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Chapter 1

Introduction

The collective behavior of many degrees of freedom bears a plethora of surprising phenomena
in both the classical and the quantum realm. In thermal equilibrium it is understood that the
behavior of many-particle systems can be explained by the principles of statistical mechanics.
Far from thermal equilibrium, however, the only known principle determining the dynamics a
priori are the fundamental laws of motion involving every single degree of freedom. This thesis
deals with different aspects of the non-equilibrium dynamics of closed quantum many-body
systems.

Non-equilibrium processes and collective phenomena that are governed by classical physics
are common everyday experiences. Examples are the mixing of hot coffee with cold milk that
was poured into it (Wettlaufer, 2011) or the dynamics of traffic jams (Schadschneider, 2006).
Ultimately, our whole planet earth is in a non-equilibrium condition since it is subjected to
a permanent drive in the form of irradiated sunlight.

The dynamics of quantum many-body systems, instead, naturally elude our everyday ex-
perience, primarily due to the extremely short time scales or low temperatures. Natural time
and energy scales for human beings are seconds (one heartbeat) and 300 Kelvin (a comfort-
ably warm spring day in central Europe). In the laboratories, however, enormous advances
in experimental techniques during the past decades, like the development of quantum sim-
ulators of different kinds and ultrafast pump-probe techniques, allow unprecedented control
and measurements on extremely short time scales on quantum systems with many degrees of
freedom. In these experiments electronic dynamics can be addressed, for which the relevant
time scale is femtoseconds (10−15 seconds), as well as dynamics of ultracold atoms, which
exhibit fundamental many-body physics at temperatures of some tenths of micro-Kelvins
(10−6 Kelvin). Through these new possibilities theoretical studies of quantum many-body
systems far from equilibrium, which by themselves raise intriguing fundamental questions,
become relevant for real world experiments.

In the first section of this chapter (Section 1.1) a selection of seminal experiments that
motivate the theoretical investigation of the dynamics of quantum many-body systems far
from equilibrium is discussed. In Section 1.2 cornerstones of the theoretical understanding
of the non-equilibrium dynamics are introduced with the intention to give a comprehensive
overview of the physical phenomena for readers not familiar with recent developments in
the field. Based on entanglement as characteristic phenomenon Section 1.3 sketches the
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challenges of theoretical (in particular numerical) treatment of quantum many-body systems.
In Section 1.4 the scope of the thesis is outlined and the main results are summarized.

1.1 Experimental realization of unitary dynamics in

quantum many-body systems

A main motivation to study theoretical aspects of the nonequilibrium dynamics of quantum
many-body systems is the recent progress in experimental techniques that facilitate highly
controllable analog quantum simulation (Georgescu et al., 2014). These quantum simulators
allow to realize simple model Hamiltonians of condensed matter systems and can therefore
be understood as special purpose quantum computers (Feynman, 1982). Importantly, these
experimental setups do not only allow for a precise manipulation of Hamiltonian parameters
but also measurements that resolve the transient dynamics when the system is pushed out
of equilibrium.

One class of such quantum simulators is based on cold gases of neutral atoms (bosonic
or fermionic) in optical potentials that are produced by off-resonant laser light (Bloch et al.,
2008, 2012; Gross and Bloch, 2017). A spatial variation of the light intensity affects the
atoms by a position-dependent ac Stark shift through the varying amplitude of the electric
field, which results in an effective external potential for the atoms (Grimm et al., 2000). This
potential is proportional to the laser intensity and the sign is determined by the detuning,
i.e., the difference between laser frequency and the closest resonance frequency of the atoms.
Using such optical potentials the atoms can be confined to effectively lower dimensions and
with interfering laser beams perodic potentials with a variety of lattice structures can be
realized. Since the atoms are neutral their interaction is very short-ranged. In an optical
lattice it is a good approximation to assume that only atoms residing on the same lattice
site interact. This corresponds to a setting that is theoretically described by the Hubbard
model, which is a prominent model for correlated quantum matter (Hubbard, 1963). In
second quantization the Hubbard Hamiltonian for fermions with an internal spin-1/2 degree
of freedom reads

H = −th
∑

〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ U

∑

i

n̂i,↑n̂i,↓ , (1.1)

where 〈i, j〉 denotes the set of neighboring lattice sites i and j, σ =↑, ↓ labels the spin degree
of freedom, and n̂i,σ = ĉ†i,σ ĉi,σ is the site occupation. The parameter th is the tunneling
matrix element between adjacent lattice sites, often referred to as hopping amplitude, and
U parametrizes the interaction energy of particles on the same lattice site. Despite its
simplicity this model exhibits rich many-body physics, e.g. an interaction driven metal-
insulator transition, superconductivity, and magnetism (Tasaki, 1998).

In a cold atom experiment it is not only possible to choose the geometry of the system by
adjusting the optical potential accordingly. Also the ratio of the parameters th and U can be
tuned. By changing the depth of the potential, i.e., the laser intensity, the hopping amplitude
can be increased or decreased, which effectively corresponds to decreasing or increasing the
interaction strength U . Alternatively, the interaction parameter can be addressed directly

4



Fig. 1.1: Collapse and revival of matter wave coherence in a Bose-Einstein condensate after a
sudden increase of the lattice depth. The pictures show the interference pattern observed in time
of flight measurements at times between 0µs (a) and 550µs (g) after the switching of the potential.
The initial superfluid state, which exhibits a clear interference pattern, decays until the pattern is
completely washed out; however, at time 550µs there is an almost perfect revival of the macroscopic
matter wave field. [Adapted by permission from Macmillan Publishers Ltd: Nature (Greiner et al., 2002), copyright (2002);

https://www.nature.com/nature/journal/v419/n6902/full/nature00968.html.]

by means of a Feshbach resonance (Feshbach, 1962; Fano, 1961). In an external magnetic
field the different Zeeman shifts of internal states with different magnetic moments allow to
tune bound states resonant with scattering channels and in the vicinity of these resonances
the scattering length changes drastically. In the Hubbard Hamiltonian (1.1) this translates
to the possibility to adjust the value of U at will, which, remarkably, includes the possibility
to change the sign of U .

A seminal experiment addressing the dynamics of quantum many-body systems was per-
formed on ultracold bosonic atoms in an optical lattice (Greiner et al., 2002) described by
the bosonic version of the Hubbard model (1.1). The system was initially prepared in the
superfluid ground state before suddenly switching the potential depth to a very large value
corresponding to a large interaction strength U and negligible hopping amplitude th. After
varying waiting times t the optical potential was switched off allowing the atoms to propagate
freely for a short period before taking absorption pictures of the resulting atom cloud. The
interference patterns resulting from such a time of flight measurement reflect the momentum
distribution in the system at the time of release. In the experiment of Greiner et al. a periodic
collapse and revival of the phase coherence of the initial state was revealed in the course of
time as depicted in Fig. 1.1. This periodicity of the time-evolution owes to the fact that the
Hamiltonian that determines the time evolution is close to an integrable point, where the
system does not thermalize.

Another pioneering experiment that aroused a lot of interest in quantum many-body
dynamics is the realization of a quantum Newton’s cradle (Kinoshita et al., 2006). In this
setup an effectively one-dimensional gas of bosonic atoms in the Tonks-Girardeau limit of
infinite strength interactions is created in a harmonic trap. It is initially prepared in a
superposition of opposite momenta k and −k. Time of flight measurements at different times
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t reveal that the two momentum groups periodically collide with each other as depicted in
Fig. 1.2. Also in this experiment no thermalization is observed, although the whole process
amounts to thousands of collisions per atom. The reason for the absence of thermalization is
again the integrable nature of the system, which is, though, more subtle than in the previous
example. Definitions of integrability and its implication on thermalization are discussed in
more detail in Section 1.2.1.

The two experiments described above yield insights

Fig. 1.2: A quantum Newton’s
cradle. The absorption images of
time of flight measurements at dif-
ferent times reveal a periodically
evolving momentum distribution
that remains nonthermal also after
many collisions. [Adapted by permis-

sion from Macmillan Publishers Ltd: Nature

(Kinoshita et al., 2006), copyright (2006);

https://www.nature.com/nature/journal/

v440/n7086/full/nature04693.html.]

into the time evolution of the momentum distribution via
time of flight measurements. Cold atom experiments are,
however, not restricted to this type of probe. Nowadays,
further developments of the experimental techniques allow
to take single-site-resolved pictures of the configuration of
the atoms in real space and, moreover, to manipulate the
initial state with the same precision (Sherson et al., 2010;
Weitenberg et al., 2011; Bloch et al., 2012; Choi et al.,
2016).

In new experiments so-called Floquet engineering is in-
creasingly exploited to realize new types of systems with
cold atoms. In this approach an external field is mod-
ulated at a frequency much larger than the typical time
scale of the atomic system. Thereby the system properties
on the slower time scale can effectively be changed. One
important application is the creation of artificial gauge
fields allowing to realize the Haldane model, which is a
paradigmatic model of a topological insulator (Haldane,
1988), in experiment (Jotzu et al., 2014; Fläschner et al.,
2016). This setup is a candidate to observe the nonequi-
librium steady state transition addressed in Section 2.2 of
this thesis. A synopsis of the theoretical foundations of
Floquet engineering can be found in Section 2.2.2.

Besides ultracold neutral atoms in optical lattices there
are other experimental setups with a sufficient degree of
isolation and control that allow to investigate the dynam-
ics of quantum many-body systems far from equilibrium.
For example, ions can be trapped similar to neutral atoms.
Being charged such trapped ions experience long range
Coulomb interactions in contrast to the short ranged in-
teractions of neutral atoms. This Coulomb coupling leads
to collective vibrational modes of the ions in the trapping potential. These can be used
in combination with internal degrees of freedom to effectively realize the dynamics of spin
models (Porras and Cirac, 2004; Richerme et al., 2014; Jurcevic et al., 2014, 2017; Zhang
et al., 2017), where the system parameters are manipulated by resonantly driving transitions
between the different states with lasers. Similar model Hamiltonians were realized using the
degrees of freedom of nitrogen-vacancy centers in high-purity diamond samples (Childress
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Fig. 1.3: Experimental evidence of possible light-induced superconductivity. Reflectivity R(ω)
and real and imaginary part of the optical conductivity, σ1(ω) and σ2(ω) measured on K3C60 in
equilibrium (red) and 1ps after excitation with a light pulse. The saturation of the reflectivity at
low energies, formation of a gap in σ1(ω), and the divergence of σ2(ω) suggest that a transient
superconducting state is realized in this experiment. [Reprinted by permission from Macmillan Publishers Ltd:
Nature (Mitrano et al., 2016), copyright (2016); https://www.nature.com/articles/nature16522]

et al., 2006; Doherty et al., 2013; Choi et al., 2017).
Thanks to recent advances that allow to produce ultrashort laser pulses it has become

possible to study also the nonequilibrium dynamics of electrons in solids. In ultrafast pump-
probe experiments the electrons are excited by a strong pump pulse before a following weaker
probe pulse is applied to track the time evolution of the system. Since this dynamics is much
faster than the time scale of relaxation that occurs due to coupling to the lattice, the electrons
can be viewed as isolated. Recent experiments on different systems showed that these photo-
induced transient states can exhibit the characteristics of phases, which are not stable in
equilibrium at the corresponding temperature. One example is the observation of signatures
of superconductivity when analyzing the optical properties after a pump pulse was applied
to a sample way above the critical temperature (Mitrano et al., 2016); see Fig. 1.3. In other
experiments time-resolved photoemission spectroscopy is used to gain insight into the band
structure and occupations after a strong excitation. An example application is the recent
observation of a photo-induced charge-density-wave to semi-metal phase transition (Mathias
et al., 2016).

In another related class of experiments based on short electron pulses time-resolution is
introduced to transmission electron microscopy or low energy electron diffraction, for example
allowing to observe the ultrafast dynamics of magnetic degrees of freedom (da Silva et al.,

7

https://www.nature.com/articles/nature16522


2017) or surface structures (Vogelgesang et al., 2017).

1.2 Quenches, transient dynamics, and thermalization

The experimental realization of dynamics in closed quantum many-body systems discussed
in the previous section can be studied theoretically considering quench protocols. In this
setting the system is initially, at time t = 0, prepared in an initial state described by a
density matrix ρ̂0. This density matrix can be pure, ρ̂0 = |ψ0〉〈ψ0|, if a prescription to
prepare a particular initial state |ψ0〉 exists as is the case for the quantum Newton’s cradle
experiment. Alternatively it can be an equilibrium density matrix for some temperature β
with respect to some Hamiltonian Ĥ0, ρ̂0 = e−βĤ0 . This is the case for the collapse and
revival experiment described in the previous section. Often, however, temperatures are low
enough that it is a good approximation to consider the pure ground state as equilibrium
initial state.

For times t > 0 the system is left to evolve according to a Hamiltonian Ĥ. In cases where
the system is initially prepared in an equilibrium state of Ĥ0 a typical situation is that both
Ĥ0 and Ĥ belong to a family of Hamiltonians Ĥ(λ), where λ is an external parameter, e.g. an
electric or magnetic field, the hopping, or the interaction. In that case the quench protocol
is performed by preparing the system in equilibrium with Ĥ0 = Ĥ(λi) and then at t = 0
suddenly switching the external parameter to a different value λf to induce the dynamics

with Ĥ = Ĥ(λf ).
In the isolated systems under consideration in this thesis the time-dependence of the

density matrix is determined by the von Neumann equation

i
d

dt
ρ̂(t) =

[
Ĥ, ρ̂(t)

]
. (1.2)

This equation yields a nontrivial time evolution if the initial density matrix does not commute
with the Hamiltonian Ĥ, which is typically the case in the quench protocols described above.
If the initial state is pure one can alternatively resort to the dynamics of the plain state
|ψ(t)〉 instead of the density matrix ρ̂(t). In that case the time evolution is determined by
the Schrödinger equation

i
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 . (1.3)

A quench as described above constitutes a strong perturbation of the system driving it
far from any equilibrium state. This is to be contrasted with weak external perturbations
to an equilibrium state, which are considered in linear response theory. Studying linear
response yields an insightful description of the effect of weakly coupling a measurement
device to the system in order to infer equilibrium properties. A main result is the Fluctuation-
Dissipation theorem that relates the measured susceptibilities to thermal fluctuations of the
system (Kubo, 1966). The key prerequisite of this formalism is the fact that the external
force can be treated perturbatively, meaning that the system always remains close to an
equilibrium state. By contrast, the response after quenching a system, of which various
aspects will be studied in this thesis, cannot be captured in this framework.
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The dynamics following a quench can be largely separated into two regimes, namely the
initial transient dynamics and the asymptotic behavior after long times, where typically a
new steady state is reached. The following two sections outline important aspects of both
regimes that received a lot of interest over the past two decades.

1.2.1 From quantum dynamics to statistical physics: Ergodicity,
integrability, and thermalization

A fundamental question that arises when considering the behavior of closed quantum many-
body systems at long times after a quench is whether a new thermal equilibrium state is
eventually established. This question has received a lot of attention from the theoretical
perspective in the course of the past years; see Refs. (D’Alessio et al., 2016; Gogolin and
Eisert, 2016) for summarizing reviews. Particularly intriguing issues with respect to this
question are related to the unitarity of the time evolution in isolated quantum systems.
Assuming a system is initially prepared in a pure state, how or in what sense can it evolve to
a state that is described by a thermal (i.e., mixed) density matrix at long times? Moreover,
a thermal state does not carry any information about initial conditions besides the values of
a few conserved quantities. How can this information be lost under unitary dynamics, which
is in particular linear, while this loss of information in classical systems is understood to be
a consequence of the nonlinearity of the dynamics?

Thermalization in generic quantum systems

The reason for thermalization in classical systems is understood in terms of chaotic dynamics,
mixing, and ergodicity (Lebowitz and Penrose, 1973). These concepts describe the way the
classical phase space is explored under Hamiltonian time evolution. Recent findings, instead,
indicate that thermalization in the realm of generic quantum many-body systems is a con-
sequence of the structure of the eigenstates of the system’s Hamiltonian. In seminal works
Deutsch and Srednicki (Deutsch, 1991; Srednicki, 1994, 1996, 1999) developed the Eigen-
state Thermalization Hypothesis (ETH); similar ideas had, however, already been explored
before (von Neumann, 1932; Jensen and Shankar, 1985). The ETH states that in terms of
physical observables each single eigenstate looks thermal or, more technically, expectation
values of physical few-body observables in the thermodynamic limit are smooth functions of
the eigenstate energy. The difference of observable expectation values in nearby eigenstates
is exponentially suppressed with increasing system size. Since the stationary value of an
observable at long times after a quench is determined by the expectation value in the con-
tributing energy eigenstates, the ETH implies that the steady state can be described by a
microcanonical ensemble (Rigol et al., 2008). Note that the term “hypothesis” in ETH has
to be taken literally because the basic assumptions are to date not formally proven to hold
for many-body systems. Nevertheless, there is strong numerical evidence for its validity from
studies of a variety of example systems (Steinigeweg et al., 2014; Beugeling et al., 2014; Kim
et al., 2014; Mondaini et al., 2016).

When considering physical observables that only probe a finite subsystem A it becomes
evident that a thermalizing system acts as bath for each subsystem. The expectation value of
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any observable in A is fully determined by the reduced density matrix of this subsystem. The
reduced density matrix is obtained by tracing out the degrees of freedom in the complement
(the “bath”), resulting in a mixed density matrix for the subsystem under consideration. By
checking the convergence of the reduced density matrix to a Gibbs state at long times ther-
malization can be investigated independent of a choice of observables. Using this approach
it was revealed that whether a system thermalizes dynamically or not is not independent
of the initial state (Bañuls et al., 2011). However, when focussing on the reduced density
matrix, restrictions on the energy distribution in the initial state can be identified that imply
thermalization without invoking the ETH assumption (Riera et al., 2012; Gogolin and Eisert,
2016). This condition for thermalization limits the set of thermalizing initial states, but it
covers most physically relevant situations (Reimann, 2008, 2012).

Atypical asymptotic states: Integrability and Generalized Gibbs Ensembles

In Section 1.1 two experiments were discussed, where even after very long times the system did
not reach a thermal state. The reason for the absence of thermalization in these systems is the
fact that they are integrable or almost integrable. Integrable systems make up an interesting
exception to generic many-body systems. Although there is no commonly agreed on single
definition of integrability (Caux and Mossel, 2011) one defining feature is particularly relevant
in the context of thermalization: In integrable quantum systems there exists an extensive
set of local operators that commute with the Hamiltonian and with each other, which means
that they are conserved under time evolution. In close analogy, a classical integrable system
comprises an extensive number of conserved quantities.

Classical billards are a good example to illustrate the impact of integrability on thermal-
ization. Fig. 1.4 shows two different classical billards with example trajectories of a ball that
bounces off the boundaries elastically. The dynamics in the billard in Fig. 1.4(a) is ergodic
(Bunimovich, 1979), which means that the trajectory shown in the figure will eventually
uniformly cover the whole region inside the boundaries. As a result, long time averages can
equivalently be computed as averages over the microcanonical ensemble. By contrast, the
dynamics of the circular billard in Fig. 1.4(b) exclude a part of the position space. In this
case long time averages generally do not coincide with averages over the microcanonical en-
semble, because the dynamics is not ergodic. The reason is the existence of an additional
integral of motion besides energy, namely angular momentum. Since the number of integrals
of motion coincides with the number of canonical coordinates the dynamics is trivial in terms
of action-angle variables and restricted to a torus in phase space. Consequently, integrable
classical systems do not thermalize.

In analogy, an important property of integrable quantum systems is the fact that they
violate ETH (Rigol et al., 2008); hence, they do not necessarily equilibrate to states that can
be described by conventional thermal ensembles. Nevertheless, it has been established over
the last years that the steady state reached by an integrable system in the long time limit
can be described by a so-called Generalized Gibbs Ensemble (GGE). This ensemble can be
derived according to Jaynes’s principle (Jaynes, 1957a,b) by maximizing the entropy under
the constraint that the expectation value of the extensive set of conserved quantities is known.
Thereby the density matrix takes the form of a Gibbs ensemble with one Lagrange multiplier
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(a) (b)

Fig. 1.4: Trajectories in billards with different boundary conditions. (a) In the Bunimovich sta-
dium there exist no further symmetries besides time translational symmetry. Hence, the trajectory
eventually uniformly covers the whole energy shell in phase space; the system is ergodic. (b) In
the circular billard angular momentum is conserved in addition to energy, rendering the system
integrable. The dynamics exclude a part of the phase space and the system is not ergodic.

(“generalized temperature”) for each conserved quantity. The applicability of the GGE has
been confirmed in many theoretical works; see, e.g., Refs. (Rigol et al., 2006, 2007; Cazalilla,
2006; Kollar and Eckstein, 2008; Barthel and Schollwöck, 2008; Calabrese et al., 2011, 2012;
Cassidy et al., 2011; Fagotti and Essler, 2013) for some early works and (Vidmar and Rigol,
2016) for a recent review. Importantly, it was realized that a GGE can only capture the
steady state expectation values of local observables (Barthel and Schollwöck, 2008; Gogolin
et al., 2011). Moreover, the experimental observation of a stationary state determined by a
GGE in a one-dimensional Bose gas has been reported recently (Langen et al., 2015).

The fact that the knowledge of an extensive number of Lagrange multipliers is sufficient
to describe the steady state although the dynamics is a priori determined by the overlaps of
the initial state with all energy eigenstates, which is exponential in the system size, can be
understood by generalizing the ETH. While in integrable systems the expectation values of
observables in the energy eigenstates are not smooth functions of the energy, it was found
that when labelling eigenstates with the full set of conserved quantities they vary smoothly
as the labels are varied slightly (Cassidy et al., 2011). This fact explains the possibility to
describe the stationary state reached after long times by a GGE.

Generally, in order to decide whether a specific model is integrable or not it can be hard
to identify a suited set of commuting operators. The same holds for exact solvability, which
is also commonly used as definition of integrability. An alternative indicator of integrability
requiring much less insight into possibly subtle properties of the system of interest is the
distribution of energy level spacings, i.e., the statistics of the differences between consecutive
eigenenergies. The underlying ideas date back to works of Wigner and Dyson aimed at under-
standing the complex energy levels of large nuclei (Wigner, 1955, 1957, 1958; Dyson, 1962).
The important discovery was the fact that in most bases a Hamiltonian looks essentially like
a random matrix, meaning that to understand main properties of the spectrum of a physical
Hamiltonian it can be sufficient to understand the spectra of random matrices. Random
matrix theory has in the meanwhile become a large field with applications in many different
areas (Akemann et al., 2011; Kota, 2014), including the ETH (Srednicki, 1994). The rele-
vant results for the differentiation between integrable and chaotic quantum systems are the
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Fig. 1.5: Unfolded level spacing histograms of an XXZ chain of N = 20 spins with next-nearest
neighbor coupling strength λ. In the integrable case (λ = 0) the level spacing distribution is
Poissonian, whereas the distribution of the Gaussian Orthogonal Ensemble (GOE) is found for the
ergodic systems (λ > 0).

Berry-Tabor conjecture (Berry and Tabor, 1977) and the conjecture formulated by Bohigas,
Giannoni, and Schmit (Bohigas et al., 1984) (BGS conjecture). The Berry-Tabor conjec-
ture states that the energy levels of a quantum system with integrable classical counterpart
can essentially be viewed as a sequence of independent random variables, meaning that the
distribution of the energy level spacings is Poissonian. By contrast, according to the BGS
conjecture the level spacings of quantum systems with chaotic classical counterpart follow a
Wigner-Dyson distribution. Both conjectures have been confirmed in different settings, e.g.
(Bohigas et al., 1984; Wintgen and Friedrich, 1987; Rudnick, 2008), and, therefore, serve in
combination as indicator of quantum chaos (although different definitions of quantum chaos
are still under debate, see Section 4.1). Importantly, it was found that level spacing statis-
tics also distinguish between integrable and ergodic systems if no classical counterpart exists
(Santos and Rigol, 2010; Rigol and Santos, 2010; Kollath et al., 2010; Santos et al., 2012;
Atas et al., 2013). The model Hamiltonians considered in this thesis are all of this type. One
example, which will be studied in Chapter 4, is a one-dimensional anisotropic Heisenberg
antiferromagnet with spin-1/2 degrees of freedom. In the presence of only nearest-neighbor
interactions this system is integrable (Doikou et al., 2010), but the integrability is imme-
diately broken by introducing next-nearest-neighbor couplings. Fig. 1.5 shows numerical
results for the level spacing distribution in a finite system, where the strength of the next-
nearest-neighbor interactions is parametrized by λ (λ = 0 is the integrable point). In the
extreme cases λ = 0 and λ = 1 the histograms are clearly compatible with the Poissonian
distribution and the Wigner-Dyson distribution, respectively. The center panel demonstrates
that already very weak integrability-breaking is sufficient to introduce a distinct feature of
generic quantum systems, namely energy level repulsion. In ergodic systems the probability
of energy level spacings that equal zero vanishes, whereas energy levels in integrable systems
are uncorrelated and can therefore coincide. In the thermodynamic limit the transition from
integrable to chaotic is expected to be immediate at arbitrarily small magnitudes of the
integrability-breaking term (Modak et al., 2014; Modak and Mukerjee, 2014).
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A new kind of integrability that aroused a lot of interest in recent years emerges in the
many-body localized phase. Many-body localization (MBL) is the generalization of Anderson
localization (Anderson, 1958) to interacting systems. At sufficiently strong disorder many-
body systems undergo a transition to a localized phase characterized by the absence of
transport similar to an Anderson insulator (Gornyi et al., 2005; Basko et al., 2006; Abanin
and Papić, 2017). Another key property of this phase is the emergence of quasi-local integrals
of motion, so-called “l-bits” (Serbyn et al., 2013; Huse et al., 2014). These integrals of motion
are associated with mutually commuting operators with support mainly around one lattice
site and exponentially suppressed contributions away from that. Therefore, the l-bits retain
information about the local structure of the initial state for all times, thereby prohibiting
thermalization. In virtue of these integrals of motion the impact of integrability on the
equilibration process can be observed straightforwardly in real space as has been done in
recent experiments (Schreiber et al., 2015; Choi et al., 2016).

In the literature many-body systems that are ergodic in the sense that they exhibit
Wigner-Dyson level spacing statistics and obey the ETH are often referred to as “chaotic”.
It is, however, to date not clear how classical chaos, whose defining property is the exponen-
tial sensitivity of the dynamics to small perturbations, can emerge from quantum dynamics.
In classical systems chaos does not only imply ergodicity, but also irreversibility, i.e., the
complete loss of information about the initial state in the process of thermalization. The
question in what sense quantum dynamics can be exponentially sensitive to perturbations
despite its unitary nature is under ongoing debate (Peres, 1984; Gorin et al., 2006; Jacquod
and Petitjean, 2009; Kitaev, 2014; Shenker and Stanford, 2014; Maldacena et al., 2016; Ho-
sur et al., 2016; Schmitt and Kehrein, 2016; Bohrdt et al., 2017; Scaffidi and Altman, 2017).
Chapter 4 of this thesis contributes to this discussion by exploring the behavior of quantum
many-body systems under imperfect effective time reversal, suggesting a definition of irre-
versibility based on the decay of observable echoes. For a more elaborate introduction to
irreversibility see Section 4.1.
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1.2.2 Transient dynamics: Spreading of information, the approach
to equilibrium, and dynamical phase transitions

In the previous section it was discussed how stationary states that are typically approached
at long times after the system was pushed out of equilibrium can be described with tools
from statistical physics. A priori the only principle that governs the dynamics leading to
the stationary state is the fundamental equation of motion, i.e., the Schrödinger equation
(1.3), which microscopically describes the interaction of the constituent degrees of freedom.
Nevertheless, the transient dynamics can exhibit characteristic features that are largely inde-
pendent of microscopic details and which can be understood in physical terms. This section
outlines a number of quite universal phenomena occurring in typical real time dynamics of
many-body systems.

Buildup of correlations and spreading of information

One remarkable property of quantum many-body systems is the presence of speed limits for
the propagation of information despite the clearly nonrelativistic nature of the Schrödinger
equation. In a seminal work Lieb and Robinson (Lieb and Robinson, 1972) demonstrated
that in a system with only finite-range interactions and a finite local Hilbert space the
information about a local perturbation propagates at a finite velocity, which is an intrinsic
feature of the system’s Hamiltonian. This speed limit led to the notion of an effective light
cone in the spatio-temporal plane in analogy to the light cone known from special relativity.
On a technical level Lieb and Robinson derived a bound showing that the operator norm of
the commutator of two local operators is exponentially small outside of the light cone. This
bound is nowadays known as the Lieb-Robinson bound, of which various generalizations and
extensions have been worked out; see, e.g., (B. Nachtergaele and Sims, 2010). The predicted
effective light cone has been observed in numerical simulations (Läuchli and Kollath, 2008;
Manmana et al., 2009) as well as in experiment (Cheneau et al., 2012). It is important to note
that the Lieb-Robinson bounds regard susceptibilities, which are related to commutators of
observables, as opposed to correlations, which correspond to anti-commutators. It has been
demonstrated that correlations also exhibit an effective light cone structure, but the decay
outside the light cone depends on the entanglement present in the initial state and can be
slower than exponential (Medvedyeva et al., 2013; Abeling et al., 2017).

The Lieb-Robinson velocity, i.e., the ratio of distance and time on the effective light cone,
appears as a mathematical parameter in the derivation of the Lieb-Robinson bound depend-
ing on the microscopic details of the system under consideration. It turned out that this
velocity can be understood physically in a very intuitive way based on a quasiparticle pic-
ture. For exactly solvable models, where the quasiparticle dispersion is known, Calabrese and
Cardy demonstrated that the Lieb-Robinson velocity is directly related to the maximal group
velocity of the quasiparticles (Calabrese and Cardy, 2006). The underlying physical picture is
sketched in Fig. 1.6. A quench that introduces an extensive amount of energy into the system
creates quasiparticle excitations at every point in the system. Among these, quasiparticles
originating in only minimally separated regions are entangled. After the quench the parti-
cles propagate ballistically at their respective group velocity. Being entangled quasiparticles
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Fig. 1.6: Illustration of the quasiparticle picture to explain the spreading of correlations and
information after a quench. Quasiparticles that are produced at t = 0 in close vicinity are entangled.
As time proceeds counterpropagating quasiparticles cause entanglement and correlations between
distant regions in space.

that propagate to different positions spread entanglement and induce correlations between
observables measured at these points. The maximal distance that can be bridged at a fixed
time after the quench is due to an entangled pair of quasiparticles propagating in opposite
directions with the maximal group velocity vmax, like the red particles depicted in Fig. 1.6.
This means, e.g., that equal time correlation functions at a given distance d do not show any
significant signal until time t = d/(2vmax).

The same picture gives a very conclusive explanation for the typical behavior of entan-
glement after a quench. The entanglement of any bipartition of a one-dimensional lattice
grows linearly after a quench before saturation with a volume law is reached (Calabrese and
Cardy, 2005). The reason is that the induced entanglement is proportional to the number of
quasiparticles that crossed the border between both subsystems. This picture pertains anal-
ogously in higher-dimensional systems (Lemonik and Mitra, 2016). Note that the volume law
saturation value of the entanglement entropy of a subsystem is essential for thermalization,
because it is formally the same as the thermal entropy of the respective subsystem, which
has to be extensive.

A prominent exception to the generic entanglement dynamics described above is the
many-body localized phase. Despite the absence of transport in these systems entanglement
growth is not completely inhibited. The exponential tails of the l-bits lead to a logarithmic
growth of the entanglement entropy with time, which is a characteristic of the MBL phase
(Bardarson et al., 2012; Serbyn et al., 2013).

In this thesis the quasiparticle picture will prove beneficial for the interpretation of dif-
ferent results presented in Chapter 4.

Prethermalization and hydrodynamic tails

In Section 1.2.1 it was discussed how conserved quantities shape the stationary state that is
approached by a closed system at long times. In addition, the presence of (almost) conserved
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quantities leads to universal features in the transient dynamics and the approach to the final
state.

It was first observed in models for early-universe dynamics that near-integrable systems
can exhibit a set of very different relaxation time scales, which lead to an emerging interme-
diate state that appears stationary in some observables, although thermal equilibrium has
not yet been reached (Berges et al., 2004). This phenomenon has been dubbed prethermal-
ization. Although the cosmological systems are nonintegrable, they can be understood as
near-integrable in the sense that the dynamics on the shortest timescale is nearly Gaussian
(Langen et al., 2016). This initial dynamics mainly leads to a rapid loss of phase informa-
tion, which can, e.g., be sufficient to bring the kinetic temperature in terms of the total
mean kinetic energy already close to its final equilibrium value. This dephasing time scale
determines the beginning of a prethermalization plateau. The redistribution of quasiparti-
cle occupation numbers towards detailed balance, instead, takes much longer. The onset of
efficient redistribution of quasiparticles marks the end of the prethermalization regime.

In condensed matter models prethermalization occurs in the dynamics of systems where
integrability is weakly broken. The first detailed analysis with this regard was conducted
by Moeckel and Kehrein, who studied quenches to a weakly interacting fermionic Hubbard
model in high dimensions (Moeckel and Kehrein, 2008, 2009, 2010). Within their analyti-
cal approach they could identify the initial dephasing timescale as well as the onset of the
long-time dynamics. They found that the prethermalization plateau confined by these two
timescales is characterized by an almost stationary quasiparticle distribution that resembles
the zero-temperature distribution of a Fermi liquid. The subtle difference to an equilibrium
distribution is a discrepancy in the quasiparticle residue, which ultimately leads to thermal-
ization via quasiparticle scattering described by a quantum Boltzmann equation (Stark and
Kollar, 2013; Bertini et al., 2015). The analytical predictions for the prethermal state were
confirmed numerically by (Eckstein et al., 2009). Subsequent studies refined the picture by
showing that observable expectation values on a prethermalization plateau are well described
by a GGE (Kollar et al., 2011) or a deformed GGE determined by almost conserved quantities
(Essler et al., 2014). Hence, prethermalization continuously connects the statistical theories
of the long time asymptotic states in integrable and generic systems.

Prethermalization has been observed experimentally in a cold atom setup (Gring et al.,
2012; Langen et al., 2013) in consistency with the theoretical framework discussed above.
However, a trapped ion experiment indicates that the picture might have to be extended
(Neyenhuis et al., 2016).

As mentioned above the relaxation dynamics towards local equilibrium is generally ex-
pected to be described by a quantum Boltzmann equation (Stark and Kollar, 2013; Bertini
et al., 2015; Biebl and Kehrein, 2017). This equilibration via scattering of quasiparticles
leads to exponential decay of observables towards equilibrium values. The buildup of global
equilibrium, however, is even in systems far from any integrable point characterized by the
presence of a few conserved quantities such as energy or particle number. These conservation
laws constrain the dynamics in that the corresponding densities can only spread diffusively,
which leads to an algebraic decay of observables at very late times that is most pronounced in
quantities significantly overlapping with some conserved quantity (Lux et al., 2014; Bohrdt
et al., 2017; Leviatan et al., 2017). This slow equilibration at late times is referred to as
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hydrodynamic long time tails. It implies that the time scale for global relaxation is given by
tgl ∝ L2/D, where L is the linear extent of the system and D the diffusion constant, although
the Lieb-Robinson bound allows for ballistic propagation of information.

Dynamical phase transitions

In studies of equilibrium properties of (quantum) many-body systems a focus is on abrupt
changes of system properties induced by varying an external parameter, which signal phase
transitions. Over the past century a powerful conceptional framework has been developed to
understand and classify phase transitions (Stanley, 1971; Fisher, 1974; Sachdev, 2011). Al-
though beyond the equilibrium paradigm, also the dynamics of quantum many-body systems
can undergo sudden changes as a function of external control parameters; but in addition,
most strikingly, nonanalyticities can occur as a function of time.

Due to the formal resemblance of the time

λ(t)

ttc
Fig. 1.7: Cartoon picture of a dynamical
quantum phase transition. The nonanalytic-
ity of the dynamical free energy density λ(t)
marks the critical time tc.

Fig. 1.8: Direct observation of a DQPT in
an experiment with trapped ions that simu-
late the dynamics of a long-ranged Ising spin
system in a transverse field. The extracted
rate function λ(t) shows pronounced kinks at
critical times. Reprinted figure with permission from
(Jurcevic et al., 2017) Copyright 2017 by the American
Physical Society. https://link.aps.org/doi/10.1103/

PhysRevLett.119.080501

evolution operator e−itĤ to the statistical oper-
ator e−βĤ with the inverse temperature β the
return amplitude of a time
evolved state, G(t) = 〈ψ0|e−iĤt|ψ0〉, can be inter-
preted as a boundary partition function (LeClair
et al., 1995) at imaginary temperature β = it.
Consequently, the notion of a dynamical free en-
ergy density λ(t) defined by |〈ψ0|e−iĤt|ψ0〉|2 =
e−Nλ(t) can be introduced, where N denotes the
system size. A defining feature of equilibrium
phase transitions is the nonanalytic behavior of
the free energy as function of a control param-
eter at the critical point. Remarkably, also the
dynamical free energy λ(t) can show nonanalyt-
icities as a function of time as was first observed
by (Pollmann et al., 2010). Yet, the analogy
to equilibrium phase transitions described above
was only pointed out by (Heyl et al., 2013), who
coined the term dynamical quantum phase tran-
sition (DQPT) for this phenomenon. As opposed
to equilibrium phase transitions DQPTs are not
driven by an external control parameter but by
progressing time. Fig. 1.7 shows the cartoon pic-
ture of a DQPT. The nonanalyticity of the dy-
namical free energy marks the critical time tc,
which typically constitutes a short time scale in
the dynamics.

Similar to a quantum phase transition that
only occurs at zero temperature and therefore
eludes direct experimental observation due to the third law of thermodynamics the physical
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significance of DQPTs is apriori all but obvious. The scope of this new concept is under
ongoing research and the current state of understanding will be outlined in more detail in
Section 2.1; see also (Heyl, 2017) for a recent review.

A common condition for the occurrence of DQPTs is a high energy density in the ini-
tial state, which is typically induced by quenching across an equilibrium phase transition.
Importantly, the term “phase transition” has been justified in theoretical works that demon-
strated stability against symmetry-preserving perturbations and universality (Karrasch and
Schuricht, 2013; Kriel et al., 2014; Heyl, 2015), and the possibility to identify a dynamical or-
der parameter (Budich and Heyl, 2016; Bhattacharya and Dutta, 2017). Experimental efforts
resulted in the recent observation of DQPTs in a trapped ion experiment (Jurcevic et al.,
2017) (see also Fig. 1.8) and in a cold atom setup (Fläschner et al., 2016), demonstrating
that DQPTs are not just a peculiar mathematical feature. This thesis comprises the study of
DQPTs in a two-dimensional model in Section 2.1.1, where a focus is laid on the distribution
of zeros of the partition function G(t) in the complex time plane.

Additionally, dynamical critical behavior was identified when studying steady states that
are reached in the course of the dynamics in systems with symmetry-broken or topological
phases. Clearly, the thermal state attained at late times in generic quantum systems can only
reflect the equilibrium phase diagram. Long-time asymptotic states in integrable systems,
which are described by a GGE, and prethermal states, instead, can exhibit critical effects
that are genuinely nonthermal critical effects. Such behavior was found in a fermionic con-
densate (Yuzbashyan et al., 2006), in fully connected models (Eckstein et al., 2009; Schiró
and Fabrizio, 2010; Sciolla and Biroli, 2010; Gambassi and Calabrese, 2011; Tsuji et al.,
2013), in a disordered spin chain (Vosk and Altman, 2014), in field theories (Sciolla and
Biroli, 2013; Chandran et al., 2013; Smacchia et al., 2015), and in topological insulators
(Wang and Kehrein, 2016; Wang et al., 2016; Schmitt and Wang, 2017). General relations
to the corresponding equilibrium phase transitions and distinguishing characteristics of the
nonequilibrium transitions are to date opaque. On the one hand new nonthermal phases can
appear in the dynamical phase diagram (Tsuji et al., 2013). On the other hand the nonequi-
librium transition and the equilibrium transition can have closely related scaling exponents,
differing only subtly in the statistics of excitations (Chandran et al., 2013; Smacchia et al.,
2015).

Section 2.2 of this thesis treats steady state transitions in Chern insulators, showing that
nonanalytic behavior occurs in the Hall conductance whenever the system is quenched across
an equilibrium phase boundary. The character of the nonanalyticity is solely determined by
the typical conic gap closing points and thereby independent of microscopic details of the
system.

In two recent works intimate relations between the occurrence of DQPTs and steady
state transitions were revealed in long range spin systems and topological insulators (Žunkovič
et al., 2016; Wang and Xianlong, 2017). A common aspect of both works is that the timescale
set by the occurrence of a DQPT diverges as the phase boundary of the steady state transition
is approached. Diverging timescales have also been reported in other studies (Schiró and
Fabrizio, 2010; Sciolla and Biroli, 2013), indicating that similar connections might play a role
in a broader context.
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1.3 Entanglement: Boon and bane of quantum many-

body theory

A key feature that fundamentally discriminates between quantum and classical theories and
essentially enriches the quantum world is the possibility of entangled states in composite
quantum systems. The presence of entanglement underlies most counterintuitive phenomena
in quantum theory, like the famous Einstein-Podolsky-Rosen (EPR) paradox (Einstein et al.,
1935), from which EPR concluded that a “spooky action at a distance” was at work, indi-
cating that quantum theory was incomplete. The suggested way out by introducing classical
hidden variables to the theory was ruled out by experimental tests that proved violation of
the Bell inequalities (Bell, 1964; Hensen et al., 2015). Instead, entanglement is now under-
stood to be a key phenomenon in composite quantum systems and, moreover, the essential
resource for quantum computing (Nielsen and Chuang, 2010; Preskill, 2016). The intention
of this section is to give a basic intuition for the properties of entangled states and to outline
the strategies applied by different theoretical methods for dealing with complex many-body
states.

1.3.1 Entanglement and the complexity of many-body states

Entanglement occurs in composite quantum systems. Consider two quantum systems A and
B, of which the states are elements of Hilbert spaces HA and HB. According to the principles
of quantum mechanics the state-space for the description of the combined system, including,
e.g., interactions between both subsystems, is the tensor product HAB = HA⊗HB. Given a
basis of subsystem A, {|i〉A}i=1...DA , and a basis of subsystem B, {|i〉B}i=1...DB , the basis of
the composite Hilbert space is given by

{|i〉A ⊗ |j〉B}i=1...DA;j=1...DB . (1.4)

Here DA and DB denote the dimensions of HA and HB, respectively. The dimension of the
total Hilbert space HA ⊗HB is the product of both.

The simplest possible composite quantum system consists of two spin-1/2 degrees of
freedom. Generally, the state of an individual spin can be expanded in the σ̂z eigenbasis
yielding the form |ψ〉 = a |↑〉 + b |↓〉. An important property of a single spin state is the
fact that it can always be characterized by a corresponding polarization, i.e., there is always
a direction ~n in three-dimensional space such that 〈ψ|~n · ~σ|ψ〉 = 1. The same holds for a
product state composed of two individually prepared spins,

|Ψ〉AB = |ψ〉A ⊗ |φ〉B =
(
aA |↑〉A + bA |↓〉A

)
⊗
(
aB |↑〉B + bB |↓〉B

)
. (1.5)

Also in this composed state the measurement outcome of the spin polarization in subsystem
A along one specific axis is determined to be +1. The whole many-particle Hilbert space is,
however, much larger than the subset of product states. One example for a state that cannot
be written as a single product of one state in subspace A and one state in subspace B is the
singlet state

|S〉 =
1√
2

(
|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B

)
. (1.6)
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Remarkably, in this state the expectation value of the spin polarization in subsystem A is

〈S|~n · ~σA|S〉 = 0 (1.7)

for all orientations ~n. This means that although according to the principles of quantum
mechanics the state of the whole system is fully determined by the state vector |S〉 the
outcome of a polarization measurement on a subsystem is maximally uncertain. The reason
is that |S〉 is an entangled state. Another difference between entangled states and product
states is that in a product state the correlation

C
(
ÔA, ÔB

)
= 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉 (1.8)

vanishes for any choice of observables ÔA and ÔB in the different subsystems. In entangled
states, instead, there can be correlations, the origin of which being genuinely quantal.

The entanglement of a pure state |ψ〉 is commonly quantified using the von Neumann
entropy of entanglement, that is for bipartitions of the system defined as

SA(|ψ〉) = −tr
[
ρ̂
|ψ〉
A log2 ρ̂

|ψ〉
A

]
, (1.9)

where ρ̂
|ψ〉
A = trB

[
|ψ〉〈ψ|

]
is the reduced density matrix of subsystem A. For any bipartition

into subsystems A and B it holds that SA = SB. The entanglement entropy vanishes for
product states, whereas maximally entangled states like the singlet state |S〉 have maximal
entanglement entropy. Hence, the entanglement entropy is a key quantity to characterize a
many-body wave function.

1.3.2 Methods for many-body theory

Any theoretical approach aiming to address genuine quantum effects in many-body systems
has to handle entangled many-body states. This is a hard problem as one can imagine con-
sidering just the astronomic dimensions that arise already at moderate system sizes when
constructing the many-body Hilbert space as prescribed by Eq. (1.4). The dimension in-
creases exponentially as the number of degrees of freedom is increased, yielding, e.g., D = 2N

for a system of N spin-1/2. For a numerical method this means that a full uncompressed
encoding of the wave function requires to store an exponentially large number of coefficients
in memory. The approach to construct a complete representation of the basis of the many-
body Hilbert space and a corresponding matrix representation of the Hamiltonian is called
exact diagonalization (ED); see for example (Sandvik, 2010). By diagonalizing the Hamilto-
nian matrix the exact eigenenergies and eigenstates are obtained, which allows to compute
all system properties in and out of equilibrium. Symmetries can be exploited to restrict the
problem to symmetry sectors of interest, but the largest feasible system sizes are no more
than N ≈ 40 spin-1/2 degrees of freedom; a recent record is the study of the low energy
part of the spectrum of a spin-1/2 system with N = 48 lattice sites employing cutting-edge
techniques to exploit the power of a modern supercomputer (Läuchli et al., 2016). In order
to address larger system sizes compressed representations of the wave function are required
or further approximations have to employed.
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A distinct feature of ground states of gapped systems is the fact that they obey an area
law of entanglement, i.e., the entanglement entropy of a subsystem is proportional to the
surface of the system (Eisert et al., 2010). This means that ground states in low dimensional
systems are only weakly entangled, which is exploited in the Density Matrix Renormalization
Group (DMRG) (White, 1992; Schollwöck, 2005; Schollwöck, 2011) and related algorithms
based on matrix product states (MPS). The MPS ansatz allows an efficient representation
of compressed many-body states, where the degree of entanglement that is retained in the
MPS guides the compression. This allows to restrict ground state searches in low-dimensional
systems to a small part of the total Hilbert space. When the initial state is a ground state
obeying the area law the time evolution will continuously build up entanglement meaning
that the time-evolved state will remain moderately entangled for some time. The evolution
of the wave function of one-dimensional systems up to intermediate times can therefore
be computed with MPS algorithms; however, the linear growth of entanglement with time
(cf. Section 1.2.2) still means an exponential increase of the complexity of the MPS, which
eventually renders further evolution unfeasible.

In the case of high dimensions, Dynamical Mean Field Theory (DMFT), which becomes
exact in the limit of infinite connectivity, is a powerful nonperturbative method to study
correlated systems in the thermodynamic limit (Metzner and Vollhardt, 1989; Georges et al.,
1996; Vollhardt, 2012). In DMFT the lattice system is self-consistently mapped to a model
of a single impurity coupled to a noninteracting bath. This dual problem can be solved
efficiently by other methods (see below). In the self-consistency loop usually spatial fluc-
tuations are discarded, which is justified in high dimensions. Therefore, extensions of the
scheme have to be employed to study systems without translational invariance or with an-
tiferromagnetic order (Maier et al., 2005). A nonequilibrium extension of DMFT allows to
study also nonequilibrium dynamics of high-dimensional systems (Freericks et al., 2006; Aoki
et al., 2014).

The impurity problem occurring in DMFT is an interesting setting at its own right,
comprising, e.g., the Kondo effect and transport through quantum dots. A generic and
numerically exact solver for this problem is Quantum Monte Carlo (QMC), which relies on
the efficient sampling of the important terms in the series expansion of the partition function,
thereby yielding the Green’s functions of interest (Gull et al., 2011). A serious obstacle when
computing real time dynamics of fermionic systems in this approach is the dynamical sign
problem, which restricts real-time QMC to short times; however, recently substantial progress
has been reported in this respect (Cohen et al., 2015). Another method to solve the impurity
problem in equilibrium is the Numerical Renormalization Group (NRG) (Wilson, 1975).
An extension, the time-dependent NRG, can be used to simulate nonequilbrium situations
(Anders and Schiller, 2005).

An alternative approach, which is in principle independent of the dimensionality of the
system of interest, is based on the encoding of the many-body wave function in networks
of classical degrees of freedom. Artificial neural networks constitute a very general class of
such networks (Carleo and Troyer, 2017) and first studies indicate that they are capable
of capturing entanglement with high efficiency (Deng et al., 2016, 2017; Huang and Moore,
2017; Gao and Duan, 2017; Kaubruegger et al., 2017). Therefore, these classical network
wave functions are a candidate to bridge the gap between methods suited for low and high
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dimensions. In Chapter 3 of this thesis a new method is developed that allows to construct
such networks perturbatively.

Besides these approaches, which are mainly based on numerics, there exist various ana-
lytical techniques that can be applied to gain insights into the dynamics of systems suited for
the respective method. By means of a Jordan-Wigner-transform a class of one-dimensional
spin Hamiltonians can be mapped to equivalent noninteracting fermions, allowing to derive
analytical expressions for all quantities of interest (Lieb et al., 1961; Pfeuty, 1970); see also
Section 4.2. The Kitaev honeycomb model studied in Section 2.1.1 of this thesis is an ex-
ceptional case, where a Jordan-Wigner-transform yields an exact solution for a spin system
in two dimensions. Another class of exactly solvable models can be treated by Bethe ansatz
techniques (Bethe, 1931; Korepin et al., 1993; Doikou et al., 2010). This applies for example
to the anisotropic spin-1/2 Heisenberg chain (XXZ model) and the Lieb-Liniger model of a
one-dimensional bosonic gas with delta interactions, which describes the quantum Newton’s
cradle discussed in Section 1.1 (van den Berg et al., 2016). Both types of models, those
treatable with Bethe ansatz and the ones that can be mapped to free fermions, belong to the
class of integrable systems introduced in Section 1.2.1.

Moreover, for critical systems analytical insights can be gained by studying the corre-
sponding conformal field theory that emerges in the continuum limit (Calabrese and Cardy,
2004, 2006) and bosonization allows to study properties of fermions in one dimension with a
linear dispersion at the Fermi level (von Delft and Schoeller, 1998; Cazalilla, 2006; Abeling
et al., 2017). The dynamics of generic model Hamiltonians can be treated by unitary pertur-
bation theory, which is a generalization of canonical perturbation theory known from classical
mechanics (Hackl and Kehrein, 2008, 2009). It is based on the flow equation method that
can be interpreted as a renormalization group scheme that successively reduces an energy-
transfer cutoff imposed on off-diagonal elements of the Hamiltonian instead of an ultraviolet
energy cutoff known from equilibrium renormalization group approaches (Kehrein, 2006).

Finally, for systems in the semiclassical limit it is useful to study the dynamics in a phase
space approach (Polkovnikov, 2010). For this purpose the Truncated Wigner Approximation
constitutes an established method to treat systems with large spins or high densities of
bosons. A recent extension allows to treat also fermionic systems (Davidson et al., 2017),
which will be applied in a study of echo dynamics in Section 4.6 of this thesis.

1.4 Scope and main results of this thesis

This thesis deals with different aspects of the dynamics of closed quantum many-body sys-
tems far from equilibrium. These aspects can be divided into three categories, namely phase
transitions beyond equilibrium, the development of a method to represent time-evolved quan-
tum states as classical networks, and the question how to understand irreversibility in the
context of quantum many-body systems. Accordingly, the main body of the thesis is di-
vided into three chapters (Chapters 2-4), each covering one of the aspects. In the following
paragraphs the treated issues are briefly motivated and the main results are summarized.
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Phase transitions beyond equilibrium

Chapter 2 treats both types of dynamical critical behavior introduced in Section 1.2.2. The
first part addresses the question whether DQPTs, which were in the original work identified
in a one-dimensional system (Heyl et al., 2013), occur also in two dimensions and what are the
characteristics of the corresponding nonanalyticities. In order to answer these questions the
dynamics of the Kitaev model on a honeycomb lattice is studied. This spin system, although
two-dimensional, is exactly solvable and therefore suited to yield analytical insights. The
study lays a focus on the distribution of Fisher zeros in the complex time plane, which form
areas as opposed to lines that occur in one-dimensional systems. These zeros indeed cover
the real time axis indicating critical times and it is pointed out how the character of the
nonanalyticity can be derived using an analogy to classical electrodynamics.

The second part of this chapter deals with dynamical transitions occurring in the nonequi-
librium steady state of Chern insulators after a quench. Since the Chern number that char-
acterizes the topological phases of the system is a ground state property it is apriori unclear
whether and how the topological nature of the system is reflected in the time-evolved state.
In equilibrium the Hall conductance is at low temperatures in direct correspondence to the
topological invariant. In this thesis (Section 2.2.1) the Hall conductance is studied in the
asymptotic steady state after a quench, showing that the system undergoes a topologically
driven nonequilibrium phase transition whenever the Hamiltonian parameters are quenched
across an equilibrium phase boundary. Since far from equilibrium, the Hall conductance after
a quench is, however, not quantized and the phase transition is indicated by a continuous
nonanalyticity as a function of the quench parameters, which is universal for systems with
conic gap closing points. In Section 2.2.2 the analysis is generalized to Floquet topological
insulators, which are candidate systems for the experimental observation of the predicted
behavior.

Quantum dynamics from classical networks

As discussed in Section 1.3 the efficient encoding of the many-body wave function is a key
challenge of quantum many-body theory. Chapter 3 comprises a discussion of the strengths
and shortcomings of methods that are applied later in Chapter 4 before introducing the idea
to use classical networks for the compressed representation of quantum states. This approach
has been applied successfully in various contexts (Carleo et al., 2012, 2014; Cevolani et al.,
2015; Blaß and Rieger, 2016; Hafner et al., 2016). Usually, the chosen network structure is
motivated by heuristic considerations and justified a posteriori. In this thesis a new method
is introduced to analytically construct classical networks for the description of the quan-
tum dynamics in many-body systems in a controlled way. The perturbative construction
encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with
local couplings, such that observable expectation values take the form of thermal averages,
which can be sampled efficiently using Monte Carlo algorithms. With this construction the
transient dynamics of the transverse-field Ising model in one, two, and three dimensions is
studied including local observables, entanglement production, and Loschmidt amplitudes.
The derived networks can be mapped to equivalent artificial neural network wave functions
as introduced by (Carleo and Troyer, 2017). Thereby a constructive prescription is provided
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to design networks suited for numerical time evolution using a time-dependent variational
principle (Dirac, 1930; Jackiw and Kerman, 1979; Haegeman et al., 2011; Carleo et al., 2012).

Irreversibility

While it is understood that classical dynamics is irreversible if it is chaotic, there is to
date no commonly accepted explanation of the origin of irreversibility in quantum systems
and what “irreversible” actually means in this context. The question of irreversibility is,
however, inseparably connected to thermalization, because a genuine thermal state contains
no information about initial conditions.

In Chapter 4 the dynamics of observable echoes occurring under imperfect effective time
reversal is studied. It is found that in generic quantum many-body systems the echoes decay
exponentially as the waiting time is increased. The rate of this decay is largely independent
of the magnitude of the imperfection meaning that any effort to improve the precision of the
time reversal procedure is ultimately futile. This implies that the dynamics is irreversible
for all practical purposes. By contrast, a study of a spin system with quadratic Hamiltonian
reveals algebraically decaying echoes and even the possibility of an ever persisting echo for a
specific time reversal protocol. Hence, the recovery of the initial state by time reversal can
be affordable in the absence of interactions.

The considered echo protocol can be related to the recent discussion of out-of-time-order
correlators, which were suggested to probe the butterfly effect and loss of local information
in quantum systems, because the prescription for imperfect effective time reversal effectively
amounts to measuring an out-of-time-order double commutator. This connection is addressed
in Sections 4.5 and 4.6. Section 4.5 comprises a numerical study of out-of-time-order cor-
relators and double commutators as possible indicators of scrambling. In Section 4.6 echo
dynamics are analyzed in a semiclassical approach, indicating that said double commutators
are responsible for an exponential divergence from perfect echoes, which can be associated
with a Lyapunov exponent. In combination, the results indicate that the out-of-time-order
double commutators, motivated by echo dynamics, might constitute an alternative probe of
the quantum butterfly effect.
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Chapter 2

Phase transitions beyond equilibrium

The sudden change of system properties as a control parameter is smoothly varied is a
primary topic of interest in the study of many-body systems in thermal equilibrium. The
theory of phase transitions, which has been developed over the past century, provides a sound
conceptual framework for the understanding of these phenomena (Stanley, 1971; Fisher, 1974;
Sachdev, 2011). The nonequilibrium dynamics of quantum many-body systems can similarly
exhibit sudden changes. However, there is to date no unified framework covering the different
nonequilibrium critical phenomena that have been identified in recent years.

In the first part of this chapter (Section 2.1) dynamical quantum phase transitions
(DQPTs) are studied, where in analogy to equilibrium phase transitions time occurs as
the control parameter that drives the transition indicated by nonanalyticites in the real time
dynamics. The second part of this chapter (Section 2.2) deals with phase transitions in
nonequilibrium steady states reached after a quench as a function of an external control pa-
rameter. Note that recent works suggest that both types of transitions are closely related
(Žunkovič et al., 2016; Wang and Xianlong, 2017).

2.1 Dynamical quantum phase transitions

The equilibrium properties of a system with Hamiltonian Ĥ are determined by the corre-
sponding canonical partition function

Z(β) = tr
(
e−βĤ

)
, (2.1)

where β denotes the inverse temperature. All thermodynamic properties of the system can
be inferred from the partition function, which is related to the free energy F by

F = − 1

β
lnZ . (2.2)

Equilibrium phase transitions occur when the free energy is nonanalytic as function of some
control parameter, e.g. the temperature or an external magnetic field. The nonanalyticity of
the free energy implies nonanalytic behavior of the corresponding susceptibilities, which are
observed in experiment.
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The key quantity for DQPTs is the Loschmidt amplitude (Heyl et al., 2013)

G(t) = 〈ψ0|e−iĤt|ψ0〉 , (2.3)

which is the overlap of a time-evolved state |ψ(t)〉 = e−iĤt|ψ0〉 with the initial state |ψ0〉.
The initial state is usually chosen to be the ground state of an initial Hamiltonian Ĥ0. The
corresponding return probability

L(t) = |〈ψ0|e−iĤt|ψ0〉|2 (2.4)

is called Loschmidt echo. Note that this object received its name in the context of irreversibil-
ity (Peres, 1984) as will be further elaborated in Section 4.1.

As the system size N becomes large the Loschmidt amplitude typically assumes large
deviation form (Gambassi and Silva, 2012; Heyl et al., 2013)

G(t) ∼ e−Ng(t) , (2.5)

which defines the rate function

g(t) = − lim
N→∞

1

N
ln
(
G(t)

)
. (2.6)

Analogously, for the Loschmidt echo

λ(t) = − lim
N→∞

1

N
ln
(
L(t)

)
= 2Re[g(t)] . (2.7)

If the initial Hamiltonian Ĥ0 has degenerate ground states |ψ(n)
0 〉 it is useful to define a

generalized Loschmidt echo as the probability to return to the ground state manifold

P (t) =
∑

n

|〈ψ(n)
0 |ψ(t)〉|2 . (2.8)

Formally, the Loschmidt amplitude resembles a boundary partition function (LeClair
et al., 1995)

Z(z) = 〈ψ0|e−zĤ |ψ0〉 (2.9)

in the complex plane z ∈ C. For equilibrium partition functions it is understood that the
free energy, Eq. (2.2), can become nonanalytic in the thermodynamic limit although Z(β) is
a sum of analytic functions, because in the thermodynamic limit Fisher zeros in the complex
temperature plane coalesce to lines crossing the real temperature axis (Fisher, 1965; Yang and
Lee, 1952). Analogously, zeros in the complex time plane can lead to nonanalyticities in the
Loschmidt amplitude as will be detailed in Section 2.1.1. In this case the rate function λ(t) can
become nonanalytic if zeros in the complex time plane cover the real time axis. Accordingly,
λ(t) is sometimes also called dynamical free energy density. Nonanalytic behavior of λ(t)
was first reported by (Pollmann et al., 2010), but the interpretation as a dynamical critical
phenomenon was only worked out by (Heyl et al., 2013), who studied the dynamics after a
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quench in the transverse-field Ising model. Heyl et al. define a DQPT as the occurrence of a
nonanalyticity in the rate function of the Loschmidt echo as a function of time. In the case
of the transverse-field Ising model DQPTs occur as kinks of λ(t) at the critical time tc, which
can be directly related to zeros of the Loschmidt echo in the complex time plane crossing the
real time axis.

Clearly, overlaps like the Loschmidt amplitude (2.3) are hard to measure in experiments.
Nevertheless, the direct observation of a DQPT has been reported recently (Jurcevic et al.,
2017). The experiment was performed on trapped ions, which effectively realize a transverse-
field Ising Hamiltonian with long-range interactions. In that case the generalized Loschmidt
echo defined in Eq. (2.8) was considered, based on which further theoretical input and the
possibility to measure both contributing overlaps independently allowed to conclude the
behavior in the thermodynamic limit from measurements on finite systems. In the experiment
the system was prepared in a polarized ground state of the ferromagnetic phase before the
magnetic field was quenched across the phase transition. Fig. 2.1(a) shows the result for
the rate function of the generalized Loschmidt echo obtained from the measurements in
comparison with numerical results. The experimental data clearly reflect the nonanalytic
behavior of the rate function in the form of a kink at the critical time; see also Fig. 1.8.

Since the definition of DQPTs regards just

Fig. 2.1: Experimental observation of a
DQPT. (a) The DQPT is identified by kinks
in the rate function λ(t) at the critical time.
(b) The measured longitudinal magnetiza-
tion has roots at the critical times. (c)
The energy-time resolved magnetization in-
dicates how the critical point at ε = 0 con-
trols the magnetization dynamics at higher
energy densitites. Reprinted figure with permis-
sion from (Jurcevic et al., 2017) Copyright 2017 by the
American Physical Society. https://link.aps.org/doi/

10.1103/PhysRevLett.119.080501

the overlap of the time-evolved state with the
initial state it is apriori not clear how this can
affect the dynamics of experimentally accessible
observables. This is similar to quantum phase
transitions, which occur at zero temperature and
therefore elude direct observation in experiment.
However, the effects of both types of transitions
beyond initial state overlaps or pure ground
states, respectively, can be understood in a simi-
lar way. For quantum phase transitions driven by
a control parameter κ it is known that the quan-
tum critical point at temperature T = 0 affects
the system at temperatures T > 0 in the form of
a quantum critical region in the T − κ diagram
that extends to nonzero temperatures above the
critical point as depicted in Fig. 2.2(a). An anal-
ogous picture is obtained for DQPTs when con-
sidering time t as control parameter and energy
density ε with respect to the initial Hamiltonian
Ĥ0 instead of temperature (Heyl, 2014, 2017; Ju-
rcevic et al., 2017), cf. Fig. 2.2(b). In the cor-
responding diagram the DQPT occurs as a non-
analyticity at ε = 0, but its influence extends to
higher energy densities in the form of a critical
region, which can be traversed in the dynamics. This relation can be probed explicitly in
systems with symmetry breaking like in the trapped ion experiment described above, if the
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Fig. 2.2: Analogy between quantum phase transitions and DQPTs as conceived in (Heyl, 2014;
Jurcevic et al., 2017). (a) The quantum critical point at T = 0 affects the system properties at
T > 0 in the form of a quantum critical region and two crossover lines. (b) A DQPT occurs
as nonanalyticity as function of time at vanishing energy density ε (measured with the initial
Hamiltonian). Dynamics of observables after a quench have their dominant contribution at ε > 0
(indicated by the white line), but there can still be a “critical region” controlled by the critical
point.

order parameter commutes with the initial Hamiltonian, [M̂, Ĥ0] = 0. In that case the
energy-resolved order parameter M(ε, t) can be obtained (Heyl, 2014), which is plotted in
Fig. 2.1(c) together with the mean energy density ε(t) = 〈ψ(t)|Ĥ0|ψ(t)〉/N indicating how
the system traverses the energy-time plane after the quench. At ε = 0 the order parame-
ter exhibits a jump at the critical time. At nonzero energy the time evolution of the order
parameter is smooth, but the DQPT still affects the dynamics in the form of roots of the
observable at the critical times as shown in Fig. 2.1(b).

DQPTs typically occur when a system is initially prepared in one equilibrium phase and
the dynamics is induced by quenching a system parameter across a critical point in the
equilibrium phase diagram. There are, however, counterexamples, where either quenching
across a phase transition does not lead to DQPTs or DQPTs occur after quenches within one
phase (Canovi et al., 2014; Andraschko and Sirker, 2014; Vajna and Dóra, 2015; Schmitt and
Kehrein, 2015). Generally, a criterion for the occurrence of DQPTs is that a sufficiently high
energy density is added to the system by the quench, such that the initial state is clearly
nonthermal; this is usually the case when a system is quenched across an equilibrium critical
point. In noninteracting systems the inversion of quasiparticle momentum occupation leads
to DQPTs (Heyl et al., 2013; Schmitt and Kehrein, 2015).

A particularly strong connection between DQPTs and the equilibrium phase diagram
exists in noninteracting topological systems. For this class of systems it was proven that
in one dimension any quench across the underlying topological phase boundary necessarily
induces DQPTs in the subsequent dynamics, whereas in two dimensions DQPTs occur if the
corresponding ground state Chern numbers differ in their absolute value (Vajna and Dóra,
2015; Huang and Balatsky, 2016). In topological systems it is moreover possible to identify
dynamical order parameters, which distinguish between different dynamical phases (Budich
and Heyl, 2016; Bhattacharya and Dutta, 2017; Fläschner et al., 2016). One such dynamical
order parameter was measured in a recent experiment (Fläschner et al., 2016). Due to the
strict relation to DQPTs it is therefore possible to infer information about the ground state
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phase diagram from the observed dynamics far from equilibrium.
The following section comprises a study of DQPTs in the Kitaev model on a honey-

comb lattice. With regard to DQPTs it is interesting for various aspects. Firstly, it is a
two-dimensional spin system, which is nevertheless exactly solvable by Jordan-Wigner trans-
formation. Therefore it is suited to investigate analytically whether DQPTs occur at all also
in higher dimensions and how the characteristics change. It turns out that the higher di-
mensionality affects the structure of the Fisher zeros in the complex time plane in that they
form areas instead of lines, which changes the character of the nonanalyticity. Moreover,
the Kitaev model has a rich phase diagram including gapless and topological phases, which
allows to study the relation of DQPTs to the underlying equilibrium phase diagram.

Note that the presentation of DQPTs above is clearly not exhaustive, although the most
relevant conceptual aspects were outlined. The reader is referred to two recent reviews,
which give a more detailed account of the current state of understanding of this phenomenon
(Zvyagin, 2016; Heyl, 2017).
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2.1.1 Publication: Dynamical quantum phase transitions in the
Kitaev honeycomb model

Reprinted article with permission from

Markus Schmitt and Stefan Kehrein

Physical Review B 92, 075114 (2015)

https://doi.org/10.1103/PhysRevB.92.075114

Copyright (2015) by the American Physical Society.

Author contributions M. S. did the analytic and numerical calculations and wrote the
article. S. K. suggested to study DQPTs in this model and revised the manuscript. Both
authors discussed the results.
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The notion of a dynamical quantum phase transition (DQPT) was recently introduced [Heyl et al.,
Phys. Rev. Lett. 110, 135704 (2013)] as the nonanalytic behavior of the Loschmidt echo at critical times in
the thermodynamic limit. In this work the quench dynamics in the ground state sector of the two-dimensional
Kitaev honeycomb model is studied regarding the occurrence of DQPTs. For general two-dimensional systems
of BCS type it is demonstrated how the zeros of the Loschmidt echo coalesce to areas in the thermodynamic
limit, implying that DQPTs occur as discontinuities in the second derivative. In the Kitaev honeycomb model
DQPTs appear after quenches across a phase boundary or within the massless phase. In the 1d limit of the Kitaev
honeycomb model it becomes clear that the discontinuity in the higher derivative is intimately related to the
higher dimensionality of the nondegenerate model. Moreover, there is a strong connection between the stationary
value of the rate function of the Loschmidt echo after long times and the occurrence of DQPTs in this model.

DOI: 10.1103/PhysRevB.92.075114 PACS number(s): 64.70.Tg, 05.70.Ln, 05.30.Rt

I. INTRODUCTION

Recent advances in experimental techniques allow us to
realize closed quantum systems with cold atomic gases in
optical traps [1,2]. These setups are precisely controllable and
the unitary time evolution of the systems can be resolved
such that the dynamics is experimentally accessible under
well-known conditions. Motivated by the new experimental
possibilities a lot of theoretical research on the nonequilibrium
dynamics of quantum systems has been conducted in the past
years. In these theoretical investigations a common protocol
for driving a system out of equilibrium is called quantum
quench. Considering a parametrized Hamiltonian H (α), where
the parameter typically corresponds to some external field
strength in the experimental setup, the system is initially
assumed to be in equilibrium with regard to some value αi

of the parameter. Then, the parameter is suddenly quenched to
a different final value αf driving the system out of equilibrium
and inducing a nontrivial time evolution.

Studying the quench dynamics of a quantum many-body
system, Heyl et al. [3] pointed out the close formal similarity
of the canonical partition function of an equilibrium system,
Z(β) = tr(e−βH ), and the return amplitude

G(t) = 〈ψi |e−iH t |ψi〉 (1)

of a time-evolved state, suggesting the possibility of critical
behavior in the time evolution in analogy to equilibrium phase
transitions. It is known that in the thermodynamic limit the
zeros of a partition function coalesce to lines in the complex
temperature plane and the equilibrium phase transition is
marked by the intersection of the zero line with the real
temperature axis [4]. Heyl et al. found that in the case of the
transverse field Ising model the boundary partition function

Z(z) = 〈ψi |e−zH |ψi〉 (2)

has zeros in the complex time plane, which accordingly
coalesce to lines in the thermodynamic limit. These lines cross
the real time axis after quenching the external field across the

*markus.schmitt@theorie.physik.uni-goettingen.de

quantum critical point inducing nonanalyticities in the rate
function of the Loschmidt echo

r(t) = − lim
N→∞

1

N
ln|〈ψi |e−iH t |ψi〉|2

= − lim
N→∞

1

N
ln L(t) (3)

at equidistant critical times t∗n . Heyl et al. denote this
nonanalytic behavior at critical times in the thermodynamic
limit as a dynamical quantum phase transition (DQPT). They
showed that in experiment the DQPT would be observable by
measuring the work distribution function of a double quench;
in particular, the Loschmidt echo L(t) = |〈ψi |e−iH t |ψi〉|2 is
the probability of performing no work.

These findings triggered further work aiming at a better un-
derstanding of the phenomenon. By considering an additional
integrability-breaking interaction in the transverse field Ising
chain it was demonstrated that DQPTs are not a peculiarity
specific to integrable models, but are stable against some
nonintegrable perturbations [5,6]. Moreover, the signature of
DQPTs was found in higher-dimensional systems, namely,
in two-dimensional topological insulators [7] and effectively
infinite dimensions using DMFT [8]. It was observed in various
cases that DQPTs are not necessarily connected to quenching
across a quantum critical point [8–11]; however, there seems to
be a strong connection to topological phase transitions [7,12].
Canovi et al. [8] detected coexisting solutions for so called
generalized expectation values in postquench dynamics and,
therefore, they introduced the notion of a first-order dynamical
phase transition. This could be a way to classify dynamical
phase transitions. Furthermore, zeros in the oscillations of
the Schmidt gap were related to DQPTs [13] and a close
connection between the analytic behavior of r(t) in the
complex plane and its long time limit is conjectured [14].

In this work we study quench dynamics in the Kitaev hon-
eycomb model [15] regarding dynamical quantum phase tran-
sitions. The model features a rich phase diagram comprising an
extended gapless phase, anyonic excitations, and topological
order. Moreover, it is a rare example of a Jordan-Wigner-
solvable model in two dimensions [16,17]. As such it has been
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studied extensively under various aspects. In this paper we re-
strict the discussion to the dynamics in the ground state sector.

The dynamics of gapped two-dimensional two-band sys-
tems was already studied by Vajna and Dóra with focus on
a connection between DQPTs and topological phases [7]. In
the presence of a magnetic field the Kitaev model acquires
topological order and becomes a system of the same family,
albeit being a spin model. In that case we find the behavior
in accordance with their results; namely, DQPTs occur after
quenches across the boundary between phases with different
Chern number. However, the focus of this work lies on quench-
ing between the topologically trivial phases in the absence of
a magnetic field. Similarly to their results we find DQPTs as
discontinuities in the second derivative, which is inherent to
the higher dimensionality of the system, and we elaborate on
the relevance of the complex zeros of the dynamical partition
function in this context. Moreover, we discuss a remarkable
observation regarding the long time behavior of the Loschmidt
echo. If no DQPTs occur in the postquench dynamics, then,
although the approached stationary state is always an excited
state, the long time limit of the Loschmidt echo is given by
the fidelity, i.e., the overlap of the initial state with the ground
state of the quenched Hamiltonian. This, however, does not
hold if the dynamics exhibits DQPTs.

The rest of this paper is organized as follows: In Sec. II the
way of solving the model using Jordan-Wigner transformation
is sketched and the phase diagram is introduced. Furthermore,
the expressions for the dynamical free energy are derived. In
Sec. III the zeros of the dynamical partition function in the
complex time plane are treated assuming a general BCS-type
Hamiltonian, yielding the criteria for the occurrence of DQPTs
and the order of the corresponding nonanalyticity. Finally, the
zeros of the partition function and the real time evolution are
studied explicitly for the Kitaev model in Sec. IV, and two
interesting limits are taken into account as well as ramping as
an alternative protocol and the quenching with an additional
magnetic field.

II. THE KITAEV HONEYCOMB MODEL

A. The model

The Kitaev honeycomb model is defined by the Hamiltonian

H ( �J ) = −
∑

α∈{x,y,z}

∑
α-links

Jασα
j σ α

k , (4)

which describes a spin-1/2 system with the spins located on the
vertices (labeled by j,k) of a honeycomb lattice as depicted in
Fig. 1 [15]. In this paper we assume the lattice spacing to equal
unity. It has been shown [17] that for the above Hamiltonian
one can find a Jordan-Wigner contour, which after identifying
a conserved Z2 operator [18] and switching to momentum
space yields a BCS-type Hamiltonian

H ( �J ) =
∑

�k

[
ε�k( �J )

2
(d†

�kd�k − d−�kd
†
−�k)

+ ��k( �J )

2
(d†

�kd
†
−�k + d−�kd�k)

]
(5)

FIG. 1. Lattice of the Kitaev honeycomb model given by Eq.
(4). Spin-1/2 degrees of freedom are sitting on the vertices of a
honeycomb lattice. The nearest neighbor interaction depends on the
link type (x,y, or z).

with

ε�k( �J ) = 2[Jz + Jx cos(kx) + Jy cos(ky)],
(6)

��k( �J ) = 2[Jx sin(kx) + Jy sin(ky)].

This Hamiltonian can be diagonalized by a Bogoliubov
transformation⎛

⎝ a
�J
�k

a
�J †
−�k

⎞
⎠ =

(
u�k( �J ) v�k( �J )

−v�k( �J )∗ u�k( �J )∗

)(
d�k
d

†
−�k

)
, (7)

where

u�k( �J ) =
√

1

2

(
1 + ε�k( �J )

E�k( �J )

)
,

v�k( �J ) = sgn[��k( �J )]

√
1

2

(
1 − ε�k( �J )

E�k( �J )

)
(8)

(see Appendix A for details). Plugging the transformation into
Eq. (5) yields the diagonal Hamiltonian

H ( �J ) =
∑
�k∈K

E�k( �J )

2
(a†

�ka�k − a−�ka
†
−�k) (9)

with spectrum

E�k( �J ) =
√

ε�k( �J )2 + ��k( �J )2. (10)

The Hamiltonian splits into a sum over �k sectors, i.e., a sum
over �k ∈ K , where K is a subset of the Brillouin zone such
that ∀�k ∈ K , −�k /∈ K . A possible choice is one half of the
Brillouin zone, e.g., all �k with kx > 0 [19].

The spectrum has roots at

kx = ± arccos

(
J 2

y − J 2
x − J 2

z

2JxJz

)
,

(11)

ky = ∓ arccos

(
J 2

x − J 2
y − J 2

z

2JyJz

)

if |Jα| < |Jβ | + |Jγ |, where (α,β,γ ) is any permutation of
(x,y,z). We will in the following only consider nonnegative Jα

on the Jx + Jy + Jz = 1 plane. In this section the above result
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FIG. 2. Phase diagram of the Kitaev model in the Jx + Jy + Jz =
1 plane, where Jα � 0. The gapless phase B is surrounded by three
gapped phases Aα , where Jα > Jβ + Jγ .

on the gappedness of the spectrum corresponds to a phase
diagram as depicted in Fig. 2. The gapless phase B at the center
of the diagram is surrounded by three distinct gapped phases
[15] Ax , Ay , and Az, where Jx > Jy + Jz, Jy > Jx + Jz, or
Jz > Jy + Jx , respectively.

In the presence of a magnetic field �h the spin Hamiltonian
(4) becomes

H ( �J ,�h) = −
∑

α∈{x,y,z}

⎛
⎝∑

α-links

Jασα
j σ α

k +
∑

j

hασα
j

⎞
⎠ (12)

and the additional term opens a gap also in the B phase.
Moreover, the B phase becomes topologically nontrivial with
Chern number ν = ±1, whereas the Aα phases remain trivial
with ν = 0 [15]. At Jx = Jy = Jz = J there exists a diagonal
form of the Hamiltonian even with nonzero magnetic field [15]
and the spectrum reads

E�k(J,h) =
√

ε̃�k(J,κ)2 + |�̃�k(J,κ)|2 (13)

with ε̃�k(J,κ) = ε�k( �J ), �J = (J,J,J )T , and

�̃�k(J,κ) =��k( �J )

+ 4iκ[sin(kx) − sin(ky) + sin(ky − kx)], (14)

where κ ∼ hxhyhz

J 2 . Through a Bogoliubov transformation (see
Appendix A) this maps to

H (J,κ) =
∑
�k∈K

[
ε̃�k(J,κ)

2
(d†

�kd�k − d−�kd
†
−�k)

+�̃�k(J,κ)

2
d

†
�kd

†
−�k + �̃�k(J,κ)∗

2
d−�kd�k

]
. (15)

This case will be studied in Sec. IV F. Before, we will stick to
the case without magnetic field, i.e., real valued ε�k and ��k .

B. Postquench dynamics

In order to study the dynamics in the Kitaev honeycomb
model we will consider situations where the system is
initially, at t < 0, prepared in the ground state of H ( �J0), i.e.,

H ( �J0)|ψi〉 = EGS|ψi〉. In terms of the free fermion degrees of

freedom the initial state is the vacuum: a
�J0
�k |ψi〉 = a

�J0
�k |0; �J0〉 =

0. At t = 0 the parameter is quenched to its final value �J1, such
that for t > 0 the time-evolved state is |ψ(t)〉 = e−iH ( �J1)t |ψi〉.
Making use of the Bogoliubov transformation the initial state
can be expressed in terms of the final free fermions, which
diagonalize H ( �J1):

|ψi〉 = N −1
∏
�k∈K

(
1 + B�k( �J0, �J1)a

�J1
�k

†
a

�J1

−�k
†)|0; �J1〉. (16)

Here,

B�k( �J0, �J1) ≡ V�k( �J0, �J1)

U�k( �J0, �J1)
= u�k( �J0)v�k( �J1) − u�k( �J1)v�k( �J0)

u�k( �J1)u�k( �J0) + v�k( �J1)v�k( �J0)
(17)

and the normalization constant

N 2 ≡
∏
�k∈K

(1 + B�k( �J0, �J1)2) (18)

were introduced and |0; �J1〉 is the ground state of H ( �J1). A
more detailed derivation is given in Appendix A.

For the sake of brevity and lucidity we will in the following
refrain from dragging along the dependencies on �J0 and �J1

explicitly, i.e., identify B�k ≡ B�k( �J0, �J1) and a�k ≡ a
�J1
�k .

Using (16) to compute the dynamical partition function we
obtain

Z(z) = 〈ψi |e−zH |ψi〉 (19)

=
∏
�k∈K

1 + B2
�k e

−2E�k ( �J1)z

1 + B2
�k

. (20)

The dynamical partition function has large deviation form
Z(z) ∼ e−Nf (z), where N is the system size. Thus, in the
thermodynamic limit only the rate function, or dynamical free
energy density,

f (z) = − lim
N→∞

1

N
ln[Z(z)] (21)

is well defined.

III. ZEROS OF THE PARTITION FUNCTION
AND CRITICAL TIMES

A. General aspects

From the study of equilibrium phase transitions it is
known that a very insightful approach is to consider the
zeros of the partition function in the complex temperature
or complex magnetization plane, respectively [4,20,21]. In
the thermodynamic limit the zeros of the partition function
coalesce to lines or areas in the complex plane, which mark
the critical points when approaching the real temperature
(magnetization) axis. Analogous reasoning has proven useful
in the study of dynamical quantum phase transitions [3,7].

In particular, an interesting analogy to electrodynamics
allows us to characterize the dynamical phase transition
through the density of zeros of the dynamical partition function
in the complex time plane. The starting point is the observation

075114-3



MARKUS SCHMITT AND STEFAN KEHREIN PHYSICAL REVIEW B 92, 075114 (2015)

that the dynamical partition function (19) is an entire function
of z and can as such, according to the Weierstrass factorization
theorem, be written as

Z(z) = eh(z)
∏
j∈I

(
1 − z

zj

)
, (22)

where I is some discrete index set, zj ∈ C are the zeros, and
h(z) is an entire function [3]. With this, the dynamical free
energy density reads

f (z) = − lim
N→∞

1

N

⎡
⎣h(z) +

∑
j∈I

ln

(
1 − z

zj

)⎤⎦. (23)

From this expression it becomes clear that any nonanalytic
behavior of the dynamical free energy can only occur at or in
the vicinity of the zeros of the dynamical partition function
zj . Since we are interested in nonanalyticities, we will in the
following ignore the contribution of h(z) and only consider the
singular part

f s(z) = − lim
N→∞

1

N

∑
j∈I

ln

(
1 − z

zj

)
. (24)

In the thermodynamic limit the sum becomes an integral over
some continuous variable x ∈ X, where X ⊆ Rn is a region
corresponding to the previously used index set I, and the zeros
become a function of this variable z̃(x), such that

f s(z) = −
∫

X

dx ln

(
1 − z

z̃(x)

)
. (25)

A transformation of the integration variable yields

f s(z) = −
∫

z(X)
dz̃ρ(z̃) ln

(
1 − z

z̃

)
, (26)

where the Jacobian determinant ρ(z̃) can be interpreted as the
density of zeros in the complex plane [22]. Moreover, setting
ρ(z) ≡ 0 for z �∈ z(X) allows us to extend the integration
domain to the full complex plane. We will now discuss the
real part

φ(z) = Re[f s(z)] = −
∫
C

dz̃ρ(z̃) ln

∣∣∣∣1 − z

z̃

∣∣∣∣. (27)

We will later see that the Loschmidt echo on the real time axis
is directly given by φ(t). For z = u + iv with u,v ∈ R ln|z| is
the Green’s function of the Laplacian �2D = ∂2

∂u2 + ∂2

∂v2 , i.e.,

�2Dφ(z) = −2πρ(z). (28)

In other words, the real part of the dynamical free energy
density can be interpreted as the electrostatic potential φ(z)
produced by a charge density ρ(z) in two dimensions and
the question of the behavior of the free energy at critical
points becomes the question of the behavior of the electrostatic
potential at surfaces. If the zeros form lines in the complex
plane, this allows us to deduce the order of the phase transition
directly from the density of zeros at or in the vicinity of the
physically relevant z [21].

Although the zeros can form areas in the complex plane
these areas do not cover the physical axis in the case of
equilibrium phase transitions. This is to be expected, since

FIG. 3. Schematic picture of the surface separating two densities
of zeros in the complex plane and the relevant coordinate frames for
determining the behavior of φ(z) [Eq. (27)] along the real time axis.

in thermal phase transitions there is typically only one critical
point in the physical parameter [22]. However, as we will
see in the following section, this is possible in the case of
dynamical phase transitions. Thus, consider the situation as
depicted in Fig. 3. The density of zeros is given by ρ1(z) and
ρ2(z) in area I and II , respectively, and at the boundary there
is a discontinuous change in the density of zeros. Assume the
electric potentials φi(z), i = 1,2, solve the Laplace equation
(28) with the corresponding density ρi(z). With this a global
solution is

φ(z) =
{

φ1(z), z ∈ I,

φ2(z), z ∈ II.
(29)

Let us now focus on the behavior of φ(z) at the intersection
of the boundary with the real time axis. It is known from
electrostatics that the curl of the electric field vanishes. If we
choose the x-y-coordinate frame as indicated in Fig. 3 this
implies (through Stokes’ theorem) that on the boundary

∂2

∂y2
φ1(z) − ∂2

∂y2
φ2(z) = 0. (30)

Since we are interested in the behavior of φ(z) in the real time
axis, we transform to t-y ′ coordinates,

t = x

cos α
+ y

sin α
,

y ′ = y. (31)

With the Laplace equation (28) this yields

(cos α)−2 ∂2

∂t2
φi(z) + (1 + sin α−1)2 ∂2

∂y ′2 φi(z) = −2πρi(z),

(32)

and, consequently,

∂2

∂t2
[φ1(z) − φ2(z)] = −2π (cos α)2[ρ1(z) − ρ2(z)]. (33)

This means that if an area of zeros of the partition function
overlaps the real time axis, the second derivative of the real
part of the free energy is discontinuous.
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B. 2d BCS-type models

In the Kitaev honeycomb model (and general BCS-type
models) the partition function is given by (20); i.e., the zeros
in the complex plane are given by

zn(�k) = 1

2E�k

[
ln
(
B2

�k
)+ iπ (2n + 1)

]
, n ∈ Z. (34)

At this point it becomes obvious that in the thermodynamic
limit the double product over kx and ky in Eq. (20) leads to
dense areas of zeros in the complex plane, since, generally,
∂kx

zn(�k) �= ±∂ky
zn(�k). These areas of zeros cover parts of the

real time axis (z = it) if Re[zn(�k)] = 0, i.e., if

∃�q ∈ K such that B2
�q = 1. (35)

Dubbing the B2
�q = 1 isoline B1 ⊂ K , there are intervals

T ∗
n = (2n + 1)π

2EB1

, n ∈ Z, (36)

on the real time axis, which are covered by areas of zeros.
The beginning tbn and end points t en of the intervals T ∗

n are
determined through Eq. (36) by the maximum and minimum,
respectively, of E�k on the domain given by |B�k| = 1. If the
spectrum of the final Hamiltonian is gapped, the beginnings
and end points of two consecutive intervals T ∗

n and T ∗
n+1

are equidistant with tbn+1 − tbn = π
2E�qb

and t en+1 − t en = π
2E�qe

,

where �qb/e are momenta minimizing/maximizing E�k on the
domain given by |B�k| = 1. The length of the single intervals T ∗

n

increases linearly with n. However, if the spectrum is gapless,
all those intervals extend to infinity.

The condition (35) allows for a physical interpretation;
namely, the occurrence of DQPTs is through a continuity
argument related to nonthermal mode occupation [3]. In
BCS-type models the mode occupation is given by

〈n�k〉 ≡ 〈a†
�ka�k〉 = sin2(arctan B�k). (37)

This means for all modes �q, where the condition (35) is
satisfied, the mode occupation is 〈n�q〉 = 1/2. Let us assume
that for any two points in K there exists a path connecting both
points, along which 〈n�k〉 is continuous [23], and the existence
of modes with 〈n�k〉 < 1/2. Both assumptions should be true
for physically relevant models and were found to hold in all
cases considered in the Kitaev model. In particular, steps in the
occupation number would have to be inherited from a spectrum
with steps, which is not to be expected in physical systems;
small occupation numbers, however, are to be expected at least
for UV modes. Then, we can set up the following chain of
consequences: through the continuity condition, the existence
of nonthermally occupied modes �k+ with 〈n�k+〉 � 1/2 implies
the existence of modes �q with 〈n�q〉 = 1/2. This in turn is
equivalent to the fulfilling of the condition (35), which implies
the occurrence of DQPTs in the time evolution. The mode
occupation 〈n�k+〉 � 1/2 is nonthermal in the sense that it
cannot be realized by Fermi-Dirac statistics with positive
temperature.

An equivalent formulation of condition (35) is

∃�q ∈ K such that ��q(α0)��q(α1) + ε�q(α0)ε�q(α1) = 0, (38)

where α is the quench parameter of the BCS-type Hamiltonian
(see Appendix B). From this it becomes clear that after
quenching to a gapless phase there are zeros of the dynamical
partition function on the real time axis, since E�q(α) = 0 ⇔
ε�q(α) = ��q(α) = 0. In the mode occupation picture this can
be interpreted as follows: when quenching to a gapless phase,
excitations cost no energy; thus, any quench produces inverted
mode occupation.

As discussed in the previous section, areas of zeros covering
the real time axis result in jumps in the second time derivative
of the dynamical free energy density if there is a jump in the
density of zeros. Equation (34) gives a “layer” of zeros for
every n ∈ Z. Therefore, our total density of zeros is a sum of
the densities of the individual “layers,” ρz(z) =∑n ρn

z (z). The
single layer densities are given the Jacobi determinant of the
change of variables �k → zn(�k) [22],

ρn
z (z) = 1

π2

∣∣∣∣∣
∂Re(zn)

∂kx

∂Re(zn)
∂ky

∂Im(zn)
∂kx

∂Im(zn)
∂ky

∣∣∣∣∣
−1

= 1

π2

[(
∂kx

B2
�k

2E�kB
2
�k

−
ln
(
B2

�k
)

2E2
�k

∂kx
E�k

)(
− (2n + 1)π

2E2
�k

∂ky
E�k

)
−
(

∂ky
B2

�k
2E�kB

2
�k

−
ln
(
B2

�k
)

2E2
�k

∂ky
E�k

)(
− (2n + 1)π

2E2
�k

∂kx
E�k

)]−1

=
4E3

�kB
2
�k

(2n + 1)π3

(
∂kx

E�k∂ky
B2

�k − ∂ky
E�k∂kx

B2
�k
)−1 =

4E3
�kB

2
�k

(2n + 1)π3

∣∣∣∣∣∣
∂E�k
∂kx

∂E�k
∂ky

∂B2
�k

∂kx

∂B2
�k

∂ky

∣∣∣∣∣∣
−1

, �k ≡ �k(zn). (39)

At this point a more technical view of the zeros of the partition function is useful: the zeros zn(�k) correspond to intersections of
the isolines

B2
�k = exp

(
(2n + 1)πRe[zn(�k)]

Im[zn(�k)]

)
, E�k = (2n + 1)π

2Im[zn(�k)]
(40)

in the momentum plane. This means that the density of zeros ρn
z (z) diverges at the boundary, since there �∇E�k ‖ �∇B2

�k . Thus, when
approaching the boundary of an interval T ∗

n from the inside of the interval, the second time derivative of Re[f (t)] will diverge.
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IV. DYNAMICAL PHASE TRANSITIONS IN THE KITAEV
HONEYCOMB MODEL

A. Zeros of the dynamical partition function
in the Kitaev model

In the Kitaev model not only quenches to the massless
phase create inverted mode occupation. Also quenches across
phase boundaries with final parameter �J1 in a massive phase
induce critical points in the real time evolution. It is physically
reasonable to assume that the mode occupation number 〈n�k〉
is sufficiently well behaved, namely, that for any two �k0, �k1

there exists a path �γ : [0,1] → [−π,π ]2 with �γ (0) = �k0 and
�γ (1) = �k1 such that 〈n �γ (s)〉, s ∈ [0,1], is continuous. We found
this to be true for all considered cases. Under this prerequisite,
the existence of a fully occupied mode �k+, 〈n�k+〉 = 1, implies
that 〈n�q〉 = 1/2 somewhere, because 〈n�k=0〉 = 0. 〈n�k+〉 = 1
corresponds to |B�k+| = ∞ and this happens when

0 = u�k+( �J0)u�k+( �J1) + v�k+( �J0)v�k+( �J1)
(41)

∧ 0 �= u�k+( �J0)v�k+( �J1) − u�k+( �J1)v�k+( �J0).

One possibility to fulfill this is

±1 = ε�k+( �J0)

E�k+( �J0)
= − ε�k+( �J1)

E�k+( �J1)
. (42)

Now, consider a quench ending in the x phase (J x
1 �

J
y

1 + J z
1 ) and �k+ = (π,0). Then ε�k+(J1) = 2(J z

1 − J x
1 + J

y

1 )
and ε�k+( �J1)/E�k+( �J1) = −1. We find that at this point both
quenches, starting from another massive phase,

J
y

0 < Jx
0 + J z

0 ⇒ ε�k+( �J0)

E�k+( �J0)
= 1, (43)

and from the massless phase,

J x
0 < J

y

0 + J z
0 ⇒ ε�k+( �J0)

E�k+( �J0)
= 1, (44)

lead to nonanalytic behavior because (42) is fulfilled in both
cases. The same can be shown for quenches ending in the other
massive phases; only �k+ needs to be chosen appropriately.
This shows that in the Kitaev model occupation inversion is
produced by quenches within the massless phase or quenches
crossing phase boundaries.

Figure 4 displays locations of the zeros of the Loschmidt
echo in the complex plane given by Eq. (34) for two quenches,
one within the Ax phase and one from the Ax phase to the
massless phase. Both panels include a phase diagram with
an arrow indicating the quench parameters �J0 → �J1. The
numerical values for the parameters for this figure and all
following figures are listed in Table I in Appendix C. The
zeros do indeed form areas, which are restricted to the left
half plane for the quench within the massive phase but cover
parts of the real time (imaginary z) axis when �J0 and �J1 lie in
different phases.

FIG. 4. (Color online) Distribution of zeros of the Loschmidt
echo in the complex time plane computed according to Eq. (34) for
two different quenches. The zeros form areas in the complex plane.
(a) Quench within one phase. The zeros are restricted to the left
half plane and no DQPTs occur. (b) Quench to the massless phase.
The zero areas overlap the real time axis (i.e., imaginary z axis) and
DQPTs occur at the intersections of the boundaries of the single areas
zn(�k) with the real time axis. Time is measured in units of

∑
α J α

1 .

B. Real time evolution

On the real time axis the rate function of the Loschmidt
echo L(t) = |Z(it)|2 reads

r(t) = − 1

2π2

∫ π

0

∫ π

−π

dkxdky

× ln

⎛
⎝
√

1 + 2B2
�k cos(2E�kt) + B4

�k
1 + B2

�k

⎞
⎠ (45)

and the time derivative is

ṙ(t) = 1

π2

∫ π

0

∫ π

−π

dkxdky

B2
�k E�k sin(2E�kt)

1 + 2B2
�k cos(2E�kt) + B4

�k
. (46)

Figure 5 shows the time evolution of the rate function and its
time derivative for various quenches obtained by numerical
evaluation of the corresponding integrals. The gray-shaded
areas in the plots indicate the intervals T ∗

n [cf. Eq. (36)] of
vanishing partition function. The results exhibit the properties
expected from the previous considerations. The rate function
is smooth for quenches within the gapped phases; however,
nonanalyticities occur when phase boundaries are crossed in
a quench or after a quench within the gapless phase. The be-
ginning and end points of the critical intervals are equidistant,
respectively, and for quenches ending in the massless phase
the intervals extend to infinity. As anticipated, nonanalyticities
only show up at the boundaries of the critical intervals.
Moreover, the nonanalyticities emerge as discontinuities of
r̈(t), i.e., kinks in ṙ(t).

Note that the two plots in panels (a) and (c) show the time
evolution of the rate function after the two quenches for which
Fig. 4 shows the location of the zeros of the partition function.
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time ( α Jα
1 ) t time ( α Jα

1 ) t

(b)

(c) (d)

r(t)
d
dt

r(t)

0

0

0
ρz(it)

0

0 1 2 3 4 5 6 7 8

0
ρz(it)

0 1 2 3 4 5 6 7 8

0

0

(a)

ρz(it)

FIG. 5. (Color online) Real time evolution of the rate function of
the Loschmidt echo (45) and its time derivative (46) for various
quenches. Both were obtained by numerical evaluation of the
integrals. The gray-shaded areas indicate sections of the real time axis
that are covered by areas of vanishing Loschmidt echo (cf. Fig. 4).
If zeros of the Loschmidt echo cover parts of the time axis, also the
density of zeros on the time axis, ρz(it), is included. Kinks in the time
derivative of the rate function are observed when quenching across a
phase boundary or within the massless phase.

C. The 1d limit

In the limit Jα → 0 for any α ∈ {x,y,z} the 2d Kitaev
model (4) degenerates and becomes a set of separate 1d spin
chains. Let us consider the case Jz = 0. The vanishing of
one of the other two parameters will give the same result
due to the threefold symmetry. For Jz = 0 the condition for
nonanalyticities (35) is fulfilled at �q with

cos(qx − qy) = J x
0 J x

1 + J
y

0 J
y

1

J x
0 J

y

1 + J x
1 J

y

0

. (47)

Along this line also the spectrum is constant,

E�q =
√

J x
1

2 + J
y

1
2 + 2J x

1 J
y

1

J x
0 J x

1 + J
y

0 J
y

1

J x
0 J

y

1 + J x
1 J

y

0

. (48)

Thus, the critical intervals T ∗
n defined in Eq. (36) become

critical points

t∗n = (2n + 1)π

2E�q
≡ 2n + 1

2
t∗ (49)

on the real time axis. Figure 6 shows the rate functions for
two different quenches with J z

0 = J z
1 = 0. The quench in

Fig. 6(a) does not cross a phase boundary and therefore the rate
function is analytic. However, in Fig. 6(b) �J0 = ( 1

4 , 3
4 ,0) and

�J1 = ( 3
4 , 1

4 ,0) lie in different phases, and according to Eq. (49)

time ( α Jα
1 ) t time t/t∗

(b)

r(t)
d
dtr(t)

0

0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 3

0

(a)

FIG. 6. (Color online) Time evolution of the rate function r(t) of
the Loschmidt echo and its time derivative for two quenches in the
effectively one-dimensional Kitaev model with Jz = 0. The quench
in (a) does not cross the phase boundary and the rate function is
analytic. In (b) the phase boundary is crossed and discontinuities of
ṙ(t) occur at equidistant instances in time t∗

n .

there are critical times t∗n = 2n+1
2

√
5
8π at which the rate

function becomes singular. In particular, these singularities are
discontinuities in the first time derivative of the rate function,
not in the second as in the genuinely two-dimensional cases.
This observation underlines the fact that the continuity of the
first derivative is inherent to the higher dimensionality of the
nondegenerate Kitaev model.

D. The long time limit

In a recent work [14] it was stated that if the Loschmidt
echo L(t) supports analytic continuation, then the long real
time limit limt→∞ L(t) and the long imaginary time limit
limτ→∞ L(−iτ ) coincide. In the context of dynamical phase
transitions this gives rise to the conjecture that the occurrence
of DQPTs is closely related to the long time behavior of
L(t). Dynamical quantum phase transitions occur if the zeros
of the dynamical partition function cross the real time axis.
This means, r(z), the rate function of the Loschmidt echo,
is nonanalytic in the τ > 0 half plane; therefore, the long
imaginary time limit and the long real time limit do not
necessarily have to coincide.

On the imaginary time axis z = τ , with the eigenbasis of
the quenched Hamiltonian |φn〉, corresponding energies En,
and cn = 〈φn|ψi〉,

L(−iτ ) = |〈ψi |e−Hτ |ψi〉|2 =
∣∣∣∣∣
∑
n,n′

c∗
ncn′e−En′ τ 〈φn|φn′ 〉

∣∣∣∣∣
2

=
∣∣∣∣∣
∑

n

|cn|2e−Enτ

∣∣∣∣∣
2

. (50)

Now, shifting the energy such that E0 = 0 and assuming the
ground state |φ0〉 to be nondegenerate,

lim
τ→∞ L(−iτ ) = |c0|4 = |〈φ0|ψi〉|4 = F4, (51)

where F ≡ |〈φ0|ψi〉| is the fidelity. Thereby, the Loschmidt
echo is connected to the fidelity in the large imaginary time
limit.
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As the Loschmidt echo L ∝ e−Nr(t) equals zero in the
thermodynamic limit, one should rather formulate Eq. (51)
in terms of the rate function:

lim
τ→∞ r(−iτ ) = − lim

τ→∞ lim
N→∞

1

N
ln L(−iτ )

= − lim
N→∞

1

N
ln F4. (52)

According to the previous considerations this yields

lim
t→∞ r(t) = − lim

N→∞
1

N
ln F4 (53)

if r(z) is analytic in the τ > 0 half plane. This is a quite
remarkable result: In the long time limit the Loschmidt
echo approaches a value given solely by the overlap of
the initial state with the ground state of the postquench
Hamiltonian, although the stationary state will surely never be
that ground state. Quenching inevitably produces an excited
state. Moreover, some information about the initial state is
preserved for all times.

For the Kitaev model the fidelity is

F = |〈ψi |φ0〉| =
∣∣〈0|∏′

�k(1 + B�ka−�ka�k)|0〉∣∣√〈ψ0|ψ0〉

= 1√〈ψ0|ψ0〉
(18)= exp

[
−N

2

∫
d2k

4π2
ln
(
1 + B2

�k
)]

. (54)

Thus, if the above conjecture is valid, we should find

lim
t→∞ r(t) = 1

2π2

∫
d2k ln

(
1 + B2

�k
)

(55)

for quenches within the massive phases. Figure 7 shows the
long time behavior of the rate function for a quench within
the Ax phase and for a quench crossing phase boundaries;
indeed, the rate function converges to the value given by the
fidelity after the quench within the massive phase. In the other
case, however, the rate function seems to converge, but the
value it approaches differs from the one given by the fidelity.
Various other cases were checked and the behavior was always
consistent with above mentioned conjecture.

One can explain the convergence of the rate function
heuristically based on the specific form given in Eq. (45).
The expressions for the long time limit of the rate function
in Eq. (55) and the definition of the rate function in Eq. (45)
only differ in the nominators in the argument of the logarithm,
which are 1 and 1 + B2

�k e
−2iE�k t , respectively. In the long time

limit the factor e−2iE�k t oscillates extremely fast as a function
of �k. If B2

�k is slowly changing compared to these oscillations
and also small such that

ln
(
1 + B2

�k e
−2iE�k t

) ≈ B2
�k e

−2iE�k t , (56)

then the contributions of neighboring points in the momentum
plane will cancel in the integral and therefore both integrals
Eqs. (45) and (55) become equal. However, if the integrand
is singular, there are areas where |B�k| ≈ 1 and therefore the
contributions of close-by points do not necessarily cancel. As
a result the values of the integrals differ.

In the absence of DQPTs Eq. (53) can also be derived
rigorously for BCS-type models by considering the Taylor

time ( α Jα
1 ) t

r(t) d
dt

r(t) − 1
N

ln F4

0

0

0 5 10 15 20 25 30

(a)

(b)

FIG. 7. (Color online) Long-time behavior of the rate function
(a) after a quench within the Ax phase and (b) after a quench crossing
phase boundaries. The rate function converges in both cases. For
the quench within the massive phase it indeed approaches the value
predicted by Heyl’s and Vojta’s conjecture (52), and in the other case
the limit lies well off that value. Note that the derivative of the rate
function converges to the zero line in both cases.

expansion of the logarithm in the integrand of Eq. (45) and
computing the time averages of the single contributions in the
power series.

E. Ramping

It is known that dynamical quantum phase transitions also
occur if the Hamiltonian parameter is continuously ramped
across a critical point instead of quenching it [3]. However, it
is not clear what happens after ramping the parameter within
a gapless phase. In a gapless phase the adiabatic theorem does
not apply and it is known that also slow ramping can produce a
nonzero defect density [24]. But are these excitations sufficient
to induce dynamical quantum phase transitions?

Assume the parameter �J (t) of the Hamiltonian is not
quenched immediately from �J (t < 0) = J0 to �J (t � 0) = �J1,
but continuously according to some protocol with �J (t < 0) =
�J0 and �J (t > tr ) = �J1. In this case, the state of the system

must at any time still be of the form given in Eq. (16), because
at any time H ( �J (t)) can only excite both modes with opposite
momenta �k, −�k in one �k sector. For t > tr the dynamics is
the same as after a quench; however, the B�k will depend on
the details of the ramping protocol. As discussed above B�k is
directly related to the mode occupation number 〈n�k〉. Thus, in
order to determine whether DQPTs occur after ramping from
�J0 to �J1 instead of quenching, it is sufficient to compute the

mode occupation at t = tr .
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Occupation numbers n(k)

k
y

kx kx

−π

0

π

−π 0 π

Jy Jx

Jz

−π 0 π
0

0.5

1

Jy Jx

Jz

(a) (b)

FIG. 8. (Color online) (a) Mode occupation 〈n�k〉 after quenching
from �J0 to �J1 within the gapless phase and (b) mode occupation after
linearly ramping from �J0 to �J1 with ramping time tr = 50.

In order to get the mode occupation 〈n�k〉 we make use of
the fact that the total time evolution is simply made up by the
time evolution of independent two-level systems in the single
�k sectors and the corresponding Hamiltonians are

H�k( �J (t)) = 1

2

(
ε�k( �J (t)) ��k( �J (t))
��k( �J (t)) ε�k( �J (t))

)
. (57)

In these terms the initial state is the ground state of H�k( �J0),
H�k( �J0)|ψi,�k〉 = −E�k( �J0)|ψi,�k〉, and the time evolved state
|ψ�k(t)〉 can be obtained by numerical integration of the
Schrödinger equation. The mode occupation number after the
ramping is then given by the overlap

〈n�k〉 = |〈ψ+
�k |ψ�k(tr )〉|2, (58)

where H�k( �J1)|ψ+
�k 〉 = E�k|ψ+

�k 〉.
Figure 8 shows the final occupation numbers for a quench

within the gapless phase and for linear ramping with

�J (t) =

⎧⎪⎨
⎪⎩

�J0, t < 0,

�J0 + ( �J1 − �J0)t/tr , 0 � t � tr ,

�J1, t > tr ,

(59)

and ramping period tr = 50. Note that the occupation numbers
remain unchanged afterwards. As expected from the previous
considerations the quench produces regions of nonthermally
occupied modes in the Brillouin zone. Such areas are also
present after the ramping. This means that also in the time
evolution for times t > tr there will be dynamical quantum
phase transitions.

F. Quenching the magnetic field

In the presence of a magnetic field the phase B (cf. Fig. 2)
becomes gapped and at Jx = Jy = Jz ≡ J there exists a
diagonal form of the Hamiltonian [15] with spectrum E�k(J,κ)
as given in Eq. (13) that maps to the general two-band form
(see Appendix A for details)

H (J,κ) =
∑

�k
�γ †
�k (�b�k(α) · �σ ) �γ�k, (60)

time ( α Jα
1 ) t time ( α Jα

1 ) t

(b)

ρz(it)

r(t)
d
dt

r(t)

0

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0

(a)

0

FIG. 9. (Color online) Time evolution of the rate function in the
Kitaev model with additional magnetic field after quenching the
magnetic field. (a) Quench within one phase, κ0 = 0.5 → κ1 = 0.1.
(b) Quench across the phase boundary, κ0 = 0.5 → κ1 = −0.1.

where �σ = (σx,σy,σz)T is the vector of Pauli matrices, γ
†
�k =

(d†
�k ,d−�k), and

b�k(J,κ) = 1

2

⎛
⎜⎝

Re[�̃�k(J,κ)]

Im[�̃�k(J,κ)]

ε̃�k(J,κ)

⎞
⎟⎠. (61)

The magnetic field �h is contained in the parameter κ ∼ hxhyhz

J 2 .
It introduces topological order in the B phase, characterized
by the Chern number

ν(κ) = 1

4π

∫ π

−π

∫ π

−π

dkxdky

�b�k · (∂kx
�b�k × ∂ky

�b�k)

|�b|3 = sgn(κ).

(62)

It was demonstrated that in such systems any quench crossing
the boundary between topologically distinct phases induces
dynamical quantum phase transitions [7].

Figure 9 shows the time evolution of the rate function after
quenching the magnetic field within one phase and between
two topologically distinct phases. As expected the signature
of dynamical quantum phase transitions shows up after the
quench across the phase boundary.

V. CONCLUSIONS

We demonstrated how the domains of zeros in 2d BCS-type
models differ qualitatively compared to 1d systems; namely, in
the thermodynamic limit, the zeros coalesce to dense areas of
zeros in the complex time plane rather than lines. The covering
of intervals of the real time axis by such areas of zeros indicates
the existence of critical points in the time evolution. We showed
how this leads to dynamical quantum phase transitions as
discontinuities in the second time derivative of the dynamical
free energy as opposed to discontinuities in the first derivative
known from 1d systems.

It was found that in the Kitaev honeycomb model dynamical
quantum phase transitions occur after quenches across the
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phase boundaries and after quenches within the gapless phase.
It is to our knowledge the first time that DQPTs are found in
a two-dimensional model after quenching without crossing an
equilibrium phase boundary. In accordance with the general
considerations regarding the dynamics of BCS-type systems,
DQPTs in the Kitaev model show up at the boundaries of
the intervals T ∗

n on the time axis which are included in a
domain of zeros of the partition function. At these points the
DQPTs appear as kinks in the first time derivative of the rate
function of the Loschmidt echo. As was shown to hold for
any BCS-type model, the curvature of the free energy density
diverges when the boundary of such an interval is approached
from the inward.

In degenerate versions of the Kitaev model, which effec-
tively constitute one-dimensional spin chains, already the first
derivative of the rate function becomes discontinuous after
quenching across a phase boundary as known from other 1d
models [3]. This underlines the fact that the continuity of the
first derivative is inherent to the higher dimensionality of the
nondegenerate Kitaev model.

Moreover, we found for the Kitaev model that, in accor-
dance with a conjecture concerning that matter [14], the long
time stationary state of the rate function of the Loschmidt
echo has a close connection to the occurrence of DQPTs: if
no DQPTs occur, i.e., if the rate function is analytic in at least
a half of the complex plane, the rate function approaches a
value given by the fidelity. If the rate function is, however,
nonanalytic, it does in general not converge to this value. The
fact that the long time limit in the absence of DQPTs is given
by the fidelity deserves particular notice, since the fidelity is
the overlap of the initial state with the ground state of the
quenched Hamiltonian, but the approached stationary state is
surely an excited state.

The examination of the mode occupation numbers af-
ter ramping the parameter of the Hamiltonian instead of
quenching it implies that the subsequent time evolution also
exhibits dynamical quantum phase transitions. Moreover, it
was demonstrated that in the presence of a magnetic field
quenches between the topologically ordered phases induce
dynamical quantum phase transitions, which was previously
proven to be a general feature in the dynamics of topologically
ordered two-band models in Ref. [7].

DQPTs were to date not observed in experiments. The
Loschmidt echo L(t), which shows the nonanalytic behavior,
is not directly connected to a quantum mechanical observable.
As mentioned above, the work density was suggested as
an measurable quantity, which could show the signature of
DQPTs. However, the Loschmidt echo becomes exponen-
tially small with increasing system size, whereas, strictly
speaking, DQPTs occur only in the thermodynamic limit.
Experimentally measuring the signature of DQPTs in work
densities will therefore be very challenging. Experimental
consequences of DQPTs in other quantities than the work
distribution function are currently being investigated. It was
shown that DQPTs are connected to time scales of the order
parameter dynamics in symmetry broken systems [3]; in
particular the occurrence of DQPTs is directly related to
the sudden transition from monotonic to oscillatory decay of
the order parameter after a quench [25]. Alternatively, the
previously mentioned generalized expectation values could

serve as measurable quantities [8]. Moreover, it was shown
in a recent work that DQPTs in Ising spin models exhibit
scaling and universality and numerical results indicate that
signatures of the DQPTs can be found in the dynamics of spin
correlations as power-law scaling, which is solely determined
by the universality class [26]. This seems to provide a very
promising opportunity for measuring DQPTs, since these
quantities are accessible with current experimental techniques.

The finding of DQPTs as discontinuities in higher order
derivatives in higher dimensional systems raises the question
of a classification of dynamical quantum phase transitions.
Canovi et al. [8] suggested a formalism for such a classifica-
tion. They related discontinuities in generalized expectation
values and coexisting solutions to a first order transition.
Here, we found a discontinuity in the second derivative of
the dynamical free energy density. In future work it should
be investigated how the findings of discontinuities in higher
derivatives of the dynamical free energy density tie in with
their definition.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION AND
POSTQUENCH EIGENBASIS

Consider the general Hamiltonian

H (α) =
∑

�k
�γ †
�k ( �d�k(α) · �σ ) �γ�k (A1)

with �σ the vector of Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
, (A2)

and �γ�k containing the creation and annihilation operators

γ�k =
(

f�k
f

†
−�k

)
. (A3)

For α = �J and �b�k( �J ) = (��k( �J )/2,0,ε�k( �J )/2) this gives the
Hamiltonian of the Kitaev model as in Eq. (5). The unitary
transformation(

aα
�k

a
α†
−�k

)
= W (α) �γ�k =

(
u�k(α) v�k(α)

−v�k(α)∗ u�k(α)∗

)(
f�k
f

†
−�k

)
(A4)

that brings the Hamiltonian (A1) into diagonal form is the
Bogoliubov transformation. Plugging Eq. (A4) into Eq. (A1)
and demanding that all off-diagonal terms vanish yields

0 = dz
�k (u�kv−�k − u �−kv�k)

+ (dx
�k − id

y

�k
)
u �−ku�k + (dx

�k + id
y

�k
)
v �−kv�k, (A5)

where all the dependencies on α have been dropped for the
sake of brevity. Since W is unitary, u�k and v�k have the general
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form

u�k = cos θ�ke
iφ�k , v�k = sin θ�ke

iψ�k . (A6)

By choosing

φ�k = −ψ�k = −1

2
arctan

(
−

d
y

�k
dx

�k

)
(A7)

the equation above becomes real,

0 = dz
�k (sin θ�k cos θ�k − cos θ−�k sin θ�k)

+ ∣∣dxy

�k
∣∣(cos θ�k cos θ−�k − sin θ�k sin θ−�k), (A8)

where d
xy

�k ≡ dx
�k − id

y

�k was introduced. Then for a
†
−�k = (a−�k)†

to hold, θ�k must be an odd function of �k. Thus,

0 = −dz
�k sin(2θ�k) + ∣∣dxy

�k
∣∣ cos(2θ�k)

⇒ tan(2θ�k) =
∣∣dxy

�k
∣∣

dz
�k

(A9)

and this yields

|u�k|2 = cos2 θ�k = 1

2

(
1 + ε�k

E�k

)
,

(A10)

|v�k|2 = sin2 θ�k = 1

2

(
1 − ε�k

E�k

)
.

In the end it is left to choose the signs appropriately such that
u�k = u−�k and v�k = −v−�k , e.g.,

u�k = eiφ�k

√
1

2

(
1 + ε�k

E�k

)
,

(A11)

v�k = sgn
(
dx

�k
)
e−iφ�k

√
1

2

(
1 − ε�k

E�k

)
.

With this transformation the Hamiltonian (A1) becomes
diagonal

H (α) =
∑

�k

E�k(α)

2

(
aα

�k
†
aα

�k − aα

−�ka
α†
−�k
)

(A12)

with E�k(α) = |�b�k(α)|.
To compute the quench dynamics one needs the connection

of the degrees of freedom a
α0
�k that diagonalize the initial Hamil-

tonian H (α0) and the degrees of freedom a
α1
�k diagonalizing

the final Hamiltonian H (α1). This connection is given by two
subsequent Bogoliubov transformations,(

a
α1
�k

a
α1†
−�k

)
= W (α1)W (α0)†

(
a

α0
�k

a
α0

−�k
†

)

=
(

U�k(α0,α1) V�k(α0,α1)

−V�k(α0,α1)∗ U�k(α0,α1)∗

)(
a

α0
�k

a
α0

−�k
†

)
(A13)

with

U�k(α0,α1) = u�k(α1)u�k(α0)∗ + v�k( �J1)v�k(α0)∗,
(A14)

V�k(α0,α1) = u�k(α0)v�k(α1) − u�k(α1)v�k(α0).

Since |ψi〉 is the ground state of H ( �J0)

a
α0
�k |ψi〉 = (

U�k(α0,α1)a
�J1
�k − V�k(α0,α1)aα1†

−�k
)|ψi〉 = 0 (A15)

must hold. Moreover, the ground state of a BCS-type Hamil-
tonian has vanishing total momentum; thus,

|ψi〉 = 1

N
∏

�k

′(
1 + B�k(α0,α1)aα1

�k
†
a

α1†
−�k
)|0; α1〉

= 1

N exp

⎛
⎝∑

�k
B�k(α0,α1)aα1

�k
†
a

α1†
−�k

⎞
⎠|0; α1〉, (A16)

where the coefficients B�k(α0,α1) are to be determined, N is a
normalization constant, and |0; α1〉 denotes the vacuum of the
postquench fermions: a

α1
�k |0; α1〉 = 0. Plugging Eq. (A16) into

Eq. (A15) yields(
U�k(α0,α1)aα1

�k − V�k(α0,α1)aα1†
−�k
)

×
∏
�k′

′(
1 + B�k′(α0,α1)aα1†

�k′ a
α1†
−�k′
)|0〉α1

= [U�k(α0,α1)B�k(α0,α1) − V�k(α0,α1)]aα1†
−�k

×
∏
�k′ �=�k

′(
1 + B�k′(α0,α1)aα1†

�k′ a
α1†
−�k′
)|0; α1〉

= 0, (A17)

which holds for

B�k(α0,α1) = V�k(α0,α1)

U�k(α0,α1)
= u�k(α0)v�k(α1) − u�k(α1)v�k(α0)

u�k(α0)u�k(α1) + v�k(α0)v�k(α1)
.

(A18)

APPENDIX B: CONDITION FOR REAL TIME ZEROS OF THE PARTITION FUNCTION

The condition B2
�k = 1 [cf. Eq. (35)] can be rearranged as follows: We have

1 = |B�k| ⇔
∣∣∣∣∣
√

1 + ε�k( �J0)

E�k( �J0)

√
1 + ε�k( �J1)

E�k( �J1)
+ sgn[��k( �J0)��k( �J1)]

√
1 − ε�k( �J0)

E�k( �J0)

√
1 − ε�k( �J1)

E�k( �J1)

∣∣∣∣∣
=
∣∣∣∣∣sgn[��k( �J1)]

√
1 + ε�k( �J0)

E�k( �J0)

√
1 − ε�k( �J1)

E�k( �J1)
− sgn[��k( �J0)]

√
1 − ε�k( �J0)

E�k( �J0)

√
1 + ε�k( �J1)

E�k( �J1)

∣∣∣∣∣
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⇔
(

1 + ε�k( �J0)

E�k( �J0)

)(
1 + ε�k( �J1)

E�k( �J1)

)
+
(

1 − ε�k( �J0)

E�k( �J0)

)(
1 − ε�k( �J1)

E�k( �J1)

)

+ 2sgn[��k( �J0)��k( �J1)]

√√√√√
⎡
⎣1 −

(
ε�k( �J0)

E�k( �J0)

)2
⎤
⎦
⎡
⎣1 −

(
ε�k( �J1)

E�k( �J1)

)2
⎤
⎦

=
(

1 + ε�k( �J0)

E�k( �J0)

)(
1 − ε�k( �J1)

E�k( �J1)

)
+
(

1 − ε�k( �J0)

E�k( �J0)

)(
1 + ε�k( �J1)

E�k( �J1)

)

−2sgn[��k( �J0)��k( �J1)]

√√√√√
⎡
⎣1 −

(
ε�k( �J0)

E�k( �J0)

)2
⎤
⎦
⎡
⎣1 −

(
ε�k( �J1)

E�k( �J1)

)2
⎤
⎦

⇔ ε�k( �J0)ε�k( �J1)

E�k( �J0)E�k( �J1)
= −sgn[��k( �J0)��k( �J1)]

√√√√√
⎡
⎣1 −

(
ε�k( �J0)

E�k( �J0)

)2
⎤
⎦
⎡
⎣1 −

(
ε�k( �J1)

E�k( �J1)

)2
⎤
⎦

⇒ 1 =
(

ε�k( �J0)

E�k( �J0)

)2

+
(

ε�k( �J1)

E�k( �J1)

)2

. (B1)

Plugging this into the second last line we find the additional condition

sgn[��k( �J0)ε�k( �J0)] = −sgn[��k( �J1)ε�k( �J1)], (B2)

which allows us to write

1 = |B�k| ⇔
⎡
⎣1 =

(
ε�k( �J0)

E�k( �J0)

)2

+
(

ε�k( �J1)

E�k( �J1)

)2

∧ −1 = sgn[ε�k( �J1)��k( �J1)]

sgn[ε�k( �J0)��k( �J0)]

⎤
⎦. (B3)

Plugging in E�k(J )2 = ε�k(J )2 + ��k(J )2 yields

1 = |B�k(J0,J1)| ⇔ ��k( �J0)��k( �J1) + ε�k( �J0)ε�k( �J1) = 0. (B4)

So, for the emergence of a nonanalyticity at a given time t = t∗ we get two (simplified) conditions:

E�k( �J1) = (2n + 1)π

2t∗
≡ Cn

t∗ , (B5)

0 = ��k( �J0)��k( �J1) + ε�k( �J0)ε�k( �J1). (B6)

APPENDIX C: QUENCH/RAMPING PARAMETERS

In Table I we give a summary of the quench parameters used for the figures in the main text.

TABLE I. Quench parameters.

Figure J x
0 J

y

0 J z
0 J x

1 J
y

1 J z
1 κ0 κ1

4(a) 0.8 0.1 0.1 0.6 0.2 0.2 0 0
4(b) 0.8 0.1 0.1 0.4 0.3 0.3 0 0
5(a) 0.8 0.1 0.1 0.6 0.2 0.2 0 0
5(b) 0.8 0.1 0.1 0.2 0.1 0.7 0 0
5(c) 0.8 0.1 0.1 0.4 0.3 0.3 0 0
5(d) 0.4 0.3 0.3 0.3 0.4 0.3 0 0
6(a) 0.1 0.9 0.0 0.4 0.6 0.0 0 0
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TABLE I. (Continued.)

Figure J x
0 J

y

0 J z
0 J x

1 J
y

1 J z
1 κ0 κ1

6(b) 0.25 0.75 0.0 0.75 0.25 0.0 0 0
7(a) 0.9 0.05 0.05 0.6 0.2 0.2 0 0
7(b) 0.9 0.05 0.05 0.1 0.8 0.1 0 0
8(a) 0.8 0.1 0.1 0.6 0.2 0.2 0 0
8(b) 0.8 0.1 0.1 0.4 0.3 0.3 0 0
9(a) 1/3 1/3 1/3 1/3 1/3 1/3 0.5 0.1
9(b) 1/3 1/3 1/3 1/3 1/3 1/3 0.5 −0.1
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2.2 Phase transitions in non-equilibrium steady states

Topological order allows to characterize phases beyond the Landau paradigm (Wen, 2013).
This section addresses the question whether and how topological order is reflected in the
nonequilibrium dynamics of Chern insulators.

A key experiment that elucidated the necessity to understand phase transitions in the
absence of a local order parameter was the discovery of the integer quantum Hall effect (von
Klitzing et al., 1980). In this experiment on a two-dimensional electron gas subjected to an
external magnetic field it was observed that with very high precision the Hall conductance
takes only values

σxy = C
e2

h
, (2.10)

where e is the elementary charge, h is Planck’s constant, and C ∈ Z is an integer. As the
magnetic field amplitude was tuned the Hall conductance exhibited jumps between different
values, but no local order parameter could be identified to explain this as a phase transition
within the Landau framework. Instead, it was found in a seminal work (Thouless et al.,
1982) that the integer C was a topological invariant associated with the ground state of
the corresponding Hamiltonian, namely the Chern number, which serves as a topological
order parameter. This relation of the observable to topological properties of the ground
state explains the extraordinary precision of the experimental results, because the value of
C is robust against local perturbations and can only be affected by global changes in the
system. Consequently, the conductance quantum e2/h is nowadays the natural constant that
is determined with the highest precision.

It turned out that a quantized Hall conductance can also occur without an external mag-
netic field. This fact was pointed out by (Haldane, 1988) using a simplistic model Hamiltonian
as example, which became known as the Haldane model. This system is a topological insu-
lator, i.e., the bulk is a band insulator but the surface hosts gapless excitations. Such edge
states exist at the boundary to “ordinary” insulators, because the topological invariant of
the wave function cannot change without a gap closing. These edge states are robust against
local perturbations of the Hamiltonian, because they are topologically protected. Consider-
ing more realistic model Hamiltonians it was later suggested that topological insulators can
occur as real materials (Kane and Mele, 2005; Bernevig et al., 2006) and their existence was
indeed verified experimentally soon after that (König et al., 2007).

In cold atom experiments Floquet engineering allows to realize effective gauge fields. In
this way the Haldane model was recently implemented in experiment despite its unnatural
simplicity (Jotzu et al., 2014). The observation of DQPTs in another cold atom realization of
the Haldane model (Fläschner et al., 2016) demonstrates how the quench dynamics of Chern
insulators become experimentally accessible using such quantum simulators.

These experimental possibilities motivate theoretical studies of topological insulators far
from equilibrium. The topological invariant characterizing the different phases of a Chern
insulator, however, is a property of the ground state wave function. Since a quench induces
large excitations it is not clear whether the topological properties of the Hamiltonian play
a role in the dynamics far from equilibrium. This question has been addressed in different
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works. A key insight is that when quenching from a ground state of the Hamiltonian the
Chern number of the time-evolved state always remains unchanged (D’Alessio and Rigol,
2015). Nevertheless, it was found that the topological properties of the post-quench Hamil-
tonian can leave an imprint on the observables of the time-evolved system, in particular the
Hall response (Dehghani et al., 2015; Wang and Kehrein, 2016; Hu et al., 2016; Caio et al.,
2016).

As will be shown in what follows, the steady state reached a long time after quenching a
Chern insulator exhibits a topologically driven nonequilibrium phase transition, indicated by
a universal nonanalyticity of the Hall conductance as a function of the quench parameters.
In Section 2.2.1 this behavior is derived and its universal character is demonstrated using
different example systems. In Section 2.2.2 the analysis is generalized to Floquet topological
insulators, which are candidate systems for the experimental observation of the predicted
behavior.
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Universal nonanalytic behavior of the Hall conductance in a Chern insulator at the topologically
driven nonequilibrium phase transition
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We study the Hall conductance of a Chern insulator after a global quench of the Hamiltonian. The Hall
conductance in the long time limit is obtained by applying the linear response theory to the diagonal ensemble.
It is expressed as the integral of the Berry curvature weighted by the occupation number over the Brillouin zone.
We identify a topologically driven nonequilibrium phase transition, which is indicated by the nonanalyticity of
the Hall conductance as a function of the energy gap mf in the post-quench Hamiltonian Ĥf . The topological
invariant for the quenched state is the winding number of the Green’s function W , which equals the Chern number
for the ground state of Ĥf . In the limit mf → 0, the derivative of the Hall conductance with respect to mf is
proportional to ln |mf |, with the constant of proportionality being the ratio of the change of W at mf = 0 to the
energy gap in the initial state. This nonanalytic behavior is universal in two-band Chern insulators such as the
Dirac model, the Haldane model, or the Kitaev honeycomb model in the fermionic basis.

DOI: 10.1103/PhysRevB.93.085134

I. INTRODUCTION

The notions of topological order and topological invariant
were introduced into condensed matter physics for classifying
certain states of matter that cannot be classified by broken
symmetries. Their change in the ground state of a system
is accompanied by a topological phase transition. It is well
known that the topological order or the topological invariant
are robust against local perturbations to the Hamiltonian. But it
is not clear whether they are also robust against a global quench
of the Hamiltonian, and what is the proper way of defining
them in a quenched state far from equilibrium. Recently, these
questions drew attention [1–19] due to their relevance with the
implementation of topological quantum computing.

Suppose that the system is initially in the ground state
of the Hamiltonian Ĥi . At the time t = 0, the Hamiltonian
is suddenly changed from Ĥi to Ĥf . The system is then
driven out of equilibrium, and the wave function evolves
unitarily. In the toric code model, the topological entropy of
the unitarily evolving wave function is found to keep invariant
[1–3] after a quench. In general, the long-range entanglement
in a wave function cannot be changed by local unitary
transformations [20]. Therefore, the topological entropy of
the unitarily evolving wave function keeps a constant if Ĥf

has no long-range interaction. Similarly, the Chern number
of the unitarily evolving wave function in a Chern insulator
[4–6] is found to be independent of Ĥf . If one chose it as
the topological order parameter of the quenched state, the
topological order would be always robust against a quench of
the Hamiltonian.

However, in the p-wave superfluid or the s-wave superfluid
with spin-orbit coupling, the winding number of the Green’s
function depends on both Ĥi and Ĥf [7–10]. And in the
topological superconductor with proximity-induced supercon-
ductivity, the topological properties of the quenched state were
argued to be Ĥf dependent [11–13]. When the initial state is in
a topologically nontrivial phase, the quenched state in the long

*wangpei@zjut.edu.cn

time limit is in the trivial (nontrivial) phase if the ground state
of Ĥf is in the trivial (nontrivial) phase. This conclusion is
supported by the study of the Majorana order parameter [11],
the entanglement spectrum [12], and the dynamics of edge
states [13]. Especially, in the thermodynamic limit, the survival
probability of the Majorana edge modes decays to a finite
value if the quench is within the same topological phase. But it
decays to zero if the quench is across the phase boundary [13].

Up to now, the definition of the topological order parameter
in a quenched state is ambiguous. Different topological
invariants which are equivalent in a ground state might be
dramatically different in a quenched state. This is clearly
demonstrated in the p-wave superfluid [8], in which the
winding number of the Anderson pseudospin texture is
independent of Ĥf but that of the Green’s function is Ĥf

dependent. It is then necessary to study which topological
invariant is experimentally relevant.

The order parameter is defined to distinguish different
phases at a phase transition. A phase transition can be indicated
in an experimentally relevant way by the nonanalyticity of
the observables. And the topological invariant was introduced
to explain phase transitions that are beyond the conventional
framework of symmetry breaking. For example, the Chern
number [21] was introduced in the quantum Hall effect [22]
to explain the jump of the Hall conductance at some magnetic
fields. Following this logic, we study the phase transitions in
the quenched states, which are indicated by the nonanalyticity
of a measurable observable as a function of the parameters
of the quenched state, i.e., the parameters in Ĥi or Ĥf . The
experimentally relevant topological invariant for the quenched
state is defined in such a way that its change accompanies the
phase transition.

A topologically driven phase transition in the quenched
state has been argued to exist in the one-dimensional super-
fluid with spin-orbit coupling, in which the superfluid order
parameter and the tunneling conductance at the edge were
calculated numerically [10]. However, unambiguous evidence
for the nonanalyticity of observables cannot be obtained from
the numerics. In this paper we study the quenched state of a
Chern insulator. We argue that the Hall conductance in the long
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time limit after the quench can be expressed as the integral of
the Berry curvature weighted by the occupation number over
the Brillouin zone. In a generic two-band Chern insulator,
the Hall conductance is not quantized, but is a continuous
function of the energy gap mf in the post-quench Hamiltonian
Ĥf . However, the derivative of the Hall conductance with
respect to mf is logarithmically divergent in the limit mf → 0
if the Chern number for the ground state of Ĥf changes at
mf = 0. And the prefactor of the logarithm is the ratio of
the change of the Chern number to the energy gap in the
initial state. We strictly prove this statement by relating the
nonanalyticity of the Hall conductance to the spectrum of
Ĥf nearby the gap closing point in the Brillouin zone. The
experimentally relevant topological invariant for the quenched
state is the winding number of the Green’s function, which
is equal to the Chern number for the ground state of Ĥf but
is generally different from the Chern number of the unitarily
evolving wave function. We then identify a nonequilibrium
phase transition in the quenched state, which has a topological
nature in the sense that the nonanalyticity is determined by
the change of the topological invariant at the transition. The
nonanalytic behavior of the Hall conductance is universal,
being independent of the symmetry of the model or local
perturbations to Ĥi and Ĥf . Our findings serve as a benchmark
in the future study of the topologically driven phase transitions
in the quenched states.

The contents of the paper are arranged as follows. We derive
the formula for the quench-state Hall conductance in a N -band
Chern insulator in Sec. II, and show its form in a two-band
Chern insulator in Sec. III. In Sec. IV we study a general two-
band Chern insulator and prove the universal nonanalytic be-
havior of the Hall conductance. Subsequently, in Sec. V we ap-
ply our formalism to three models, namely the Dirac model, the
Haldane model, and the Kitaev honeycomb model and demon-
strate that numerical results for the Hall conductance close to
critical points do in fact show the expected universal behavior.
We discuss the topological invariant for the quenched state in
Sec. VI. At last, a concluding section summarizes our results.

II. HALL CONDUCTANCE OF THE QUENCHED STATE

Let us consider a N -component Fermi gas in two dimen-
sions. Its Hamiltonian in momentum space is written as

Ĥ =
∑

�k
ĉ
†
�kH�kĉ�k, (1)

where ĉ�k = (ĉ�k1,ĉ�k2, . . . ,ĉ�kN )T is the fermionic operator. i =
1,2, . . . ,N might denote the spin of electrons, the sublattice
index in the case of a honeycomb lattice, or the internal state of
atoms. The single-particle Hamiltonian H�k has N eigenvalues,
which form N energy bands, respectively. If the Fermi energy
lies within the band gap, the bands lower than the Fermi energy
are fully occupied in the ground state, but those above the
Fermi energy are empty. The Chern number of the ground-state
wave function is defined as (see an introduction of the Chern
number in Ref. [23])

C = i

2π

∑
α∈oc

∫
d�k2

(〈
∂u�kα

∂kx

∣∣∣∣ ∂u�kα

∂ky

〉
− H.c.

)
, (2)

where |u�kα〉 is the eigenvector of H�k with α = 1,2, . . . ,N

denoting the different bands. The sum of α is over all the
occupied bands, and the integral with respect to �k is over the
Brillouin zone. The Chern number is a topological invariant,
which is robust against a local deformation of the Hamiltonian
and can only take an integer value.

The Chern number describes the topological property of
the ground-state wave function. In the celebrated paper by
Thouless et al. [21], the Chern number is related to the Hall
conductance σG

H as

σG
H = Ce2/h. (3)

The Chern number for the ground state is then a measurable
physical quantity. Or one can say that the Hall conductance is
the topological order parameter of the ground state. When the
Chern number is nonzero, the Fermi gas displays a quantum
Hall effect even if there is no net magnetic field [24]. The
system is then called a Chern insulator.

Suppose that the system is initially in the ground state
of Ĥi , before the Hamiltonian is quenched into Ĥf . The
system is then driven out of equilibrium, and the wave function
follows a unitary time evolution |�(t)〉 = e−iĤf t |�(0)〉, where
|�(0)〉 denotes the ground state of Ĥi . In a few paradigmatic
models [4–6], the Chern number of the unitarily evolving
wave function is shown to be a constant, being independent
of the post-quench Hamiltonian Ĥf . If one chooses it as
the topological order parameter of the quenched state, the
topological order is always robust against a quench of the
Hamiltonian. However, the Chern number of the unitarily
evolving wave function cannot be directly measured. To
address the topological order parameter of the quenched state
in an experimentally relevant way, we study a measurable
quantity—the Hall conductance. In the quenched state, the Hall
conductance must be distinguished from the Chern number.

We notice that the Hall conductance cannot be expressed
as the expectation value of a local operator with respect to
the unitarily evolving wave function |�(t)〉. Instead, it is
the long-time response of the system to an external electric
field in linear response theory [25]. This fact is related to the
observation that measuring the Hall conductance unavoidably
introduces decoherence and therefore in the long time limit
the system cannot be described by the unitarily evolving wave
function any more. Instead, the system should be described
by the diagonal ensemble [26]. If the expectation value of an
observable Ô after the quench relaxes to some steady value, it
must be equal to its time average:

lim
t→∞ O(t) = lim

T →∞
1

T

∫ T

0
dt〈�(t)|Ô|�(t)〉. (4)

We insert the eigenbasis of Ĥf in the right-hand side. In the
limit T → ∞, the off-diagonal terms of Ô are averaged out
[26], we then have

lim
t→∞ O(t) =

∑
E

|〈E|�(0)〉|2〈E|Ô|E〉

= Tr[Ôρ̂], (5)

where |E〉 is the eigenstate of Ĥf and ρ̂ is diagonal in the basis
|E〉 with the diagonal elements |〈E|�(0)〉|2. The diagonal
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ensemble ρ̂ is obtained by dropping the off-diagonal terms
in the initial density matrix. This is equivalent to considering
the decoherence effect. Even though Eq. (5) is based on
the hypothesis of nondegenerate eigenenergies, the diagonal
ensemble is also applicable in many integrable quantum
systems [27,28].

Based on the above argument, the Hall conductance of the
quenched state should be calculated in the diagonal ensemble.
Let us represent an arbitrary many-body eigenstate of Ĥf by
|{z�kα}〉, where z�kα = 1,0 denotes whether the single-particle
state |uf

�kα
〉 is occupied or not, respectively. Note that |uf

�kα
〉 is

the eigenvector of the post-quench single particle Hamiltonian
Hf

�k . The diagonal ensemble can be written as

ρ̂ =
∑
{z�kα}

p({z�kα})|{z�kα}〉〈{z�kα}|, (6)

where p({z�kα}) = | 〈{z�kα}|�(0)〉 |2 and the sum is over all the
possible occupation configurations.

Now let us suppose a system located in the x − y plane
with its density matrix being ρ̂. ρ̂ is stationary in the sense that
[ρ̂,Ĥf ] = 0. Therefore, we can use the linear response theory
to calculate the Hall conductance by simply replacing the
thermal ensemble by ρ̂. In the linear response theory [25] we
suppose that an infinitesimal electric field is switched on in the
x direction, and then the current in the y direction is measured
after an infinitely long time. The current is proportional to
the electric field strength with the constant of proportionality
defined as the Hall conductance. The Hall conductance can be
expressed by the current-current correlation as

σH = lim
ω→0

1

Sω

∫ ∞

0
dteiωtTr(ρ̂[Ĵy,Ĵx(t)]), (7)

where ω denotes the frequency of the electric field and the limit
ω → 0 corresponds to the dc conductance, and S denotes the
area of the system. Ĵx and Ĵy are the current operators in the x

and y directions, respectively. They are written as

Ĵx/y = e
∑

�k
ĉ
†
�k
∂Hf

�k
∂kx/y

ĉ�k. (8)

Since both the Hamiltonian and the current operator are
quadratic, we can reexpress the Hall conductance by using
the single-particle states as

σH = lim
ω→0

1

Sω

∫ ∞

0
dteiωt

∑
�k,α

n�kα

〈
u

f

�kα

∣∣[Ĵ y

�k ,Ĵ x
�k (t)

]∣∣uf

�kα

〉
, (9)

where the momentum-resolved current operator is a N -by-

N matrix, defined as Ĵ
x/y

�k = e
∂Hf

�k
∂kx/y

. The occupation number
n�kα is related to the probability function p({z�kα}) by n�kα =∑

{z�k′α′ } p({z�k′α′ })δz�kα,1. In Eq. (9) the sum of α is over all the
energy bands.

When calculating the integral with respect to t in Eq. (9),
one can insert a factor e−η|t | into the integrand with η being an
infinitesimal number. The integral then becomes convergent.
Because the dc Hall conductance must be a real number, we
keep the real part of σH , but neglect the imaginary part. The

Hall conductance becomes

σH =−ie2

S

∑
�k,α,β

n�kα

(ε�kα − ε�kβ)2

×
[〈

u
f

�kα

∣∣∂Hf

�k
∂ky

∣∣uf

�kβ

〉〈
u

f

�kβ

∣∣∂Hf

�k
∂kx

∣∣uf

�kα

〉− H.c.

]
(10)

where ε�kα denotes the eigenvalue of Hf

�k in the band α. In

thermodynamic limit,
∑

�k is replaced by S
(2π)2

∫
d�k2. By using

the relation Hf

�k = ∑
α ε�kα|uf

�kα
〉〈uf

�kα
|, we finally express the

Hall conductance as

σH = e2

h
i

2π

∑
α

∫
d�k2n�kα

(〈
∂u

f

�kα

∂kx

∣∣∣∣ ∂u
f

�kα

∂ky

〉
− H.c.). (11)

We choose e2/h as the unit of conductance. The dimensionless
Hall conductance Cneq = σH/(e2/h) is expressed as

Cneq = i
2π

∑
α

∫
d�k2n�kα

(〈
∂u

f

�kα

∂kx

∣∣∣∣ ∂u
f

�kα

∂ky

〉
− H.c.

)
. (12)

This formula of Hall conductance stands for the quenched
states in general Fermi gases, in which the interaction
between fermions is neglected. We notice that a Kubo formula
calculation by Dehghani, Oka, and Mitra [29] derived the
similar formula in a different way for Floquet topological
states. Comparing Eq. (12) with Eq. (2), we see the difference
between the quench-state Hall conductance and the ground-
state Chern number. In the integrand of Eq. (12), the Berry
curvature is weighted by the occupation number n�kα , and the
sum of α is over all the bands. In the special case of Ĥi = Ĥf

(no quench), the occupation is either 0 for an empty band or
1 for a fully occupied band, and then the Hall conductance
reduces to the Chern number. But for Ĥi 	= Ĥf , no bands are
fully occupied or completely empty. n�kα changes continuously
with the momentum �k. The integrand of Eq. (12) cannot be
expressed as the curl of some function in the Brillouin zone,
so that Cneq is not quantized, but can take an arbitrary value.
This is different from the Chern number C, which must be an
integer.

III. QUENCH-STATE HALL CONDUCTANCE IN A
TWO-BAND CHERN INSULATOR

Equation (12) gives the Hall conductance of the quenched
states in N -component Fermi gases. Next we discuss the case
of N = 2, in which the Hall conductance can be conveniently
expressed as a function of the parameters in Ĥi and Ĥf by
utilizing the properties of the SU(2) algebra.

In a two-component Fermi gas, the single-particle Hamil-
tonian can always be decomposed into

H�k = �d�k · �σ , (13)

where �σ = (σx,σy,σz) denote the Pauli matrices. There might
be an additional constant in the expression of H�k; however, the
constant term has no effect on the eigenvectors, and, thus, does
not contribute to the Hall conductance. The Hall conductance is
only determined by the coefficient vectors �d�k = (d1�k,d2�k,d3�k)
in the initial and post-quench Hamiltonians.
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The two eigenvalues of H�k are ±d�k with

d�k =
√

(d1�k)2 + (d2�k)2 + (d3�k)2. (14)

The system has two bands, namely the lower band cor-
responding to the negative eigenvalue and the upper band
corresponding to the positive eigenvalue. There is a gap
between the two bands if we have d�k 	= 0 everywhere in the
Brillouin zone.

We set the chemical potential to zero, in which case the
lower band is fully occupied but the upper band is empty. The
Chern number of the ground state is written as

C = i

2π

∫
d�k2

(〈
∂u�k−
∂kx

∣∣∣∣ ∂u�k−
∂ky

〉
− H.c.

)
, (15)

where |u�k−〉 denotes the eigenvector of H�k with the negative
eigenvalue. The Chern number can be expressed by using the
coefficient vector as [23]

C =
∫

d�k2

(
∂ �d�k
∂kx

× ∂ �d�k
∂ky

)
· �d�k

4πd3
�k

. (16)

The Chern number usually keeps invariant as the Hamiltonian
changes. But at some special points of the parameter space,
the energy gap closes (d�k = 0) somewhere in the Brillouin
zone. The Chern number then has a jump, which indicates a
topological phase transition in the ground state.

We quench the Hamiltonian from Hi
�k = �di

�k · �σ to Hf

�k =
�df

�k · �σ , and then calculate the Hall conductance in the quenched

state. The eigenvectors of Hi/f

�k with the positive and negative

eigenvalues are denoted by |ui/f

�kα
〉 with α = ±, respectively.

The momentum �k is a good quantum number in both the initial
and the post-quench Hamiltonians. Therefore, the occupation
number is simply expressed as

n�kα = ∣∣〈uf

�kα

∣∣ui
�k−
〉∣∣2, (17)

where |ui
�k−〉 is the initial state according to our protocol. The

total occupation at each �k is conserved, satisfying

n�k+ + n�k− ≡ 1. (18)

In fact, the occupation number can be written as

n�k± = 1

2
∓ 1

2

�df

�k · �di
�k

d
f

�k di
�k

, (19)

where d
i/f

�k is the length of the coefficient vector �di/f

�k .
�df

�k · �di
�k

d
f

�k di
�k

is called the occupation factor, which is just the cosine of
the angle between the initial and the post-quench coefficient
vectors.

In the two-band Chern insulator, the Berry curvatures in the
lower and upper bands are opposite to each other everywhere
in the Brillouin zone [23]. We have

i

2π

⎛
⎝
〈

∂u
f

�k±
∂kx

∣∣∣∣∣∣
∂u

f

�k±
∂ky

〉
− H.c.

⎞
⎠ = ∓C�k, (20)

where

C�k =

(
∂ �df

�k
∂kx

× ∂ �df

�k
∂ky

)
· �df

�k

4π (df

�k )3
. (21)

Substituting Eqs. (19) and (21) into Eq. (12), we determine the
Hall conductance as

Cneq =
∫

d�k2

( �df

�k · �di
�k
)( ∂ �df

�k
∂kx

× ∂ �df

�k
∂ky

) · �df

�k
4πdi

�k(df

�k )4
, (22)

where the integral is over the Brillouin zone.
In the next section we analyze the behavior of Cneq close to

critical points at which the gap of the spectrum closes and C

changes.

IV. UNIVERSAL NONANALYTIC BEHAVIOR OF THE
HALL CONDUCTANCE IN TWO-BAND

CHERN INSULATORS

Suppose that there is a tunable parameter in the Hamiltonian
(13), namely M without loss of generality. The vector �d�k is
a function of M . We use Mi to denote the free parameter
in the initial Hamiltonian, and Mf to denote that in the
post-quench Hamiltonian. Every pair (Mi,Mf ) determines a
quenched state. We further suppose that the initial state (or
Mi) is fixed. The quench-state Hall conductance Cneq is then
a function of Mf . If the function Cneq(Mf ) is nonanalytic
at some point, namely at Mf = Mc

f , we say that there is
a nonequilibrium phase transition at Mf = Mc

f . The term
“nonequilibrium phase transition” comes from the fact that
this phase transition happens in the quenched state which is
far from equilibrium.

Let us discuss why Cneq(Mf ) can be nonanalytic. In a
generic model, �di/f

�k is an analytic function of �k and Mi/f .
According to Eq. (22), both numerator and denominator of
the integrand are analytic functions. The denominator is the
product of di

�k and (df

�k )4. The former is nonzero everywhere
in the Brillouin zone, since the initial state is usually chosen
to be a gapped state. But Mf is a variable. We use Mc

f to
denote the point at which the energy gap in the post-quench
Hamiltonian closes. At Mf 	= Mc

f , d
f

�k is nonzero at each �k.
Therefore, the integrand in Eq. (22) is an analytic function
of �k and is bounded everywhere in the Brillouin zone. Cneq

is then analytic at Mf 	= Mc
f . However, at Mf = Mc

f , the

energy gap of Ĥf closes somewhere in the Brillouin zone,
namely at �k = �q without loss of generality. We then have
d

f

�q = 0. The integrand in Eq. (22) is divergent at �k = �q. We
expect Cneq(Mf ) to be nonanalytic at Mf = Mc

f . It is worth
emphasizing that the nonanalyticity of Cneq(Mf ) can only be
found at the gap closing points of the post-quench Hamiltonian,
at which the Chern number for the ground state of Ĥf changes.

Let us first see how the Chern number given by Eq. (16)
is related to the expansion of the coefficient vector �d�k =
(d1�k,d2�k,d3�k) around �k = �q. One can easily see the topological
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nature of the Chern number by reexpressing it as

C = −1

2π

∫
d �S · (∇�k × �A), (23)

where

�A = d1�k∇�kd2�k − d2�k∇�kd1�k
2d�k(d�k − d3�k)

(24)

is the so-called Berry connection and �S denotes the Brillouin
zone oriented in the direction perpendicular to the momentum
plane. According to the Kelvin-Stokes theorem, the Chern
number equals the line integral of �A along the boundary of
the Brillouin zone, plus the line integrals of �A around all
the singularities of �A within the Brillouin zone. The former
integral must be zero due to the periodicity of �A. Supposing
that the singularities of �A are �q1,�q2, . . . ,�qN , we then have

C =
N∑

j=1

C(�qj ), (25)

with

C(�qj ) = 1

2π
lim
η→0

∮
∂Bη(�qj )

�A · d�k, (26)

where ∂Bη(�qj ) denotes the boundary of a circle of radius
√

η

centered at �qj , and the integral is along the anticlockwise
direction.

According to Eq. (24), a singularity of �A is a momentum �q
satisfying d3�q = d�q . Note that d�k in the expression of �A cannot
be zero in a gapped state. We then have d1�q = d2�q = 0 at the
singularity. In fact, the three components of the coefficient
vector are on an equal footing in the expression of the
Chern number. One can permute the three components in the
expression of �A. Therefore, a singularity of �A in general refers
to a momentum at which two components of the coefficient
vector vanish. Here we choose d1�q and d2�q as the vanishing
components without loss of generality. For convenience of
discussion, we call �q a singularity of �A whether d3�q = d�q or
d3�q = −d�q . d3�q is a free parameter of the model. We will denote
it as m in the following. In fact, m is nothing but (M − Mc)
in the Dirac model, the Haldane model, or the Kitaev model,
which will be discussed in Sec. V. Since m = 0 indicates the
closing of the energy gap, we call m the gap parameter.

In the case of multiple singularities in one Brillouin zone,
m at different singularities might refer to different parameters
in the model. An example is the Haldane model, where a
single Brillouin zone contains two singularities �q1 and �q2 with
d�q1 	= d�q2 . In a generic model, d�k must have a global minimum
point at one of the singularities, when the system is close to
the gap closing point. In other words, the energy gap must be
2|m| at one of the singularities. In fact, the minimum point
of d�k is always related to the symmetry of the model, so are
the singularities. On the other hand, if the energy gap closes
simultaneously at multiple singularities due to the symmetry
of the model, the gap parameter at these singularities must be
the same one. In this case, we say that m is the corresponding
gap parameter for these singularities. An example is the Kitaev
honeycomb model in a magnetic field.

According to Eqs. (25) and (26), the Chern number is
determined only by the coefficient vector in the infinitesimal
neighborhoods of the singularities. Therefore, at each singu-
larity �q, we expand �d�k into a power series. For this purpose we
assume that the expansion of d1�k and d2�k does not vary with
m. Then we have

d1�k =a1x
kx + a1y
ky + O(
k2),

d2�k =a2x
kx + a2y
ky + O(
k2), (27)

d3�k =m + O(
k2),

where 
�k := �k − �q and ajx and ajy depend on the singularity
and the model. A linear term is absent in the expression of d3�k .
Otherwise, the minimum point of d�k would not be at 
�k = 0,
which contradicts our assumption. We also assume that d�k has
an isolated minimum point at the singularity 
�k = 0. At m = 0
the spectrum has then a conic structure nearby the singularity.
This assumption puts constraints on ajx and ajy .

The Berry connection can be reexpressed as

�A =
(

d�k + d3�k
2d�k

)(
d1�k∇�kd2�k − d2�k∇�kd1�k

(d1�k)2 + (d2�k)2

)
. (28)

C(�q) is an integral of �A over the boundary of an infinitesimal
neighborhood of �q. When calculating C(�q), we can replace
the term inside the first bracket of Eq. (28) by its value
at 
�k = 0, i.e., [1 + sgn(m)]/2. The higher-order terms in
the expansion of d3�k have no relevant contribution to C(�q).
Regarding numerator and denominator inside the second
bracket of Eq. (28), the terms O(
k2) in d1�k or d2�k contribute
to the numerator a correction O(
k2) and to the denominator
a correction O(
k3), which can both be neglected when
calculating

∮
∂Bη(�qj )

�A · d�k in the limit η → 0. Therefore, C(�q)

is only determined by the lowest order expansion of the
coefficient vector given by Eq. (27). It is straightforward to
determine C(�q) as

C(�q) = 1
2 [1 + sgn(m)]sgn(a1xa2y − a2xa1y). (29)

At the gap closing point m = 0, the change of C(�q) is
sgn(a1xa2y − a2xa1y).

Next we discuss the nonanalyticity of the quench-state
Hall conductance, which can be expressed by using the initial
and post-quench coefficient vectors as given in Eq. (22). The
integral in the expression of Cneq is over the Brillouin zone
which is finite in general. If the integrand is an analytic
function of �k and the other parameters in the Hamiltonians
and is bounded in the Brillouin zone, Cneq must be analytic. In
a generic model, the coefficient vectors �di

�k and �df

�k are analytic
functions and are bounded. Therefore, Cneq is nonanalytic only
if d

f

�k vanishes somewhere in the Brillouin zone, that is the
energy gap of the post-quench Hamiltonian closes. Notice that
the initial state is chosen to be a gapped state so that di

�k cannot
be zero.

As mentioned above, the energy gap closes only at the
singularities. Without loss of generality, we suppose that
m is the corresponding gap parameter for the singularities
�q1,�q2, . . . ,�qN ′ with N ′ � N . The Hall conductance Cneq as
a function of mf (the gap parameter for the post-quench
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Hamiltonian) is nonanalytic at mf = 0. We divide the domain
of integration in the expression of Cneq into the infinitesimal
neighborhoods of �q1,�q2, . . . ,�qN ′ and the left area. The nonan-
alytic part of the Hall conductance is expressed as

Cη
neq =

N ′∑
j=1

C
(�qj )
neq , (30)

with

C
(�qj )
neq =

∫
Bη(�qj )

d�k2

( �df

�k · �di
�k
)( ∂ �df

�k
∂kx

× ∂ �df

�k
∂ky

) · �df

�k
4πdi

�k(df

�k )4
, (31)

where Bη(�qj ) is a circle of radius
√

η centered at �qj . η can be
arbitrarily small. Note that (Cneq − C

η
neq) is an analytic function

of mf , since d
f

�k has a positive lower limit in the corresponding
domain of integration.

C
(�q)
neq is an integral over the infinitesimal neighborhood of �q.

For calculating C
(�q)
neq we expand the coefficient vectors �di

�k and
�df

�k around �q. Let us first consider the lowest order expansion

given by Eq. (27). di
�k can be replaced by its value at �k = �q,

i.e., di
�q = |mi |, with mi denoting the gap parameter in the

initial Hamiltonian. The energy gap in the initial state is 2|mi |.
Substituting Eq. (27) into Eq. (31), for the denominator we
obtain

(
d

f

�k

)4
=
⎛
⎝m2

f +
2∑

j=1

(ajx
kx + ajy
ky)2

⎞
⎠

2

. (32)

We already assumed that d
f

�k has a conic structure at mf =
0. For ajx and ajy that meet this constraint, we can always
perform a linear transformation of coordinates to get

2∑
j=1

(ajx
kx + ajy
ky)2 = 
k′2. (33)

In the new coordinates, for the numerator of the integrand in
Eq. (31) we obtain

N = (a1xa2y − a2xa1y)
[
mim

2
f + mf 
k′2]. (34)

It is then straightforward to work out C
(�q)
neq, which is

C(�q)
neq ∼ −sgn(a1xa2y − a2xa1y)

2|mi | mf ln |mf |. (35)

Here we only show the nonanalytic part of C
(�q)
neq, which is

independent of the shape of the neighborhood or the choice of
η.

Clearly C
(�q)
neq is a continuous function of mf even at mf = 0.

The asymptotic behavior of its derivative in the limit mf → 0
is

lim
mf →0

dC
(�q)
neq

dmf

∼ −sgn(a1xa2y − a2xa1y)

2|mi | ln |mf |. (36)

Recall that sgn(a1xa2y − a2xa1y) equals the change of C(�q) at
the gap closing point. C(�q) is the contribution to the Chern
number from the singularity �q. For distinguishing C(�q) for the
ground state of Ĥf from that for the ground state of Ĥi , the

former is specifically denoted by the symbol C(�q)
f . C(�q)

f is given
by Eq. (29) in which m is replaced by mf . We can then express

Eq. (36) by using the change of C
(�q)
f at mf = 0 as

lim
mf →0

dC
(�q)
neq

dmf

∼ limmf →0− C
(�q)
f (mf ) − limmf →0+ C

(�q)
f (mf )

2|mi |
× ln |mf |. (37)

The nonanalytic part of the Hall conductance at mf = 0 is a

sum of C
(�q)
neq at the singularities �q1,�q2, . . . ,�qN ′ that corresponds

to mf . While the Chern number Cf is a sum of C
(�q)
f at

all the singularities �q1,�q2, . . . ,�qN in the Brillouin zone. The
singularity �qj with j > N ′ does not correspond to mf , and

then has no contribution to the nonanalyticity of Cneq. But C
(�qj )
f

also keeps invariant at mf = 0, since C
(�qj )
f changes only if its

corresponding gap parameter becomes zero. Therefore, the
asymptotic behavior in the derivative of the Hall conductance
can be expressed as

lim
mf →0

dCneq

dmf

∼ limmf →0− Cf (mf ) − limmf →0+ Cf (mf )

2|mi |
× ln |mf |. (38)

We thus proved that the nonanalytic behavior of the Hall
conductance is universal in a generic two-band Chern insulator.
The quench-state Hall conductance is a continuous function
of the gap parameter in the post-quench Hamiltonian. Its
derivative is logarithmically divergent as the gap parameter
becomes zero. The prefactor of the logarithm is the ratio of
the change of the Chern number for the ground state of the
post-quench Hamiltonian to the energy gap in the initial state.
The Hall conductance is nonanalytic only at the gap closing
points where the Chern number changes.

Up to now, we only considered the lowest order expansion
of the coefficient vector in the calculation of C

(�q)
neq. To finish

our proof, we will show that the higher-order terms in the
expansion do not affect the continuity of C

(�q)
neq and have no

contribution to the asymptotic behavior of dC
(�q)
neq/dmf in the

limit mf → 0.
Let us consider the second order term in the expansion of

d3�k [see Eq. (27)]. Without loss of generality, we suppose it to
be � = b3x
k2

x + b3y
k2
y + b3m
kx
ky , with b3x,b3y , and

b3m denoting the free parameters. We recalculate the integrand
in the expression of C

(�q)
neq [see Eq. (31)]. For the denominator

we obtain

(
d

f

�k
)4 =

[
m2

f +
2∑

j=1

(ajx
kx + ajy
ky)2 + 2mf

× (b3x
k2
x + b3y
k2

y + b3m
kx
ky

)+ O(
k4)

]2

.

(39)
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For the numerator we obtain

N = (a1xa2y − a2xa1y)

[
mim

2
f + mf

2∑
j=1

(
ajx
kx + ajy
ky

)2

+m2
f

(
b3x
k2

x + b3y
k2
y + b3m
kx
ky

)+ O(
k4)

]
.

(40)

Since the integral is over an infinitesimal neighborhood of �q,
the fourth order terms O(
k4) in numerator and denominator
of the integrand can be neglected. The additional second

order term in (df

�k )
4

that comes from � is proportional to mf .
Therefore, it is much smaller than the other second order terms
in the limit mf → 0 and can be neglected in the study of the
nonanalyticity at mf = 0. For the numerator, the additional
second order term coming from � is proportional to m2

f and
then can be neglected, since the other second order terms in
the numerator is proportional to mf . A more precise argument
can be obtained by replacing

∑2
j=1 (ajx
kx + ajy
ky)2 by


k′2 and replacing � by b
k′2 both in the numerator and
denominator of the integrand. After this replacement, the
integral can be worked out. It is then straightforward to verify
that � does not change the continuity of C

(�q)
neq or the asymptotic

behavior of dC
(�q)
neq/dmf . Furthermore, in the power series

of d3�k , the terms of order higher than two contribute to the
numerator or denominator of the integrand the corrections
which are at least of order three. These corrections can be
neglected for an infinitesimal domain of integration.

Next we consider the higher-order terms in d1�k or d2�k . The
terms of order higher than one contribute to the denominator
of the integrand a correction O(
k3). At the same time, the
terms of order higher than three contribute to the numerator a
correction O(
k3). Therefore, the terms of order higher than
three in d1�k or d2�k can be neglected. The second and third order
terms in d1�k or d2�k contribute to the numerator a linear term and
a second order term that is proportional to m2

f . The latter can be
neglected due to the same reason mentioned above. Finally, the
linear term in the numerator is antisymmetric under 
kα →
−
kα . The integral of an antisymmetric function over a circle
must be zero. Hence, the terms of order higher than one in d1�k or
d2�k can be neglected. Thereby, we finished our proof. Both the
Chern number for the ground state and the nonanalyticity of the
Hall conductance for the quenched state are only determined
by the lowest order expansion of the coefficient vector at the
singularities.

Finally, it is worth emphasizing that the asymptotic be-
havior of dCneq/dmf depends only upon the change of
the Chern number at mf = 0 and the energy gap in the
initial state. The universal nonanalytic behavior of the Hall
conductance is related to the conic structure of the spectrum at
the singularities. It is topologically protected in the sense that
it is independent of the detail of the model. Therefore, even if
we only consider the noninteracting model in the absence of
disorder in the above argument, the nonanalytic behavior of the
Hall conductance should not be changed by weak interaction
or weak disorder. But the Chern number in Eq. (38) is not well
defined in the presence of the interaction between particles. It
is then necessary to find a more generic topological invariant

instead of Cf . This generic topological invariant is argued to be
the winding number of the Green’s function in Sec. VI. In the
next section we demonstrate how the previous considerations
and results for the quench-state Hall conductance apply to
three selected models differing in various properties.

V. NONANALYTIC BEHAVIOR OF THE HALL
CONDUCTANCE IN THE DIRAC MODEL, THE HALDANE

MODEL, AND THE KITAEV HONEYCOMB MODEL

In this section we will show for some specific models
at hand that Cneq is in fact nonanalytic and the asymptotic
behavior agrees with the results from the previous section.
We will discuss three models with different symmetries and
dispersion relations, which are the Dirac model, the Haldane
model, and the Kitaev model on a honeycomb lattice.

A. The Dirac model

In the Dirac model [23] the coefficient vector is expressed
as

�d�k = (kx,ky,M − Bk2), (41)

where k2 = k2
x + k2

y . The Dirac model has continuous trans-

lational symmetry in real space. The range of �k is over the
whole momentum plane, which is treated as the Brillouin
zone in our formalism. Regarding our previous discussion
of the Chern number and the Hall conductance, the Dirac
model includes a little pitfall we need to overcome due to
an infinite Brillouin zone. There are two singularities which
are q = 0 and q = ∞ [6]. The contribution of q = 0 to the
Chern number is [1 + sgn(M)]/2 according to Eq. (29). But
the singularity at infinity also contributes to the Chern number
by [sgn(B) − 1]/2. Therefore, the total Chern number is in
fact

C = 1
2 [sgn(M) + sgn(B)]. (42)

This means that the Dirac model is an example of a system
with two distinct parameters that can drive a topological
transition. A topological phase transition happens in the
ground state at M = 0 or B = 0. For M = 0, the energy gap
closes at q = 0 which is the unique singularity that corresponds
to the nonanalyticity of C and Cneq. However, to analyze the
nonanalyticity of Cneq at Bf = 0 we need a little trick. We
substitute Eq. (41) into Eq. (22) and obtain the expression of
the quench-state Hall conductance. It is

Cneq =
∫

d�k2 [k2+(Bik
2−Mi)(Bf k2 − Mf )](Bf k2 + Mf )

4πdi
�k
(
d

f

�k
)4 ,

(43)

with

di
�k =

√
k2 + (Bik2 − Mi)2 (44)

and (
d

f

�k
)4 = [k2 + (Bf k2 − Mf )2]2. (45)

At this point it becomes clear that the transition at Bf = 0 is
related to the singularity at infinity. Here we cannot directly
apply the argument from the previous section, which was based
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FIG. 1. The Hall conductance Cneq as a function of (Mf ,Bf ) for
different (Mi,Bi). (Left panel) The initial state has a nonzero Chern
number with Mi,Bi > 0. (Right panel) The Chern number of the
initial state is zero with Mi > 0 but Bi < 0.

on an expansion of �d�k at the finite singularity. However, the
Dirac model features rotational symmetry, which is reflected
in the fact that the integrand in Eq. (43) is a function of k2.
It is convenient to calculate this integral in polar coordinates.
Integrating with respect to the azimuth angle, we obtain

Cneq =
∫ ∞

0
d(k2)

× [k2 + (Bik
2 − Mi)(Bf k2 − Mf )](Bf k2 + Mf )

4di
�k
(
d

f

�k
)4 .

(46)

Thereby it becomes clear that the integrand in Eq. (46) is
invariant as we simultaneously change the variable k → 1/k

and exchange the parameters Mi/f ↔ Bi/f . Consequently, the
Hall conductance is symmetric under an exchange of Mi/f and
Bi/f in the sense that

Cneq(Mi,Bi,Mf ,Bf ) = Cneq(Bi,Mi,Bf ,Mf ). (47)

The same argument applies for the Chern number, i.e.,
C(M,B) = C(B,M). Thus, the nonanalytic behavior of Cneq

at Bf = 0 is as same as that at Mf = 0.
Figure 1 shows the result of the Hall conductance obtained

by numerical integration of Eq. (46). Cneq is plotted as
a function of the parameters (Mf ,Bf ) in the post-quench
Hamiltonian. The left and right panels are for different initial
states. Different from the ground-state Hall conductance (42),
the quench-state Hall conductance changes continuously. Cneq

is close to zero as Mf and Bf have different signs, being
positive as Mf ,Bf � 0 but negative as Mf ,Bf � 0.

To analyze the behavior of the Hall conductance close to
the transition Mf = 0 we expand �d�k around �q = 0 and obtain

a
�q
1x =1, a

�q
1y = 0, a

�q
2x = 0, a

�q
2y = 1,

d3�q =M . (48)

Employing Eq. (36) we directly obtain the asymptotic behavior
of the quench-state Hall conductance:

lim
Mf →Mc

f

∂Cneq

∂Mf

∼ −1

2

ln
∣∣Mf − Mc

f

∣∣∣∣Mi − Mc
i

∣∣ . (49)
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FIG. 2. ∂Cneq/∂Mf as a function of ln |Mf |. The different types
of lines and points represent ∂Cneq/∂Mf for different (Mi,Bi,Bf ). We
simultaneously plot ∂Cneq/∂Mf in the limit Mf → 0+ and Mf →
0−, which are undistinguishable at small |Mf |.

In Fig. 2 we show the numerical result of ∂Cneq

∂Mf
as a function of

ln |Mf | in the vicinity of Mf = 0. In the range |Mf | < e−6,
this function is approximately linear with the slope −1/2|Mi |.
Thereby, the numerical results verify our analysis.

According to Eq. (47), Cneq is symmetric to Mf and Bf .
By replacing Mi/f by Bi/f in Eq. (49), we obtain

lim
Bf →Bc

f

∂Cneq

∂Bf

∼ −1

2

ln
∣∣Bf − Bc

f

∣∣∣∣Bi − Bc
i

∣∣ , (50)

where Bc
f = Bc

i = 0. It is worth emphasizing again that the
energy gap of the post-quench Hamiltonian does not close
at Bf = 0. The Hall conductance is nonanalytic at Bf = 0
because k → ∞ becomes a singularity of the integrand in
Eq. (46). However, in a generic model, the Brillouin zone
is finite so that a singularity at infinity does not exist.
Therefore, we can say that for a generic lattice system the
Hall conductance can only be nonanalytic at the gap closing
point of the post-quench Hamiltonian.

As expected from the general argument in the previous
section, the Hall conductance is continuous everywhere in the
parameter space of the quenched state. But its derivative is
logarithmically divergent at Mf = 0 or Bf = 0. The nonana-
lyticity of the Hall conductance reveals a nonequilibrium phase
transition at Mf = 0 or Bf = 0. This phase transition can be
addressed by a change of the Chern number for the ground
state of the post-quench Hamiltonian which is a topological
invariant. The nonanalytic behavior of the Hall conductance at
the nonequilibrium phase transition is quite different from that
at the ground-state phase transition. In the latter case, the Hall
conductance is discontinuous at the transition but its derivative
keeps zero almost everywhere in the parameter space.

This phase transition cannot be explained under the broken
symmetry picture, since the quenched states in different phases
share the common symmetries of the Dirac model. In fact, this
phase transition is topologically driven. And the Chern number
for the ground state of the post-quench Hamiltonian serves as
a suitable order parameter, which can be used to distinguish
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FIG. 3. Schematic diagram of the Haldane model. The black and
empty circles denote the “A” and “B” sites, respectively. The circle
arrow at the center of the dotted lines connecting three A sites or three
B sites shows the direction of hopping with the matrix element t2e

iφ .
The six vectors �as and �bs with s = 1,2,3 are marked, which are used
for expressing the Hamiltonian in momentum space.

the quenched states in different phases (see Sec. VI for more
discussion).

B. The Haldane model

Next we study the quench-state Hall conductance in the
Haldane model. The model was first proposed by Haldane
[24] in 1988. Due to the recent progress in manipulating cold
atoms, the Haldane model was realized in an optical lattice
[30]. The study of the nonequilibrium phase transition in the
Haldane model provides an opportunity for testing our theory.

The Haldane model describes a Fermi gas on a honeycomb
lattice with each site at most being occupied by a single
fermion. Figure 3 is the schematic diagram. There are two
interpenetrating sublattices, which are the sublattice “A”
denoted by the black circles and the sublattice “B” denoted by
the empty circles. For simplicity we set the lattice constant (the
edge length of the hexagon) to unity. In the Haldane model,
the Hamiltonian contains three terms:

Ĥ = Ĥ1 + Ĥ2 + Ĥ3. (51)

The first term describes the hopping between the nearest
neighbors, i.e., between one A site and one B site, with the
hopping matrix element set to unity. Ĥ1 is expressed as

Ĥ1 =
∑

〈 �Ai, �Bj 〉
(ĉ†

�Ai

ĉ �Bj
+ H.c.), (52)

where ĉ
†
�Ai

and ĉ �Bj
are the fermionic operators, �Ai and �Bj de-

note different A and B sites, respectively, and 〈 �Ai, �Bj 〉 denotes
the nearest-neighbor relation. The second term describes the
hopping between the next-nearest neighbors, i.e., between two
A sites or between two B sites. The hopping matrix elements
are complex numbers. And inside each hexagon, it is (t2eiφ) if
the hopping is in the clockwise direction (see the circle arrow
in Fig. 3), but (t2e−iφ) if the hopping is in the anticlockwise

direction. Ĥ2 is expressed as

Ĥ2 =
∑

〈〈 �Ai, �Aj 〉〉
(t2e

iφĉ
†
�Ai

ĉ �Aj
+ H.c.)

+
∑

〈〈 �Bi, �Bj 〉〉
(t2e

iφĉ
†
�Bi

ĉ �Bj
+ H.c.), (53)

where t2 and φ are real numbers, and 〈〈 �Ai, �Aj 〉〉 denotes that
the sites �Ai and �Aj are the next-nearest neighbors to each other
and the hopping from �Aj to �Ai is in the clockwise direction.
The third term of the Hamiltonian describes an on-site potential
which breaks the inversion symmetry. Ĥ3 is expressed as

Ĥ3 = M
∑

�Ai

ĉ
†
�Ai

ĉ �Ai
− M

∑
�Bi

ĉ
†
�Bi

ĉ �Bi
. (54)

The Haldane model is a two-band model. We express the
Hamiltonian in momentum space. In the basis (ĉ�k1,ĉ�k2)T where

ĉ�k1 = ∑
�Aj

e
−i�k· �Aj√

L
ĉ �Aj

and ĉ�k2 = ∑
�Bj

e
−i�k· �Bj√

L
ĉ �Bj

(L is the total
number of sites), the single-particle Hamiltonian is in the form
of Eq. (13) with the components of �d�k expressed as

d1�k =
∑

s=1,2,3

cos(�k · �as),

d2�k =
∑

s=1,2,3

sin(�k · �as),

d3�k =M − 2t2 sin φ
∑

s=1,2,3

sin(�k · �bs). (55)

Here we employ six constant vectors

�a1 =
(

0
−1

)
, �a2 = 1

2

(√
3

1

)
, �a3 = 1

2

(−√
3

1

)
,

�b1 =
(√

3
0

)
, �b2 = 1

2

(−√
3

3

)
, �b3 = −1

2

(√
3

3

)
, (56)

which are shown in Fig. 3.
In order to investigate the gappedness of the spectrum we

fix t2 and φ, while changing M . Up to lattice translations we
find two distinct solutions for d�q = 0, namely

�q+ =
(

8π

3
√

3
,0

)
for M = M+

c = 3
√

3t2 sin φ (57)

and

�q− =
(

4π

3
√

3
,0

)
for M = M−

c = −3
√

3t2 sin φ. (58)

Thereby we find that the Haldane model is an example of a
system with different gap closing points �q± depending on the
external parameters. Figure 4 schematically shows these gap
closing points and their lattice translations in the �k plane. For
M = M+

c the energy gap closes at each empty circle, while
for M = M−

c the gap closes at each black circle. We notice
that in the first Brillouin zone which is the hexagon centered
at � in Fig. 4, the singularities are located at the vertices of the
boundary. In order to avoid problems when evaluating Eq. (22)
we choose a different Brillouin zone, which is the rhomboid
area surrounded by the dashed lines in Fig. 4. With this choice,
the singularity is located inside the Brillouin zone.

085134-9



PEI WANG, MARKUS SCHMITT, AND STEFAN KEHREIN PHYSICAL REVIEW B 93, 085134 (2016)

FIG. 4. The reciprocal lattice of the Haldane model. � = (0,0)
denotes the origin. The hexagon surrounding � point is the first
Brillouin zone. The black (empty) circles denote the singularities at
which the energy gap closes for M = M−

c (M = M+
c ). We choose

the Brillouin zone surrounded by the dashed lines to calculate the
Hall conductance. �q is the singularity inside this Brillouin zone as
M = M+

c , and the shadow around �q represents the region contributing
to the nonanalyticity of the Hall conductance.

In order to obtain the Chern number and the asymptotic
behavior of the quench-state Hall conductance we expand �d�k
[Eq. (55)] at the gap closing points, yielding the coefficients

a
�q+
1x = 3

2 , a
�q+
1y = 0, a

�q+
2x = 0, a

�q+
2y = − 3

2 ,

d3�q+ = M − 3
√

3t2 sin φ (59)

and

a
�q−
1x = − 3

2 , a
�q−
1y = 0, a

�q−
2x = 0, a

�q−
2y = − 3

2 ,

d3�q− = M + 3
√

3t2 sin φ, (60)

respectively. Plugging this into Eq. (29), the Chern number of
the ground state is found to be

C = 1
2 [sgn(M + 3

√
3t2 sin φ) − sgn(M − 3

√
3t2 sin φ)].

(61)
Let us now study the quench-state Hall conductance as a

function of Mf while fixing the initial parameters Mi , t2i ,
and φi and the post-quench parameters t2f and φf . The Hall
conductance is nonanalytic at Mf = Mc

f with

Mc
f := +3

√
3t2f sin φf , (62)

where the gap of the post-quench Hamiltonian closes at the
momentum �q+. The Hall conductance is also nonanalytic at
Mf = −3

√
3t2f sin φf . But the nonanalytic behavior of the

Hall conductance is the same at the two different gap closing
points. We will then only discuss the case of Mf = Mc

f .
Since �q+ is the unique singularity at Mf = Mc

f the quench-
state Hall conductance is according to Eq. (30) determined by
C

(�q+)
neq and plugging the expansion (59) into Eq. (36) yields

dCneq

dMf

∼ 1

2

ln
∣∣Mf − Mc

f

∣∣∣∣Mi − Mc
i

∣∣ . (63)

This result is verified by the numerical evaluation of the Hall
conductance (22). Figure 5 shows the Hall conductance and
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FIG. 5. The Hall conductance and its derivative in the vicinity of
Mf = Mc

f . The former is plotted in the left panel, while the latter is
plotted in the right panel. In the right panel, the solid lines denote
dCneq

dMf
obtained from numerical integration, while the dashed one is a

straight line with slope 1
2|Mi−Mc

i
| . The parameters are set to Mi = 0,

φi = φf = π/6, t2i = 0.5, and t2f = 1.

its derivative. We see clearly that Cneq is a continuous function
and dCneq/dMf is a linear function of ln |Mf − Mc

f | in the
limit Mf → Mc

f . The slope of dCneq/dMf coincides with our
prediction.

C. The Kitaev honeycomb model

Finally, we study the Kitaev honeycomb model in a
magnetic field. Different from the Dirac model or the Haldane
model, the Kitaev honeycomb model [31] is not a fermionic
model, but a spin-1/2 model defined on a honeycomb lattice
with generally anisotropic nearest-neighbor interactions (see
Fig. 6). The Hamiltonian of the isotropic Kitaev honeycomb
model in a magnetic field �h is

Ĥ (�h) = −
∑

α∈{x,y,z}

⎡
⎣J

∑
α links

σ̂ α
i σ̂ α

j −
∑

j

hασ̂ α
j

⎤
⎦, (64)

where the sum over the x, y, or z links means the sum over
pairs of lattice sites 〈i,j 〉 that are linked by a bond labeled by

FIG. 6. Lattice of the Kitaev honeycomb model. Spin-1/2 degrees
of freedom reside on the vertices of a honeycomb lattice. The
anisotropic nearest-neighbor interaction depends on the link type (x,
y, or z).
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x, y, or z in Fig. 6, respectively, and σ̂ α denotes the three Pauli
matrices. We set the bond length and J to unity. It has been
shown [32] that in the absence of a magnetic field (�h = 0) for
the above Hamiltonian one can find a Jordan-Wigner contour,
which after identifying a conserved Z2 operator [31] and
switching to momentum space yields a two-band Hamiltonian
as defined in Eq. (13) with coefficient vector

�d�k = (d1�k,0,d3�k), (65)

where

d1�k = sin( �Q1 · �k) + sin( �Q2 · �k),

d3�k = 1 + cos( �Q1 · �k) + cos( �Q2 · �k). (66)

Here �Q1 = (
√

3
2 , 3

2 ) and �Q2 = (−
√

3
2 , 3

2 ) are the lattice vectors.
This Hamiltonian can be diagonalized by a Bogoliubov

transformation yielding a gapless spectrum
√

d2
1�k + d2

3�k .

Switching on an external field �h opens a gap in the spectrum.
For isotropic spin-spin couplings there exists a diagonal form
of the Hamiltonian also with nonzero magnetic field [31] and

the spectrum becomes
√

d2
1�k + d2

2�k + d2
3�k with

d2�k = 2M[sin( �Q1 · �k) − sin( �Q2 · �k) − sin(
√

3kx)], (67)

where M ∼ hxhyhx

J 2 . The diagonal Hamiltonian can be trans-
formed to the two-band form in Eq. (13) via a Bogoliubov
transformation [33], yielding

�d�k = (d1�k,d2�k,d3�k). (68)

The spin-1/2 model with the Hamiltonian Ĥ (�h) ≡ Ĥ (M)
is thereby transformed into a gapped two-band model of
fermions. We can then define the Chern number. The Chern
number of the ground state is

C = sgn(M). (69)

A topological phase transition in the ground state happens
at M = 0, i.e., at zero magnetic field, at which the energy
gap closes with the roots of d�k sitting on the corners of the
hexagonal Brillouin zone (see Fig. 7). These roots are the
singularities of the Berry curvature. There are two types of
conic singularities, denoted by the black and the empty circles
in Fig. 7. As in the Haldane model, we choose a rhomboid
unit cell as the Brillouin zone. We then have to consider the
singularities at

�q1 =
(

8π

3
√

3
,0

)
, �q2 =

(
4π

3
√

3
,0

)
. (70)

As opposed to the previous examples the Kitaev model exhibits
two simultaneous gap closing points in the spectrum. The
expansion for the components of the coefficient vector �d�k as
in Eq. (27) reveals that both gap closing points differ, since

d
(�q1)

1�k = − 3
2
ky, d

(�q1)

2�k = −3
√

3M, d
(�q1)

3�k = 3
2
kx,

d
(�q2)

1�k = − 3
2
ky, d

(�q2)

2�k = 3
√

3M, d
(�q2)

3�k = − 3
2
kx. (71)

Notice that in this model it is the first and third components of
�d�k vanishing at the singularities. According to the properties of
the SU(2) algebra, we can permute the three components of �d�k

FIG. 7. The reciprocal lattice of the Kitaev honeycomb model.
� = (0,0) denotes the origin. The black and the empty circles denote
the singularities at which the energy gap closes as there is no magnetic
field. The dashed lines surround the Brillouin zone that we choose
to calculate the Chern number and the Hall conductance. �q1 and �q2

are two singularities inside this Brillouin zone. The shadows around
them represent the regions contributing to the nonanalyticity of the
Hall conductance.

without changing the results for C and Cneq. One of the possible
permutations is (d1�k,d2�k,d3�k) → (d3�k,d1�k,d2�k). With Eq. (29)
it then becomes clear how the Chern number in Eq. (69) comes
about.

Next we study the quench-state Hall conductance in the
two-component Fermi gas with the coefficient vector given
by Eq. (68). It is worth mentioning that the value of the Z2

operator defined in the transformation from the Kitaev model to
the fermionic model is conserved in a quench of the parameter
M . Therefore, a quench in the Kitaev model can be mapped
into a quench in the corresponding two-component Fermi gas
and vice versa. However, the observable in the Kitaev model
that corresponds to the Hall conductance is difficult to write
down, which will not be discussed in this paper.

Since there are two singularities in the Brillouin zone, the
nonanalytic part of the Hall conductance can be expressed as

Cneq ∼C(�q1)
neq + C(�q2)

neq . (72)

Plugging the expansion coefficients from Eq. (71) after the
permutation into Eqs. (35) and (30) yields

Cneq ∼ −(Mf − Mc
f

)
∣∣Mi − Mc

i

∣∣ ln
∣∣Mf − Mc

f

∣∣, (73)

where Mc
i = 0 and Mc

f = 0 denote the gap closing point
in the initial and post-quench Hamiltonians, respectively.
Accordingly, the asymptotic behavior of the derivative at the
gap closing point Mc

f = 0 can be expressed as

lim
Mf →Mc

f

dCneq

dMf

∼ − ln
∣∣Mf − Mc

f

∣∣∣∣Mi − Mc
i

∣∣ . (74)

Figure 8 shows the Hall conductance and its derivative
obtained by numerical integration of Eq. (22) for a quench
starting from different Mi . As expected, if no quench is
performed, Cneq equals the Chern number of the initial state.
When Mf approaches the gap closing point Mc

f = 0, the
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FIG. 8. (Left panel) The function Cneq(Mf ) for a quench start-
ing from Mi = 1/2 obtained by numerical integration (adaptive
Simpson’s) of Eq. (22) over a half unit cell and doubling the
result. (Right panel) Derivative of Cneq with respect to Mf for a
quench from Mi = 1/2 and one quench from Mi = 1/4. The dots
denote the numerical results, while the lines are fits of the form
(−|Mi − Mc

i |−1 ln |Mf − Mc
f | + const.).

curve becomes infinitely steep, before it flattens again for
smaller Mf . The derivative dCneq/dMf is displayed together
with fits of the form (−|Mi − Mc

i |−1 ln |Mf − Mc
f | + const.).

The numerical results form a perfect line as a function of
ln |Mf − Mc

f | and thereby confirm the validity of above
considerations regarding the asymptotic behavior of Cneq(Mf )
nearby Mc

f .
Having verified the validity of our assertions from Sec. IV

regarding the universal critical behavior of the quench-state
Hall conductance by testing it for three different example
systems we will in the next section discuss what is the
underlying topological invariant for the quenched state that
changes at the critical points.

VI. TOPOLOGICAL INVARIANT FOR
THE QUENCHED STATE

Now we are prepared to discuss which is the experimentally
relevant topological invariant for the quenched state of a Chern
insulator. A naive idea of defining the topological invariant for
a quenched state is to use the Chern number of the unitarily
evolving wave function. It is defined as

C(t) = i

2π

∑
α∈oc

∫
d�k2

(〈
∂u�kα(t)

∂kx

∣∣∣∣ ∂u�kα(t)

∂ky

〉
− H.c.

)
. (75)

C(t) is a straightforward extension of the Chern number for the
ground state given by Eq. (2) in which the eigenstate |u�kα〉 is
replaced by the evolving single-particle state |u�kα(t)〉. The sum
of α is over the occupied bands in the initial state. C(t) is well
defined for a noninteracting model in which the evolution of
different single-particle states is independent of each other. But
C(t) keeps invariant after a quench, being independent of the
post-quench Hamiltonian Ĥf [4–6]. Therefore, one cannot use
C(t) to explain the nonequilibrium phase transition discovered
in this paper, which is indicated by the nonanalyticity of the
Hall conductance as Ĥf changes.

It has been shown in previous sections that the Chern num-
ber Cf for the ground state of the post-quench Hamiltonian
can be used as the topological invariant for the quenched

state. It is experimentally relevant in the sense that the
nonequilibrium phase transition is always accompanied by the
change of Cf and vice versa. The change of Cf also determines
the asymptotic behavior of the derivative of the Hall con-
ductance at the transition. But Cf is not well defined in the
presence of interaction. On the other hand, it is well known
that the winding number of the Green’s function W is equal
to the Chern number for the ground states [34]. Next we will
show that, for the quenched states in a noninteracting model,
W in fact equals the Chern number Cf , being independent of
the initial state. Since W is also well defined in the presence of
interaction, it serves as a more generic topological invariant for
the quenched state. We notice that W was already employed
to describe the topological property of the quenched state in a
topological superfluid [8].

The textbook definition of the retarded Green’s function
after a quench is

Gr
j,j ′ (�k,t,t ′) = −iθ (t − t ′) 〈�(0)| {ĉ�kj (t),ĉ†

�kj ′ (t
′)}+ |�(0)〉 ,

(76)
where |�(0)〉 denotes the initial state, ĉ�kj with j = 1,2, . . . ,N

denotes the fermionic operator in the original basis of the
Hamiltonian (1), and { }+ denotes the anticommutator. The
Green’s function in frequency-momentum space is obtained
by a Fourier transformation as

Gr
j,j ′ (ω,�k) =

∫ ∞

−∞
d(t − t ′)eiω(t−t ′)Gr

j,j ′ (�k,t,t ′). (77)

Note that t,t ′ > 0 must be larger than the time when the quench
is performed. The domain of the Green’s function can be
extended to imaginary frequency by analytic continuation. Let
us use Gr to denote the N -by-N Green’s function matrix with
the elements Gr

j,j ′ (iω,�k). The winding number is then defined
as [34,35]

W = 1

24π2

∫ ∞

−∞
dω

∫
d�k2εαβγ Tr

×
[
Gr−1 ∂Gr

∂kα

Gr−1 ∂Gr

∂kβ

Gr−1 ∂Gr

∂kγ

]
, (78)

where εαβγ is the Levi-Civita symbol with α,β,γ = 0,1,2, and
k0 = ω, k1 = kx , and k2 = ky . Gr−1 is the inverse of Gr .

In Eq. (76) the time-dependent operators are defined as
ĉ�kj (t) = eiĤf t ĉ�kj e

−iĤf t . In the absence of interaction, the

post-quench Hamiltonian Ĥf is quadratic. ĉ�kj (t) must be a
linear combination of ĉ�kj ′ with j ′ = 1,2, . . . ,N . Therefore,

{ĉ�kj (t),ĉ†
�kj ′ (t

′)}+ is in fact a number instead of an operator.
The Green’s function is then independent of the initial state
|�(0)〉, so is the winding number W . W depends only upon
the post-quench Hamiltonian Ĥf . W keeps invariant even if
we replace |�(0)〉 by the ground state of Ĥf . Therefore, W

must equal the Chern number Cf for the ground state of Ĥf

[34].
We reexpress the asymptotic behavior of the derivative of

the Hall conductance by using W as

lim
mf →0

dCneq

dmf

∼ limmf →0− W (mf )− limmf →0+ W (mf )

2|mi | ln |mf |.
(79)
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We expect that Eq. (79) also stands in the presence of weak
interaction. Moreover, 2|mi | and 2|mf | in the formula denote
the energy gap of Ĥi and Ĥf , respectively, which are well
defined even in the presence of interaction. The change of
the winding number determines the nonanalyticity of the
Hall conductance at the gap closing point of Ĥf . Whether
there is a nonequilibrium phase transition in the quenched
state is uniquely determined by whether the winding number
changes. In this sense, the nonequilibrium phase transition
is topologically driven. And the winding number is the
experimentally relevant topological invariant for the quenched
state.

VII. CONCLUSIONS

In summary, the Hall conductance of a quenched state
in the long time limit is calculated by applying the linear
response theory to the diagonal ensemble. In the eigenbasis
of the post-quench Hamiltonian, the diagonal ensemble is
obtained by neglecting all the off-diagonal elements in the
initial density matrix. The quench-state Hall conductance can
be expressed as the integral of the Berry curvature weighted
by the nonequilibrium distribution of particles [see Eq. (12)].
It is not quantized in general, but can take an arbitrary value.

The Hall conductance as a function of the gap parameter
mf in the post-quench Hamiltonian Ĥf displays a universal
nonanalytic behavior in a generic two-band Chern insulator.
The examples discussed in this work include the Dirac model,
the Haldane model, and the Kitaev honeycomb model in the
fermionic basis. The Hall conductance is continuous every-
where. But its derivative with respect to mf is logarithmically
divergent in the limit mf → 0 (the energy gap of Ĥf is
2|mf |), if the winding number of the Green’s function for
the quenched state W changes at mf = 0. The prefactor of the
logarithm is the ratio of the change of W to the energy gap in
the initial state [see Eq. (79)]. The nonanalyticity of the Hall

conductance indicates a topologically driven nonequilibrium
phase transition. The topological invariant for the quenched
state is the winding number W .

The Hamiltonian of a two-band Chern insulator in momen-
tum space can be decomposed into the linear combination of
Pauli matrices. The nonanalyticity of the Hall conductance
depends only upon the lowest order expansion of the coef-
ficients of Pauli matrices at the singularities in the Brillouin
zone. Singularities are defined as momenta where the energy
gap closes at mf = 0.

The Haldane model has been realized in an optical lattice
recently [30]. A system of cold atoms is well isolated from
the environment. The nonequilibrium distribution of atoms in
a quenched state survives for a long time. Our prediction can
therefore be checked in a system of cold atoms. It is difficult
to measure the Hall conductance directly in cold atoms. But
the Hall conductance can also be obtained from the Faraday
rotation angle [36], which is correspondingly easier to measure
in cold atoms. On the other hand, in solid-state materials where
the measurement of Hall conductance is a standard technique,
the nonequilibrium distribution of electrons is difficult to
realize due to the fast relaxation process. A possible solution
is to periodically drive the system for keeping it out of
equilibrium. The time evolution of a periodically driven system
is governed by a time-independent Floquet Hamiltonian [37].
It was suggested that a Floquet Chern insulator can be realized
in graphene ribbons [38,39]. Due to the similarity between
the dynamics of a periodically driven quantum state and a
quenched state [40], we expect that the techniques developed
in this paper can also be used to analyze the nonanalyticity of
the Hall conductance in a Floquet Chern insulator.
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We study the Hall conductance in a Floquet topological insulator in the long time limit after sudden switches
of the driving amplitude. Based on a high frequency expansion of the effective Hamiltonian and the micromotion
operator we demonstrate that the Hall conductance as a function of the driving amplitude follows universal
nonanalytic laws close to phase transitions that are related to conic gap closing points, namely a logarithmic
divergence for gapped initial states and jumps of a definite height for gapless initial states. This constitutes a
generalization of the results known for the static systems to the driven case.

DOI: 10.1103/PhysRevB.96.054306

I. INTRODUCTION

Since the experimental discovery and theoretical explana-
tion of the quantum Hall effect [1,2] the concept of topological
order has gained great importance in condensed matter physics
for the understanding of phase transitions that cannot be
associated with symmetry breaking. The astonishingly robust
integer quantization of the Hall conductance in units of the
conductance quantum, σxy = Ce2/h, is due to the fact that
C ∈ Z can be identified as a topological invariant of the
underlying band structure, namely the Chern number. After
Haldane’s seminal proposal of a model system featuring a
quantized Hall conductance in the absence of an external
magnetic field [3] enormous experimental and theoretical
efforts led to the discovery of a large variety of systems with
similar topologically protected transport properties, which are
today referred to as topological insulators (TIs) [4].

Following theoretical proposals [5,6] a topological insulator
was recently realized experimentally with ultracold fermions
in a periodically shaken optical lattice [7]. Despite the absence
of energy conservation such Floquet topological insulators
(FTIs) can be characterized by the Chern number of an
effective Hamiltonian and support edge modes [8]. This allows
us to tune the topological properties of the system by adjusting
the external driving force and opens possibilities to investigate
nonequilibrium signatures of topological insulators, which
gained increasing theoretical attention lately [9–13]. Note,
however, that in some aspects the behavior of FTIs can
significantly differ from the known behavior of TIs, e.g., when
considering the bulk-edge correspondence [14].

A situation that was studied recently by Dehghani et al.
[10] is the measurement of the Hall conductance a long time
after suddenly switching on the external driving force. The
system is initially prepared in the ground state of the undriven
Hamiltonian H0. Then the driving is suddenly switched on
at time t = 0 and for t > 0 the system evolves under a time-
periodic Hamiltonian HA(t), where A is the driving amplitude.
The Hall conductance in the limit t → ∞ is finally obtained
using linear response theory and a dephasing argument. As
a result they numerically find for an electronic system that
the post-quench Hall conductance, which is not any more an

*markus.schmitt@theorie.physik.uni-goettingen.de

integer multiple of the conductance quantum, exhibits sudden
changes whenever the post-quench Hamiltonian HA(t) crosses
a topological phase boundary as a function of the driving
amplitude A. This behavior is very similar to the behavior of
closed TIs after a quench, which exhibit a universal nonanalytic
behavior at the ground state transition of the final Hamiltonian
as shown in Refs. [15,16].

In this paper we extend the analysis of closed TIs given in
Refs. [15,16] to FTIs. We analytically investigate the behavior
of the Hall conductance after sudden switches of the driving
amplitude for a tight binding Hamiltonian with a time periodic
external potential. The analysis is based on high frequency
expansions of the effective Hamiltonian and the micromotion
operator. We focus on phase transitions that are associated
with a closing of the quasienergy gap at the K points in the
Brillouin zone. These already appear when only the first order
contribution in the high frequency expansion of the effective
Hamiltonian is considered. We find that suddenly switching on
the driving amplitude from Ai = 0 to Af �= 0 with a gapless
initial Hamiltonian leads to jumps of the Hall conductance by
multiples of πe2

2h
whenever Af crosses a phase boundary, which

agrees with the numerical results of Ref. [10] reproduced
in Fig. 1(a). If, instead, the system is initially prepared in a
quasistationary Floquet mode of the initial Hamiltonian HAi

(t)
before suddenly switching the driving amplitude to Af the Hall
conductance is continuous at critical values of A. Nevertheless,
it is nonanalytic with a logarithmically diverging derivative as
a function of the driving amplitude Af as shown in Fig. 1(b).

A distinct feature of FTIs is the possible presence of so-
called π -edge modes [8,14,17,18]. Note that our results do not
apply to gap closings that affect these edge modes as discussed
in Sec. IV A.

The rest of the paper is divided into two parts. In Sec. II we
introduce the model system under consideration and briefly
summarize the methods used and previous results, which are
relevant for the further analysis. In Sec. III we present our
analysis resulting in the identification of the abovementioned
nonanalytic behavior of the Hall conductance, which is
universal for conic gap-closing points in two-band FTIs.

II. BACKGROUND

In this section we introduce the model Hamiltonian under
consideration and briefly review the Floquet formalism and the

2469-9950/2017/96(5)/054306(14) 054306-1 ©2017 American Physical Society
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FIG. 1. (a) Floquet Chern number C and nonequilibrium Hall
conductance σxy for quenches with Ai = 0 and Ai = 1 as function of
Af for driving frequency ω = 10. (b) Derivative of the nonequi-
librium Hall conductance rescaled by the prefactor μ(Ai,Af ) =
J0(Af )|mi |/J0(Ai)m′

f determined in Eq. (77) close to the transition at
AK1 . As Af approaches AK1 the slopes agree increasingly well with
the predicted ln |Af − A∗| (black line) in all cases even if the value
J0(Ai) shown in the inset is small. Circles/triangles denote points to
the left/right of K1.

high frequency expansion used for our analysis. Moreover, we
give a short summary of previous results on the nonequilibrium
Hall conductance relevant for this work.

A. Model Hamiltonian

We consider a simple model Hamiltonian, namely a tight
binding model on a hexagonal lattice subject to a time-periodic
external potential,

H̃ (t) = −th
∑
〈i,j〉

(c†
i cj + H.c.) +

∑
i

V (
ri,t)c
†
i ci , (1)

where V (
r,t) = V0
r · [− cos(ωt)êx + sin(ωt)êy] and 〈i,j 〉 de-
notes the set of pairs of neighboring lattice sites. This
Hamiltonian constitutes a simple description of graphene
illuminated by a circularly polarized laser [19] or ultracold
atoms in a circularly shaken optical lattice [7].

A time-dependent gauge transformation restores transla-
tional invariance and allows us to write the Hamiltonian in

FIG. 2. We consider a hexagonal lattice structure. The dashed line
marks a possible choice of the unit cell with two basis sites A and B.
Depicted is moreover the unit of distance a and the nearest-neighbor
vectors 
δi .

momentum space as

H (t) =
∑


k

c †

k [ 
d
k(t) · 
σ ]
c
k (2)

(cf. Appendix A). In this expression for the Hamiltonian we
introduced


c
k =
(

c
kA

c
kB

)
(3)

and the coefficient vector 
d
k(t) = (d
kx(t),d
ky(t),d
kz(t))
T with

d
kx(t) = −th

3∑
j=1

cos((
k − 
A(t)) · 
δj ), (4)

d
ky(t) = −th

3∑
j=1

sin ((
k − 
A(t)) · 
δj ), (5)

d
kz(t) = 0 (6)

as well as the vector of Pauli matrices 
σ = (σx,σ y,σ z)T . The
vectors


δ1 = a

2

(
1√
3

)
, 
δ2 = a

2

(
1

−√
3

)
, 
δ3 = a

(−1
0

)
(7)

are given by the differences of the positions of neighboring
lattice sites (cf. Fig. 2). Moreover,


A(t) = V0a

ω

(
sin(ωt)
cos(ωt)

)
, (8)

where a denotes the lattice spacing. In the following we
will use the dimensionless driving amplitude A = | 
A(t)| =
V0aω−1 to quantify the driving strength and, moreover, set
a ≡ 1.

B. Periodic driving and Floquet formalism

In this section we recapitulate the Floquet formalism for the
treatment of time-periodic Hamiltonians and thereby introduce
the notation for the subsequent discussion. We closely follow
the presentation and notation of Refs. [20,21].

1. Effective Hamiltonian and micromotion operator

For a time-periodic Hamiltonian H (t + T ) = H (t) acting
on a Hilbert space H the Floquet theorem states that the

054306-2
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Schrödinger equation

i
d

dt
|ψ(t)〉 = H (t)|ψ(t)〉 (9)

is solved by Floquet states of the form

|ψn(t)〉 = e−iεnt |φn(t)〉 (10)

with quasienergies εn and periodic Floquet modes|φn(t +
T )〉 = |φn(t)〉 [22,23]. Note that εn and |φn(t)〉 are not defined
uniquely. Instead, given a solution εn and |φn(t)〉, alterna-
tive choices are given by εnm = εn + mω and |φnm(t)〉 =
eimωt |φn(t)〉 with ω = 2π/T and m ∈ Z, resulting in the same
Floquet state

|ψn(t)〉 = e−iεnt |φn(t)〉 = e−iεnmt |φnm(t)〉. (11)

Plugging Eq. (11) into the Schrödinger equation (9) yields the
Floquet equation(

H (t) − i
d

dt

)
|φnm(t)〉 = εnm|φnm(t)〉 , (12)

which determines the Floquet modes and quasienergies.
The Floquet states are eigenstates of the time evolution

operator over one period, i.e.,

U (t0 + T ,t0)|ψn(t0)〉 = e−iεnT |ψn(t0)〉 , (13)

and can therefore be regarded as eigenstates of a Floquet
Hamiltonian HF

t0
defined by

U (t0 + nT ,t0) = e
−iHF

t0
nT

. (14)

The parameter t0 is an arbitrary gauge choice for the Hamil-
tonian with the property that HF

t0+T = HF
t0

. Introducing the
corresponding gauge-dependent fast-motion operator

UF
t0

(t) ≡ U (t,t0)eiHF
t0

(t−t0)
, (15)

which is time periodic, UF
t0

(t + T ) = UF
t0

(t), the full time
evolution operator can be expressed as

U (t2,t1) = UF
t0

(t2)e−iHF
t0

(t2−t1)
UF

t0
(t1)†. (16)

Since the quasienergies εnm have no t0 dependence, the family
of Floquet Hamiltonians, HF

t0
, is moreover gauge equivalent

to an effective Hamiltonian HF , which has no explicit depen-
dence on the driving phase t0 [24]. The corresponding gauge
transformation is determined by a Hermitian kick operator
K(t) such that

HF = eiK(t0)HF
t0

e−iK(t0). (17)

Note that in general HF alone does not generate the dynamics
over one period. Nevertheless, the time evolution operator is
still split as

U (t2,t1) = UF (t2)e−iHF (t2−t1)UF (t1)† , (18)

where the micromotion operator

UF (t) = e−iK(t) = UF (t + T ) (19)

was introduced, and the eigenvalue problem

HF |unm〉 = εnm|unm〉 (20)

determines the Floquet modes

|φnm(t)〉 = eimωtUF (t)|unm〉. (21)

2. High frequency expansion of the effective Hamiltonian

Since they are periodic in time it is beneficial to view the
Floquet modes |φnm(t)〉 as elements of the composed Sambe
space S = H ⊗ LT , where LT is the space of T -periodic
square integrable functions [25]. Given {|α〉} is a basis of H,
the vectors

|αm〉〉 = eimωt |α〉 (22)

constitute a basis of S. Here we introduced the notation |·〉〉 for
vectors which are explicitly considered as elements of S. With
the natural scalar product in Sambe space we obtain

〈〈αm|α′m′〉〉 = 〈α|α′〉 1

T

∫ T

0
dte−iω(m−m′)t = δαα′δmm′ . (23)

In these terms the operator

Q = H (t) − i
d

dt
(24)

acts on S and Eq. (12) is an eigenvalue problem

Q|φnm〉〉 = εnm|φnm〉〉. (25)

The matrix elements of Q are

〈〈α′m′|Q|αm〉〉 = 〈α′|Hm′−m|α〉 + δm′mδα′αmω (26)

with the Fourier components of H (t),

Hm = 1

T

∫ T

0
dte−imωtH (t). (27)

Equation (26) reveals the block structure of Q with block
indices m,m′. Eckardt and Anisimovas [20] identified the
micromotion operator (19) as the operator, which block diag-
onalizes (26), thereby yielding the time-independent effective
Hamiltonian

HF = U
†
F (t)H (t)UF (t) − iU †

F (t)
d

dt
UF (t). (28)

Making use of the large separation of diagonal matrix elements
for large frequencies ω in Eq. (26) they apply degenerate
perturbation theory to derive expansions for the effective
Hamiltonian as well as the micromotion operator in powers
of 1/ω. As a result they find a way to express the effective
Hamiltonian as a series

HF =
∞∑

n=0

1

ωn
H

(n)
F , (29)

which can be used to systematically approximate HF at high
frequencies. The same holds for the kick operator, which takes
the form

K(t) =
∞∑

n=1

1

ωn
K(n)(t). (30)

In our analysis we consider contributions to these series up to
first order, which are

H
(0)
F = H0 , H

(1)
F =

∞∑
m=1

[Hm,H−m]

m
(31)
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and

K(1)(t) = −i
∞∑

m=1

eimωtHm − e−imωtH−m

m
. (32)

C. Nonequilibrium Hall conductance

In the following we will study the Hall conductance
of the stationary state that is reached after a quench of
the driving amplitude at time t∗. We assume the system
is prepared in an initial state |ψ0(t)〉, which is the ground
state of the Hamiltonian with driving amplitude A0 = 0 or a
quasistationary Floquet mode of the driven Hamiltonian with
A0 �= 0. At time t0 the driving amplitude is suddenly switched
from A0 to A1 and a nontrivial time evolution is induced. We
study the Hall conductance of the state the system reaches a
long time after the quench. Based on linear response theory
and using a dephasing argument Dehghani et al. [10] derived
an expression for the Hall conductance of a periodically driven
electronic two-band system for this protocol obtaining

σxy = e2

2πh

∫
BZ

d2kF̄
kd (ρ
kd (t∗) − ρ
ku(t∗)) (33)

with the time-averaged Berry curvature

F̄
kd = 2

T

∫ T

0
dt Im[〈∂ky

φ
kd (t)|∂kx
φ
kd (t)〉] (34)

and the occupation numbers of the Floquet modes,

ρ
kα(t∗) = |〈ψ0(t∗)|φ
kα(t∗)〉|2. (35)

Here we introduced the indices α = u,d labeling the up-
per/lower band. In a cold atom setup with neutral atoms the
electron charge e would be replaced by unity.

Dehghani et al. [10] considered quenches from the undriven
ground state of the graphene Hamiltonian (2) to nonzero
driving amplitudes A. They demonstrated that the Hall con-
ductance as a function of the final driving amplitude changes
rapidly whenever the Chern number

C = 1

2π

∫
BZ

d2kF̄
kd (36)

jumps. We reproduced these numerical results as shown in
Figs. 1(a) and 3 using the method described in Appendix B of
this paper. Our results presented in Sec. III provide an analyt-
ical understanding of the behavior of the nonequilibrium Hall
conductance occurring under this protocol when quenching
close to the transition points.

D. Nonanalytic behavior of the Hall conductance
of the quenched state for closed systems

For the case of closed systems Wang et al. [15,16] studied
an analogous situation to the one described above, considering
quenches of a parameter M that allows us to tune the
Hamiltonian H (M) between different topological phases. In a
closed two-band system the Hall conductance of the stationary
state after a quench is

σxy = e2

πh

∫
BZ

d2k Im[〈∂ky
ϕ
kd |∂kx

ϕ
kd〉](ρ
kd − ρ
ku) , (37)
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FIG. 3. Numerical results for the nonequilibrium Hall conduc-
tance after suddenly switching on the driving with amplitude Af

with the ground state of the undriven system as initial state for ω = 5
(top) and ω = 20 (bottom). The Chern number is computed according
to Eq. (36).

where |ϕ
kα〉 are the eigenstates of the post-quench Hamiltonian
H (Mf ) and ρ
kα = |〈ψ0|ϕ
kα〉|2 are the occupation numbers of
these eigenstates after the quench. The expressions for the
Hall conductance in Eqs. (33) and (37) have very similar
structure and, in fact, also in the case of the closed system the
Hall conductance of the quenched state changes significantly
when the quench parameter approaches an equilibrium phase
boundary. In particular, considering the nonequilibrium Hall
conductance close to a phase boundary Mc one finds that
the behavior close to critical points is dominated by the
nonanalytic part

σ div.
xy = e2

h

∑

q

C(
q)
η (Mi,Mf ) (38)

with

C(
qj )
η =

∫
Bη(
qj )

d2k

π
Im[〈∂ky

ϕ
kd |∂kx
ϕ
kd〉](ρ
kd − ρ
ku), (39)

where Bη(
qj ) is a circle of radius η centered at 
qj , the gap-
closing points of the energy spectrum in the Brillouin zone. If
the parameter M − Mc is chosen proportional to the gap size
the derivative of these contributions diverges as

dσ div.
xy

dMf

∼ e2

h

C−
f − C+

f

2|Mi − Mc| ln |Mf − Mc| , (40)

where C±
f are the Chern numbers on the right hand side

(+, Mf > Mc) and left hand side (−) of the transition,
respectively. This constitutes a universal nonanalytic behavior
of the nonequilibrium Hall conductance σxy . The result above
is obtained by expanding the coefficient vector 
dk , which is for
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any two-band system defined analogously to Eq. (2), around
the gap closing points 
q,


d
k = 
d
q + Ĵ

d

q �
k + O(�
k2) , (41)

where Ĵ

d

q is the Jacobian matrix of 
d
k and �
k = 
k − 
q. The

integral over the Brillouin zone in Eq. (37) is for Mf close
to Mc dominated by contributions from the vicinity of gap
closing points. The remaining part σxy − σ div.

xy is an analytic
function which is in particular continuous. Any nonanalyticity
of the Hall conductance is contributed by σ div.

xy . Note that the

terms of O(�
k2) do not contribute to the nonanalytic behavior,
as discussed in Ref. [16]. The nonanalyticity can therefore be
analyzed based on the expansion to linear order in Eq. (41)
yielding the result in Eq. (40).

Note that, remarkably, the Dirac cones also lead to universal
behavior of the Hall conductance away from the critical points
as shown in Ref. [26]. In the following we will extend the
analysis of the nonanalytic behavior to the case of driven
systems based on a high frequency expansion of the effective
Hamiltonian and the micromotion operator.

III. RESULTS

A. Time-averaged Berry curvature and Berry connection

An important property of the Berry curvature �
k in
undriven systems is the fact that it can be related to a local
gauge potential, namely the Berry connection 
A
k , via

�
k = 
∇ × 
A
k. (42)

This property implies through the Kelvin-Stokes theorem that
the Chern number is an integer [27].

It should be noted that it is a priori not clear whether
a corresponding time-averaged Berry connection can be
attributed to the time-averaged Berry curvature F̄
kd defined
in Eq. (34), because for a nonvanishing Chern number the
Berry connection must exhibit singularities, which could
prohibit exchanging integrals and derivatives unheedingly.
Nevertheless, we argue in this section that the time-averaged
Berry curvature is at least up to corrections of second order in
ω−1 given by the Berry curvature of the effective Hamiltonian,
which is related to a Berry connection.

Applying the product rule for the derivatives the time-
averaged Berry curvature (34) can be split into two parts when
plugging in Eq. (21) for the Floquet modes, yielding

F̄
kd = �F

k

+ 2

T

∫ T

0
dt Im

[〈
ud


k
∣∣(∂ky

UF (t)†)UF (t)
∣∣∂kx

ud

k
〉

+ 〈
∂ky

ud

k
∣∣UF (t)†(∂kx

UF (t))
∣∣ud


k
〉

+ 〈
ud


k
∣∣(∂ky

UF (t)†)(∂kx
UF (t))

∣∣ud

k
〉]

(43)

with �F

k = 2 Im[〈∂ky

ud

k |∂kx

ud

k 〉] the Berry curvature of the

effective Hamiltonian HF . For the derivatives of the operator
exponentials UF (t) = exp(−iK(t)) we employ the identity

d

dλ
e−iK(t) =

∫ 1

0
dse−(1−s)iK(t) dK(t)

dλ
e−siK(t) (44)

given in Ref. [28]. This reveals that the last term in Eq. (43) is
of O(ω−2), because K(t) ∼ O(ω−1). For the remaining terms
the Baker-Campbell-Hausdorff formula yields

(∂ky
UF (t)†)UF (t) =

∫ 1

0
dsei(1−s)K(t) ∂K(t)

∂ky

e−i(1−s)K(t)

= dK(t)

dky

+ i

2
[K(t),∂ky

K(t)] + · · ·

= dK(t)

dky

+ O(ω−2). (45)

The ellipsis after the second equality stands for higher nested
commutators with K(t), which are all of higher order in ω−1.
The analogous argument yields UF (t)†(∂ky

UF (t)) = dK(t)
dkx

+
O(ω−2). Now, according to Eq. (32), the time dependence of
the first order contribution to the kick operator, K(1)(t), is given
as a sum of eimωt with m �= 0. Hence,

∫ T

0 dt∂kx/y
K(1)(t) = 0 and

we obtain

F̄
kd = �F

k + O(ω−2). (46)

Note moreover, that if despite the singularities in F̄
kd the
time integral and derivatives with respect to 
k can be exchanged
the time-averaged Berry curvature can be written as the curl
of a time-averaged Berry connection

Āα

kd

= 1

T

∫ T

0
dt〈φ
kd (t)|∂kα

|φ
kd (t)〉 (47)

meaning that due to the usual arguments the Chern number
C = 1

2π

∫
BZ

d2k 
∇ × Ā
kd is an integer. That is, however, only
possible if all higher order terms in Eq. (46) vanish and C is
identically the Chern number of the effective Hamiltonian HF .

B. High frequency expansion

For the subsequent analysis it is useful to formulate both the
high frequency expansion of the effective Hamiltonian and the
expansion of the kick operator in terms of coefficient vectors

h
k and 
g
k(t) such that in the single momentum sectors

H
kF = 
h
k · 
σ (48)

and

K
k(t) = −
gk(t) · 
σ . (49)

In this section we present expressions for the time averaged
Berry curvature and the Floquet mode occupation based on
expansions of the respective coefficient vectors.

We will from now on set the hopping th ≡ 1. This means
that the high frequency expansion is valid for ω/th = ω � 1.

1. Effective Hamiltonian and Berry curvature

For the high frequency expansion of the effective Hamil-
tonian given in Eq. (31) we need the Fourier components of
the time-dependent Hamiltonian H
k(t) = 
d
k(t) · 
σ . These are
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numerical result for h
q±z(A).

determined by

dm

kx

= 1

T

∫ T

0
dteimωtd
kx(t)

= −Jm(A)
3∑

j=1

1

2
e−imψj [ei
k·
δj + (−1)me−i
k·
δj ]

dm

ky

= −Jm(A)
3∑

j=1

−i

2
e−imψj [ei
k·
δj + (−1)m+1e−i
k·
δj ] , (50)

where Jm(x) denotes the mth Bessel function and ψj =
arctan(δy

j /δx
j ) was introduced. This yields as the zeroth

order term of the effective Hamiltonian just the undriven
Hamiltonian rescaled by the zeroth Bessel function,


h(0)

k (A) = −J0(A)

3∑
j=1

⎛
⎝cos(
k · 
δj )

sin(
k · 
δj )
0

⎞
⎠. (51)

As the first order term is the commutator of only the Pauli
matrices σx and σy there is only a contribution to the z

component of the coefficient vector, namely

h
(1)

kz

(A) = 4
∞∑

n=1

Jn(A)2 sin
(

2nπ
3

)
n

3∑
j=1

sin(
k · 
γj ) , (52)

where the next-nearest-neighbor vectors


γ1 = 
δ1 − 
δ3, 
γ2 = 
δ2 − 
δ1, 
γ3 = 
δ3 − 
δ2 (53)

were introduced. Note that since Jn(A)2/n decreases with
increasing n the infinite sum in Eq. (52) can for practical
purposes safely be approximated by a truncation restricted to
the first few terms. Figure 4 shows the analytical result for
h

(1)

qz

(A) for ω = 10 in comparison with the numerical result at
the Dirac points (K points)


q± =
(

0
± 4π

3
√

3a

)
. (54)

Both show good agreement, in particular in the vicinity of the
roots.

The appearance of the n.n.n. vectors in the effective
Hamiltonian reflects the fact that in real space the first
order contribution to the effective Hamiltonian adds a hop-
ping between next-nearest neighbors. The resulting effective
Hamiltonian corresponds to the famous Haldane model where
in this case the external driving opens a gap in the quasienergy
spectrum leading to a nonvanishing Chern number [3,7,20].

Omitting possible second order contributions to the time-
averaged Berry curvature as discussed in Sec. III A the Chern
number (36) is solely determined by the effective Hamiltonian
HF and can be expressed in terms of the coefficient vector 
h
k
as

C =
∫

BZ

d2k

(
∂ 
h
k
∂kx

× ∂ 
h
k
∂ky

)
· 
h
k

4π (h
k)3
(55)

(cf. [27]).
Note that there are different possibilities for gap closing

points in the quasienergy spectrum of the effective Hamilto-
nian, which reads to first order

HF 
k = h
(0)

kx

σ x + h
(0)

ky

σ y + 1

ω
h

(1)

kz

σ z + O(ω−2). (56)

Independent of the driving amplitude the zeroth-order terms
have roots at the Dirac points 
q±. Therefore, roots of h

(1)

q±z

(A)
as a function of the driving amplitude mark gap-closing
points. Moreover, h

(1)

kz

(A) has a root at the � point 
k� =
(0,0) independent of driving amplitude. This means that the
quasienergy spectrum closes at this point at roots of J0(A),
because there the zeroth order terms vanish on the whole
Brillouin zone. We marked the transitions that can be attributed
to gap closing points at K or � points with labels AKi and A�i ,
respectively, in Fig. 3. In the following analysis we will focus
on the transitions with gap closing at the K points.

2. Micromotion operator and occupation numbers

The second ingredient for the Hall conductance of the
quenched state is the mode occupation difference

ρ
kd (t∗) − ρ
ku(t∗)

= |〈ψ0(t∗)|φ
kd (t∗)〉|2 − |〈ψ0(t∗)|φ
ku(t∗)〉|2 , (57)

which depends on the quench time t∗. Figure 5(a) shows the
mode occupation in the Brillouin zone for a quench from A0 =
0.1 to A1 = 2.8 at t0 = 0. Quenching the amplitude leads to a
smearing of the occupation numbers along the direction of the
driving field. Since we consider quasistationary Floquet modes
as initial states, the time dependence is fully determined by the
pre- and post-quench micromotion operators.

As given by Eq. (32) the first order term of the high
frequency expansion of the kick operator is

K(1)

k (t) = −i

∞∑
m=1

1

m

[
eimωt 
dm


k − e−imωt 
dm

k
] · 
σ (58)

with 
dm

k given in Eq. (50). We approximate the micromotion

operator with

UF

k (t) = exp

(−iK(1)

k (t)/ω

)+ O(ω−2) (59)
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and define 
g
k(t) = (g
kx(t),g
ky(t),g
kz(t)) via

−K(1)

k (t) = 
g
k(t) · 
σ . (60)

This approximation of the micromotion operator and the first
order result for the eigenvectors of the effective Hamiltonian
yields via Eq. (21) the t0-dependent occupation numbers

ρ
kd (t∗) − ρ
ku(t∗)

=

hi


k · 
hf


k∣∣hi

k
∣∣∣∣hf


k
∣∣ +

(
hi

k × 
hf


k
) · �
g(t∗)∣∣hf


k
∣∣∣∣hi


k
∣∣ + O(ω−2). (61)

Here �
g
k(t∗) = 
gAf


k (t∗) − 
gAi


k (t∗) denotes the difference of
the Kick operator coefficients before and after switching the
driving amplitude. A detailed derivation of this result is given
in Appendix C.

Figure 5(b) shows a comparison between the analytical
result in Eq. (61) and the numerical result on cuts through a K

point with constant kx and ky , respectively, for two different
driving frequencies. The truncated high frequency expansion
clearly captures the anisotropy introduced by the external field

and the agreement with numerics improves as the driving
frequency is increased.

In order to analyze the nonanalytic part of the Hall conduc-
tance (39) it is crucial that the occupation numbers contribute
a factor |hf


k |−1, because thereby the denominator becomes a
polynomial and it is possible to find the antiderivative of the
integrand. The result in Eq. (61) shows that the correction is
proportional to |hf


k |−1. Moreover, the first order contribution

to the occupation numbers is an odd function of �
k = 
k − 
q±.
Therefore, as discussed in Ref. [16], the corresponding part of
the integrand will not contribute to the nonanalytic behavior of
the Hall conductance (34). This means that close to the phase
boundaries any dependence of the Hall conductance on the
quench time is a second order contribution in powers of the
inverse frequency. We will therefore ignore it in the further
analysis.

Experimental setups with finite ramping times will usually
not be able to prepare initial states with a completely filled
lower band and an empty upper band. Nevertheless, we will
focus on this situation in the following analysis and discuss the
effect of partially filled bands as initial states later in Sec. III D.

C. Universal behavior at the phase transition

Putting together Eqs. (34), (46), and (61) the nonequilib-
rium Hall conductance is determined by

σxy = e2

h

∫
d
k2

(
hf


k · 
hi

k
)( ∂ 
hf


k
∂kx

× ∂ 
hf


k
∂ky

) · 
hf


k
4πhi


k
(
h

f


k
)4 , (62)

where the integral is over the Brillouin zone.
We will analyze the nonanalytic behavior of (62) based on

expansions of the integrand around the gap closing points as
summarized in Sec. II D and discussed more extensively in
Ref. [16]. According to the high frequency expansion to first
order in powers of ω−1, we can suppose the coefficient vectors

hi/f


k of the initial and final Hamiltonian, respectively, around
some singularity 
q to be

h
i/f


kx
= J0(Ai/f )(a1x�kx + a1y�ky) + O(�k2) (63)

h
i/f


ky
= J0(Ai/f )(a2x�kx + a2y�ky) + O(�k2) (64)

h
i/f


kz
= m(Ai/f ) + O(�k2), (65)

where �kx/y = kx/y − qx/y . Note that Ai and Af are the free
parameters and m(Ai/f ) = h

(1)

qz

(Ai/f ) is also a function of Ai/f .
In contrast to the closed system analyzed in Refs. [15,16] for
the driven system the expansion coefficients of all components
depend on the external parameter, namely the driving ampli-
tude A. However, by introducing the expansion

h
∗i/f


kx
= a1x�kx + a1y�ky + O(�k2) (66)

h
∗i/f


ky
= a2x�kx + a2y�ky + O(�k2) (67)

h
∗i/f


kz
= m(Ai/f )

J0(Ai/f )
+ O(�k2) ≡ m̃i/f + O(�k2), (68)
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the structure of the integrand in Eq. (62) remains the same and
we obtain the nonanalytic contributions defined in Eq. (39),
which read

C(
q)
η = sgn(J0(Ai))

×
∫

Bη(
qj )
d
k2

(
h∗f


k · 
h∗i

k
)( ∂ 
h∗f


k
∂kx

× ∂ 
h∗f


k
∂ky

) · 
h∗f


k
4πh∗i


k
(
h

∗f


k
)4 . (69)

Therefore, the analysis of the behavior of the Hall conductance
close to a transition can be done based on the expansion
(66)–(68) with constant coefficients in the first two compo-
nents given that J0(Ai/f ) �= 0. As mentioned above, it is suffi-
cient to consider the expansion to linear order. In the vicinity
of roots of J0(Ai/f ), however, the corresponding expansions
of the first two components of the coefficient vectors are
potentially dominated by higher order contributions.

1. Quenching from the undriven initial state

We first focus on the quenches with the ground state of the
undriven system as initial state, i.e., Ai = 0 and Af �= 0. The
gaplessness of the initial Hamiltonian is reflected by m̃i = 0
in Eq. (68), whereas m̃f �= 0. The linear transformation of
coordinates (

�k′
x

�k′
y

)
=
(

a1x a1y

a2x a2y

)(
�kx

�ky

)
(70)

allows us to make use of the rotational symmetry around the
singularity, yielding

C(
q)
η = sgn(J0(Ai))

m̃f sgn(a1xa2y − a2xa1y)

2

×
∫ η

0
d�k′ �k′2(

m̃2
f + �k′2)2 . (71)

The nonvanishing part of this integral in the limit mf → 0 is

m̃f sgn(a1xa2y − a2xa1y)

4

∫ η

0
d�k′ 1

m̃2
f + �k′2 . (72)

= sgn(a1xa2y − a2xa1y)

4
arctan(η/m̃f ). (73)

For arbitrary η > 0, we have limmf →0 arctan (η/m̃f ) =
sgn(m̃f )π/2. Thus, the discontinuity of C(
q)

η at mf = 0 must
be

C(
q)
η (mf → 0+) − C(
q)

η (mf → 0−)

= π

4
sgn[J0(Ai)J0(Af )(a1xa2y − a2xa1y)]. (74)

Summing up the contributions of both K points according to
Eq. (38) yields the discontinuity of the total Hall conductance,
which is

σxy(Af − Ac → 0+) − σxy(Af − Ac → 0−)

= π

4
sgn

(
J0(Ai)

J0(Af )

)[
lim

mf →0+
C − lim

mf →0−
C
]

= ±πe2

2h
. (75)

The sign depends on the particular choice of the gap closing
point Ac. For critical points which are related to a closing of
the gap at the K points in the Brillouin zone the comparison
with the numerical results in Figs. 1(a) and 3 shows that the
dimensionless Hall conductance indeed jumps by π/2.

2. Quenching from a driven initial state

We now turn to the case where the system is initially
prepared in a quasistationary Floquet mode of the driven
Hamiltonian with Ai �= 0. When the initial state is a Floquet
mode of the driven Hamiltonian, the analysis is completely
analogous to the case of the closed system in Refs. [15,16].
Plugging Eqs. (66)–(68) into Eq. (69) yields the nonanalytic
part of the integral, which is

C(
q)
η ∼ − J0(Ai)

J0(Af )

sgn(a1xa2y − a2xa1y)

2|mi |

× mf (Af ) ln

∣∣∣∣mf (Af )

J0(Af )

∣∣∣∣. (76)

Note first of all that by contrast to quenching from the
undriven ground state the Hall conductance is continuous at
the transition points if the initial state is a Floquet mode of
the driven Hamiltonian, which is also evident in Fig. 1(a).
Nevertheless, the derivative with respect to Af in the limit
Af → Ac

f is nonanalytic and diverges like

dC(
q)
η

dAf

∼ − J0(Ai)

J0
(
Ac

f

) sgn(a1xa2y − a2xa1y)

2|mi |

× dmf

dAf

∣∣∣∣
Af =Ac

f

ln |mf (Af )|. (77)

Summing up the contributions from both gap closing points in
the Brillouin zone yields the divergent part of the derivative of
the Hall conductance

dσ div.
xy

dAf

∼ J0(Ai)

J0
(
Ac

f

) limmf →0+ C − limmf →0− C

2|mi |

× dmf

dAf

∣∣∣∣
Af =Ac

f

ln |mf (Af )|. (78)

Figure 1(b) shows the derivative of the Hall conductance for
quenches with different Ai and Af close to the transition K1.
The derivatives have been rescaled by the respective prefactors
μ(Ai,Af ) = J0(Af )|mi |/J0(Ai)m′

f such that according to
Eq. (77) the slopes of all results coincide. Moreover, the
results for different Ai have been shifted in order to compare
them despite the different regular contributions to the Hall
conductance. The numerical data agree with the analytically
predicted slope and the agreement improves as Af approaches
the transition point AK1. Note that after a quench starting with
Ai = 2.3 the agreement is good although this is very close to
a root of J0(Ai) as can be seen in the inset of Fig. 1(b).

The presented data were obtained using a grid with 6000 ×
6000 points in the numerical scheme described in Appendix B.
This grid resolution determines the computational cost and
has to be increased as Af approaches AK1. Thereby our
computational resources limit the numerical results to the
regime presented in Fig. 1(b).
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D. The effect of partially filled Floquet bands as initial state

As mentioned before the completely filled lower Floquet
band we considered above cannot necessarily be prepared with
high fidelity in practice [9,29]. In particular, ramping across a
gap closing point prohibits adiabatic preparation of the initial
state. Therefore, the initial state will typically be given by
partially filled Floquet bands in experiments.

Considering partially filled bands produced using some
ramping protocol the single particle initial states will be a
superposition of the pre-quench Floquet modes |φα

0
k(t)〉,∣∣ψ0

k (t)

〉 = cos θ
k
∣∣φd

0
k(t)
〉+ sin θ
ke

iϕ
k (t)
∣∣φu

0
k(t)
〉
. (79)

In this expression θ
k parametrizes the single particle occupa-
tion number and it will depend on the details of the ramping
protocol. The phase is given by ϕ
k(t) = ϕ0


k + (εd

k − εu


k )t =
ϕ0


k − 2|
hi

k|t , where 
h0
k is the coefficient vector of the initial

effective Hamiltonian. Plugging this into Eq. (57) yields

ρd

k (t∗) − ρu


k (t∗)

= cos(2θ
k)
(∣∣〈φd

0
k(t∗)
∣∣φd


k (t∗)
〉∣∣2 − ∣∣〈φd

0
k(t∗)
∣∣φu


k (t∗)
〉∣∣2)

+ sin(2θ
k) Re
[
eiϕ
k (t∗)

(〈
φd

0
k(t∗)
∣∣φd


k (t∗)
〉〈
φd


k (t∗)
∣∣φu

0
k(t∗)
〉

− 〈φd

0
k(t∗)
∣∣φu


k (t∗)
〉〈
φu


k (t∗)
∣∣φu

0
k(t∗)
〉)]

(80)

Thereby, the Hall conductance after a quench can be split into
two parts, σxy = σ (1)

xy + σ (2)
xy , corresponding to the first and the

second contribution to the occupation difference.
The first term of the occupation difference above equals

the occupation difference one obtains when the system is
initialized in the lower Floquet band weighted by the prefactor
cos(2θ
k). The specific form of the occupation after preparation,
which is parametrized by θ
k , will depend on the preparation
protocol. If θ
k can be approximated by a constant in the vicinity
of the gap closing points 
qj it will not affect the nonanalytic
behavior and σ (1)

xy will contribute a logarithmic divergence to
the derivative of the Hall conductance at the critical time.
In the case of the driven hexagonal system considered above
the nonanalyticity in Eq. (77) acquires an additional prefactor
cos(θ
q) with 
q given in Eq. (54).

Under the assumption that both θ
k and ϕ0

k are well behaved

in the vicinity of the gap closing points the second term yields
a contribution to the nonequilibrium Hall conductance that is
independent of the driving frequency and behaves like the Hall
conductance after quenching from a critical state, as discussed
in Sec. III C 1, but is weighted with sin(θ
q) and oscillates with
frequency 2|
hi


q |, i.e., the initial gap width. For our specific
model and the class of critical points we considered above the
contribution is

± sin(2θ
k0
) cos(ϕ
k0

(t∗))
πe2

2h
. (81)

A detailed derivation of this result is given in Appendix D.
This contribution is nonuniversal as it depends on the quench
time t∗. However, it can in practice be eliminated by averaging
over a range of quench times t∗.

Altogether the results obtained for the completely filled
lower Floquet band will pertain when allowing partially filled
Floquet bands as initial states if the occupation numbers

in the vicinity of gap closing points are well behaved.
Nonanalyticities in the occupation difference, however, could
potentially lead to different behavior of the nonequilibrium
Hall conductance.

Any kind of occupation that reflects the spectral properties
of a gapped system will be smooth in the vicinity of the gap
closing points 
q. For example, thermal occupation numbers
corresponding to an inverse temperature β are obtained from
the pure state (79) if cos θ
k = e

−βεd

k /2(2 cosh(βεd


k ))−1/2, where
the (quasi)energies ε
k are smooth everywhere. Nevertheless,
ramping across gap closing points could possibly leave an
imprint of the nonanalyticity in the resulting occupation
numbers. Moreover, it might be possible that the characteristics
of the occupation depend on the choice of the ramping
protocol. Such effects, since beyond the scope of this work,
should be investigated in the future.

IV. DISCUSSION

A. Universality

The nonanalytic behavior of the Hall conductance at
the critical points studied in this work is universal in the
same sense as discussed in Ref. [16]. The key feature that
determines the nonanalytic behavior is the conic structure
of the quasienergy spectrum close to the gap closing point.
Thereby, the nonanalytic behavior does not depend on the
details of the model.

Both expressions characterizing the nonanalytic behavior,
Eq. (75) and Eq. (78), depend only on the band gap m(A), the
band width ratio J0(Ai)/J0(Af ), and the jump of the Chern
number at the transition. The Chern number is, however, only
defined in translationally invariant systems. Nevertheless, we
expect our results to hold also for systems with weak disorder
as we argue in the following. Note that this argument regards
transitions that occur as a function of the parameter A in
the presence of weak disorder. Disorder-driven topological
transitions at intermediate or strong disorder as reported in
Refs. [30,31] are of different nature and, hence, not in the
class of transitions we consider in this paper.

Other than in undriven topological insulators edge modes of
Floquet topological insulators do not only occur in the energy
gap around ε
k = 0. Due to the periodicity of the quasienergy
spectrum they can also lie in the gap at ε
k = ω/2 = π/T

that separates the quasienergies of neighboring quasienergy
“Brillouin zones.” The Chern number corresponds to the
difference between the number of edge modes at ε = 0,
denoted by ν0, and the number of edge modes at ε = π/T ,
denoted by νπ , i.e., C = ν0 − νπ . In Ref. [14] a bulk invariant
was introduced that directly corresponds to the number of
edge states in a particular gap for systems with translational
invariance. This was generalized to disordered systems in
Ref. [32]. For the disordered system one adds additional time-
independent fluxes 
� = (θx,θy) threaded through the lattice
to the time-periodic Hamiltonian of interest leading to a time
evolution operator U ( 
�,t) = Tt ′ exp ( − i

∫ t

0 dt ′H ( 
�,t ′)). The
number of edge states in a gap around a given quasienergy ε,
νε , is then determined by

νε = W [Uε] , (82)
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where

W [UT ] = 1

8π2

∫ T

0
dt

∫
d2θ

× tr
(
U−1

T ∂tUT

[
U−1

T ∂θx
UT ,U−1

T ∂θy
UT

])
(83)

is a winding number of the map UT ( 
�,t) from ( 
�,t) ∈
S1 × S1 × S1 to the space of time evolution operators UT (
θ,t)
periodic in θx , θy , and t . Uε( 
�,t) is related to the time evolution
operator of the driven system U ( 
�,t) via

Uε(
k,t) =
{

U ( 
�,2t) if 0 � t � T/2
e−iHε

eff( 
�)t if T/2 � t � T
. (84)

In this expression ε determines the direction e−iεT of the
branch cut of the logarithm in the definition of the effective
Hamiltonian

Hε
eff( 
�) = i

T
logε U ( 
�,T ). (85)

With these results the characteristic nonanalytic behavior
given by Eqs. (75) and (78) can be reexpressed in terms of the
winding number W as

σ div.
xy ∼ π

4
sgn

(
J0(Ai)

J0(Af )

)[
lim

mf →0+
�W − lim

mf →0−
�W

]
(86)

for quenches from the gapless initial state and as

σ div.
xy ∼ J0(Ai)

J0
(
Ac

f

) limmf →0+ �W − limmf →0− �W

2|mi |

× dmf

dAf

∣∣∣∣
Af =Ac

f

ln |mf | (87)

for the gapped initial state. Here we introduced �W =
W [U0] − W [Uπ/T ]. This form of the nonanalytic behavior is
expected to pertain also in the presence of weak disorder. Since
it is beyond the scope of this paper, it is left for the future to
demonstrate this anticipated behavior explicitly using specific
examples.

Note, however, that these results for the nonanalytic
behavior apply only to transitions with conic gap closing
points at ε = 0, which corresponds to points 
q in the Brillouin
zone where the coefficient vector of the effective Hamiltonian
vanishes, |
h
q | = 0. A unique feature of Floquet systems is the
possibility of gap closing points at ε = π/T , which were for
example studied in Refs. [8,14,17,18,31]. These transitions
correspond to the presence of points 
q in the Brillouin zone
where |
h
q | = π/T . In that case any nonanalyticity in the Hall
conductance that is determined by the integral in Eq. (62) must
originate in nonanalytic behavior of the numerator instead of
roots of the denominator. Therefore, our analysis does not
apply in these cases.

B. Conclusion

Based on a high frequency expansion of the effective
Hamiltonian and the micromotion operator we studied the
nonequilibrium Hall conductance after sudden switches of the
driving amplitude. Considering a tight binding Hamiltonian on
a hexagonal lattice with periodically modulated potential we
found two kinds of nonanalytic behavior after quenches close

to critical driving amplitudes at which the ground state Chern
number exhibits a jump. When the system is initially prepared
in the undriven ground state of the gapless Hamiltonian H0 the
nonequilibrium Hall conductance jumps by ±πe2

2h
whenever

the final driving amplitude Af crosses a phase boundary Ac of
the effective Hamiltonian with a gap closing at the K points.
Considering neutral atoms in an optical lattice instead of an
electronic system the electron charge e is to be replaced by
unity. If the system is instead initially prepared in a Floquet
mode of the driven Hamiltonian HAi

(t) the nonequilibrium
Hall conductance after switching to Af is continuous at
Af = Ac, but the derivative dσxy

dAf
diverges logarithmically.

This nonanalytic behavior is universal in the same sense as
discussed in Ref. [16]. The characteristics of the nonanalyticity
only depend on the conic structure of the quasienergy spectrum
in the vicinity of the gap closing points and are therefore
independent of other details of the model. In particular, it is
expected that the behavior remains the same in the presence
of weak disorder, where the winding number of the time
evolution operator serves as topological invariant instead of
the Chern number.

Nevertheless, at the additional frequency dependent transi-
tion points visible in Fig. 3(a) one might find different behavior
if the gap-closing points have different character. This question
should be addressed in future research.

Our results show that the universal nonanalytic behavior
of the nonequilibrium Hall conductance carries over from
closed TIs discussed in Refs. [15,16] to FTIs, which can be
realized experimentally in ultracold atom setups in optical
lattices with the necessary control of external parameters
[7,33]. Moreover, small electric fields required to probe the
Hall response can be generated in ultracold atom experiments
[34]. These experiments naturally encounter a situation similar
to the one considered in this paper, because in the preparation
process the external driving force is usually ramped up at some
point in order to bring the system from the initial topologically
trivial state into the topologically nontrivial state of the driven
Hamiltonian. It is, however, understood that the Chern number
of a state is invariant under unitary evolution [9]. In a recent
work [12] it was demonstrated how topological properties of
the final Hamiltonian can nevertheless be inferred from the
time-averaged nonequilibrium Hall conductance after slow but
nonadiabatic ramps. Our results show that in the opposite limit
of infinitely fast ramps the topological invariant determines the
behavior close to transition points. In particular the jump height
or the prefactor of the logarithmic divergence, respectively,
are determined by the jump of the topological invariant at the
transition. In future work it should be investigated, whether the
behavior at infinitely long times investigated here can be found
in the time-averaged Hall conductance at finite times similar
to Ref. [12]. Moreover, the effect of ramping could be studied
based on a high frequency expansion as presented in Ref. [35].
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APPENDIX A: RESTORING TRANSLATIONAL
INVARIANCE BY A TIME-DEPENDENT GAUGE

TRANSFORMATION

In order to restore translational invariance we perform a
time-dependent gauge transformation with

W (t) =
∏

i

exp

(
ic†

i ci

∫
dtV (
ri,t)

)
(A1)

yielding

H (t) = W (t)H̃ (t)W †(t) − iW (t)∂tW
†(t)

= −J
∑
〈i,j〉

(e−iθij (t)c
†
i cj + H.c.) , (A2)

where

θij (t) = (
ri − 
rj ) · 
A(t) (A3)

was introduced with


A(t) = V0a

ω

(
sin(ωt)
cos(ωt)

)
, (A4)

where a denotes the lattice spacing.
Introducing explicit labels A and B for the sublattices and

the Fourier transform of the operators,

ci,A/B = 1√
N

∑

k

e−i
k·
ri,A/B c
k,A/B (A5)

yields the Hamiltonian in momentum space,

H (t) = −J
∑


k

c †

k [ 
d
k(t) · 
σ ]
c
k. (A6)

In this expression for the Hamiltonian we introduced


c
k =
(

c
kA

c
kB

)
, (A7)

and the coefficient vector 
d
k(t) is given in Eqs. (4)–(6) in the
main text.

APPENDIX B: NUMERICAL COMPUTATION OF
FLOQUET MODES AND HALL CONDUCTANCE

In order to solve Eq. (25) numerically we set up the
matrix Q as given in Eq. (26) truncating it at some maximal
|m| = M . The diagonalization of the truncated matrix yields
Floquet modes |φnm〉〉 for −M � m � M and corresponding
quasienergies with the property εnm = εn0 + mω for small |m|.
The best approximation for the eigenvector of the infinite
matrix is obtained in the middle of the spectrum, i.e., for
m = 0.

For the two-band system under consideration we obtain a
solution at every 
k point and the solutions can be written as

vectors with 2(2M + 1) components


φαm

k,M

≡ |φαm
k 〉〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φαm
k,(u,M)

φαm
k,(d,M)

φαm
k,(u,M−1)

...

φαm
k,(d,−M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

The best approximation to the time-dependent Floquet mode
|uα

k (t)〉 ∈ C2 is then given by

|φα
k (t)〉 =

∑
β∈{u,d}

M∑
n=−M

einωtφα0
k,(β,n)|β〉. (B2)

Plugging Eq. (B2) into Eq. (34) yields

F̄
k=
∫ T

0

dt

T

∑
α,α′

∑
n,n′

〈α|e−inωt∂x

(
φd0


k,(α,n)

)∗
∂y

(
φd0


k,(α′,n′)

)
ein′ωt |α′〉

=
∑
α,α′

∑
n,n′

∂x

(
φd0


k,(α,n)

)∗
∂y

(
φd0


k,(α′,n′)

) 〈α|α′〉︸ ︷︷ ︸
δαα′

∫
cT

0
dt

T
ei(n′−n)ωt

︸ ︷︷ ︸
δnn′

=
∑

α

∑
n

∂x

(
φd0


k,(α,n)

)∗
∂y

(
φd0


k,(α,n)

) = (
∂x


φd0

k,M

) · (∂y

φd0


k,M

)
.

(B3)

This means it is not necessary to perform the time averaging
for the averaged Berry curvature explicitly. The derivatives
can be approximated as difference quotients. This procedure
yields a numerical approximation for F̄k on a grid of 
k points.
Choosing this grid appropriately the Hall conductance (33)
can be computed efficiently using the method introduced in
Ref. [37] as already established by Dehghani et al. [10].

APPENDIX C: DERIVATION OF TIME DEPENDENT
MODE OCCUPATION NUMBERS

The first order term of the high frequency expansion of the
kick operator is

K(1)(t) = −i
∞∑

m=1

eimωtHm − e−imωtH−m

m
. (C1)

Note that in this formula we dropped the explicit 
k dependence
in the notation, which we will do also in the rest of this section
wherever it is not relevant in order to keep the notation clear.

We approximate the micromotion operator with

UF (t) = exp(−iK(1)(t)/ω) + O(ω−2) (C2)

and define 
g(t) = (gx(t),gy(t),gz(t)) via

−K(1)(t) = gx(t)σx + gy(t)σy + gz(t)σ
z. (C3)

Note that according to Eq. (C1) gz(t) = 0 to first order in 1/ω.
The expression for K(1)(t) as a sum of Pauli matrices allows
us to rewrite the micromotion operator as

exp(−iK(1)(t)) = exp[ig(t)(
n(t) · 
σ )]

= cos(g(t)) + i sin(g(t))(
n(t) · 
σ ) (C4)
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with


n(t) = 
g(t)

g(t)
, g(t) = |
g(t)|. (C5)

Plugging this expression for the micromotion operator into
Eq. (21) we obtain the overlaps of Floquet modes,〈
φd

0 (t)
∣∣φα(t)

〉 = 〈
ud

0

∣∣[cos(g0(t)) − i sin(g0(t))(
n0 · 
σ )]

× [cos(g(t)) + i sin(g(t))(
n · 
σ )]|uα〉 (C6)

= 〈
ud

0

∣∣uα
〉
cos(g0(t)) cos(g(t))

+ sin(g0(t)) sin(g(t))
〈
ud

0

∣∣(
n0 · 
σ )(
n · 
σ )|uα〉
− i sin(g0(t)) cos(g(t))

〈
ud

0

∣∣
n0 · 
σ |uα〉
+ i cos(g0(t)) sin(g(t))

〈
ud

0

∣∣
n · 
σ |uα〉, (C7)

where the index 0 indicates Floquet modes/micromotion
operator of the initial Hamiltonian with driving amplitude
A0. To evaluate this we need the eigenstates of the effective
Hamiltonian HF 
k = 
h
k · 
σ , which read

∣∣uu/d


k
〉 =

√√√√ h2

kx

+ h2

ky

2|
h
k|(|
h
k| ± h
kz)

(
h
kz±|
h
k |
h
kx+ih
ky

1

)
. (C8)

These yield the overlaps

�α
1 ≡ 〈

ud
0

∣∣uα
〉 = 1 + h0

z−|
h0|
h0

x−ih0
y

hz±|
h|
hx+ihy

Nα

(C9)

�α
x ≡ 〈

ud
0

∣∣σx |uα〉 =
h0

z−|
h0|
h0

x−ih0
y

+ hz±|
h|
hx+ihy

Nα

(C10)

�α
y ≡ 〈

ud
0

∣∣σy |uα〉 = −i

h0
z−|
h0|

h0
x−ih0

y
− hz±|
h|

hx+ihy

Nα

, (C11)

where

N −1
α =

√√√√ (
h2

x + h2
y

)(
h0

x
2 + h0

y
2)

4|
h0||
h|(|
h0| − h0
z)(|
h| ± hz)

. (C12)

Then〈
φd

0 (t)
∣∣φα(t)〉

= �α
1

[
cos(g0) cos(g) + sin(g0) sin(g)

(
nx

0n
x + n

y

0n
y
)]

+ i�α
z sin(g0) sin(g)

(
nx

0n
y − n

y

0n
x
)

− i sin(g0) cos(g)
(
nx

0�
α
x + n

y

0�
α
y

)
+ i cos(g0) sin(g)

(
nx�α

x + ny�α
y

)
= �α

1

[
cos(g0) cos(g) + sin(g0) sin(g)

(
nx

0n
x + n

y

0n
y
)]

+ i�α
y

(
cos(g0) sin(g)ny − sin(g0) cos(g)ny

0

)
+ i�α

x

(
cos(g0) sin(g)nx − sin(g0) cos(g)nx

0

)
+ i�α

z sin(g0) sin(g)
(
nx

0n
y − n

y

0n
x
)
. (C13)

Since g,g0 ∼ O(ω−1), we approximate cos(g) ≈ 1 and
sin(g) ≈ g and drop all terms of O(ω−2), which yields〈

φd
0 (t)

∣∣φα(t)
〉

= �α
1 + i�α

y

(
g(t)ny(t) − g0(t)ny

0(t)
)

+ i�α
x

(
g(t)nx(t) − g0(t)nx

0(t)
)

= �α
1 + i�α

y

(
gy(t) − g0

y(t)
)︸ ︷︷ ︸

≡�gy (t)

+ i�α
x

(
gx(t) − g0

x(t)
)︸ ︷︷ ︸

≡�gx (t)

.

(C14)

Then, again omitting terms quadratic in 1/ω,∣∣〈φd
0 (t)

∣∣φα(t)
〉∣∣2

= (
�α

1 + i�α
y �gy(t) + i�α

x �gx(t)
)

× (
�α

1
∗ − i�α

y
∗
�gy(t) − i�α

x
∗
�gx(t)

)
= ∣∣�α

1

∣∣2 − Im
[
�α

1
∗
�α

x

]
�gx(t) − Im

[
�α

1
∗
�α

y

]
�gy(t).

(C15)

In the end we are interested in∣∣〈φd
0 (t)

∣∣φd (t)
〉∣∣2 − ∣∣〈φd

0 (t)
∣∣φu(t)

〉∣∣2
= (∣∣�d

1

∣∣2 − ∣∣�u
1

∣∣2)− (
Im
[
�d

1
∗
�d

x

]− Im
[
�u

1
∗
�u

x

])
�gx(t)

− (
Im
[
�d

1
∗
�d

y

]− Im
[
�u

1
∗
�u

y

])
�gy(t). (C16)

The different contributions to the overlaps are

∣∣�d
1

∣∣2 − ∣∣�u
1

∣∣2 =

d0 · 
d

|d||d0| (C17)

Im
[
�d

1
∗
�d

x

]− Im
[
�u

1
∗
�u

x

] = dyd
0
z − d0

ydz

|d||d0| (C18)

Im
[
�d

1
∗
�d

y

]− Im
[
�u

1
∗
�u

y

] = d0
xdz − dxd

0
z

|d||d0| . (C19)

Since �gz(t) = 0, we can finally write∣∣〈φd
0 (t)

∣∣φd (t)
〉∣∣2 − ∣∣〈φd

0 (t)
∣∣φu(t)

〉∣∣2
=


h0 · 
h
|h||h0| + (
h0 × 
h) · �
g(t)

|h||h0| + O(ω−2). (C20)

APPENDIX D: PARTIALLY FILLED BANDS

In this section we derive the leading contribution to

sin(2θ
k) Re
[
eiϕ
k (t)

(〈
φd

0
k(t)
∣∣φd


k (t)
〉〈
φd


k (t)
∣∣φu

0
k(t)
〉

− 〈
φd

0
k(t)
∣∣φu


k (t)
〉〈
φu


k (t)
∣∣φu

0
k(t)
〉)]

(D1)

which is a part of the occupation difference when quenching
from partially filled Floquet bands given in Eq. (80) in the
main text. For the sake of brevity we will drop the explicit 
k
dependence in the notation wherever it is not relevant in the
following.

The derivation is analogous to the one given in Appendix C.
We generalize the expressions for the overlaps (C9)–(C11) to

�
αβ

1 = 〈
uα

0

∣∣uβ〉 = 1

Nαβ

(
1 + h0

z ± h0

h0
x − ih0

y

hz ± h

hx + ihy

)
(D2)
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�αβ
x = 〈

uα
0

∣∣σx |uβ〉 = 1

Nαβ

(
h0

z ± h0

h0
x − ih0

y

+ hz ± h

hx + ihy

)
(D3)

�αβ
y = 〈

uα
0

∣∣σy |uβ〉 = −i
1

Nαβ

(
h0

z ± h0

h0
x − ih0

y

− hz ± h

hx + ihy

)
(D4)

with

Nαβ =

√√√√ (
h2

x + h2
y

)(
h0

x
2 + h0

y
2)

4hh0
(
h0 ± h0

z

)
(h ± hz)

. (D5)

In the expressions above α is always associated with the first ±
and β with the second. For the overlaps in Eq. (D1) this yields〈

φd

0
k(t)
∣∣φd


k (t)
〉〈
φd


k (t)
∣∣φu

0
k(t)
〉− 〈

φd

0
k(t)
∣∣φu


k (t)
〉〈
φu


k (t)
∣∣φu

0
k(t)
〉

= (
�dd

1 + i�dd
x �gx(t) + i�dd

y �gy(t)
)

× (
�ud

1
∗ − i�ud

x

∗
�gx(t) − i�ud

y

∗
�gy(t)

)
− (

�du
1 + i�du

x �gx(t) + i�du
y �gy(t)

)
× (

�uu
1

∗ − i�uu
x

∗
�gx(t) − i�uu

y
∗
�gy(t)

)
= h0

z

(
h0

xhx + h0
yhy

)+ ih0
(
h0

xhy − h0
yhx

)
hh0

√
h0

x
2 + h0

y
2

− 4hz

hh0

√
h0

x
2 + h0

y
2

[
h0

zh
0
y + ih0h

0
x

]
�gx(t)

+ 4hz

hh0

√
h0

x
2 + h0

y
2

[
h0

zh
0
x − ih0h

0
y

]
�gy(t) + O(ω−2),

(D6)

where second order terms were omitted.

We consider the first term, which is frequency independent.
When the linearization around the gap closing point given in
Eqs. (63)–(65) is plugged in, the imaginary part vanishes. For
the real part we can approximate h0 ≈ hz

0 close to the gap
closing point. Thereby we obtain

h0
xhx + h0

yhy

h

√
h0

x
2 + h0

y
2
. (D7)

The contribution of this part of the occupation to the Hall
conductance is

σ (2)
xy =

∫
d2k

4π
sin(2θ
k) cos(ϕ
k(t))

×
h0


kx
h
kx + h0


ky
h
ky√

h0

kx

2 + h0

ky

2

(∂x

h
k × ∂y


h
k)
h
k
h4


k
. (D8)

Assuming sin(2θ
k) cos(ϕ
k(t)) well behaved in the vicinity of
the gap closing point 
k0, we can approximate

σ (2)
xy = sin(2θ
k0

) cos(ϕ
k0
(t))

×
∫

d2k

4π

h0

kx

h
kx + h0

ky

h
ky√
h0


kx

2 + h0

ky

2

(∂x

h
k × ∂y


h
k)
h
k
h4


k
(D9)

and then the integral is the same one gets when quenching
from a gapless initial state, which is discussed in Sec. III C 1
of the main text. This means that partially filled initial
states add a jump to the Hall conductance at the transition.
But through the cos(ϕ
k0

(t)) factor the jump oscillates as a
function of the quench time with frequency equal to the initial
gap 2m(Ai).
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Chapter 3

Quantum dynamics from classical
networks

As it was outlined in Section 1.3 the efficient numerical treatment of quantum many-body
systems is a great challenge – beyond equilibrium even more than in equilibrium. Due to
the exponential growth of the Hilbert space dimension the exact treatment based on a full
uncompressed representation of the wave function becomes prohibitively expensive already at
small system sizes. Over the past decades two particularly notable versatile approaches have
been developed, which facilitate the treatment of large classes of many-body systems within
their respective frameworks, namely the Density Matrix Renormalization Group (DMRG)
including related algorithms based on matrix product states (MPS) and Dynamical Mean
Field Theory (DMFT). The nonequilibrium extensions of these methods are reliable tools
to compute real time dynamics in one dimension (DMRG) or three and more dimensions
(DMFT). In two dimensions, however, DMRG quickly becomes very expensive due to the
exponential cost of encoding entanglement and the applicability of DMFT is questionable,
because it relies on a high connectivity. In this chapter an alternative approach for the
efficient representation of many-body wave functions is explored, namely the encoding in
networks of classical degrees of freedom, which could potentially bridge the gap between low
and high dimensions.

In the first part of this chapter (Section 3.1) the two numerical methods that will be used
in Chapter 4, namely exact diagonalization and infinite Time Evolving Block Decimation
(iTEBD)1, are introduced. The intention is to illustrate the strengths and limitations of these
methods and to sketch their way of functioning for technical nonexperts. Moreover, in Section
3.1.3 recent developments regarding classical network wave functions, which are relevant for
this work, are summarized. In Section 3.2 a new way to construct classical networks to
encode quantum dynamics based on a perturbative approach is introduced and applied to
study the dynamics of transverse-field Ising models in one, two, and three dimensions as a
benchmark.

1iTEBD is an algorithm for (imaginary) time evolution based on Matrix Product States.
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3.1 State of the art methods in wave-function-based

quantum many-body numerics

This section comprises minimal introductions to exact diagonalization and iTEBD, a MPS-
based time-evolution algorithm. For more detailed descriptions the reader is referred to the
literature, e.g. (Sandvik, 2010) for exact diagonalization and (Schollwöck, 2011; Kjäll et al.,
2013) for DMRG in general and the iTEBD algorithm. For the sake of simplicity the focus is
in the following on spin-1/2 systems, but in all cases the generalization to larger dimensions
of the local Hilbert spaces is possible.

3.1.1 Exact dynamics in the full Hilbert space

In the following we will consider the XXZ Hamiltonian on two lattice sites,

Ĥ =
J

2

(
Ŝ+

1 Ŝ
−
2 + Ŝ−1 Ŝ

+
2

)
+ JzŜ

z
1 Ŝ

z
2 , (3.1)

to exemplify the key ingredients of an exact diagonalization algorithm.

The computational representation and exact diagonalization

The footing of exact diagonalization algorithms is a suited representation of the computa-
tional basis. In a spin-1/2 system a common choice is to construct the basis from the local
eigenbasis of the Ŝz operators. These basis states can be encoded very efficiently in a com-
puter using the bit representation of integer variables and identifying |↓〉 ≡ 0 and |↑〉 ≡ 1. A
central benefit of this representation is that any physical representation is in a very simple
manner related to an index, e.g. |↑↓〉 ≡ 10 ≡ 2, which allows for efficient searches in the
basis list. The following table displays the basis representation of the Hilbert space of two
spins, H = C2:

Basis state Physical configuration Integer (index) Bit representation Column vector
|b0〉 |↓〉 ⊗ |↓〉 0 00 (1, 0, 0, 0)t

|b1〉 |↓〉 ⊗ |↑〉 1 01 (0, 1, 0, 0)t

|b2〉 |↑〉 ⊗ |↓〉 2 10 (0, 0, 1, 0)t

|b3〉 |↑〉 ⊗ |↑〉 3 11 (0, 0, 0, 1)t

Once a basis list is set up the matrix elements 〈bi|Ĥ|bj〉 can be figured out by considering
the action of the constituents of the Hamiltonian on the basis representation. This yields a
matrix representation of the Hamiltonian, which in the case of our example system is

Ĥ ≡ H =




Jz/4 0 0 0
0 −Jz/4 J/2 0
0 J/2 −Jz/4 0
0 0 0 Jz/4


 . (3.2)
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The resulting matrix is readily diagonalized by standard numerical algorithms yielding the
eigenbasis {|Ei〉} with corresponding eigenenergies {Ei}. On that basis it is straightforward
to compute the time evolution of a state |ψ0〉,

|ψ(t)〉 = e−iĤt |ψ0〉 =
∑

i

e−iEit 〈Ei|ψ0〉 |Ei〉 . (3.3)

The result for |ψ(t)〉 obtained in this way is exact for all times. Moreover, it is possible to
extract the expectation values of arbitrary observables by considering representations of the
corresponding operators in the computational basis.

Clearly, the maximal system size that can be treated in this way is, however, limited
by the available computational resources. The dimension of the Hilbert space to describe a
system of size N is D = dN , where d is the dimension of the local Hilbert space. Hence,
storing a matrix representation of a Hamiltonian naively means storing D2 = d2N numbers
in memory. Assuming the matrix elements are all real and stored with double precision the
Hamiltonian matrix of a spin-1/2 system with N = 14 lattice sites already requires almost
2.2 Gigabytes of memory. Also the computational cost to diagonalize the matrix grows
exponentially, because it is polynomial in the matrix dimensions.

The numerical expense can be diminished by taking symmetries of the Hamiltonian into
account. A symmetry that leads to an obvious signature in the Hamiltonian matrix (3.2) is
the U(1) symmetry that implies the conservation of total magnetization,

[
Ĥ, Ŝz1 + Ŝz2

]
= 0.

Accordingly, the Hamiltonian has block form and the Hilbert space can be split into a direct
sum of symmetry sectors H = HS=1 ⊕ HS=0 ⊕ HS=−1. As a consequence the single blocks
can be treated separately, which reduces the computational cost.

Note that in our example the Hamiltonian on the S = 0 sector is moreover symmetric
under global spin flip. This can be accounted for by choosing alternative basis states |b̃1/2〉 =(
|b1〉 ± |b2〉

)
/
√

2, which are eigenstates of the spin flip operator σ̂x1 ⊗ σ̂x2 . Thereby, an
additional block structure is revealed in the S = 0 sector; in fact, a full diagonalization of
the Hamiltonian is obtained based just on symmetry considerations. Other symmetries that
can lead to a simplification of the problem are lattice inversion symmetry and translational
invariance in the presence of periodic boundary conditions; see (Sandvik, 2010) for details.

Krylow space methods

A family of algorithms based on exact representations of the many-body Hilbert space that
allow to reduce both the memory demand and the computational complexity are so-called
Krylow space methods. In particular, Lanczos algorithms allow to compute the low energy
part of the spectrum or time evolution (Lanczos, 1950; Park and Light, 1986). In the following
the iterative Lanczos method is sketched, which is applied within this thesis to compute echo
dynamics in Chapter 4.

For a given Hamiltonian Ĥ the evolution of a state |ψ〉 for a time δt can be written in a
series expansion, for which at small δt a truncation at the M -th power is a good approxima-
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tion,

e−iĤδt |ψ〉 =
∞∑

n=0

(−iδt)n

n!
Ĥn |ψ〉 ≈

M∑

n=0

(−iδt)n

n!
Ĥn |ψ〉 . (3.4)

This shows that up to corrections of O(δtN+1) the time-evolved state is contained in the
Krylow subspace KM = span{|ψ〉 , Ĥ |ψ〉 , Ĥ2 |ψ〉 , . . . , ĤM |ψ〉}. In the Lanczos algorithm an
orthonormal basis {|l1〉 , . . . , |lM〉} of this subspace is constructed such that

(
HM

)
ij
≡ 〈li|Ĥ|lj〉 (3.5)

is a tridiagonal matrix of dimensions M × M . Diagonalization of this matrix yields the
spectrum εn and the corresponding eigenvectors |n〉〉. Here the notation |·〉〉 was introduced
for vectors that are regarded as elements of the Krylow space. With this the time evolution
operator is approximated as

e−iĤδt ≈
∑

i,j,n

e−iεnδt 〈〈li|n〉〉 〈〈n|lj〉〉 |li〉 〈lj| , (3.6)

which conserves the unitarity of the time evolution.
In order to compute the dynamics the desired time interval is split into small time steps

δt and the Lanczos procedure is iteratively applied. Control parameters of the approximation
are the time step δt and the Krylow space dimension M ; it is important to check the conver-
gence of the results to ensure accuracy. For the problems treated with this approach later in
this thesis the required Krylow space dimension lay between five and ten meaning that the
the computational cost for the diagonalization of

(
HM

)
ij

is negligible. Instead the iterated

application of the Hamiltonian in order to construct the subspace constitutes the compu-
tationally most intense part of this algorithm. In contrast to exact diagonalization, which
requires dense storage of the Hamiltonian matrix, this can be implemented quite memory
efficiently by using a sparse matrix format or computing the matrix elements on the fly.

3.1.2 Matrix product states

The matrix product state (MPS) formulation of many-body wave-functions constitutes an
efficient parametrization for states with weak and moderate entanglement. Due to the area
law of entanglement the MPS representation is well suited to treat ground states in one-
dimensional systems. Moreover, the dynamics starting from a weakly entangled state can
be captured with MPS as long as the entanglement remains moderate. In the following the
basics of the MPS formalism are outlined before the iTEBD algorithm for time evolution in
an infinite translationally invariant system is introduced.

Schmidt decomposition

A fundamental ingredient for the MPS formalism is the Schmidt decomposition. For a vector
|ψ〉, which is an element of a composite Hilbert space H = H1 ⊗ H2, and Hilbert space
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dimensions dim(H1) = m and dim(H2) = n with m ≤ n there exist vectors {|u1〉, ..., |um〉} ∈
H1 and {|v1〉, ..., |vm〉} ∈ H2, which are pairwise orthonormal, 〈ui|uj〉 = δij and 〈vi|vj〉 = δij,
and a nonnegative set of real numbers Λ1 ≥ Λ2 ≥ . . . ≥ Λm ≥ 0 such that

|ψ〉 =
m∑

i=1

Λi|ui〉 ⊗ |vi〉 . (3.7)

The Λi are commonly referred to as Schmidt coefficients. A proof of this statement as well as
any practical implementation on a computer rely on the singular value decomposition: For
any m× n-matrix M there is a decomposition

M = UΣV (3.8)

with U a unitary m×m-matrix, V a unitary n× n matrix, and Σ a diagonal m× n-matrix.
The Schmidt decomposition has a close connection to entanglement entropy. Assuming

H1 is the Hilbert space of subsystem A and H2 the Hilbert space of subsystem B the reduced
density matrix of subsystem A is

ρ̂A = trB
(
|ψ〉〈ψ|

)
=

m∑

i=1

Λ2
i |ui〉〈ui| (3.9)

and, therefore, the von Neumann entropy of entanglement is directly given by the Schmidt
coefficients,

SA = −
m∑

i=1

Λ2
i log2 Λ2

i . (3.10)

This property plays a crucial role for the controlled compression of the MPS representation
of a state |ψ〉.

Matrix product states

For any state

|ψ〉 =

p∑

i1,...,iN=1

Ci1,...,iN |i1〉 ⊗ . . .⊗ |iN〉 . (3.11)

of a one-dimensional system with local Hilbert space dimension p and local basis {|i〉}pi=1 the
wave function coefficients can by successive Schmidt decompositions be written as

Ci1,...,iN =

p∑

α1=1

p2∑

α2=1

. . .

min(pn,pN−n)∑

αn=1

. . .

p∑

αN=1

Γ
[1]i1
1,α1

Λ[1]
α1

Γ[2]i2
α1,α2

Λ[2]
α2

Γ[3]i3
α2,α3

Λ[2]
α3
. . .Λ[N−1]

αN−1
Γ

[N ]iN
αN ,1

.

(3.12)

In this expression the Γ
[l]il
αl,αl+1 essentially correspond to the basis transformation between the

computational basis and the Schmidt basis. At first this expression seems to be a particularly
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inefficient encoding of the pN coefficients of the wave function, because the largest matrix
appearing in the expression above, Γ[N/2]i, alone has the same number of entries. However,
for ground states of gapped systems the Schmidt coefficients Λ

[n]
α decay exponentially, which

means that the matrix sizes can be truncated in a controlled way to some maximal feasible
bond dimension D. The deviation of the compressed wave function |ψc〉 obtained in this way
is at worst

|| |ψc〉 − |ψ〉 || ≤ 2
N∑

n=1

εn(D) , (3.13)

where εn(D) =
∑

α>D

(
Λ

[n]
α

)2
(Verstraete and Cirac, 2006). Hence, the state can in good

approximation be represented using pN matrices of maximal dimension D, i.e., O(pND2)
coefficients. In practice it is often sufficient to work with D ∼ O(103), which means a
tremendous reduction of the required memory in comparison to uncompressed storage of the
wave function. Typically, a maximal discarded weight is introduced as control parameter,
based on which the bond dimension is adjusted dynamically such that it is minimal with the
constraint that the allowed discarded weight is not exceeded.

In Eq. (3.12) the Schmidt coefficients can be interpreted as entries of a diagonal matrix

Λ
[n]
αn,α′n

= Λ
[n]
αnδαn,α′n . With this the wave function coefficient is expressed as a product of rank

2 and rank 3 tensors, which are associated with single lattice sites,

Ci1,...,in =
∑

{αn,α′n}
Γ[1]i1
α1

Λ
[1]

α1,α′1
Γ[2]i2
α1α2

Λ
[2]

α2,α′2
Γ[3]i3
α2α3

Λ
[2]

α3,α′3
. . .Λ

[N−1]

αN−1,α
′
N−1

Γ[N ]iN
αN

. (3.14)

Alternatively, the tensors Γ
[n]in
αn−1αn can be understood as a set of p matrices labeled by in.

Then the coefficient Ci1,...,in is in the form above expressed as a product of 2N − 1 matrices.
Therefore the name matrix product state.

Graphical representation

Explicit formulas containing matrix products or tensor products, as for example eq. (3.14),
are typically very cumbersome and inconvenient to work with. However, the actual operations
that are described by the formulas are very simple, namely contractions of indices, i.e., sums
over common indices of multiple tensors. In order to avoid the bulky notation it is useful
to resort to Penrose graphical notation of tensors (Penrose, 1971). In that notation a tensor
corresponds to a node and each index of the tensor corresponds to a leg of that node, for
example,

If common indices of two tensors are contracted this is represented by joining the correspond-
ing legs of the tensors to an edge, for example
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Note that, as desired, the graphical representation directly allows to interpret the result as
a tensor with four external indices as shown after the second equality. Accordingly, the
coefficient tensor is represented by

An operator Ô acting on the Hilbert space can be written as

Ô =
∑

i1,...,iN
i′1,...,i

′
N

O
i′1,...,i

′
N

i1,...,iN
|i′1〉 ⊗ . . .⊗ |i′N〉〈i1| ⊗ . . .⊗ 〈iN | , (3.15)

i.e., it is defined by a rank 2N tensor with entries O
i′1,...,i

′
N

i1,...,iN
. A graphical representation is

The product Ô|ψ〉 is represented by

In analogy to the coefficient tensor Ci1,...,in of a state the coefficient tensor O
i′1,...,i

′
N

i1,...,iN
can be

decomposed into a product of lower rank tensors, leading to a matrix product operator (MPO).
This is, however, beyond the scope of this discussion.

Time evolution in a translationally invariant system (iTEBD)

Since the MPS formulation of the wave function explicitly reflects how the notion of real
space shapes the space of physically relevant states it is within this framework possible
to deal with translationally invariant states of an infinite system. The basic idea is that
translational invariance implies that in the MPS representation (Eq. (3.12)) all Γ

[n]in
αn−1,αn are

the same as well as all Λ
[n]
αn . In combination with the fact that time evolution with a local

Hamiltonian involves only a couple of neighboring lattice sites this effective simplicity of the
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|ψ0〉

û1(∆t) û3(∆t) û5(∆t) û7(∆t)

û1(∆t) û3(∆t) û5(∆t) û7(∆t)

û1(∆t) û3(∆t) û5(∆t) û7(∆t)

û2(∆t) û4(∆t) û6(∆t)

û2(∆t) û4(∆t) û6(∆t)

û2(∆t) û4(∆t) û6(∆t)

Fig. 3.1: Graphical representation of Trotter
time evolution. The initial state |ψ0〉 is evolved
for three time steps ∆t.

U(∆t)

|ψ(t)〉
i j

|ψ(t+ ∆t/2)〉

i j i j

SVD

Fig. 3.2: Schematic depiction of the iTEBD
cycle. Iteration of this loop amounts to time
evolution in an infinite translationally invariant
system.

infinite MPS is exploited for the efficient computation of dynamics in an algorithm called
infinite Time Evolving Block Decimation (iTEBD).

For a local Hamiltonian that can be expressed as Ĥ =
∑N

i=1 ĥi,i+1 with ĥi,i+1 acting only
on lattice sites i and i + 1 a Suzuki-Trotter expansion of the time evolution operator for a
short time ∆t yields

Û(∆t) = e−iĤ∆t =
∏

i odd

e−iĥi,i+1∆t
∏

i even

e−iĥi,i+1∆t +O(∆t2) , (3.16)

Thereby, the action of the time evolution operator can be approximated by subsequent evo-
lutions on the even and odd bonds of the lattice. The time evolution for longer time intervals
T = n∆t is then obtained by iterative application of U(∆t),

Û(n∆t) = Û(∆t)n ≈
( ∏

i odd

ûi(∆t)
∏

i even

ûi(∆t)

)n

, (3.17)

where ûi(∆t) = e−iĥi,i+1∆t.
Fig. 3.1 shows a graphical representation of the Trotter time evolution of an initial state

|ψ0〉. As is evident from this depiction the time evolution on even and odd bonds, respectively,
can be performed independently on the single bonds. Together with translational invariance
this allows to compute the time evolution with high efficiency using the iTEBD algorithm.
The idea is sketched in a simplified version in Fig. 3.2. A detailed description can, e.g.,
be found in (Pollmann, 2016). The algorithm requires two pairs of tensors, Γ

[1]i1
α1,α′1

,Λ
[1]
α1 and

Γ
[2]i2
α2,α′2

,Λ
[2]
α2 . The contraction of each pair is depicted by the red and green node, respectively,

in Fig. 3.2. In the following we refer to the corresponding tensors as Γ̃
[1]i1
α,α′ and Γ̃

[2]i2
α′,α′′ . The

algorithm is a loop and each iteration corresponds to evolving the wave function by a half
time step. The steps are the following:
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1. Apply the time evolution operator to |ψ(t)〉 to obtain |ψ(t+ ∆t/2)〉.

2. Decompose |ψ(t+ ∆t/2)〉 into its constituent tensors Γ̃
[1]i1
α,α′ and Γ̃

[2]i2
α′,α′′ .

3. Swap both tensors by relabelling their indices to Γ̃
[1]i2
α′,α′′ and Γ̃

[2]i1
α,α′ and contract along α′.

4. Continue with step 1.

The idea of this algorithm is that due to translational invariance after performing the time
evolution, e.g., on an even bond (step 1) the next time step will couple the green tensor (cf.
Fig. 3.2) to another red tensor to its right, which is, however, identical to the red tensor to
its left after the time evolution. Hence, it suffices to simply swap the red and green tensors
and perform the next time step on the resulting tensor after contraction. The loop has to be
iterated twice in order to perform one time step ∆t. Note that although the state after one
iteration is above denoted by |ψ(t+ ∆t/2)〉 this does not correspond to Û(∆t/2) |ψ(t)〉.

Fig. 3.3 displays data from an example time evolution with iTEBD for different maximal
bond dimensions Dmax. The entanglement entropy shows the typical linear growth with time
(cf. Section 1.2.2), which means an exponential growth of the required bond dimension for
a fixed maximal discarded weight. Some time after the maximal allowed bond dimension is
reached discrepancies between the different results become evident.
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Fig. 3.3: Exemplary data from time evolution computed with the iTEBD algorithm for a quench
in the Ising model with magnetic field defined in Eq. (4.6) (|ψ0〉 =

⊗
l |→〉l, hx/J = 0.3, hz/J =

0.1) with different restrictions on the bond dimension, D ≤ Dmax. (a) Dynamically adjusted
bond dimension D (maximal discarded weight εmax = 10−10), (b) Entanglement entropy S(t), (c)
transverse magnetization 〈σ̂xi 〉.
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3.1.3 Classical networks

An alternative approach to represent many-body wave functions is to encode the state in a
network of classical degrees of freedom. Considering for simplicity a spin-1/2 system with
computational basis |~s〉 = |s1〉 ⊗ . . . ⊗ |sN〉, where si =↑, ↓, the idea is to write the wave
function coefficients in the form

ψ(~s) = 〈~s|ψ〉 = eH (~s) . (3.18)

In this expression H (~s) is a Hamilton function describing interactions between classical
degrees of freedom ~s, thereby defining a network of classical spins. Since the wave function
coefficients can be complex, the coupling constants appearing in H (~s) are in general complex
numbers. This approach allows to represent the wave function in compressed form if it is
possible to find a Hamilton function that accurately reproduces the wave function coefficients
ψ(~s) for all basis states |~s〉 requiring only a small number of coupling constants.

Considering an observable Ô with matrix elements 〈~s|Ô|~s′〉 = O~s,~s′ , the expectation value
is readily written as

〈ψ|Ô|ψ〉 =
∑

~s

eH̃ (~s)Õ~s (3.19)

with

Õ~s =
∑

~s′

Re
[
O~s,~s′e

H (~s′)−H (~s)
]
. (3.20)

This corresponds to a thermal expectation value of the observable Õ~s in the classical spin
system defined by H̃ (~s) = 2Re

(
H (~s)

)
. Considering an observable that is diagonal in the

computational basis, 〈~s|Ô|~s′〉 = O~sδ~s,~s′ , this expectation value simplifies to

〈ψ|Ô|ψ〉 =
∑

~s

eH̃ (~s)O~s . (3.21)

With a wave function given in this form expectation values can be computed efficiently by
Metropolis Monte Carlo (Metropolis et al., 1953).

Classical network wave functions are commonly used in variational Monte Carlo algo-
rithms for ground state searches (McMillan, 1965; Sorella, 2005; Capello et al., 2007) or time
evolution (Carleo et al., 2012, 2014; Cevolani et al., 2015; Blaß and Rieger, 2016; Hafner
et al., 2016; Carleo et al., 2017). The Jastrow wave function (Jastrow, 1955) corresponding
to a classical network of the form

HJ(~s) =
∑

i,j

Cijsisj (3.22)

turned out to be a suited ansatz for many problems. Moreover, a new class of networks
has been proposed recently as versatile ansatz, namely artificial neural networks. The first
proposal by (Carleo and Troyer, 2017) suggests to consider classical networks in the form
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of a Restricted Boltzmann Machine (RBM) to represent the many-body wave function. In
this approach the classical system consists of the visible spins ~s supplemented with additional
hidden spins ~h. As depicted exemplarily in Fig. 3.4 the RBM network contains only two-spin-
couplings involving one visible and one hidden spin and possibly local fields for each spin;
therefore the term “restricted”. The coefficient of a configuration ~s is obtained by integrating
out the hidden spins, which can be done analytically due to the restriction of the couplings,

ψ(~s) =
∑

~h

exp

(
N∑

i=1

visi +

Nh∑

j=1

wjhj +
∑

i,j

Wijsihj

)
(3.23)

= 2Nh exp

(
N∑

i=1

visi

)
Nh∏

j=1

cosh

(
wj +

N∑

i=1

Wijsi

)
. (3.24)

This class of networks encloses the Jastrow-type networks (3.22), but it is much more general,
because (3.24) can in addition comprise all kinds of higher order couplings. This flexibility is
essentially guaranteed by representability theorems, on which machine learning with artificial
neural networks is based (Hornik, 1991; Le Roux and Bengio, 2008).

In (Carleo and Troyer, 2017) it was shown that

s1 s2 s3 s4 s5 s6

h1 h2 h3 h4

Fig. 3.4: Exemplary structure of a Re-
stricted Boltzmann Machine. Visible
degrees of freedom si are coupled to hid-
den degrees of freedom hi through cou-
plings Wij indicated by black lines.

RBMs allow to find ground state wave functions in
two-dimensional systems, which are competitive with
other state of the art methods. Moreover, the prin-
cipled possibility to compute time-evolution after a
quench was demonstrated. Subsequently, a series of
works investigated the capabilities of artificial neu-
ral networks to represent many-body wave functions.
It was found that various prototypical ground states
of exotic phases of matter, including ones that show
long-range topological order, can be represented ef-
ficiently by an RBM (Deng et al., 2016; Huang and
Moore, 2017; Kaubruegger et al., 2017). Moreover, a
study of the entanglement properties implies that strong entanglement is not the restricting
factor impeding the efficiency of RMBs (Deng et al., 2017).

In the second part of this chapter (Section 3.2) a classical network representation of a
time-evolved wave function after a quench is derived perturbatively via a cumulant expansion.
It is found that the derived classical networks capture the quantum dynamics at short and
intermediate times quite accurately. Hence, the approach provides a constructive prescription
to design classical networks suited for time evolution going beyond the Jastrow ansatz (3.22).
Moreover, the results show how locality can be exploited in a controlled way to simplify
general RBM architectures.
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Abstract

The efficient representation of quantum many-body states with classical re-
sources is a key challenge in quantum many-body theory. In this work we
analytically construct classical networks for the description of the quantum
dynamics in transverse-field Ising models that can be solved efficiently using
Monte Carlo techniques. Our perturbative construction encodes time-evolved
quantum states of spin-1/2 systems in a network of classical spins with lo-
cal couplings and can be directly generalized to other spin systems and higher
spins. Using this construction we compute the transient dynamics in one, two,
and three dimensions including local observables, entanglement production,
and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the
accuracy of this approach by comparisons to exact results. We include a map-
ping to equivalent artificial neural networks, which were recently introduced
to provide a universal structure for classical network wave functions.
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1 Introduction

A key challenge in quantum many-body theory is the efficient representation of quantum
many-body states using classical compute resources. The full information contained in
such a many-body state in principle requires resources that grow exponentially with the
number of degrees of freedom. Therefore, reliable schemes for the compression and efficient
encoding of the essential information are vital for the numerical treatment of correlated
systems with many degrees of freedom. This is of particular relevance for dynamics far
from equilibrium, where large parts of the spectrum of the Hamiltonian play an important
role.

For low-dimensional systems matrix product states [1,2] and more general tensor net-
work states [3] constitute a powerful ansatz for the compressed representation of physically
relevant many-body wave functions. These allow for the efficient computation of ground
states and real time evolution. In high dimensions properties of quantum many-body
systems in and out of equilibrium can be obtained by dynamical mean field theory [4–7],
which yields exact results in infinite dimensions. This leaves a gap at intermediate dimen-
sions, where exciting physics far from equilibrium has recently been observed experimen-
tally [8–13].

An alternative approach, which received increased attention lately, is the representation
of the wave function based on networks of classical degrees of freedom. Given the basis
vectors |~s〉 = |s1〉 ⊗ |s2〉 ⊗ . . .⊗ |sN 〉 of a many-body Hilbert space, where the sl label the
local basis, the coefficients of the wave function |ψ〉 are expressed as

ψ(~s) = 〈~s|ψ〉 = eH (~s) (1)

where H (~s) is an effective Hamilton function defining the classical network. Wave func-
tions of this form were used in combination with Monte Carlo algorithms for variational
ground state searches [14–16] and time evolution [17–23]. Recently, it was suggested that
the wave function (1) can generally be encoded in an artificial neural network (ANN)
trained to resemble the desired state [23]. This idea was seized in a series of subsequent
works exploring the capabilities of this and related representations [24–31]. Importantly,
there are no principled restrictions on dimensionality.

In this work we present a scheme to perturbatively derive analytical expressions for per-
turbative classical networks (pCNs) as representation of time-evolved wave functions for
transverse-field Ising models (TFIMs) which can be extended directly also to other models.

a© b©
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Figure 1: (a) Structure of the perturbative classical network for the TFIM in d = 2 and (b)
dynamics of the couplings (color coded as in (a)). The black dots in the network structure
represent a classical spin sl and its four neighbors in a translationally invariant square
lattice. Each square with number n corresponds to a coupling of the connected classical
spins with coupling constant Cn(t). The resulting time-dependent classical Hamiltonian
function H (~s, t) encodes quantum dynamics via Eq. (1).
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The resulting networks consist of the same number of classical spins as the corresponding
quantum system and exhibit only local couplings making the encoding particularly effi-
cient. We compute the transient dynamics of the TFIM in one, two, and three dimensions
(d = 1, 2, 3) including local observables, correlation functions, entanglement production,
and Loschmidt amplitudes. By comparing to exact solutions we demonstrate the accuracy
of our results going well beyond standard perturbative approaches. This work provides a
way to derive classical network structures within a constructive prescription, where other
approaches rely on heuristics. As a specific application, we derive the structure and the
time-dependent weights of equivalent ANNs in the sense of Ref. [23].

2 Results

In the following we compute dynamics of TFIMs of N spins with Hamiltonian

H = −J
4

∑

〈i,j〉
σzi σ

z
j −

h

2

N∑

i=1

σxi , (2)

where σ
x/z
i denote Pauli operators acting on site i and the first sum runs over neighboring

lattice sites i and j. As the computational basis we choose the spin basis states |~s〉 =
|s1 . . . sN 〉 with si =↑, ↓.

Note that dynamics of Ising models are accessible experimentally with quantum sim-
ulators, which was demonstrated recently in various setups [32–34].

In this work we are interested in the dynamics that comprise a dynamical quantum
phase transition (DQPT) [35, 36]. The signature of a DQPT is a non-analyticity in the
many-body dynamics analogous to equilibrium phase transitions where thermodynamic
quantities behave non-analytically as function of a control parameter. DQPTs were re-
cently observed in experiment [11, 34] and there is a series of results on TFIMs in this
context [37–47].

Typically, DQPTs occur when the model is quenched across an underlying equilibrium
quantum phase transition. A particularly insightful limit with this respect is a quench
from h0 =∞ to h/J � 1, where, e.g., universal behavior was proven in d = 1 [41]. When
quenching from h0 =∞ to h = 0 the TFIM in d = 1, 2 exhibits DQPTs at odd multiples
of tc = π/J , which we choose as the unit of time throughout the paper. The ground
state at h0 = ∞ is a particularly simple initial state, since 〈~s|ψ0〉 = 2−N/2. One could,
however, go away from that limit perturbatively, e.g., by constructing a Schrieffer-Wolff
transformation for an initial state with weak spin couplings.

2.1 Classical network via cumulant expansion

Consider a Hamiltonian of the form H = H0 + λV , where H0 is diagonal in the spin
basis, H0|~s〉 = E~s|~s〉, V an off-diagonal operator, and λ � 1. In the interaction picture
the time evolution operator can be expressed as e−iHt = e−iH0tWλ(t), where Wλ(t) =

Tt exp
[
−iλ

∫ t
0 dt

′V (t′)
]
. In this setting time-evolved coefficients of the wave function (1)

can be obtained perturbatively by a cumulant expansion [48]. Denoting the initial state
with |ψ0〉 =

∑
~s ψ0(~s)|~s〉 the cumulant expansion to lowest order yields the time-evolved

state |ψ(t)〉 =
∑

~s ψ(~s, t)|~s〉 with

ψ(~s, t)

ψ0(~s)
= e−iE~st exp

[
−iλ

∫ t

0
dt′
〈~s|V (t′)|ψ0〉
〈~s|ψ0〉

+O(λ2)

]
. (3)
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Figure 2: Time evolution of transverse magnetization (top panels) and nearest-neighbor
correlation function (bottom panels) in the TFIM. (a, b) Results for d = 1 obtained from
the pCN with first order (pCN-1) and second order (pCN-2) expansion in comparison with
the exact dynamics and time-dependent perturbation theory (tdPT). (c, d) Dynamics in
d = 2 (blue), and d = 3 (orange) obtained from the first order pCN compared to exact
results in d = 2. Data obtained with h/J = 0.05; tc = π/J .

By identifying H (~s, t) = −iE~st− iλ
∫ t

0 dt
′ 〈~s|V (t′)|ψ0〉
〈~s|ψ0〉 the expression above takes the desired

form given in Eq. (1). Importantly, also the effective Hamilton function becomes local,
whenever H0 and V are local. It will be demonstrated below that the construction via
cumulant expansion yields much more accurate results than conventional perturbation
theory. The approximation can be systematically improved by taking into account higher
order terms. To which extent it is possible to also capture long-time dynamics using such
a construction, remains an open question and, since beyond the scope of the present work,
will be left for future research.

For our purposes, we identify H0 = −J
4

∑
〈i,j〉 σ

z
i σ

z
j and λV =̂ − h

2

∑
i σ

x
i . Note that,

e.g., a strongly anisotropic XXZ model could be treated analogously. The time-dependent
V (t) is obtained by solving the Heisenberg equation of motion. The general form of the
Hamilton function from the first-order cumulant expansion obtained under these assump-
tions is

H (1)(~s, t) =

z∑

n=0

Cn(t)

N∑

l=1

∑

(a1,...,an)∈Vln

snl

n∏

r=1

sar , (4)

where V ln denotes the set of possible combinations of n neighboring sites of lattice site l, z is
the coordination number of the lattice, and Cn(t) are time-dependent complex couplings.
Classical Hamilton functions H (1)(~s, t) for cubic lattices in d = 1, 2, 3 including explicit
expressions for the couplings Cn(t) are given in Appendix A. Fig. 1 displays the structure
of the pCN in 2D and the time evolution of the couplings Cn(t). For d = 2, 3 H (1)(~s, t) al-
ready contains couplings with products of four or six spin variables, respectively. Thereby,
the derived structure of the pCN markedly differs from heuristically motivated Jastrow-
type wave functions, which constitute a common variational ansatz [17,20].

The following results were obtained with h/J = 0.05; see Appendix A for results at
larger h/J .
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2.2 Observables

Plugging Eq. (1) into the time-dependent expectation value of an observable Ô with
matrix elements 〈~s|Ô|~s′〉 = O~sδ~s,~s′ results in

〈ψ0|eiHtOe−iHt|ψ0〉 =
∑

{~s}
eH̃ (~s,t)Õ~s . (5)

with

Õ~s =
∑

{~s′}
Re
[
O~s~s′e

H (~s′,t)−H (~s,t)
]

(6)

and H̃ (~s, t) = 2 Re[H (~s, t)]. In this form the quantum expectation value resembles a
thermal expectation value in the pCN defined by H (~s, t). For an observable Ô that is
diagonal in the spin basis, 〈~s|Ô|~s′〉 = O~sδ~s,~s′ , the expression above simplifies to

〈ψ0|eiHtÔe−iHt|ψ0〉 =
∑

{~s}
eH̃ (~s,t)O~s . (7)

These expressions can be evaluated efficiently by the Metropolis algorithm [49]. Although
we find empirically that the off-diagonal observables under consideration can still be sam-
pled efficiently by Monte Carlo, it is not clear whether a sign problem can appear in other
cases. Fig. 2 shows results for different local observables obtained in this way. In these
and the following figures the Monte Carlo error is less than the resolution of the plot.

In Fig. 2(a,b) we compare the results from the classical network construction to exact
results obtained by fermionization for the infinite system in d = 1 [50–54]. Focusing for
the moment on the transverse magnetization σxi in Fig. 2(a) we find that on short times
the pCN gives an accurate description of the dynamics. Upon improving our pCN con-
struction by including the second-order contributions in the cumulant expansion, the time
scale up to which the pCN captures quantitatively the real-time evolution of σxi increases
suggesting that the expansion can be systematically improved by including higher order
terms. For a further benchmarking of our results we also compare the pCN results to
conventional first-order time-dependent perturbation theory. Clearly, the first-order pCN
provides a much more accurate approximation to the exact dynamics, which originates in
an effective resummation of an infinite subseries of terms appearing in conventional time-
dependent perturbation theory. In Fig. 2(b) we consider the nearest-neighbor longitudinal
correlation function σzi σ

z
i+1 which is an observable diagonal in the spin basis. Compared

to the offdiagonal observable studied in Fig. 2a we find much stronger deviations from the
exact result which also cannot be improved upon including higher orders in the cumulant
expansion. However, for correlation functions at longer distances the corrections to the
first-order cumulant expansion become important; see Appendix A. The observation that
the diagonal observables don’t improve with the order of the pCN expansion we attribute
to secular terms from resonant processes which are not appropriately captured by pertur-
bative approaches such as the pCN. One possible strategy to incorporate such resonant
processes is to impose a time-dependent variational principle [17, 55–57] on our networks
in order to obtain suitably optimized coupling coefficients. Having demonstrated under
which circumstances the pCN can be improved by including higher order contributions,
for the remainder of the article we focus on the capabilities of the first-order pCN leaving
further optimization strategies of the network open for the future.

In Fig. 2(c,d) we show our results for the same observables but now in d = 2 and d = 3.
Compared to d = 1 we find much broader maxima and minima, respectively, close to the
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Figure 3: (a) Time evolution of the entanglement entropy for subsystems of n = 2 spins
obtained from the classical network by MC in comparison with exact results; h/J = 0.05.
(b) Time evolution of the entanglement entropy for different subsystem shapes with n
spins obtained from full wave functions |ψ(t)〉 determined from the pCN in comparison
with exact results (dashed lines). In d = 1 the system size is N = 20, in d = 2 it is
N = 6× 3; h/J = 0.05.

times where DQPTs occur at odd multiples of tc = π/J . In the limit h/J → 0 the shape
is given by the power law |t − tc|z with z = 2d. This behavior was already observed for
one and two dimensional systems in Ref. [41]. For the d = 2 case we have included also
exact diagonalization data for a 4 × 4 lattice. Overall, we observe a similar accuracy in
the dynamics of these observables as compared to the d = 1 results.

2.3 Entanglement

Having discussed the capabilities of the pCN to encode the necessary information for the
dynamics of local observables and correlations, we would like to show now that it can also
reproduce entanglement dynamics and thus the propagation of quantum information.

By sampling all correlation functions it is in principle possible to construct the re-
duced density matrix of a subsystem A, ρA(t) = trB

(
|ψ(t)〉〈ψ(t)|

)
, where trB denotes

the trace over the complement of A, and the entanglement entropy of subsystem A given
by S(t) = −tr

(
ρA(t) ln ρA(t)

)
. For subsystems with two spins at sites i and j we have

ρA = 1
4

∑
α,α′∈{0,x,y,z}

〈σαi σα
′

j 〉 σα ⊗ σα
′
, where σ0

i denotes the identity.

Figure 3(a) shows the entanglement entropy S2(t) of two neighboring spins. We find
very good agreement of the Monte Carlo data based on the first-order cumulant expansion
with the exact results. In particular, for the entanglement entropy the classical network
captures both the decay of the maxima close to the critical times (2n+1)tc and the increase
of the minima. As for the observables the shape in the vicinity of the maxima depends
on d and is for h/J → 0 given by the same power laws. Note, that the pCN correctly
captures the maximal possible entanglement Smax

2 = 2 ln 2. By contrast, the result from
tdPT completely misses the decay of the oscillations.

In order to assess the capability of the pCN to capture the entanglement dynamics
of larger subsystems we compute the whole wave function |ψ(t)〉 =

∑
~s ψ(~s)|~s〉 with the

coefficients ψ(~s) as given in Eq. (3) for feasible system sizes. The entanglement entropy
of arbitrary bipartitions is then obtained by a Schmidt decomposition. Fig. 3(b) shows
entanglement entropies obtained in this way for subsystems of different sizes n in d = 1, 2.
The results imply that at these short times only spins at the surface of the subsystem
become entangled with the rest of the system. The maxima for a subsystem of n = 8
spins in a ring of N = 20 spins in d = 1 lie close to 2 ln 2, the theoretical maximum for
the entanglement entropy of the two spins, which sit at the surface. This interpretation is
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supported by the results for a torus of N = 6×3 spins with subsystems of size n = 3×2 and
n = 3× 3. In that case the entanglement entropy reaches maxima of 6 ln 2, corresponding
to 6 spins at the boundary. In both cases the results agree well with the exact results
for times t < 4tc. This again reflects the fact that the pCN from first-order cumulant
expansion yields a good approximation of the dynamics of neighboring spins.

2.4 Loschmidt amplitude

Next, we aim to show that not only local but also global properties are well-captured by
the classical networks. For that purpose we study the Loschmidt amplitude 〈ψ0|ψ(t)〉,
which constitutes the central quantity for the anticipated DQPTs and which has been
measured recently experimentally in different contexts [34,58]. For a quench from h0 =∞
to h = 0 the Loschmidt amplitude

Z(t) =
1

2N

∑

~s∈{±1}N
eiJ

4
t
∑
〈i,j〉 sisj (8)

resembles the partition sum of a classical network with imaginary temperature β = −it
[41]. This expression is not suited for MC sampling because all weights lie on the unit circle
in the complex plane rendering importance sampling impractical and indicating a severe
sign problem. These issues can be diminished by constructing an equivalent network with
real weights. After integrating out every second spin on the sublattice Λ, equivalent to
one decimation step [59], the partition sum takes the form

Z(t) =
1

2N

∑

~s∈{±1}N/2

∏

i∈Λ

2 cos

(
J

4
t
∑

〈i,j〉
sj

)
. (9)

Choosing a suited ansatz the partition sum can be rewritten as Z(t) =
∑

~s e
H (~s,t) with

real Boltzmann weights given by an effective Hamilton function H (~s, t) that defines the
classical network [41,59,60]. Generally, the effective Hamilton function takes the form

H (~s, t) =

z/2∑

n=0

Cn(t)
∑

l∈Λ

∑

(a1,...,a2n)∈Vl2n

2n∏

r=1

sar . (10)

The explicit expressions for d = 1, 2, 3 are given in Appendix B.
It is evident from Eq. (9) that, although real, the Boltzmann weights of the classical

network are not necessarily positive. The bottom panels in Fig. 4 show the real parts of
the coupling constants of the effective Hamiltonians for d = 1, 3. The couplings in d = 3
acquire non-vanishing imaginary parts for tc/3 ≤ t ≤ 5tc/3 leading to negative weights for
some configurations. The partition sum is then split into a positive and a negative part
Z(t) = Z+(t) +Z−(t) with Z+ > 0 and Z− < 0. In order to compute Z(t) by Monte Carlo
sampling we combine a separate sampling of factor graphs [61] with parallel tempering [62]
and multi-histogram reweighting [63]; see Appendix B.

As the Loschmidt amplitude is exponentially suppressed with increasing system size
we study the rate function [35] λN (t) = − 1

N ln |Z(t)|, which is well defined in the thermo-
dynamic limit N → ∞. The top panel in Fig. 4(a) displays λN (t) obtained by a Monte
Carlo sampling for a ring of N = 100 spins together with the exact result [64], confirming
the precision of the pCN approach and demonstrating the principled possibility to detect
DQPTs. For the rate function in d = 3 shown in Fig. 4(b) we obtained converged results
in the whole interval for N = 4× 4× 4 and N = 4× 4× 6 physical spins. Note that there
are no indications of non-analytic behavior in the Monte Carlo results at t = tc/3, tc/2

7
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Figure 4: Time evolution of the rate function of the Loschmidt amplitude λN (t) (top
panels) and corresponding couplings in the classical network (bottom panels); (a) d=1,
(b) d=3.

despite the divergences of the couplings at those points. While we can reach fairly large
systems in d = 3, these are still not large enough to see convergence and non-analytic
behavior at t = tc as opposed to the case of d = 1. It can be shown, see Appendix B, that
for any dimension λ∞(tc) = ln(2)/2 demonstrating that our data in d = 3 is still far from
the thermodynamic limit.

2.5 Construction of equivalent ANNs

Finally, we present an exact mapping of the pCN obtained by a cumulant expansion to an
equivalent ANN as introduced in Ref. [23]. This outlines the general potential of the pCN
to guide the choice of network structures, for which otherwise no generic principle exists.

Generally, for Ising systems with translational invariance and local interactions, the
cumulant expansion will yield a Hamilton function of the form

H (~s, t) =
N∑

l=1

Pl(~s, t) (11)

where the functions Pl(~s, t) only involve a couple of spins in the neighborhood of spin l.
We call the spins involved in Pl(~s, t) a patch. The Pl(~s, t) are invariant under Z2 and a
number of permutations of the spins in a patch due to the lattice symmetries. In terms of
the Pl(~s, t) the coefficients of the wave function are given by

ψ(~s, t) = eH (~s,t) =

N∏

l=1

ePl(~s,t) . (12)

To find the corresponding ANN we choose a general Z2 symmetric ansatz [23]

ψANN (~s, t) =
( Ω

2α

)N ∑

~u
(1)
l ...~u

(Nu)
l

e
∑
l,m

∑
nW

(n)
lm (t)smu

(n)
l (13)

incorporating lattice symmetries in the connectivity of physical spins sl and hidden spins

u
(n)
l defined by the weights W

(n)
lm . α denotes the number of hidden spins per physical

8
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Figure 5: Structure of the ANN for the TFIM in d = 1, 2 (a, c) and time evolution of the
weights obtained by first-order cumulant expansion for h/J = 0.05 (b, d). In the networks
black dots stand for physical spins and gray circles indicate hidden spins. The couplings
in (b, d) are color coded with the corresponding lines in (a, c).

spin and Ω constitues an overall normalization. Upon integrating out the hidden spins we
obtain

ψ(~s, t) =

N∏

l=1

α∏

n=1

cosh
(∑

m

W
(n)
lm sm

)
. (14)

In order to determine the ANN weights we factor-wise equate the r.h.s. of Eq. (12) and
Eq. (14),

∏

n

cosh
(∑

m

W
(n)
lm sm

)
= ePl(~s,t) , (15)

and plug in each of the distinct spin configurations of a patch. This yields a set of equations

for the unknown weigths W
(n)
lm , which can be solved numerically. In Appendix C procedure

is outlined in detail for d = 1 and d = 2.
Fig. 5 shows the structure of the ANNs and the time-dependence of the weights

obtained in this way for d = 1 and d = 2. In d = 1 the ANN structure (Fig. 5(a))
comprises the minimal number of hidden spins that is possible subject to the lattice
symmetries. Although unproven the same is expected to hold for the structure for d = 2
in Fig. 5(c). Note the complex dynamics and the rapid initial change exhibited by some of
the couplings. In comparison to a general all-to-all ansatz this construction provides a way
to drastically reduce the number of ANN couplings in a controlled way, thereby restricting
the variational subspace and lessening the computational cost for the optimization in
variational algorithms.

3 Conclusions

For the quench parameters under consideration the state of the system remains close to
classical for long times. As demonstrated in Appendix A a maximal bond dimension
of χmax = 4 is sufficient to obtain converged results in d = 1 for local observables us-
ing iTEBD [65]. Nevertheless, this amounts to 64 parameters, which have to be stored,
whereas the first-order pCN encodes the state in three couplings, which indicates the po-
tential efficiency of pCNs in this respect. The pCNs derived by a cumulant expansion give
a good approximation of this dynamics and thereby provide a controlled benchmark for
new algorithms targeting the dynamics in higher dimensions. In future work it is worth
to explore whether the structure of the networks constitutes a good ansatz for numerical

9
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time evolution based on a variational principle also in the absence of a small parame-
ter [17,55–57]. We expect that a variational time evolution based on the derived network
structures could effectively perform the resummation of higher orders that would be nec-
essary to overcome the problem of secular terms in the perturbative results. Moreover,
the presented approach can be straightforwardly generalized to other systems and higher
spin degrees of freedom. This might be particularly interesting in many-body-localized
systems [9,66–69], where the so-called local integrals of motion provide a natural basis for
constructing a classical network.
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A Perturbative classical networks

A.1 Explicit expressions for the perturbative classical networks

For the cumulant expansion the time-evolved operator V (t) = eiH0tV e−iH0t is required.
This can be obtained by solving the corresponding Heisenberg equation of motion−i ddtV (t) =
[H0, V (t)].

In 1D the Heisenberg EOM for σxl (t) yields

σxl (t) = cos2(Jt/2)σxl − σzl−1σ
z
l+1 sin2(Jt/2)σxl − i

1

2
sin(Jt)

(
σzl−1 + σzl+1

)
σzl σ

x
l . (16)

The cumulant expansion to first-order results in classical Hamilton functions of the
general form

H (1)(~s, t) = −iE~st− iλ
∑

l

∫ t

0
dt′
〈~s|V (t′)|ψ0〉
〈~s|ψ0〉

=

z∑

n=0

Cn(t)

N∑

l=1

∑

(a1,...,an)∈Vln

snl

n∏

r=1

sar ,

(17)

where V ln denotes the set of possible combinations of n neighboring sites of lattice site l, z is
the coordination number of the lattice, and Cn(t) are time-dependent complex couplings.

In d = 1 the explicit form is

H
(1)

1D = NC0(t) + C1(t)
∑

l

(
szl−1s

z
l + szl s

z
l+1

)
+ C2(t)

∑

l

szl−1s
z
l+1 (18)

with

C0(t) = i
h

4J
(Jt+ sin(Jt)) , C1(t) = i

Jt

8
+

h

4J
(1− cos(Jt)) ,

C2(t) = −i h
4J

(Jt− sin(Jt)) . (19)

10
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Analogously for d = 2,

H
(1)

2D =
∑

l

[
C

(1)
0 (t) + C

(1)
1 (t)

∑

a∈Vl1

szas
z
l + C

(1)
2 (t)

∑

(a,b)∈Vl2

szas
z
b

+ C
(1)
3 (t)

∑

(a,b,c)∈Vl4

szas
z
bs
z
cs
z
l + C

(1)
4 (t)

∑

(a,b,c,d)∈Vl3

szas
z
bs
z
cs
z
d

]
(20)

where

C
(1)
0 (t) = i

h

2J

6Jt+ 8 sin(Jt) + sin(2Jt)

16
, C

(1)
1 (t) = i

Jt

8
+

h

2J

1− cos4(Jt/2)

2J
,

C
(1)
2 (t) = −i

h

2J

2Jt− sin(2Jt)

16
, C

(1)
3 (t) = − h

2J

sin4(Jt/2)

2J
,

C
(1)
4 (t) = i

h

2J

6Jt− 8 sin(Jt) + sin(2Jt)

16
. (21)

The classical network from first-order cumulant expansion in d = 3 is given by

H
(1)

3D =
∑

l

[
C

(1)
0 (t) + C

(1)
1 (t)

∑

a∈Vl1

szas
z
l + C

(1)
2 (t)

∑

(a,b)∈Vl2

szas
z
b

+ C
(1)
3 (t)

∑

(a,b,c)∈Vl3

szas
z
bs
z
cs
z
l + C

(1)
4 (t)

∑

(a,b,c,d)∈Vl4

szas
z
bs
z
cs
z
d

+ C
(1)
5 (t)

∑

(a,b,c,d,e)∈Vl5

szas
z
bs
z
cs
z
ds
z
es
z
l + C

(1)
6 (t)

∑

(a,b,c,d,e,f)∈Vl6

szas
z
bs
z
cs
z
ds
z
es
z
f

]

(22)

with

C
(1)
0 (t) = i

h

2J

30Jt+ 45 sin(Jt) + 9 sin(2Jt) + sin(3Jt)

96
,

C
(1)
1 (t) = i

Jt

8
+

h

2J

1− cos6(Jt/2)

3
,

C
(1)
2 (t) = −i

h

2J

6Jt+ 3 sin(Jt)− 3 sin(2Jt)− sin(3Jt)

96
,

C
(1)
3 (t) = − h

2J

sin4(Jt/2)(cos(Jt) + 2)

6
,

C
(1)
4 (t) = i

h

2J

6Jt− 3 sin(Jt)− 3 sin(2Jt) + sin(3Jt)

96
, C

(1)
5 (t) =

h

2J

sin6(Jt/2)

3
,

C
(1)
6 (t) = −i

h

2J

30Jt− 45 sin(Jt) + 9 sin(2Jt)− sin(3Jt)

96
. (23)

A.2 Range of applicability and effect of higher order terms

Fig. 6 shows the time evolution of transverse magnetization and nearest-neighbor spin-
spin correlation obtained from the first-order cumulant expansion for different h/J . We
find that for ht < 1 the results from the cumulant expansion agree with the exact results
to a similar extent independent of the value of h/J . For ht > 1 the cumulant expansion
deviates strongly from the exact results.
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To second order in the cumulant expansion the wave function coefficients are approx-
imated by

ψ(~s, t)

ψ0(~s)
=
〈~s|e−iHt|ψ0〉
〈~s|ψ0〉

≈ e−iE~st exp

[
− iλ

∫ t

0
dt′
〈~s|V (t′)|ψ0〉
〈~s|ψ0〉

− λ2

∫ t

0
dt′
∫ t′

0
dt′′
(
〈~s|V (t′)V (t′′)|ψ0〉

〈~s|ψ0〉
− 〈~s|V (t′)|ψ0〉〈~s|V (t′′)|ψ0〉

〈~s|ψ0〉2

)]
.

(24)

In one dimension this yields the effective Hamilton function of the general form

H (2)(~s, t) =

z∑

n1=0

z∑

n2=0

Cn1n2(t)

N∑

l=1

∑

(a1,...,an1 )∈V1l
n1

∑

(b1,...,bn2 )∈V2l
n2

sn1+n2
l

n1∏

r1=1

sar1

n2∏

r2=1

sbr2

(25)

where Vdln denotes the set of all groups of n spins at distance d from spin l. The coupling
constants are

C00(t) = i
h

4J
(Jt+ sin(Jt))− h2

J2
sin(Jt/2) ,

C10(t) = i
Jt

8
+

h

4J
(1− cos(Jt)) + i

h2

8J2

(
2Jt− 4 sin(Jt) + sin(2Jt)

)
,

C20(t) = −i h
4J

(Jt− sin(Jt))− h2

J2
sin(Jt/2) ,

C01(t) =
h2

32J2

(
9− 2J2t2 − 8 cos(Jt)− cos(2Jt)− 4Jt sin(Jt)

)
,

C11(t) = i
h2

32J2

(
6Jt− 8Jt cos(Jt) + sin(2Jt)

)
, C21(t) =

h2

16J2

(
sin(Jt)− Jt

)2
,

C02(t) = 0 , C12(t) = 0 , C22(t) = 0 . (26)

We observe that taking into account the second order contribution of the cumulant expan-
sion significantly enhances the result for the next-nearest-neighbor correlation function as
shown in Fig. 7. In particular it yields corrections that are much larger than what one
would expect from a naive perturbative expansion.
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A.3 Comparison: Complexity of the equivalent iMPS

In order to give an estimate of the complexity of the time-evolved state in terms of
Matrix Product States we show the time evolution of local observables, entanglement,
and bond dimension after the quench h0 = ∞ → h = J/20 computed using iTEBD [65]
in Fig. 8. The bond dimension χ was restricted to different maximal values χmax and
during the simulation Schmidt values smaller than 10−10 were discarded. In all quantities a
converged result on the time interval of interest is obtained with a maximal bond dimension
of χmax ≥ 4.

For the implementation of the iTEBD algorithm the iTensor library [71] was used.
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Figure 8: Dynamics for the quench from h0 = ∞ to h/J = 0.05 computed with iTEBD
with different maximal bond dimensions χmax.
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B Loschmidt amplitude as classical partition function

B.1 Real weights from decimation RG

As outlined in the results section the Loschmidt amplitude (8) after integrating out every
second spin, residing on sublattice Λ, can be integrated out, yielding

Z(t) =
1

2N

∑

~s∈{±1}N/2

∏

i∈Λ

2 cos

(
J

4
t
∑

〈i,j〉
sj

)
. (27)

A Hamilton function H (~s, t) defining a classical network can be obtained by choosing
a general ansatz including all possible Z2-symmetric couplings of spins with a common
neighbor on the sublattice Λ, which takes the form given in Eq. (10). The Boltzmann
weight of a configuration is then given by

eH (~s,t) =
∏

l∈Λ

exp

[
z/2∑

n=0

Cn(t)
∑

(a1,...,a2n)∈Vl2n

2n∏

r=1

sar

]
. (28)

Equating each factor in the expression above with the corresponding factor in Eq. (27)
for every configuration of the involved spins yields a system of equations that determines
the couplings Cn(t) [59].

In d = 1 the couplings are

C0(t) = ln 2 +
ln
(

cos(Jt/2)
)

2
, C1(t) =

ln
(

cos(Jt/2)
)

2
. (29)

The couplings in d = 2 are

C0(t) = ln 2 +
ln
(

cos(Jt)
)

+ 4 ln
(

cos(Jt/2)
)

8
, C1(t) =

ln
(

cos(Jt)
)

8
,

C2(t) =
ln
(

cos(Jt)
)
− 4 ln

(
cos(Jt/2)

)

8
. (30)

In d = 3 the resulting couplings are

C0(t) = ln 2 +
ln
(

cos(3Jt/2)
)

+ 6 ln
(

cos(Jt)
)

+ 15 ln
(

cos(Jt/2)
)

32
,

C1(t) =
ln
(

cos(3Jt/2)
)

+ 2 ln
(

cos(Jt)
)
− ln

(
cos(Jt/2)

)

32
,

C2(t) =
ln
(

cos(3Jt/2)
)
− 2 ln

(
cos(Jt)

)
− ln

(
cos(Jt/2)

)

32
,

C3(t) =
ln
(

cos(3Jt/2)
)
− 6 ln

(
cos(Jt)

)
+ 15 ln

(
cos(Jt/2)

)

32
. (31)

The time evolution of these couplings is displayed in Fig. 9.

B.2 Monte-Carlo scheme for the Loschmidt amplitude

In order to evaluate the Loschmidt amplitude given in terms of the renormalized Boltz-
mann weights (28) a combination of different Monte Carlo techniques is employed. Since
the Loschmidt amplitude is the normalization of the Boltzmann weights a simple Metropo-
lis Monte Carlo sampling is not sufficient. Moreover, the Monte Carlo sampling is hindered
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Figure 9: Time evolution of the couplings of the effective Hamilton function H (~s, t) for
the Loschmidt amplitude in one, two, and three dimensions.

by critical slowing down close to the critical times and the presence of negative weights
leads to a sign problem.

The idea to deal with these issues is to sample for a given Hamilton function H (~s, t)
the energy histograms P±(E) = Ω±(E)eE where the density of states Ω±(E) is the number
of configurations ~s with energy E = ReH (~s, t). The sign index indicates the sign of the
corresponding Boltzmann weight. Given a good estimate of these histograms the partition
sum is simply

Z(t) =
∑

E,σ=±1

σ Pσ(E) . (32)

Note, however, that the histograms P±(E) must be properly normalized in order to get
the correct result for Z(t). In order to obtain a good estimate of the normalized histogram
we combine the following techniques:

1. Separate sampling of factor graphs. In order to overcome the sign problem the
configuration space X = {±1}N ′ is separated into X+ = {~s|eH (~s,t) > 0} and X− =
{~s|eH (~s,t) < 0}; N ′ is the number renormalized spins. Then the partition sum is
split as

Z(t) = Z+(t) + Z−(t),

Z± =
∑

~s∈X±
eH (~s,t) = ±

∑

E

P±(E) . (33)

The partition sums Z± can be sampled separately as described in Ref. [61].

2. Importance sampling. When sampling the energy E in an importance sampling
scheme with weights eE the relative frequency of samples with energy E is propor-
tional to P±(E) = Ω±(E)eE . Therefore, a histogram of the energies sampled with
Metropolis Monte Carlo updates yields the desired histograms up to normalization.
Moreover, the importance sampling allows to choose the region in the energy spec-
trum that is sampled by introducing an artificial temperature as described next.

3. Parallel tempering. Parallel tempering [62] is a method to improve the sampling
efficiency in strongly peaked multi-modal distributions, which occurs in our case
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close to the critical times. The idea of parallel tempering is to perform a Markov
Chain Monte-Carlo (MCMC) sampling on several copies of a system at different
temperatures. During the sampling the system configurations are not only updated
as usual but also configuration swaps between adjacent temperatures are possible.
Thereby a MCMC on the temperatures is performed allowing the system to jump
between different peaks of the distribution.

In the present case a distribution with weights w(~s, t) = eH (~s,t) shall be sampled.
Introducing an artificial temperature β yields weights

wβ(~s, t) = eβH (~s,t) . (34)

At β = 1 the sampling is inefficient due to the diverging renormalized weights of the
Hamilton function (see bottom panels in Fig. 4). This problem is attenuated if we
sample with a parallel tempering scheme with temperatures 1 = β1 > β2 > . . . > βN .
Moreover, parallel tempering is beneficial, because histograms P β±(E) = Ω±(E)eβE

are obtained as a byproduct, which capture different regions of the spectrum with
high precision. This can be used to obtain decent precision over the whole range of
energies and thereby a properly normalized histogram as described next.

4. Multiple histogram reweighting. In order to get a good histogram for P±(E) in the
whole energy range the fact that

P β1± (E) = e(β1−β0)EP β0± (E) (35)

can be expoited. In the multiple histogram reweighting procedure [63] the histograms
obtained at the different temperatures are combined to yield a histogram covering
the whole energy range. This allows us to normalize the histogram at β = 0, where

∑

E,σ=±1

|P β=0
σ (E)| = 2N

′
. (36)

B.3 Simplification of effective systems close to tc

For times t close to the critical time tc the effective classical networks can be simplified,
because some of the couplings become very small, as evident from Fig. 4 and also Fig. 9,
and the Hamilton functions dominated by the divergent contributions. This simplification
can be exploited for additional insights into the behavior of the Loschmidt amplitude close
to the critical time. In the following we will discuss the case d = 2, but the arguments
hold similarly for d = 3.

Dropping contributions to the couplings that vanish at tc the partition sum close to tc
can be approximated by

Z(t) ≈ 1

2N ′
∑

~s∈{±1}N′
σ~s e

−β(t)H̄ (~s) (37)

with an effective temperature β(t) = − ln
(

cos(Jt/2)
)
/2, the number of remaining spins

N ′ = N/2, σ~s = ±1 the sign of the weight of the configuration ~s, and

H̄ (~s) =
∑

i,j

(
1− si,jsi+1,jsi,j+1si+1,j+1

)
. (38)

The minimal energy of the network defined by H̄ (~s) is obviously reached when the con-
dition

si,jsi+1,jsi,j+1si+1,j+1 = 1 (39)
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is fulfilled on each plaquette. This is possible in systems where the edge lengths of the
system, N ′x and N ′y, are both even, to which we restrict the following discussion. To obtain
a “ground state” it is sufficient to fix the spin configuration in one row and in one column.
The state of the remaining spins is then determined by the condition (39). Hence, the
ground state is 2N

′
x+N ′y−1-fold degenerate.

From Eq. (27) we know that the sign of the corresponding Boltzmann weight is
determined by the number of plaquettes with |si,j + si+1,j + si,j+1 + si+1,j+1| = 4. If
there is an even number of plaquettes with this property, the configuration has a positive
Boltzmann weight, otherwise it is negative. We find that for even edge lengths the ground
states always have positive Boltzmann weights.

Let us now introduce the density of states Ω±(E), i.e. the number of spin configurations
~s with the same real part of the energy E = H (~s, t) and sgn

(
eH (~s,t)

)
= ±1, in order to

rewrite the sum over configurations in Eq. (37) as a sum over energies,

Z(t) =
1

2N ′
∑

E,σ=±1

σΩσ(E)e−β(t)E . (40)

From the above analysis of the ground state we know that Ω+(0) = 2N
′
x+N ′y−1. In the

limit t→ tc, or equivalently β →∞, this is the only contribution that does not vanish in
the sum. Therefore, Z(tc) = 2N

′
x+N ′y−1−N ′ and

λN (tc) =

(
1

2
−
N ′x +N ′y − 1

N

)
ln 2

N→∞−→ ln 2

2
, (41)

which determines the value of the rate function at tc in the thermodynamic limit and the
finite size correction.

We would like to remark that classical spin systems of the form (38) were studied in
the literature and can be solved analytically for real temperatures [72, 73]. We found,
however, that introducing a sign into the partition sum renders the analytical summation
impossible.
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C Exemplary derivation of ANN couplings from the cumu-
lant expansion

C.1 d = 1

From the cumulant expansion (18) we have

Pl(~s, t) = C0(t) + C1(t)sl(sl−1 + sl+1) + C2(t)sl−1sl+1 , (42)

i.e.

ψ(~s) =
∏

l

exp
(
C0(t) + C1(t)sl(sl−1 + sl+1)

+ C2(t)sl−1sl+1

)
. (43)

A patch consists of three consecutive spins and swapping the two spins at the border leaves
the weight unchanged.

A possible ansatz for the ANN with one hidden spin per lattice site (see Fig. 5(a) of
the main text), that respects the symmetries, is

ψ(~s) =

(Ω

2

)N ∑

~u(1),~u(2)

exp

(∑

l

(
W1(sl−1 + sl+1) +W2sl

)
ul

)
, (44)

where Ω constitutes a overall normalization and phase that is irrelevant when expectation
values are computed with the Metropolis algorithm. Integrating out the hidden spins
yields

ψ(~s) =
∏

l

Ω cosh
(
W1(sl−1 + sl+1) +W2sl

)
(45)

Identifying the single factors yields for the different possible spin configurations (in the
following we abbreviate cosh by ch)

↑↑↑: Ω ch(2W1 +W2) = exp(C0 + 2C1 + C2)

↑↑↓: Ω ch(W2) = exp(C0 − C2)

↑↓↑: Ω ch(2W1 −W2) = exp(C0 − 2C1 + C2) (46)

All other spin configurations are connected to these via Z2 symmetry. This is an implicit
equation for the ANN weights that can be solved numerically. One solution for the weights
obtained from the 1st order cumulant expansion is plotted in Fig. 5(b) of the main text.
Note that these equations have different possible solutions.

C.2 d = 2

From the cumulant expansion (20) we have

Pl(~s, t) = C
(1)
0 (t) + C

(1)
1 (t)

∑

a∈Vl1

szas
z
l + C

(1)
2 (t)

∑

(a,b)∈Vl2

szas
z
b

+ C
(1)
3 (t)

∑

(a,b,c)∈Vl3

szas
z
bs
z
cs
z
l + C

(1)
4 (t)

∑

(a,b,c,d)∈Vl4

szas
z
bs
z
cs
z
d (47)
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A patch consists of a central spin si,j and four neighboring spins as depicted by the black
dots in Fig. 4a in the main text. Any permutation of the surrounding spins leaves Pl(~s, t)
unchanged.

A possible ansatz for the ANN with five hidden spins per lattice site is depicted in Fig.
5(c) of the main text. After integrating out the hidden spins the wave function is given
by

ψ(~s) = Ω
∏

l

ch
(
W (1)si,j

)
ch
(
W

(1)
1 si,j +W

(1)
2 (si,j+1 + si,j−1 + si+1,j + si−1,j)

)

× ch
(
W

(2)
1 si,j +W

(2)
2 (si,j+1 + si,j−1 + si+1,j)

)

× ch
(
W

(2)
1 si,j +W

(2)
2 (si,j+1 + si,j−1 + si−1,j)

)

× ch
(
W

(2)
1 si,j +W

(2)
2 (si+1,j + si−1,j + si,j+1)

)

× ch
(
W

(2)
1 si,j +W

(2)
2 (si+1,j + si−1,j + si,j−1)

)
(48)

Identifying the single factors yields for the different possible spin configurations

↑↑↑↑↑: Ω ch
(
W

(1)
1 + 4W

(1)
2

)
ch
(
W

(2)
1 + 3W

(2)
2

)4

= exp
(
4C1 + 4C3 + C0 + 6C2 + C4

)

↑↑↑↑↓: Ω ch
(
W

(1)
1 + 2W

(1)
2

)
ch
(
W

(2)
1 + 3W

(2)
2

)
ch
(
W

(2)
1 +W

(2)
2

)3

= exp
(
2C1 − 2C3 + C0 − C4

)

↑↑↑↓↓: Ω ch
(
W

(1)
1

)
ch
(
W

(2)
1 +W

(2)
2

)2
ch
(
W

(2)
1 −W (2)

2

)2

= exp
(
C0 − 2C2 + C4

)

↓↑↑↑↑: Ω ch
(
−W (1)

1 + 4W
(1)
2

)
ch
(
−W (2)

1 + 3W
(2)
2

)4

= exp
(
− 4C1 − 4C3 + C0 + 6C2 + C4

)

↓↑↑↑↓: Ω ch
(
−W (1)

1 + 2W
(1)
2

)
ch
(
−W (2)

1 + 3W
(2)
2

)
ch
(
−W (2)

1 +W
(2)
2

)3

= exp
(
− 2C1 + 2C3 + C0 − C4

)
(49)

where the leftmost arrow in the spin configurations corresponds to the central spin of the
patch. One solution for the weights obtained from the 1st order cumulant expansion is
plotted in Fig. 5(d) of the main text.
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Chapter 4

Irreversibility

The question of irreversibility is of elementary importance to understand the interface be-
tween the fundamental microscopic laws of motion and statistical physics. All microscopic
theories of physics are symmetric under time reversal.1 This means that for any process
that can occur according to the laws of motion the time-inverse process is also possible.
Notwithstanding this, the Second Law of thermodynamics states that as time proceeds en-
tropy cannot decrease in a closed system. This clearly distinguishes a preferred direction of
time.

The problem of irreversibility can be explained intuitively thinking of hypothetical video
recordings of a flying football and a latte macchiato. Assume the recording of the football
shows the ball flying through the field of view in front of a blue sky. The ball moves on a
parabolic trajectory from the left to the right edge of the screen. Subsequently the recording
is played in reverse and the screen shows the ball flying from the right to the left. Can
the spectator decide in which of both cases the video was played in the actual direction of
recording? The answer is no. Only based on the trajectory of the ball it is impossible to tell
what is the direction of time. This fact is a manifestation of the time reversal symmetry of
Newton’s equation of motion. Considering the recording of a latte macchiato, instead, the
spectator will easily be able to tell whether the recording is played forward or backward.
If the initially separate layers of milk and coffee mix to form a brown sludge the video is
with certainty played forward – a brown sludge spontaneously unmixing to form two separate
layers was as of yet never observed. Although intuitive, this fact is at first surprising, since
after all the single molecules in the latte macchiato observe the same laws of nature as the
football.

The emergence of irreversibility in classical systems is understood as a consequence of
chaotic dynamics, as will be outlined in Section 4.1. This understanding is, however, not
directly transferable to quantum systems. In the subsequent sections a possible definition
of irreversibility in quantum many-body systems based on imperfect effective time reversal
is proposed and investigated in different settings. The results suggest relations to out-of-
time-order correlators, which are close to equilibrium known as probe of a quantum butterfly
effect and as indicators of loss of local information under time evolution. To investigate
possible connections, out-of-time-order correlators are studied far from equilibrium in Section

1 An exception is the weak force, which is, however, irrelevant for typical many-body phenomena.
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4.5. Finally, in Section 4.6 the echo dynamics of the Sachdev-Ye-Kitaev model, which is of
particular interest in studies of quantum chaos, is analyzed using a semiclassical approach.

4.1 Emergence of effective irreversibility despite time

reversal invariance

The origin of irreversible dynamics on the macroscopic level in spite of the time reversal
symmetry of the underlying microscopic laws of motion already intrigued the founding fathers
of thermodynamics and statistical mechanics. In a seminal work Boltzmann derived the H-
theorem (Boltzmann, 1872), which states that in a gas of colliding particles the entropy S
cannot decrease over time,

dS

dt
≥ 0 . (4.1)

In his article Boltzmann claimed that his derivation provided an analytical proof of the Second
Law. This result, however, puzzled Loschmidt, who in response hinted at the time reversal
symmetry of Newton’s equations of motion (Loschmidt, 1876). He pointed out that in any
system of classical particles the dynamics can be inverted by inverting all momenta. Due to
this effective time reversal the system should evolve back to its initial state. Tradition has
it, though, that Boltzmann’s plain response was “Then try and do it!”. This quotation
essentially gets to the heart of the matter as it was also explained more elaborately in
(Boltzmann, 1877) and by (Thompson, 1874).

The modern understanding of irreversibility makes use of the notion of chaos, which
was only developed in the twentieth century (Lorenz, 1963; Strogatz, 2014). Systems with
many degrees of freedom are typically chaotic, i.e., the dynamics exhibits an exponential
sensitivity to small perturbations. This means that any small imperfection that occurs when
manipulating the system in order to invert the momenta will grow exponentially in the
course of time and therefore inhibit the recovery of the initial state. Since imperfections are
inevitable in any experimental realization, it is understood that classical many-body systems
are irreversible for all practical purposes although the microscopic dynamics is not.

The irreversible nature of the dynamics is very prominently revealed when considering an
ordered initial state and a time evolution that is effectively reverted at some point including
a small imperfection. Fig. 4.1 displays an example simulation of suchlike dynamics. The
system consists of classical hard spheres in a box, which interact by elastic collisions. Initially
all spheres are located in the bottom half of the box and only one moves with a momentum
indicated by the attached arrow. The moving particle kicks off the others, which subsequently
distribute uniformly over the box as shown in the momentary configurations at time slices
t = 5, 10, 15, 20. At time t = 20 the momenta of all particles are inverted with six-digit
precision (an imperfection not resolvable by the eye). In the following the system partially
recovers the initial order in that at times t = 35 and t = 40 there is an overbalance of
particles in the bottom half; but, clearly, there is a strong discrepancy between the initial
ordered configuration and the configuration reached after imperfect effective time reversal at
time t = 40. The dynamics of the system is effectively irreversible.
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t = 0 t = 5 t = 10 t = 15 t = 20

t = 40 t = 35 t = 30 t = 25 t = 20

Fig. 4.1: Imperfect effective time reversal in a classical system. The initially ordered state at
t = 0 evolves to a uniform state at t = 20. As is evident from the configuration at t = 40 a tiny
perturbation in the time-reversal operation at t = 20 prevents the system from returning to the
initial state due to the chaotic nature of the dynamics.

For the effective time reversal protocols the chaotic nature of the dynamics does not
only imply a deviation from perfect recovery that grows exponentially with the waiting
time. In addition, any effort to improve the manipulation precision in order to get closer
to the initial state is ultimately futile. The chaotic dynamics is characterized by a maximal
Lyapunov exponent that determines the divergence of initially close-by trajectories. This
rate is independent of the distance between the two initial configurations. As a consequence,
aiming at a fixed degree to which the initial state is recovered when performing effective
time reversal any effort to enhance the precision only extends the possible waiting time
logarithmically. In this sense classical chaos imposes an exponential barrier that inhibits
recovery of the initial state in practice.

In order to explain the origin of irreversibility in quantum systems it is not possible to
directly transfer the knowledge about classical systems. The chaotic dynamics of classical
systems originates in the nonlinearity of the equations of motion. By contrast, the time
evolution of quantum systems at the level of the wave function is inherently linear. Since it
is moreover unitary, the resemblance of two states quantified by their overlap is unchanged
under the dynamics. Hence, in the view of overlaps the divergence of close-by initial states is
not just slower than exponential – it is completely absent. In the context of quantum systems
it is thus not only unclear how irreversibility arises, but also what is actually meant by it.

One way to probe the sensitivity of quantum dynamics to perturbations was proposed by
Peres (Peres, 1984). Inspired by the historic discussion of irreversibility he suggested to study
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effective time reversal, which is in a quantum mechanical system achieved by simply changing
the sign of the Hamiltonian. The imperfection is in the proposed protocol introduced as a
perturbation to the Hamiltonian during the backwards evolution. The whole protocol can
be summarized as

|ψ0〉 e
−iĤτ

7→ |ψ(τ)〉 e
i(Ĥ−εV̂ )τ

7→ |ψ(2τ)〉 ?≈ |ψ0〉 , (4.2)

where εV̂ constitutes a small perturbation of the Hamiltonian Ĥ.
In order to quantify the resemblance of the time-evolved to the initial state Peres suggested

to resort to the overlap of both,

L(τ) = |〈ψ0|ei(Ĥ−εV̂ )τe−iĤτ |ψ0〉|2 , (4.3)

which was in remembrance of the historic discussion named Loschmidt echo. The decay
characteristics of the Loschmidt echo have been studied extensively, in particular considering
systems with few degrees of freedom, which can be attributed a classical counterpart (Gorin
et al., 2006; Jacquod and Petitjean, 2009). Generally, in systems with classically chaotic
counterpart the Loschmidt echo decays exponentially or with a Gaussian law as function
of the waiting time τ . A crossover between both decay laws can occur as function of the
perturbation strength ε. In systems which are instead regular in the classical limit the
Loschmidt echo was found to decay algebraically. Hence, a Loschmidt echo that decays
exponentially or faster can be interpreted as signature of irreversible dynamics in few-body
systems.

For systems with many degrees of freedom, however, overlaps like the Loschmidt echo
(4.3) have only limited significance for the physical resemblance of states. The ETH, which
was discussed in Section 1.2.1, relies on the observation that, although orthogonal, energy
eigenstates are practically indistinguishable in terms of physical observables. Whether the
overlap of the time-evolved and the initial state becomes large after an effective inversion of
the dynamics is, hence, not necessarily meaningful for the question whether the system as
observed in the laboratory resembles the initial condition. Any definition of irreversibility
applicable to many-body systems should therefore be based on physical observables.

Note that effective time reversal in quantum many-body systems is indeed not just of
theoretical interest. Echo dynamics can for example be realized in nuclear magnetic resonance
experiments on spin systems. The simplest case is the Hahn spin echo (Hahn, 1950), where
an initial macroscopic spin polarization is after dephasing by field inhomogeneities recovered
through the application of π-pulses. The spin dynamics in Hahn echo experiments is governed
by a Hamiltonian of the form

Ĥ =
∑

l

~Bl · ~Sl + Ĥint . (4.4)

Here ~Bl denotes a large magnetic field that is slightly inhomogeneous coupled to the spins
~Sl. Ĥint comprises additional contributions like couplings between spins or coupling of the
spins to the environment. The spin polarization, initially parallel to the external field, is
rotated into the perpendicular plane by application of a suited electromagnetic pulse. The
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subsequent precession results in a dephasing of the polarization due to inhomogeneities of
the external field. After some time another pulse (the π-pulse) is applied, which flips all
spins and thereby effectively inverts the single spin term in Eq. (4.4). In the following
the polarization is partially restored, because the dephasing due to field inhomogeneities
is reverted. However, the relaxation caused by additional contributions to the Hamiltonian
inhibits a perfect recovery of the initial polarization. The decay of the echo allows to infer the
natural line width from such measurements. Interestingly, more sophisticated pulse sequences
allow for the effective sign change of interaction terms: Using a so-called magic echo technique
the sign of a diploar coupled spin Hamiltonian can be inverted with good precision (Schneider
and Schmiedel, 1969; Rhim et al., 1971; Hafner et al., 1996). Other candidate setups for the
realization of effective time reversal are the quantum simulators discussed in Section 1.1,
where the excellent control the parameters of the Hamiltonian could be further exploited. A
recent numerical analysis demonstrated how the spin dynamics of an antiferromagnetic Mott
insulator can be effectively inverted by subjecting it to a fast external drive (Mentink et al.,
2015).

In Sections 4.2, 4.3, and 4.4 the dynamics of observable echoes under imperfect effective
time reversal is studied. It is demonstrated that in generic systems imperfections lead to
a decay of the observable echoes with a rate that is independent of the perturbation. This
implies that also in quantum many-body systems any practical effort to improve the accuracy
in a time reversal experiment is in vain, just like in irreversible classical systems.

An alternative view of the loss of information about the initial state under dynamics that
obtained increasing interest recently is scrambling. Originally motivated by studies of the
information paradox of black holes it is in this context investigated how much information
about the initial state can be inferred from local measurements on the time-evolved state. In
a system that scrambles all information is after sufficiently long time completely delocalized
such that local observations yield no insight about the initial state.

So called out-of-time-order correlators (OTOCs) were suggested as a probe of scrambling
and exponential sensitivity of the dynamics to small perturbations (Shenker and Stanford,
2014; Kitaev, 2014). An OTOC is a correlation function of the form

〈V (t)†W (0)†V (t)W (0)〉β , (4.5)

where V (t) and W (t) are operators in the Heisenberg picture. These correlation functions oc-
cur when taking the square of the commutator of both operators, 〈[V (t),W (0)]†[V (t),W (0)]〉β.
Choosing momentum p̂ and position q̂ as the pair of operators and taking the classical
limit by replacing the commutator by Poisson brackets one finds that in a chaotic system
〈[p̂(t), q̂(0)]2〉 ∼ ~2e2λLt with the Lyapunov exponent λL (Larkin and Ovchinnikov, 1969).
In fact, it was found that the OTOCs in a black hole theory grow exponentially with the
maximal possible growth rate λL = 2π

β
(Maldacena et al., 2016). Besides that, OTOCs in

systems with spin-1/2 degrees of freedom can be related to an information-theoretic measure
for the delocalization of initially local information (Hosur et al., 2016). Thereby, it can be
decided based on the long time limit of the OTOC whether a system scrambles or not.

Out-of-time-order structures occur naturally when considering echo dynamics under im-
perfect time reversal as described above. These are investigated with focus on a possible
relation to scrambling in Section 4.5 and a semiclassical analysis of echo dynamics presented
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in Section 4.6 indicates that similar to OTOCs out-of-time-order double commutators can
exhibit exponential growth in time, which allows to introduce the notion of a Lyapunov
exponent.
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Abstract – The question of thermalisation in closed quantum many-body systems has received a
lot of attention in the past few years. An intimately related question is whether a closed quantum
system shows irreversible dynamics. However, irreversibility and what we actually mean by this
in a quantum many-body system with unitary dynamics has been explored very little. In this
work we investigate the dynamics of the Ising model in a transverse magnetic field involving an
imperfect e↵ective time reversal. We propose a definition of irreversibility based on the echo peak
decay of observables. Inducing the e↵ective time reversal by di↵erent protocols we find algebraic
decay of the echo peak heights or an ever persisting echo peak indicating that the dynamics in
this model is well reversible.

Introduction. – During the last decades enormous
advances in the experimental realisation of highly con-
trollable quantum simulators [1–4] have triggered a lot of
activity in theoretically investigating the out of equilib-
rium dynamics of quantum many-body systems. In par-
ticular the equilibration of closed many-body systems and
the process of thermalisation as fundamental questions of
quantum statistical mechanics aroused a lot of interest
[5–14]. Nevertheless, albeit being intimately related to
thermalisation the question of irreversibility in quantum
many-body systems has to date hardly been addressed.

In the context of classical systems this question was al-
ready discussed during the development of thermodynam-
ics. Regarding Boltzmann’s H-theorem [15] Loschmidt
pointed out that in his derivation of the Second Law Boltz-
mann had obviously broken the time reversal invariance
of the underlying microscopic laws of motion [16]. Specif-
ically, he argued that if one performs an e↵ective time
reversal on a classical gas by inverting the velocities of all
particles at some point in time the system must necessar-
ily return to its initial state after twice that time. With
this example at hand the emergence of irreversibility in
classical systems is nowadays easily understood: A system
with su�ciently many degrees of freedom will generically
exhibit chaotic dynamics and therefore any time reversal

operation will be practically infeasible due to the exponen-
tial sensitivity of the dynamics to inevitable errors. This is
also a way to understand the loss of information about the
initial state during the time evolution, which is essential
for thermalisation. In a chaotic many-body system with
irreversible dynamics there is no realisable protocol that
would allow to return it to the initial state.

Referring to the knowledge about classical irreversibility
Peres suggested to study the Loschmidt echo

L(⌧) = |h 0|ei(H+✏V )⌧e�iH⌧ | 0i|2 (1)

in order to quantify irreversibility of quantum systems [17].
The Loschmidt echo is the overlap of the initial state with
the forward and backward time evolved state when includ-
ing a small deviation ✏V in the time evolution operator of
the backwards evolution. As such it quantifies how well
the initial state is resembled after an imperfect e↵ective
time reversal. The Loschmidt echo turned out to be a
very interesting measure when studying systems with few
degrees of freedom, exhibiting a variety of possible decay
characteristics [18, 19].

However, in generic quantum many-body systems the
Loschmidt echo is not a measurable quantity. If the
prerequisite of the Eigenstate Thermalisation Hypothesis
(ETH) [20–22] pertains, which all numerical evidence in-
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dicates [7, 23,24], then expectation values of local observ-
ables OE = hE|Ô|Ei are smooth functions of the energy
E. This means that even orthogonal states cannot nec-
essarily be distinguished experimentally. This argument
carries over to integrable systems when the observable ex-
pectation value is considered as a function of all integrals
of motion instead of only the energy [25]. Therefore a defi-
nition of irreversibility with respect to the Loschmidt-echo
cannot meaningfully di↵erentiate between reversible and
irreversible dynamics in many-body systems. It should
also be noted that generally the Loschmidt echo is of large
deviation form, L(⌧) ⇠ e�Nl(⌧) with some rate function
l(⌧), i.e. it is exponentially suppressed with increasing
system size N .

In our work, when addressing the question of irre-
versibility in many-body systems we focus on observable
echoes that are produced under imperfect e↵ective time
reversal, i.e.

hOi⌧ = h (⌧)|Ô| (⌧)i ,

| (⌧)i = ei(H+✏V )⌧e�iH⌧ | 0i . (2)

We propose a definition of irreversibility based on the de-
cay of the echo peak as the waiting time ⌧ is increased.
With respect to that we consider the dynamics of systems
exhibiting an algebraic decay reversible, whereas systems
with exponentially or faster than exponentially decaying
echo peaks are irreversible.

Obviously, echoes in the expectation values of observ-
ables will depend on the choice of the observables. Thus,
the conclusions that can be drawn regarding the irre-
versibility of the dynamics will have to be decided on a
case by case basis. However, to the best of the current
knowledge fundamental issues of thermalisation, in par-
ticular the description of stationary expectation values in
unitarily evolved pure states after long times by thermal
density matrices, can likewise only be understood for spe-
cific classes of observables [13, 14].

Recently, an alternative definition for chaos in quan-
tum systems was put forward, which is based on the be-
haviour of out-of-time-order (OTO) correlators of the form
hW (t)V (0)W (t)V (0)i. These OTO correlators probe a
system’s sensitivity to small perturbations [26]. Moreover,
they are closely related to the phenomenon of scrambling,
i.e. the complete delocalisation of initially local informa-
tion under time evolution [27]. The relation between both
definitions should be investigated systematically in future
work.

An important experimental application of e↵ective time
reversal are NMR experiments. The dynamics of non-
interacting spins can be reverted by the Hahn echo tech-
nique [28] or by the application of more sophisticated pulse
sequences [29,30]. Moreover, it is possible to realise e↵ec-
tive time reversal in certain dipolar coupled spin systems
by the so called magic echo technique [31–33]. Particularly
notable are various experimental and theoretical works on
the refocussing of a local excitation by e↵ective time re-

versal in NMR setups [34–37]. Besides that we expect that
e↵ective time reversal can be realised in quantum simula-
tors [3, 4]; and recently there were proposals for e↵ective
time reversal by periodic driving [38] or by spin flips in
cold atom setups with spin-orbit coupling [39].

Results for the echo dynamics in many-body systems
might also be interesting from other points of view. For ex-
ample, there are proposals for the identification of many-
body localised phases using spin echoes [40] or for the
certification of quantum simulators using e↵ective time
reversal [41].

In this letter we report results for e↵ective time rever-
sal in the transverse field Ising model (TFIM). This sim-
ple model Hamiltonian is diagonal in terms of fermionic
degrees of freedom and all quantities of interest can be
computed analytically in the thermodynamic limit. Thus,
it has well known properties and, in particular, the sta-
tionary state it approaches in the long time limit is well
understood [10,42]. As such the TFIM is ideally suited as
a starting point to study irreversibility theoretically from
the aforementioned point of view. On top of this, the
TFIM can be realised experimentally in circuit QED [43].

Dynamics in the transverse field Ising model. –
The Ising model in a transverse magnetic field is defined
by the Hamiltonian

H(h) = �J

NX

i=1

Sz
i Sz

i+1 + h

NX

i=1

Sx
i , (3)

where S
x/z
i denotes the Pauli spin operators acting on lat-

tice site i, N the number of lattice sites, and h the mag-
netic field strength [44]. For our purposes we consider
periodic boundary conditions. A Jordan-Wigner trans-
form allows to map this spin Hamiltonian to a quadratic
Hamiltonian in momentum space

H(g) = J
X

k>0

�
c†
k c�k

�✓dz
k(g) �idy

k

idy
k �dz

k(g)

◆✓
ck

c†
�k

◆
(4)

with fermionic operators c†
k, ck and coe�cient functions

dy
k(g) = sin(k)/2 and dz

k(g) = g�cos(k)/2, where g = h/J .
The Bogoliubov rotation

✓
�k

�†
�k

◆
= Rx(✓g

k)

✓
ck

c†
�k

◆
(5)

with Bogoliubov angle ✓g
k = arctan (dy

k/dz
k(g)) diagonalises

the Hamiltonian yielding

H(g) =
X

k>0

✏gk�
†
k�k (6)

with energy spectrum ✏gk = J
p

dy
k(g)2 + dz

k(g)2. The gap
closing point at g = 1/2 indicates the quantum phase tran-
sition between paramagnet and ferromagnet.

Above a family of unitary matrices,

R↵(�) = 1 cos
�

2
+ i�↵ sin

�

2
, ↵ 2 {x, y, z} , (7)
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with the Pauli matrices �↵ was introduced for later con-
venience.

After mapping the spin degrees of freedom to free
fermions expectation values of many observables are –
thanks to Wick’s theorem – given in terms of block
Toeplitz (correlation) matrices �ij ⌘ �(i�j), where

�l =

✓
fl gl

�g�l �fl

◆
(8)

with

gl ⌘ ihaibi+l�1i , (9)

fl ⌘ ihaiai+li � i�l0 = ihbi+lbii � i�l0 , (10)

and Majorana operators ai = c†
i +ci, bi = i(c†

i�ci) [45–49].
Here h·i denotes the expectation value for a given state | i,
i.e. h·i ⌘ h | · | i. Since, due to translational invariance,

gl =
i

N

X

k

e�ik(l�1)hbka�ki ⌘
1

N

X

k

e�iklĝk , (11)

fl =
i

N

X

k

e�iklhaka�ki ⌘
1

N

X

k

e�iklf̂k , (12)

where ak = 1p
N

P
l e

�iklal and bk = 1p
N

P
l e

�iklbl, the

Toeplitz matrix �ij is fully determined by its symbol

�̂k =

✓
f̂k ĝk

�ĝ�k �f̂k

◆
(13)

via �l =
P

k e�ikl�̂k.
For our purposes we consider the transverse magnetisa-

tion

hmxi ⌘
1

N

X

i

hSx
i i = �1

2
g1 (14)

and the longitudinal spin-spin correlation

⇢zz
n ⌘ hSz

i Sz
i+ni =

1

4
Pf [�n] , (15)

where Pf[·] denotes the Pfa�an and �n is the correlation
matrix consisting of blocks �ij with |i � j| < n (cf. eq.
(8)). Moreover, we will study the entanglement entropy
Sn of a strip An of n adjacent spins with the rest of the
system, which is given by

Sn ⌘ Tr [⇢An
ln (⇢An

)] =

nX

l=1

H2

 
1 + ⌫l

2

!
(16)

where ⇢An is the reduced density matrix of the subsys-
tem An, ±i⌫l are the eigenvalues of �n, and H2(x) ⌘
�x log(x)� (1� x) log(1� x) [50, 51].

In the following we will be interested in time evolution
which is induced by quenching the magnetic field g at
t = 0. This means the initial state | 0i is the ground
state of the Hamiltonian H(g0) and for t > 0 the time

evolution is driven by a Hamiltonian H(g) with g 6= g0.
To compute the time evolution for this protocol it is con-
venient to introduce operators

~⌦i ⌘
✓
!+

i

!�
i

◆
⌘
p

2Ry(⇡/2)

✓
c†
i

ci

◆
(17)

in terms of which the correlators (9) and (10) are ihaiaji =
ih!+

i !
+
j i and ihaibji = �h!+

i !
�
j i . �n is then fully deter-

mined by the correlation matrix

h~⌦k
~⌦†

kit =

✓
h!+

k !
+
�kit �h!+

k !
�
�kit

h!�
k !

+
�kit �h!�

k !
�
�kit

◆
. (18)

where h·it is the expectation value with respect to the time
evolved state | (t)i. For the abovementioned quench the
expectation values with | (t)i = exp (�iH(g)t) | 0i can
be evaluated [52], yielding

h~⌦k
~⌦†

kit =
1

2
Ũk(t) (�z + 1) Ũk(t)† , (19)

where Ũk(t) =
p

2Ry
�
⇡
2

�
Rx(✓g

k)Rz(2✏gkt)Rx(�g,g0

k ) with
R↵(�) as defined in eq. (7) and �g,g0

k ⌘ ✓g
k � ✓g0

k . In
the following we will employ straightforward generalisa-
tions of this formalism for situations of imperfect e↵ec-
tive time reversal, generally yielding coe�cients ⌃k

↵(t) ⌘
⌃k

↵(t, g0, g, . . .) with which

h~⌦k
~⌦†

kit = 1+
X

↵2{x,y,z}
⌃k

↵(t)�↵ , (20)

where �↵ denote the Pauli matrices. Although derived
straightforwardly, the expressions for ⌃k

↵(t) become very
lengthy for the time reversal protocols under consideration
in this work. The full expressions can be found in the
supplemental material [53].

Quantifying initial state resemblance. – In the
following we will study the resemblance of a time evolved
state to the initial state when di↵erent kinds of imper-
fect e↵ective time reversal are employed at t = ⌧ . For
this purpose we compute di↵erent time dependent quan-
tities Xt, namely observables and entanglement entropy.
For t ! 1 these quantities approach a stationary value
X1. However, due to the applied time reversal protocol
the deviation |Xt �X1| will show a distinguished (local)
maximum at te ⇡ 2⌧ , which we call the echo peak. We
will consider the normalised echo peak height

E⇤
⌧ [X] = max

t>⌧

����
Xt �X1
X0 �X1

���� (21)

as measure for the initial state resemblance.
According to eqs. (11), (12), and (20) the quantities of

interest will in the thermodynamic limit (N !1) be de-
termined by integrals

R ⇡

�⇡
dke�ink⌃k

↵/2⇡, where the time-

dependent parts of ⌃k
↵ oscillate more and more quickly as

function of k with increasing t. Therefore, the stationary
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Fig. 1: Exemplary time evolution of the transverse magnetisa-
tion hmxit (red curves), the longitudinal spin-spin correlation
hSz

i Sz
i+2it (blue curves), and the rate function of the fidelity

l(t) = limN!1 ln(h 0| (t)i)/N (green curves) for the three
di↵erent echo protocols: (a) by explicit sign change, g0 = 5,
g = 0.2, �g = 0.025, (b) by pulse, g0 = 1, g = 0.15, ↵tP = 50,
(c) generalised Hahn echo, g0 = 0, g = 5.

values X1 are given by the corresponding integrals over
only the time-independent contributions to ⌃k

↵ [52].
In this work we restrict the discussion to systems in

the thermodynamic limit. Since the limits ⌧ ! 1 and
N ! 1 do not commute, generic results for the bulk
can only be obtained when taking N ! 1 first. When
considering finite systems a crossover is to be expected at
some ⌧ proportional to the systems size, where the details
depend on the specific boundary conditions.

In what follows we discuss three di↵erent time reversal
protocols, namely time reversal by explicit sign change of
the Hamiltonian, H(g) ! �H(g + �g), time reversal by

application of a Loschmidt pulse UP , H(g)! U †
P H(g)UP ,

and a generalised Hahn echo protocol, H(g) ! H(�g).
All three protocols yield algebraically decaying or even
ever persisting echo peak heights.

Time reversal by explicit sign change. – As a first
echo protocol we consider e↵ective time reversal induced
by an explicit sign change of the Hamiltonian at time ⌧
and a well controlled deviation in the backward evolution
through a slight variation �g of the magnetic field, i.e. for
t > ⌧

U(t) = exp (iH(g�)(t� ⌧)) exp (�iH(g)⌧) , (22)

where g� ⌘ g + �g was introduced.
In order to reliably assess how well an initial state can

be recovered by imperfect e↵ective time reversal we choose
initial states, which exhibit distinguishable expectation
values of some observables. These are ground states of

0.1

1.0

10�1 100 101 102

a

0.4

0.6

0.8

1.0

10�4 10�3 10�2 10�1

b

E
⇤ ⌧
[hm

x
i]

Fwd. time ⌧/⌧⇤

g = 0.55

g = 0.3

g = 0.45

�
/
p
⌧
⇤

�g

Fig. 2: (a) Echo peak height of the transverse magnetisation
for three di↵erent quenches. The dots are exact results, the
lines are the asymptotes / ⌧�1/2 given by eq. (23). (b) Es-
timation of the echo peak height at the onset of the algebraic
decay based on the stationary phase approximation. The echo
protocol parameters are g0 = 1 and �g = 0.02.

H(g) for g = 0 or g � 1, respectively, which show large
spin-spin correlations.

Under the time reversal protocol described above the
energy spectrum ✏g�

k is deformed as compared to ✏gk and,

consequently, the quasiparticle velocities, vk = d✏k

dk , dur-
ing forward and backward evolution can di↵er. There-
fore, the closest resemblance of the time evolved state to
the initial state does not necessarily occur at t = 2⌧ .
This becomes evident in the exemplary time evolution
displayed in fig. 1a. In addition to observables fig. 1a
shows the time evolution of the rate function of the fi-
delity, l(t) = limN!1 ln(|h 0| (t)i|2)/N . A minimum of
this quantity corresponds to a large overlap of the time
evolved state with the initial state for finite N . Note as an
aside that the time evolution exhibits dynamical quantum
phase transitions, which aroused a lot of interest recently
[54], in the forward as well as in the backward evolution.

Let us first consider echoes in the transverse magnetisa-
tion. For this observable a stationary phase approximation
reveals an algebraic decay of the echo peak height with

|hmxite
� hmxi1| ⇡ k⇤(⌧)�g,g0,g�

k⇤ ⌧�1/2 , (23)

where k⇤(⌧) = cos(2(✏gk⇤ � ⌫g,g�

k⇤ ✏g�

k⇤)⌧ + ⇡/4),

�g,g0,g�

k⇤ =
⇣g,g�,g0

k⇤

2
p
⇡ |⇠g,g�

k⇤ |1/2
, (24)

⇣g,g�,g0

k ⌘ sin ✓g�

k⇤ sin�g,g0

k⇤
cos�g�,g

k⇤ + 1

2
, (25)

⇠g,g�

k⇤ ⌘ d2

dk2
(✏gk � ⌫

g,g�

k⇤ ✏g�

k )

����
k=k⇤

, (26)

and the echo peak time is te = (1 + ⌫g,g�

k⇤ )⌧ with k⇤ =
argmax

k
|�g,g0,g�

k |. From the stationary phase approxima-

tion the onset of the algebraic decay can be expected at
⌧ ⇡ ⌧⇤ with ⌧⇤ = d

dk ⇣
g,g�,g0

k

��
k=k⇤ /⇠g,g�

k⇤ . A detailed deriva-
tion of this result is given in the supplement [53]. Fig.
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Fig. 3: Echo peak height of the longitudinal spin-spin corre-
lation for di↵erent distances d with quench parameters g0 =
0, g = 1, �g = 0.05. The dots are exact results, the solid
lines are / ⌧�1/2 and the dashed lines mark the forward times
⌧ = d/ṽmax for the di↵erent d, respectively.

2a shows the decay of the echo peak height of the trans-
verse magnetisation as a function of the forward time ⌧
for three di↵erent quenches starting in the paramagnetic
phase. In all cases the initial magnetisation is almost per-
fectly recovered for forward times ⌧ . ⌧⇤, whereas it de-
cays algebraically for ⌧ � ⌧⇤. Moreover, the evaluation
of �g,g0,g�

k⇤ and ⌧⇤ as function of the deviation �g yields
�g,g0,g�

k⇤ / �g�1/2 and ⌧⇤ / �g�1 for a wide range of per-
turbation strengths �g. As a result, �g,g0,g�

k⇤ (⌧⇤)�1/2 is al-
most constant (cf. fig. 2b) meaning that generally a very
pronounced echo peak can be expected until the onset of
the algebraic decay and the height of which is independent
of the imperfection in the backwards evolution. Hence, the
echo peak decay is ultimately induced by dephasing due
to the deformed spectrum in the backwards evolution.

Fig. 3 shows the longitudinal spin-spin correlation ⇢zz
d

computed according to eq. (15) for di↵erent distances d.
For this quantity we also observe an algebraic decay of
the echo peak height, E⇤

⌧ [⇢zz
d ] / ⌧�1/2 for large ⌧ . How-

ever, before the onset of the algebraic decay there is a
distance-dependent regime of exponential-looking decay,
which increases with increasing spin-separation d. Similar
behaviour is known for the decay of correlation functions
after a simple quench without time reversal [10, 49]. In
that case the decay law can be rigorously derived by iden-
tifying an space-time scaling regime where vmaxt ⇠ d with
vmax the maximal propagation velocity. Due to the similar
algebraic structure in the echo dynamics we expect a sim-
ilar explanation for the intermediate regime in the decay
of the echo peak of ⇢zz

d with a di↵erent e↵ective velocity
ṽmax = max

k2[0,⇡]

d
dk (✏gk� ⌫

g,g�

k⇤ ✏g�

k ). At late times all entries of

the correlation matrix (8) will just like the transverse mag-
netisation decay algebraically with exponent �1/2, and
therefore the leading term of the Pfa�an will decay with
the same power law, which explains that E⇤

⌧ [⇢zz
d ] / ⌧�1/2

for ṽmax⌧ � d. In this sense the quasiparticle picture
which already yielded insights in various other contexts
[49, 55–57] is also useful to analyse the echo dynamics.
Considering the order parameter hmzi2 = limd!1 ⇢zz

d , our
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Fig. 4: Decay of the echo peak height of the entanglement en-
tropy for di↵erent subsystem sizes d, g0 = 1, g = 0.5, �g = 0.05.
After long waiting times the echo peak height decays alge-
braically / ⌧�1/2 (black line). The inset shows an exemplary
time evolution of the entanglement entropy under e↵ective time
reversal for d = 20 and g0 = 2.5, g = 0.55, �g = 0.05, ⌧ = 30.

result implies an exponential decay of the echo peak height
for all forward times ⌧ � 1.

Another interesting question is how far the entangle-
ment produced during the time evolution can be reduced
again by the e↵ective time reversal protocol. After quench-
ing the magnetic field the entanglement entropy increases
until it saturates at a level that is determined by the sub-
system size [55]. Therefore, an echo peak E⇤

⌧ [Sd] = 1
means that the state | (te)i has the same low entangle-
ment as the initial state, whereas for E⇤

⌧ [Sd] < 1 some ad-
ditional entanglement remains. Fig. 4 displays the echo
peak height of the entanglement entropy Sn of a subsys-
tem Ad consisting of d adjacent spins with the rest of
the chain as defined in eq. (16). Again we observe an
initial d-dependent regime of exponential-looking decay
crossing over to algebraic decay with E⇤

⌧ [Sd] / ⌧�1/2 for
⌧ > d/2ṽmax.Time reversal by a Loschmidt pulse. – Another
possibility to invert the course of the dynamics in the
TFIM is the application of a pulse similar to the ⇡-pulses
applied to the system in a Hahn echo experiment. Con-
sider the Hamiltonian

HP = �↵
X

j

�
Sx

j Sy
j+1 + h.c.

�
. (27)

In terms of the Jordan-Wigner fermions in momentum
space this reads HP = 2↵

P
k sin k(c†

kc†
�k + c�kck) and

the structure does not change under Bogoliubov rotation,
since c†

kc†
�k +c�kck = �†

k�
†
�k +��k�k. The time evolution

operator for this Hamiltonian in the diagonal basis is

e�iHP t =
Y

k

[cos(2↵t sin k)

�i sin(2↵t sin k)
⇣
�†

k�
†
�k + ��k�k

⌘i
(28)

For a given pulse time tP this operator perfectly inverts
the population of modes k⇤

n with 2↵tP sin k⇤
n = (2n +

1)⇡/2, n 2 Z, whereas the population of other modes is
only partially inverted or remains unchanged. Thereby,
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Fig. 5: Echo peak heights (red dots) for the transverse magneti-
sation mx when applying the pulse Hamiltonian (27) together
with residual peak height given by eq. (30) (dashed line). Pa-
rameters: g0 = 1,g = 0.3, and ↵tP = 25.

the evolution of the system under the Hamiltonian (27)
for a pulse time tp leads to an imperfect e↵ective time
reversal, i.e. eiHP tP e�iH⌧e�iHP tP = ei(H+✏V )⌧ , by an im-
perfect inversion of the mode occupation. Note that in
the notation introduced above the pulse operator in one
k-sector is ŨP

k (2↵t) ⌘ Rx(4↵t sin k)†.
With this protocol the forward and backward time evo-

lution are generated by the same Hamiltonian; hence, the
echo peak after time reversal at time ⌧ appears at te = 2⌧ ,
which can be seen in the exemplary time evolution in fig.
1b. In particular, we find that at te = 2⌧ the transverse
magnetisation can be split into three parts,

hmxite=2⌧ = hmxi1 + hmxiE + hmxi⌧ , (29)

where hmxi1 is the stationary value reached at t ! 1,
hmxiE is an additional ⌧ -independent contribution, and
hmxi⌧ are the time-dependent contributions, which vanish
for ⌧ !1. This means we find an echo peak at te = 2⌧ ,
which never decays. The residual peak height is given by

hmxiE =
1

2

Z ⇡

�⇡

dk

2⇡
sin�g,g0

k

⇣
1� cos

�
4↵tP sin k

�⌘
(30)

An example of this ever persisting echo is depicted in fig.
5, where the dots show the exact result and the dashed
line shows the echo peak height expected when only con-
sidering the time-independent contributions in eq. (29).

Time reversal by generalised Hahn echo. – The
Hamiltonian of the TFIM (3) allows for an echo protocol
very similar to the way the e↵ective time reversal is in-
duced in a Hahn echo experiment [28], namely by a sign
inversion of the Zeeman term. For large magnetic fields
changing the sign of the field can be considered an e↵ective
time reversal with small imperfection given by the Ising
term, ✏V = 2J

P
i Sz

i Sz
i+1. In contrast to the original

Hahn echo setup, where an initial magnetisation decays
due to field inhomogeneities, the decay in the TFIM will
be due to the coupling of the physical degrees of freedom.

The stationary phase analysis for the echo dynamics un-
der this protocol unveils that it combines two properties
of the previously discussed protocols. Since the switching
of the magnetic field corresponds to a shift of the energy
spectrum, ✏gk = ✏�g

k+⇡, the quasiparticle velocities are per-
fectly inverted, yielding echo peaks at te = 2⌧ ; neverthe-
less, for large ⌧ the echo peak height decays algebraically

with exponent �1/2. A detailed derivation is given in the
supplementary material [53].

Relation to thermalisation. – The fact that it is
well possible to produce pronounced echoes in the TFIM
also after long waiting times matches the absence of ther-
malisation in the conventional sense. The dynamics of
the system is constrained by infinitely many integrals of
motion, which keep a lot of information about the initial
state. Especially, these integrals of motion determine the
stationary value of local observables through the corre-
sponding generalised Gibbs ensemble (GGE) [10], i.e. the
reduced density matrix of a strip of length l, ⇢l(t), con-
verges to a density matrix given by a GGE, ⇢GGE,l, for
t ! 1. Note that the distance of both density matri-
ces decreases as D(⇢l(t), ⇢GGE,l) / l2t�3/2 [11], whereas
the expectation value of an observable at t = 2⌧ is de-
termined by hOi2⌧ = tr[O(⌧)⇢(⌧)]. In the latter expres-
sion ⇢(⌧) = e�iH⌧ | 0ih 0|eiH⌧ approaches a GGE as men-
tioned above but O(⌧) = e�i(H+✏V )⌧Oei(H+✏V )⌧ becomes
increasingly non-local. Therefore, the fact that echoes are
possible after arbitrarily long waiting times does not con-
tradict the convergence to a GGE.

Discussion. – We proposed a definition of irre-
versibility based on the decay of observable echoes under
imperfect e↵ective time reversal and presented di↵erent
ways to induce the time reversal in the TFIM. As a result
we find an algebraic decay of the echo peak height after
long forward times for all observables under consideration
due to dephasing whenever the imperfection comes along
with a deformation of the energy spectrum. In the case
of an unchanged spectrum during forward and backward
evolution there is a residual contribution to the echo peak,
which never decays.

Based on these results we conclude that the dynamics in
the TFIM can be considered well reversible. This finding
matches the fact that the TFIM has an infinite number
of integrals of motion, which preserve a lot of informa-
tion about the initial state throughout the course of the
dynamics and also prevent the equilibration to a conven-
tional Gibbs ensemble.

An important point of future work will be to under-
stand the dynamics of non-quadratic Hamiltonians under
imperfect e↵ective time reversal. Work along these lines
is in progress.

⇤ ⇤ ⇤
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I. COMPUTING ECHO TIME EVOLUTION IN THE TRANSVERSE FIELD ISING MODEL

As mentioned in the main text the time evolution of all observables of interest is essentially determined by the
correlation matrix

〈~Ωk~Ω†k〉t =

(〈ω+
k ω

+
−k〉t −〈ω+

k ω
−
−k〉t

〈ω−k ω+
−k〉t −〈ω−k ω−−k〉t

)
, (S1)

which is for the case of quenching from the ground state determined by

〈~Ωk~Ω†k〉t =
1

2
Ũk(t) (σz + 1) Ũk(t)† (S2)

with Ũk(t) =
√

2Ry
(
π
2

)
Rx(θgk)Rz(2εgkt)R

x(φg,g0k ) the time evolution operator of the corresponding k-sector in ex-
pressed in the basis of the initial Hamiltonian (see main text for references). Recall the definition

Rα(φ) = 1 cos
φ

2
+ iσα sin

φ

2
, α ∈ {x, y, z} . (S3)

The correlation matrices can generally be written as

〈~Ωk~Ω†k〉t = 1+

3∑

α=1

Σkα(t)σα (S4)

with suited coefficients Σkα(t), α ∈ {x, y, z}, and the Pauli matrices σα. The formalism for a simple quench is
straightforwardly generalised for the different echo protocols discussed in the main text. In the following subsections
we give the corresponding coefficient functions Σkα.

A. Σα for echoes through explicit sign change

For the time reversal by explicit sign change, where the Hamiltonian is switched from H(g) to −H(g+ δg) at t = τ ,

Ũk(t) generalises to

Ũk(t) =
√

2Ry
(π

2

){ Rx(θgk) , t < τ
Rx(θgδk )Rz(−2εgδk (t− τ))†Rx(φgδ,gk )† , t > τ

}
Rz(2εgkt)

†Rx(φg,g0k )† (S5)

yielding

Σkx =− [(cosφg,g0k sinφgδ,gk + sinφg,g0k cosφgδ,gk cos(2εgkτ)) cos(2εgδk (t− τ))

+ sinφg,g0k sin(2εgkτ) sin(2εgδk (t− τ))] sin θgδk
− [cosφg,g0k cosφgδ,gk − sinφg,g0k sinφgδ,gk cos(2εgkτ)] cos θgδk , (S6)

Σky =− [(cosφg,g0k sinφgδ,gk + sinφg,g0k cosφgδ,gk cos(2εgkτ)) cos(2εgδk (t− τ))

+ sinφg,g0k sin(2εgkτ) sin(2εgδk (t− τ))] cos θgδk
+ [cosφg,g0k cosφgδ,gk − sinφg,g0k sinφgδ,gk cos(2εgkτ)] sin θgδk , (S7)

Σkz = sinφg,g0k sin(2εgkτ) cos(2εgδk (t− τ))

− (cosφg,g0k sinφgδ,gk + sinφg,g0k cosφgδ,gk cos(2εgkτ)) sin(2εgδk (t− τ)) . (S8)



2

for t > τ . For t → ∞ and τ < t the stationary value after application of the time reversal is determined by the
time-independent contributions

Σkx =− cosφg,g0k cosφg,gδk cos θgk , (S9)

Σky = cosφg,g0k cosφg,gδk sin θgk , (S10)

Σkz =0 . (S11)

B. Σα for echoes through pulse Hamiltonian

In the case of time reversal by application of a pulse operator ŨPk (2αt) = Rx(4αt sin k)† we obtain

Ω(t) =
√

2Ry
(π

2

)
Rx(θgk)

{
Rz(2εgkt)

† , t < τ
Rx(4αtp sin k)Rz(2εgk(t− τ))†Rx(4αtp sin k)†Rz(2εgkτ)† , t > τ

}

·Rx(φg,g0k )†
(
γk
γ†−k

)
(S12)

In terms of eq. (S4) we get for t > τ

Σkx =
(
A cosχ

αtp
k +B sinχ

αtp
k

)
sin θgk −

(
−A sinχ

αtp
k +B cosχ

αtp
k

)
cos θgk , (S13)

Σky =
(
A cosχ

αtp
k +B sinχ

αtp
k

)
cos θgk +

(
−A sinχ

αtp
k +B cosχ

αtp
k

)
sin θgk , (S14)

Σkz = sinφg,g0k sin(2εk(g)τ) cos(2εk(g)(t− τ))

+
(

sinφg,g0k cos(2εk(g)τ) cos(χ
αtp
k )− cosφg,g0k sin(χ

αtp
k )

)
sin(2εk(g)(t− τ)) , (S15)

where χ
αtp
k = 4αtp sin k was introduced and

A = sinφg,g0k sin(2εk(g)τ) sin(2εk(g)(t− τ))

−
(

sinφg,g0k cos(2εk(g)τ) cosχ
αtp
k − cosφg,g0k sinχ

αtp
k

)
cos(2εk(g)(t− τ)) , (S16)

B = sinφg,g0k cos(2εk(g)τ) sinχ
αtp
k + cosφg,g0k cosχ

αtp
k (S17)

C. Σα for generalised Hahn echo

In the generalised Hahn echo protocol the time reversal is at t = τ induced by a sign change of the magnetic field,
g → −g. In this case the time evolution operator is

Ũk(t) =
√

2Ry
(π

2

){ Rx(θgk) , t < τ

Rx(θ−gk )Rz(2ε−gk (t− τ))†Rx(φk−g, g)† , t > τ

}
Rz(2εgkt)

†Rx(φg,g0k )† (S18)

and the corresponding coefficients for the correlation matrix are

Σkx =−
[(

cosφg,g0k sinφ−g,gk + sinφg,g0k cosφ−g,gk cos(2εgkτ)
)

cos(2ε−gk (t− τ))

− sinφg,g0k sin(2εgkτ) sin(2ε−gk (t− τ))
]

sin θ−gk
−
[
cosφg,g0k cosφ−g,gk − sinφg,g0k sinφ−g,gk cos(2εgkτ)

]
cos θ−gk , (S19)

Σky =−
[(

cosφg,g0k sinφ−g,gk + sinφg,g0k cosφ−g,gk cos(2εgkτ)
)

cos(2ε−gk (t− τ))

− sinφg,g0k sin(2εgkτ) sin(2ε−gk (t− τ))
]

cos θ−gk
+
[
cosφg,g0k cosφ−g,gk − sinφg,g0k sinφ−g,gk cos(2εgkτ)

]
sin θ−gk , (S20)

Σkz = sinφg,g0k sin(2εgkτ) cos(2ε−gk (t− τ))

+
(
cosφg,g0k sinφ−g,gk + sinφg,g0k cosφ−g,gk cos(2εgkτ)

)
sin(2ε−gk (t− τ)) . (S21)
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II. STATIONARY PHASE APPROXIMATION FOR THE DECAY AFTER LONG WAITING TIMES

A. Transverse magnetisation for time reversal by explicit sign change

The echo in the transverse magnetisation is given by

〈mx〉te = −
∫ π

−π

dk

4π

(
Σkx(te) + iΣky(te)

)
. (S22)

Since θgk is an odd function of k and so is φg,g
′

k , whereas εgk is even,the imaginary part does not contribute,
∫ π
−π dkΣky = 0.

Thus,

〈mx〉te =−
∫ π

−π

dk

4π
Σkx (S23)

=〈mx〉∞ +

∫
dk

4π
sin θgδk cosφg,g0k sinφgδ,gk cos(2εgδk ντ) +

∫
dk

4π
sin θgδk sinφg,g0k cosφgδ,gk cos(2εgkτ) cos(2εgδk ντ)

+

∫
dk

4π
sinφg,g0k sin(2εgkτ) sin(2εgδk ντ) sin θgδk −

∫
dk

4π
cos θgδk sinφg,g0k sinφgδ,gk cos(2εgkτ) , (S24)

where ν ≡ (te−τ)/τ was introduced. This expression contains two types of integrands, namely two integrals including
only a single trigonometric function of time and two integrals including a product of two trigonometric functions of

time with slightly differing spectra ε
g/gδ
k .

Consider the first type. For large τ the integrands become highly oscillatory and the main contribution to the
integral is given by the stationary points k∗ of εgk,

dεgk
dk

∣∣∣∣
k=k∗

= 0⇒ k∗ = 0,±π . (S25)

At the stationary points φk∗ = θk∗ = 0 and expanding the respective test functions f(k) around the stationary points
yields

∫ π

−π

dk

2π
f(k) cos(2εkτ) ≈

∑

k∗∈{0,π}

∫ ∞

−∞

dk

2π

f ′′(k∗)
2

(k − k∗)2 cos(ε′′k∗(k − k∗)2τ) (S26)

=
∑

k∗∈{0,π}

1

τ3/2

∫ ∞

−∞

dq

2π

f ′′(k∗)
2

q2 cos(ε′′k∗q
2) ∝ cos(2εk∗τ + π/4)

τ3/2
(S27)

Thus, at long forward times these parts give contributions with a decay law ∝ τ−3/2.
Now consider the terms including products of trigonometric functions of time. Here we can get rid of the products

via the identities

2 cos(2εgkτ) cos(2εgδk ντ) = cos(2(εgk + νεgδk )τ) + cos(2(εgk − νε
gδ
k )τ) , (S28)

2 sin(2εgkτ) sin(2εgδk ντ) =− cos(2(εgk + νεgδk )τ) + cos(2(εgk − νε
gδ
k )τ) . (S29)

Allowing for 0 < ν 6= 1 relevant saddle points for the above integrals are determined by

d

dk
(εgk ± νε

gδ
k )|

k=k∗ =

((
g

εgk
± ν gδ

εgδk

)
sin k

)∣∣∣∣
k=k∗

= 0 (S30)

yielding k∗ = 0, π for both signs, and additionally

k∗− = ± arccos

(
ν2g2δ (1 + g2)− g2(1 + g2δ )

2gν2g2δ − 2gδg2

)
(S31)

for the negative sign. These additional saddle points coincide with k∗ = 0, π for

ν0 =
g|1 + gδ|
gδ|1 + g| , νπ =

g|1− gδ|
gδ|1− g|

, (S32)
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respectively. In the search of an echo peak ν ∈ [ν0, νπ] can be tuned to create any saddle point k∗ ∈ [0, π] via

νg,gδk∗ =
gεgδk∗

gδε
g
k∗

. (S33)

Thus, for sufficiently long forward times with te = (1 +ν)τ and considering the equal contributions of both stationary
points

〈mx〉te − 〈mx〉∞ ≈−
∫ π

−π

dk

2π

[
sin θgδk sinφg,g0k

cosφgδ,gk + 1

2

]
cos (2(εgk − νε

gδ
k )τ) + γτ−3/2 (S34)

≈− βg,g0,gδν

κk∗(τ)

τ1/2
+ γτ−3/2 (S35)

where κk∗(τ) = cos(2(εgk∗ − νε
gδ
k∗)τ + π/4) varies very slowly,

βg,g0,gδk∗ =
ζg,gδ,g0k∗

2
√
π |ξg,gδk∗ |

1/2
, (S36)

ζg,gδ,g0k ≡ sin θgδk∗ sinφg,g0k∗
cosφgδ,gk∗ + 1

2
, (S37)

ξg,gδk∗ ≡
d2

dk2
(εgk − ν

g,gδ
k∗ εgδk )

∣∣∣∣
k=k∗

, (S38)

and the echo peak appears at te = (1 + νg,gδk∗ )τ , where

k∗ = argmax
k∗

|βg,g0,gδk∗ | . (S39)

The stationary phase approximation is valid if the test function
ζg,gδ,g0k ≈ ζg,gδ,g0k∗ + d

dk ζ
g,gδ,g0
k

∣∣
k=k∗

(k − k∗) does not vary too much on the interval [k − ∆k, k + ∆k], where

∆k is given by the width of the saddle point, (τξg,gδk∗ )−1, i.e. we expect the approximation to be good for

τ > τ∗ = d
dk ζ

g,gδ,g0
k

∣∣
k=k∗

/ξg,gδk∗ . Moreover, the period of κk∗(τ) is determined by the difference of the spectra and,
hence, very large compared to τ∗.

B. Longitudinal correlator for time reversal by generalised Hahn echo

We consider the case of starting from the ground state of H(g0 = 0). The echo in the transverse magnetisation is
given by

〈Szi Szi+1〉te =

∫ π

−π

dk

8π
e−ik

(
Σkx(te) + iΣky(te)

)
=

∫ π

−π

dk

8π

(
Σkx(te) cos k + Σky(te) sin k

)
. (S40)

The analysis of these integrals is mainly analogous to the previous section; however, for the Hahn echo protocol the
relevant saddle points are contributed by the integrals containing cos(2(εgk + ε−gk )τ) without a shift of the echo time
(ν = (te − τ)/τ = 1). Since with k∗± = ±π/2

d

dk

(
εgk + ε−gk

)∣∣∣∣
k=k∗±

= ±


 1

εgk∗±
− 1

ε−gk∗±


 = 0 (S41)

and the corresponding test function sin k∗± cos θ−gk∗± sinφg,g0k∗±
(cosφ∗k± + 1)/2 6= 0, the stationary phase approximation

yields

〈Szi Szi+1〉te − 〈Szi Szi+1〉∞ ≈ β̃g0,g
κ̃(τ)

τ1/2
(S42)
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with

κ̃(τ) ≡ cos(2(εgπ/2 + ε−gπ2
)τ + π/4) , (S43)

β̃g ≡ ζg

4
√
π|ξ̃g|1/2

, (S44)

ζ̃g ≡ cos θ−gπ/2
cosφ−g,gπ/2 + 1

2
, (S45)

ξ̃g ≡ d2

dk2
(εgk + ε−gk )

∣∣∣∣
k=π/2

. (S46)

Note that in this case the frequency of the oscillatory term κ̃(τ) is given by the sum of the spectra and for g � 1
εgπ/2 + ε−gπ2

≈ g. Therefore, the echo peak height at te = 2τ oscillates with a high frequency, but the amplitude of the

oscillations follows a power law with exponent −1/2.



4.3 Effective time reversal with perturbed Hamiltonian

in generic many-body systems

In the previous section the echo decay under imperfect effective time reversal was studied
by analytical means in a spin chain with quadratic Hamiltonian, which yielded a detailed
understanding. It was found that the echoes decay only slowly with an algebraic decay law
and that under certain conditions it is even possible to obtain ever persisting echoes. In this
section we will explore whether this behavior of the free system is under the identical echo
protocol contrasted by different behavior in nonintegrable systems, which are expected to be
truly irreversible.

4.3.1 The effect of adding interactions

The integrability of the transverse-field Ising model studied in the previous section can be
broken by adding a longitudinal component to the external magnetic field, i.e., extending the
Hamiltonian to

Ĥ = −J
∑

l

Ŝzl Ŝ
z
l+1 + hx

∑

l

Ŝxl + hz
∑

l

Ŝzl . (4.6)

By varying hz this Hamiltonian can be continuously tuned between the integrable point
hz = 0 and the nonintegrable system.

The lack of symmetries strongly restricts the system sizes feasible with exact diagonaliza-
tion, where it is hard to differentiate between the general oscillations under time evolution
and echo peaks. Therefore, we resort to iTEBD (cf. Section 3.1.2) in order to compute the
dynamics.

As initial state we choose the ground state at hx = ∞, which is distinguished by a
full polarization 〈mx〉 = 1

N

∑
l〈Sxl 〉 = 1/2. Fig. 4.2 displays the time evolution when the

transverse field component is quenched to hx = 0.3J and the imperfection is introduced to
the backward evolution via a slight perturbation of hx by δhx = 0.05J . Fig. 4.2(a) shows
the result for the noninteracting system with hz = 0 and the dynamics in the interacting
regime at hz = 0.1 is displayed in Fig. 4.2(b). The plots contain the full time evolution of
the transverse magnetization mx under the echo protocol introduced in the previous section
for different waiting times Jτ = 5, 10, 15, 20, 25, 30. In the case of the free system there
is no decay of the echo peaks perceptible up to the maximal waiting time. The variation
of the echo peak height is due to a node in the dynamics, which can be attributed to the
beating of the transverse polarization that dominates the dynamics (see Section 3.2, where a
similar quench was considered). The maximum of the envelope enclosing the single curves for
different waiting times only changes marginally. By contrast the results for the interacting
system in Fig. 4.2(b) clearly show a decaying echo peak height already on the considered time
scale. The decay characteristics under the imperfect effective time reversal protocol change
drastically as interactions are introduced. The echo peaks decay notably faster, indicating
that it is much harder to effectively revert the dynamics. Note that even a very small
longitudinal field component is sufficient to cause this change.
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Fig. 4.2: Comparison of the decay of echoes in the integrable and the nonintegrable Ising chain
(4.6). (a) In the transverse field Ising model (hx = 0.3J , hz = 0, δhx = 0.05J) the echo shows no
recognizable decay on the considered time scale. The dashed line indicates the exact result from
fermionization to demonstrate the accuracy of the other results obtained by iTEBD. (b) Adding a
small longitudinal component hz = 0.1J suffices to induce a clear decay of the echo signal.

Since the maximal times accessible with iTEBD are restricted due to the growth of entan-
glement, this method is not suited to extract decay laws from the computed dynamics with
sufficient reliability. In the next section this question will be addressed by applying exact
diagonalization to suited model Hamiltonians.

4.3.2 Decay laws

In order to investigate decay laws occurring under imperfect effective time reversal in in-
teracting many-body systems we consider in the following a dimerized anisotropic spin-1/2
Heisenberg chain with next-nearest-neighbor interactions,

Ĥ(J, Jz, δ, λ) = J
∑

l

(1 + (−1)lδ)
(
Ŝxl Ŝ

x
l+1 + Ŝyl Ŝ

y
l+1

)
+ Jz

∑

l

Ŝzl Ŝ
z
l+1

+ λ
[
J
∑

l

(
Ŝxl Ŝ

x
l+2 + Ŝyl Ŝ

y
l+2

)
+ Jz

∑

l

Ŝzl Ŝ
z
l+2

]
. (4.7)

With periodic boundary conditions this family of Hamiltonians obeys a number of symmetries
restricting the dynamics to a smaller sector of the total Hilbert space (cf. Section 3.1.1).
Exploiting these symmetries allows to access larger system sizes, which is crucial to identify
echo peaks at late times. In small systems large oscillations in the dynamics cannot be
distinguished from the echo at late times. These oscillations are suppressed by increasing
system size.

The different parameters of the Hamiltonian (4.7) allow to tune interactions and inte-
grability. Ĥ(J, 0, 0, 0) is a quadratic Hamiltonian by virtue of Jordan-Wigner transform,
namely the XX model (Lieb et al., 1961). Note that this is, however, not suited for the echo
protocol under consideration as it lacks a second parameter that can be used to introduce
an imperfection to the backwards evolution without changing basic system properties. The
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Fig. 4.3: Echo peak decay in an integrable spin chain with N = 28 spins. (a) Decay in the
integrable XXZ chain with Jz = 0.3J . (b) Decay in the nonintegrable dimerized chain with
Jz = 0.3J and δ = 0.2. In both cases the echo peak decay is compatible with a Gaussian decay law
on the accessible time scale.

Hamiltonian Ĥ(J, Jz, 0, 0) constitutes the XXZ model, which is integrable and solvable by
Bethe ansatz (Bethe, 1931; Korepin et al., 1993). The integrability is broken by introducing
a dimerization δ > 0 or next-nearest neighbor interactions λ > 0.

In the following the imperfection in the backward evolution will always be introduced
through a slight perturbation to the anisotropy δJz. As initial state we choose the sym-
metrized Néel state

|ψ0〉 =
1√
2

(
| ↑↓↑ . . . ↑↓〉+ | ↓↑↓ . . . ↓↑〉

)
, (4.8)

which is the ground state at strong anisotropy. Distinct observables suited to probe the order
of this state are spin-spin correlations functions 〈Ŝzl Ŝzl+n〉.

We first consider the system without next-nearest neighbor interactions, λ = 0, and
anisotropy Jz = 0.3J . Fig. 4.3 shows the echo peak heights in the observable 〈Ŝzl Ŝzl+2〉
extracted for the integrable system without dimerization (Fig. 4.3(a)) and the nonintegrable
system with dimerization δ = 0.2 (Fig. 4.3(b)). In both cases the results are compatible with
a Gaussian decay law E∗τ (〈Ŝzl Ŝzl+2〉) ∝ e−ατ

2
, which is indicated by the black line.1 Note that

the results for different perturbation strengths δJz collapse due to a rescaling of the time axis
by δJ2

z . This means that the decay rate depends on the perturbation strength as α ∝ δJ2
z .

The echo peak decay in the nonintegrable model begins to deviate from the Gaussian law
at late times. We attribute this to the finite size of the system. In order to substantiate this
allegation we turn to the system with next-nearest neighbor interactions λ > 0, where the
boundaries become important at earlier times and the crossover can be separated from the
effect of finite size oscillations in the numerical data.

1 The normalized echo peak height E∗
τ (X) is defined in Eq. (21) of Section 4.2.
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Fig. 4.4: Echo peak decay in the integrable spin chain with next-nearest-neighbor coupling λ = 1,
Jz = 0.6J , and perturbation δJz = 0.05J . Plotted on a log-linear scale (left panel) it is evident
that the decay is exponential at long times with a rate η that is proportional to the system size N .
In a log-quadratic plot it seems that the decay is Gaussian for a short initial period that extends
as the system size is increased.

Fig. 4.4 displays the echo peak decay obtained with the Hamiltonian H(J = 1, Jz =
0.6, δ = 0, λ = 1) for different system sizes. The log-linear plot in Fig. 4.4(a) reveals that
the echoes decay exponentially at late times. Moreover, the decay rate is proportional to the
system size η ∝ N . The same data is plotted with a quadratic scaling of the time axis in
Fig. 4.4(b). In this case it appears that the echoes initially decay in a Gaussian fashion for
a time interval that grows as the system size is increased. This observation gives rise to the
conjecture that in finite systems the decay law of the echo peaks is of the form

E∗τ ∼ e−min(τ,νN)×ατ . (4.9)

with some constant ν. In the thermodynamic limit N →∞ this means a Gaussian decay of
the echo peak heights for all times.

In the integrable system the decay was always found to be Gaussian. There was no
crossover to exponential decay observed. Since the maximal times that can be analyzed in
the finite system are, however, restricted due to the general oscillations in the time evolution,
we cannot exclude that such a crossover occurs at later times.

In studies of the Loschmidt echo (Gorin et al., 2006) analytical insight into the origin of
different decay laws could be gained by considering expansions of the echo operator in powers
of the perturbation, i.e.,

ÛE(τ) = ei(Ĥ+εV̂ )τe−iĤτ = Tt exp
(
− iε

∫ τ

0

dtV̂ (t)
)
, (4.10)
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where Tt is the time ordering operator and V̂ (t) = eiĤtV̂ e−iĤt. This analysis, however, relies
on the fact that the echo occurs at te = 2τ . It was already found in Section 4.2 that due to
variations in the quasiparticle dispersion between forward and backward evolution observable
echoes in many-body systems do not necessarily occur at te = 2τ . This is also the case in the
interacting systems under consideration in this section. Fig. 4.5 shows exemplarily that also
in these models the echo peak shifts systematically away from 2τ as τ is increased. Hence, it
is crucial to identify the correct echo time te in order to find the decay laws discussed above.
It is at this point not clear how to include the shift of the echo peak in a related analysis.

In conclusion, we find that the echo peak heights in
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Fig. 4.5: In the considered echo
protocol the echo time te is system-
atically shifted away from 2τ , which
can be ascribed to a modified quasi-
particle dispersion in the backwards
evolution; Jz = 0.2J , λ = 0.5, δ = 0
(cf. Eq. (4.7)).

interacting systems decay much faster than in noninter-
acting systems, namely with a Gaussian decay law in
the thermodynamic limit. The decay law is the same for
an interacting integrable system and the generic systems.
Hence, we conclude that interactions crucially impede the
possibility to restore the initial state by a time reversal
protocol. However, the decay law observed after imper-
fect time reversal with a perturbation of the Hamiltonian
lacks a central property that is required to motivate true
irreversibility, namely perturbation independence. The
decay rate was found to scale quadratically with the per-
turbation strength. This means that aiming at a given
resemblance to the initial state the endeavor to improve
the manipulation precision resulting in a smaller pertur-
bation to the Hamiltonian is rewarded by an extension
of the achievable waiting time that is proportional to the
reduction of the perturbation. In other words: The improvement warrants the effort.

In the following section it will be demonstrated that considering perturbations that affect
the state at the point of time reversal instead of the Hamiltonian throughout the backwards
evolution results in perturbation-independent decay rates. These lead to an interpretation
analogous to classical systems meaning that the dynamics of quantum many-body systems is
irreversible for all practical purposes, because precise time reversal is prohibitively expensive.
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Irreversible dynamics in quantum many-body systems
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Irreversibility, despite being a necessary condition for thermalization, still lacks a sound under-
standing in the context of quantum many-body systems. In this work we approach this question by
studying the behavior of generic many-body systems under imperfect effective time reversal, where
the imperfection is introduced as a perturbation of the many-body state at the point of time reversal.
Based on numerical simulations of the full quantum dynamics we demonstrate that observable echos
occurring in this setting decay exponentially with a rate that is intrinsic to the system meaning that
the dynamics is effectively irreversible.

Introduction. The recent development of experimen-
tal techniques to realize and precisely manipulate closed
quantum systems with many degrees of freedom [1–4]
motivated a lot of theoretical activity aimed at under-
standing the dynamics of quantum many-body systems
far from equilibrium. A fundamental question that arose
in this context is how and in what sense closed quantum
many-body systems thermalize when initially prepared
far from thermal equilibrium. This has been investigated
with great efforts in recent years [5, 6]. Closely related
is the question of irreversibility, which, however, did to
date not receive much attention.

For classical systems the origin of irreversibility de-
spite microscopically reversible dynamics was already
discussed by Boltzmann and Loschmidt [7–9] and was
essentially understood in a modern sense by Thompson
[10]. Classical systems typically exhibit chaotic dynam-
ics if composed of many degrees of freedom. Hence, any
practical efforts to revert the dynamics, e.g. by inverting
the momenta, are ultimately futile due to the exponen-
tial sensitivity of the dynamics to small imperfections. In
particular, the dominant rate with which initially nearby
trajectories diverge, called Lyapunov exponent, is inde-
pendent of the perturbation strength. Therefore, any im-
provement of the accuracy in the time reversal protocol
can only affect the prefactor of the exponential law.

This practical understanding of irreversibility in clas-
sical systems led Peres [11] to introduce the Loschmidt
echo

L(t) = |〈ψ0|ei(Ĥ+εV̂ )te−iĤt|ψ0〉|2 (1)

as measure for irreversibility in quantum systems. The
Loschmidt echo is the overlap of a wave function evolved
forward in time with Hamiltonian Ĥ and subsequently
backwards with a slightly perturbed Hamiltonian Ĥ+εV̂ ,
thereby quantifying the resemblance of the time evolved
state with the initial state. This quantity proved very
useful in the analysis of the dynamics of quantum systems
with few degrees of freedom [12, 13].

In generic quantum many-body systems, however,
overlaps like the Loschmidt echo have only limited sig-
nificance for the resemblance of states in physical terms.

∼ eλLt

x(0) =
(
q(0), p(0)

)

x′(2t)

x(t)

x′(t) =
(
q(t) + δq,−p(t)

)

FIG. 1. Classical analog of the time reversal protocol under
consideration.

According to the eigenstate thermalization hypothesis
(ETH) [14–17] energy expectation values of few-body ob-
servables OE = 〈E|Ô|E〉 are smooth functions of the
eigenstate energy E. More precisely, the assumption
is that the difference of the expectation value in neigh-
boring eigenstates, |OEn −OEn+1 |, is exponentially sup-
pressed with increasing system size, which is strongly
supported by numerical evidence from different studies
[18–21]. Since all experimentally measurable quantities
are related to the above-mentioned class of observables
this means that energetically close-by eigenstates of a
generic Hamiltonian Ĥ, although orthogonal, are by all
practical means indistinguishable in experiment. The
same holds for integrable systems if the further integrals
of motion are taken into account in addition to the energy
[22]. Therefore, any definition of irreversibility in many-
body systems should be based on observables, which are
accessible in experiment [23–27].

Connected to the question of irreversibility so called
out-of-time-order correlators (OTOCs) of the form
〈Â†(0)B̂†(t)Â(0)B̂(t)〉β were recently suggested to probe
scrambling, i.e. the complete delocalization of initially
local information, and exponential sensitivity of the dy-
namics to small perturbations [28, 29]. Based on this a
black hole theory and a holographic model of Majorana
fermions were identified as maximally chaotic systems
[30–32]. Moreover, OTOCs can directly be related to an
information-theoretic measure for the delocalization of
initially local information [33]. These ideas were seized
in a number of subsequent works to investigate signatures
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of chaos and scrambling in the dynamics of local lattice
models [33–38].

Scope of this work. In this Letter we propose a probe
of irreversible dynamics based on observable echos under
imperfect effective time reversal. A first investigation
in an integrable model was done in Ref. [26]. In that
work it was found that the echos in an integrable spin
chain decay not faster than algebraically indicating that
the dynamics is well reversible. Under a certain proto-
col even ever-persisting echos were found. In the present
work we demonstrate that in generic non-integrable sys-
tems the observable echos under imperfect time reversal
decay exponentially as would be expected when the dy-
namics is chaotic and – importantly – that the decay
is primarily governed by the intrinsic properties of the
system. This finding contrasts the aforementioned alge-
braic decay found in an integrable spin chain. In the
considered protocol the imperfection is introduced as a
perturbation of the many-body state at the point of time
reversal. Hence, the proposed probe of irreversibility di-
rectly corresponds with the understanding of classical ir-
reversibility as a consequence of the butterfly effect, but
it is applicable to generic quantum many-body systems
far from any semi-classical limit.

Time reversal protocol. Irreversibility in classical sys-
tems is understood to be a consequence of chaotic dynam-
ics, i.e. the fact that trajectories diverge exponentially if
the coordinates are slightly changed initially. This leads
to the fact that the final coordinates deviate exponen-
tially from the initial coordinates if an imperfect time
reversal protocol as sketched in Fig. 1 is applied.

An analogous situation in quantum systems is the per-
turbation of the quantum state at the point of time re-
versal, i.e. applying a unitary perturbation operator P̂ε
to the time-evolved state |ψ(t)〉 = e−iĤt|ψ0〉,

|ψ(t)〉 → |ψ′(t)〉 = P̂ε|ψ(t)〉 , (2)

where ε is a parameter for the magnitude of the per-
turbation. For many-body systems it is crucial at this
point to regard physical observables as measure for the
smallness of the perturbation and not the overlap of the
states. Due to the unitarity of the time evolution there
will always be a part of the dynamics that is perfectly
reverted if the states before and after applying the per-
turbation have a non-vanishing overlap. A natural oper-
ation P̂ε that leaves observables almost unchanged while
making the state orthogonal is time evolution with a lo-
cal Hamiltonian Ĥp for short time δt. In a many-body
system with N degrees of freedom the overlap of a time-
evolved state with the initial state generally takes the

form |〈ψ0|e−iĤt|ψ0〉|2 = e−Nr(t) with a system size in-
dependent rate function r(t), i.e. the overlap vanishes
at arbitrarily short times in the thermodynamic limit
N → ∞. Observables, instead, change smoothly under
time evolution with a physical Hamiltonian.

In the following we study the dynamics of a many-
body system when a time reversal protocol motivated by
these considerations is applied. The system is prepared
in an initial state |ψ0〉 that exhibits some significant fea-
tures distinguishing it from an equilibrium state of the
Hamiltonian Ĥ, like, e.g., a strong magnetic order in a
disordered phase. This state is time-evolved for a wait-

ing time τ , yielding |ψ(τ)〉 = e−iĤτ |ψ0〉. At this point a

perturbation operator P̂δt = e−iĤpδt given by some other
Hamiltonian Ĥp is applied for a short time δt, resulting

in |ψ′(τ)〉 = P̂δt|ψ(τ)〉. Subsequently, |ψ′(τ)〉 is evolved
backwards in time until the echo time t∗ ≈ 2τ , where the
resemblance of the time evolved state to the initial state
is largest in terms of the observables under consideration,
i.e. these observables show an extremum, which we call
an echo peak. The existence of these echo peaks can be
inferred by considering the case of δt = 0, where a per-
fect revival is produced independent of the waiting time
τ , and assuming a smooth behavior of the dynamics as δt
is increased. We propose to declare a system irreversible
if the decay of echos as a function of the waiting time τ
is exponential or faster than exponential and if the decay
rate is an intrinsic property of the system, i.e. unaffected
by reducing the perturbation strength. This definition
means that substantial improvement of the reconstruc-
tion of the initial state by manipulating with enhanced
precision is practically impossible.

Note that by identifying Â(0) ≡ Ô and B̂(τ) ≡
eiĤτ P̂δte

−iĤτ this protocol effectively results in the mea-
surement of an OTOC as introduced above if the initial
state |ψ0〉 is an eigenstate of observable under consider-
ation, Ô|ψ0〉 = O|ψ0〉. A key difference is, however, the
fact that the echo protocol takes into account the expec-
tation value in the pure initial state far from equilibrium,
whereas the OTOC is defined with respect to a thermal
density matrix.

Model Hamiltonians. As minimal examples of generic
quantum many-body systems we study spin-1/2 systems
defined by the Hamiltonian

Ĥ =
∑

i 6=j
Jij
(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j

)
, (3)

where the σ̂αi , α = x, y, denote the Pauli spin operators
acting on lattice sites i = 1, . . . , N . In this work we focus
on two versions of this Hamiltonian, namely a Hamilto-
nian Ĥloc with local couplings

J loc
ij = J

{
21−|i−j| , for 0 < |i− j| ≤ 2
0 , else

(4)

and a fully connected random Hamiltonian Ĥfc with
J fc
ij = J fc

ji = JRij/N , where Rij is drawn from the
standard normal distribution. We found that altering
the interaction range of the local Hamiltonian and in-
troducing an (anisotropic) Heisenberg-type coupling left
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FIG. 2. Time evolution of staggered magnetization M(t),
spin structure factor Sπ(t), entanglement entropy S5(t), and
return probability |〈ψ0|ψ(t)〉|2 under the imperfect effective
time reversal protocol for different forward times τ obtained
with the Hamiltonian Hloc. The observables and the entan-
glement entropy show clear echos at t = 2τ that decay as τ is
increased, whereas the return probability does not show any
signal. The perturbation strength is δt/J = 0.05.

the results qualitatively unchanged. However, the re-
striction of the couplings to shorter distances or strongly
anisotropic couplings, respectively, introduce large oscil-
lations to the dynamics, which complicates the identi-
fication of echo peaks. As initial state we choose the
Néel state |ψ0〉 = | ↑↓↑ . . .〉. For this state the stag-
gered magnetization M = 1

N

∑
n(−1)n〈σ̂zn〉 and the spin

structure factor Sπ = 1
N

∑
i,j e

i(i−j)π/N 〈~σi · ~σj〉 consti-
tute suited observables for the echo protocol described
above. Moreover, we will investigate the dynamics of
the entanglement entropy of bipartitions into subsys-
tems A and B defined by SA = −tr

(
ρ̂A log2 ρ̂A

)
, where

ρ̂A = trB
(
|ψ(t)〉〈ψ(t)|

)
is the reduced density matrix of

the subsystem A.

The Hamiltonian that defines the perturbation is cho-
sen to be a local random Hamiltonian

Ĥp =
N−1∑

i=1

Ji
(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
(5)

with real couplings Ji drawn from the standard normal
distribution.

Numerical realization and finite size effects. In the
following we will resort to exact diagonalization and
Lanczos propagation [39] in order to compute the time
evolution. This limits the accessible systems to sizes far
from the thermodynamic limit; due to the numerical ex-
pense the maximal system size we consider is N = 22.
For any finite system, however, the echos produced under
the envisaged imperfect effective time reversal will gener-
ally not decay to zero for long waiting times τ . Introduc-
ing the eigenbasis of the Hamiltonian, (Ĥ − Eα)|α〉 = 0,
the time evolution of observables under the time reversal
protocol is

〈Ô〉t1,t2 = 〈ψ0|eiĤt1 P̂ †δte−iĤt2ÔeiĤt2 P̂δte−iĤt1 |ψ0〉
=

∑

α,α′,β,β′

〈ψ0|α〉
(
P †δt
)
α,α′Oα′β

(
Pδt
)
ββ′〈β′|ψ0〉

× ei(Eα−Eβ′ )t1+i(Eβ−Eα′ )t2 , (6)

where Xαβ = 〈α|X̂|β〉 with X̂ = Ô, P̂δt, P̂
†
δt denotes the

matrix elements of the respective operators. Clearly,
for any t1, t2 terms with α = β′ and β = α′ are time-
independent. These terms yield the stationary value that
is reached at long times t1 6= t2. At t1 = t2 there is,
however, an additional time-independent contribution of
the terms with α = α′ and β = β′, where the diag-
onal elements of the perturbation operator

(
Pδt
)
αα

=

〈α|e−iĤpδt|α〉 appear. Most prominent among these con-
tributions at small N is the identity that gives rise to the
non-vanishing overlap 〈ψ(τ)|P̂δt|ψ(τ)〉 in the finite sys-
tem. As discussed above the modulus of overlaps of the

form 〈α|e−iĤpδt|α〉 vanishes at arbitrarily short times in
the thermodynamic limit. Hence, this non-decaying con-
tribution to echos at t1 = t2 vanishes for N →∞.

In the finite systems we analyze the decay of the echo
peaks towards these stationary values, which is the uni-
versal behavior that survives in the thermodynamic limit.
In practice we discard the parallel component of the per-
turbed state, |ψ‖(τ)〉 = 〈ψ(τ)|ψ′(τ)〉|ψ(τ)〉, before start-
ing the backward evolution. When analyzing the decay
laws we additionally subtract the remaining stationary
value from the echo peak heights that is estimated by a
long time average.

Fig. 2 displays an exemplary time evolution with Ĥloc

of staggered magnetization M(t), spin structure factor
Sπ(t), entanglement entropy Sn(t) of n = 5 spins at one
end of the spin chain, and overlap with the initial state
|〈ψ0|ψ(t)〉|2 for a system of N = 20 spins, where the per-
turbation with Jδt = 0.05 is applied at different waiting
times τ . The perturbation causes only a minimal shift of
the observables although the perturbed state is orthog-
onal to the state before the perturbation. The dynam-
ics exhibit a pronounced maximum at te ≈ 2τ , whereas
the entanglement entropy becomes minimal at this point.
Note that in contrast to the results for imperfect time re-
versal with a perturbed Hamiltonian [26] the echo time
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FIG. 3. Decay of the echo peak heights of staggered magnetization M , spin structure factor Sπ, and entanglement entropy
of five consecutive spins S5 after imperfect effective time reversal for both the local Hamiltonian Ĥloc (a)-(c) and the fully

connected Hamiltonian Ĥfc (d)-(f). The perturbation Hamiltonian is the same realization of Ĥp in all cases, whereas the
plotted perturbation strengths are Jδt = 0.5, 0.35, 0.25, 0.15, 0.05. The dashed lines indicate exponential fits to the results for
δt = 0.05/J .

under the present time reversal protocol is always very
close to 2τ and does not exhibit any systematic shift away
from that.

Echo peak decay. As is evident from the exemplary
time evolution in Fig. 2 the resemblance of the time-
evolved state to the initial state in terms of the observ-
ables decreases as the waiting time is increased. In or-
der to extract laws of decay we introduce the echo peak
height of an observable Ô,

EO(t) = max
t′>t
|〈Ô〉t′,t −O∞| , (7)

where the maximum occurs at the echo time te ≈ 2t and
O∞ is the stationary value reached after long times.

Fig. 3 displays the decay of the echo peak heights for
the observables and the entanglement entropy for both
the local Hamiltonian Hloc and the fully connected ran-
dom Hamiltonian Hfc. The decay for a single realization
of the perturbation Hamiltonian Hp is shown for differ-
ent perturbation strengths δt. In all cases the echo peak
heights exhibit a marked exponential decay at long wait-
ing times τ . The decay rate varies only weakly as δt is
changed. In particular, the curves converge as δt→ 0. In
each plot an exponential fit to the data with the smallest
perturbation strength (δt = 0.05) is included. For the
local Hamiltonian the fitted decay rates for both observ-
ables and the entanglement entropy are almost identical.
In the fully connected system the observable echos decay
with similar rates, whereas the echos in the entanglement
entropy decay slightly faster. While the relation of the
decay rates to microscopic properties of the systems is as
of yet unclear, we find that they do not coincide with the

decay rates occurring after a simple quench. The decay
of the entanglement entropy shows that although recov-
erable at short times the information about the genuinely
quantal structure of the initial state is lost in the same
fashion as the information about observables.

For different realizations of the random perturbation
Hamiltonian Ĥp and fixed δt we observed variations of
the decay rate of about 15%. We attribute these varia-
tions to the small system size and expect them to vanish
in the thermodynamic limit.

Discussion. In this work results from numerical sim-
ulations of the full quantum dynamics are reported. Our
results show that generic quantum many-body systems
exhibit exponential decay of observable echo peaks under
imperfect effective time reversal. This is in contrast to al-
gebraically decaying echos found in an integrable system
[26]. Importantly, the decay rate in the non-integrable
quantum many-body models studied here was found to
be largely independent of the perturbation strength. This
implies that any practical effort to improve the accuracy
in a time reversal experiment is in the end futile, just like
in irreversible classical systems.

The presented results give rise to further questions,
which are beyond the scope of this work and are therefore
left for future research. It was found that the decay rate
of the echos is an intrinsic property of the Hamiltonian
that determines the time evolution. However, it is at this
point not clear how said rate is related to the microscopic
details of the system. Moreover, possible relations to
other definitions of quantum chaos and irreversibility, e.g.
the one based on OTOCs [28, 29], should be investigated.
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Physics Reports 435, 33 (2006).
[13] P. Jacquod and C. Petitjean, Advances in Physics 58, 67

(2009).
[14] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[15] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[16] M. Srednicki, Journal of Physics A: Mathematical and

General 29, L75 (1996).
[17] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854

(2008).
[18] R. Steinigeweg, J. Herbrych, and P. Prelovšek, Phys.
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4.5 Relation to out-of-time-order correlators

In the search for dynamical signatures of many-body chaos in quantum systems out-of-time-
order correlators (OTOCs, cf. Eq. (4.5)) attracted a lot of interest recently (Shenker and
Stanford, 2014; Kitaev, 2014). The echo protocol described in the previous section effectively
amounts to an OTOC if the initial state is an eigenstate of the observable, i.e., (Ô−µ)|ψ0〉 = 0.
Introducing the echo evolution operator

ÛE(τ) = eiĤτe−iĤpδte−iĤτ (4.11)

the observable echo resembles the form of an OTOC as introduced in Eq. (4.5),

〈ψ0|ÛE(τ)†ÔÛE(τ)|ψ0〉 =
1

µ
〈ψ0|ÔÛE(τ)†ÔÛE(τ)|ψ0〉 . (4.12)

Other than in the conventional definition, however, the OTOC emerging in the echo protocol
is an expectation value in the initial nonequilibrium state instead of a thermal expectation
value.

In fact, for small δt the dominant contribution can be ascribed to the OTOC of Ĥp and

Ô. Expanding the exponential yields

〈ψ0|ÛE(τ)†ÔÛE(τ)|ψ0〉 = 〈ψ0|Ô|ψ0〉+ iδt〈ψ0|
[
Ĥp(τ), Ô

]
|ψ0〉

− δt2

2
〈ψ0|

[
Ĥp(τ),

[
Ĥp(τ), Ô

]]
|ψ0〉+O(δt3) . (4.13)

The δt-dependent terms in this expansion describe the deviation from a perfect echo due to
the imperfection of the time reversal. Correspondingly, the contributions relevant for the
echo decay observed in the previous sections have to be growing as a function of τ . The
single commutator occurring in the linear term, however, corresponds to linear response and,
hence, decays as τ is increased. The first contribution that can account for sensitivity to
the introduced perturbation is the quadratic term; and, indeed, expanding the commutator
yields

1

2
〈ψ0|

[
Ĥp(τ),

[
Ĥp(τ), Ô

]]
|ψ0〉 = µ〈ψ0|Ĥp(τ)2|ψ0〉 −

1

µ
〈ψ0|ÔĤp(τ)ÔĤp(τ)|ψ0〉 , (4.14)

where the OTOC of the observable and the perturbation Hamiltonian appears. This obser-
vation suggests that there exists a close relation between imperfect effective time reversal as
a probe of irreversibility and a possible quantum butterfly effect and scrambling, which is
probed by OTOCs. In the remainder of this section and in Section 4.6.2 this possible relation
will be examined from different perspectives.

The behavior of conventional OTOCs with thermal states was studied in different contexts
including microscopic many-body systems. It was shown that there exists a system of strongly
interacting (Majorana) fermions, the Sachdev-Ye-Kitaev model, which is maximally chaotic
in the sense that OTOCs grow exponentially with the maximal possible Lyapunov exponent
λL = 2π

β
(Kitaev, 2015; Maldacena and Stanford, 2016). Based on the analysis above the
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expectation is that imperfect effective time reversal can be used to probe this butterfly effect.
Possible relations will be examined in a semiclassical approach to the echo dynamics of the
Sachdev-Ye-Kitaev model in Section 4.6 with a particular focus on the growth of the out-of-
time-order double commutator occurring in Eq. (4.13).

In the remainder of this section we will shed some light on another aspect, namely the
possibility to probe the spreading of information and scrambling. First, a particularly notable
relation between OTOCs and an information theoretic measure of scrambling is reviewed in
Section 4.5.1, including some new results. Subsequently, in Section 4.5.2 the behavior of
OTOCs far from equilibrium is compared to conventional OTOCs. Finally, the behavior of
double commutators as motivated by the echo dynamics is compared to that of OTOCs in
an analogous setting in Section 4.5.3.

4.5.1 Out-of-time-order correlators and scrambling

As a probe for the spreading of information and scrambling in microscopic lattice systems
OTOCs have been studied in a series of works (Hosur et al., 2016; Huang et al., 2016; Bohrdt
et al., 2017; Iyoda and Sagawa, 2017; Swingle and Chowdhury, 2017). Particularly notable
is the fact that in spin-1/2 systems there exists a rigorous relation between OTOCs and
tripartite information, which quantifies how much information about the initial state is fully
delocalized in that it can only be retrieved by global measurements (Hosur et al., 2016). In
this context the time evolution operator acting on a chain of N spins,

Û(t)

A B

C D

out

in

Fig. 4.6: To define tripartite
information as a measure of
scrambling the unitary oper-
ator Û(t) is viewed as a state
in doubled Hilbert space with
“in” and “out” degrees of free-
dom.

Û(t) =
∑

i,j

uij|i〉〈j| , (4.15)

which would commonly be interpreted as a tensor with N input
and N output legs as depicted in Fig. 4.6 (cf. also Section
3.1.2), is thought of as a state in doubled Hilbert space,

|U(t)〉 =
1

2n/2

∑

i,j

uij|i〉out ⊗ |j〉in . (4.16)

In this language the reduced density matrix of the input sub-
system, ρ̂in = trout(|U(t)〉 〈U(t)|), corresponds to a uniform
ensemble of states of the physical system, whereas the re-
duced density matrix of the output subsystem,
ρ̂out = trin(|U(t)〉 〈U(t)|), corresponds to the time-evolved ini-
tial density matrix, ρ̂out = Û(t)ρ̂inÛ(t)†.

In this view it is possible to consider more general input ensembles ρ̂in =
∑

j pj |ψj〉 〈ψj|
given by probabilities pj and a set of orthonormal states {|ψj〉}. The corresponding state

|Ψ(t)〉 =
∑

j

√
pj |ψj〉in ⊗ Û(t) |ψj〉out (4.17)
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contains all information about the time evolution, in this case with a possible weighting of
the input ensemble. A possible choice is |ψj〉 = |Ej〉 and pj = e−βEi for which |Ψ(0)〉 is a
thermofield double state corresponding to a thermal initial density matrix.

In the doubled system it is possible to define mutual information of spins on the input
and on the output side. Considering bipartitions of the input and the output subsystem
into parts A,B,C and D as depicted in Fig. 4.6 the mutual information of, e.g., A and C is
defined as

I(A : C) = SA + SC − SAC (4.18)

where

SA = −tr
(
ρ̂A log ρ̂A

)
(4.19)

with the reduced density matrix ρ̂A = trĀ
(
|Ψ(t)〉〈Ψ(t)|

)
. On this basis the tripartite infor-

mation

I3(A : C : D) = I(A : C) + I(A : D)− I(A : CD) (4.20)

quantifies how much information about A is after time evolution hidden nonlocally in CD
and cannot be detected by local measurements just on C or D. If a system scrambles initially
local information, the tripartite information will take a negative value with large magnitude.
Therefore, in contrast to OTOCs the tripartite information allows to diagnose scrambling
based only on properties of the time evolution operator, thereby avoiding ambiguities that
can occur due to the choice of observables.1

Strikingly, however, the tripartite information in spin-1/2 systems can be bounded by the
so-called OTOC average

〈ÔD(t)ÔAÔD(t)ÔA〉β =
1

4a+d

∑

i,j

〈D̂i(t)ÂjD̂i(t)Âj〉β . (4.21)

In this expression {Âi} (equivalently {D̂i}) denotes a complete basis of operators on subsys-
tem A satisfying the orthonormality condition tr

(
ÂiÂj

)
= 2aδij with a the number of spins

in A. For a = 1 a possible choice is {1̂, σ̂x, σ̂y, σ̂z}. At infinite temperature, β = 0, (Hosur
et al., 2016) show that if the OTOC average at long times approaches a constant ε > 0, the
tripartite information is bounded by

I3(A : C : D) ≤ −2a+ log2

ε

εmin

(4.22)

with the theoretical minimum εmin = 2−2a. This means that a saturation of the OTOC
average (4.21) close to εmin implies scrambling.

As an example (Hosur et al., 2016) studied the dynamics of the Ising model with tunable
magnetic field orientation as defined in Eq. (4.6). They found that considering an infinite

1Note that the tripartite information (4.20) defined on the doubled Hilbert space is identical with the
topological entanglement entropy introduced by (Kitaev and Preskill, 2006). Until now it is, however, unclear
whether this resemblance has further implications.
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Fig. 4.7: Dynamics of the OTOC average the a quadratic and the nonintegrable Ising spin chain
with magnetic field for different choices of the subsystem partitioning. The displayed circles repre-
sent the chain of N = 7 spins, where the red circles indicate the positions of the one-spin-subsystems
A and D, respectively. The dashed line corresponds to the Haar scrambled value. In (a) results
from (Hosur et al., 2016) are reproduced, showing that the noninteracting system is a scrambler,
whereas the free one is not. (b) and (c) reveal that the long time behavior in the free system
strongly depends on the choice of subsystems.

temperature initial state the tripartite information and the OTOC average clearly distinguish
between the quadratic transverse-field Ising model and the nonintegrable system at tilted
field orientation. Fig. 4.7(a) shows a reproduction of the results reported in (Hosur et al.,
2016) obtained by exact diagonalization. The dashed line indicates the value attained under
Haar scrambling, which is considered maximally chaotic and corresponds to the vanishing
of all nontrivial contributions in Eq. (4.21). In accordance with the general expectation the
interacting system scrambles, whereas the free one does not. Note that this is compatible
with the observations in Section 4.3.1, where it was found that breaking integrability renders
the dynamics irreversible.

When considering the further results in Fig. 4.7(b) and (c) it becomes, however, evident
that even if operator-dependence is largely eliminated the signature of nonscrambling dy-
namics delicately depends on the partitioning of the Hilbert space: As the subsystems A and
D are moved away from the boundary of the spin chain the distinction between the free and
the nonintegrable system become less clear. In particular in Fig. 4.7(c) the OTOC average of
both systems remains close to the Haar scrambled value for most times. By contrast, when
considering a partitioning of the Hilbert space into modes of the free system instead of lattice
sites one would expect that a corresponding OTOC average of the corresponding operators
does not change at all over time, because the mode occupation is conserved.

The observations in Fig. 4.7 suggest to declare those systems scrambling, in which the
OTOC average approaches the Haar value for any partitioning of the Hilbert space; if instead
a partitioning can be found in which the OTOC deviates from the Haar value at long times
the system is not a scrambler.

The comparison of the results for different subsystem positions shows that in the study
of scrambling a characteristic velocity appears. The time at which the OTOC average starts
to deviate from the initial value is proportional to the distance of the subsystems. In the
literature the corresponding velocity is referred to as “butterfly velocity” (Hosur et al., 2016;
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Fig. 4.8: Dynamics of the OTOC average far from equilibrium. The plots show data for the same
situations as in Fig. 4.7, where in the definition of the OTOC average (4.21) the thermal average
〈·〉β was replaced the average 〈ψ0| · |ψ0〉 in a nonequilibrium initial state. Overall a very similar
signature is obtained.

Bohrdt et al., 2017). In the free system this velocity can directly be related to the Lieb-
Robinson velocity (cf. Section 1.2.2), because a Wick theorem is applicable meaning that
any signal in an OTOC must be related to a signal in the conventional correlation functions.

4.5.2 Out-of-time-order correlators far from equilibrium

We will now address the question whether nonequilibrium OTOCs, which are motivated by
echo protocols, show a similar sensitivity to integrability as the conventional OTOC average.
Fig. 4.8 displays results for the OTOC average where the thermal expectation value 〈·〉β in
Eq. (4.21) is replaced by the expectation value in a nonequilibrium state, 〈ψ0| · |ψ0〉. In
this case the initial state is the Neel state |ψ0〉 = |↑↓↑ . . .〉. The parameters and the choice
of subsystems is identical with the cases shown in Fig. 4.7. Comparing the results for the
conventional OTOC average in Fig. 4.7 and for the OTOC average far from equilibrium in
Fig. 4.8 one finds that both results are very similar. In particular the curves for the free
system in the left panels, respectively, are almost identical. For the nonintegrable system the
OTOC average far from equilibrium shows stronger oscillations around the approximately
stationary value. Again the behavior of the free system at long times strongly depends on
the choice of subsystems.

In order to include also a Bethe integrable system into the analysis we now turn to the
extended XXZ Hamiltonian introduced in Eq. (4.7). Fig. 4.9(a) shows the time evolution of
the OTOC average at characteristically distinct points in the parameter space of this system
with subsystems A and D at the boundary of the spin chain. Similar to the Ising chain with
transverse field the free XX model obtained at Jz = δ = λ = 0 does not scramble. The
OTOC average even returns to the initial value from time to time, which would by virtue
of the bound (4.22) allow for excellent recovery of information about the initial state by
local measurements. If integrability is broken by either introducing a dimerization δ 6= 0 or
next-nearest-neighbor coupling λ 6= 0 the OTOC average indicates that the system becomes
a scrambler (Note how adding longer distance couplings increases the butterfly velocity in
comparison to the nearest-neighbor coupled systems). The signature of the OTOC average
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Ô
D
(t
)Ô
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Fig. 4.9: Time evolution of the OTO average after a quench in an extended XXZ model defined
in Eq. (4.7). The circles inside the plots represent the spin chains of length 10 and the red circles
indicate the subsystems on which the operators act. The dashed line indicates the Haar-scrambled
value that is approached in the long time limit if the system scrambles.

for the integrable XXZ chain, Jz 6= 0 and δ = λ = 0, is less clear. After a dip at Jt ≈ N
the OTOC average at first shows a strong deviation from the Haar scrambled value similar
to the free system. However, after the signal traversed the system a second time, i.e., for
Jt & 30, the OTOC decreases again and subsequently remains close to the Haar scrambled
value. Therefore, it can on this basis not be decided unambiguously whether the Bethe
integrable system scrambles or not. Besides this, Fig. 4.9(b) again demonstrates that the
behavior of the OTOCs strongly differs in particular for the nonscrambling systems if the
choice of subsystems is varied. In cases where both subsystems are located in the bulk the
dynamics is almost identical for all choices of parameters, similar to Fig. 4.8(c) (not shown).

We can conclude that with the nonequilibirium initial state, which, chosen as the Néel
state, is a high energy state, the resulting OTOCs essentially reflect the properties of OTOCs
in equilibrium at high temperature.

4.5.3 Double commutators

In order to assess whether the double commutator occurring in Eq. (4.13) probe chaotic
dynamics similar to OTOCs we will now consider a double commutator average in analogy to
the OTOC average discussed in the previous section. For two subsystems A and B consisting
of a and b lattice sites, respectively, and corresponding sets of operators {Âi} and {B̂i} we
define

DC
|ψ0〉
AB (t) =

√
1

4a+b

∑

i,j

〈ψ0|[Âi(t), [Âi(t), B̂j]]|ψ0〉
2
. (4.23)

Note that the double commutator expectation values can be negative. With the echo dy-
namics in mind a situation where the double commutator becomes negative can occur when
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Fig. 4.10: Dynamics of double commutator averages in the Ising model with magnetic field (4.6).
In all cases hx = J . The locations of the single spin subsystems are indicated by the red circles.

(a,b) Double commutator average DC
|ψ0〉
AB (t) as defined in Eq. (4.23) with nonequilibrium initial

state |ψ0〉 = |↑↓↑ . . .〉. (c) Double commutator average DCβAB(t) as defined in Eq. (4.24) at infinite
temperature β = 0.

the observable has an initial value that is smaller than the value attained after relaxation. In
order to probe the magnitude of the double commutators, they are squared in the expression
above.

Fig. 4.10(a,b) shows DC
|ψ0〉
AB (t) for different magnetic field orientations of the Ising chain

(4.6). The behavior of the double commutators is very similar to the OTOCs. In Fig. 4.10(a)
the subsystems are located at the boundaries of the spin chain. For the quadratic Hamiltonian
hz = 0 the double commutator shows a strong signal after the spread of information covered
the distance between the subsystems. Subsequently, this signal decays to zero before a finite-
size echo appears. If the integrability is broken by tilting the magnetic field orientation the
double commutator approaches a stationary value larger than zero. This distinction between
the quadratic and the nonintegrable system is just as in the case of the OTOC average
diminished if the subsystems are moved away from the boundary, as for example in Fig.
4.10(b).

Fig. 4.10(c) shows the dynamics of a thermal double commutator average,

DCβ
AB(t) =

√
1

4a+b

∑

i,j

tr
(
ρ̂β[Âi(t), [Âi(t), B̂j]]

)2
, (4.24)

where ρ̂β is the thermal density matrix at temperature β. This average in the thermal state
at infinite temperature behaves quite similar to the average in the nonequilibrium state. In
the nonintegrable regime the double commutator deviates from zero once the information
about the perturbation at the other end of the chain arrived and it quickly saturates at
a nonzero value that only slightly varies for the different hz. In the quadratic model at
hz = 0 there is a strong signal on the “light cone”, which decays afterwards. It is, however,
not possible to tell unambiguously from these data whether it approaches zero, because the
decay is interrupted by a finite size echo. Note that compared to the nonequilibrium state

149



the double commutators in the thermal state of the nonintegrable system show only much
weaker traces of finite-size echoes.

In this analysis of the dynamics of double commutators [ÔA(t), [ÔA(t), ÔB]] involving
operators ÔA/B with support on spatially separate regions A and B the focus was on the
behavior at late times. In the following section it will be demonstrated for a semiclassical
model that the double commutator as it occurs in the echo dynamics (4.13) is at short times
sensitive to the butterfly effect.

4.6 Semiclassical echo dynamics and Lyapunov expo-

nents in the Sachdev-Ye-Kitaev model

For systems in the semiclassical limit quantum dynamics can be treated with good accuracy
in a phase space approach. Wigner-Weyl quantization provides a systematic prescription
to construct the phase space for a given quantum model and the resulting equations of
motion can be solved in the Truncated Wigner Approximation (TWA); see Section 4.6.1.
As the result is a generic classical Hamiltonian system one can expect that the dynamics
intrinsically exhibit an exponential sensitivity to small perturbations. In the following it will
be investigated how this affects the echo dynamics.

With regards to chaos the Sachdev-Ye-Kitaev model (SYK model) is a particularly inter-
esting quantum system. It is defined by the Hamiltonian

ĤSYK =
1

(2N)3/2

N∑

i,j,k,l=1

Jijklĉ
†
i ĉ
†
j ĉkĉl , (4.25)

where Jijkl is a complex Gaussian random variable with zero mean and variance σ2 = 〈|Jijkl|2〉;
the ĉ†i and ĉi are fermionic creation and annihilation operators. The SYK model has a
number of interesting properties (Kitaev, 2015; Maldacena and Stanford, 2016). First of all,
it is exactly solvable in the limit of large N despite the fact that it is strongly interacting
(the only energy scale is the standard deviation of the couplings, σ). Moreover, it exhibits
approximate conformal symmetry at low energies indicating the existence of a holographic
dual. The SYK model is maximally chaotic in the sense that OTOCs grow exponentially
with a rate saturating the bound λL = 2π/β, which was argued to constitute the maximal
possible Lyapunov exponent in gravity (Maldacena et al., 2016).

A study of the relaxation dynamics of the SYK model using the TWA found very good
agreement of the phase space approach with exact quantum dynamics, indicating that the
dynamics of the SYK model is essentially classical (Davidson et al., 2017). Note, however,
that in another work it was concluded that the effective classical system does not correctly
capture the full quantum dynamics (Scaffidi and Altman, 2017).

The results presented in the following were obtained in a collaboration with
A. Polkovnikov1, S. Kehrein, D. Sels1, and S. Davidson1.

1 Condensed Matter Theory Group, Boston University.
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4.6.1 Phase space dynamics with Truncated Wigner Approxima-
tion

In order to formulate quantum dynamics in phase space it is required to find a consistent
mapping of operators to phase space variables. A possible generic prescription to obtain
a phase space formulation is the so-called Wigner-Weyl transformation. For simplicity we
will first consider position and momentum operators q̂ and p̂, which act on a Hilbert space
spanned by position eigenstates |q〉 and fulfil the canonical commutation relation [p̂, q̂] = i~.
For any operator Ω̂(q̂, p̂) the Weyl symbol is defined as

ΩW (q, p) =
(
Ω̂(q̂, p̂)

)
W

=

∫
dξ 〈q − ξ/2|Ω̂(q̂, p̂)|q + ξ/2〉 eipξ/~ . (4.26)

This transformation is constructed to yield the correct classical limit, ΩW (q, p)
~→0−→ Ω(q, p),

and to satisfy the canonical commutation relation,
(
p̂q̂
)
W
−
(
q̂p̂
)
W

= i~ . (4.27)

Furthermore, introducing the Wigner function as the Weyl symbol of the density matrix,

W (q, p) =
(
ρ̂
)
W

(4.28)

quantum mechanical expectation values are given by

〈Ω̂〉 = tr
(
ρ̂Ω̂
)

=

∫
dpdq

2π
W (q, p)ΩW (q, p) (4.29)

(Wigner, 1932). In this form the quantum expectation value expressed in the phase space
formulation resembles an expectation value of ΩW (q, p) with probability function W (q, p).
However, as it is not necessarily positive, the Wigner function is in general not a probability
density.

In order to capture the noncommutativity of operator multiplication the Moyal prod-
uct (Groenewold, 1946) is introduced, which gives the Weyl symbol of the product of two
operators Ω̂1 and Ω̂2,

(
Ω̂1Ω̂2

)
W

=
(
Ω̂1

)
W

exp
(
− i~

2
ΛP

)(
Ω̂2

)
W
, (4.30)

where

ΛP =

←−
∂

∂p

∂

∂q
−
←−
∂

∂q

∂

∂p
(4.31)

is the Poisson operator with the arrows indicating that the corresponding derivative acts to
the left. Based on this one can introduce the Moyal bracket, which is the Weyl symbol of the
commutator,

−i~
{(

Ω̂1

)
W
,
(
Ω̂2

)
W

}
M

=
([

Ω̂1, Ω̂2

])
W

= −2i
(
Ω̂1

)
W

sin
(~

2
ΛP

)(
Ω̂2

)
W
. (4.32)
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An alternative way to obtain the Weyl symbol of an operator Ω̂(q̂, p̂) is to use Bopp
operators (Bopp, 1956)

q̂ = q +
i~
2

∂

∂p
, p̂ = p− i~

2

∂

∂q
(4.33)

which yield the Weyl symbol via

ΩW (q, p) = Ω
(
q +

i~
2

∂

∂p
, p− i~

2

∂

∂q

)
1 . (4.34)

Using the Moyal bracket the von Neumann equation (1.2) for time evolution of the density
matrix with a Hamiltonian Ĥ is readily translated to an equation of motion for the Wigner
function,

d

dt
W =

{(
Ĥ
)
W
,W
}
M
, (4.35)

and similarly the Heisenberg equation of motion for arbitrary operators translates to

d

dt
ΩW =

{(
Ĥ
)
W
,ΩW

}
M
. (4.36)

In general these equations of motion are difficult to solve, because they contain arbitrarily
high derivatives. However, if ~ can be considered a small parameter, i.e., in the semiclassical
limit, the Moyal bracket can be truncated at leading order in ~, which means that it reduces
to the Poisson bracket

{A,B}P = AΛPB (4.37)

known from classical mechanics. This constitutes the Truncated Wigner Approximation. The
resulting dynamics respects a Liouville theorem, which means that time evolved expectation
values can be computed by the method of characteristics from individual trajectories in phase
space,

〈Ô〉 ≈ 〈Ô〉TWA =

∫
dpdq

2π
W (q0, p0)OW

(
q(t), p(t)

)
, (4.38)

where W (q0, p0) is the Wigner function of the initial density matrix and q(t) and p(t) are
time-evolved phase space coordinates with q(0) = q0 and p(0) = p0. The numerical results
presented later in this section were obtained by integrating the TWA equations using an
adaptive Dormand-Prince integrator (Dormand and Prince, 1980) with initial conditions
sampled from the Wigner function.

So far we discussed the phase space approach in coordinate-momentum representation. An
analogous construction is possible with slight modifications in a coherent state representation
based on bosonic creation and annihilation operators (Polkovnikov, 2010). In that case
the effective ~ is the inverse average occupation 1/N indicating that TWA is good at high
densities. A recent development is the formulation of phase space dynamics for fermionic
systems (Davidson et al., 2017). In the following section we will make use of this technique
to compute echo dynamics of the SYK model.
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4.6.2 Semiclassical dynamics of the Sachdev-Ye-Kitaev model

Other than the position and momentum operators and the bosonic operators discussed in the
previous section, fermionic operators obey canonical anti -commutation relations. Therefore,
a Wigner-Weyl transformation of the basic operators does not yield a suited phase space
representation in this case. However, the fermionic TWA (fTWA) developed by (Davidson
et al., 2017) relies on the fact that any physical observable can only be made up from bilinears
of the fermionic operators, which obey specific commutation relations. It is thus possible
(and sufficient) to find a phase space formulation of the dynamics of these bilinears. In the
following the fTWA formalism is briefly sketched; the reader is referred to (Davidson et al.,
2017) and (Davidson, 2017) for further details.

Given a set of fermionic operators ĉi, ĉ
†
i with the properties

{
ĉi, ĉ

†
j

}
= ĉiĉ

†
j + ĉ†j ĉi = δi,j ,

{
ĉi, ĉj

}
=
{
ĉ†i , ĉ

†
j

}
= 0 (4.39)

the different possible bilinears are

Êαβ = ĉαĉβ , Êαβ = ĉ†αĉ
†
β , Êα

β =
1

2

(
ĉ†αĉβ − ĉβ ĉ†α

)
. (4.40)

These operators obey the commutation relations of so(2N), i.e., for a suited relabelling
{Êαβ, Êαβ, Êα

β } → {X̂a} one finds [X̂a, X̂b] = ifabcX̂c with fabc the structure constants of
so(2N) (Fukutome, 1981). Then, generalizing the Moyal product by replacing the Poisson
operator (4.31) with

Λc = i

←−
∂

∂
(
X̂a

)
W

(
X̂c

)
W
fabc

∂

∂
(
X̂b

)
W

(4.41)

a suited phase space representation is obtained. Here and in the following doubly occurring
indices are summed over. Moreover, we denote the Weyl symbols as

ταβ =
(
Êαβ

)
W

= −
(
Êαβ

)∗
W
, ραβ =

(
Êα
β

)
W
. (4.42)

In terms of these variables the fTWA equations for the dynamics driven by a Hamiltonian
with Weyl symbol H =

(
Ĥ
)
W

are

i
d

dt
ραβ =

(
− ∂H
∂ργα

ργβ +
∂H
∂τγα

τβγ −
∂H
∂ταγ

τβγ

)
−
(
α↔ β

)∗
. (4.43)

i
d

dt
ταβ =

(
∂H
∂ραγ

τγβ +
∂H
∂τ ∗γα

ργβ −
∂H
∂τ ∗αγ

τγβ

)
−
(
α↔ β

)
, (4.44)

where in both equations the second bracket on the right hand side is the same as the first,
but with α and β exchanged.

A suited Hamilton function HSYK for the SYK model (4.25) was derived by (Davidson
et al., 2017). Note that the quartic form of the interaction can be expressed by different
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Fig. 4.11: Comparison of TWA results with exact dynamics. For an SYK model with N = 20
fermionic modes at quarter filling the TWA is in good agreement with the exact dynamics for the
occupation imbalance M(t) (left panel) and the individual occupations ni(t) (right panel; dashed
lines are exact). The inset shows the average squared deviation of the TWA results for the individual
occupations from the exact results as a function of N . The decay compatible with N−4 indicates
that TWA becomes exact for N →∞.

choices of the fermion bilinears (4.40) resulting in different Hamilton functions. It turns
out that choosing the “superconducting” variables τ yields accurate results, whereas the
Hamilton function in terms of ρ-variables does not (Davidson et al., 2017; Davidson, 2017).
The Hamilton function obtained by combining the fermionic operators to pairing operators
and calculating the Weyl symbol is

HSYK =
1

(2N)3/2

∑

ijkl

Jijkl

(
τ ∗jiτkl +

1

2
ρjkδil −

1

2
ρjlδik +

1

2
ρilδkj −

1

2
ρikδjl

)
. (4.45)

In order to compute dynamics the Wigner function of the initial density matrix must
be known. However, the exact Wigner function is often hard to treat numerically, because
it is not necessarily positive. In the following we consider simple initial states that are
characterized by a single particle density matrix ρ̂0, which is diagonal, (ρ̂0)αβ = δαβ(nα−1/2),
with the orbital occupation numbers nα = 〈c†αcα〉. In that case the Wigner function is well
approximated by a multivariate Gaussian distribution fixed by the first and second moments
(Davidson, 2017)

〈ραβ〉 = δαβ

(
nα −

1

2

)
,

〈ταβ〉 = 0 ,

〈ρ∗αβρµν〉c =
1

2
δαµδβν

(
nα + nβ − 2nαnβ

)
,

〈τ ∗αβτµν〉c =
1

2

(
δαµδβν − δβµδαν

)(
1 + 2nαnβ − nα − nβ

)
. (4.46)
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Initial states that can be described in this form and which are suited to study echo dynamics
are those, in which a part of the orbitals is occupied, while the rest is empty, i.e.,

nα =

{
1, α ≤ m

0, else
. (4.47)

An observable that distinguishes these initial states is the occupation imbalance

M̂ =
1

N

N∑

l=1

nl
(
2ĉ†l ĉl − 1

)
(4.48)

with Weyl symbol

(
M̂
)
W

=
2

N

N∑

l=1

nlρll . (4.49)

Fig. 4.11 displays results for the dynamics in an SYK model with N = 20 fermionic
modes, of which initially m = 5 are occupied and the rest is empty. Under time evolution the
system relaxes to equal occupation of all modes and the TWA results are in good agreement
with the exact results. In order to quantitatively assess the accuracy the inset in the right
panel shows the average of the integrated deviations

∆n2
i =

1

T

∫ T

0

dt
(
nTWA
i (t)− nexact

i (t)
)2
. (4.50)

A decay of the integrated deviations compatible with N−4 is observed indicating that TWA
becomes exact in the limit N →∞.

Chaos in individual TWA trajectories

The SYK Hamilton function (4.45) yields a set of nonlinear TWA equations of motion. Said
nonlinearity leads to an exponential sensitivity of individual trajectories to small perturba-
tions. This behavior becomes evident when studying derivatives of the form

∂xi(t)

∂xj(0)
= lim

∆→0

xi(t)− x∆
i (t)

∆
, (4.51)

where the xi ∈ {ταβ, ργδ} denote some coordinate and xi(t) is computed from the initial
condition xi(0), whereas x∆

i is computed from the initial condition x∆
i (0) = xi(0) + δij∆.

Fig. 4.12(a-c) displays numerical results for different choices of xi and xj, where the
derivative (4.51) was approximated by a difference quotient. As a function of time the finite

difference approximations of ∂xi(t)
∂xj(0)

show exponential growth over a period that is extended

as ∆ is reduced. The growth rate is very similar for all choices of coordinates.
With echo dynamics and effective time reversal in mind one can define ∂xi(0)

∂xj(t)
in analogy

to Eq. (4.51), where the variation ∆ is introduced at time t before the TWA equations are
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Fig. 4.12: Butterfly effect in individual TWA trajectories. The divergence is quantified by ∂xi(t1)
∂xj(t2)

as defined in Eq. (4.51). (a-c) Divergence of trajectories perturbed at time t = 0. (d-f) Divergence
of trajectories perturbed at time t. The black line indicates an exponential ∝ e0.4t.

integrated backwards to t = 0. As shown in Fig. 4.12(d-f) the results under these conditions
are very similar to the outcomes when perturbing at t = 0. This indicates that the growth
rate of the divergence of trajectories is roughly constant on the energy hypersurface that is
sampled, when the perturbation is introduced at varying times t.

In conclusion, we find that both ∂xi(t)
∂xj(0)

and ∂xi(0)
∂xj(t)

show clear signatures of chaotic behavior

in the semiclassical TWA dynamics of the SYK model.

Echo dynamics

We will now turn to the echo protocol defined in Eq. (4.13). Note that in the following anal-
ysis, other than in Section 4.4, we do not include a projection on the orthogonal component
of the perturbed state. Since we nevertheless consider the SYK model with finite N this
means that there will be a contribution to the echo peak that never decays. Moreover, we
will in this case address the deviation from a perfect echo at short times. Hence, choosing the
observable M̂ given in Eq. (4.48) and “classical” initial states with m occupied and N −m
empty sites as given by Eq. (4.47) the quantity of interest is

∆M(τ) = 〈ψ0|M̂ |ψ0〉 − 〈ψ0|ÛE(τ)†M̂ÛE(τ)|ψ0〉 . (4.52)
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As perturbation Hamiltonian we choose

Ĥp =
∑

l

Jl
(
c†l cl+1 + h.c.

)
, (4.53)

where the Jl are real Gaussian random couplings with standard deviation J =
√
〈J2

l 〉. The
corresponding Weyl symbol is

(
Ĥp

)
W

= 2
∑

l

Jlρl,l+1 (4.54)

Note that this is a quadratic Hamiltonian for which TWA is exact because the higher deriva-
tives of the Moyal bracket vanish identically.

The first observation is that up to very long times only the second order contribution in
Eq. (4.13), i.e., the double commutator [Ĥp(τ), [Ĥp(τ), M̂ ]], plays a role for the echo. This is
demonstrated by the results in Fig. 4.13, which were obtained by exact simulation of the echo
dynamics of an SYK model with N = 16.1 The plot shows ∆M(t) for different times τ as a
function of the perturbation strength δt. The dots are the exact data. The prefactor of the
dashed lines is determined by the double commutator, which was also obtained from the exact
simulation. They perfectly coincide with the observed echoes. Only at large perturbations
δt and for long waiting times τ deviations become evident.

Let us now turn to the semiclassical echo dynamics. Fig. 4.14 shows the full time evolution
with imperfect time reversal at different times obtained with TWA and the exact dynamics
as comparison. It is evident the height of the exact echo soon saturates at a nonvanishing
value, because the perturbed state is not orthogonal to the state before the perturbation
(cf. Section 4.4). In the TWA simulation, however, the echo decays to zero. This can be

1 Here and in the following we consider a single realization of the SYK model, because we observe that
the variation of the results with different realizations is only marginal indicating that the large number of
random couplings is already sufficient for self-averaging to a large extent.
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understood in the sense that the existence of a component in the perturbed state that leads
to a perfect echo, because it is parallel to the unperturbed state, is a genuine quantum
property. The TWA does not capture this; hence, the echo decays to zero also for small N .
With increasing N the persisting echo peak height in the exact dynamics will vanish and,
moreover, the accuracy of the TWA will improve. Therefore, we assume that at large N
TWA gives accurate results for the echo dynamics.

The plot in Fig. 4.15 displays TWA re-

∆
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∆
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)
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Fig. 4.15: Divergence from the perfect echo
∆M(τ) obtained from TWA in comparison with
exact dynamics. For small perturbation δt there
is a pronounced regime of exponential growth
between initial short time dynamics and satura-
tion at late times.
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Fig. 4.16: TWA results for the divergence
∆M(τ) for different N and Jδt = 10−2.

sults at quarter filling for ∆M(τ) with per-
turbation strength Jδt = 10−1 in compari-
son with exact dynamics. Both agree well
at short times before the exact ∆M(τ) sat-
urates due to the persisting echo. After the
short time dynamics the TWA result crosses
over to an exponential increase with a growth
rate λ ≈ 1.24σ. Also the TWA data saturate,
because ∆M(τ)

τ→∞−→ 3/4. The regime of ex-
ponential growth is, however, extended when
the perturbation δt is reduced, as is shown for
Jδt = 10−2. This finding hints at an impor-
tant feature in the small perturbation expan-
sion of the echo operator (4.13): The exponen-
tial divergence from the perfect echo can only
occur over an extended period of time, be-
cause the perturbation strength as a small pa-
rameter suppresses the corresponding terms
sufficiently to allow growth over several orders
of magnitude. In large-N theories, where Lya-
punov exponents were identified in OTOCs, a
similar role is played by 1/N as small param-
eter (Maldacena and Stanford, 2016).

Finally, when computing the dynamics
with TWA much larger system sizes are acces-
sible than with exact simulations. In Fig. 4.16
∆M(τ) computed with perturbation strength
Jδt = 0.01 is plotted for N = 20 and N = 40.
The result indicates that the Lyapunov expo-
nent occurring in the echo dynamics is largely
independent of the system size N . The short
time dynamics is, however, affected by varying
N , which leads to the fact that both results
do not coincide despite normalization.

In conclusion, we find that in the echo dynamics of the SYK model the deviation from
a perfect echo is governed by the double commutator [Ĥp(τ), [Ĥp(τ), M̂ ]]. The perturbed
echo diverges exponentially as a function of the waiting time τ and the regime of exponential
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growth is extended as the perturbation strength δt is reduced. In analogy to classical chaos
the corresponding growth rate can be interpreted as a Lyapunov exponent.

These results and those found in Section 4.5 suggest that double commutators motivated
by echo dynamics might be a suited measure that is sensitive to a possible quantum butterfly
effect. These objects might be a convenient probe, because other than OTOCs, which are hard
to measure experimentally, the double commutators occur in comparably simple protocols
for imperfect effective time reversal. In view of a more profound understanding, a series
of ensuing questions emerges, which should be addressed in future research. For example,
it would be desirable to identify Lyapunov exponents and possible bounds on which in the
double commutators by analytical means.
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Chapter 5

Summary and outlook

Within this thesis different aspects of the nonequilibrium dynamics of closed quantum many-
body systems have been studied. Different kinds of dynamical criticality were investigated
and the questions of effective time reversal, quantum butterfly effect, and irreversibility were
addressed. Moreover, the possibility to encode quantum dynamics in classical networks was
explored in a perturbative approach.

In Chapter 2 two different types of nonequilibrium phase transitions have been studied.
In Section 2.1 the quench dynamics of the Kitaev honeycomb model has been analyzed
regarding the occurrence of dynamical quantum phase transitions and their characteristics.
In the analytically solvable model various aspects of DQPTs were investigated. As a central
result it was found that in this two-dimensional model the distribution of Fisher zeros in the
complex time plane characteristically differs from one-dimensional systems in that the zeros
form areas instead of lines. In a formal analogy the density of Fisher zeros corresponds to
a density of electrical charge meaning that the nonanalytic behavior of the dynamical free
energy density at the boundaries of the domains of zeros can be deduced in the same way as
the nonanalyticites of the electric field at the boundary of a charge distribution. This analysis
yields that in two dimensions DQPTs occur as discontinuities of the second derivative of the
dynamical free energy density.

In Sections 2.2.1 and 2.2.2 the asymptotic state of Chern insulators at long times after
quenching a parameter that drives topological transitions in the ground state was studied. In
this setting a topologically driven nonequilibrium phase transition can be identified, which is
signaled by a nonanalyticity of the Hall conductance as function of the quench parameter. It
was demonstrated that irrespective of further microscopic details for gapped initial states any
system with Dirac-like gap closing points exhibits a universal logarithmic singularity at the
transition. If the initial state is critical, the transition occurs as a jump of definite height. The
analysis in Section 2.2.2 showed that this behavior pertains in Floquet topological insulators,
which are candidates for the experimental observation of the nonequilibrium transition. So
far, the study of the quenched Chern insulators was undertaken in an ideal limit of a clean
noninteracting system allowing for the measurement of linear response at infinite times after
the quench. In future research it should be investigated whether and how the transition can
be identified when relaxing these conditions.

Chapter 3 dealt with the possibility to represent quantum many-body states as networks of
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classical degrees of freedom. In Section 3.2 a new approach was introduced to perturbatively
derive classical networks that encode a time-evolved wave function. Using this construction
the transient dynamics of transverse-field Ising models in one, two, and three dimensions
was computed including local observables, entanglement production, and Loschmidt ampli-
tudes. This demonstrates the potential capability of this approach to address dynamics in
intermediate dimensions, which is hard to do with existing methods. The perturbatively
derived network structures allow for a precise encoding of the wave function at short times.
In the future it should be investigated whether these structures constitute a good ansatz for
variational time evolution.

The last part of this thesis, Chapter 4, was about the question of irreversibility. Starting
from the approach that any useful definition of irreversibility should be based on experi-
mentally observable quantities the decay of observable echoes under imperfect effective time
reversal was studied in different settings. A key finding presented in Section 4.4 is that echoes
in generic many-body systems decay exponentially with a rate that is largely independent of
the magnitude of the introduced imperfection. This leads to the conclusion that the dynam-
ics is irreversible for all practical purposes, because any effort to enhance the precision of the
induced time reversal is ultimately futile. This behavior of generic systems is contrasted by
algebraic decay of the echoes, which was found in the analysis of an integrable spin chain in
Section 4.2.

The results of further investigations presented in Sections 4.5 and 4.6 indicate that out-of-
time-order double commutators, which occur naturally when considering imperfect effective
time reversal, might constitute an alternative probe of the quantum butterfly effect and
scrambling in addition to OTOCs. A convenient property of these objects is that they are
accessible in experiment with comparatively simple effective time reversal protocols.

The aim of further research will be to understand the origin of the perturbation-independent
decay of echoes under imperfect effective time reversal in more detail, including the behavior
of out-of-time-order double commutators. One possible route could be to expand the in-
vestigation of relations to out-of-time-order correlators and scrambling considering quantum
lattice models in the spirit of Section 4.5. A way to gain more insights into connections to a
genuine butterfly effect might be to extend the studies of semiclassical echo dynamics as in
Section 4.6 and to identify Lyapunov exponents in out-of-time-order double commutators by
analytical means in suited models.
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M. Schiró and M. Fabrizio. Time-Dependent Mean Field Theory for Quench Dynamics
in Correlated Electron Systems. Phys. Rev. Lett. 105, 076401 (2010). doi:10.1103/
PhysRevLett.105.076401.
URL https://link.aps.org/doi/10.1103/PhysRevLett.105.076401

M. Schmitt and S. Kehrein. Dynamical quantum phase transitions in the Kitaev honeycomb
model. Phys. Rev. B 92, 075114 (2015). doi:10.1103/PhysRevB.92.075114.
URL https://link.aps.org/doi/10.1103/PhysRevB.92.075114

M. Schmitt and S. Kehrein. Effective time reversal and echo dynamics in the transverse field
Ising model. EPL 115(5), 50001 (2016).
URL http://iopscience.iop.org/article/10.1209/0295-5075/115/50001/meta;

jsessionid=D18A178E31B34BA243B2502709197F2D.ip-10-40-2-120

M. Schmitt and P. Wang. Universal nonanalytic behavior of the nonequilibrium Hall
conductance in Floquet topological insulators. Phys. Rev. B 96, 054306 (2017). doi:
10.1103/PhysRevB.96.054306.
URL https://link.aps.org/doi/10.1103/PhysRevB.96.054306

H. Schneider and H. Schmiedel. Negative time development of a nuclear spin system. Physics
Letters A 30(5), 298 (1969). doi:https://doi.org/10.1016/0375-9601(69)91005-6.
URL http://www.sciencedirect.com/science/article/pii/0375960169910056
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