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Abstract
Many parallel applications suffer from latent performance limitations that may prevent them
from scaling to larger machine sizes or solving larger problems. Often, such performance bugs
manifest themselves only when the code is put into production, a point where remediation can
be difficult. Manually creating analytical performance models provides insights into optimiza-
tion opportunities but is extremely costly if done for applications of realistic size. The effort
limits application developers to only attempt it at most for a few selected kernels, running the
risk of missing harmful bottlenecks. Furthermore, tuning large applications requires a clever
exploration of the design and configuration space. Especially on supercomputers, this space is
so large that its exhaustive traversal via performance experiments becomes too expensive, if not
impossible. If we have to consider multiple performance-relevant parameters and their possible
interactions at the same time, a common requirement in many situations, this task becomes
even more complex.

The initial contribution of this thesis is a method to substantially improve both coverage
and speed of performance modeling and analysis. Generating an empirical performance model
automatically for each part of a parallel program with respect to the variation of a relevant
parameter such as process count or problem size, it becomes possible to easily identify those
parts that will reduce performance at larger core counts or when solving a bigger problem.

In the next step, we extended the approach with a method capable of modeling any combina-
tion of multiple execution parameters simultaneously, provided sufficient performance measure-
ments are available. Multi-parameter modeling has so far been outside the reach of automatic
methods due to the exponential growth of the model search space. Specialized heuristics devel-
oped as part of this work traverse the search space rapidly and generate insightful performance
models that enable a wide range of uses from performance predictions for balanced machine
design to performance tuning.

Finally we present a method that employs automated performance modeling to quickly pre-
dict application requirements for varying scales and problem sizes. Following this approach,
it is possible to determine future requirements of major scientific applications, derive an opti-
mization strategy, and illustrate system design tradeoffs in the light of their requirements. This
supports the co-design process by informing hardware acquisition decisions with the actual
needs of the software.

The methods described in this work are implemented in the performance analysis tool Extra-P.
Extra-P has been released as open source and has been successfully used to gain insight into the
performance of numerous scientific applications from a large range of fields. Since its release,
Extra-P has an impact on the HPC community. Developers at both universities and research
centers have used Extra-P to better understand the performance of their research codes.

Tutorials on the use of Extra-P have been offered at international conferences such as Eu-
roMPI and Supercomputing further demonstrating the effectiveness of this approach in making
performance modeling available to developers without requiring expert knowledge of the topic.

This work simplifies and streamlines the performance modeling process, offering insights
into application behavior quickly and automatically and allowing the developer to focus on
transforming these insights into tangible performance improvements.
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Zusammenfassung
Viele parallele Anwendungen leiden unter latenten Leistungsbeschränkungen, die sie daran
hindern können, auf größere Maschinen zu skalieren oder größere Probleme zu lösen. Oft
manifestieren sich solche Leistungsfehler nur, wenn der Code in Produktion verwendet wird,
ein Punkt, wo die Korrektur schwierig sein kann. Manuelles Erstellen von analytischen Leis-
tungsmodellen bietet Einblicke in Optimierungsmöglichkeiten, ist aber äußerst kostspielig,
wenn es für Anwendungen realistischer Größe angewandt wird. Die Bemühungen beschränken
Anwendungsentwickler es nur für ein paar ausgewählte Programmteile zu versuchen, wobei das
Risiko besteht, schädliche Engpässe zu übersehen. Darüber hinaus erfordert das Tuning großer
Anwendungen eine geschickte Erforschung des Design- und Konfigurationsraums. Vor allem
auf Supercomputern ist dieser Raum so groß, dass seine umfangreiche Durchquerung über
Performance-Experimente zu teuer wird, wenn nicht unmöglich. Wenn wir in vielen Situatio-
nen mehrere leistungsrelevante Parameter und deren mögliche Wechselwirkungen gleichzeitig
berücksichtigen müssen, wird diese Aufgabe noch komplexer.

Der erste Beitrag dieser Arbeit ist eine Methode, um sowohl die Abdeckung als auch die
Geschwindigkeit der Leistungsmodellierung und -analyse wesentlich zu verbessern. Durch die
Generierung eines empirischen Leistungsmodells für jeden Teil eines parallelen Programms in
Bezug auf die Variation eines relevanten Parameters wie Prozesszählung oder Problemgröße
wird es möglich, die Teile leicht zu identifizieren, die die Leistung bei größeren Kernzahlen
oder bei der Lösung von größeren Problemen beschränken.

Im nächsten Schritt haben wir den Ansatz mit einer Methode erweitert, die in der Lage ist,
jede Kombination mehrerer Ausführungsparameter gleichzeitig zu modellieren sofern genügend
Leistungsmessungen vorliegen. Die Multi-Parameter-Modellierung ist bisher aufgrund des ex-
ponentiellen Wachstums des Modellsuchraums außerhalb der Reichweite von automatischen
Methoden. Spezielle Heuristiken, die als Teil dieser Arbeit entwickelt wurden, durchqueren den
Suchraum schnell und erzeugen aufschlussreiche Leistungsmodelle, die eine breite Palette von
Einsatzmöglichkeiten von Leistungsvorhersagen für ausgewogenes Maschinendesign bis hin zur
Performance-Optimierung ermöglichen.

Schließlich stellen wir eine Methode vor, die eine automatisierte Leistungsmodellierung
einsetzt, um die Anwendungsanforderungen für unterschiedliche Skalen und Problem-
größen schnell vorherzusagen. Nach diesem Ansatz ist es möglich, zukünftige Anforderun-
gen von großen wissenschaftlichen Anwendungen zu ermitteln, eine Optimierungsstrate-
gie abzuleiten und Systemdesign-Kompromisse im Lichte ihrer Anforderungen zu veran-
schaulichen. Dies unterstützt den Co-Design-Prozess durch das Informieren von Hardware-
Akquisitionsentscheidungen mit den tatsächlichen Bedürfnissen der Software.

Die in dieser Arbeit beschriebenen Methoden wurden im Leistungsanalyse-Tool Extra-P im-
plementiert. Extra-P wurde als Open Source freigegeben und wurde erfolgreich eingesetzt,
um Einblicke in die Leistungsfähigkeit zahlreicher wissenschaftlicher Anwendungen aus einer
Vielzahl von Bereichen zu gewinnen. Seit seiner Veröffentlichung hat Extra-P einen Einfluss auf
die HPC-Community. Entwickler an sowohl Universitäten und Forschungszentren haben Extra-P
verwendet, um die Leistung ihrer Forschungscodes besser zu verstehen.

Tutorials über die Verwendung von Extra-P wurden auf internationalen Konferenzen wie Eu-
roMPI und Supercomputing angeboten, die die Wirksamkeit dieses Ansatzes für Entwickler auch
ohne Annahme von Fachwissen weiter demonstrieren.
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Diese Arbeit vereinfacht und optimiert den Performance-Modellierungsprozess und bietet
schnell und automatisch Einblicke in das Anwendungsverhalten und ermöglicht es dem En-
twickler, sich auf die Umwandlung dieser Erkenntnisse in greifbare Leistungsverbesserungen zu
konzentrieren.
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1 Introduction
This chapter provides the motivation for this thesis, presents its objectives, and outlines its

contributions. This chapter starts by sketching the limitations of performance analysis that the

method presented in this thesis eliminates and which define the objectives of this method. The

realization of the objectives through the main contributions is then briefly described.

1.1 High-Performance Computing

Computers have revolutionized the world in the last decades. From communication and enter-

tainment to industry and finance there is no field which was not revolutionized by computers

and their explosive development. At the forefront of this tidal wave of innovation, science and

engineering massively profit from these developments. Computers can solve problems which

are too complex to manually attempt and perform virtual experiments which are too expensive

or even too dangerous to carry out in reality. Simulations have joined theory and experiment as

a third pillar supporting research and engineering.

The drive towards performance and efficiency means that designs for planes, cars, engines

are first simulated on computers before a prototype is even built. The myriad applications of

computation fluid dynamics, or CFD, are proof of the usefulness of computer-aided design.

From pharmaceutical drug design to theoretical solid state physics, many fields of science use

computer simulations as a valuable tool in the research process.

The quality and therefore usefulness of simulations depends on their level of detail. The more

detail a simulation takes into account, the more resources it requires. There are, and probably

always will be, questions that require computational speed or memory which a single desktop

machine cannot provide. Using parallel processing techniques and vast parallel architectures,

High-Performance Computing (HPC) is a research tool used to answer such questions.

The parallel nature of HPC applications combined with the complex distributed hardware

systems make achieving optimal performance a very difficult challenge. Making sure that the

available resources are used in a purposeful way is all the more important when considering

the energy costs of running supercomputers. The most powerful supercomputers today use

between 10 and 20 Megawatts, which means they cost over 10 million €per year just in power

bills. Therefore, optimizing HPC applications is paramount to minimizing running costs.

Moore’s Law observes that the number of transistors in an integrated circuit doubles roughly

every eighteen months. However, due to physical limitations in the last years keeping up with

Moore’s Law meant that parallelism was required. From multi-core architectures to many-core

systems, even mobile and embedded devices turn to parallelism to provide increased computa-

tional power. With parallelism on the rise and multi- and manycore systems becoming the norm

in commodity and even personal computing, the lessons learned in HPC are necessary to the

wider field of computer science to ensure adequate resource utilization of modern architectures.
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At the same time, ever-growing application complexity across all domains, including but not

limited to theoretical physics, fluid dynamics, or climate research requires a continuous focus

on performance to productively use the large-scale machines that are being procured. However,

designing such large applications is a complex task demanding foresight since they require

large time investments in development as well as verification and are therefore meant to be

used for decades. Thus, it is important that applications are efficient and potential bottlenecks

are identified early in their design as well as throughout their whole life cycle.

1.2 Scalability

A core issue of parallel computing is developing algorithms and applications which scale well

as the parallel architectures they run on evolve. This means algorithms must efficiently and

meaningfully utilize the resources of these systems to solve ever larger problems, solve problems

faster, or even both at the same time. Two types of scalability are often encountered in HPC:

strong and weak scaling.

Strong scaling is defined as solving a given problem faster by increasing the number of pro-

cesses assigned to it. Amdahl’s law defines the maximum theoretical speedup of a program

when using strong scaling, by linking this maximum to the degree to which a program can be

parallelized as shown in Equation 1.1. The efficiency of strong scaling is limited: the more

processes are used, the faster the actual problem is solved, but any overheads will take an

increasingly larger percentage of the total run-time.

speedup =
1

f ract ionserial +
f ract ionparal lel

processes

(1.1)

Weak scaling is defined as solving a larger problem with an increasing number of processes,

such that the problem assigned to each process stays constant. This allows much larger process

numbers to be used efficiently as it is possible to improve efficiency by sufficiently increasing

the problem to be solved. While the concept of weak scaling is intuitive, making sure that

the problem assigned to each process stays constant is far from a trivial task: for any but the

simplest applications the amount of computation generated by an increasing problem size is

not necessarily in a linear relation to it. Decomposing a problem into smaller problems to be

handled by individual processes can also be difficult, and often incurs overheads. This is by no

means the only difficulty in scaling applications.

When considering both weak and strong scaling of codes to larger numbers of processors,

many HPC application developers face the situation that all of a sudden a part of the program

starts consuming an excessive amount of time. Unfortunately, discovering latent scalability

bottlenecks through experience is painful and expensive. Removing them requires not only

potentially numerous large-scale experiments to track them down, prolonged by the scalability

issue at hand, but often also major code surgery in the aftermath. All too often, this happens

at a moment when the manpower is needed elsewhere. This is especially true for applications

on the path to exascale, which have to address numerous technical challenges simultaneously,

ranging from heterogeneous computing to resilience. Since such problems usually emerge at a
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Figure 1.1: Performance projection overview [1].

later stage of the development process, dependencies between their source and the rest of the

code that have grown over time can make remediation even harder.

1.3 Performance analysis

Improving the execution time of an application or making sure available resources are used

efficiently is a very difficult task. Performance analysis is a wide term encompassing all methods

used to better understand the behavior of applications either theoretically or when executed on

particular systems. The goal of such an analysis is to identify any performance limitations that

either the application or the hardware system have. By focusing on these limitations, the effort

of hardware and software developers can be directed to where it will have the biggest impact.

For example, if a program has one process that creates and assigns tasks to other processes and

it cannot assign tasks as fast as the other processes solve them, improving the speed at which

tasks are solved, will do nothing to improve overall performance. Instead, the task creation and

assignment process should be parallelized.

Depending on how the performance analysis is performed we can classify the different ap-

proaches into experiment-based, simulations and analytical modeling. They each have advan-

tages and disadvantages due to the effects the number of parameters considered by the analysis

has on the results. The more parameters are considered, the more accurate is the result. How-

ever, the number of scenarios the result is applicable to is reduced. When fewer parameters are

considered, the error of the analysis often grows. This trade-off is displayed in Figure 1.1 and

is discussed in more detail by Hoefler et al. [1].

1.3.1 Experiments

A classic approach to performance analysis is for developers to simply run their application on

the target system — effectively using the code as a benchmark of its own performance or as a

measure of how well the application runs on a particular hardware system. Developers would

select one or multiple configurations considered representative for how their application would

be used in practice.

In this approach, application developers measure different performance metrics such as run-

time and then focus on improving the most resource-intensive parts of their codes. This

approach is often limited to discovering the low-hanging fruits with respect to optimization

potential and usually provides no guarantees as to how close the performance achieved is to
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the optimum on the chosen platform. When using benchmarking results to guide optimization,

developers often exhaust their budget and capacity without a clear performance expectation.

While providing the most accurate results, benchmarking also makes interpreting results dif-

ficult, and often yields little insight. Many details of the hardware architectures and how they

affect performance are unknown due to proprietary designs, making the task of separating the

effects on performance of the actual code from the effects of the hardware daunting or even im-

possible. For example, understanding how the network topology and hardware characteristics

interact with the MPI implementation and the actual code and its communication patterns is a

very difficult task [10].

Tools such as HPCToolkit [11],TAU [12], and Score-P [13] gather different metrics such as

execution time, number of floating point operations performed and many more while the ap-

plication is running. These measurements can be either analyzed in real time with tools such

as Periscope [14] or post-mortem, after the application has finished its run. The measurements

gathered at runtime can be either summarized in performance profiles, or each separate mea-

surement can be stored individually to create a trace of all events that occurred during a run

and their corresponding performance measurements along with their respective timestamps.

Traces offer much more information, but require more storage space and incur a much larger

overhead (if the gathered data must be written to disk) than creating performance profiles.

1.3.2 Simulations

A more abstract approach simulates program execution with different degrees of accuracy. This

allows the developer to understand and quantify the effect of the simulated architecture on

performance. The issue with this approach is that accurate simulations, such as cycle-accurate

CPU simulations or network simulations are multiple orders of magnitude slower than actually

executing the code, while fast simulations run the risk of not representing the real scenario

accurately enough to allow informed optimization decisions. Simulations provide vast amounts

of data that must be organized and interpreted correctly to yield the desired insights, further

complicating the task of obtaining useful results. Simulations can be used for example to per-

form from cycle-accurate analysis of codes [15, 16] or analyze network behavior with tools like

SimGrid [17], DIMEMAS [18], or PSINS [19].

1.3.3 Analytical modeling

Another way of identifying performance bottlenecks such as scalability issues is through analy-

tical performance modeling. In this approach, performance is defined through purely analytical

expressions. For example, an analytical scalability model expresses the execution time or other

resources needed to complete the program as a function of the number of processors. Unfor-

tunately, the laws according to which the resources needed by the code change as the number

of processors increases are often laborious to infer and may also vary significantly across indi-

vidual parts of complex modular programs. This is why analytical performance modeling — in

spite of its potential — is rarely used to predict the scaling behavior before problems manifest
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themselves. As a consequence, this technique is still confined to a small community of experts.

The results of this type of analysis can be useful in understanding and improving the perfor-

mance of applications and systems however, as shown by the studies of Kerbyson et al. [20],

Mathis et al. [21], Hoefler et al.[22].

If today developers decide to model the scalability of their code, and many shy away from

the effort, they first apply both intuition and tests at smaller scales to identify so-called kernels,
which are those parts of the program that are expected to dominate its performance at larger

scales. This step is essential because modeling a full application with hundreds of modules

manually is not feasible. Then they apply reasoning in a time-consuming process to create

analytical models that describe the scaling behavior of their kernels more precisely. In a way,

they have to solve a chicken-and-egg problem: to find the right kernels, they require a pre-

existing notion of which parts of the program will dominate its behavior at scale — basically

a model of their performance. However, they do not have enough time to develop models for

more than a few pre-selected candidate kernels, inevitably exposing themselves to the danger

of overlooking unscalable code.

Not only which parts of an application are modeled, but also when in the development cycle

performance models are created affects the impact these models have. Access to performance

models in early stages of the development process is an indispensable prerequisite to ensure

early and sustained productivity. This in turn, requires the availability of continuously updated

performance models reflecting design updates and supporting the optimization process. Such

models allow problems in applications to be detected early and their severity to be determined

when the cost of eliminating the problems is still small. This is increasingly important since

mitigating such problems can often take several person years. Despite this, though, current

practice often looks different: since creating detailed analytical models is too time consuming,

such models are often only built on back-of-the-envelope calculations, rough estimates, simple

and manual spreadsheet calculations, or even only developer intuition.These approaches can

be misleading and their accuracy is hard to quantify, making their usefulness questionable.

Furthermore, to ensure that applications are performance-bug free, it is often not enough to

analyze any one aspect such as processor count or problem size. The effect that the one varying

parameter has on performance must be understood not only in a vacuum, but also in the context

of the variation of other relevant parameters, including algorithm variations, tuning parameters

such as tiling, or input characteristics. This means that any analysis must either make simplify-

ing assumptions potentially introducing inaccuracies in the results, or overcome the challenge

of modeling many parameters at once. Furthermore, considering too many parameters makes

resulting models hard to understand and limits their practical use.

An application of performance modeling is co-design. Given the tremendous cost of HPC

systems, their architectures must match the requirements of the applications they are supposed

to run on as precisely as possible [23]. Conversely, applications must be designed such that

building an appropriate system becomes feasible, motivating the idea of co-design 1. In this

process, a fundamental aspect of the application requirements are the rates at which the demand

for different resources grows as a code is scaled to a larger machine. However, if the anticipated

1 https://www.anl.gov/articles/co-design-centers-help-make-next-generation-exascale-computing-reality
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scale exceeds the size of available platforms this demand can no longer be measured. However,

creating analytical models to predict these requirements is often too laborious — especially

when the number and complexity of target applications is high.

1.4 Empirical performance modeling

Combining ideas from analytical modeling and experimentation, empirical performance mo-

deling attempts to derive analytical expressions that describe execution time or resource usage

from the analysis of experimental measurements. Instead of trying to mathematically model the

effect a parameter such as the number of processes has on the execution time of an application,

a set of measurements is gathered where the number of processes is varied from run to run.

These measurements would then be used to create the desired analytical performance models.

There are multiple challenges when attempting to create empirical performance models. Em-

pirical performance models must be able to represent large and complex parameter spaces, a

challenge analytical models also face. The number of measurements that can be performed is

often limited by the computational budget of the developers. The number of measurements

available is a bigger constraint the more parameters are considered, as the effect each has on

performance must be detected. The representation of performance models determines how

many behaviors they can express and therefore how useful and accurate they can be, but also

how the space of all possible performance models can be searched and how expensive the search

is. For example, any set of n measurement points can be trivially fitted by a polynomial of the

n-th. order, but such a representation is unlikely to accurately model the behavior observed.

Finding models which accurately explain measurements without including noise in the results

is difficult, and in some cases even quantifying the noise is not a trivial task. Finally, gathering

performance measurements and manually creating performance models from them is possible,

if time-consuming, when considering whole applications. However, if individual kernels are

considered the effort would certainly be untenable.

1.5 Contributions

We believe it is important that instead of modeling only a small subset of the program manually,

performance models are made available for each part of a program automatically, significantly

increasing not only the coverage of the performance check but also its speed. Using detailed

empirical measurements as a starting point, this approach would permit performance engineers

to focus on problematic kernels without sacrificing coverage.

The goal of this work has been to find an automated method capable of representing the

compounded effects of a set of one or more parameters on performance simultaneously and

overcome the challenges of empirical performance modeling. Furthermore, we introduce a

method of applying the modeling approach to support requirements engineering and co-design

processes. The performance modeling approach is implemented in the Extra-P 2 analysis frame-

work, providing a library for easy integration with other tools and applications, as well as a
2 http://www.scalasca.org/software/extra-p/download.html
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graphical user interface to visualize and explore resulting performance models. The specific

contributions are briefly described below:

Automatic performance modeling. The first step towards our goal is to generate perfor-

mance models for one parameter, such as process count or problem size using as few as five

measurements. To represent performance models in a flexible, but simple and intuitive way,

we introduce the Performance Model Normal Form (PMNF) [24]: We take advantage of the ob-

servation that the space of the function classes underlying performance models is usually small

enough to be searched by a computer program. We generate a search space out of possible com-

plexity classes represented by combinations of polynomial and logarithmic terms. For example,

the performance model describing execution time for sorting a set of n items as a function of

n could be represented as t(n) = 0.1 · n2 for an unoptimized implementation. We propose an

iterative refinement process that maximizes both the efficiency of the search and the accuracy of

generated models. We leverage the Score-P measurement infrastructure to create performance

models at the granularity of function calls. On one hand, this provides detailed performance in-

formation and identifies critical code regions. On the other hand, the fine granularity translates

into mostly simple models, which makes both the generation faster and their subsequent eval-

uation simpler. We create requirement models alongside execution-time models. A comparison

between the two can illuminate the nature of a scalability problem.

Multi-parameter performance modeling. As the compounded effect of multiple configura-

tion parameters is very important for many applications, in the next step we extend the auto-

matic performance modeling method to quickly create empirical performance models of parallel

applications as a function of a small arbitrary set of input parameters. The main challenge when

considering multiple parameters consists of the search space explosion as all possible combina-

tions of polynomial and logarithmic terms for each parameter must be analyzed. We propose

two heuristics to accelerate the search for suitable performance models employed by our gen-

eration method, making the approach practically feasible [25]. The first heuristic speeds up

multi-parameter modeling, as it reduces the search space to only combinations of the best

single-parameter models. The second heuristic speeds up model selection for single parame-

ter models. Combined, the heuristics allow a search space of hundreds of billions of models to

be reduced to under a thousand and to reduce the time required to obtain a multi-parameter

model from over six years to under six milliseconds.

Requirements engineering using performance modeling. We propose a method to study

the design of parallel systems based on the established requirement models and leveraging

the capability to model the compounded effects of problem size per process and number of

processes on the different requirements. The generation of requirement models is less affected

by performance variations, and focuses on what the application required from the hardware,

rather than specific features or limitations of the hardware itself. For example, we consider

the number of floating point operations an application requires to solve a particular problem,

rather than the time it for those operations to be performed on a particular system. We focus

on comparing different design decisions such as the trade-off between the number of processors
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on a system versus the floating point operations per second rates each processor provides. We

therefore offer a technique for practical co-design: the requirement models and system study

can point out potential bottlenecks very early in applications or systems that either need to be

mitigated or could result in substantial cost savings if they are mitigated.

Beyond the contributions mentioned above, the approaches developed in this thesis had an

impact on the work of other researchers. Collaborations with other authors have improved

and expanded the capabilities of Extra-P [4, 6]. Extra-P is used by application developers and

performance engineers to understand the performance of scientific codes and libraries, such as

UG4 [7], FASTEST-3D [26], and OpenMP [5]. New approaches in analyzing the performance

of HPC applications and systems have been developed in collaboration with other researchers

using Extra-P as a starting point [3, 9].

1.6 Structure of this document

The rest of this document is structured as follows: First,we instroduce the automatic empirical

performance modeling method in Chapter 2. Then, we expand the approach to cover multi-

parameter models in Chapter 3. In Chapter 4 we apply our method to perform requirements

engineering. Research avenues mode possible by this work are presented in Chapter 5. The

open-source tool Extra-P which implements the methods and approaches introduced in this

work is shortly described in Chapter 6. We compare our contributions to other approaches in

the field in Chapter 7. Finally, we present the conclusion and outlook in Chapter 8.
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2 Automatic Performance Modeling
The first contribution of this work is a method to identify performance bugs with a particular

emphasis on scalability bugs. A scalability bug is a part of the program whose scaling behavior

is unintentionally poor, that is, much worse than expected. As computing hardware moves

towards exascale, developers need early feedback on the scalability of their software design so

that they can adapt it to the requirements of larger problem sizes on bigger machines. This

method can be applied to both strong- and weak-scaling codes. Extra-P is the open source

performance modeling tool implementing the methods introduced in this thesis. In addition to

searching for performance bugs, the models Extra-P produces also support projections that can

be helpful when applying for the compute time needed to solve the next larger class of problems.

Finally, because Extra-P models both execution time and requirements alongside each other, the

results can also assist in software-hardware co-design or help uncover growing wait states.

The input of Extra-P is a set of performance measurements where a given parameter is varied.

The purpose of the analysis is to model and quantify the effect that this variation has on appli-

cation performance by analyzing relevant measurable metrics such as execution time, number

of floating-point operations, or number of bytes sent over the network. To obtain the scaling

models which are a often a focus of this type of analysis, the parameter varied is the number of

processes or threads used by a given application, {p1, . . . , pmax}, and the performance measure-

ments take the form of parallel profiles. In this case, the output of Extra-P can be summarized

as a list of program regions, each described by a function describing measured performance

metrics as a function of the number of processes p. This list can then for example be ranked

by the predicted execution time of each region at a target scale of pt > pmax processors. More

complex ways of sorting and analyzing the results are available, but the approach described

above is the most common one requested by developers, as it allows future performance bot-

tlenecks to be easily identified. These regions will be referred to as kernels and they define the

code granularity at which performance models are generated.

Users who want to know the scalability of an application at much larger scales, such as when

preparing applications for the next generation of supercomputers, will likely choose pt � pmax .

In the evaluation in Section 2.7, reasonably accurate projections for pt = 128 · pmax are demon-

strated. If only the asymptotic behavior is of interest (i.e., pt →∞), the ranking can be based

exclusively on the growth function class itself. The goal is not 100% accuracy. Such a claim

would be impossible due to the results being based on empirical measurements —especially

when the ranking is based on the times predicted for a specific scale pt � pmax . However, it will

usually be good enough to draw attention to the right kernels. Of course, false negatives, which

are program regions that are not identified because they wrongly appear too far at the bottom,

may occur if a phenomenon relevant at scale is not captured in the input data. Nevertheless,

given that confidence information is provided along with the models, false positives should be

extremely unlikely. In a final step, the user needs to compare the projected with the expected
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behavior for each kernel. This has to be done manually because user expectations cannot be pre-

dicted nor can it be assumed that the user has precise expectations for every kernel identified.

To formulate expectations users may, for example, rely on the isoefficiency metric [27].

In general, the underlying mathematical framework can accommodate more or simply differ-

ent independent parameters than just the number of processors p. For example, Section 2.7.2

shows how to obtain highly accurate performance predictions when varying the problem size

per process while keeping p constant. Nevertheless, this part of the work puts the emphasis on

varying p only, while assuming that all other input parameters either depend on p or remain

stable. Note that violations of this assumption do not preclude the application of the method,

they simply lower the accuracy with which performance bugs can be identified.

2.1 Performance model normal form

Creating the model describing the effect of varying a parameter on a chosen metric as a function

forms the core of our method. Therefore, we start by explaining the different aspects of this

approach and their underlying ideas in detail.

When generating performance models, we exploit the observation that algorithms have cer-

tain commonalities when considering their behavior as a function of one or more variable

performance-relevant parameters. Most behaviors can be defined as a finite number n of

predefined terms, involving powers and logarithms of the chosen parameters. In the case of

scaling behavior, the parameter would be p, leading to the following expression:

f (p) =
n
∑

k=1

ck · pik · log jk
2 (p) (2.1)

This representation is, of course, not exhaustive, but works in most practical scenarios since it is

a consequence of how most computer algorithms are designed. We call it the performance model
normal form (PMNF). While algorithms can be constructed with more exotic functions, such as

sine or factorial progressions, they are far from common. Or approach can be easily adapted to

include other types of function classes such as logarithms of logarithms or exponential functions,

but in our experience, they are too seldom encountered to warrant a significant increase in

the time needed to model the common case. We base not just on own experience with HPC

applications but also on the complexity classes of the 13 dwarfs of parallel computing[28].

Moreover, our experience suggests that neither the sets I , J ⊂Q from which the exponents ik
and jk are chosen nor the number of terms n have to be arbitrarily large or random to achieve

a good fit. Thus, instead of deriving the models through reasoning, we only need to make

reasonable choices for n, I , and J and then simply try all assignment options one by one. A

possible assignment of all ik and jk in a PMNF expression is called a model hypothesis. Trying all

hypotheses one by one means that for each of them we find coefficients ck with optimal fit. Then

we apply cross-validation [29] to select the hypothesis with the best fit across all candidates.

Of course, the computational effort required to calculate our model depends on n, |I |, and |J |.
On the other hand, a larger number n of constituent terms does not necessarily imply a better

model.

10



To strike a good balance, our models are generated in an iterative refinement process, which

we outline in Section 2.3.4. To cover most common complexity classes encountered, we select

n = 2, I =
�

0
4 , 1

4 , . . . , 12
4

	

, and J = {0,1, 2} as a default. Given that the tuples (i, j) ∈ I × J can

be ordered by their corresponding asymptotic behavior, our choices for I and J reflect a range

of behaviors from perfect to poor scalability in 39 steps. Scalability worse than p3 · log2(p) is

not distinguished. If the behavior of the application is already known to some degree, the sets

I and J can be extended to provide more detail in a given range. For example, adding more

fractional exponents in the (0,1) interval such as
�

1
3 , 2

3 , ...
	

for applications where the goal is

not to find out whether they scale at all but rather how well they scale can provide additional

insight.

2.2 Parameter space exploration

Two aspects are critical to obtaining meaningful performance experiments, namely which pa-

rameters are analyzed, and for each parameter, which range of values is investigated. The costs

of running performance experiments often makes an exhaustive search of all parameters and

value ranges impossible and therefore a careful selection must be made.

2.2.1 Parameter selection

The parameter most commonly varied in our studies is the number of processors used. Both

strong scaling, where the overall problem size is kept constant, and weak scaling, where the

problem size per process is kept constant are often encountered and our approach can handle

both with ease.

We have discovered that if we can define an expected ideal invariant for application behavior

with respect to a given parameter, it becomes much easier for users to understand and interpret

the resulting models. Using the previous example, the invariant for strong scaling is the total

work which should ideally stay constant. By gearing the metrics we use as an input towards this

invariant, most resulting models are constant as they incur no communication or synchroniza-

tion overhead. As an example, for strong scaling studies we model the total runtime summed

up across all processes. Similarly, for weak scaling studies we model the runtime per process,

averaged across all processes.

For other parameters, such invariants could be helpful if they are determined. However, their

effects are often contained to only a small number of kernels, therefore making the interpreta-

tion of results less time consuming. For example, when considering problem size determining

the ideal application behavior is clearly not possible in a general case.

Another type of parameter which has a significant effect on performance is the problem size.

It can take different forms for different applications, such as the size of a mesh or number of

particles. The problem size can sometimes be composed of different independent parameters,

such as the length, width, and depth dimensions of a three-dimensional volume. The effect

of each individual parameter can be analyzed and often parameters can have varied effects on

application performance. Due to how the code is implemented, this can happen even if the
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parameters should intuitively have the identical effects. For example, the ordering of nested

loops over different dimensions and its effect on cache behavior can lead to these parameters

having different effects performance.

Other parameters can be encountered but are often applications specific. However, as long

as their effect on performance can be represented by the PMNF, the resulting models will yield

accurate predictions and offer insights to the developer.

2.2.2 Parameter value selection

Extra-P uses an empirical approach to performance modeling and attempts to create insightful

performance models with as few as five different performance experiments. Therefore, how

the performance experiments are selected will have a strong impact on the accuracy of the

resulting models. Some applications impose restrictions on what values parameters can take,

such as requiring the processor count to always be a square or a cube number.

The most important lesson is that as an empirical method our approach can only model per-

formance effects present in the data. For example, if all scaling experiments are performed

within a node on a supercomputer, the effects that the inter-node network has on performance

will not be captured. This can potentially lead to inaccurate models when attempting to pre-

dict and understand bottlenecks on the scale of the full supercomputer. We recommend the

developers to consider the architecture they are performing their experiments on, and selecting

parameter values such that the behavior they wish to model is represented within the value

range chosen. As a rule of thumb, scaling experiments should be performed on the smallest

range of processor counts that encompasses all behaviors that must be understood to define

application performance. In the scaling example before, the experiments should include runs

using multiple racks, therefore encompassing both inter- and intra-node communication.

Another consideration for value selection is that all values should represent the same type of

behavior. For example, many supercomputers and MPI libraries function qualitatively different

if the processor count is a power of 2. Therefore, in such cases processor counts should either

be chosen to all be powers of 2 or none of them.

2.3 Workflow

Figure 2.1 gives an overview of the different steps necessary to find scalability bugs, whose

details are explained further below. To ensure a statistically relevant set of performance data,

profile measurements may have to be repeated several times—at least on systems subject to

jitter. This is done in the optional statistical quality control step. Once this is accomplished,

regression is applied to obtain a coarse performance model for every possible program region.

These models then undergo an iterative refinement process until the model quality has reached

a saturation point. To arrange the program regions in a ranked list, the performance is extrap-

olated either to a specific target scale pt or to infinity, which means the asymptotic behavior

is used as the basis of the comparison. This is achieved by comparing the exponents of the

resulting models. As we only produce terms containing only polynomial and logarithmic terms,
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Figure 2.1: Workflow of scalability-bug detection. Solid boxes represent actions or transforma-
tions, and banners their inputs and outputs. Dashed arrows indicate optional paths. A repre-
sentation of the different results is provided for a minimal example in callouts on the right side
of the figure.
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creating a total asymptotic ordering is trivial. Finally, if the granularity of our program regions

is not sufficient to arrive at an actionable recommendation, performance measurements, and

thus the kernels under investigation, can be further refined via more detailed instrumentation.

2.3.1 Performance measurements

We generate the parallel profiles needed as input to our tool using Score-P [13], a measure-

ment infrastructure that is highly scalable and can be used for profiling, event tracing, and

online analysis of HPC applications. Score-P records the execution time plus various perfor-

mance counters, including hardware counters such as the number of floating-point instructions

and software counters such as the number of bytes an MPI function sends or receives. All met-

rics are broken down by call path and process. We define a call path as a program region plus

its calling context such as main → f oo → M PI_Send. Going beyond purely static program

regions will allow scalability problems to be pinpointed more precisely. To keep the code cov-

ered by a call path small, performance metrics are collected with exclusive semantics, that is,

for each call path without including its children. Score-P has a default instrumentation scheme

that delivers performance data at the granularity of functions as call-chain elements. However,

manual instrumentation can be added to distinguish lower-level constructs such as loops, which

may be needed during kernel refinement. In any case, at the default granularity, computational

call paths are already clearly distinguished from communication, ensuring that communication

is modeled separately from computation. In the next step, we collapse the process dimension

via median reduction, keeping one value per call path and metric. The target function we want

to model is thus the median wall-clock time per call path. We could also choose the maxi-

mum to enables us to capture bottlenecks even if they are confined to a small subset of the

processes. However, the the maximum is more sensitive to statistical outliers and may pose the

risk of reducing the model quality. Of course, aggregation across all processes assumes bulk

synchronous parallel (BSP) programs. For irregular applications, such as some graph computa-

tions or task-based execution programs, we would have to resort to a hierarchical scheme that

only summarizes subsets of processes with similar behavior. Of course, this would increase the

number of performance models. An approach towards the performance modeling of task-based

applications has been developed and is described in more detailed in [9].

The metrics we collect include both requirements-based metrics and time-based metrics.

Requirements-based metrics such as the number of arithmetic operations or the number of mes-

sages sent or received are usually a function of the execution configuration and therefore more

or less deterministic. As a welcome side effect, they are largely immune to system noise [30].

We call them requirements based because they reflect the requirements of the program rather

than the resources mustered to satisfy them. Requirements-based metrics play an important

role in our approach because—supported by their deterministic nature—they can often be used

to determine the function class underlying our performance models more easily. Frequently, this

function class is known a priori. Time-based metrics, such as the wall-clock time spent in com-

munication, in contrast, are needed to determine the coefficients of our model functions or the

model functions themselves when they cannot be expressed as a function of requirements-based
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metrics. We discuss discrepancies between time-based and requirements-based models later in

Section 2.3.3. In any case, time-based metrics are indispensable when we want to extrapolate

execution times to a specific pt .

2.3.2 Statistical quality control

On many systems, performance measurements are subject to serious run-to-run variation as a

consequence of OS jitter, network contention, and other nondeterministic factors. Although not

an intrinsic element of our approach, we anticipate such noise and account for it by calculating

confidence intervals. For this purpose, the user can repeat measurements until the variance

stabilizes. Then, Extra-P performs a check to ensure that the deviation is not prohibitive. An

extreme example of such a case would be a system where the deviation across repeated mea-

surements with the same input configuration is greater than the difference across different

configurations, rendering any subsequent modeling meaningless.

2.3.3 Model generation

Model generation forms the core of our method. The Performance Model Normal Form, in-

troduced in Section 2.1 is used to create a search space from which models are selected. By

trying out all model hypotheses generated by given subsets I , J ⊂ Q from which the exponents

ik and jk are chosen and a number or terms n we can select the hypothesis which best fits the

measured data.

To measure the fit we use cross-validation. This involves dividing the performance data into

training and evaluation sets (i.e., sets of profiles). We use the training sets to create the model

and the evaluation sets to calculate the fit. This has the advantage of protecting against over-

fitting, which may result in a model that tightly fits the input data points but does not accu-

rately represent the asymptotic behavior. This problem is often encountered when fitting a

polynomial of an order higher than or equal to that of the number of available data points.

Specifically, we apply k-fold cross-validation, including the variants of holdout and leave-one-

out [29, 31, 32, 33]. k-fold cross-validation divides the input into k sets of equal size. One of

the sets is used for validation and all others for training. The holdout method divides the data

into two sets of equal size (k = 2), using one as the training and the other as the evaluation set.

The leave-one-out-cross-validation (LOOCV) method uses, as its name suggests, a single data

point (i.e., profile) for validation and all others for training. LOOCV is the slowest because it

requires as many cross-validation passes as there are data points. On the other hand, it provides

good results for very small numbers of data points (< 10). K-fold is faster but requires more

data points. We implemented the general algorithm allowing k to have arbitrary values. Our

experiments suggest that the holdout method delivers the best time-accuracy tradeoff and as

such we propose k = 2 as a default, but we provide the option of changing it to suit the user’s

needs. When creating the sets we assign adjacent data points to different sets.

We use the residual sum of squares, a quality-of-fit metric, as an indicator for the quality (and

thus confidence) of our model. For a fit of n variables with measurement values yi and fitted
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hypothesis model f (x i) (1 ≤ i < n), RSS =
∑n

i=1(yi − f (x i))2. We calculate the coefficient of

determination R2 = 1 − RSS
TSS as a measure of fit, where TSS =

∑n
i=1(yi − ȳ)2. If R2 = 1, the

model fits the data exactly.

2.3.4 Model refinement

To arrive quickly at a suitable model hypothesis and to protect against overfitting, we start

with a coarse approximation that we successively refine until we reach the point of statistical
shrinkage [34]. This is the point after which the model starts to lose predictive power outside the

range of samples. The whole refinement process is summarized in Figure 2.2. At the beginning,

we allow a maximum of one term in our hypothesis chosen via cross-validation, as described

earlier. We then compute the adjusted coefficient of determination R̄2 [34] of the best model

we can find. In the next iteration, we allow a maximum of two terms in the hypothesis. We

repeat the cross-validation to find the best model and compute the new adjusted R̄2. If the new

value computed for the adjusted R̄2 is smaller than the previous one, indicating that adding

more terms to the hypothesis would lead to statistical shrinkage, then the iterative process

stops. Otherwise, we continue adding terms to the model until we reach either the shrinkage
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point or a configurable limit, which may be the maximum time we are prepared to invest or the

maximum number of terms we want to consider.

We have discovered however that the benefits of models refinement are mostly usable on

counted metrics where the noise is very small or in cases where a lot of measurement points

are available. If less than 10 distinct data points are available, allowing more than two non-

constant terms for performance models almost always leads to poor models that model noise.

Furthermore, this approach cannot adequately compare models with degrees of freedom to the

constant model, which is a case that repeatedly comes up in practice. Another approach will be

described in Section 5.2 that was developed to combat this issue.

2.3.5 Performance extrapolation

Once we have reached this point in our workflow, we have a model describing the scaling

behavior of each call path in our application. Now, we can evaluate the scaling function for

a target scale pt or just look at the asymptotic behavior. We can either extrapolate execution

time or requirements (e.g., bytes sent/received or floating-point operations). The latter can

also be helpful in finding roofline models [35], which take resource limitations into account

that become effective only at larger scales, an extension of our method discussed in more detail

in Chapter 4. Extrapolating requirements is also relevant to system design because it allows

the hardware resources to be optimally balanced according to an application’s future needs.

Of course, the model we create can only reflect information and phenomena present in the

data. As such, any projections will not account for effects that only come into play outside the

scope of the experiments. A simple example is the change in algorithm some MPI collective

operations perform when certain process numbers are exceeded. Unless this occurs within the

experimental data the method will not predict its effect on performance. Regardless of whether

the user chooses a specific target scale pt or is just interested in the asymptotic behavior, we are

now in a position to rank all call paths by their expected performance impact. Those at the top

of the list are the kernels whose models the user should compare to his or her expectations and

analyze further if serious discrepancies arise.

2.3.6 Kernel refinement

Once the kernels relevant at the target scale have been determined, the user may find the

granularity of these kernels too coarse and, as a consequence, the resulting performance model

too complex to draw meaningful conclusions. This can happen if the default instrumentation

of Score-P, which is typically applied at the level of functions, is not fine-grained enough to

pinpoint pieces of code that are small enough for inspection by a human user. In this case, the

instrumentation around the kernels of interest can be narrowed or the kernels split into multiple

pieces to be modeled separately. At the same time, the instrumentation around those parts of

the program that our analysis classifies as irrelevant can be lifted to reduce instrumentation

overhead. Then the whole process starts over again: this time with more targeted measurements

that exploit the knowledge gained in the previous iteration.
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2.3.7 Example

To summarize the workflow we offer a very simple example of an application with just two

kernels, main and f oo, shown in Figure 2.1. The user first runs five performance experiments,

wherein the number of processes is varied from one to five. The tool models each kernel sep-

arately and determines the models f (p) = 1 + p2 for f oo and m(p) = 3 + p for main. The

kernels, ranked by their asymptotic growth, are then presented to the user.

2.4 Modeling requirements alongside time

Another key aspect of our approach is that we build requirements models alongside execution-

time models and compare them to each other. In essence, we build empirical requirements

models, which we subsequently try to match with the measured execution time. As we will ex-

plain further below, the quality of this match can reveal important facts about the application—

regardless of whether the models are in agreement or show discrepancies. Since requirements-

based metrics are much less prone to jitter than time-based metrics, they are much more likely

to capture the asymptotic behavior correctly. This is because requirements models are closer to

algorithmic complexities than empirical models derived exclusively from time-based metrics. In

fact, an empirical requirements model alone can provide valuable insights when compared to

developer expectations. The general idea of a requirements model is to account for all major

cost factors. For computational call paths, these are the different types of operations such as

floating-point operations, loads, stores, etc. Of course, in empirical models these operations

have to be mapped onto the instruction set and the hardware counters available on the target

system. For communication call paths, the cost factors are the number and the size of messages.

We measure them using the standardized PMPI interface [36], which is portable across all MPI

implementations.

We try to choose our metrics such that each cost factor is counted only once, although a

certain degree of overlap can be tolerated. For the sake of simplicity, we assume that the

total costs within a certain cost category (e.g., floating-point operations) rise linearly with the

corresponding metric. That is, twice as many operations will take twice as long. Of course,

some costs may disappear through latency hiding, prefetching etc. Nevertheless, we believe

that this inaccuracy matters much less when our primary question only refers to the behavior at

scale. Taken to an extreme, the asymptotic complexity of the scaling function does not improve

simply because we can execute four floating-point operations and two loads or stores at once.

To express the execution time of a call path as a function of its requirements, we distinguish

between local and global operations. Recall that the maximum aggregation across all processes

we perform essentially results in a process-local metric. For the execution time of local op-

erations, which cover computation and point-to-point communication, we therefore assume a

linear relationship. This is because all processes can carry out their local operations in parallel.

For example, the time it takes to send a certain number of messages m of size s is t = m(c1+c2·s).
Of course, the number of messages a process sends may depend on the input configuration.
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Thus, for a given call path, we model each of the requirements-based metrics separately,

generating a full regression model for each metric. Now, we compare each requirement model

with the model for execution time. If they are in good agreement, the user can draw conclusions

about the primary factor contributing to the time (e.g., number of messages or floating-point

operations). If not, the user can regard this as a sign that the execution time does not exclusively

depend on the requirements and may be prolonged by wait states. An extreme example is

serialized code. There, the waiting time dilates both mean and overall execution times linearly

with p. Another example is collectives whose execution times are extended by jitter [30].

A very common source of wait states is load imbalance, a problem that particularly affects

irregular codes such as implementations of climate simulations [37].

2.5 Effort

The required computational effort consists of two components—running the input experiments

and running the model generator. As long as only one model parameter is used, the latter

takes less than a minute on a single processor and is therefore negligible. The cost of the input

experiments can be quantified in relation to experiments at the target scale, which our method

helps to avoid.

In weak scaling mode, the compute time of a perfectly scaling code in node hours is propor-

tional to the number of processors. Assuming that the number of processors is always a power

of two, running experiments at input scales {20, . . . , 2m} together is thus less expensive than a

single run at pt = 2m+1. If the code scales poorly or the target scale grows beyond 2m+1, the

amortization factor can increase substantially. Jitter may require more experiments per input

scale, but to be conclusive experiments at the target scale would have to be repeated as well.

Strong scaling experiments should have, barring overheads, the same computation costs.

Here, avoiding experiments at larger scales does not reduce the effort, but provides the oppor-

tunity to gain insights into how an application would perform at a larger scale, even if a larger

system is not available.

2.6 Evaluation with synthetic data

To evaluate our approach we will first test the performance model generator on input sets orig-

inating from known underlying functions, using a methodology proposed by Reisert et al. [4].

To achieve this, we generate functions using the following classes of terms as building blocks:

• Constant

• Common: x , x2, x3, log2(x)

• Rare: x
i
2 for i ∈ {1,3, 5}, x

i
3 for i ∈ {1,2, 4,5, 7,8}, log2

2(x)

• Exotic: x
i
4 for i ∈ {1,3, . . . , 11}, x

i
5 for i ∈ {1, . . . , 14} \ {5,10}, log

1
2
2 (x), log

3
2
2 (x)
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Figure 2.3: Comparison of evaluating the approach with a maximum of either a single term
or two terms per model. We are using values of randomly generated functions with ±2% of
noise as input. The functions are built according to the PMNF with n = 1 or n = 2, and their
coefficients c0, c1 and c2 are calculated by sampling a ∈ [−2,3] uniformly and then computing
10a.

Our experience has shown that most functions encountered are constant with respect to the

analyzed parameters. Most functions that show a non-constant behavior can be described only

using common terms or combinations thereof, and correspond the the asymptotical complexity

of most classical algorithms. Functions containing terms from the rare class have been encoun-

tered by us in practice but only in a handful of situations such as geometric effects of dividing

processors across two or three dimensions in an even manner. In the exotic category, we find

terms that while theoretically possible have yet to be encountered by us in a real scenario. For

all non-constant cases we generate test functions with one or two terms.

For each class described, we generate 1000 functions. We randomly generate a constant term

by sampling a ∈ [−2, 3] and computing 10a. The coefficients of other terms are generated in a

similar manner as necessary. These functions are then evaluated for each of the following four

different sets of x values ({2, 4, 8, 16, 32}, {8, 16, 32, 64, 128}, {32, 64, 128, 256, 512}, and

{128, 256, 512, 1024, 2048}) to create inputs for the model generator. Finally, random uniform

noise of up to plus or minus 2% of the evaluated value is applied to each function value.

We wish to understand if our method is capable of identifying the asymptotic behavior cor-

rectly. Furthermore, we also wish to know if the determined model is capable of predicting the

function value for an x four times larger than the larger evaluated input within the same noise

tolerance of plus or minus 2%. We have chosen a factor of four to show the predictive capacity

of this modeling approach.

Figure 2.3 shows that our approach correctly identifies the asymptotic trend and even cor-

rectly predicts behavior outside the measured interval in more than 75% cases for the constant

and common cases. This test further proves that our assumption that five data points are suffi-

cient to allow accurate modeling of one term to be correct. However, attempting to model two
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terms with only five data points will usually fail, cementing the idea that only the main trend

should be identified.

2.7 Case studies

We illustrate the capabilities of our tool using five MPI applications. Specifically, we demonstrate

that our tool

• identifies scalability issues in codes known to have them,

• does not identify a scalability issue in codes that are known to have none

• identifies previously unknown scalability issues

We find the models we generate automatically to be in good agreement with manually created

models previously reported in the literature. In one of the case studies we further show that we

can produce accurate models for model parameters other than the number of processes.

We performed our experiments on the IBM BlueGene/Q system Juqueen and the Sun cluster

Juropa at the Jülich Supercomputing Centre. Juqueen is a large leadership supercomputer with

almost 500,000 cores. Each node features one PowerPC A2 processor with 16 cores running at

1.6 GHz. Juropa is a compute cluster composed of 2,208 nodes, each equipped with two Intel

Xeon X5570 (Nehalem-EP) quad-core processors running at 2.93 GHz. Unless otherwise stated,

we always used the default settings for n, I , J specified in Section 2.3.3. We ran the model

generator on several desktop systems and front-end nodes, where model generation for a single

but full code never exceeded one minute.

2.7.1 SWEEP3D

In this example, we show how our tool helps identify and explain a scalability problem, pro-

viding a first impression of the user experience. The Sweep3D benchmark [38] is a compact

application that solves a 1-group time-independent discrete ordinates neutron transport prob-

lem. It was extracted from a real ASCI code. The program calculates the flux of neutrons

through a three-dimensional grid along several angles of travel. To partition the problem, the

code maps the three-dimensional domain onto a two-dimensional grid of processes. Parallelism

is achieved through a pipelined wavefront process that propagates data along diagonal lines

through the grid. The particular angle being processed at a given moment determines the di-

rection of the wavefront, which can originate from any of the four grid corners. The pipeline

organization enables multiple wavefronts to follow each other along the same direction, al-

though the inability of a process to satisfy horizontal and vertical neighbors at the same time

introduces propagating delays [39]. Parallel efficiency drops further whenever the pipeline has

to be refilled after the direction has changed. In both cases, the consequences are wait states

that materialize in receive operations.

Table 2.1 lists the five kernels that would consume most of the time at the target scale pt =
262, 144 processes, ranked by their predicted execution time. To underline that indeed the right

kernels appear at the top, we show their measured execution time in terms of both their relative
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Figure 2.4: Measured vs. predicted execution time of the two receive operations involved in the
wavefront process of Sweep3D on Juqueen.

contribution at pt and the increase factor of their execution time in comparison to p = 64. The

latter offers some intuition on how seriously the performance is affected. Together, all five

kernels account for more than 99% of the overall runtime. Although our predictions based on

training data with up to 8k processes are closer to measured values, even predictions based on

training data with up to 2k still show the same general trend. In particular, the ranking remains

unchanged. Note that adding more data points does not change the model hypothesis for four

of the five kernels, only their coefficients vary slightly to reflect the increased precision allowed

by the additional training points. The changing model for sweep → M PI_Send reflects that

the new training points manifest a new effect which was previously impossible to see at smaller

scales. In this specific case, the runs at 2k processes and beyond allow the latency effect of

communication leaving the node board to be observed.

The literature mentions accurate models [40, 41] that describe the performance behavior

of wavefront processes as they occur in Sweep3D on various architectures. The LogGP model

reported in Hoisie et al. [40] characterizes the communication time as follows:

t comm = [2(px + py − 2) + 4(nsweep − 1)] · tmsg (2.2)

px and py denote the lengths of the process-grid edges, nsweep the number of wavefronts to be

computed, and tmsg the time needed for a one-way nearest-neighbor communication. Given
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Table 2.1: The most time-consuming Sweep3D kernels (i.e., call paths) ranked by their predicted
execution time at the target scale pt = 262,144 processes. The values and models reflect ex-
clusive execution times without callees. The predictive error applies only to pt . On the left we
used training data with up to 2,048 processes (pt = 128 · pmax ), on the right with up to 8,192
processes (pt = 32 · pmax ).

Runtime P1 (pi ≤ 2,048) P2 (pi ≤ 8,192)

[%] Model [s] Predictive Model [s] Predictive

pt = 262k t = f (p) error [%] t = f (p) error [%]

sweep → MPI_Recv

65.35 3.99 · pp 6.16 4.03 · pp 5.10

sweep

20.87 582.19 0.01 582.19 0.01

global_int_sum → MPI_Allreduce

12.89 0.94
p

p+ 0.04
p

p log p 23.00 1.06
p

p+ 0.03
p

p log p 13.60

sweep → MPI_Send

0.40 11.66 29.00 11.49+ 0.09
p

p log p 15.40

source

0.25 6.86+ 9.68 · 10−5 log p 0.01 6.86+ 9.13 · 10−5 log p 0.01

that both nsweep and tmsg are largely independent of the number of processes p and that in our

experiments px = py and p = px · py , we can rewrite Equation (2.2) as:

t comm = c · pp (2.3)

The (combined) model generated by our tool for the two receive operations involved in the

wavefront process (sweep→ MPI_Recv) is 3.99 · pp and, thus, consistent with Equation (2.3).

As Figure 2.4 illustrates, it also matches our measurements on Juqueen quite accurately. The

two receive operations are modeled together because Scalasca’s default instrumentation merges

them into one call path. Note that we do not need large application runs to accurately determine

the model. The figure presents results based on only six training and evaluation data points with

the process counts P1 =
�

26, 27, 28, 29, 210, 211
	

and we extrapolate to up to 262k processes.

The difference between prediction and measurement never exceeds 7%. Using more training

and evaluation data points by adding measurements such that P2 = P1 ∪
�

212, 213
	

, the model

becomes even more precise.

That the requirements models for both the number of bytes and the number of messages

received predict almost constant values independent of the number of processes suggests that

any increase in communication time is caused by wait states. Because the wavefront travels

along the diagonal of the process grid, waiting times proportional to the square root of the

number of processes can actually be expected. Having waiting time grow with
p

p means that

every quadrupling of p will double its amount, which can hardly be classified as scalable.
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Table 2.2: Models of Sweep3D regions compared on the Juqueen and Juropa systems.

Kernel JuQueen model JUROPA model

sweep → MPI_Recv 4.03
p

p 0.51
p

p
sweep 582.19 70.21

global_int_sum → MPI_Allreduce 1.06
p

p+ 0.03
p

p log p 0.05
p

p+ 0.01
p

p log p
sweep →MPI_Send 11.49+ 0.09

p
p log p 0.04+ 2 · 10−4pp log p

source 6.8609+ 9.13× 10−5 log p 1.0345

Because the amount of waiting time in Sweep3D, which is responsible for the bulk of the

time spent in MPI at larger scales, depends on the progress of the wavefront computation,

earlier studies [40, 41] concluded that single-node performance is the most serious impediment

to the scalability of Sweep3D—and not, for example, the saturation of network resources. To

see whether we arrive at the same conclusion using our automated approach, we also conducted

experiments on Juropa, whose cores are much more powerful than Juqueen’s. Results for the

two platforms obtained with training data from runs with up to 2,048 processes are again

consistent with manually developed models. While the sweep() routine, where the wavefront

computation takes place, is about eight times faster on Juropa, the receive inside, where the

wait states accumulate, is eight times slower on Juqueen. Otherwise, the models we generate

for the two kernels on Juqueen and Juropa are identical. Therefore, we can conclude that

single-node performance is indeed the most serious impediment to the scalability of Sweep3D.

Table 2.2 contrasts our results for the two platforms with training data sets from runs with

up to 2,048 processes. While the coefficients differ, the model hypotheses seem to be largely

portable. Coefficients aside, the only differences are a constant term for the allreduce and the

×10−5 log p term in source(), both of which are inconsequential with respect to performance.

On a final note, this relationship sheds light also on a performance phenomenon observed

in a more recent experimental study of Sweep3D [42], which analyzes the consequences of

load imbalance between a central rectangular region and the rest of the process grid, which

is caused by a corrective function invoked only during certain iterations. Since overload has

effects similar to processors with lower speed, it is likely to enlarge only the coefficient of the
p

p term in the model of the dominant receives and, thus, to have only little bearing on the

general scalability. Applying our tool to the affected iterations only, we found this coefficient to

be enlarged by 20% but otherwise observed the same scaling behavior.

2.7.2 MILC

In this case study, we show that our tool characterizes also a scalable application correctly. In

addition, we show how our tool derives time and requirements models for model parameters

beyond the number of processes. MILC is a set of codes written in C for studying quantum

chromodynamics (QCD) via parallel simulations of the SU(3) lattice gauge theory on a four-

dimensional lattice. In earlier work [1], analytical models were manually created that describe
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Table 2.3: Automatically generated models of selected functions in MILC when varying the num-
ber of processes. The prediction errors were computed with resepct to a target scale of 65,536
processes.

Kernel
Model [s]

|1− R2|
Predictive

t = f (p) error [%]

CGSF 0.024 0 0.43

MPI_Allreduce 6.30 · 10−6 · log2 p 0.084 12.77

MASFL 0.0038 0 0.04

the behavior of MILC/su3_rmd, one of the MILC codes, by characterizing its most important

components with respect to a number of parameters. We now show that our modeling tool

chain allows similar models to be derived automatically.

We first consider weak scaling runs on Juqueen, increasing the number of processes lin-

early with the problem size. The existing models suggest that MILC is a highly scal-

able code, that is, the time per process should remain constant except for a rather small

logarithmic term caused by global convergence checks. As we show below, our method

correctly determines the most important features of this model. Specifically, we demon-

strate the tool’s ability to derive scalability models for the execution time of three repre-

sentative kernels: compute_gen_staple_ f ield, g_v ecdoublesum → M PI_All reduce, and

mul t_ad j_su3_ f ieldl ink_lathwv ec, which we abbreviate as CGSF, MPI_Allreduce, and

MASFL, respectively. Given that MILC is known to scale well, we refined the default setting

for I by adding
�

1
3 , 2

3

	

, as suggested in Section 2.3.3. We collected five data points for each

function at the scales P3 =
�

27, 28, 29, 210, 211, 212, 213, 214, 215, 216
	

with a local lattice size of

V = 94 per process. All model functions generated for Juqueen are shown in Table 2.3. For

ease of understanding, we show |1−R2|, the absolute difference between R2 and the optimum,

which can be considered a normalized error, in the table.

Our models allow a direct performance comparison for the computation kernels CGSF and

allreduce. Kernel 2 performs additional communication which scales logarithmically. Our mode-

ling framework identifies a log2 p component which is caused by a global reduction for checking

convergence. Here, the expected model would be log p, however, experiments on Juqueen have

shown that using other communicators than MPI_COMM_WORLD cause performance degrada-

tion when using the allreduce collective. MILC uses such communicators, which explains the

difference from expectation.

Beyond scalability in terms of the number of processes, we also derive requirements mod-

els for the size and number of MPI point-to-point messages as a function of grid points

per process. This demonstrates the ability of our tool to generate models for different in-

put parameters—in this example to predict the effects of different process-local grid sizes.

For four different performance-critical kernels, the handcrafted model characterizes the mes-

sage size as 18s 4pV 3 bytes, with s being the size of a floating-point value in bytes and

V being the number of grid points per process. Our input measurements, which we took
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Table 2.4: Automatically generated models of selected functions in MILC when vary-
ing the number of grid points per process. For the underlying experiments, we used
the following parameters: meas=5, warms=0, trajecs=1, traj_between_meas=1,
steps_per_trajectory=10.

Flops Invocations Flops/invocation

Model |1− R2| Model |1− R2| Model |1− R2|

f lops = f (V ) [·10−3] inv ocations = f (V ) [·10−3] f lops
inv oc. = f (V ) [·10−3]

load_lnglinks

56,426 · V 0.03 2,310 0 24.42 · V 0.03

load_fatlinks_cpu

1,954, 230 · V 0.21 71,430 0 27.36 · V 0.21

ks_congrad

1.16 · 108 + 3.24 · 105 · V
5
4 0.292 5.11 · 104 + 13, 836 · V

1
4 4 15.94 · V 0.143

imp_gauge_force_cpu

1,649, 790 · V 0.015 74,040 0 22.28 · V 0.015

eo_fermion_force_twoterms_site

4,015, 930 · V 0.002 127,050 0 31.61 · V 0.002

on Juropa with its more generous memory per node, were made with a fixed number of

processes p = 32, single precision (s = 4 bytes), and a varying number of grid points

V = {81, 256,400,625, 900,1080, 1296,1512, 1764,2058, 2401}. Since there is no perfor-

mance variation in these requirements measurements, the quality of the automated fit (and

thus the confidence) is high, resulting in a model that matches the handcrafted counterpart ex-

actly. Our method also found the number of messages in each kernel to be invariant regardless

of the lattice size, which further matches the models in [1]. Another metric analyzed was the

number of floating-point operations in each invocation of the time-intensive kernels as a func-

tion of the number of grid points per process. The results in Table 2.4 show that the number

of floating-point operations per kernel invocation is proportional to the number of grid points

(rightmost column), which is again consistent with [1]. All kernels but the conjugate-gradient

kernel (ks_congrad) have a constant number of invocations, whereas the number of times

the conjugate-gradient kernel is invoked depends for this particular input matrix on the number

of grid points (middle column).

In summary, our method was able to reproduce the most significant parts of the models

that were manually created to describe the behavior of MILC as a function of the number of

processes or the local volume. The requirement models for the number of messages, their sizes,

and the number of floating-point operations per lattice point can be very useful for architecture

co-design. We did not show additional models for cache misses and other metrics because
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they follow the same principle. Our results demonstrate that automation can lead to good

performance models with low manual effort.

2.7.3 HOMME

To showcase how our tool helps to find hidden scalability bugs in a production code for which

no performance model was available, we applied it to HOMME [43], the dynamical core of the

Community Atmospheric Model (CAM) being developed at the National Center for Atmospheric

Research (NCAR). HOMME, which was designed with scalability in mind, employs spectral ele-

ment and discontinuous Galerkin methods on a cubed sphere tiled with quadrilateral elements.

While experiences in the past did not indicate any scalability issues with up to 100,000 pro-

cesses, HOMME was never subjected to a systematic scalability study. All the results we present

here for this code reflect measurements on Juqueen based on an input configuration suggested

by the application developer team.

Table 2.5 lists different kernels of the code, ordered by their asymptotic runtime (pt →∞). It

shows the models produced for two different sets of input configurations. The first one includes

data points at the scales P4 = {600, 1176,4056, 7776,13824,14406, 15000}, the second one

P5 = P4∪{15606, 16224,23814, 31974,43350} adds more measurements to the initial set. The

order in the table is based on models determined using P5. The models derived from P4 show

constant runtimes for all kernels except for the reduce in box_rear range, which grows with p3.

Deriving the models from the larger set introduces a dependence on p2 (with a small factor) for

all but one of the hitherto constant kernels. Obviously, the enlarged set reveals a phenomenon

not visible in the smaller set. If the number of processes is large enough, both the quadratic and

the cubic terms will turn into serious bottlenecks, contradicting our initial expectation the code

would scale well. The table also shows the predictive error, which characterizes the deviation

of the prediction from measurement at the target scale pt = 130k, highlighting the benefits of

including the extra data points.

After looking at the number of times any of the quadratic kernels was invoked at runtime, a

metric we also measure and model, the quadratic growth was found to be the consequence of

an increasing number of iterations inside a particular subroutine. Interestingly, the formula by

which the number of iterations is computed contained a ceiling term that limits the number of

iterations to one for up to and including 15k processes. Beyond this threshold, a term depending

quadratically on the process count causes the number of iterations executed to grow rapidly,

causing a significant drop in performance. It turned out that the developers were aware of this

issue and had already developed a temporary solution, involving manual adjustments of their

production code configurations. Specifically, they fix the number of iterations and carefully

tune other configuration parameters to ensure numerical stability. Nevertheless, the issue was

correctly detected by our tool. Given the tuning necessary to ensure numerical stability, a weak

scaling analysis of the workaround is beyond the scope of this paper.

In contrast to the previous problem, the cubic growth of the time spent in the reduce function

was previously unknown. The reduction is needed to funnel data to dedicated I/O processes.

The coefficient of the dominant term at scale is very small (i.e., in the order of 10−13). While not
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Table 2.5: Models of the kernels of HOMME derived from smaller and larger-scale input config-
urations. The predictive error refers to the target scale of pt = 130k.

P4(pi ≤ 15,000) P5(pi ≤ 43, 350)

Model [s] Predictive Model [s] Predictive

t = f (p) error [%] t = f (p) error [%]

box_rearrange → MPI_Reduce

2.53 · 10−6 · p1.5 + 1.24 · 10−12 · p3 57.02 3.63 · 10−6 · p1.5 + 7.21 · 10−13 · p3 30.34

vlaplace_sphere_wk

49.53 99.32 24.44+ 2.26 · 10−7 · p2 4.28

laplace_sphere_wk

44.08 99.32 21.84+ 1.96 · 10−7 · p2 2.34

biharmonic_wk

34.40 99.33 17.92+ 1.57 · 10−7 · p2 3.43

divergence_sphere_wk

16.88 99.31 8.02+ 7.56 · 10−8 · p2 4.25

vorticity_sphere

9.74 99.55 6.51+ 7.09 · 10−8 · p2 8.66

divergence_sphere

15.36 99.33 7.74+ 6.91 · 10−8 · p2 0.95

gradient_sphere

14.77 99.33 6.33+ 6.88 · 10−8 · p2 5.17

advance_hypervis

9.76 99.25 5.5+ 3.91 · 10−8 · p2 1.47

compute_and_apply_rhs

48.68 1.65 49.09 0.83

euler_step

28.08 0.51 28.13 0.33

being visible at smaller scales, it will have an explosive effect on performance at larger scales,

becoming significant even if executed just once. Due to noise in the data the value of such small

coefficients might not be exact, leading to errors in the prediction, but accuracy is secondary

to locating scalability bottlenecks. The reason why this phenomenon remained unnoticed until

today is that it belongs to the initialization phase of the code that was not assumed to be

performance relevant in larger production runs. While still not yet crippling in terms of the

overall runtime, which is in the order of days for production runs, the issue already cost more

than one hour in the large-scale experiments we conducted. The problems was reported to

the developers at NCAR, who are currently working on a solution. The example demonstrates

the advantage of modeling the entire application instead of only selected candidate kernels
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Figure 2.5: Runtime of selected kernels in HOMME as a function of the number of processes.
The graph compares predictions (dashed or contiguous lines) to measurements (small triangles,
squares, and circles).

expected to be time intensive. Some problems might simply escape attention because non-

linear relationships make our intuition less reliable at larger scales. Note that coefficients such as

10−13 are small in view of the typical run-to-run deviation, but have to be seen in relation to the

associated polynomial expression p3, which became larger than 1012 in our input experiments.

Given that the target scale is usually one or more orders of magnitude greater than the largest

input scale, fully accurate coefficients are therefore secondary when trying to locate scalability

bottlenecks with higher exponents of p.

Figure 2.5 summarizes our two findings and compares our predictions with actual measure-

ments. While the quadratically growing iteration count seems to be more urgent now, the

reduce might become the more serious issue in the future.

2.7.4 UG4

UG4 is a simulation framework [7] capable of solving partial differential equations. It uses grid

based discretization methods such as the finite element method or the vertex-centered finite

volume method. Complex physical geometries are resolved by hybrid, unstructured, adaptive,

hierarchical grids in up to three space dimensions. The strong focus the developers have on ef-

ficient and highly scalable solvers, both when using algebraic and geometric multigrid methods

have lead to a joint study with Goethe University Frankfurt [44].
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Table 2.6: Models for CG solver kernels of UG4 in a weak scaling study[7]. Models are provided
for the execution time and the number of times each solver kernel is invoked.

Time Invocations

Model |1− R2| Model |1− R2|

time= f (p) [ms] [·10−3] invocations= f (p) [·10−3]

CG→ norm

3.74+ 4.65 · pp 0.764 75.6+ 117.7 · pp 0.102

CG→ dotprod

8.83+ 13.3 · pp 0.475 149.2+ 235.4 · pp 0.102

CG→ SparseMatrix_axpy

96.3 · pp 0.398 75.6+ 117.7 · pp 0.102

CG→ VecScaleAdd

13.7+ 22.3 · pp 0.088 222.9+ 353.1 · pp 0.102

Extra-P was used to generate performance models for a number of configurations relevant

to the application developers and confirm the detailed performance expectation the developers

had of their implementation. The studies were focused on use cases of particular interest to

developers due to the frequency they are needed and how much computation effort they require.

The first study focused on the weak scaling behavior of the conjugate gradient solver in UG4.

The models, represented in Table 2.6, show a
p

p growth, which is expected and explained by

the increase in grid refinement due to the larger problem size. Whilst this is a scalability issue,

it is not a performance bug. Given how conjugate gradient solvers work, the growth is the

result of the increase of work per process inherent in increasing the problem size. It is not an

implementation issue in UG4. This is reflected by the increase in number of invocations, which

has the same growth rate as the execution time itself.

The second study was a weak scaling analysis of a three dimensional skin model simulation

using UG4. We analyzed the time needed by network communication collectives and also the

bytes send over the network. Furthermore we investigated the runtime of relevant computa-

tional kernels. The study confirmed the developer expectations and proved that the solver scales

very well. A summary of the resulting models is included in Table 2.7.

We note that the performance modeling process was significantly simplified in the case of

UG4 by the expectations the developers already had for the performance of this application.

This made the validation and verification of the empirically generated models fast and straight-

forward as all behaviors were easily explained by already existing assumptions.
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Table 2.7: Weak scaling study of the three-dimensional skin model simulation. Models for kernels
creating MPI communicator groups are displayed in the top table. Models for sparse matrix
assembling (assemble_l inear) and multigrid (GMG−> ∗) are found in the bottom table[7].

Time Bytes sent

Model |1− R2| Model |1− R2|

time= f (p) [ms] [·10−3] bytes= f (p) [·10−3]

LoadUGScript→ MPI_Allreduce

9.33+ 0.91 · log p 42.6 4 · O (MPI_Allreduce) 0.000

init_levels→ MPI_Allreduce

27.3+ 1.3 · log p2 19.6 80.03 · p · O (MPI_Allreduce) 0.003

init_top_surface→ MPI_Allreduce

3.71+ 5.18 · p1/4 9.88 4 · p · O (MPI_Allreduce) 0.000

Time Invocations

Model |1− R2| Model |1− R2|

time= f (p) [·10−3] invocations= f (p) [·10−3]

GMG→ PreSmooth→ jacobi

1.89 · 10−2 + 0.04 · 10−2 · log p 42.6 70.6+ 1.4 · log p 76.9

GMG→ prolongate

4.24 · 10−2 + 0.10 · 10−2 · log p 84.4 23.5+ 0.5 · log p 76.9

assemble_linear

1.68 0 1 0

2.7.5 XNS

XNS [2] is a finite element flow simulation code. XNS supports a wide variety of flow configu-

rations in both two- and three-dimensional domains and is actively used in numerous scientific

projects, such as designing an efficient blood pump, a simulation of which is shown in Fig-

ure 2.7.

Together with the developers we performed an analysis of the strong scaling performance of

XNS with Extra-P. Unlike the weak scaling studies previously presented, we do not model the av-

erage execution time measured across all processes but rather sum up all measurements across

all processes. Ideally, we would expect the total runtime to remain constant as we increase

the number of processes. Of course, some functions, such as any MPI communication calls,

will have an increased runtime. However, as a rule of thumb, even communication operations
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Figure 2.6: Graphical representation of blood flowing through a blood pump. The simulation
was performed with XNS [2].

should not scale worse than linearly. For example, if every process has to receive a byte at the

start of execution and send another byte at the end, we would expect that the total runtime

spent sending and receiving messages to grow linearly with the number of processes, as more

and more processes perform the two operations.

We were able to discover a scalability bug in an initialization routine which caused the parallel

communication to grow quadratically rather than linearly as more processes were used. This

lead to the MPI receive operation in question to take up more than half the runtime of XNS on

4096 processes when it only took less 0.5% of the runtime when only 128 processes where used,

as shown in Table 2.8. The developers have fixed the issue and our analysis did not uncover

further scalability bugs. The ewddot kernel contains most of the computation done by XNS.

Whilst a small inefficiency was also detected there, it is a much smaller issue that the previous

performance bug identified. Not only is the growth rate of the ewddot kernel smaller than linear

with the number of processes, the contribution of the growing part is significantly smaller than

the constant term of the model. For current production runs, improving the efficiency of this

kernel was not considered a priority by the developers. The overall execution time of these

kernels is displayed in Figure 2.7.

Discovering the performance issue of the MPI receive operation in the oft overlooked initial-

ization phase of XNS reinforces the need to provide full coverage of the code when analyzing

the performance of an application.

Table 2.8: Models for two selected XNS kernels (i.e., call paths) The values and models reflect
exclusive execution times without callees. The percentage of the total execution time taken by
the respective kernels are compared between p = 128 and p = 4.096

Runtime [%] at p = 128 Runtime [%] at p = 4.096 Model [s] for t = f (p)

ewdgennprm → MPI_Recv

0.46 51.46 0.029 · p2

ewddot

44.78 5.04 37406.80+ 13.29 · pp · log p
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Figure 2.7: Runtime of selected kernels in XNS as a function of the number of processes. The
graph shows models (contiguous lines) and measurements (small triangles and squares).

2.8 Discussion

In this chapter we have introduced a new approach to determine performance models em-

pirically using measurements of as few as five different parameter configurations. We have

validated our method with both synthetic tests and scientific applications for which analytical

models are available. We further used Extra-P to model the behavior of applications for which

analytical models did not previously exist, and were able to uncover previously unknown scal-

ability bugs. Using the technique described here as foundation and stepping stone, we will

expand its capabilities to tackle more complex performance questions, from quantifying the ef-

fect of multiple parameters simultaneously to helping co-design future HPC systems through

performance model-aided requirements engineering.
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3 Multi-Parameter Performance Modeling
The second contribution of this work is an approach that allows the effect of multiple perfor-

mance relevant parameters to be modeled at the same time. This allows for the discovery of

compounded performance effects.

3.1 Multi-parameter modeling

Common questions asked by developers when trying to understand the behavior of applications

are:

• How does application performance change when more processors are used?

• How does application performance change when the problem size is increased or de-

creased?

Changing the processor count while keeping everything else fixed is also known as strong

scaling. The goal of many large-scale applications, however, is to solve larger problems using

more processing power, leading to the concept of weak scaling. Weak scaling is often defined as

the application’s behavior when the problem size per processor is fixed and the processor count

is varied. Creating an experimental setup in practice where the problem size per processor is

fixed is not trivial, as the problem decomposition is not arbitrary in the general case. When

considering the pressure on applications to judiciously use computing resources both questions

must be answered, and a new vital question arises:

• Are the effects of processor variation and problem size variation independent of each other

or can they amplify each other?

For example, a weak-scaling run of the kernel SweepSolver in Kripke [45], a particle trans-

port proxy application, has a runtime model for processor variation of t(p) = O(p1/3) and a

runtime model for varying the number of dimensions of t(d) = O(d). The number of dimen-

sions influences the problem size proportionally. It now needs to be determined how these two

factors interact. Depending on their interaction, the application is scalable or not. For example,

it would make a huge difference if the combined effect of processor variation and number of

dimensions was t(p, d) = O(p1/3 · d) or t(p, d) = O(p1/3 + d).
Furthermore, the problem size can often be decomposed into multiple independent parame-

ters, such as length, width and depth for an applications describing a three dimensional space.

Understanding the effect of each individual parameter on performance can help developers

pinpoint implementation inefficiencies. Another advantage is the potential to highlight how

choices in the implementation of the algorithm can lead to theoretically equally relevant pa-

rameters having different effects on performance.
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3.1.1 A normal form for multiple parameters

Below, we expand the original performance model normal form presented in Section 2.1 to

include multiple parameters.

f (x1, . . . , xm) =
n
∑

k=1

ck ·
m
∏

l=1

x ik l
l · log jk l

2 (x l) (3.1)

This expanded normal form allows a number m of parameters to be combined in each of the

n terms that are summed up to form the model. Each term allows each parameter x l to be

represented through a combination of monomials and logarithms. The sets I , J ⊂Q from which

the exponents ikl
and jkl

, respectively, are chosen can be defined as in the one-parameter case.

Our experience with single-parameter modeling leads us to the conclusion that with as few

as five different input values only one term can be meaningfully used without overfitting the

data. However, enough terms have to be allowed such that the effect of each parameter can

be modeled independently. This leads us to the following rule of thumb regarding number

of terms: n = m, unless significantly more data points are available for each parameter. In

practice, we use n= m′, where m′ is the number of parameters whose effect on performance is

not constant across all gathered measurements.

3.1.2 Challenges for multiple parameters

Of course, if multiple parameters are considered, performance experiments have to be con-

ducted for all combinations of parameter values and the total number of experiments that is

required grows accordingly. While this might be manageable if the number of parameters con-

sidered is small enough (single digit) and/or the cost of an individual experiment is very small,

another and more serious problem emerges even for two and three parameters.

Looking at Equation 3.1, the combinatorial explosion of the search space for model hypothe-

ses that multi-parameter modeling generates becomes apparent. This shows the need for effi-

cient methods for traversing the search space. The maximum number of terms should always

allow at least an additive combination of all parameters so n≥ m. For convenience, we will use

n = 3 throughout the following example, which is required for three parameters. With n = 3

and I , J defined as in Section 2.1, the model search space when one parameter is considered

can be built as follows: For each of the terms there are |I | · |J | possible options, meaning 54

possibilities in this case. The order of terms is irrelevant and the same term cannot be repeated,

therefore the cardinality of the search space is the binomial coefficient
�|I |·|J |

n

�

, i.e., 24,804 mod-

els in total. If we now consider two parameters, each term has (|I | · |J |)2 possible options, i.e.,

2,916 in total. The model search space in this case contains 4,128,234,660 candidates. Let us

assume that 300,000 hypotheses can be evaluated in a second, a rate drawn from our experience

on current commodity personal computers. Even with the simplifying assumption that evaluat-

ing a hypothesis with multiple parameters would take as much as evaluating a hypothesis with

only one parameter, it would still take more than three hours to select the best model for a sin-

gle combination of metric and kernel. With three parameters the model search space contains
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around 6.51 · 1014 candidates, and with m parameters
�(|I |·|J |)m

n

�

, making the search for the best

fit a daunting task. Spending six years to compute the best model with three parameters for one

metric of one kernel is not something any developer would consider. Obviously, one does not

need many parameters to make the traversal of such a multi-parameter search space practically

infeasible. While this problem is embarrassingly parallel, the resource requirements for such

a performance modeling process will far outweigh any gains obtained through optimization of

the target application. To overcome the challenge that the size of the search space presents, we

speed up the search process using novel heuristics, which we describe in Section 3.2.

3.2 Fast multi-parameter modeling

We build on the concepts of single-parameter modeling from our prior work, but extend and

optimize them to match the new requirements posed by modeling multiple arbitrary parameters.

Note that the original method is only capable of modeling the scalability as a function of one

parameter, usually the number of processes. This single-parameter modeling rests on several

simplifying assumptions that do not hold for general multi-parameter modeling, for example,

that we can search all models for this one parameter. Thus, we first develop a new search

method for the model space of a single arbitrary parameter and then derive an effective method

to combine all single-parameter models into a single model for all parameters.

3.2.1 Improved single-parameter modeling

To model multiple parameters without the time to solution becoming prohibitive, with billions

of candidates being generated for as few as three parameters, the existing approach to model

detection is no longer sufficient: we must find a way to reduce the search space of model

hypotheses. The following method is only applicable to single-parameter modeling. It comple-

ments the hierarchical search outlined in the next subsection to speed up the entire modeling

process, as the hierarchical search heuristic uses the single-parameter modeling as a starting

point.

Reducing a search space is often related to finding some ordering of the search space, i.e.,

finding a way to rank the possible hypotheses, and our method is no exception. We use the

following sets of modeling terms for n = 1: I =
�

0
4 , 1

4 , . . . , 12
4

	

, and J = {0} as an example to

demonstrate our hypothesis ranking approach. This example generates a small set of hypothe-

ses when modeling a single parameter x: {x0; x1/4, . . . , x12/4}. Based on our experience with

performance modeling, we make the following observation: if we rank the hypothesis functions

by the magnitude of their first derivative at the observation with the largest parameter value

then the respective error function of the ranked hypotheses is unimodal, i.e., a function that has

a unique minimum or maximum point and is monotonically decreasing/increasing towards it.

The unique minimum of this discrete function will be the best matching term.

This is intuitive: the regression and cross-validation approach we use always finds the best

possible coefficients for each of the terms to fit the available data, but the results will be better,

the higher the similarity between the hypothesis function and the true function is. As an exam-
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Figure 3.1: Model fit error for different model hypotheses. The fit error of model hypotheses
decreases towards the one with the smallest error, in this case x1.

ple, let us assume the true function is ft(x) = 2 · x2. If we have two hypotheses, f1(x) = c1 · x
and f2(x) = c2 · x , the regression method we apply will find c1 and c2 such that both f1 and

f2 are as close as possible to ft (the error of the fit is as small as possible). However, as the

growth of the linear function f1 is much closer to the quadratic function ft than the growth of

the logarithmic function f2, and therefore the error of the linear function f1 will be smaller than

the one of the logarithmic function f2.

Following this observation, we sort all hypotheses by their slopes at the measurement with

the largest parameter value. In the particular example from above, this is trivial, as all hy-

potheses are simple monomials and thus their order (for any value) is the ascending order

of the exponent. In the case of more complex hypotheses the order may change depending

on the measurement chosen. For example comparing combinations of polynomials and loga-

rithms with different exponents can lead to intervals where one combination or another have

a higher growth rate, depending on the parameter range. As a way of imposing a determin-

istic total ordering, we select the measurement with the largest parameter value, as users are

most often interested in understanding and predicting the behavior at and beyond the upper

range of a given parameter. As an example, we will attempt to model the effect that vary-

ing the group number has on floating-point instructions executed in the LTimes kernel of the

Kripke application. We consider the following pairs of parameter x and measurement t as in

input: (32,1209.6), (64,2419.2), (96,3628.8), (128,4838.4), (160,6048). Figure 3.1 shows

the residual sum of squares error of various model functions fitted via the least squares method

to our five data points. The x1 hypothesis is a perfect fit without error, and the error of the
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Figure 3.2: Golden section search interval reduction. The search interval starts as [i1, i2] and
becomes [i1, i4] after one step of the golden section search method.

model fit as a function of its rank (the index in the sorted hypothesis list) has a minimum at the

index of the best model. Since this minimum is also unique, this function is unimodal in the

analyzed range.

3.2.1.1 Modified golden section search

The observation above justifies a modified golden section search as a means to traverse the

model hypothesis search space. This method is a way to quickly narrow down the range of val-

ues in which the extremum of a unimodal function is found. Starting with the complete search

space, we recursively refine the interval in which the extremum can be found as follows: we first

divide the total search space into subintervals by choosing two additional points between the

extreme points of the interval. For optimal performance, the points in the interval are selected

using the golden ratio φ = 1.618. We then evaluate the model fit at all four points and from

there pinpoint the interval that contains the extremum. We then repeat the same approach on

this interval recursively, until only one hypothesis remains.

As an example, a step of the method is displayed in Figure 3.2 using data from the LTimes

kernel of Kripke: the two end points of the interval [i1, i2] and one point in the interval, i3,

such that i2−i3
i3−i1

= φ. In this situation e(i1) > e(i3) < e(i2)∧ e(i1) > e(i2). A new point i4 is then

chosen in the interval [i3, i2] using the same φ as before. Indices only take integer values, so

the i3 and i4 must be rounded before the hypothesis error function e can be evaluated.

The evaluation of i4 indicates where the search should continue. If e(i4) ≥ (i3) due to the

monotonicity of e, the minimum cannot be in the interval [i4, i2]. Therefore the search has

to be continued in the interval [i1, i4]. Should e(i4) < e(i3) the search must be continued in
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[i3, i2]. After a finite number of recursive search interval contractions only one hypothesis can

be selected, and that will be the one with the optimal fit out of all hypotheses available in the

search space.

3.2.1.2 Limitations

If the true function we are trying to model has a behavior very different from what can be

modeled based on the normal form then it is possible that the above observation no longer holds.

Examples include discontinuous functions and functions with multiple behaviors depending on

the parameter values. If they occur, in the worst case a model which is not the model with the

best fit could be selected. Nevertheless, if a model has a large fit error, an unsatisfying value for

R̂2 would alert the user before he could draw any wrong conclusions. A new approach that is

capable of handling these corner cases has been developed and will be described in more detail

in Section 5.5.

3.2.1.3 Benefits

Golden section search allows the model hypothesis space to be searched faster. The dependence

between the cardinality of the hypotheses set and the number of steps needed to find the best

model goes down from linear to logarithmic. The benefits therefore increase the larger the

search space becomes. For example, in the case of the single parameter search described in

Section 3.1.2, which created a search space of 24,804 candidates, the number of steps required

drops to 25, a reduction of almost three orders of magnitude, as in each step at least a third of

the candidates are discarded.

The advantage of the golden section search over similar approaches, such as ternary search, is

the reuse of previous measurements. At any given step only one new point has to be evaluated.

Needing as few such evaluations as possible is crucial, as this is a computationally intensive part

of the process.

3.2.2 Combining multiple parameters

Our approach for multi-parameter modeling is based on the assumption that the best single-

parameter models for each individual parameter form the best multi-parameter model together,

only their combination is unknown. This is—just like the previous assumption—intuitive: If the

best model for the process count is c1 · log x1 and the best model for problem size is c2 · x2
2 we

expect that the best multi-parameter model will either be c3 · log x1 · x2
2 or c4 · log x1 + c5 · x2

2

depending on whether the effects of the two parameters are combined or independent of each

other. We do not expect it to be c6 · x1
3 ·
p

x2, or any other model unrelated to the best single-

parameter models.

40



3.2.2.1 Hierarchical search

Using the assumption above, we first obtain single-parameter models for each individual param-

eter using the golden section search method previously described. Once we have these models,

all that is left is to compare all additive and multiplicative options of combining said models

into one multi-parameter model and choosing the one with the best fit.

The size of the search space for this approach is as follows: given m parameters and one

n-term model for each of them. We must combine all subsets of terms of each single-parameter

model with each subset of terms of each other single-parameter model. The number of subsets

of a set of n elements is 2n, so the total size of the search space is 2n·m.

Again using the example from Section 3.1.2, assuming the single-parameter models for all

three parameters have been computed and that all models have three terms each (the worst

case scenario for search space cardinality in this case), the number of hypotheses that have to

be tested is 23∗3 = 512. Adding the 3 times 25 steps needed to generate the single-parameter

models, we need to look at most at 587 models to find the best fit, compared to the 6.51 · 1014

in the unoptimized approach.

3.2.2.2 Discussion

The total size of the search space, 2n·m, can seem daunting at first, but is insignificant when

compared to the unoptimized search space. Considering that two terms have proven suffi-

cient to successfully model applications, the search space becomes 4m. While the number of

parameters cannot be arbitrarily large, our approach practically removes model generation as

a bottleneck, as collecting sufficient experimental measurements will prove impractical long

before our modeling approach will experience any issues.

3.2.3 Data collection

To create multi-parameter models, we need to have sufficient input data that allows accurate

single-parameter models for all parameters to be generated, as required by the hierarchical

search described in Section 3.2.2.1. For this reason, the set of parameter assignments used in

experiments must be symmetric. Assume each of v measurements is a tuple of (x1,i, . . . , xm,i, t i),
consisting of m input parameter values plus the metric t of interest (e.g., the completion

time). Then symmetric means that for each input parameter x i there must be a set of k
measurements where x i is varied while all other parameters remain constant. For exam-

ple, the three-parameter tuple set ((1,10,22),t1), ((2,10,22),t2), ((1,11,22),t3), ((2,11,22),t4),

((1,10,44),t5), ((2,10,44),t6), ((1,11,44),t7), ((2,11,44),t8) is symmetric, as all combinations

of values are present. The removal of any single tuple would render the set non-symmetric.

Symmetry of the measurements used is required by our method because it allows us to fix any

single parameter and look at it in isolation, considering the other parameters constant. For this,

we project out all but one parameter and calculate the average value across all tuples with the

same assignment for the chosen parameter. For example, if we model the first parameter of the
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previous example, we would use ((1,0, 0), (t1+ t3+ t5+ t7)/4) and ((2,0, 0), (t2+ t4+ t6+ t8)/4)
as the basis for the single-parameter model of the first parameter. Overall, this strategy requires

a full factorial design of v = km measurements if each parameter is tested in k configurations.

We empirically observed that k = 5 is sufficient in practice. Thus, the number of parameter

assignments to be tested is 5m. Depending on the run-to-run variation, the measurement of

each parameter assignment must be repeated up to five times. Therefore, the total number of

required measurements is between 5m and 5(m+1).

3.3 Evaluation with synthetic data

To evaluate the heuristics presented in Section 3.2, we quantify the size of the search space

traversed during the model search in comparison to an exhaustive traversal of the same search

space. Furthermore, we determine the frequency at which our heuristics lead to models that

differ from the ones the exhaustive search produces. In those cases where the models we

discover are different, we analyze these differences and discuss their impact on the quality of the

results. Because traversing the entire search space for three or more parameters is prohibitively

time consuming even with a very small number of potential terms, we allow only at most two

model parameters for the purpose of this comparison.

The evaluation is divided into two parts. First, we examine how close the models, generated

both through exhaustive search and with the help of heuristics, are to inputs derived from

synthetically generated functions. This allows our results to be compared with a known optimal

model. Second, we compare the results of both approaches when applied to actual performance

measurements of scientific codes, which factors in the effects of run-to-run variation.

We generate 100,000 test functions by instantiating our normal form from Eq.2.1 with ran-

dom coefficients cl ∈ (0, 100) and il and jl randomly selected from the sets I and J, obtaining

functions of the type represented in Eq. 3.2.

f (x) = c0 + c1(x
i · log j

2(x))
0|1 · (yk · log l

2(y))
0|1+

c2(·x i · log j
2(x))

0|1 · (yk · log l
2(y))

0|1
(3.2)

To create the input sets for our model generator, we evaluated the functions at 5m points with

m = 2 being the number of parameters. To these inputs, our model generator responded in

three different ways:

1. Optimal models. The most common result (approx. 95%) is that the heuristically de-

termined model, the model determined through an exhaustive search, and the known

optimal model are identical.

2. Lead-order term and its coefficient identified, smaller term not modeled by either

method. Another scenario is encountered when the optimal model has the form c1 · f (x) ·
f (y)+ c2 · f (y), where c1 · f (x) · f (y)� c2 · f (y) in the considered parameter ranges. The

optimal model 100 · x3 · log2(y)+2 · log2(y) is an example of this case. Neither modeling

approach is capable of detecting the smaller term and they both only model the lead-order

term. The effect on the quality of the resulting models is very small, and an attempt to

model such small influences will often lead to noise being modeled instead.
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Table 3.1: Evaluation of heuristics using synthetic functions.

Search type Heuristic Exhaustive

Optimal models identified 95,480 [95.5%] 96,120 [96.1%]

Lead-order term identified 4,520 [4.5%] 3,880 [3.9%]

(including coefficient)

Lead-order term not identified 0 [0%] 0 [0%]

Modeling time 1.5 hrs. 107 hrs.

3. Lead-order term and its coefficient identified, smaller additive term only modeled

by exhaustive search. This behavior appears when the optimal model has the form

c1 · f (x) + c2 · f (y), where c1 · f (x) � c2 · f (y). In this case the heuristic approach

fails to identify the parameter with a smaller effect. The contribution of one parameter

leads to the single-parameter model for the other parameter to have a very large constant

component. As this constant is larger than the variation caused by the parameter with

the smaller effect, the modeling process attributes the variation to potential noise and

conservatively selects the constant model. The effect on the quality of the resulting model

is again negligible.

We have not added synthetic noise to this evaluation as it was important to compare the speed

of the two approaches as well as their accuracy. Noise would have degraded the performance

of both approaches, without offering new insights.

Table 3.1 displays the number of times the modeling identified the entire function correctly

and the times only the lead-order term was identified correctly. The lead-order term was cor-

rectly identified in all test cases. The difference in time required to obtain the 100,000 models

is significant: 1.5 hours when using the heuristics compared to 107 hours when trying out all

models.

3.4 Case studies

In addition to synthetic data, we evaluate our heuristics with three scientific applications:

Kripke, CloverLeaf, and BLAST. Below, we briefly describe them along with the input decks

used. All tests we report were run on Vulcan, an IBM BG/Q system at Lawrence Livermore

National Laboratory with 24,576 nodes in 24 racks. Each node is powered by an IBM PowerPC

A2 processor with 16 cores/64 hardware threads and features 16 GB of main memory. The

system uses IBM’s Compute Node Kernel (CNK), as well as an IBM MPI implementation based

on MPICH2. We use Score-P [13] to acquire all of our metrics for the chosen applications. In

particular, we measure execution time, total number of instructions, number of floating point

instructions, and MPI bytes sent and received.
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Figure 3.3: Comparison of performance models obtained for scientific applications using either
our heuristics or a full traversal of the search space. For each application, we show the percent-
age of times where the resulting models were identical (left bar), where only the lead-order
terms and their coefficients were the same (center bar), and where the lead-order terms were
also different (right bar).

3.4.1 Kripke

Kripke [45] is an open-source 3D Sn deterministic particle transport code. It calculates angular

fluxes and stores them in a flexible hierarchy of data structures (direction sets, group sets, and

zones). Kripke was designed as a research tool to explore how data-layouts affect performance,

especially on different architectures and with different programming models. For this test, we

varied two parameters: the number of directions per set (16, 32, 64, 128, 256, and 512), and

the number of groups per set (32, 64, 96, 128, and 160).

3.4.2 Blast

BLAST [46] is an arbitrary-order finite-element hydrodynamics research code under develop-

ment at Lawrence Livermore National Laboratory. It is used to explore the costs and benefits of

high-order finite element methods for compressible hydrodynamics problems on modern and

emerging architectures. BLAST implements two different algorithmic approaches that produce

the same answer: full assembly, which assembles and solves a global matrix, and partial assem-
bly, which stores only physics data and solves the linear system matrix free. Using the Sedov

test problem [47] as input, we kept the number of degrees of freedom in the problem fixed

and ran 2D tests varying two parameters: order (1, 2, 4, 8, and 16) and number of MPI ranks

(64, 256, 1024, 4096, and 16384) using 64 ranks per node. These tests allowed models for

both algorithmic approaches to be produced, considering various parameters of interest to the

application team, including FLOP scaling with order, data motion scaling with order, and code

scaling with processor count.
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3.4.3 CloverLeaf

CloverLeaf [48] is a 2D structured hydrodynamics mini-application that solves the Euler equa-

tions using an explicit, second-order method. It was developed to investigate the use of new

programming models and architectures in the context of hydrodynamics. We use a modified

version of Sod’s shock tube [49] as input problem, where we increase the vertical size of the do-

main and allow the problem to evolve in both dimensions. We ran CloverLeaf in a weak-scaling

configuration, where the problem size per node remains fixed. We vary two parameters: the

per-node problem size (1, 2, 4, 8, 16) and the number of MPI ranks (64, 256, 1024, 4096, and

16384) using 16 MPI ranks per node. This allowed models to be produced that capture key con-

cerns for CloverLeaf developers: how problem size and processor count impact the scalability

of the application.

3.4.4 Evaluation

Real data sets come with separate challenges, such as not knowing the best model, and indeed

no guarantees that the assumptions required for our method hold, namely that the optimal

model is described by one and only one function and that the function is part of the search

space. Fig. 3.3 shows the results of both applying the heuristics and searching the entire solution

space. As expected, in the overwhelming majority of cases the two approaches provide the same

result (84%), or at least present the same lead-order term (14%). In about 2% of the cases the

models differ. The reason is that noise and outliers occurring in real data sets are not limited to

any arbitrary threshold. Indeed, it is possible that the effect of noise on performance is larger

than the impact caused by the variation of any given parameter. The projection used by the

heuristics to generate single-parameter models out of multi-dimensional data diminishes noisy

behavior to a higher degree than the exhaustive search does. Therefore, in these rare cases,

the heuristic approach results in models with a more conservative growth rate than the ones

identified through an exhaustive search. The optimal model is not necessarily the one identified

by the exhaustive search, as noise could be modeled alongside the parameter effects.

In all three cases, the model generation for an entire application took only seconds (cf.

Fig. 3.4) and was at least a hundred times faster than the exhaustive search. Generating perfor-

mance models for an entire application means one model per call path and target metric. The

search space reduction in all three cases was five orders of magnitude (from 4,250,070 model

hypotheses down to 66 per call path and target metric).

3.5 Application insights

In the following, we present the type of insights our approach can deliver. In two case studies,

Kripke and BLAST, we look at how performance modeling with multiple parameters can help

developers understand and validate the behavior of an application.
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Figure 3.4: Time required to obtain performance models of scientific applications via heuristics
(left bar) and via exhaustive traversal of the entire search space (right bar).

3.5.1 Kripke

For Kripke we now increase the number of model parameters to three, enabling more complex

behavior to be captured. The number of directions per set and number of groups per set are

varied as in Section 3.4. In addition, we vary the number of MPI ranks (8, 64, 512, 4,096,

and 32,768). Each rank has 8 OpenMP threads, which means the rank counts correspond to

using 1, 8, 64, 512, and 4,096 nodes on Vulcan, using all 64 hardware threads available on a

node. These parameter settings represent a realistic range for actual use cases, while remaining

tractable. Although we assume that system noise affects our Blue Gene system to a lesser

degree, we repeat each test five times to verify its impact experimentally. We ran 750 tests (150

different parameter settings times 5 repetitions each). We determined the confidence intervals

and found that there is little to no noise. Had we have known for sure that the system has

little to no noise, 150 measurements would have sufficed. This is also true if measurements are

restricted to deterministic countable metrics.

The analysis of Kripke covers three parameters: the number of MPI ranks p, the number of

directions per direction set d, and the number of groups per group set g. We are particularly

interested in the behavior of the LTimes, LPlusTimes, and SweepSolver kernels, as the

combination of these three kernels encapsulate the physics simulated by Kripke. Table 3.2 lists

selected performance models we generated for these kernels. The LTimes kernel computes

the spherical harmonic moments of the the angular flux for each element in each group and for

each direction. Given that in our weak scaling experiments the number of elements per rank is

kept constant, we expect the number of floating-point instructions per rank to remain constant

as well. However, we should discover linear relationships with respect to both directions and

groups, and their effects to be multiplicative. The model we found is 5.4 · 106 · d · g. R̂2 = 1

indicates that this model is exact. Given the expected availability of floating-point processing

power on current and future supercomputers, linear growth is not necessarily a bottleneck,

but the combined influence of the two parameters could become challenging. The kernels

LPlusTimes and SweepSolver are structured similarly to the LTimes kernel, except that
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Table 3.2: Selected multi-parameter performance models for different kernels of Kripke and
BLAST.

Metric Model R̂2

Kripke

LTimes

Floating point instr. [106] 5.4 · d · g 1

LPlusTimes

Floating point instr. [106] 5.4 · d · g 1

SweepSolver

Floating point instr. [106] 2.16 · d · g 1

LTimes

Time [seconds] 12.68+ 3.67 · 10−2 · d5/4 · g 0.989

LPlusTimes

Time [seconds] 9.82+ 9.62 · 10−3 · d · g3/2 0.991

SweepSolver

Time [seconds] 4.91+ 4.83 · 10−3 · p1/3 · d · g + 0.90 · d · g 0.994

MPI_Testany

Time [seconds] 6.81+ 0.8 · p1/3 + 4.76 · 10−3 · p1/3 · d · g 0.996

SweepSolver

Bytes sent =recv. per msg.[106] 4.8 · d · g 1

SweepSolver

Msg. sent = Msg. received 11250+ 900 · log(p) 1

BLAST – full assembly

MPI_Isend

Bytes sent=recv. per msg. 1.95 · 104 + 81.8 · log p · o7/4 + 4.62 · 103 · o7/4 0.999

BLAST – partial assembly

MPI_Isend

Bytes sent=recv. per msg. 7.63 · 103 + 1.31 · 102 · log p 0.871

the calculations in their innermost loop are different. Nonetheless, as far as the number of

floating-point instructions is concerned, all three kernels belong to the same complexity class.

However, the SweepSolver kernel’s runtime model is different from the other two kernels:

The number of parallel MPI ranks appears in the model. The difference stems from the fact

that in addition to floating-point calculations, the SweepSolver uses MPI to pass data be-

tween ranks and ensures that dependencies between ranks are maintained. Theoretically, the
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processor count should not affect the number or size of MPI messages sent by each processor,

except for a logarithmic term in the message number due to optimizations in the inter-processor

communication scheme. The models we have generated are in agreement with this theory and

indicate that the p1/3 term is caused by waiting on other processors, as shown by the model

of the MPI_Testany function. The MPI_Testany function is called from SweepSolver

using spin waiting. The p1/3 term stems from the three dimensional data decomposition across

processes. It represents the diagonal of the process cube, and the waiting time caused by the

wavefront traveling along it. The spin waiting causes the performance of these two kernels to

compound each other. This is why both kernels show a much smaller p1/3 · d · g term, (about 2

orders of magnitude smaller than the lead-order term), representing the interaction caused by

the spin-waiting.

Bailey and Falgout [50] show that the theoretical lower bound on the SweepSolver kernel

for 3D simulations is O (p1/3+d ·g). The key difference between the theoretical lower bound and

Kripke’s actual runtime performance is the small multiplicative effect caused by the spin waiting.

Although the coefficient is quite small, the contribution could become more pronounced at

larger configurations.

Since the study above considers three parameters, relying on an exhaustive search would

not have been a competitive option. The model generator would have taken more than five

hundred years. In contrast, our heuristics-based model generation took less then a minute. This

corresponds to a search space reduction of twelve orders of magnitude.

3.5.2 BLAST

BLAST [46] has provided us with the opportunity to study the effects of a parameter, the order,

that does not define the input problem size and analyze its interaction with the processor count.

When used with a fixed number of degrees of freedom, order is independent of problem specifi-

cation. That is, for a fixed processor count, changing order does not meaningfully change initial

conditions of the simulation, nor the resolution of the degrees of freedom within the mesh.

Changing order does change the calculations used within the simulation and the flexibility of

the mesh (how likely the mesh is to tangle). In general, a higher order increases the number

of calculations and increases the flexibility of the mesh. A discussion of balancing the costs and

benefits of increasing order are beyond the scope of this paper. We used the same setup and

measurements as in Section 3.4.

When modeling the two different algorithms for BLAST, we have gained new insights into how

their parallel communication behavior differs. We model the bytes sent and received in non-

blocking fashion and display the results in Table 3.2. We observe that both approaches grow

logarithmically with the number of processors in weak scaling mode. The order of the solver

has no effect on the partial assembly algorithm but a significant effect on the full assembly

algorithm, as indicated by the o7/4 component. The developer analyzed our result, and did not

expect the order to have such a pivotal effect, or that the order should have such a different

effect on the two algorithms. These insights will help the developers better run and optimize

the code as they are now aware of the additional cost the order has in full assembly mode. This
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result also showcases the compounding effect on performance that parameters have and the

need to understand their interactions.

3.6 Discussion

The evaluation with synthetic and real data demonstrates that our heuristics can offer results

substantially faster than an exhaustive search—without significant drawbacks in terms of result

quality. For three or more parameters, the size of the search space would have prevented

such a comparison altogether, which also means that the exhaustive search presents no viable

alternative beyond two parameters.
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4 Requirements engineering using
performance modeling

The last main contribution of this work is a method showing how automated performance mo-

deling can be used to quickly predict application requirements for varying scales and problem

sizes. Following this approach, determining the exascale requirements of five major codes be-

comes possible. We can derive an optimization strategy, and illustrate system design trade-offs

in the light of their (optimized) requirements.

4.1 Motivation

Ever-growing computational demands from domains such as climate science, theoretical

physics, and neuroscience require large-scale machines in the near future. Planning the de-

sign and detailed configuration of such systems is a daunting task since they are often major

investments, up to half a billion dollar over their lifetime. Thus, it is extremely important that

the machine efficiently supports the execution of all target applications. Designing it is a multi-

year planning effort while it stays “top of the line” only for three to five years after installation.

Thus, while the machine must be tailored to its workload, it must also be productive from day

one on.

Co-designing applications and the system is a powerful technique to ensure early and sus-

tained productivity as well as good system design. In their early phases, such co-designs often

rest on back-of-the-envelope (BOE) calculations. For example, BOE calculations have been fa-

mously used to determine the well-known “bytes-to-flop ratio” for the network and memory in

early Cray machines. They continue to gain popularity with requirements-balance models such

as the roofline model [51]. In general, such calculations allow problems in applications to be

detected early on and their severity to be determined years before the machine is installed or

the first prototype becomes available. This is increasingly important since mitigating such prob-

lems can often take several person-years. On the system side, BOE calculations allow designers

to adjust system parameters to target applications, for example, they can be used to determine

the required bytes-to-flop ratio of memory, network, or even the file system. In addition, they

can be used to determine required memory sizes, usability of accelerators and co-processors,

and even the number of sockets and size of shared-memory domains in the target system.

We automate these BOE calculations in a lightweight requirements analysis for scalable par-

allel applications. Combining standard performance profiling [13, 52] and stack-distance sam-

pling [53] with an extremely lightweight automatic performance-modeling method [24, 25],

we generate empirical models that allow projections for different numbers of processes and

problem sizes. Application requirements can be anything such as the number of floating point
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operations, the number of bytes transmitted across the network, the number of memory ac-

cesses including access locality, or memory consumption. System designers can use the com-

bined process-scaling and problem-scaling models and the specification of a candidate system

to determine the resource usage of an application execution with a certain problem size.

Once empirical models are established for an interesting set of requirements, the designer

can use them to “play” with configurations such as (1) the amount of memory per node, (2) the

speed of memory per node, (3) the network injection speed (how many adapters per node), or

(4) the number of cores per socket or node (e.g., many- vs. multicore) etc.. Given the degree of

automation we provide, the number of applications and system design choices to be included

in the co-design process can be much higher than in a manual study, substantially expanding its

breadth.

In this chapter, we demonstrate the power of our technique by analyzing a set of relevant

applications and the appropriateness of various system designs. The major contributions of this

chapter are:

• The integration and extension of existing performance tools [13, 52, 53, 24, 25] that

allows the requirements of parallel applications to be modeled, including memory con-

sumption and access locality

• A technique for practical co-design that extrapolates application requirements to an envi-

sioned system and points out possible bottlenecks on both sides

• A case study with five applications that shows how they would respond to relative system

upgrades and how well they would match three different exascale candidate systems

4.2 Requirements engineering

As the foundation of our approach, we define a very simple notion of requirements that sup-

ports their quantification in terms of the amount of data to be stored, processed, or transferred

by an application. Knowing these numbers alone does not yet allow a precise prediction of

application performance or system utilization but can serve as an indicator of the relative im-

portance of certain system resources and how this ratio changes as we scale a program to a

larger system. Ultimately, our requirements are expressed in the form of empirical models that

allow projections for different numbers of processes and problem sizes.

Our notion of requirements is purely application centric, that is, it does not make any assump-

tion about the hardware other than the ability to run the code as is. Hence, all our requirement

metrics refer to data flow at the interface between hard- and software – not between lower

layers of the hardware. While the expressiveness of our requirement models is certainly lim-

ited, a significant advantage is the simplicity and low effort with which it can be instantiated

for a given execution configuration. All that is needed is an MPI implementation of the code,

established profiling tools, such as Score-P [13], PAPI [52], and Threadspotter [53], and the

performance modeling tool Extra-P [24, 25] to turn the collected requirement data into mod-

els. Threadspotter was modified to extract the data it collects for post-processing. Disregarding
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Table 4.1: Requirement metrics.
Resource Metric

Memory footprint # Bytes used (resident memory size)

Computation # Floating-point operations (#FLOP)

Network communication # Bytes sent / received

Memory access # Loads / stores; stack distance

slight variations in the platform-dependent semantics of certain hardware counters, the require-

ments of an application can basically be obtained on any system. Since we regard thread-level

concurrency not as a requirement in its own right but rather as a way to satisfy requirements,

not even specific threading hardware such as a GPU is essential. Likewise, we consider execu-

tion time and energy consumption as manifestation of requirement fulfillment and not as their

expression. Therefore, the metrics we acquire can be narrowed down to—in most cases—highly

reproducible hard- and soft-counters such as floating-point operations or bytes injected into the

network.

4.2.1 Application requirements

Since it is currently the predominant programming model and also expected to be highly in-

fluential in the future, we stipulate that of each target application an MPI version exists.

Application requirements are expressed as a set of functions r(p, n) that predict the demand

for resource r depending on the number of processes p and the problem size per process n.

Currently, we consider the requirement metrics listed in Table 4.1, classified by the resource

they refer to. Our metrics characterize application requirements in terms of space (i.e., memory

consumption) and “data metabolism” (i.e., bytes processed in floating-point units or exchanged

via memory and network). Because the amount of data moved between processor and mem-

ory subsystem alone is barely a reliable indicator of the pressure an application exerts on the

memory subsystem, we also consider memory access locality. Specifically, we capture the stack

distance [53] of memory accesses, which is the number of accesses to unique locations that

occur between two accesses to the same location.

All metrics refer to a single process, since the matching hardware resources such as CPUs,

memory, and network links grow roughly proportionally with the the number of processes ex-

pected on a machine. We acquire the metrics related to computation and communication using

the Score-P profiler, which captures them at the granularity of individual function call paths,

henceforth called kernels. This allows bottlenecks to be precisely attributed to individual pro-

gram locations. Given that the number of floating-point operations required per process is

roughly independent of the number of threads used to compute them, we profile the appli-

cation single threaded, which simplifies our workflow and makes it more robust. We further

invoke getrusage() to determine the resident memory occupied by each process across its entire

lifetime.

The number of memory accesses and their stack distance is measured using a combination of

Threadspotter and PAPI. Originally designed as an interactive locality optimizer for non-expert
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users, Threadspotter collects memory access distances only internally to derive optimization

suggestions. However, we have modified it such that we can access these metrics directly.

Threadspotter identifies loops in an application and instruments groups of instructions that ac-

cess the same memory location within those loops. Therefore instruction groups represent the

granularity at which distance metrics are provided. To keep the runtime dilation within practi-

cal limits (roughly a factor of eight), Threadspotter samples the execution in short bursts where

all memory accesses are documented, followed by periods during which no measurements are

gathered. The stack distance used in our approach is a refinement of the more widely known

reuse distance [54]. While the reuse distance counts all memory accesses between two consec-

utive memory accesses to the same location, the stack distance counts only accesses to unique

locations, making it a more realistic measure of locality. Since Threadspotter does not count

memory accesses, we let PAPI measure the number of load and store instructions for the entire

program. Then, we estimate the number of memory accesses per instruction group based on

the ratio of samples collected for different instruction groups.

To offset the non-determinism and possible variance of this process, we propose the following

methodology to analyze memory locality information: First, any instruction group with less than

100 samples gathered for each measurement configuration is ignored, as the risk of outliers

adversely affecting the resulting model is too high. We have observed that both the number

and magnitude of outliers is much greater when examining memory locality than it is for other

metrics. This becomes obvious when considering a loop which is executed multiple times during

the runtime of a program. In the loop itself, stack distance is low if it shows good locality.

However, many memory accesses can happen between different executions of the loop, leading

to higher stack distance when returning to the loop later on. To capture the most common

behavior, we model the median over all gathered samples.

Using the above methodology, we can determine whether memory locality changes and es-

pecially whether it drops as the application is scaled up. Careful algorithm designers will use

locality-preserving techniques such as tiling or blocking to keep the locality independent of the

problem size. Everything else is usually considered a performance bottleneck. With our approx-

imate models, we are able to tell if such a bottleneck exists. If not, we assume that the number

of main memory accesses scales with the number of retired load and store instructions, which

we can easily measure. We chose distance metrics instead of cache misses because they are

hardware independent, less prone to noise and jumps, and therefore easier to model.

4.2.2 Scaling strategy

Our goal is to let an application calculate the largest possible input problem as efficiently as

possible. This objective corresponds to the idea of heroic runs [55]. Because the overall memory

requirement of an application usually grows with the problem size, we therefore expect that an

application will occupy all nodes of the machine. Deriving our scaling strategy now becomes

straightforward. For simplicity, we assume that the number of MPI processes is determined

by the number of processor sockets, so we just need to scale the problem size per process

until we exhaust the available memory. Using our memory-consumption model, this is quickly
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accomplished. After this point, we can employ our models to predict application requirements

on the target system.

4.2.3 Co-design method

Our co-design method is tailored to the early stages of machine procurement when a first vision

of the target system needs to be developed and no prototype hardware is available yet. Typical

questions to be answered include: Should we rather buy a larger number of thin nodes or a

smaller number of fat nodes? Does fat mean more memory or also more floating-point perfor-

mance through the provision of accelerators or both? If we buy our system in two tranches,

which scaling problems should our application developers expect once we upgrade to the full

system? Which scaling problems of our workload should we tackle to reconcile conflicting

requirements of different codes?

On a more abstract level, the type of question that we can answer is of the following form.

How do the requirements of an application change when the application is ported from an old

system to a new system and would the new system relax or even tighten existing bottlenecks of

the application? In a broader sense, we can tell how well the new system would satisfy the new

requirements under the assumption that the old system exactly matched the old requirements.

Matching means here that application requirements and system resources are balanced such

that the application exhausts all system resources equally. In brief, we always compare two

systems in the light of the requirements changes caused by scaling the application from the first

to the second.

4.2.4 Model generation

Originally developed to uncover scalability bugs in applications with a large code base [24, 25],

the model generator Extra-P requires a set of performance profiles as input, representing runs

with different numbers of processes and problem sizes. The input sources used in this study

encompass performance profiles obtained with PAPI, Score-P, and Threadspotter.

As a rule of thumb, we need to run measurements for at least five different configurations

of each parameter we consider, requiring 25 measurements in the case of process count and

problem size variation. The output of the generator is a set of human-readable functions, one

for each instrumented program location and metric. Each function describes the evolution of

the metrics as the number of processes and the problem size per process are changed.

Different from previous studies [24, 25], however, we refrain from modeling execution time.

Time is suitable to find certain classes of scalability problems, but is affected by noise and all

sorts of other non-linear effects. Most important, however, it is highly architecture dependent,

which means that the results are generally not portable to a new system and, thus, of little value

for its design. Our primary goal is the characterization of application behavior, which is why

we restrict ourselves to hardware and software counters that represent the application and not

a specific hardware (cf. Section 4.2.1).
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4.3 Application requirements study

We demonstrate our requirement modeling method with five applications: Kripke [45],

LULESH [56], MILC [22], Relearn [57], and icoFoam [58]. The first four can be considered

realistic candidates for exascale deployment. We gathered our measurements on two test sys-

tems: the first one is an IBM Blue Gene/Q with almost 500,000 cores. Each node features one

PowerPC A2 processor with 16 cores running at 1.6 GHz. The second is a Linux cluster that

consists of 706 nodes with two 8-core Intel Xeon E5-2670 processors on each node, running at

2.6 GHz. We obtained the measurements for LULESH, MILC, and Relearn on the BG/Q system

and those for icoFoam and Kripke on the Linux cluster. Because Threadspotter does not support

the processor of the BG/Q system, we conducted these measurements on the Linux cluster for

all applications.

The following subsections describe the most important findings for each application. We also

discuss the most likely bottlenecks, leading to suggestions as to which requirements need to

be optimized. We generated models for the previously described metrics by gathering mea-

surements for combinations of process count and problem size per process. Our results are

summarized in Table 4.2 and discussed below.

4.3.1 Kripke

Kripke is a 3D Sn particle transport code. It is written in C++ and implements an asynchronous

MPI-based parallel sweep algorithm. A major goal of Kripke is the evaluation of programming

models, data layouts, and sweep algorithms in terms of their performance impact. In our test

runs, we varied the problem size, defined as the simulated volume per process, and the number

of processes.

Requirements In Table 4.2 we see that computation and communication are linearly affected

by the problem size per process, while the process count shows no effect at all. Memory locality

is unaffected by both problem size and process count. The number of load and store instruction

however grows with the product of problem size and process count. Similar to computation and

communication, we only discover a linear growth of the memory footprint when increasing the

problem size per process.

Conclusion The requirement that would benefit most from optimization is memory access.

Transforming the multiplicative impact of process count and problem size on the number of

loads and stores into an additive one through algorithmic improvements would remove the last

performance bottleneck, as seen in Table 4.2. We conclude this analysis by stating that Kripke

should scale to a large number of processes, but the growing number of memory accesses will

eventually lead to a slowdown.
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4.3.2 LULESH

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) code was one

of five challenge problems in the DARPA UHPC program and has since become a widely studied

proxy application in DOE co-design efforts for exascale. This makes it an excellent candidate

for our evaluation. LULESH is a mini-app which calculates simplified 3D Lagrangian hydrody-

namics on an unstructured mesh. It is written in C++ and supports a variety of parallelization

paradigms, among which we focus on MPI. In our test runs, the problem size defines the volume

of the cube per process.

Requirements. We observe in Table 4.2 that the required number of floating-point operations

grows with both problem size and process count, combined in a product expression. While

the contribution of the process count alone is only O (p0.25 · log p), it may still lead to a small

scalability issue when the problem size per process grows larger, as indicated by the super-

linear relationship O (n · log n). The same behavior we notice for computation can be observed

for communication as well, although here the problem size has a strictly linear effect. The

number of loads and stores is proportional to O (n · log n · log p). However, neither problem size

nor process count affect memory locality. The memory footprint is proportional to O (n · log n).
While not ideal, it will still allow a lot of flexibility when tailoring the problem size per process

to fit the available memory on different systems.

Conclusion The growth of all requirements with respect to both problem size and process

count is very close to ideal. While a small amount of optimization is possible in this direction,

such as eliminating logarithmic growth effects, the biggest potential for improvement lies in

transforming multiplicative contributions of problem size and process count into additive ones.

This would effectively eliminate even the small performance issues previously discussed. With

the current implementation, the multiplicative contribution process count and problem size per

process have on computation and communication for LULESH is a small obstacle in tailoring

and scaling the application to run on different systems. Their growth is slow enough to limit

these issues at anything except the most extreme scales.

4.3.3 MILC

The MILC – MIMD Lattice Computation – tool set is a set of codes for studying quantum chromo-

dynamics (QCD) via parallel simulations of the SU(3) lattice gauge theory on a four-dimensional

lattice. MILC is a highly scalable application, which consumes a major fraction of the CPU cycles

in US DOE and NSF computing centers. Its scalability makes it a good candidate for early test-

ing of next-generation systems and also a good co-design candidate for an exascale system. We

analyze the application MILC/su3_rmd. Its runtime was modeled in previous studies [22, 24].

However, no requirement models exist for MILC. For MILC, we varied the number of processes

and the problem size per process expressed through the size of the simulated lattice.
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Table 4.2: Per-process requirement models. p denotes the number of processes and n the problem size
per process. For each metric, we show the terms with the largest impact on performance for both problem
size per process and number of processes across all computed models of each application. The coefficient
of each term is the sum across the entire program, rounded to the nearest power of ten. If the constant
contribution is relevant for the parameter ranges measured, we also include it in the table. We mark
potential performance bottlenecks with a warning sign.

Requirement Model

K
ri

pk
e

#FLOP 106 · n
#Bytes sent & received 104 · n
#Loads & stores 108 · n+ 105 · n · p B

Memory locality None

#Bytes consumed 105 · n

LU
LE

SH

#FLOP 105 · n log n · p0.25 log p B

103 · n1.5 · log p
#Bytes sent & received 103 · n · p0.25 log p B

#Loads & stores 105 · n log n · log p
Memory locality None

#Bytes consumed 105 · n log n

M
IL

C

#FLOP 1010 · n+ 107 · n log p
#Bytes sent & received 104 · All reduce(p)

104 · Bcast(p)
109 · n

#Loads & stores 1011 + 108 · n log n+ 105 · p1.5

Memory locality 105 · n
#Bytes consumed 106 · n

R
el

ea
rn

#FLOP 103 · n log n · log p+ p
#Bytes sent & received 105 · All reduce(p)

10 · All toal l(p)
10 · n

#Loads & stores 106 · n log n+ 105 · p log p
Memory locality None

#Bytes consumed 106 ·
p

n

ic
oF

oa
m

#FLOP 108 · n1.5 · p0.5 B

#Bytes sent & received n0.5 · All reduce(p) B

p0.5 log p B

n · p0.375 B

#Loads & stores 108 · n log n · p0.5 log p B

Memory locality None

#Bytes consumed 103 · n+ 102 · p log p B

Requirements As can be seen in Table 4.2, a few kernels exhibit negligible logarithmic growth

of floating-point operations per process, as the process count is increased. This can be for
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all purposes considered insignificant, even at exascale and beyond, since the floating-point

requirement is overwhelmingly determined by the problem size alone. MILC is implemented in

a highly scalable fashion and only MPI collectives, such as allreduce and broadcast with constant

message sizes, imply communication demands that grow with the number of processes. Their

exact complexities depend on the specific implementation of the collective algorithms [59],

and are therefore represented in Table 4.2 by All reduce(p) and Bcast(p), respectively. The

payload of MPI collectives does not depend on the problem size, and has an upper bound in

the order of 104 bytes. However, we observe a payload growth in non-blocking communication

call paths with increasing problem size per process, with a maximum of 109 · n. Increasing the

problem size per process linearly increases the stack distance for 60% of all memory accesses.

The number of load and store instructions grows independently with both process count and

problem size per process. The process count contribution stems from the MPI communications

and is several orders of magnitude smaller than the effect of the problem size per process. The

model for resident memory size shows a linear contribution of the problem size per process,

which is expected for most applications and poses no scalability problem.

Conclusion The requirement than can benefit most from optimization is memory access. If

the memory locality was improved, increasing the problem size per process would be possible

without losing performance. We conclude this analysis by stating that MILC/su3_rmd should

have no issues scaling to exascale and beyond. The problem size per process can only be

moderately increased without degrading memory access times. The effects of process count and

problem size on performance are independent with the exception of floating-point operations

that, however, is insignificant for the overall performance. MILC/su3_rmd should therefore be

able to fit most target systems without significant performance loss.

4.3.4 Relearn

Relearn simulates the dynamics of the connectome in the brain, that is, how connections be-

tween individual neurons are formed and deleted. This is also called structural plasticity. The

code is written in C++ and parallelized with MPI. In comparison to the original version [57],

optimized memory management makes the code used in this study far more scalable. The

problem size parameter in our tests defines the number of neurons per process to be simulated.

Requirements As can be seen in Table 4.2, the floating-point operations per process grow with

O (n · log n) as the problem size per process is increased, scaled by the logarithm of the process

count. This behavior is the one dominating the computation of Relearn. Moreover, the process

count adds another linear contribution, insignificant when compared to the effect of problem

size per process. We can only observe how MPI collectives, such as alltoall and allreduce with

constant message sizes, show growing communication demands with increasing process counts,

which is expected. The payload for MPI point-to-point messages does not depend on the process

count, but grows linearly with the problem size. The number of loads and stores grows with

both process count and problem size per process. However, neither problem size nor process

count affect memory locality. The memory footprint grows only with the square root of the
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problem size, allowing Relearn to take advantage of architectures where the available memory

forms the bottleneck. While increasing the number of neurons should have a linear effect on

the memory required, the data structures used to contain them have a much more significant

impact in the ranges measured and projected, but grow only with the square root of the problem

size.

Conclusion Relearn has no issue in scaling to any number of processes. The effects of process

count and problem size on performance are mostly independent and the exceptions insignif-

icant for overall performance. Furthermore, Relearn will be able to vary the domain size per

process to fit multiple target systems without significant performance loss and can accommodate

systems where memory is at a premium.

4.3.5 IcoFoam

IcoFoam is a solver in the widely used open-source computational-fluid-dynamics code Open-

FOAM [58]. OpenFOAM, developed by ESI/OpenCFD, is a non-monolithic library encompass-

ing over 80 flow solvers that supports numerical simulations of a broad variety of continuum

models describing transport processes ranging from fluid flow and chemical reactions to tur-

bulence, acoustics, and electromagnetics. We analyzed the unmodified icoFoam executable

from the demonstration instance of OpenFOAM (development version from April 2017 from

openfoam.org). This flow solver implements a method suitable for the incompressible flow of a

Newtonian fluid under isothermal conditions. We applied the solver to a two-dimensional test

case, namely the well-known lid-driven cavity case [60]. The problem size is defined as the

number of computational cells per process.

Requirements. Table 4.2 shows that the influence of process count and problem size per

process on computation is multiplied. This affects the flexibility with which icoFoam can be

mapped onto different architectures. For example, it is not possible to make the problem size

per process smaller and increase the number of processes proportionally without changing the

computational requirements of icoFoam. Beyond the known dependence of allreduce on the

process count, its payload grows with the square root of the problem size per process. The

payload of non-blocking point-to-point communications also grows with the product of problem

size per process and process count. Both issues represent significant scalability bottlenecks:

even if the individual contributions of problem size per process and process count are linear

or less, their multiplication makes performance losses more likely. Problem size and process

count both contribute to an increase of memory accesses and could lead to issues similar to the

behavior discovered for computation. The locality remains unaffected by the varied parameters.

Problem size and process count cause independent growth of the memory footprint. While a

linear growth with the problem size per process can be expected, the additive effect of the

number of processes may limit scalability at some point.

Conclusion. Memory consumption and memory access, communication, and computation

limit the scalability of icoFoam in this implementation. The multiplicative combination of pro-
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Table 4.3: Process count and memory per process available to applications for three different system
upgrade scenarios.

System upgrade Process count Memory per process

A: Double the racks p′ = 2 · p m′ = m
B: Double the sockets p′ = 2 · p m′ = 0.5 ·m
C: Double the memory p′ = p m′ = 2 ·m

cess count and problem size for all requirements except memory footprint means that we can

not adapt to system differences without incurring significant performance losses. The severity

and multitude of performance issues suggest that a different approach is required as a whole.

Our analysis confirms that the icoFoam development version from April 2017 is not a suitable

candidate for exascale. Others solvers, such as interFoam, from a different release version of

OpenFOAM, however, have been successfully used for petascale simulations [61].

4.4 Co-Design Study

The key point of our method is to guide the programmer to find application bottlenecks relative to
an architecture as well as to guide the architect to find system bottlenecks that a given application
would experience. This study exemplifies our co-design method, which we recommend as the

first step in an iterative co-design process. Once a prototype of the target system becomes avail-

able and it is more precisely known at which rate the system will satisfy certain requirements,

their balance or imbalance can be more accurately determined. Possible modifications to either

application or system may entail further iterations.

Specifically, we focus on two questions related to co-design and extreme scaling of applica-

tions. The first question we answer is "Given a large system defined such that the application
equally exhausts all available resources, which of the possible upgrades would benefit the appli-
cation most?" Possible upgrades we consider are (A) doubling the entire system, (B) doubling

the number of processor sockets per node and leaving everything else constant, and (C) dou-

bling the memory and leaving everything else constant. These upgrades and how the resources

that are available to the applications change on the new systems are summarized in Table 4.3.

The combination of possible upgrades can be expanded to encompass further realistic scenarios

that are considered by system architects. This question focuses on relative differences between

systems. The second question we answer is "How would the application performance change
on different proposed exascale systems?" This question sheds light on how differences in sys-

tem design affect the studied applications by looking at absolute numbers rather than relative

differences.

Although we concede that exceptions may exist, often encountered difficulties of exploiting

more thread-level concurrency than a single socket provides lead us to the assumption that each

socket will run a separate and potentially multithreaded MPI process. Nonetheless, systems with

monolithic nodes like Blue Gene/Q can still be accurately modeled by adapting the definition

of a socket to the most common usage scenario. Since the number of cores only matter as far as
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they are translated into parallel speedup, we refrain from specifying an exact number of cores,

also because they may not necessarily be homogeneous.
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Table 4.4: Workflow for determining the requirements of application App after doubling the number of
racks (upgrade A).

I Create requirement models for memory footprint, communication, computation, and

memory access of App.

Ex
am

pl
e

Metric Process scaling and problem scaling

Computation p · n2

Communication p · pp
Memory access

p
n

Memory footprint p · n

II Determine the new maximum number of processes and new memory available per process

that the upgraded system supports.

Ex
am

pl
e Configuration parameter Old New

# Processes p p′ = 2p
Memory m m′ = m

III Determine the new memory footprint requirement per process if all processors are used.

Ex
am

pl
e Metric Old New

Memory footprint n · p n · 2p

IV Determine the new problem size per process such that the memory footprint equals the

memory available to each process and compute the new overall problem size.

Ex
am

pl
e Metric Old New Ratio

Problem size n= m/p n′ = m/2p 0.5

Overall problem size p · n p′ · n′ 1

V Determine the new requirements for computation, communication, and memory access.

Ex
am

pl
e Metric Old New Ratio

Computation p · n2 2p · 0.25n2 0.5

Communication p
p

p 2p
p

2p 2
p

2

Memory accesses
p

n
p

0.5 · n
p

0.5
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Table 4.5: System upgrade comparison. We show how each requirement of an application changes
in response to each upgrade. High values indicate scalable behavior for the problem size per process,
whereas low values indicate scalable behavior for everything else. The desired ratio between the new and
old systems, which is the same for all requirements, is provided once for each upgrade.

Ratios

Applications

K
ri

pk
e

LU
LE

SH

M
IL

C

R
el

ea
rn

ic
oF

oa
m

System upgrade A: Double the racks Desired ratio: 1.0

Problem size per process 1 1 1 1 0.5

Computation 1 1.2 1 1 0.5

Communication 1 1.2 1 1 0.7

Memory access 2 1.2 2.8 2 0.7

System upgrade B: Double the sockets Desired ratio: 0.5

Problem size per process 0.5 0.5 0.5 0.3 0.3

Computation 0.5 0.6 0.5 0.3 0.2

Communication 0.5 0.6 0.5 0.3 0.3

Memory access 0.5 1 1.4 1 0.5

System upgrade C: Double the memory Desired ratio: 2.0

Problem size per process 2 1.4 2 2.8 1.4

Computation 2 1.4 2 2.8 1.7

Communication 2 1.4 2 2.8 1.4

Memory access 2 1.4 2 2.8 1.4

4.4.1 System upgrade

To exemplify the process of determining how an application would respond to a system upgrade,

we choose system upgrade A, that is, doubling the racks of the system. We enumerate and

describe the different steps of our scaling method in Table 4.4. The notional requirements of

application App are listed at the top of the table as part of step I. Following this process, we can

easily draw conclusions regarding system utilization, requirements balance, and usefulness of

a particular upgrade. The ratios between new and old problem sizes indicate how the largest

problem size that can be solved changes, both per-process and overall. The ratios between

new and old requirements indicate which system components will experience an increased load

relative to other components.

Due to the increasing memory footprint, the total problem size cannot be doubled in this case,

as one would desire. In fact, the overall problem size has to remain constant, as the memory

requirement is the product of problem size per process and number of processes. The com-

putational requirement decreases due to the quadratic effect of the problem size per process.
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Furthermore, the network requirement grows to be almost three times than what it was origi-

nally, likely leading to network congestion and a significant slow-down. The number of memory

accesses, a function of only the problem size per process, is reduced in this configuration.

In conclusion, our hypothetical application App can barely profit from the the system upgrade.

It can exploit increased parallelism, halving the number of floating-point operations required

per process, but not solve a larger overall problem. Also, the communication demand per

process grows by more than a factor of two, potentially leading to network congestion. After

having demonstrated the types of insights our method delivers with an exaggerated fictional

example, we now look at real codes.

Using the five applications studied, namely Kripke, LULESH, MILC, Relearn, and icoFoam, we

now apply the previously illustrated workflow to analyze the benefits and drawbacks of different

system upgrades. We use the requirement models determined for each application individually,

as well as the upgrades listed in Table 4.3 to determine the new problem sizes per process for

each application, assuming that all processors a system provides are used. We then determine

the new requirements for computation, communication, and memory access. Our comparative

analysis is numerically summarized in Table 4.5. We consider an optimistic linear relation

between problem size per process and requirements as a baseline for scalability. For example, if

we double the racks we wish that the total problem size that can be solved should double, too,

but that the requirements per process remain the same. This simplifying assumption will not be

generally true, but provides a notion of desirable behavior for our discussion.

Apart from MILC, no other application has shown any change in memory locality with respect

to process count and problem size per process. We therefore focus on the total number of load

and store instructions as the primary memory-access metric in these cases.

When analyzing Table 4.5, it becomes obvious that the most important parameter is the

problem size per process, as it determines all other requirements and how well the stated goal

of trying to perform heroic runs is met. Our goal is to do more science, to run larger simulations,

not just to run them faster. While Kripke and MILC provide no surprises, all other applications

have non-linear memory requirements with varying problem sizes and process counts. This

leads to different total problem sizes that can be tackled when the ratio between the number of

processes and the memory available to a process changes, even if their product is the same.

For example, when doubling the racks the problem size per process should remain constant,

meaning that the biggest possible problem size that can be solved on the upgraded system

should be two times larger than the original one. This is true in our analysis for all applications

except the development version of icoFoam. Since the problem size per process is only 0.5, this

means the studied instance is limited to effectively solving the same overall problem size on the

new system.

Relearn on the other hand has a memory footprint that only grows with the square root of

the problem size. This means that when less memory per process is available, its maximum

problem size per process will be smaller than desired, as is the case for system upgrade B,

where its problem size per process is only about a third of the original, while the desired would

be half of the original problem size per process. Conversely, in the case of system upgrade C,
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Figure 4.1: Requirements of icoFoam after different system upgrades.

where the memory per process is doubled, its maximum problem size grows to be larger than

the desired two times, and becomes almost three times the original value.

When considering the computation, communication, and memory access requirements per

process, these should ideally follow the same behavior as the problem size per process. None of

the analyzed applications reach this ideal, although Kripke and MILC come close with only one

and two deviations, respectively, which one can see by tracing their columns in Table 4.5.

The other aspect is performance, as simply being able to handle a larger problem size does

not imply that the machine is used to its full potential. Just increasing the available memory

and the problem size per process along with it, will likely cause the overall performance of

all applications to drop as the requirements will grow and might exceed available resources,

causing bottlenecks to appear. For example, Kripke and MILC will double their per-process

requirements for computation, communication, and memory access in system upgrade C, as

one would expected. If any of the corresponding hardware resources become over-utilized,

performance will degrade.

In Figure 4.1, we visualize the information from Table 4.5 for icoFoam, one of our test cases,

in a radar plot. The radar plot allows requirements imbalance within an application to be more

easily spotted. Whenever one node of the diamond in the radar plot is located further from

the center than others, it signifies a requirement growing faster than the others. The graphical

representation obscures the actual ratios, but offers a more intuitive and faster way to compare

the requirement models of a given application. We believe both the visual and the numeric

representation complement each other, which is why we recommend to use them in tandem.
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The first lesson we can learn from this analysis is that getting the best performance is not

synonymous with solving the largest problem. The second is that the ratio of problem size per

process to process count is of major importance for applications where the growth requirement

for memory is different between process and problem scaling.

4.4.2 System design

Now, we investigate how the applications studied would map to potential exascale straw-man

systems. Rather than using relative upgrades as in the previous section, where we assumed

that certain characteristics of an existing system are doubled, we now focus on how our method

works when applied to absolute values for system characteristics such as FLOPS per processor.

There are a number of hardware architecture directions suggested to reach exascale. Major dif-

ferences between the approaches lie in their ratio of nodes to processors to FLOPS per processor,

which combined are supposed to reach 1 exaFLOPS. By processor we define a computational

unit designed to run a process (potentially multi-threaded). Possible design options for such

systems are presented in Table 4.6 and summarized below:

• A massively parallel system that consists of a large number of nodes with many but weak

processors

• A vectorized system that consists of a small number of nodes with few but very powerful

processors

• A hybrid system with even less nodes, but with a sufficiently large number of moderately

powerful processors

For this study, we assume a total memory per system of 10 PB, divided equally among all

processors. This value is consistent with the rates of FLOPS to memory of current top super-

computing systems in the world.

The total memory, IO, and network resources can also vary, but more likely as a function

of the available funds and not to satisfy a certain ratio to other resources. A more detailed

analysis where more system characteristics would vary is certainly possible, but would not be

qualitatively different.

For this analysis, only the computational requirement and memory footprint relative to the

problem size per process and the number of processes are taken into consideration. We deter-

mine the number of processes for each of the systems by multiplying the node and processor

counts, as we want to have access to the full exaFLOPS. For each application we can then deter-

mine the problem size per process that would consume all the memory available to a process.

Knowing the problem size per process and the number or processes, we determine the overall

problem size for each application. The results of this workflow, which is similar to the one

presented in Table 4.4, are presented in Table 4.7.

IcoFoam, more precisely the solver from the development version of OpenFOAM from April

2017, is notably absent in Table 4.7, as the number of processes adversely affects the memory

required per process. This unfortunately means that the studied instance of the code cannot

fully utilize any of the three systems, as the memory requirement regardless of problem size per
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Table 4.6: Characteristics of three exascale straw-man systems.

Metric M. parallel Vector Hybrid

Nodes 2 · 104 5 · 104 104

Processors 2 · 109 5 · 107 108

Processors per node 105 103 104

Memory per processor 5 · 106 2 · 108 108

FLOPS per processor 5 · 108 2 · 1010 1010

Table 4.7: Overall maximum problem size for selected applications and time each application needs to
solve the same problem on different exascale straw-man systems described in Table 4.6, assuming perfect
parallelization. All metrics with the exception of overall problem size are expressed per process. Following
a workflow similar to Table 4.4, we determine the values using the requirement models from Table 4.2.

Metric M. parallel Vector Hybrid

K
ri

pk
e Problem size 50 2 · 103 103

Overall problem size 1010 1010 1010

Duration 0.1 0.1 0.1

LU
LE

SH Problem size 17.4 342 190

Overall problem size 3.9 · 1010 1.7 · 1010 1.9 · 1010

Duration 40 21.5 33

M
IL

C

Problem size 5 2 · 102 102

Overall problem size 1010 1010 1010

Duration 102 102 102

R
el

ea
rn Problem size 25 4 · 104 104

Overall problem size 5 · 1010 4 · 1012 1012

Duration 4 0.02 0.2

process is larger than what is available if all processors are used. While it would be possible to

run this code on a smaller subset of processors, that is not the focus of our study. InterFoam,

another solver from a different version of OpenFOAM, has recently shown a better potential for

scalability and will be the focus of future investigations [61].

We discover that for Kripke and MILC the different system types do not affect the largest over-

all problem size that can be solved. That is because any difference in the ratio between process

count and problem size per process can be offset by configuring the application appropriately.

The situation is different for the other applications, as the ratio p/n between process count and

problem size is more relevant to the required memory. Relearn can solve much larger overall

problems on a system with fewer but stronger processors, while LULESH can solve the largest

problem on the massively parallel system.

Being able to solve a larger problem is very useful, but we also wish to see on which system a

given problem can be solved faster. Towards this goal, we take the biggest overall problem size
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of each application that can be solved on all systems, and change the problem size per process

such that each system solves the same problem. We still use all available processors to have

access to all computational resources each system provides. We can then use the problem size

per process and the number of processes to determine the number of floating-point operations

required per process. After dividing this requirement by the floating-point rate offered by the

processor, we can estimate a lower bound of the runtime this computation takes. The lower

bound is based on the simplifying assumption that parallelization is perfect and no communi-

cation overhead exists. The smaller the duration we obtain, the more efficiently the application

may use the system in question, possibly offering better performance. The results of these steps

of the workflow are presented in Table 4.7. Similar to the overall problem size, the times Kripke

and MILC take to solve the problem are the same on each system. However, both Relearn and

LULESH benefit more from a high ratio and would perform better on the vectorized system. To

shift the lower bound closer to more realistic runtimes, we need to take other requirements such

as communication into account, which is feasible as long as the system designer can specify the

rates at which the hardware can satisfy them.

Much better behavior for LULESH could be achieved by optimizing the algorithms such that

the effects of problem size per process and process count are additive rather than multiplicative

with respect to the different requirements: #F LOP = 105 ·n · log n + p0.25 · log p. In the example

from Table 4.7, this would improve the overall time to solution by approximately three orders of

magnitude on each system, to less than 0.1 seconds compared to between 20 and 40. It would

also change how LULESH performs on the different systems, obtaining the best results on the

massively parallel system as opposed to the vectorized system, which the unoptimized version

favors.

The recommended course of action beyond improving the applications is to experiment with

a small number of prototype nodes of the kind to be employed in the system, and determine the

actual rates at which the requirements can be satisfied. Requirements other than computation

such as memory access and network communication must be considered. For example, similarly

to our analysis of potential exascale system candidates with different nodes to processors to

FLOPS ratios, an analysis of the network requirements taking network bandwidth, latency, and

topology into account can be performed. However, when considering a small number of nodes

as opposed to an entire rack or multiple racks, network communication may differ qualitatively.

Having a test system that contains at least all types of network connections the full system is

supposed to have could be a compromise.

The co-design study in this section can provide additional information about which types of

systems provide the best opportunities for a given set of applications. With this data a more

informed decision can be made regarding the scalability potential of the application.

4.5 Conclusion

In this chapter, we introduce a quick and simple automatic back-of-the-envelope technique to

generate requirement models for parallel applications. The workflow we propose leverages

these models to enable system designers to ponder various upgrade and design options. An
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important contribution is the ability to compare how the requirements for different resources

change in relation to each other when a code is scaled. We demonstrate our lightweight co-

design approach using five different applications. Our analysis shows how requirement models

can be used to understand potential bottlenecks and how to balance a system configuration to

support a certain application, both when considering relative upgrades of a system and when

looking at the absolute values of different system parameters. We believe that our method can

be easily applied to a full compute-center workload consisting of several dozens of applications.
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5 Impact
The contributions presented in this work had a significant impact on the field of automatic per-

formance modeling. They have been used by other researchers in collaboration with the author

of this thesis as starting points towards new approaches toward analyzing and improving the

performance of HPC applications and systems. Extra-P was used by application developers such

as UG4 or Mafia to understand and improve their code performance. Lastly, collaboration with

other authors have improved and expanded the capabilities of Extra-P and will be integrated

into upcoming releases.

5.1 Scalability framework

Using Extra-P as a foundation, Shudler et al.[3] have developed a scalability framework that

helps developers compare their expectations for performance with empirical performance mod-

els to uncover limitations in libraries, applications or even underlying platforms. The authors

provide a detailed study of MPI implementations on three different hardware platforms, exem-

plifying the types of insights that can be gained.

5.1.1 Framework overview

The scalability framework, shown in Figure 5.1, builds on automatic empirical model genera-

tion. The improvement comes in the form of performance expectations. The main source of

performance expectations are the developers themselves, but depending on the use case, previ-

ous implementations or other versions of the same code could be used as well. The performance

expectations provide an alternative way of search space generation for Extra-P. Instead of rely-

ing on a default set of hypotheses, the search space can be generated specifically around the

expectation, to provide more detailed options in the immediate vicinity. This allows the method

to be more versatile in its results, without increasing the time to solution.

The difference between the empirically generated performance models and the performance

expectations, called divergence models forms the core of this approach. It allows a very simple

analysis of the performance of the target code. If the empirical model and the expectation are

the same, no issues are uncovered. If they are not the same, the authors suggest two different

classifications. They decide whether the difference between empirical model and expectation

are acceptable or not by using a user-defined deviation limit. The developer would express

this limit either in absolute terms of relative to the growth rate of the models themselves. For,

example, if the expected model is p2 and the empirical model is p2 · log p the divergence model

is log p. If the deviation limit is
p

p, the divergence model above would be acceptable. The

advantage of using such an approach is that it permits the classification of issues, and allows

developers to focus on the biggest problems first.
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Figure 5.1: Framework overview including use cases [3].

The authors suggest three different use cases for the framework, applicable even in the early

design and implementation phases of a project. If the developers write their code with perfor-

mance expectations in mind, they can use this approach to validate these at every step along

the way. Furthermore, if a particular task can be accomplished in multiple ways, each imple-

mentation could be modeled separately to choose the best one. It is even possible that different

implementations are superior for certain parameter configurations. This would in turn sug-

gest switching the algorithm used depending on parameter configuration to make sure the best

performance is achieved. Lastly, by adding the modeling approach to a build-testing system,

not only the correctness but also the performance of the code could be constantly examined.

Previous performance results could form the expectation for subsequent versions, ensuring that

adding features or fixing issues does not degrade performance.

5.1.2 MPI case study

The authors used extensive literature available to compile a list of ideal latency-oriented perfor-

mance expectations for MPI collectives as well as memory requirements of MPI communicators.

They then gathered measurements on the HPC systems Juqueen (Blue Gene Q), Juropa (Intel

cluster using InfinyBand interconnects) and Piz Daint (Cray-XC30) and compare the empirical

models resulting from these measurements with the theoretical expectations.

The analysis has uncovered significant differences in the performance of the different MPI

collective implementations, a selection of which is presented in Figure 5.2, as well as a previ-

ously unknown performance issue in the memory requirement of communicator duplication on

the Cray system, which the developers were then able to confirm. For example, the models for

Barrier are different on each of the three HPC systems analyzed. Overall, the implementation on
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Figure 5.2: Measurements (circles, squares, triangles) and generated runtime models (plot lines)
on Juqueen, Juropa, and Piz Daint [3].

Juqueen confirmed our expectations, while the MPI implementations on Juropa and Piz Daint

both had performance issues.

5.1.3 Discussion

The scalability framework promises a streamlined solution to the performance modeling of HPC

libraries and applications. It provides a ready-to-use method to understand the performance of

any application and library, helps improve development techniques by including constant checks

on performance and asks only a minimum of effort from the developers themselves.
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Figure 5.3: Comparison of the original and the new algorithm using values of randomly gen-
erated functions with ±2% of noise as input. The functions are built according to the PMNF
with n = 1 or n = 2, and their coefficients c0, c1 and c2 are calculated by sampling a ∈ [−2,3]
uniformly and then computing 10a [4].

5.2 Iterative refinement

The scalability framework first suggested creating ad-hoc search spaces around particular per-

formance expectations, to allow for more detailed models to be generated. A recent improve-

ment by Reisert et al. [4] utilizes this idea, but attempts to provide a faster and more accurate

general way of creating performance models. The new approach applies the principles first

established in the golden section search heuristic. The golden section search is introduced as a

method to speed up the multi-parameter performance model search in Chapter 3.

In the original approach presented in Chapter 2, the search space was defined as a set of

possible instantiations of the PMNF by choosing different values for the exponents of logarithms

and polynomials forming each hypothesis. The new approach is still constrained by hypotheses

that can be represented by the performance model normal form. The new approach starts from

any hypothesis, for example a simple linear model, and examines additional hypotheses in its

vicinity. It then selects the one which best fits the data and repeats the process. Therefore,

the models can become arbitrarily accurate, without requiring a predefined search space. This

unburdens the user who no longer has to provide expectations for code behavior. While such

expectations can still be incorporated for example as starting points, this will affect the speed

of convergence not the accuracy of the result.

This new approach therefore foregoes the requirement to define the search space entirely

while still retaining the goal of obtaining as accurate a model as possible. Compared to the

original approach, the iterative method provides better results for both synthetic data as well

as all scientific applications tested. The evaluation with synthetic data, presented in Fig.5.3,

follows the same steps defined in in Section 2.6. The evaluation shows that the iterative refine-
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Table 5.1: Comparison of the original and the improved algorithm. Data from previous case
studies is used. To show the quality of predictions, the last measured data point is not used for
modeling but for comparing the resulting performance models [4].

Benchmark Number

of

points

Model

count

Model predictions (per-

centage of all models)

Mean relative

prediction

error [%]

better same worse before now

Sweep3D [24] 7 96 26.04 56.25 17.71 17.26 6.31

HOMME [24] 9 670 18.81 68.51 12.69 3.69 3.03

MILC [24] 9 1496 30.95 56.48 12.57 36.71 14.53

UG4 [44] 5 2026 52.62 38.01 9.38 68.30 15.58

MPI coll. [3] 7–8 26 65.38 7.69 26.92 52.53 15.89

BLAST [25] 5 103 31.07 41.75 27.18 34.92 10.38

Kripke [25] 5 36 36.11 38.89 25.00 33.05 8.32

Total 5–9 4453 39.12 49.11 11.77 45.71 12.97

ment approach is superior to the classic algorithm for tests using common and rare exponents

for terms, and has only slightly worse results for exotic terms.

By applying the iterative refinement approach to the scientific applications previously ana-

lyzed, the improvement in accuracy obtained is displayed in Table 5.1. The number of accurate

predictions is greater and the mean relative prediction error is smaller for the new approach,

reinforcing the conclusion that this is a significant improvement not only for the usability of the

tool but rather for its accuracy as well. This powerful improvement has become a new feature

of Extra-P and will be included in the next release of the tool as the default way of generating

performance models.

5.3 Isoefficiency

Determining the correct problem decomposition and computational load to achieve maximum

performance in task-based programming is a difficult task and usually one that requires sig-

nificant experimentation. Shudler et al.[9] first create performance expectations by analyzing

the task dependency graph of an application. Then, they analyze the efficiency of task-based

applications with the help of the powerful empirical multi-parameter modeling made possible

by Extra-P. By combining these two approaches they determine the isoefficiency of task-based

applications. This enables us to answer questions like “What is the required core count for a

given input size such that a given efficiency is maintained?”

Multi-parameter modeling is used to create isoefficiency models, by computing the efficiency

as a function of problem size and thread count. Table 5.2 shows the efficiency models deter-

mined for a number of different algorithm types. For each algorithm, the first row indicates

the actual efficiency measured empirically, while the second row indicates the theoretical effi-
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Table 5.2: Efficiency models of applications selected form the Barcelona OpenMP Task Suite [8].
The last column shows the required input sizes (n) for p = 60 and an efficiency of 0.8 [9].

Application Model rRMSE Input size for p = 60

Eac 1.09− 0.51 · pp+ 3.11 · 10−2 · pp log n 9.7% 37,718 × 37,718
Cholesky

Ec f 1.14− 0.54 · pp+ 3.4 · 10−2 · pp log n 7.8% 24,685 × 24,685

Eac 0.96− 0.1 · log p+ 5.08 · 10−22n4.5 log p 19.5% 30,310 × 30,310
FFT

Ec f 1.03− 0.16 · p0.67 + 1.04 · 10−2 · p0.67 log n 4.8% 15,800 × 15,800

Eac 0.98− 5.11 · 10−3 · p1.25 + 1.76 · 10−3 · p1.25 log n 3.5% 51
Fibonacci

Ec f 0.97− 1.46 · 10−2 · p1.25 + 9.26 · 10−3 · p1.25 log n 3.0% 51

Eac 1.04− 0.66 · pp+ 0.17 · pp log n 13% 14
NQueens

Ec f 1.0− 6.21 · 10−2 · p+ 1.61 · 10−2 · p log n 3% 13

Eac 0.99− 9.2 · 10−3 · p1.5 + 2.29 · 10−4 · p1.5 log n 1.9% 350G
Sort

Ec f 1.0− 4.61 · 10−2 · p0.75 + 1.62 · 10−3 · p0.75 log n 5.7% 6.6M

Eac 1.02− 0.46 · p0.67 + 3.28 · 10−2 · p0.67 log n 6.3% 12,000 × 12,000
SparseLU

Ec f 1.05− 0.48 · p0.67 + 3.49 · 10−2 · p0.67 log n 6.1% 11,000 × 11,000

Eac 1.55− 1.02 · p0.25 + 4.59 · 10−2 · p0.25 log n 9.5% 83,600 × 83,600
Strassen

Ec f 1.26− 0.65 · p0.33 + 3.89 · 10−2 · p0.33 log n 5.9% 12,680 × 12,680

ciency that could be obtained in a contention-free environment. The contention-free values are

determined by replaying the algorithm run in a simulated contention-free environment.

The relative residual mean squared error (rRMSE) is quite small for most examples, being

larger than 10% in only 2 out of 14 cases. What we can observe is that although the exponents

may differ, all models have a similar structure. This is explained, and expected by the behavior

which is modeled through efficiency: We start with a constant efficiency around one. As more

processes or threads are added, the efficiency shrinks, therefore the second term is negative,

and always a function of p, the number of threads. As the problem size n, is increased, some

of the inefficiency added by the extra threads is mitigated. That explains the third, positive

term which is a function of both the thread count and problem size. The coefficients are much

smaller for this term. While this behavior was obvious in hindsight, the authors of the study

did not assume this at the start of their work and the models obtained using Extra-P helped

understand the behavior of task-based programs and acted as an additional sanity check and

confirmed expectations.

An important aspect related to this work is that it highlights a limitation of the empirical

modeling approach. The empirical nature of the models does not capture or predict corner case

behaviors well. For example, the efficiency can never grow to surpass one, but in the models we

compute, there always exists a problem size n such that the resulting efficiency becomes greater

than one. If we keep this limitation in mind however, Extra-P allows iso-efficiency models to be

easily determined, and can serve as a powerful tool to balance efficiency with concurrency for

task-based programs.

76



8 16 32 64 128
0

5 · 10−5

1 · 10−4

1.5 · 10−4

2 · 10−4

Threads

O
pe

nM
P

Pa
ra

lle
lS

ta
rt

up
O

ve
rh

ea
d

GNU PO2
GNU ODD
PGI PO2
PGI ODD

(a) BCS “parallel”

8 16 32 64 128
0

5 · 10−5

1 · 10−4

1.5 · 10−4

2 · 10−4

2.5 · 10−4

3 · 10−4

Threads

O
pe

nM
P

B
ar

ri
er

O
ve

rh
ea

d

GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(b) BCS “barrier”

8 16 32 64 128
0

5 · 10−5

1 · 10−4

1.5 · 10−4

2 · 10−4

2.5 · 10−4

3 · 10−4

Threads

O
pe

nM
P

Fo
r,

St
at

ic
Sc

he
du

le
-O

ve
rh

ea
d

GNU PO2
Intel PO2
PGI ODD

(c) BCS “static”

8 16 32 64 128
0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

2.5 · 10−3

3 · 10−3

Threads

O
pe

nM
P

Fo
r,

D
yn

am
ic

Sc
he

du
le

-O
ve

rh
ea

d

GNU PO2
Intel PO2
PGI PO2
PGI ODD

(d) BCS “dynamic”

8 16 32 64 128
0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

2.5 · 10−3

3 · 10−3

Threads

O
pe

nM
P

Fo
r,

G
ui

de
d

Sc
he

du
le

-O
ve

rh
ea

d

GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(e) BCS “guided”

8 16 32 64 128
0

1 · 10−4

2 · 10−4

3 · 10−4

4 · 10−4

Threads

O
pe

nM
P

Fi
rs

tP
ri

va
te

O
ve

rh
ea

d

GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(f) BCS “first-private”

Figure 5.4: Measurement points used, denoted by circles, squares, and triangles, and model
plots in dotted lines for OpenMP constructs using RWTH Aachen BCS Cluster for the compilers
GNU 4.9, Intel 15 and PGI 14 [5].

5.4 OpenMP scalability study

Iwainsky et al.[5] used Extra-P to model the scalability of different OpenMP implementations.

The authors developed a complex benchmarking system to gather measurements from four
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Figure 5.5: Data points from two different functions (solid lines) and the model generated by
Extra-P (dashed line) [6].

different OpenMP implementation (GNU, IBM, Intel, and PGI) on three different hardware

platforms (Xeon, Xeon Phi, and Blue Gene/Q). They then used Extra-P to create performance

models, uncovering potentially serious scalability limitations for three of the four implemen-

tations, as well as proving through subsequent analysis that the behavior varies qualitatively

depending on the number of threads being a power of two or not.

Figure 5.4 shows both the different behaviors observed for the different compilers, as well

as the different models obtained for powers of two as opposed to odd numbers of threads.

That different performance models can be obtained when looking at thread counts which are a

power of two compared to when that is not the case seems obvious in hindsight. However, we

observed that these models are not always better, as exemplified by the GNU barrier implemen-

tation: while the “odd” or not power of two data measurements start off taking a longer time,

the growth rate is smaller than that of the model representing only powers of two. This was

completely unexpected, and indicated a serious issue with that implementation.

5.5 Segmented performance modeling

While Extra-P is an effective tool in uncovering performance bottlenecks, it did suffer from an

important limitation: Extra-P assumes that the performance of a kernel can be characterized by

a single function. However, some kernels do not display a single behavior in every situation. In

some situations, programs change their behavior. For example, modern MPI implementations

switch from one algorithm to another, depending on the message size, the number of processes,

or the network topology [62]. By ignoring the possibility that the input data represents two or

more distinct behaviors, inaccurate models can be generated, scalability bugs can be ignored,

or the user might encounter false positives.

Ilyas et al. [6] have developed a method for automatically detecting both segmented behavior

as well as determining the interval where the behavior changes. They have tested this empirical

approach with more than 5.2 million synthetic tests as well as three different application case

studies.
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Figure 5.6: Steps involved in segmentation detection and change-point identification [6].

Figure 5.5 shows an example of segmented behavior. The first five points represent one

behavior, while the last four represent another. The sixth point is common to both behaviors.

The model discovered by the standard Extra-P approach is misleading as it represents neither

behavior, and even worse, assumes that the asymptotic growth rate is worse than it actually is.

Figure 5.6 shows how the original Extra-P workflow is changed to allow for the discovery of

segmented models. The idea is to separate the available data points into smaller subsets, model

the subsets individually and then analyze these models. Using the same data as Figure 5.5,

Table 5.3 shows the models for the different subsets as well as the metric identified by the

authors as most helpful in deciding whether segmentation exists: the normalized residual sum

of squares (nRSS). The authors determined empirically that this metric has high values for

models created from measurements stemming from different behaviors. They also observed that

the error for models containing measurements from two behaviors is usually multiple orders of

magnitude higher than that of models containing measurements of only one behavior. This lead

to the secondary criterium ε, defined as the quotient between different nRSS values.

The results of testing this method of detecting segmented behavior on real applications are

displayed in Figure 5.7. A known issue of HOMME, a climate modeling application, discovered

by Calotoiu et al. [24], was correctly identified. The formula by which the number of iterations a

function performs is computed contains a ceiling term that limits the number of iterations to one

for up to and including 15k processes. Beyond this threshold, a term depending quadratically on

the process count causes the number of iterations executed to grow rapidly, causing a significant

drop in performance. Figure 5.7a shows the constant behavior up to 15k processes and the

quadratic behaviors afterwards.

The change in performance when the data for a matrix-matrix multiplication no longer fits

in the cache was also identified and is displayed in Figure 5.7b. Finally, changes in the algo-

Table 5.3: Subsets created for the data from Figure 5.5, their respective models, and their nRSS
values. Heterogeneous subsets are highlighted [6].

Subset Model nRSS ε

s1 = {1,4, 9,16, 25} p2 ≈ 0 −
s2 = {4,9, 16,25, 36} p2 ≈ 0 ≈ 1

s3 = {9,16, 25,36, 37} −49.41+ 33.45 · pp 0.18 5 · 1018

s4 = {16,25, 36,37, 38} −28.53+ 23.17 · log2(p) 0.19 1.05

s5 = {25,36, 37,38, 39} −6.19+ 14.83 · log2(p) 0.16 0.84

s6 = {36,37, 38,39, 40} 30+ p ≈ 0 ≈ 0
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Figure 5.7: Graphs showing measurement points, non-segmented models (dashed lines) and
segmented models (solid lines). Estimated locations of change points are shown by vertical
lines [6].

rithms used by MPI collective operations were also correctly discovered by this approach. Their

existence was known and documented [62], and was used to verify that the approach works

as intended. Figures 5.7c and 5.7d show that the segmentation due to the algorithm change is

correctly identified. This improvement to Extra-P will broaden the range of behaviors that can

be correctly identified, as well as eliminate a potential source for false positives and therefore

will make the tool more powerful and versatile.

5.6 Discussion

Extra-P and the methods described in this work have allowed researchers to both better under-

stand scientific codes as well as develop new performance analysis methods and workflows by

creating and analyzing empirical automated performance models. While the automated perfor-

mance modeling described in this work can, and will be improved, we believe it can already

provide insight into performance questions for many applications. The areas of applicability
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have so far been narrow, only focusing on HPC computing, but the potential of Extra-P to

support performance experts and developers alike is greater in scope than that.
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6 Extra-P — An Automatic Performance
Modeling Tool

The methods described in this work have been implemented and released as open-source soft-

ware, in the form of the performance modeling tool Extra-P 1. The tool is freely available at and

even though it has only been officially released in November 2015 it already sees use by dif-

ferent research groups such as the Lawrence Livermore National Laboratory, TU Darmstadt, the

Jülich Research Center and the Goethe University in Frankfurt. To help developers familiarize

themselves with Extra-P and its capabilities a number of tutorials has been held at research cen-

ters (Jülich), universities (RWTH Aachen, University of Mainz), and at HPC conferences such

as SC and EuroMPI.

6.1 Performance modeling library

To allow developers flexibility in how they deploy and use Extra-P, the entire modeling func-

tions, objects and methods are bundled in a library written in C++. The library itself has no

dependencies and should therefore be easy to build and employ on every system. Extra-P is

particularly flexible as at its core, only a set of measurements in the form of pairs of parameter

configurations and measurement values is required to create a model. The different modeling

options and methods described in this thesis are implemented in an object-oriented paradigm

to allow for extensions to be easily added.

The creation of multiple performance models in parallel would be trivial to implement. How-

ever, at this time the library is able to create performance models for even the largest applica-

tions analyzed so far with multiple parameters in minutes or less, making parallelization efforts

a low priority at this time.

The current release accepts performance profiles in the CUBE format generated by Score-P as

an input, as well as measurement data in a simplified text-based format, which allows for fast

model generation and debugging. Support for CSV and HDF5 formats is already in development

and should become available in the next release. Due to the flexibility of Extra-P, further formats

can, and have been developed ad-hoc for specific case studies where the available methods were

unsuitable.

6.2 Graphical user interface

The first version of Extra-P was released as both a command-line tool and a plugin for

CUBE [63], a tool for visualizing multi-dimensional performance spaces commonly used as

1 http://www.scalasca.org/software/extra-p/download.html
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Figure 6.1: Interactive exploration of performance models with Extra-P. The screen shot shows
performance models generated for different call paths in SWEEP3D, a neutron transport solver.
The call tree on the left allows the selection of models to be plotted on the right. The color of
the squares in front of each call path highlights the runtime at a user-selected process count.
The call path ending in MPI_RECV has a measured complexity ofpp.

a performance report explorer for Scalasca and Score-P. The current version has been developed

as a standalone PyQT tool, to allow for more customization as well as a more streamlined de-

sign. Users can visualize and navigate the models generated with Extra-P with a simple but

powerful GUI. Figure 6.1 shows an example.

Beyond performance analysis with the help of performance models, Extra-P allows users to

also create performance models choosing from a selection of multiple model generators and

even tune the modeling process by having access to the full suite of configuration options

available in the Extra-P library. Two different performance model generators are displayed

in Figure 6.2a and Figure 6.2b.

The first one, shown in Figure 6.2a, is the default model generator. It is the one described in

Section 5.2 and allows for detailed models to be obtained without any expectations, while at

the same time preventing over-fitting.

The second model generator, shown in Figure 6.2b, allows the user to redefine which terms

are used in the search space definitions as well as how many terms are allowed in a performance

model. This approach allows for a great deal of customization and is useful if a user has clear

expectations of how an application performs and would like to test their assumptions.
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(a) Default model generator (b) Refining model generator

Figure 6.2: Interactive generation of performance models with Extra-P.

6.3 Tutorials

Extra-P has been presented through tutorials as part of the EuroMPI 2015 conference, and at

the SC15 and SC16 conferences.Furthermore Extra-P tutorials were included in two week-long

application tuning workshops organized by VI-HPS 2, a virtual institute with members from

many organizations and research groups developing performance analysis tools. As part of the

first workshop organized by the EPE project 3, Extra-P was introduced and taught to members

of research groups in Hessen and Rhineland-Palatinate.

The first part of the tutorial explains the theoretical foundations. The second part offers a

live demonstration of the tool and its capabilities. The participants, using their own notebook

computers and provided with a release version of Extra-P, are able to follow the demonstration

and create insightful models for a number of examples.

To facilitate the demo session, the tool, incl. instructions, is available online for attendees 4.

Slides from past tutorials can also be downloaded 5. We provide guidelines for attendees wish-

ing to bring and model their own programs. The content of this tutorial is aimed at participants

with knowledge of parallel computing but does not require prior knowledge of performance

modeling.

Beyond helping users familiarize themselves with the different features of Extra-P the tu-

torials have been tremendously helpful in understanding how users employ Extra-P and which

features they consider important. For example, the current interface has been optimized to both

maximize the screen area for the common case of analyzing parallel scalability, while options

for changing how performance models are generated can be found in easily accessible unobtru-

sive menus. This leads to a streamlined, simplified user experience, while allowing experts to

still have precise control over the modeling process.

2 http://www.vi-hps.org/
3 http://www.sc.informatik.tu-darmstadt.de/res/pro/epe/epe_overview/index.de.jsp
4 http://www.scalasca.org/software/extra-p/download.html
5 http://www.scalasca.org/software/extra-p/documentation.html
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6.4 Discussion

By building on top of established instrumentation frameworks such as Score-P, and provid-

ing an easy to use interface and streamlined workflow, Extra-P attempts to make performance

modeling available to developers and performance engineers alike, and allow them to find per-

formance bottlenecks faster and with less effort. Development of Extra-P is continuing and we

intend to add features, improve the modeling performance and increase our teaching efforts to

make it available to an ever increasing number of developers.
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7 Related Work
This section reviews the previous research related to the contributions of this thesis in the

context of the larger field of performance analysis. Relevant past work related to analytical

modeling as well as other automatic approaches for performance modeling are discussed.

7.1 Performance analysis

Performance analysis and prediction of real-world application workloads is most important in

high-performance computing. The methods presented in this thesis pertain to this domain, and

therefore we present a number of established tools used for performance analysis in HPC.

Several performance tools, such as HPCToolkit [11], Scalasca [64], TAU [12], and Vam-

pir [65], allow the programmer to observe the performance of real-world applications at

impressive scales. Yet, those tools are limited to observations on a target system and at a

given scale and cannot obtain insights outside the measurement range.

To make the development of our tool as cost-efficient as possible, it relies on a standard

performance-measurement infrastructure. Specifically, it has been designed as an extension of

Scalasca [64] and Score-P [13], which are well-established open-source toolsets that support

the performance optimization of parallel programs by measuring and analyzing their runtime

behavior. While Scalasca analyzes the performance using one performance measurement where

it attempts to find communication and synchronization inefficiencies, Extra-P extends the anal-

ysis to sets of measurements generated using the Score-P infrastructure to create performance

models.

7.2 Analyical modeling

Analytical performance modeling techniques have been used to model the performance of nu-

merous important applications manually [20, 21]. It is well understood that analytical models

have the potential of providing important insights into complex behaviors [66]. Performance

models also offer insight into different parts of the system. For example, Boyd et al. used perfor-

mance models to assess the quality of a tool chain, such as a compiler or runtime system [67].

A very important motivation for the use of performance models was presented by Petrini et

al. [68]. In their study, the difference between actual and predicted performance led to the

discovery of system noise as the source of seriously degraded performance. In general, there is

consensus that performance modeling is a powerful tool for assessing an application’s resource

consumption and scalability.

Hoefler et al. aimed to further popularize performance modeling by defining a simple six-step

process to create application performance models [1]. The described method leads to insight
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into application scaling behavior but is tedious to apply to real codes. Bauer, Gottlieb, and

Hoefler show how to model performance variations in this framework using simple statistical

tools [22]. They also describe how to measure the influence of certain system parameters such

as the network topology.

7.3 Automatic performance modeling

This Section focuses on approaches that generate performance models automatically rather than

manually, even if that moves the focus away from human-readable general-purpose models but

rather on models generated for a very specific purpose. These approaches vary the number

of processes to determine the scalability of applications, often imposing restrictions on either

architectures or applications.

For example, Ipek et al. propose multilayer artificial neural networks to learn application

performance [69] and Lee et al. compare a set of different schemes for automated machine-

based performance learning and prediction [70]. Zhai, Chen, and Zheng extrapolate single-

node performance to complex parallel machines [71]. Wu and Müller [72] extrapolate traces

to larger process counts and can thus predict communication operations. Their extrapolation

relies on a trace compression scheme that assumes regular communications. Our method is

based on lightweight profiles which can be generated without making prior assumptions. All

these schemes aim to deliver the most accurate prediction but do not try to find a human-

readable scaling function, thus limiting insight.

Coarfa et al. automatically compare pairs of measurements at different scales to identify scal-

ability bottlenecks [73], whereas our approach creates explicit predictive models that describe

the scaling behavior beyond the range of measurements. Barnes et al. use regression analysis

to predict the scalability of applications [74] and is probably the work most similar to our own.

The main differences are that they aim to predict the optimal number of CPUs to solve a cer-

tain problem, similar to the approach of Shudler et al. [9] we discuss in Section 5.3 while we

are most interested in modeling both the execution time consumed for a specific run and the

requirements for different resources such as FLOPS or network communication. For this, their

tool considers is focused on strong scaling of the whole application while we can analyze both

strong and weak scaling, and identify performance behaviors at the granularity of functions

calls.

7.4 Multi-parameter performance modeling

We now look at approaches which consider the effect of multiple configuration parameters on

the performance of applications. These methods vary in their degree of automation, from source

code annotations to fully automated approaches that create performance models from empirical

measurements.

PALM [75] supports the creation of true multi-parameter models but requires the user to

annotate the source code with micro-models that apply only to small sections of the code.

Following extensive and detailed per-function measurements, the underlying framework then
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automatically combines these micro-models into structural macro-models. The approach is re-

lated to Aspen [76], a dedicated language to specify such micro-models. Our approach provides

a higher degree of automation without prior source-code annotation. Vuduc et al. select the

best implementation of a given algorithm by automatically generating a large number of can-

didates and then choosing the one that offers the best performance according to an empirically

derived model — potentially with multiple parameters [77]. However, automatic is only the lin-

ear regression to determine the model coefficients. The model hypothesis itself must be chosen

manually, which is why their approach, as far as performance modeling is concerned, cannot be

considered truly automatic.

Finally, there are also automated methods for multi-parameter performance modeling. For

example, Siegmund et al. analyze the interaction of different configuration options of an ap-

plication and model how this affects the performance of the application as a whole [78]. The

main difference is the supported diversity of model functions. While they allow only linear,

quadratic or logarithmic functions, we allow a flexible combination of polynomials and log-

arithms. Furthermore, we apply heuristics to traverse the model search space more quickly,

which is especially helpful in view of the higher model diversity we provide. Finally, we con-

struct performance models for every function (with calling context) in an application - not just

for the application as a whole. This allows optimization efforts to be channeled to where they

will be most effective. Hoefler et al. generate multi-parameter performance models online [79].

Although already supported by prior static analysis, the online nature of their approach limits

the size of the search space and thus the diversity of models quite significantly, and therefore

adversely affects model accuracy. Finally, another multi-parameter approach was presented by

Jayakumar et al. [80]. They extract execution signatures from their target applications, repre-

senting different execution phases, and match them with reference kernels stored in a database.

If such a match exists, they use the performance model belonging to the reference kernel to pre-

dict execution times for varying numbers of processors and input sizes. If no match can be found

for an execution phase, they apply static analysis to derive performance models. Model param-

eters include the core count p and only one input-size defining variable n at a time, which the

user has to identify manually. The spectrum of model functions is quite small and restricted to

n, log(n), n/p, log(n)/p.

7.5 Requirements engineering using performance modeling

We now investigate other approaches geared towards creating requirement models and sup-

porting the co-design process. This is a complex challenge, comprising many different aspects,

which explains the variations of the methods encountered.

Various groups utilize performance models to predict the performance of a code on differ-

ent architectures. For example, Carrington et al. present a model-based framework for pre-

dicting application behavior on different computers [81], Marin and Mellor-Crummey utilize

semi-automatically derived performance models to predict performance on different architec-

tures [82], and Yang et al. predict application performance on different architectures by running
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kernels on an available architecture and using the relative performance difference between the

target and test architecture to guide their prediction [83].

Further, performance models have been used to determine node-level application require-

ments. For example, Carrington et al. use simple linear, logarithmic, exponential, or constant

regression to determine application requirement scaling [84]. Our method goes beyond that

by combining more complex functions leading to more accurate models while still retaining

interpretability. In the widest sense, the roofline model [51, 85] can also be considered as an

interpretable requirement model. It is, however, mostly designed as an optimization tool and

thus not easily applicable to co-design.

Dongarra et al. presented a study on hypothetical exascale machines [86]. Gahvari and

Gropp as well as Bhatele et al. used this study as a starting point and analyzed the theoretical

feasibility of several computational algorithms on these machines. They show bounds on net-

work requirements in terms of latency and bandwidth that would have to be satisfied in order

to solve these problems [87, 88]. While extremely valuable, their studies are purely theoretical

and not based on real applications. With our method, we enable similar studies for actual code

bases.

Many co-design approaches rely on application and architecture simulation. Such simula-

tions exist at numerous granularities, ranging from cycle-accurate [15, 16] to coarse model-

driven [89], allowing to trade off accuracy for speed and feasibility. Detailed network behav-

ior can be modeled using trace-driven simulations such as SimGrid [17], DIMEMAS [18], or

PSINS [19]. Other tools such as BigSim [90], Silas [91], and MPI-SIM [92] complement sim-

ulations with the use of direct or kernel execution to assess computation and communication

times more accurately. Such direct execution approaches often show severe memory limita-

tions [93], especially in the exascale range. The main drawback of such simulations are the

enormous resources required to run them. Even the least accurate simulations rarely scale

to exascale workloads. Furthermore, simulation results provide little insight into the applica-

tion scaling on their own (without additional human interpretation). Our requirement models

need no resources beyond the small scale measurements required to produce them, enabling

extreme-scale predictions at very low cost. Moreover, they are intuitive in that they allow di-

rect statements such as “the required network bandwidth grows logarithmically with the system

size”. This makes them very powerful even if the exact architecture of an exascale system is not

available to a system designer.
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8 Conclusion
The main goal of this thesis has been the development of an accessible performance modeling

solution to allow application developers and users to more deeply understand the behavior of

their codes. We provide a handy tool to get an overview of the performance issues in general

and scalability issues in particular of a application. Furthermore, we attempt to pinpoint the

issues and anchor them at a fine granularity in the code, thus offering a starting point for the

debugging process. Our efforts do not replace the need for performance engineers and experts

in analytical models, but rather allow them to focus on those kernels which prove to contain

issues. In the following, the main contributions of this thesis are briefly summarized.

8.1 Automatic performance modeling

The first contribution of this work was to confirm that automatic performance modeling is feasi-

ble and that the automatically generated models are accurate enough to identify scalability bugs

by introducing the performance model normal form and the fine-grained modeling approach.

In fact, in those cases where hand-crafted models existed in the literature we found our models

to be competitive. The main lesson that we learned during our work is that the advantages of

mass production also apply to performance models. First, approximate models are acceptable

as long as the effort to create them is low and they do not mislead the user. Second, code cov-

erage is as important as model accuracy. Having approximate models for all parts of the code

can be more useful than having a model with 100% accuracy for just a tiny portion of the code

or no model at all. Extending this argument beyond the boundaries of a single application, we

believe that our tool makes scalability modeling accessible to a much wider audience of HPC

developers and applications.

Our tool models only behavior found in the training data. We provide direct feedback infor-

mation regarding the number of runs required to ensure statistical significance of the modeling

process itself, but there is no automatic way of determining at what scale particular behaviors

start manifesting themselves. In the HOMME example, the iteration count suddenly increased

after 15k processes, which was only detectable through either code analysis or experiments. We

expect that our method will be most effective for regular problems with repetitive behavior.

8.2 Multi-parameter performance modeling

The method previously introduced focuses on the effect of one configuration parameter, usu-

ally the number of processes, has on performance. The second contribution of this work is

the demonstration that automatic performance modeling with multiple parameters is feasible.

Within seconds, we generated accurate performance models for realistic applications from a
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limited set of performance measurements. The models both confirmed assumption the devel-

opers had earlier, providing further validation for our heuristics, and offered new unexpected

insights into application behavior. Given that the resources needed for the model generation

itself are now negligible, the number of model parameters is only constrained by the amount of

measurements a user can afford. From a practical perspective, we believe that this will allow

the key parameters of many applications to be captured in empirical performance models.

Speaking in general terms, our method enables a more complete traversal of the performance

space compared to other performance analysis methods at relatively low cost, making applica-

tion performance tuning more effective. Auto-tuning methods that still rely on long series of

performance tests, which are not only time consuming but also expensive, can profit as well.

8.3 Requirements engineering using performance modeling

The third contribution of this work is an application of the multi-parameter performance mo-

deling method. We introduce of a quick and simple automatic back-of-the-envelope technique

to generate requirement models for parallel applications. This will not only benefit applica-

tion developers but also the designers of emerging systems, who can now project application

requirements more precisely along several parameter dimensions and balance their systems

accordingly. Our tool generates interpretable models that can be used to gain quick insights

into various aspects such as the required number of floating-point operations or network com-

munication volumes to solve a particular problem with a particular number of processes. An

important contribution is the ability to compare how the requirements for different resources

change when a code is scaled. We demonstrate our lightweight modeling with five different

applications. The requirement models enable system designers to consider various upgrade and

design options. Our analysis demonstrates how the requirement models can be used to gain an

intuitive understanding of critical system parameters and how to balance a system configura-

tion to support a certain application. We believe that our method can be easily applied to a full

compute center workload consisting of several dozens of applications.

8.4 Impact

The methods presented in this thesis already had an impact on the performance modeling com-

munity. From case studies of scientific applications such as UG4 [7] to implementations of

parallel programming paradigms such as OpenMP [5] and MPI [3], Extra-P has already seen

widespread use. Beyond its intended use as a tool to discover performance issues, it has been

employed as a starting point to develop new performance analysis approaches altogether, such

as determining the isoefficiency of task-based parallel programs [9].

The release of Extra-P as an open-source performance modeling tool ensures that the contri-

butions of this thesis are not just theoretical, but rather immediately accessible and usable by

any developer who wishes to gain performance insights from empirical measurements. Further-

more, we are actively teaching developers how to use our tool efficiently through workshops and
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Figure 8.1: Compiler-assisted automatic performance modeling with multiple model parameters.

tutorials. In the future, as the performance modeling methods are refined and their capabilities

bolstered through continuing research, Extra-P will continue to be improved.

8.5 Outlook

This section provides an outlook towards the different opportunities for continuing the research

presented in this thesis. With Extra-P as a mature, tried, and tested tool for performance mo-

deling of homogeneous parallel programs we are now turning our gaze towards applying the

methods introduced in this thesis to other fields such as deep neural networks and graph al-

gorithms, and tackling the specific issues rising from their particularities, as well as enriching

Extra-P with additional capabilities.

8.5.1 Compiler-assisted multi-parameter performance modeling

Automating the generation of performance models for HPC applications with large and complex

spaces of configuration parameters is a significant challenge. The approach presented in this

thesis solves the problem of generating performance models that take into account the effect of

multiple configuration parameters empirically from gathered measurements. The questions of

how to select which configuration parameters to investigate and which ranges for their values

provide most insight are still open. Furthermore, the number of measurements required to

create performance models grows exponentially with the number of parameters considered.

Static analysis could be used to identify configuration parameters relevant for individual ker-

nels and whether interactions between these parameters exist at the kernel level. This would

simplify the design of experiments and at the same time it would reduce the time and effort

spent gathering measurements. In turn, this would allow the performance implications of these

parameters and their interplay to be studied more effectively.

The goal is to create an enhanced version of Extra-P, capable of efficiently generating perfor-

mance models with multiple parameters individually for each target metric and call path of an

application. Towards this purpose two methods must be developed:

• A method to identify those model parameters that are performance relevant enough to be

included in the model.

• A method to choose the parameter assignments for the required performance experiments

such that accurate models can be produced while keeping the cost of the experiments low.
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Figure 8.1 illustrates the essential steps of this approach and highlights the major solution

components (dark purple boxes). First, the solution needs to identify relevant model param-

eters, mainly using static analysis. Interactions are proved or disproved whenever possible.

The next step is the design of the necessary performance experiments, that is, the selection

of parameter assignments to be tried. The final step is the generation of the multi-parameter

performance models.

We plan on building on the approach Hoefler et al. use to generate multi-parameter perfor-

mance models online [94, 79]. The static analysis they use to guide the online modeling process

will be expanded and used for parameter identification and experiment design.

8.5.2 Performance through decomposition

A key technique for understanding the behavior of complex systems is to decompose them

into smaller parts and analyze them individually. For example, empirically determining the

scalability models of parts of a parallel application with Extra-P can help determine the existence

of bottlenecks.

However, having determined the scalability for parts of a parallel system is not sufficient to

prove that these scalability properties hold for the entirety of the system. Deriving information

about how performance effects are composed in parallel applications would be a powerful tool

helping developers design new applications or improve and understand existing algorithms. By

examining design patterns of parallel programs [95], and trying to identify properties to which

the composition and decomposition could apply to, we could support the designing of parallel

algorithms.

The challenge will be to define properties, propose assumptions under which the composi-

tional reasoning is possible, and then test these assumptions using a concrete implementation

of a design pattern. A study of scalability will require a concrete implementation to provide a

starting point to validate or invalidate theoretical insights.

As an example, we propose a pipeline where each stage in the pipeline can process tasks

in parallel. The different stages of the pipeline could be connected by unbounded queues. In

this example, two of the questions to be answered is what properties need the tasks to have

such that the compositional reasoning is possible? Are the performance models of the whole

compared to the different parts additive or multiplicative or another arbitrary function?

8.5.3 Performance modeling of graph algorithms

Graph algorithms represent an important subclass of programs, which we have not attempted

to create performance models for in the past. The challenge herein is that the behavior of graph

algorithms depends very much on their input and in case of parallel algorithms on the problem

decomposition.

Taking the entire structure of a graph into account and considering each edge and each node

as a separate configuration parameter for the modeling process will lead to a untenably large

search space. It is unlikely that enough measurements showing a variation for each combina-
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tion of parameters could even be gathered. The challenge will therefore be to identify which

configuration parameters describe the performance of graph algorithms. The study should in-

vestigate whether certain classes of graph algorithms such as searching, routing, coloring have

common configuration parameters which affect their performance in similar ways.

For example, for some graph algorithms the number of nodes, the number of edges, the

degree of a node, or the combination of some of the meta-parameters describing the graph

could dominate its performance. This could allow models to be created from a reasonably small

number of performance measurements.

8.5.4 Performance modeling and deep neural networks

Deep neural networks (DNNs) [96] have made machine learning a very relevant topic over the

last few years. By applying deep neural networks in tasks such as speech recognition and image

recognition results have been achieved that were previously considered impossible with tradi-

tional machine learning approaches. However, neural networks must be trained with the use

of a large number of parameters (referring in this context to the adjustable weights of different

inputs of the network) to reach desired outcomes. Training neural networks with billions of pa-

rameters as is required for many real applications, such as image or speech recognition, needs

a lot of computation power.

Performance modeling with deep neural networks. A first aspect to pursue would be to

generate empirical performance models using deep neural networks and compare the results

with the approaches presented in this work both from the perspective of accuracy as well as

time to solution. Susceptibility to noise will likely play a major role in this evaluation. An

important challenge will be how to organize and provide the measurements to train the neural

network.

Performance modeling of deep neural networks. The training time of deep neural networks

and the effects of varying configuration parameters on it have been intensely studied [97, 98].

However, the performance effect of configuration parameters on the deployment of neural net-

works is still insufficiently understood. Obtaining measurements of deployed DNNs should be

tractable given the existing frameworks, and allow Extra-P to determine multi-parameter per-

formance models. Of particular interest would be the compounded effect the number of layers

together with the size of each layer have on both performance and accuracy of the results.

8.6 Discussion

The most important contribution of this work is a powerful empirical method for creating per-

formance models, as well as an open source tool to implement it. Many improvements both

with respect to capabilities and accuracy have been added and we consider this approach to be

fit for its purpose and capable of tackling most issues that come up in the modeling of homoge-

neous parallel applications. Looking forward, the next steps are to apply this approach to other
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fields and other types of applications, as well as investigating alternative and complementary

approaches to the empirical performance modeling method presented in this thesis.

96



Bibliography
[1] T. Hoefler, W. Gropp, W. Kramer, and M. Snir. Performance modeling for systematic per-

formance tuning. In State of the Practice Reports, SC ’11, pages 6:1–6:12. ACM, 2011.

[2] B. J. N. Wylie, M. Geimer, M. Nicolai, and M. Probst. Performance analysis and tuning of

the XNS CFD solver on BlueGene/L. In Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface : Proceedings 14th European PVM/MPI Conference, EuroPVM/MPI’07,
Paris, France - Berlin, Springer, 2007. - (Lecture Notes in Computer Science ; 4757). - 978-
3-540-75416-9. - S. 107 - 116, 2007. Record converted from VDB: 12.11.2012.

[3] S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf. Exascaling your library: Will

your implementation meet your expectations? In Proc. of the International Conference on
Supercomputing (ICS), Newport Beach, CA, USA, pages 165–175. ACM, June 2015.

[4] P. Reisert, A. Calotoiu, S. Shudler, and F. Wolf. Following the blind seer – creating better

performance models using less information. In Proc. of the 23rd Euro-Par Conference, San-
tiago de Compostela, Spain, Lecture Notes in Computer Science, pages 106–118. Springer,

August 2017.

[5] C. Iwainsky, S. Shudler, A. Calotoiu, A. Strube, M. Knobloch, C. Bischof, and F. Wolf. How

many threads will be too many? on the scalability of openmp implementations. In Proc.
of the 21st Euro-Par Conference, Vienna, Austria, volume 9233 of Lecture Notes in Computer
Science, pages 451–463. Springer, August 2015.

[6] K. Ilyas, A. Calotoiu, and F. Wolf. Off-road performance modeling – how to deal with

segmented data. In Proc. of the 23rd Euro-Par Conference, Santiago de Compostela, Spain,

Lecture Notes in Computer Science, pages 36–48. Springer, August 2017.

[7] A. Vogel, S. Reiter, M. Rupp, A. Nägel, and G. Wittum. UG 4: A novel flexible software

system for simulating PDE based models on high performance computers. Comp. Vis. Sci.,
16(4):165–179, 2013.

[8] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade. Barcelona openmp tasks

suite: A set of benchmarks targeting the exploitation of task parallelism in openmp. In

Proceedings of the 2009 International Conference on Parallel Processing, ICPP ’09, pages

124–131, Washington, DC, USA, 2009. IEEE Computer Society.

[9] S. Shudler, A. Calotoiu, T. Hoefler, and F. Wolf. Isoefficiency in practice: Configuring and

understanding the performance of task-based applications. In Proc. of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), Austin, TX, USA,

pages 131–143. ACM, February 2017.

97



[10] N. Bhatia, F. Song, F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Automatic experimental

analysis of communication patterns in virtual topologies. In Proc. of the International
Conference on Parallel Processing (ICPP), Oslo, Norway, pages 465–472. IEEE Society, June

2005.

[11] L. Adhianto, S. Banerjee, M. W. Fagan, M. W. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel programs.

Concurrency and Computation: Practice and Experience, 22(6):685–701, April 2010.

[12] S. S. Shende and A. D. Malony. The TAU parallel performance system. International
Journal of High Performance Computing Applications, 20(2):287–331, 2006.

[13] D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt, A. Knüpfer,

D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S. S.

Shende, M. Wagner, B. Wesarg, and F. Wolf. Score-P: A unified performance measurement

system for petascale applications. In Proc. of the CiHPC: Competence in High Performance
Computing, HPC Status Konferenz der Gauß-Allianz e.V., Schwetzingen, Germany, June 2010,

pages 85–97. Gauß-Allianz, Springer, 2012.

[14] R. Miceli, A. Berariu, and M. Gerndt. Introduction to automatic tuning of hpc applications:

The periscope tuning framework, 04 2015.

[15] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rockhold, Ch. Lefurgy,

H. Shafi, T. Nakra, R. Simpson, E. Speight, K. Sudeep, E. Van Hensbergen, and L. Zhang.

Mambo: a full system simulator for the PowerPC architecture. SIGMETRICS Performance
Eval. Review, 31:8–12, March 2004.

[16] A. F. Rodrigues, R. C. Murphy, P. Kogge, and K. D. Underwood. The structural simulation

toolkit: exploring novel architectures. In Proc. of the ACM/IEEE Conference on Supercom-
puting, (SC ’06). ACM, 2006.

[17] H. Casanova, A. Legrand, and M. Quinson. SimGrid: a generic framework for large-scale

distributed experiments. In Proc. of the 10th Intl. Conference on Computer Modeling and
Simulation, (UKSIM), pages 126–131. IEEE Computer Society, 2008.

[18] V. Subotic, J. C. Sancho, J. Labarta, and M. Valero. A simulation framework to automat-

ically analyze the communication-computation overlap in scientific applications. In Proc.
of the IEEE Conference on Cluster Computing, (Cluster ’10), pages 275–283. IEEE Computer

Society, 2010.

[19] M. M. Tikir, M. A. Laurenzano, L. Carrington, and A. Snavely. PSINS: An open source event

tracer and execution simulator for MPI applications. In Proc. of the Euro-Par Conference,

pages 135–148. Springer-Verlag, 2009.

[20] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Gittings. Pre-

dictive performance and scalability modeling of a large-scale application. In Proc. of the
ACM/IEEE Conference on Supercomputing (SC’01), page 37. ACM, 2001.

98



[21] M. M. Mathis, N. M. Amato, and M. L. Adams. A general performance model for parallel

sweeps on orthogonal grids for particle transport calculations. Technical report, College

Station, TX, USA, 2000.

[22] G. Bauer, S. Gottlieb, and T. Hoefler. Performance modeling and comparative analysis of

the MILC lattice QCD application su3_rmd. In Proc. of CCGrid, May 2012.

[23] W. Gropp and M. Snir. Programming for exascale computers. Computing in Science Engi-
neering, 15(6):27–35, Nov 2013.

[24] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using automated performance modeling to

find scalability bugs in complex codes. Nov. 2013. IEEE/ACM International Conference

on High Performance Computing, Networking, Storage and Analysis (SC13).

[25] A. Calotoiu, D. Beckingsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz, and F. Wolf. Fast

multi-parameter performance modeling. In Proc. of the 2016 IEEE International Conference
on Cluster Computing (CLUSTER), Taipei, Taiwan, pages 172–181. IEEE Computer Society,

September 2016.

[26] F. Durst and M. Schaefer. A parallel block-structured multigrid method for the prediction

of incompressible flows. International Journal for Numerical Methods in Fluids, 22(6):549–

565, 1996.

[27] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: measuring the scalability of parallel

algorithms and architectures. Parallel Distributed Technology: Systems Applications, IEEE,

1(3):12–21, 1993.

[28] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,

D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view of the parallel

computing landscape. Commun. ACM, 52(10):56–67, October 2009.

[29] R. R. Picard and R. D. Cook. Cross-validation of regression models. Journal of the American
Statistical Association, 79(387):575–583, 1984.

[30] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of system noise

on large-scale applications by simulation. In Proc. of the ACM/IEEE Conference on Super-
computing (SC ’10), November 2010.

[31] D. M. Hawkins, S. C. Basak, and D. Mills. Assessing model fit by cross-validation. Journal
of Chemical Information and Computer Sciences, 43(2):579–586, 2003.

[32] A. Blum, A. Kalai, and J. Langford. Beating the hold-out: bounds for k-fold and progressive

cross-validation. In Proc. of the 12th Annual Conference on Computational Learning Theory,

(COLT), pages 203–208. ACM, 1999.

[33] P. Zhang. Model selection via multifold cross validation. The Annals of Statistics, 21(1):pp.

299–313, 1993.

99



[34] D. S. Carter. Comparison of different shrinkage formulas in estimating population multi-

ple correlation coefficients. Educational and Psychological Measurement, 39(2):261–266,

1979.

[35] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance

model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

[36] Message Passing Forum. Mpi: A message-passing interface standard. Technical report,

Knoxville, TN, USA, 1994.

[37] M. Harlacher, A. Calotoiu, J. Dennis, and F. Wolf. Analysing the scalability of climate

codes using new features of scalasca. In Kurt Binder, Marcus Müller, Manfred Kremer,

and Alexander Schnurpfeil, editors, Proc. of the John von Neumann Institute for Comput-
ing (NIC) Symposium 2016, Juelich, Germany, volume 48 of NIC Series, pages 343–352.

Forschungszentrum Jülich, John von Neumann-Institut for Computing, February 2016.

[38] Los Alamos National Laboratory. ASCI SWEEP3D v2.2b: Three-dimensional discrete ordi-

nates neutron transport benchmark, 1995.

[39] D. Böhme, M. Geimer, F. Wolf, and L. Arnold. Identifying the root causes of wait states in

large-scale parallel applications. In Proc. of the 39th Intl. Conference on Parallel Processing
(ICPP), San Diego, CA, USA, pages 90–100. IEEE Computer Society, September 2010.

[40] A. Hoisie, O. M. Lubeck, and H. J. Wasserman. Performance analysis of wavefront algo-

rithms on very-large scale distributed systems. In Workshop on Wide Area Networks and
High Performance Computing, pages 171–187. Springer-Verlag, 1999.

[41] H. Wasserman, A. Hoisie, and O. Lubeck. Performance and scalability analysis of teraflop-

scale parallel architectures using multidimensional wavefront applications. The Intl. Jour-
nal of High Performance Computing Applications, 14:330–346, 2000.

[42] B. J. N. Wylie, M. Geimer, B. Mohr, D. Boehme, Z. Szebenyi, and F. Wolf. Large-scale

performance analysis of SWEEP3D with the Scalasca toolset. Parallel Processing Letters,
20(04):397–414, 2010.

[43] J. M. Dennis, J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A.

Taylor, and P. H. Worley. CAM-SE: A scalable spectral element dynamical core for the

community atmosphere model. Intl. Journal of High Performance Computing Applications,
26(1):74–89, 2012.

[44] A. Vogel, A. Calotoiu, A. Strube, S. Reiter, A. Nägel, F. Wolf, and G. Wittum. 10,000

performance models per minute - scalability of the ug4 simulation framework. In Proc. of
the 21st Euro-Par Conference, Vienna, Austria, volume 9233 of Lecture Notes in Computer
Science, pages 519–531. Springer, August 2015.

[45] A. J. Kunen. Kripke - user manual v1.0. Technical Report LLNL-SM-658558, Lawrence

Livermore National Laboratory, August 2014.

100



[46] S. Langer, I. Karlin, V. Dobrev, M. Stowell, and M. Kumbera. Performance analysis and

optimization for blast, a high order finite element hydro code. Proceedings of the 2014
NECDC, 2014.

[47] L. I. Sedov. Propagation of strong shock waves. Journal of Applied Mathematics and Me-
chanics, 10:241–250, 1946.

[48] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beckingsale, A. C.

Mallinson, and S. A. Jarvis. Accelerating Hydrocodes with OpenACC, OpeCL and CUDA.

In Proceedings of the 3rd International Workshop on Performance Modeling, Benchmarking
and Simulation, pages 465–471, November 2012.

[49] G. A. Sod. A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyper-

bolic Conservation Laws. Journal of Computational Physics, 27(1):1–31, April 1978.

[50] T. S. Bailey and R. D. Falgout. Analysis of massively parallel discrete-ordinates transport

sweep algorithms with collisions. In International Conference on Mathematics, Computa-
tional Methods & Reactor Physics, Saratoga Springs, NY, 2009.

[51] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance

model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

[52] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-

face for performance evaluation on modern processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, 2000.

[53] E. Berg. Efficient and Flexible Characterization of Data Locality through Native Execution
Sampling. PhD thesis, Department of Information Technology, Uppsala University, Novem-

ber 2005.

[54] D. Eklov and E. Hagersten. Statstack: Efficient modeling of lru caches. In 2010 IEEE
International Symposium on Performance Analysis of Systems Software (ISPASS), pages 55–

65, March 2010.

[55] S. Byna, A. Uselton, Prabhat, D. Knaak, , and Y. He. Trillion Particles, 120,000 cores, and

350 TBs: Lessons Learned from a Hero I/O Run on Hopper. 2013.

[56] I Karlin, J Keasler, and JR Neely. Lulesh 2.0 updates and changes. Technical report,

Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013.

[57] S. Rinke, M. Butz-Ostendorf, M. Hermanns, M. Naveau, and F. Wolf. A scalable algorithm

for simulating the structural plasticity of the brain. In Proc. of the 28th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Los
Angeles, CA, USA, pages 1–8, October 2016.

[58] H. Jasak and A. Jemcov. Openfoam: A c++ library for complex physics simulations.

In International Workshop on Coupled Methods in Numerical Dynamics, IUC, pages 1–20,

2007.

101



[59] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective commu-

nication operations in mpich. Int. J. High Perform. Comput. Appl., 19(1):49–66, February

2005.

[60] U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using

the Navier-Stokes equations and a multigrid method. Journal of Computational Physics,
48:387–411, 1982.

[61] P. van Phuc. Large Scale Transient CFD Simulations for Buildings using OpenFOAM on

a World’s Top-class Supercomputer. In 4th Annual OpenFOAM User Conference, Cologne,
Germany, Lecture Notes in Computer Science, 2016.

[62] H. Steve. Intel MPI library collective optimization on the Intel Xeon Phi coprocessor using

environment variable collective operation control, 2015.

[63] P. Saviankou, M. Knobloch, A. Visser, and B. Mohr. Cube v4: From performance report

explorer to performance analysis tool. Procedia Computer Science, 51:1343–1352, June

2015.

[64] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The Scalasca

performance toolset architecture. Concurrency and Computation: Practice and Experience,

22(6):702–719, April 2010.

[65] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and analysis

of MPI resources. Supercomputer, 12(1):69–80, 1996.

[66] S. Pllana, I. Brandic, and S. Benkner. Performance modeling and prediction of parallel

and distributed computing systems: A survey of the state of the art. In Proc. of the 1st Intl.
Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pages 279–284,

2007.

[67] E. L. Boyd, W. Azeem, H. Lee, T. Shih, S. Hung, and E. S. Davidson. A hierarchical approach

to modeling and improving the performance of scientific applications on the KSR1. In

Proc. of the Intl. Conference on Parallel Processing, (ICPP), pages 188–192. IEEE Computer

Society, 1994.

[68] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercomputer perfor-

mance: Achieving optimal performance on the 8,192 processors of ASCI Q. In Proc. of the
ACM/IEEE Conference on Supercomputing, (SC ’03), page 55. ACM, 2003.

[69] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee. An approach to performance

prediction for parallel applications. In Proc. of the 11th Intl. Euro-Par Conference, pages

196–205. Springer-Verlag, 2005.

[70] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A. McKee. Methods

of inference and learning for performance modeling of parallel applications. In Proc. of the
12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, (PPoPP

’07), pages 249–258. ACM, 2007.

102



[71] J. Zhai, W. Chen, and W. Zheng. PHANTOM: Predicting performance of parallel applica-

tions on large-scale parallel machines using a single node. SIGPLAN Notices, 45(5):305–

314, January 2010.

[72] X. Wu and F. Müller. ScalaExtrap: Trace-based communication extrapolation for SPMD

programs. ACM Transactions on Programming Languages and Systems, 34(1), April 2012.

[73] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko. Scalability analysis of SPMD

codes using expectations. In Proc. of the 21st Intl. Conference on Supercomputing, (ICS),

pages 13–22. ACM, 2007.

[74] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski, and M. Schulz.

A regression-based approach to scalability prediction. In Proc. of the Intl. Conference on
Supercomputing, (ICS), pages 368–377. ACM, 2008.

[75] N. R. Tallent and A. Hoisie. Palm: Easing the burden of analytical performance modeling.

In Proc. of the 28th ACM International Conference on Supercomputing, ICS ’14, pages 221–

230, New York, NY, USA, 2014. ACM.

[76] K. L. Spafford and J. S. Vetter. Aspen: A domain specific language for performance mode-

ling. In Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’12, pages 84:1–84:11, Los Alamitos, CA, USA, 2012.

IEEE Computer Society Press.

[77] R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical Models for Empirical Search-Based

Performance Tuning. Int. J. High Perform. Comput. Appl., 18(1):65–94, February 2004.

[78] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner. Performance-influence models for

highly configurable systems. In Proc. of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 284–294, New York, NY, USA, 2015. ACM.

[79] A. Bhattacharyya, G. Kwasniewski, and T. Hoefler. Using compiler techniques to improve

automatic performance modeling. In Proc. of the 24th International Conference on Parallel
Architectures and Compilation Techniques (PACT’15), pages 1–12, San Francisco, CA, USA,

2015.

[80] A. Jayakumar, P. Murali, and S. Vadhiyar. Matching application signatures for performance

predictions using a single execution. In Proc. of the 29th IEEE International Parallel &
Distributed Processing Symposium (IPDPS 2015), pages 1161–1170, May 2015.

[81] L. Carrington, A. Snavely, and N. Wolter. A performance prediction framework for scien-

tific applications. Future Generation Computer Systems, 22(3):336–346, February 2006.

[82] G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions for scientific

applications using parameterized models. SIGMETRICS Performance Eval. Review, 32(1):2–

13, June 2004.

103



[83] L. T. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction of parallel appli-

cations using partial execution. In Proc. of the ACM/IEEE Conference on Supercomputing,

(SC ’05), page 40. IEEE Computer Society, 2005.

[84] L. Carrington, M. Laurenzano, and A. Tiwari. Characterizing large-scale hpc applications

through trace extrapolation. Parallel Processing Letters, 23(4), 2013.

[85] B. Norris, W. Spear, and A. Malony. Performance analysis of applications in the context of

architectural rooflines. In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, ICPE ’17, pages 345–348, New York, NY, USA, 2017. ACM.

[86] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J. Andre, D. Barkai, J. Berthou,

T. Boku, B. Braunschweig, F. Cappello, B. Chapman, C. Xuebin, A. Choudhary, S. Dosanjh,

T. Dunning, S. Fiore, A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,

K. Hotta, Zhong J., Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes, B. Kramer,

J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Maccabe, S. Matsuoka, P. Messina,

P. Michielse, B. Mohr, M. S. Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed,

M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,

B. Sugar, Shinji Sumimoto, William Tang, John Taylor, Rajeev Thakur, Anne Trefethen,

Mateo Valero, Aad Van Der Steen, J. Vetter, P. Williams, R. Wisniewski, and K. Yelick.

The international exascale software project roadmap. Int. J. High Perform. Comput. Appl.,
25(1):3–60, February 2011.

[87] H. Gahvari and W. Gropp. An introductory exascale feasibility study for FFTs and multi-

grid. In IPDPS, pages 1–9. IEEE, 2010.

[88] A. Bhatele, P. Jetley, H. Gahvari, L. Wesolowski, W. D. Gropp, and L. V. Kalé. Architectural

constraints to attain 1 exaflop/s for three scientific application classes. In IPDPS, pages

80–91. IEEE, 2011.

[89] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim: simulating large-scale applica-

tions in the LogGOPS model. In Proc. of the 19th ACM Intl. Symposium on High Performance
Distributed Computing, (HPDC), pages 597–604. ACM, 2010.

[90] G. Zheng, G. Kakulapati, and L. V. Kalé. BigSim: A parallel simulator for performance

prediction of extremely large parallel machines. In Proc. of the 18th Intl. Parallel and
Distributed Processing Symposium (IPDPS), page 78, April 2004.

[91] M. Hermanns, M. Geimer, F. Wolf, and B. J. N. Wylie. Verifying causality between distant

performance phenomena in large-scale MPI applications. In Proc. of the 17th Euromicro In-
ternational Conference on Parallel, Distributed, and Network-Based Processing (PDP), pages

78–84. IEEE Computer Society, February 2009.

[92] R. Bagrodia, E. Deelman, and T. Phan. Parallel simulation of large-scale parallel applica-

tions. Intl. Journal of High Performance Computing Applications, 15(1):3–12, 2001.

104



[93] C. Mei. A preliminary investigation of emulating applications that use petabytes of mem-

ory on petascale machines. Master’s thesis, University of Illinois at Urbana-Champaign,

2007.

[94] A. Bhattacharyya and T. Hoefler. PEMOGEN: Automatic adaptive performance modeling

during program runtime. In Proc. of the 23rd International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’14), Edmonton, Alberta, Canada, 2014.

[95] Z. U. Huda, A. Jannesari, and F. Wolf. Using template matching to infer parallel design

patterns. ACM Trans. Archit. Code Optim., 11(4):64:1–64:21, January 2015.

[96] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural

networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15

May 2010. PMLR.

[97] I. H. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny, J. Gunnels, V. Austel, U. Chauhari,

and B. Kingsbury. Parallel deep neural network training for big data on blue gene/q. IEEE
Transactions on Parallel and Distributed Systems, 28(6):1703–1714, June 2017.

[98] X. W. Chen and X. Lin. Big data deep learning: Challenges and perspectives. IEEE Access,
2:514–525, 2014.

105



Alexandru Calotoiu
Curriculum Vitae T +49 6151 16 27756

B calotoiu@cs.tu-darmstadt.de

Personal data
Date of birth: 5. May 1985
Place of birth: Bucharest, Romania

Education
2017 Ph.D. defended, Department of Computer Science, Technische Universität Darm-

stadt, Passed with distinction.
2011 M. Sc. Simulation Sciences, Faculty of Mechanical Engineering, RWTH Aachen

University.
2009 Dipl. Ing, Department of Computer Science Engineering, Politechnical University

Bucharest, Passed with distinction.

Professional Experience
2015-present Research Associate, Technische Universität Darmstadt, Laboratory for Parallel

Programming.
2014 Scientific Research Intern, Lawrence Livermore National Laboratory.

2011-2015 Research Associate, RWTH Aachen University, German Research School for Sim-
ulation Sciences, Laboratory for Parallel Programming.

2008 Software Development Engineer Intern, Microsoft Corporation.

106


	List of Figures
	List of Tables
	Introduction
	High-Performance Computing
	Scalability
	Performance analysis
	Experiments
	Simulations
	Analytical modeling

	Empirical performance modeling
	Contributions
	Structure of this document

	Automatic Performance Modeling
	Performance model normal form
	Parameter space exploration
	Parameter selection
	Parameter value selection

	Workflow
	Performance measurements
	Statistical quality control
	Model generation
	Model refinement
	Performance extrapolation
	Kernel refinement
	Example

	Modeling requirements alongside time
	Effort
	Evaluation with synthetic data
	Case studies
	SWEEP3D
	MILC
	HOMME
	UG4
	XNS

	Discussion

	Multi-Parameter Performance Modeling
	Multi-parameter modeling
	A normal form for multiple parameters
	Challenges for multiple parameters

	Fast multi-parameter modeling
	Improved single-parameter modeling
	Combining multiple parameters
	Data collection

	Evaluation with synthetic data
	Case studies
	Kripke
	Blast
	CloverLeaf
	Evaluation

	Application insights
	Kripke
	BLAST

	Discussion

	Requirements engineering using performance modeling
	Motivation
	Requirements engineering
	Application requirements
	Scaling strategy
	Co-design method
	Model generation

	Application requirements study
	Kripke
	LULESH
	MILC
	Relearn
	IcoFoam

	Co-Design Study
	System upgrade
	System design

	Conclusion

	Impact
	Scalability framework
	Framework overview
	MPI case study
	Discussion

	Iterative refinement
	Isoefficiency
	OpenMP scalability study
	Segmented performance modeling
	Discussion

	Extra-P — An Automatic Performance Modeling Tool
	Performance modeling library
	Graphical user interface
	Tutorials
	Discussion

	Related Work
	Performance analysis
	Analyical modeling
	Automatic performance modeling
	Multi-parameter performance modeling
	Requirements engineering using performance modeling

	Conclusion
	Automatic performance modeling
	Multi-parameter performance modeling
	Requirements engineering using performance modeling
	Impact
	Outlook
	Compiler-assisted multi-parameter performance modeling
	Performance through decomposition
	Performance modeling of graph algorithms
	Performance modeling and deep neural networks

	Discussion


