample (Figure 4.2C). As control, the eye field transcription factor rx2 and 

the housekeeping gene for tubulin, tuba1a showed similar counts in both the samples. Thus, 

the initial QC check confirmed that the RNA-seq data was of good quality and faithfully 

represented the two populations of the cells. 

 

Next, we performed differential gene expression analysis to identify genes enriched either in 

the rim cells or the RNE cells. To this end, I pruned the list of genes to only include genes 

showing minimum 2-fold upregulation or downregulation. To further minimise false positives, 

I applied a threshold to remove genes that showed less than 200 normalised counts 

averaged over all samples. With these criteria, 362 genes showed differentially regulated 

gene expression. In reference to the low GFP sample (rim cells), 79 genes were upregulated 
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in the high GFP sample (RNE cells) and 283 genes down regulated. To further verify the 

experimental strategy, I analysed the log2 fold change for the early eye transcription factors, 

markers for the RNE, and RPE-like genes (Figure 4.3A). As expected, the early eye 

transcription factors did not show any significant difference in expression (Figure 4.3A). On 

the other hand, the markers for retinal progenitors such as vsx2, ascl1 were enriched in the 

high GFP (RNE) samples (Figure 4.3A). This confirmed that the high GFP sample contained 

the retinal progenitor cells. Interestingly, some genes known to express in the RPE were 

observed in the low GFP (rim cell) sample (Figure 4.3A). This raised the doubt if there was a 

contamination of the RPE cells. However, the key RPE transcription factors mitfa and mitfb 

showed very low counts. Therefore, it is possible that the rim cells still retain the bipotential 

nature of the optic vesicle cells and have not fully committed to the RNE fate yet. As a result, 

they express both RNE and RPE genes at low levels. In line with this hypothesis, the 

transgenic reporter lines for these RPE markers such as the tfec gene also show expression 

in the rim zone (Miesfeld et al., 2015). Furthermore, rim cells include the future retinal stem 

cells that give rise to RNE as well as RPE (Heermann et al., 2015; Tang et al., 2017), and 

hence possibly retain markers for both. To conclude, the known markers in the optic cup 

exhibit the expected pattern of expression in my gene expression dataset. 

 

Next, I asked if the markers known to show patterned expression along the dorso-ventral or 

the naso-temporal axis in the optic cup showed any differential gene expression in these 

samples. Interestingly, the dorsal markers were enriched in the high GFP (RNE cell) sample, 

whereas ventral markers were enriched in the low GFP (rim cell) sample (Figure 4.2B). This 

is in line with the observation that rim involution is predominant on the ventral side of the 

developing optic cup (Heermann et al., 2015; Kwan et al., 2012). This raises the possibility 

that the regulators of dorso-ventral patterning could be linked with regulation of cell 

behaviour. Indeed, BMP4 overexpression that dorsalises the optic cup blocks rim migration 

(Heermann et al., 2015). Thus, my data reflect the known pattern of gene expression along 

the dorso-ventral axis and might be useful to further dissect the mechanisms that regulate 

rim and RNE cell behaviours. On the other hand, the markers of naso-temporal patterning 

did not show strong differential gene expression. This is in line with the observation that at 

18 ss, many cells expressing temporal markers reside in the invaginating RNE (Picker et al., 

2009). Furthermore, previous experiments that nasalised or temporalised the optic vesicle 

did not impact optic cup architecture (Picker et al., 2009). This suggests that naso-temporal 

patterning is not strongly correlated with the regulation of cell behaviour. It is in line with my 

results that the rim-migration-defective cells in ezrin morphants express the appropriate 

naso-temporal markers and yet have morphogenetic defects. Taken together, these data 

reveal that the high GFP and low GFP samples rightly correspond to the RNE and rim cells 
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respectively. The dorso-ventral patterning reflected in these samples could play a role in 

regulation of cell behaviour. In contrast, the correlation with naso-temporal patterning seems 

weak.  

 

 

Figure 4.3: Differential gene expression analysis of known players in eye development.  

A,B) Log2 fold change in expression over low GFP cells for known transcriptional factors in early eye 

development (A) and markers for developmental patterning in the optic cup (B). 

The grey box marks the area of less than 2-fold change.  

 

Table 4: Top GO terms (Cellular components) 

GO Term P-value Z-score Combined Score Genes 

focal adhesion 

(GO:0005925) 

0.012567699 -4.752223798 4.635451768 AHNAK;FBLIM1;ACTN1;TNC;CD99L2;HSPG2;CN

N2;LIMA1;PPFIBP1;RRAS;PALLD;DLC1;GNB2 

stress fiber 

(GO:0001725) 

0.004702506 -2.859744371 2.7894745 CNN2;LIMA1;FBLIM1;ACTN1 

clathrin-coated pit 

(GO:0005905) 

0.007841086 -2.812298157 2.743194138 RAMP2;FCHO2;ACKR3 

 

I have collected a comprehensive gene expression data set that can now be used to 

investigate the molecular and cellular mechanisms involved in rim involution and RNE 

morphogenesis. Using this data set, I performed gene ontology analysis for cellular 

components. Interestingly, the prominent GO terms for cellular components were focal 

adhesion, stress fiber and clathrin coated pits (Table 4). This is in line with my cellular 

characterisation so far, which has highlighted the importance of these structures in rim 

involution and RNE invagination. This further strengthens the fidelity of the sample 

preparation. These data can be further harvested to identify specific candidate genes that 

potentially regulate the cellular behaviours. The next steps would include verifying the 

differential expression of these candidate genes using RNA in situ hybridisation, followed by 

functional tests (loss and gain-of-function studies). Such approach would open a new 

avenue to understand the cellular mechanisms in RNE morphogenesis. 
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5. Material and methods 

5.1 Zebrafish methods 

5.1.1 Zebrafish strains and transgenic lines 

Zebrafish were maintained and bred at 26.5°C. Embryos were raised at 28°C and then 

transferred to 21°C at around 80% epiboly stage to slow down the development. At 8 ss 

embryos were transferred back and maintained henceforth at 28°C. All animal work was 

performed in accordance with European Union (EU) directive 2011/63/EU as well as the 

German Animal Welfare Act. For the details of the strains and transgenic lines see Table 5.  

 

Table 5: List of zebrafish strains and transgenic lines 

Zebrafish strains and transgenic lines Reference 

Wild-type strain WT-AB RRID:ZIRC_ZL1 

Wild-type strain WT-TL RRID:ZIRC_ZL86 

Tg(actb1:GFP--utrCH) (Behrndt et al., 2012) 

Tg(actb2:mCherry-Hsa.UTRN) (Compagnon et al., 2014) 

Tg(actb1:myl12.1-EGFP) (Maitre et al., 2012) 

Tg(actb1:HRAS-EGFP) vu119 (Cooper et al., 2005) 

Tg(centrin-GFP)  (Randlett et al., 2011) 

Tg(vsx2::GFP)  (Kimura et al., 2006) 

Tg(-8.0 Cldb::lyn-GFP) (Haas and Gilmour, 2006) 

Tg(HGn42A::EGFP)  (Nagayoshi et al., 2008) 

Tg(bactin:mKate2-ras) This study 

 

5.1.2 Morpholino injections 

Morpholinos (Gene Tools) were injected in the yolk at the one-cell stage. The injection mix 

was prepared in water and the injection volume was 0.5–1.5 nl. Table 6 enlists the details 

about the morpholino oligos and Table 7 describes the phenotypic variation in the 

morphants. 
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Table 6: Morpholinos used in this study 

Gene Morpholino sequence ng/embryo Reference 

laminin-ɑ1 5’TCATCCTCATCTCCATCATCGCTCA3’ 0.4 (Pollard et al., 2006) 

ojoplano 5’ggactcacccaTCAGAAATTCAGCC3’ 3.8  (Martinez-Morales et al., 2009) 

ezrin 5’GATGTAGATGCCGATTCCTCTCGTC3’ 1.6 (Link et al., 2006) 

p53 5’GCGCCATTGCTTTGCAAGAATTG3’ 2 (Robu et al., 2007) 

lmx1b.1 5’TTGAAGGACTTACCGAGCATAACTC3’ 0.84 (McMahon et al., 2009) 

lmx1b.2 5’GTGTGTGTGAAACTCACCCAGCATC3’ 0.84 (McMahon et al., 2009) 

 
Table 7: Phenotypic variation for morpholino injections 

laminin-ɑ1 Morpholino injection No. of embryos Percentage 

Epithelial accumulation at the ventro-temporal side 54 47.0 

Protruding lens phenotype without epithelial accumulation 36 31.3 

No apparent optic cup phenotype  16 13.9 

Severe phenotype (developmental delay or extreme deformities) 9 7.8 

Total 115 100 

 

opo Morpholino injection No. of embryos Percentage 

Epithelial accumulation at the ventro-temporal side 43 40.95 

Flat eye phenotype without epithelial accumulation 28 26.67 

No apparent optic cup phenotype 22 20.95 

Severe phenotype (developmental delay or extreme deformities) 12 11.43 

Total 105 100 

 

ezrin Morpholino injection No. of embryos Percentage 

Epithelial accumulation at the ventro-temporal side 39 50.0 

Optic cup phenotype without epithelial accumulation 16 20.5 

No apparent optic cup phenotype  7 9.0 

Severe phenotype (developmental delay or extreme deformities) 16 20.5 

Total 78 100 
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5.1.3 RNA and plasmid injections 

To label the entire tissue, mRNA was injected into the cytoplasm of one-cell stage embryo. 

To sparsely label the cells, either plasmid DNA was injected into the cytoplasm of one-cell 

stage embryo or mRNA was injected in a single blastomere at 16–32-cell stage. mRNA was 

synthesized using the Ambion mMessage mMachine kit and injected at 50-60 pg per 

embryo, whereas DNA was injected at 15 pg per embryo. The injection mix was prepared in 

water and the injection volume was 0.5–1.5 nl.  

 

5.1.4 Zebrafish transgenesis 

1 nl of the mix of Tol2 plasmid Tol2-bactin::mKate2-ras (20 ng/μl) and Tol2 transposase 

mRNA (30 ng/μl) was prepared in water and injected into the cytoplasm of one-cell stage 

embryos. F0 embryos with observed fluorescence signal were grown to adulthood and 

germline carriers were identified by outcross with wild-type fish. 

 

1 nl of the mix of recombinant BAC DNA (100 ng/μl) and Tol2 transposase RNA (50 ng/μl) 

was prepared in water and injected into the cytoplasm of one-cell stage embryos. F0 

embryos were observed and selected based on the fluorescence signal. The experiments 

were performed with F0 embryos. 

 

5.1.5 Transplantations 

Donor embryos (GFP positive, Tg(actb1:HRAS-EGFP)) were injected with opo or ezrin 

morpholino mixed with the p53 morpholino. Embryos were dechorionated at high to sphere 

stage and some tens of cells from the donor embryos were transferred into the animal pole 

of the acceptor embryos (mCherry positive, Tg(actb2:mCherry-Hsa.UTRN)). Transplanted 

embryos were then transferred to E3 medium supplemented with 100 U penicillin and 

streptomycin (Thermo Fischer Scientific). 

 

5.1.6 Heat-shock-driven gene expression 

Embryos injected with heat-shock-driven constructs were incubated at 15 ss in a water bath 

at 37°C for 20 min. 

 

5.1.7 Drug treatments 

Rockout (Santa Cruz, sc-203237) and Aphidicolin (Aphi) (Sigma, A0781) stocks were 

dissolved in DMSO. Hydroxyurea (HU) (Sigma, 8627) stock solution was prepared in water. 

Final drug solutions were made in E3 medium and dechorionated embryos were incubated 

in it. Rockout treatment was started around 13–14 ss and was used at 100 µM with 1% 

DMSO (by volume) in E3. During time-lapse imaging, Rockout was used at 125 µM. For 
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inhibition of cell proliferation, embryos were treated with a mixture of 30 mM HU and 210 µM 

Aphi. HU + Aphi treatment was started at 10 ss. Equivalent amounts of DMSO or water were 

added as solvent control. 

 

5.1.8 Immunostaining 

Dechorionated embryos were fixed with 4% PFA in PBS overnight at 4°C, washed with PBS 

and then permeabilized using PBT (PBS with 0.8% Triton X-100). To improve permeability, 

embryos were treated with trypsin on ice for 15 min and then again washed with PBT. 

Embryos were blocked with 10% normal goat serum (NGS) in PBT at room temperature for 

2–3 h and incubated in the primary antibody mix with 1% NGS in PBT for approximately 60 h 

at 4°C. After washing off the unbound primary antibody with PBT, embryos were incubated 

in the secondary antibody mix with 1% NGS in PBT for 60 h. The embryos were washed 

with PBT to remove unbound secondary antibodies and fluorophores. The samples were 

mounted either in agarose or in 80% glycerol.  

 

The following antibodies and probes were used at the mentioned dilutions.  

Primary antibodies:  

1:50 anti-phospho-myosin (RRID:AB_330248, Cell signaling 3671), 1:500 anti-pH3 

(RRID:AB_2295065, Abcam ab10543), 1:100 anti-gamma-tubulin (RRID:AB_477585, 

Sigma, T-6793), 1:100 anti-laminin (RRID:AB_477163, Sigma L-9393), 1:100 anti-

chondroitin sulphate CS-56 (RRID:AB_298176, Abcam ab11570), 1:100 anti-fibronectin 

(RRID:AB_476976, Sigma F3648), 1:500 anti-tRFP (as anti-mKate2) (RRID:AB_2571743, 

Evrogen AB233), 1:100 anti-GFP (RRID:AB_94936, Milipore MAB3580) and 1:200 anti-PKC 

ζ C-20 (RRID:AB_2300359, Santa Cruz sc-216). 

  

Secondary antibodies and fluorescent markers:  

1:500 Alexa Fluor 488 anti-Rabbit (RRID:AB_141708, Invitrogen A21206), 1:500 Alexa Fluor 

568 anti-Rabbit (RRID:AB_2534017, Thermo Fischer Scientific A10042), 1:500 Alexa Fluor 

647 anti-Rabbit (RRID:AB_141775, Invitrogen A21245), 1:500 Alexa Fluor 488 anti-mouse 

(RRID:AB_141606, Invitrogen A21200), Alexa Fluor 594 anti-mouse (RRID:AB_141630, 

Invitrogen A21201), 1:500 Alexa Fluor 647 anti-rat (RRID:AB_141778, Invitrogen A21247), 

1:50 Alexa Fluor 488 Phalloidin (RRID:AB_2315147, Molecular Probes A12379), 1:50 

Rhodamine-Phalloidin (RRID:AB_2572408, Molecular probes R415), DAPI. 
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5.2 Molecular methods 

5.2.1 Constructs and cloning strategies 

The following constructs were used in this study. 

pCS2+mKate2-ras (Weber et al., 2014), pCS2+Par3-GFP (Tawk et al., 2007), pCS2+GFP-

UtrophinCH (Burkel et al., 2007), pCS2+DD-myl12b-GFP (Norden et al., 2009), 

bactin::mKate2-ras (Icha et al., 2016), hsp70::EGFP-UtrophinCH (Strzyz et al., 2015), 

pCS2+GFP-ras (kind gift from A. Oates), pCS2+EMTB-tdTomato (kind gift from D. Gilmour). 

 

The following constructs were generated using the Gateway cloning system (Thermo Fisher 

Scientific) and the Tol2 kit (Kwan et al., 2007). 

1. pCS2+Paxillin-mKate2 : Middle entry clone for zebrafish paxillin was a kind gift from 

Clarissa Henry (Goody and Henry, 2010). It was combined with mKate2 pENTR(R2-L3) 

(kind gift from Andrew Oates, Crick Institute, London, UK) and pCS2 Dest(R1-R3) backbone 

(Villefranc et al., 2007). 

 

2. pCS2+Integrinbeta1b-mKate2: RNA was extracted from 24 hpf embryos using the TRI 

Reagent (T9424 Sigma) according to the manufacturers protocol. cDNA was synthesized 

using first strand cDNA synthesis kit (K1651, Fermentas/Thermo-Fischer scientific). 

Zebrafish Integrin b1b (NM_001034987.1) coding sequence was amplified from zebrafish 

cDNA to generate a middle entry clone without a stop codon at the end. The following 

primers were used. 

5’ GGGGACAAGTTTGTACAAAAAAGCAGGCTGGatggacgtaaggctgctcc 3’ 

5’ GGGGACCACTTTGTACAAGAAAGCTGGGTtttgccctcatatttagggttgac 3’ 

It was combined with mKate2 pENTR(R2-L3) (kind gift from Andrew Oates, Crick Institute, 

London, UK) and pCS2 Dest(R1-R3) backbone (Villefranc et al., 2007). 

 

3. Hsp70::EGFP-Rac1T17N : 

pcDNA3-EGFP-Rac1-T17N was a gift from Gary Bokoch (Addgene plasmid # 12982) 

(Subauste et al., 2000). To generate a middle entry clone, EGFP-Rac-T17N sequence was 

amplified using the following primers: 

5’ GGGGACAAGTTTGTACAAAAAAGCAGGCTGGatggtgagcaagggcgagg3’ 

5’ GGGGACCACTTTGTACAAGAAAGCTGGGTttacaacagcaggcattttc 3’ 

It was combined with the hsp70 promoter p5ENTR(L4-R1) (Kwan et al., 2007) and 

pTol2+pA_pDEST(R4-R2) (Villefranc et al., 2007). 
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4. Hsp70::mKate2-Rac1T17N : 

pcDNA3-EGFP-Rac1-T17N was a gift from Gary Bokoch (Addgene plasmid # 12982) 

(Subauste et al., 2000). To generate a 3’ entry clone, Rac-T17N fragment was amplified 

using the following primers: 

5’ GGGGACAGCTTTCTTGTACAAAGTGGCTatgcaggccatcaagtgtg 3’ 

5’ GGGGACAACTTTGTATAATAAAGTTGCttacaacagcaggcattttctc 3’ 

It was combined with the hsp70 promoter p5ENTR(L4-R1) (Kwan et al., 2007), mKate2 

pENTR(L1-L2) (kind gift from Andrew Oates, Crick Institute, London, UK) and 

pTol2+pA_pDEST(R4-R3) (Villefranc et al., 2007). 

 

5.2.2 BAC recombineering 

BAC recombineering was performed by Aleksandra Syta and Mihail Sarov from genome 

engineering facility at MPI-CBG. 

 

1. BAC clones 

The CHORI211 Zebrafish BAC clones with the pTARBAC2.1 backbone containing the genes 

of interest lama1 (CH211-170M3) and fn1a (CH211-103D24) were purchased from Source 

BioScience. The targeted sites of each gene were confirmed by PCR (primers details in 

Table 8) followed by sequencing. 

 

2. BAC recombineering 

BAC recombineering was performed according to a published protocol (Fu et al., 2010). To 

prepare the E. coli strains carrying the BAC clones for recombineering, they were 

transformed with pSC101-BAD-gbaA-tet plasmid, which is used to express the Red operon 

proteins after induction with L-arabinose. The pSC101-BAD-gbaA-tet plasmid contains a 

temperature-sensitive replicon pSC101 and a tetracycline (Tet) selection marker. 

 

Insertion of Tol2 arms into the pTARBAC2.1 backbone 

For integration of Tol2 arms into the BAC clones with pTARBAC backbone, a Tol2-amp 

cassette was used. The cassette contained long recombineering homology arms for the 

pTARBAC2.1 sequence (5’ arm - 224 bp and 3’ arm – 193 bp) and the amplicillin (Amp) 

selection marker and was a kind gift from Tatjana Sauka-Spengler (Trinh et al., 2017). The 

plasmid was further modified to include a R6K origin of replication by Pavel Vopalensky and 

was a kind gift from Nadine Vastenhouw. The cassette was amplified by PCR from the R6K-

TARBAC-Tol2 plasmid. 
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The E. coli strains carrying the BAC clones and the pSC101-BAD-gbaA-tet plasmid were 

grown in LB containing Chloramphenicol and Amp at 30°C and expression of the Red 

proteins was induced by adding L-Arabinose to a final concentration of 0.2% and incubated 

at 37°C for 45 min with shaking. The cells were electroporated with the Tol2-amp cassette 

(500 ng), grown at 30°C and colonies were selected for the Tol2-Amp integration (for colony 

PCR primers details in Table 8).  

Table 8 : Primers used for BAC recombineering  

Primer name Sequence 

Control primers for targeted sites 

Lama1-F TGACTGTGTCAGAGCATTTG 

Lama1-R TGGAATGTGCATGTGTTGGA 

Fn1-F TTGAGGGACAGGTTACATGT 

Fn1-R AAGAGACTGGCAGTAGACTC 

Primers for Tol2-Amp integration into pTARBAC2.1 

TARBAC-Tol2-
F 

GCTGTCGGAATGGACGATATC 

TARBAC-Tol2-
R 

TAGAACGGAGTAACCTCGGTG 

Oligos used for tagging cassettes 

Fn1-HA-F ttgagtgcctgagaccagacctgttagcagatgcccatagccctcatgatGAAGTGCATACCAATCAGGACCCGC 

Fn1-HA-R ctgtgggccgtgtcctctccagtattggacaaaattcaaatgcagatttaCTTGTCGTCGTCATCCTTGTAGTCG 

Lama1-HA-F tcagctctgcgttcacactcctgcacgtttcccctcactcctgccctgcgGAAGTGCATACCAATCAGGACCCGC 

Lama1-HA-R acacacaggagggctgatatctctacaggtacagctgttgtgtgtgtttaCTTGTCGTCGTCATCCTTGTAGTCG 

 

Tagging of Lama 1 and Fn1  

Both genes were C-terminally tagged with three different tags: 2xTY1-Dendra-FRT-rpsl-

Kan-FRT-3xFLAG, 2xTY1-GFP-V5-preTEV-BLRP-FRT-rpsl-Kan-FRT-3xFLAG and 2xTY1-

mKate-FRT-rpsl-Kan-FRT-3xFLAG. The constructs contained kanamycin selection marker 

flanked with FRT sites, which are removable through Flp/FRT site-specific recombination. 

Tagging cassettes containing 50 bp 5’ and 3’ homology arms to each gene were amplified 

from R6K plasmids carrying respective tags. The oligos used to obtain the cassettes are 

listed in Table 8 

 

For tagging, E. coli strains carrying the BAC-Tol2-Amp clones and the pSC101-BAD-gbaA-

tet were electroporated with respective tagging cassette, grown at 37°C. At this temperature, 

the temperature-sensitive pSC101-BAD-gbaA-tet plasmid did not replicate and was removed 

gradually from the culture. For the removal of Kanamycin marker, the cells were transformed 

with a pRedFlp-hgr plasmid with Anhydrotetracyclin inducible Flippase (Flp) expression, 

temperature-sensitive replicon pSC101 and hygromycin selection marker. The fresh culture 
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of E. coli strains carrying the tagged BAC-Tol2-Amp clones and the pRedFlp plasmid was 

re-grown in LB containing chloramphenicol, Amp, hygromycin and anhydrotetracyclin (200 

ng/ml) at 30°C for 3 hrs. The cells were plated on LB agar plates with chloramphenicol, Amp, 

hygromycin and incubated ON at 30°C. To test for kanamycin sensitivity, the clones were 

then grown on plates with and without kanamycin. Clones that grew only on the plates 

without kanamycin were further confirmed by sequencing.  

 

The following antibiotic concentrations were used: 100 μg/ml Amp, 12.5 μg/ml 

chloramphenicol, 100 μg/ml hygromycin, 15 μg/ml kanamycin, 4 μg/ml tetracyclin. 

 

5.2.3 Western blot 

24 hpf embryos were deyolked manually and samples were boiled in SDS-loading buffer at 

98°C. For each condition, protein samples from 5 embryos were used and run on 4–12% 

polyacrylamide NuPAGE Bis-Tris gel (NP0321BOX; ThermoFisher Scientific) and blotted 

onto a PVDF membrane (Amersham Hybond P 0.45 PVDF, 10600023 GE Healthcare Life 

Sciences). Primary antibodies were incubated at room temperature for 1 h or overnight at 

4°C and secondary antibodies were incubated at room temperature for 45 min. The staining 

was detected using enhanced chemiluminescent detection reagents (Amersham RPN2106, 

GE Healthcare Life Sciences) and a photosensitive film using the Kodak Photofilm 

Developer X-Omat 2000. Following antibodies dilutions were used: 1:500 anti-laminin 

(RRID:AB_477163, Sigma L-9393), 1:500 anti-phospho-ERM (RRID:AB_2262427, Cell 

Signaling 3141), 1:10000 Anti-α-Tubulin (RRID:AB_477582, Sigma T6074), 1:20000 

peroxidase conjugated anti-Mouse (RRID:AB_2340061, Jackson Immuno 315-035-003), 

1:20000 peroxidase conjugated anti-Rabbit (RRID:AB_2313567, Jackson Immuno 111-035-

003). 

5.3 Image acquisition 

5.3.1 Brightfield imaging 

Dechorionated embryos were anaesthetized with 0.04% MS-222 (Sigma) and mounted on a 

drop of 3% methylcellulose in E3 medium. Images were taken on a Leica M165C scope with 

an MC170 HD camera. 

  

5.3.2 in vivo time-lapse imaging 

Dechorionated embryos were mounted in 0.6% low melting agarose in E3 medium on glass 

bottom dishes for spinning disk confocal microscopy and in a glass capillary for light sheet 

microscopy. Embryos were anaesthetized using 0.04% MS-222 (Sigma). 
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An Andor spinning disk system equipped with a 40x silicon oil objective (NA=1.25) and a 

heating chamber was used. Z stacks of 90 µm depth were acquired with optical section of 

0.7 µm every 3–5 min for about 6-7 h.  

For time-lapse imaging of HRAS-GFP, GFP-UtrophinCH, myl12.1-EGFP transgenic 

embryos and paxillin-mKate2 RNA injected embryos (Movie 1, 2 and 9), a Zeiss Light sheet 

Z.1 microscope with a Zeiss Plan-Apochromat 20x water-dipping objective (NA=1.0) and 

sample chamber heated to 28°C was used. 

To visualise the three-dimensional data over time, maximum intensity projections were used. 

  

5.3.3 Confocal Scans 

Imaging was performed on Zeiss LSM 710 confocal microscopes with a 40x water-

immersion objective (NA=1.2). 

5.4 Image analysis 

Image analysis was performed using Fiji (Schindelin et al., 2012). Statistical analysis and 

graphical representation were performed using the Prism software package. 

  

5.4.1 Apical and basal area analysis of invaginating RNE cells 

To measure the apical and basal areas of the invaginating cells, embryos were mounted on 

their lateral side. The optical section below the developing lens placode was analysed for 

basal areas and the apical side of the same cells was analysed for apical areas. A 

rectangular area was marked where the apical and basal endfeet of the RNE cells were 

observable. The number of cells in this area was calculated using the multipoint tool in Fiji 

(Schindelin et al., 2012). Cells present only partially in the field were counted only on the left 

and the top border of the rectangle. 

  

5.4.2 Actomyosin distribution analysis 

The average intensity distribution of phalloidin and anti-phosphomyosin staining along the 

apicobasal axis of the RNE was measured using a custom-made Fiji compatible Python 

script by Benoit Lombardot and Robert Haase (source code available at (Sidhaye and 

Norden, 2017)). The region of interest was defined as a 10 µm x 10 µm x h cuboid, with h 

being the height of the apicobasal axis of the RNE (Figure 2.4B). Using this region of 

interest, an average intensity value was calculated for each point along the apicobasal axis. 

The axis length was normalized to 100. To compare different samples, the average 

intensities were normalized to the highest average intensity value along the axis. Such 

analysis was performed for five different regions each in multiple optic cups. 



 

 
 

Material and methods 

 95 

  

5.4.3 Invagination angle analysis 

The invagination angle was measured manually using the angle tool in Fiji (Schindelin et al., 

2012). The invagination angle was defined as the angle held by the inner lips of the optic 

cup at the center of the optic cup base (schematic in Figure 2.5E). The angle was measured 

at three different central optical sections for each optic cup and the average value was used 

as the angle of invagination. Such analysis was performed for multiple optic cups. 

  

5.4.4 Rim cell speed analysis 

The basal side of the rim cells was tracked manually using MTrackJ plugin in Fiji (Meijering 

et al., 2012). The rim cell speed was calculated as a ratio of the track length to the track 

duration. 

 

5.4.5 Integrin intensity analysis 

Ras-GFP and Integrin-mKate2 RNA injected embryos were used as controls or were co-

injected with opo morpholino. These embryos were imaged at 24 hpf. Single optical sections 

featuring complete apico-basal length of RNE cells were chosen for analysis. A 20-pixel 

thick line was manually marked along the apicobasal axis of RNE. The average integrin-

mKate2 intensity was calculated along the line for 0–5 µm (basal) and 25–30 µm (central) 

length from the base. A ratio of basal average intensity to central average intensity was 

calculated for each embryo. Such analysis was performed for 5 different embryos each for 

control and morphant embryos. 

5.5 Transcriptomic profiling by RNA-seq  

5.5.1 Sample preparation, cell sorting and RNA isolation for RNA-seq 

10 Optic vesicles each were dissected manually from about 18 ss wild-type (control) 

embryos and Tg(vsx2::GFP) embryos. The dissected optic vesicles were kept in 100 µl PBS 

at room temperature. The cells were dissociated manually by pipetting several times and the 

volume was adjusted to 300 µl. This procedure was performed within half an hour and 

samples were used for FACS. 

 

FACS was performed with the help of the Cell technologies facility at MPI-CBG. Single cell 

suspensions were analysed by flow cytometry using the FACS ARIA FUSION (BD 

Biosciences) in conjunction with the FACS Diva software (BD Biosciences). The subsequent 

cell sorting and counting of absolute numbers of defined subpopulations was performed by 

the same set-up. Figure 5.1 shows the representative profiles for control and vsx2::GFP 
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samples. Quadrant 4 marks the actual GFP positive cells (Figure 5.1 A,C). FACS was 

performed to collect two groups of cells, ‘low GFP’ (marked by P4 in Figure 5.1C) and ‘high 

GFP’ (marked by P5 in Figure 5.1C). The middle population of cells was discarded to avoid 

potentially overlapping cells. The sorted cells were collected in RNeasy Lysis Buffer RLT 

with 1% 2–mercaptoethanol. Total RNA was extracted using the RNeasy Plus Micro kit 

(Qiagen). The RNA quality was checked using bioanalyzer system (Agilent Genomics). 

Samples were collected in four replicates on different days. The details about the samples 

are included in Table 9. 

 

 

 

Figure 5.1: FACS profile of wild-type control and vsx2::GFP samples 

A,C) Fluorescence levels of isolated optic vesicle cells during flow cytometry for wild-type/control (A) 

and vsx2::GFP (C) sample. Low GFP cells (P4), high GFP cells (P5). Each dot represents a single 

cell. FSC-H (Forward light scatter- Height). 

B,D) Counts of isolated cells during flow cytometry versus fluorescence levels for wild-type/control (B) 

and vsx2::GFP (D) sample. FITC-A (signal upon excitation with 488nm laser) 

Fluorescence intensity axis shown in log scale.  
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Table 9: Samples for transcriptomic analysis 

Sample Number of 

harvested cells 

Total RNA 

conc. (pg/µl) 

RNA integrity 

number (RIN) 

Low GFP_1 294 53 8.6 

Low GFP_2 104 51 7.8 

Low GFP_3 236 59 7.3 

Low GFP_4 418 163 5.6 

High GFP_1 325 140 7.5 

High GFP_2 202 130 7.8 

High GFP_3 315 53 9.1 

High GFP_4 563 204 5.8 

 

Table 10: Alignment statistics of RNA-seq samples 

Sample Total reads Aligned Rate rRNA rRNA rate 

Low GFP_1 24,254,471 22,401,448 0.924 273,257 0.011 

Low GFP_2 28,174,805 26,635,367 0.945 244,598 0.009 

Low GFP_3 54,588,841 51,417,255 0.942 540,319 0.01 

Low GFP_4 60,867,299 57,120,923 0.938 619,942 0.01 

High GFP_1 26,972,612 25,270,705 0.937 67,731 0.003 

High GFP_2 25,458,916 23,885,004 0.938 330,096 0.013 

High GFP_3 48,476,762 45,709,858 0.943 445,412 0.009 

High GFP_4 57,074,348 52,927,654 0.927 656,965 0.012 

 

Table 11: Alignment profile of RNA-seq samples 

Sample Exonic Intronic Intergenic 

Expression 

efficiency Transcripts Genes 

Low GFP_1 0.876 0.076 0.054 0.803 32183 15815 

Low GFP_2 0.9 0.054 0.046 0.851 31546 15321 

Low GFP_3 0.869 0.071 0.06 0.819 33157 16188 

Low GFP_4 0.858 0.081 0.06 0.805 33129 16143 

High GFP_1 0.893 0.058 0.049 0.836 30626 14977 

High GFP_2 0.875 0.068 0.057 0.821 29842 14635 

High GFP_3 0.853 0.083 0.063 0.804 33927 16655 

High GFP_4 0.853 0.085 0.062 0.791 31572 15452 
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5.5.2 Library preparation and sequencing 

Library preparation and subsequent sequencing were performed by the Deep Sequencing 

Group headed by Dr. Andreas Dahl (BIOTEC, TU Dresden). Samples were prepared in 

batches due to different delivery dates. LowGFP 1, LowGFP 2, HighGFP 1 and HighGFP 2 

were prepared together. LowGFP 3, LowGFP 4, HighGFP 3 and HighGFP 4 were prepared 

together in the second batch. 

  

For the RNA-seq experiment, the SMARTer Ultra Low Input RNA for Illumina Sequencing Kit 

- HV from Takara Bio USA (formerly known as Clontech Laboratories) was used to reverse 

transcribe the RNA and amplify full-length cDNA according to the user manual. After 

amplification of cDNA, the cDNA was sheared to a fragment length of 200 bp in the 

ultrasonicator Covaris LE220, followed by a library prep using NEBNext® Ultra DNA Library 

Prep Kit for Illumina (NEB). The resulting libraries were pooled and sequenced on an 

Illumina® HiSeq 2500, resulting in ca. 25 – 60 million single-end reads. 

 

5.5.3 Alignment and Quality assessment 

Alignment and analysis were performed by Mathias Lesche (Deep Sequencing Group, 

BIOTEC, TU Dresden). FastQC (http://www.bioinformatics.babraham.ac.uk/) and RNA-

SeQC (v1.1.8) were used to perform a basic quality control on the sequenced fragments. 

Alignment of the fragments to zebrafish reference genome (release GRCz10) was done with 

GSNAP (v2017-03-17) (Wu and Nacu, 2010) and Ensembl annotation 81 (release July 

2015) was used to detect fragments spanning splice sites. Table 10 and 11 show the details 

of the alignment. 

 

5.5.4 Gene Expression analysis 

The uniquely aligned fragments were counted with featureCounts (v1.5.2) (Liao et al., 2014) 

and with the Ensembl annotation 81. Non-strand specific counting was applied. The raw 

counts were normalized based on the library size and testing for differential gene expression 

between the two conditions, LowGFP and HighGFP, was performed with the DESeq2 R 

package (v1.15.51) (Love et al., 2014). Accepting a maximum of 10% false discovery rate 

(padj < 0.1) for the comparison, genes with normalized counts > 200 averaged in both 

conditions and a log2 fold change of < -1 or > 1 were considered regulated.  

 

5.5.5 Gene enrichment analysis 

Gene enrichment analysis and GO term analysis was performed on the list of regulated 

genes using open source tool Enrichr (Chen et al., 2013; Kuleshov et al., 2016). The GO 

term analysis was performed for GO cellular component using 2017 database. 
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Movie Legends 

Movie 1: RNE morphogenesis in the zebrafish embryo 

Time-lapse imaging of cellular dynamics during RNE morphogenesis using Tg(actb1:HRAS-

EGFP). Invagination (arrowheads) and rim involution (arrows). Imaging started around 15 

ss. Time in h:min. Scale bar = 10 µm. Related to Figure 2.1A. 

 

Movie 2: Actomyosin dynamics during RNE morphogenesis 

Part 1: Time-lapse imaging of actin dynamics during RNE morphogenesis using 

Tg(actb1:GFP-­utrCH). Part 2: Time-lapse imaging of myosin dynamics during RNE 

morphogenesis using Tg(actb1:myl12.1-EGFP).  

GFP enrichment at the basal side of the RNE (arrowheads). Rim zone lacking basal GFP 

enrichment (arrows). Imaging started around 15 ss. Time in h:min and Scale bars = 10 µm. 

Related to Figure 2.3 A,B. 

  

Movie 3: RNE morphogenesis in Rockout treated embryos. 

Time-lapse imaging of RNE morphogenesis in Tg(actb1:GFP-­utrCH) embryos treated with 

DMSO (left) and 125 µm Rockout (right). Treatment started at 13–14 ss, 2 h before imaging. 

Imaging started around 18 ss. Time in h:min, Scale bar = 10 µm. Related to Figure 2.6A. 

  

Movie 4: Membrane and actin dynamics during rim involution 

Part 1: Time-lapse imaging of membrane dynamics during rim involution. Mosaic expression 

of Par3-GFP (magenta) and mKate2-ras (green). Membrane protrusions (arrows). Part 2: 

Time-lapse imaging of actin dynamics during rim involution. Mosaic expression of GFP-

UtrophinCH (green) and mKate2-ras (magenta). Apical utrophin localization at the adherens 

junctions (arrows).  

Imaging started at 17–18 ss. Time in h:min. Scale bar = 10 µm. Related to Figure 2.8D,E. 

 

Movie 5: Actin dynamics during rim involution 

Time-lapse imaging of actin dynamics during rim involution. Mosaic expression of GFP-

UtrophinCH (green) and mKate2-ras (magenta). Utrophin localization in the membrane 

protrusions (arrows). Basal utrophin enrichment (arrowheads). Imaging started at 17–18 ss. 

Time in h:min and scale bar = 10 µm. Related to Figure 2.9A. 

  

Movie 6: Rim cell dynamics in Rockout treated embryos 

Time-lapse imaging of actin dynamics in rim cells of Rockout treated embryos. Mosaic 

expression of GFP-UtrophinCH (green) and mKate2-ras (magenta). Rockout treatment 
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started at 13–14 ss, 2 h before imaging. Imaging started at 17–18 ss. Time in h:min. Scale 

bar = 10 µm. Related to Figure 2.9F. 

 

Movie 7: Myosin dynamics during rim involution 

Time-lapse imaging of myosin dynamics during rim involution. Mosaic expression of DD-

myl12b-GFP (green) and mKate2-ras (magenta). Dynamic basal spots (arrows). Stable 

basal enrichment (arrowheads). Imaging started at 17–18 ss. Time in h:min. Scale bar = 10 

µm. Related to Figure 2.9B. 

  

Movie 8: Dynamics of cell-matrix adhesion components during rim involution 

Part 1. Time-lapse imaging of integrin dynamics during rim involution. Mosaic expression of 

Integrinb1b-mKate2 (magenta) and GFP-ras (green). Part 2. Time-lapse imaging of paxillin 

dynamics during rim involution. Mosaic expression of paxillin-mKate2.  

Short-lived foci (arrows). Stable basal enrichment indicative of stable focal adhesions 

(arrowheads). Imaging started at 17–18 ss. Time in h:min, Scale bar = 10 µm. Related to 

Figure 2.11A,B. 

 

Movie 9: Paxillin dynamics during RNE morphogenesis 

Time-lapse imaging of paxillin dynamics during RNE morphogenesis in paxillin-mKate2 RNA 

injected embryos. Imaging started around 15 ss. Time in h:min and scale bars = 10 µm. 

Related to Figure 2.11C 

 

Movie 10: RNE morphogenesis in laminin and opo morphant 

Part 1. Time-lapse imaging of mosaic expression of mKate2-ras in laminin morphant. Part 2. 

Time-lapse imaging of mosaic expression of mKate2-ras in opo morphant.  

Lines mark the outline of developing optic vesicle and later RNE. Rim cells with perturbed 

rim involution (arrows). Imaging started 16–17 ss. Time in h:min. Scale bar = 10 µm. Related 

to Figure 2.16D,E. 

  

Movie 11: Paxillin dynamics during rim involution in laminin morphant 

Time-lapse imaging of paxillin dynamics during rim involution in laminin morphant with 

mosaic expression of GFP-ras (left) and paxillin-mKate2 (middle). Stable paxillin localisation 

(red arrowhead). Basal blebbing in the rim cells (blue arrowhead). Time in h:min. Scale bar = 

10 µm. Related to Figure 2.18A. 
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Movie 12: Paxillin dynamics during rim involution in opo morphant 

Time-lapse imaging of paxillin dynamics during rim involution in opo morphant with mosaic 

expression of GFP-ras (left) and paxillin-mKate2 (middle). Paxillin foci (red arrowhead). 

Basal blebbing in the rim cells (blue arrowhead). Time in h:min. Scale bar = 10 µm. Related 

to Figure 2.18C. 

  

Movie 13: GFP-ras expressing opo morphant clone in mCherry-UtrCH expressing control 

background 

Time-lapse imaging of RNE morphogenesis in Tg(actb1:mCherry-UtrCH) acceptor embryo 

transplanted with GFP-ras positive opo morphant cells. Opo morphants cells (green), 

acceptor cells (magenta). Basal blebbing in the rim cells (arrowheads). Time in h:min. Scale 

bar = 10 µm. 

 

Movie 14: RNE morphogenesis in ezrin morphant 

Time-lapse imaging of mosaic expression of mKate2-ras in ezrin morphant. Lines mark the 

outline of developing optic vesicle and later RNE. Rim cells with perturbed rim involution 

(arrows). Imaging started 16–17 ss. Time in h:min. Scale bar = 10 µm. Related to Figure 

2.21C. 

  

Movie 15: vsx2::GFP expression during RNE morphogenesis. 

Part 1. Time-lapse imaging of control RNE morphogenesis in Tg(vsx2::GFP, bactin::mKate2-

ras). Part 2. Time-lapse imaging of RNE morphogenesis in Tg(vsx2::GFP, bactin::mKate2-

ras) in ezrin morphant. 

Appearance of bright GFP signal indicative of RNE fate determination (arrow). Imaging 

started 16–17 ss. Time in h:min. Scale bar = 10 µm. Related to Figure 2.24A. 
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List of Abbreviations 

Amp Ampicillin 

Aphi Aphidicolin 

BAC Bacterial artificial chromosome 

bp basepairs 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

ECM Extracellular matrix 

EGFP Enhanced green fluorescent protein 

EMT Epithelial-to-mesenchyme transition 

FACS Fluorescence-activated cell sorting 

Flp Flippase 

GFP Green fluorescent protein 

GO Gene ontology 

hpf Hours post fertilisation 

HU Hydroxyurea 

LB Lysogeny broth/Luria broth 

Lama1 laminin-ɑ1 

MRLC Myosin regulatory light chain 

NGS Normal goat serum 

OCM Optic cup morphogenesis 

PBS Phosphate buffer saline 

PFA Paraformaldehyde 

POM Periocular mesenchyme 

RNA Ribonucleic acid 

RNE Retinal neuroepithelium 

ROCK Rho kinase 

RPE Retinal pigment epithelium 

SDS Sodium dodecyl sulfate 

sfGFP Superfolder green fluorescent protein 

ss Somite stage 

Tet Tetracyclin 
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4. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer 

anderen Prüfungsbehörde vorgelegt.  

 

5. Die Inhalte dieser Dissertation wurden in folgender Form veröffentlicht:  

Sidhaye, J., & Norden, C. (2017). Concerted action of neuroepithelial basal shrinkage and 

active epithelial migration ensures efficient optic cup morphogenesis. eLife, 6, e22689. 

 

6. Ich bestätige, dass es keine zurückliegenden erfolglosen Promotionsverfahren gab.  

 

7. Ich bestätige, dass ich die Promotionsordnung der Medizinischen Fakultät der Technischen 

Universität Dresden anerkenne.  

 

8. Ich habe die Zitierrichtlinien für Dissertationen an der Medizinischen Fakultät der Technischen 

Universität Dresden zur Kenntnis genommen und befolgt.  

 

Dresden  

 

 

Jaydeep Sidhaye 
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Anlage 2 

Hiermit bestätige ich die Einhaltung der folgenden aktuellen gesetzlichen Vorgaben im 

Rahmen meiner Dissertation  

 

das zustimmende Votum der Ethikkommission bei Klinischen Studien, epidemiologischen 

Untersuchungen mit Personenbezug oder Sachverhalten, die das Medizinproduktegesetz betreffen 

Aktenzeichen der zuständigen Ethikkommission: nicht zutreffend 

    

die Einhaltung der Bestimmungen des Tierschutzgesetzes Aktenzeichen der Genehmigungsbehörde 

zum Vorhaben/zur Mitwirkung: DD24-5131/354/11 

 

die Einhaltung des Gentechnikgesetzes  

Projektnummer: 54-8451/103  

 

die Einhaltung von Datenschutzbestimmungen der Medizinischen Fakultät und des 

Universitätsklinikums Carl Gustav Carus.  

 

 

 

Dresden, 

 

 

 

Jaydeep Sidhaye  

 

 

 

 


