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Chapter 1

Introduction

I beseech you, in the bowels of

Christ, think it possible that you

may be mistaken.

Oliver Cromwell

Uncertainty and probabilistic predictions are common in science, engineering
and everday life: from tomorrow’s weather forecast including the chance of pre-
cipitation to failure probabilities of networks and structures to Heisenberg’s uncer-
tainty principle in quantum mechanics. In practice, the uncertainty in predictions
can have various sources:

• the (mathematical) model employed for the prediction is a simplified version
of the real underlying process missing small or unresolvable features and ef-
fects,

• parameters or coefficients within the model are not known exactly such as
material properties, or they are considered to be random by nature such as
wind speed and direction or manufacturing imperfections,

• the model is solved by numerical methods and, thus, the resulting prediciton
is affected by discretization errors.

Analyzing and estimating the latter is a classical task in numerical analysis. In
recent years, particularly since Ghanem and Spanos [70], also the second item has
gained more and more interest within the scientific computing community and sev-
eral numerical methods for quantifying the uncertainty arising from incomplete
knowledge about model parameters or random model coefficients have been de-
veloped and examined.

Although, as Smith already remarks in the preface of [160], “uncertainty quantifi-
cation [...] is as old as the disciplines of probability and statistics”, the innovation
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in the last decades lies in the interaction and resulting synergy between statistics,
probability theory and numerical analysis. In particular, an increase in computa-
tional power as well as improved algorithms enable us to estimate the resulting
uncertain behaviour of complex systems modeled, e.g., by (systems of) partial dif-
ferential equations (PDEs), given uncertain input data. This thesis contributes to
the analysis and development of such algorithms.

In the following, we present the key ideas in uncertainty quantification (UQ) and
outline how Bayesian inference is an essential part of UQ. For the sake of clarity we
omit technical details at this point.

Uncertainty Quantification. We will consider an elliptic boundary value prob-
lem on a bounded domain D ⊆ Rd, d ∈N, as the model problem describing, e.g., a
stationary groundwater flow:

−∇ · (a(x)∇p(x)) = 0 on D, p(x) = g(x) on ∂D. (1.1)

Here, a denotes the spatially varying (hydraulic) conductivity, g the (Dirichlet)
boundary data and p the resulting (groundwater) pressure head. In particular, in
subsurface physics the knowledge about a (as well as g) is limited and based only on
finitely many measurement data and geological information. Scientific simulations
of and predictions for the solution p of (1.1) or the associated flow u = −a∇p have
to account for the incomplete knowledge about a and g. Although there exist differ-
ent mathematical concepts to describe uncertainty such as fuzzy sets and interval
arithmetics, see, e.g., Bandemer [8] or Oberguggenberger [127] for an overview,
we will focus on probabilistic methods in this thesis. Thus, the limited knowledge
about a and g is mathematically described by stochastic models such as random
functions or probability measures on function spaces which leads, in turn, to a ran-
dom solution p of (1.1).

Problems and resulting numerical methods considered within the field of uncer-
tainty quantification can roughly be classified into two groups:

1. Forward problems: Given a stochastic model for the uncertainty in the input
data of a PDE such as a and g in (1.1), quantify the resulting uncertainty in the
solution p by computing the resulting probability distribution of the latter.

2. Inverse problems: Given noisy measurements of (functionals of) the solution of
a PDE such as p in (1.1), adjust the current stochastic model for the uncertain
input, e.g., a and g in (1.1), w.r.t. the additional information provided by these
measurements.
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In pratice, both classes of problems can appear in combined form, e.g., often mea-
surements of both, the conductivity coefficient a as well as the pressure head p in
(1.1), are available and, of course, all observational data is taken into account for
constructing a stochastic model describing the available knowledge about a (in-
verse problem). On the other hand, the remaining uncertainty in a may then be
propagated through a PDE such as (1.1) to compute the resulting probability laws
of quantities of interest of p or u = −a∇p, e.g., breakthrough times of pollutants,
for predicitons or decision making (forward problem). In this thesis we will mainly
study numerical algorithms for the inverse problem in UQ. Besides that, we will
illustrate the whole UQ procedure for a real-word problem in Chapter 7.

The Inverse Problem in UQ and Bayesian Inference. Let us assume that we
already have a stochastic model describing our current state of knowledge (or our
current uncertainty) about the coefficient a in (1.1). Further, suppose that we are
given new noisy observational data of the solution p of (1.1), i.e.,

yi = p(xi) + εi, i = 1, . . . , k, (1.2)

where the εi denote random measurement errors following a known distribution.
We then would like to incorporate this new information into our stochastic model
for a in a consistent way and obtain an updated stochastic model. This is exactly
the basic principle of Bayesian inference: to update prior beliefs or probabilities, re-
spectively, as more information becomes available, see, e.g., Hoff [89] or Jaynes [94]
for an introduction and further references. Let µ denote the prior probability distri-
bution of a associated to our current stochastic model for a. Here, we assume that
a belongs to a function space such as L∞(D) or C(D̄) which can be continuously
embedded in a Hilbert spaceH, e.g.,H = L2(D), and that µ is defined on the Borel
σ-algebra of H. Then, merging the prior knowledge described by µ with the new
information provided by the measurement y := (y1, . . . , yk) ∈ Rk is mathematically
done by conditioning the distribution µ on the event of observing y. The resulting
posterior probability distribution µy of a is then explicitly given by Bayes’ rule which
under mild assumptions on the random errors εi takes the form

µy(da) =
1
Z

e−Φ(a) µ(da), (1.3)

where Φ : H → [0, ∞) denotes a measurable mapping and Z denotes the typically
unknown normalizing constant. We then may be interested in statistics of the mea-
sure µy such as the mean and the covariance or we may want to generate samples
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according to µy. The latter is particularly interesting when employing µy as the up-
dated stochastic model for the uncertain input a in a succeeding forward problem.

Numerical Methods for Bayesian Inference and Contributions of the Thesis.
Since the posterior measure µy can have a very complicated form, direct sampling
methods are usually not available or feasible. However, a well-established method
in Bayesian statistics to generate samples, which are (approximately) distributed
according to µy, is the Markov chain Monte Carlo (MCMC) method, see, e.g., Tierney
[170]. The basic idea behind MCMC methods is to construct a Markov chain, i.e.,
a sequence of random variables with Markov property, such that the distribution
of the nth state of the chain converges to the posterior µy as n → ∞. In the setting
outlined above, i.e., Bayesian inference for a coefficient function a appearing in a
PDE (1.1), the Markov chain has to run in an infinite dimensional state space, i.e.,
the function space H. Thus, we require MCMC methods which are well-defined
in general Banach or Hilbert spaces. Such MCMC algorithms have recently been
developed, e.g., the preconditioned Crank-Nicolson (pCN) Metropolis algorithm, see
Cotter et al. [35]. In fact, many other common MCMC methods are only defined in
finite dimensional state spaces and show a deteriorating efficiency as the dimension
increases, see, e.g. Roberts and Rosenthal [141].

One goal of this thesis is to combine MCMC algorithms for function spaces with
another recent idea to improve the efficiency of MCMC: to allow the algorithm
to exploit available “geometric” information about the posterior distribution such
as (approximations of) the posterior covariance, see, e.g., Girolami and Calder-
head [73]. In particular, the posterior covariance provides information about the
“spread” of the posterior distribution in the different directions or dimensions of
H, respectively, and can guide the MCMC algorithm, e.g., to take steps of appropri-
ate size in the corresponding directions. In Chapters 5 and 6 we will propose and
analyze a generalization of the pCN Metropolis algorithm which is able to incorpo-
rate approximations of the posterior covariance.

Moreover, numerical experiments conducted with the new algorithm show its
robust efficiency w.r.t. the variance of the observational noise, i.e., the variance of
εi in (1.2). Such a robustness is surprising, since a smaller noise variance implies a
higher concentration of the posterior distribution µy which in turn usually affects
the performance of common MCMC methods. The observation made in Chapter 5
motivates the study of the efficiency of MCMC methods for decreasing noise vari-
ance. To the author’s knowledge, there exists, so far, just one other publication
considering this topic: the work of Beskos et al. [16]. In Chapter 6 we develop a
different approach than Beskos et al. and prove a first result on the variance inde-
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pendent efficiency of MCMC methods.

Moreover, we examine in Chapter 4 two other algorithms proposed for Bayesian
inference and UQ: the ensemble Kalman filter (EnKF), see, e.g., Evensen [62], and the
polynomial chaos Kalman filter (PCKF), see, e.g., Rosić et al. [143]. Both methods are
extensions of the classical Kalman filter [97]. Although it is known that the EnKF
does not provide samples which are distributed according to the posterior, a charac-
terization of its outcome within the framework of Bayesian inference is still missing
in the literature. However, recently, starting with Le Gland et al. [75], several con-
vergence results for the EnKF were established under various assumptions. So far,
no convergence results are known in case of the PCKF. Another contribution of the
thesis is to fill the mentioned theoretical gaps for the EnKF and PCKF when both
are applied to Bayesian inference problems.

1.1. Outline of the Thesis

The thesis is structured as follows:

Chapter 2: This chapter provides an introduction to important mathematical con-
cepts for random functions including random fields and function space-valued
random variables. We discuss the relation between both and consider ellip-
tic PDEs with random fields as coefficients. Furthermore, recent numerical
approximation methods for solutions of random PDEs are outlined.

Chapter 3: We present the Bayesian approach to statistical inference and inverse
problems in separable Hilbert spaces. Besides the definition as a conditional
measure and the stability of the posterior measure w.r.t. perturbations in the
observed data or observational functionals, we also cover the concept of Bayes
estimators and make some comments about the relation to the regulariza-
tional approach to inverse problems.

Chapter 4: This chapter analyzes two recent numerical Kalman filtering methods
for Bayesian inference in Hilbert spaces, i.e., the ensemble Kalman filter and
the polynomial chaos Kalman filter. For both methods we establish conver-
gence results for the large ensemble and large polynomial basis limit, respec-
tively, and, moreover, provide a characterization of their outcome within the
Bayesian methodology.

Chapter 5: The Markov chain Monte Carlo method for approximate sampling
of (posterior) measures on Hilbert spaces is outlined and a new Metropolis-
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Hastings algorithm is proposed. The latter is a generalization of the well-
known pCN Metropolis algorithm and allows to incorporate information about
the posterior covariance. A geometric convergence result for the proposed al-
gorithm is proven where the proof involves spectral gap theory and a com-
parison arguement for Metropolis-Hastings algorithms. Furthermore, in nu-
merical experiments we show a superior performance of the new algorithm
compared to the pCN Metropolis algorithm.

Chapter 6: This chapter is devoted to a deeper analysis of the phenomenon ob-
served in the numerical simulations in Chapter 5: a robust performance of
the gpCN Metropolis algorithm w.r.t. the (observational) noise or likelihood
variance, respectively, in the Bayesian inference problem. A positive result is
shown for the simple but already nontrivial case of linear observations with
Gaussian prior and noise. Numerical experiments illustrate the theoretical
findings.

Chapter 7: We perform Bayesian inference for a real-world groundwater flow
model including real data.To this end, the methods developed and analyzed
in Chapters 4 and 5 are applied to estimate the posterior distribution of break-
through times of pollutants.

The content of the Chapters 3 to 5 is based on already published articles of the
author. The way of presentation was, however, modified and extended for this
thesis. The corresponding publications are:

• [56] O. Ernst, B. Sprungk, and H.-J. Starkloff. Bayesian inverse problems and
Kalman filters. In S. Dahlke et al., editor, Extraction of Quantifiable Information
from Complex Systems, volume 102 of Lecture Notes in Computational Science and
Engineering, pages 133–159. Springer, 2014.

• [57] O. Ernst, B. Sprungk, and H.-J Starkloff. Analysis of the ensemble and
polynomial chaos Kalman filters in Bayesian inverse problems. SIAM/ASA J.
Uncertainty Quantification, 3(1):823–851, 2015.

• [146] D. Rudolf and B. Sprungk. On a generalization of the preconditioned
Crank-Nicolson Metropolis algorithm. Found. Comput. Math., 2016.
doi:10.1007/s10208-016-9340-x.
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1.2. Notation

Subsequently, we introduce some basic notations used in this thesis. By⇒ and⇔
we denote logical implication and equivalence, respectively. As usual, the sets of
all natural, real and complex numbers will be denoted byN,R and C, respectively,
and we setN0 :=N∪ {0}. Furthermore, we will useRN :=×∞

m=1R as symbol for
the countably infinite Cartesian product of R. The Euclidean norm in Rn, n ∈ N,
is denoted by | · | and for a symmetric and positive definite matrix W ∈ Rn×n we
define

|x|W :=
(

x>Wx
)1/2

, x ∈ Rn.

On the other hand, if M is a set |M| denotes the cardinality of M.

Throughout the thesis X denotes an arbitrary real Banach space with norm ‖ ·
‖X and H an arbitrary separable real Hilbert space with norm ‖ · ‖H and inner
product 〈·, ·〉H. The (topological) dual of a Banach space X is denoted by X ∗ and
the corresponding duality pairing by 〈·, ·〉X ∗ : X ∗ ×X → R.

Given a linear operator A : X → Y between two Banach spaces X and Y we
denote its range by rg(A), its adjoint operator by A∗ : Y∗ → X ∗, i.e.,

〈 f , Ax〉Y∗ = 〈A∗ f , x〉X ∗ , ∀x ∈ X , ∀ f ∈ Y∗,

and its norm by
‖A‖ := sup

‖x‖X=1
‖Ax‖Y

without any further subscripts. The space of all bounded linear operators from X
to Y is denoted by L(X ,Y) where we set L(X ) := L(X ,X ). For a bounded linear
operator A ∈ L(X ) we denote the spectrum of A (in X ) by spec(A | X ). Given two
Hilbert spacesH1 andH2 let L1(H1,H2) and L2(H1,H2) be the space of all nuclear
and Hilbert-Schmidt operators, respectively, from H1 to H2. We refer to Appendix
A for the corresponding definitions. Moreover, the tensor product of H1 and H2 is
denoted byH1 ⊗H2. More details on tensor products are given in Appendix B.

We often assume an underlying probability space which we denote by (Ω,A,P).
For the expectation and covariance w.r.t. P we use the notation E [·] and Cov(·, ·),
respectively, and for the correlation between two random variables X and Y we
write Corr(X, Y). For a metric space E we denote by B(E) the Borel σ-algebra in-
duced by the underlying metric and by P(E) the set of all probability measures on
(E ,B(E)). We will usually denote measures on metric spaces by greek letters such
as µ, ν or η. Moreover, for x ∈ E the Dirac measure at x is denoted by δx (and
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should not be confused with the Kronecker delta δij for i, j ∈ N0). The normal (or
Gaussian) distribution on R with mean m ∈ R and variance σ2 > 0 is denoted by
N(m, σ2) and an analogous notation is used for multivariate normal distributions.
By Uni(a, b) we denote the uniform distribution on a finite interval [a, b] ⊂ R. Fur-
ther notation concerning (probability) measures is specified in Section 3.1. Given
a random variable X : (Ω,A,P) → (E ,B(E)) and a µ ∈ P(E) the notation X ∼ µ

means that the resulting probability distribution of X on E is µ. Random variables
will mainly be denoted by capital letters.
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Chapter 2

Random Fields and Random Elliptic
PDEs

This chapter provides a brief introduction into random fields, their interpretation
as Banach- or Hilbert-space valued random variables and elliptic partial differential
equations with random fields as coefficients. We assume the reader is familiar with
basic probability theory and real- or vector-valued random variables as well as with
standard function spaces such as the space C(D) of all continuous functions on a
bounded domain D ⊂ Rd, d ∈N, the Lebesgue space L2(D) of all square integrable
functions on D and the Sobolev space H1(D) of all square integrable functions f on
D with square integrable weak derivatives.

Our model problem throughout the chapter is the following elliptic boundary
value problem (BVP) stated on a bounded domain D ⊆ Rd with boundary ∂D:

−∇ · (a(x)∇u(x)) = f (x) on D, u(x) = g(x) on ∂D. (2.1)

Here the function a : D → R+ describes a physical conductivity, f : D → R a forcing
term and g : ∂D → R the (Dirichlet) boundary data for the solution u : D → R. Such
an equation describes, e.g., a stationary groundwater flow or a stationary temper-
ature field in a material. In practice the coefficients a, f and g are often not known
exactly, e.g., the conductivity may vary with x in an incompletely known way. This
chapter provides the mathematical foundations to treat such PDEs with uncertain
coefficients.

Maybe the most natural and convenient approach to model probabilistically the
uncertainty about an incompletely known function are stochastic processes. These
are by definition families {Xt : t ∈ I} of random variables Xt indexed by a parame-
ter t varying within an index set I. For example, in financial mathematics stochastic
processes indexed over a time intervall I = [t1, t2] are used to model the (time-
continuous) evolution of stock prices. If the index set I is a subset of Rd with d > 1
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one often calls the stochastic process a random field. Random fields are applied, for
instance, in geophysics and geostatistics to model uncertain physical properties of
subsurface layers.

Elliptic BVPs such as (2.1) are usually treated in their weak formulation which
are variational equations in function spaces, e.g., for (2.1)

〈a∇u,∇v〉L2(D) = 〈 f , v〉L2(D) ∀v ∈ H1
0(D), (2.2)

where 〈·, ·〉L2(D) denotes the inner product in L2(D) and we require a ∈ L∞(D)

and f ∈ L2(D). The functional analytic approach to solve and analyze the varia-
tional equation (2.2) suggests to view uncertain coefficients a and f as L∞(D)- and
L2(D)-valued random variables, respectively. Banach or Hilbert space-valued ran-
dom variables and random fields are related but slightly different concepts to de-
scribe random functions and we will explain their relation in detail in Section 2.2. In
particular, Hilbert space-valued random variables, such as L2(D)-valued random
variables, can be represented by a series expansion with random coefficients w.r.t. a
complete orthonormal system (CONS) of the underlying Hilbert space. This expan-
sion allows for a convenient approximation via truncation and for a parametriza-
tion of the random variable in terms of the random coefficients. This paramet-
ric perspective yields parametric reformulations of PDEs with random coefficients
which we will outline in Section 2.3. Moreover, it forms the basis for many modern
approximation methods for random PDEs. We provide a short introduction to the
latter in Section 2.3.2.

In summary, this chapter focuses on the forward problem of uncertainty quantifi-
cation, i.e., how does the uncertainty about coefficient functions propagate to the
solution of the corresponding PDE and how can we numerically quantify it by ap-
proximation methods. For further reading on this topic, we refer to the textbooks
by Lord et al. [114], Le Maitre and Knio [108] and Xiu [179].

2.1. Random Fields

Random fields are stochastic processes on domains D in Rd, d ≥ 1, and can be
used as a probabilistic model for an uncertain function on D. Particularly, they are
used in geophysics and geostatistics to describe limited knowledge about material
properties such as, e.g., hydraulic or electrical conductivity of subsurface layers.
We provide only the very basic definitions and concepts about random fields in the
following and refer for more details to, e.g., Adler [2]. We recall, that (Ω,A,P)
denotes an underlying probability space.
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Definition 2.1 (Random field, modification). A (real-valued) random field a on a do-
main D ⊆ Rd is a mapping a : D ×Ω → R such that a(x, ·) : Ω → R is a random
variable for each x ∈ D. Two random fields a1 and a2 on D are modifications of each
other if for each x ∈ D there holds a1(x) = a2(x) P-almost surely.

Thus, a random field can be seen as a collection of real-valued random variables
indexed by the spatial coordinate x ∈ D. On the other hand, for each ω ∈ Ω we can
consider a(·, ω) : D → R as a function on D depending on ω, i.e., a random function.
By virtue of a basic result on stochastic processes, see Kallenberg [96, Lemma 3.1],
we obtain

Proposition 2.2. Let D ⊆ Rd and a be a random field on D. Then the mapping
ω 7→ a(·, ω) from (Ω,A) to (RD,S) is measurable where

S := σ(πx : x ∈ D), πx( f ) := f (x), f ∈ RD, (2.3)

denotes the σ-algebra generated by all point evaluation functionals πx : RD → R,
x ∈ D, i.e., the smallest σ-algebra on RD such that for each x ∈ D the mapping πx

is measurable.

We will later adopt this point of view by considering random fields as random
elements in function spaces such as C(D). Proposition 2.2 justifies the following

Definition 2.3 (Realization, path). Let a be a random field on D ⊆ Rd. For each
ω ∈ Ω the function a(·, ω) : D → R is called realization or path or sample of the
random field a.

We further define several important properties of a random field.

Definition 2.4 (Stationarity). A random field a on D ⊆ Rd is called stationary if
for any number k ∈ N, any points x1, . . . , xk ∈ D and any h ∈ R such that x1 +

h, . . . , xk + h ∈ D the random vectors (a(x1), . . . , a(xk))
> and (a(x1 + h), . . . , a(xk +

h))> are identically distributed.

Definition 2.5 (Second order, mean and covariance function). A random field a on
D ⊆ Rd is a second-order random field if for each x ∈ D there holds a(x) ∈ L2(Ω;R).
In this case the mean field or mean function of a is the mapping m : D → R given
by m(x) := E [a(x)] and the covariance function c : D × D → R of a is defined by
c(x, y) := Cov(a(x), a(y)).

Hence, a stationary second-order random field has a constant mean function and
its covariance function is also constant along the diagonal {(x, x) : x ∈ D}. An even
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stronger property than stationarity is that of isotropy which extends the translation
invariance of the finite-dimensional distributions (a(x1), . . . , a(xn)) to invariance
w.r.t. rotations or reflections.

Definition 2.6 (Isotropy). A stationary random field a on D ⊆ Rd is called isotropic
if for any number k ∈ N, any points x1, . . . , xk ∈ D and any orthogonal matrix
Q ∈ Rn×n such that Qx1, . . . , Qxk ∈ D the random vectors (a(x1), . . . , a(xk))

> and
(a(Qx1), . . . , a(Qxk))

> are identically distributed.

For an isotropic random field the covariance function depends only on the dis-
tance |x− y|, i.e., there exists a function c̃ : [0, ∞)→ R such that

c(x, y) = Cov(a(x), a(y)) = c̃(|x− y|), ∀x, y ∈ D.

In the following, we will identify the covariance function c of an isotropic random
field a with the mapping c̃ and simply write c(|x− y|).

The smoothness of the mean and covariance functions m and c will determine the
smoothness of the realizations of a second-order random field a. The deep theoret-
ical result behind this issue is

Theorem 2.7 (Kolmogorov-Chentsov theorem, [96, Theorem 3.23]). Let a denote a
second-order random field on D ⊆ Rd and let there exist positive constants s and K
such that

E
[
|a(x)− a(y)|2

]
≤ K|x− y|d+s, x, y ∈ D.

Then there exists a modification ã of a which is P-a.s. Hölder continuous for any
exponent less than s

2 .

In general, we will identify a with its pathwise continuous modification if the
latter exists. Now, due to

E
[
|a(x)− a(y)|2

]
= Var(a(x)− a(y)) +E [a(x)− a(y)]2

= Var(a(x)) + Var(a(y))− 2 Cov(a(x), a(y))

+ (E [a(x)]−E [a(y)])2

we see that an isotropic second-order random field a on D ⊆ Rd satisfies the as-
sumptions of Theorem 2.1, if there exist positive constants s and K such that for its
mean and covariance function m and c there holds

c(0)− c(|x− y|) ≤ K
2
|x− y|d+s, |m(x)−m(y)|2 ≤ K|x− y|d+s, x, y ∈ D.
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Example 2.8 (Matérn covariance). In geostatistics a common class of covariance
functions for isotropic random fields are Matérn covariance functions. These func-
tions are parametrized by three parameters: σ2 ∈ (0, ∞) determines the pointwise
variance, ρ ∈ (0, ∞) the so-called correlation length and ν ∈ (0, ∞) the smoothness
of the random field. They are given by, see, e.g., Stein [164, Section 2.10, p. 50],

cσ2,ρ,ν(r) :=
σ2

2ν−1Γ(ν)

(
2
√

ν|r|
ρ

)
Kν

(
2
√

ν|r|
ρ

)
, r ∈ R, (2.4)

where Kν denotes the modified Bessel function of second kind and Γ the gamma
function. The covariance function cσ2,ρ,ν is 2k times differentiable if ν > k. This
implies that a mean-zero random field a with cσ2,ρ,ν as its covariance function is k
times mean square differentiable if ν > k, see Stein [164, Section 2.6] for details and
definitions. Moreover, by a recent result of Potthoff [134, Theorem 3.2], mean square
differentiability implies under mild additional assumptions also pathwise differen-
tiability. In particular, [134, Theroem 3.2] yields that for a mean-zero random field
a with covariance function cσ2,ρ,ν there exists a modification of a with k − 1 times
differentiable realizations if ν > k. If a is in addition also a Gaussian random field,
see below, then there exists a modification of a with k− 1 times differentiable real-
izations if ν > k, see [134, Corollary 4.4.] in combination with Stein [164, Chapter 2,
Equation (16)].

In the remainder of the thesis we will be particularly interested in Gaussian ran-
dom fields.

Definition 2.9 (Gaussian and lognormal random field). A random field a on a do-
main D ⊆ Rd is a Gaussian random field (GRF) if for any k ∈ N and any x1, . . . , xk ∈
D the joint distribution of (a(x1), . . . , a(xk))

> is multivariate Gaussian. It is a log-
normal random field if log a is a GRF.

Gaussian random fields are uniquely determined by their mean and covariance
function as is the case for finite dimensional Gaussian distributions. The deep math-
ematical result behind this is the Kolmogorov extension theorem which states condi-
tions for the existence of a random field a given all finite dimensional distributions
(a(x1), . . . , a(xk))

>, see Adler [2, Section 1.5].

Example 2.10 (Brownian motion and Brownian bridge). Maybe the most well-known
Gaussian random field or Gaussian process is the (standard) Brownian motion B on
[0, ∞). This Gaussian process is given by the constant mean function m(x) ≡ 0 and
the covariance function c(x, y) = min(x, y). Thus, we have B(x) ∼ N(0, x) as well
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as B(x)− B(y) ∼ N(0, |x− y|), since

Var(B(x)− B(y)) = Var(B(x))− 2 Cov(B(x), B(y)) + Var(B(y))

= x− 2 min(x, y) + y = |x− y|.

By an analogous reasoning, we can also conclude that the increments B(x)− B(y)
and B(u) − B(v) for u < v < x < y are uncorrelated and, thus, independent. A
related and probably equally well-known random field is the (standard) Brownian
bridge BB on [0, 1] which is given by BB(x) = B(x)− xB(1) or, equivalently, by a
mean m(x) ≡ 0 and a covariance c(x, y) = min(x, y)− xy. For both random fields
B and BB it can be verified by Therorem 2.1 that the paths are Hölder continuous
with an exponent less than 1

2 . Moreover, the Brownian motion or Brownian bridge
can be easily extended to [0, ∞)d or [0, 1]d, respectively, by considering products of
corresponding univariate random fields.

Furthermore, the statement of the Kolmogorov-Chentsov theorem can be im-
proved if we consider Gaussian random fields. In particular, a mean-zero Gaussian
random field a on a bounded domain D ⊂ Rd is P-a.s. Hölder continuous with a
Hölder exponent less than s/2 given that

E
[
|a(x)− a(y)|2

]
≤ K|x− y|s, x, y ∈ D,

for some 0 < K < ∞, see [114, Theorem 7.68]. Thus, a mean-zero isotropic Gaussian
random field has P-a.s. continuous realizations whenever there exist a K < ∞ and
an s > 0 such that the covariance function c of the Gaussian random field a satisfies

c(0)− c(|x− y|) ≤ K
2
|x− y|s ∀x, y ∈ D. (2.5)

We remark that the Matérn covariance functions cσ2,ρ,ν satisfy (2.5) for ν ≥ 1/2.

Remark 2.11 (Sampling Gaussian random fields). There are several ways to gener-
ate samples of a GRF a at finitely many points xi ∈ D, i = 1, . . . , n. Assume for
simplicity that E [a(x)] ≡ 0 and c(x, y) = Cov(a(x), a(y)). Then the random vector
a := (a(xi))i=1,...,n is multivariate normally distributed a ∼ N(0, C) with covari-
ance matrix C = (c(xi, xj))

n
i,j=1 ∈ Rn×n and can be sampled via a = Lξ where

ξ ∼ N(0, I) and LL> = C, cf. Proposition 2.20. Here, L can be computed via, e.g., a
Cholesky decomposition of C. In case of an isotropic GRF a and if the xi form a regular
rectangular grid over D, the resulting Toeplitz structure of C can be exploited by
circulant embedding and the fast Fourier transform to generate samples of a much
faster. We refer to Dietrich and Newsam [45] for details. Another, rather classi-
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cal, method for sampling random fields is the turning bands method, see Stein [164]
for details. Finally, the Karhunen-Loève expansion of random fields a, see Section
2.2.2, provides an easy way to generate samples of a on D. To this end, we only
have to sample the real-valued random coefficients appearing in the expansion. Of
course, in numerical simulations we have to truncate the expansion after finitely
many terms, i.e., we only obtain approximate samples of a. However, the error can
be made arbitrarily small by suitably choosing the truncation index.

2.2. Banach and Hilbert Space Valued Random

Variables

We recall the notation introduced in Section 1.2, e.g., X denoting a real Banach
space with norm ‖ · ‖X andH a separable Hilbert space with norm ‖ · ‖H and inner
product 〈·, ·〉H.

Definition 2.12 (Random variable, strongly measurable). A mapping X : (Ω,A)→
(X ,B(X )) is a (X -valued) random variable if it is measurable, i.e., if for each B ∈
B(X ) there holds X−1(B) ∈ A. The mapping X is a simple (X -valued) random
variable if it takes the form

X(ω) =
n

∑
k=1

xk 1Ak(ω), ω ∈ Ω,

where xk ∈ X and Ak ∈ A for k = 1, . . . , n. An X -valued random variable X is
strongly measurable if there exists a sequence (Xn)n∈N of simple X -valued random
variables such that X(ω) = limn→∞ Xn(ω) holds P-almost surely.

For details about Banach space-valued mappings and Bochner integrals we refer,
e.g., to Yosida [180, Chapter V] and state only the relevant facts. There is also the
notion of weakly measurable X -valued random variables which means that for each
f ∈ X ∗ the mapping 〈 f , X〉X ∗ is an R-valued random variable. It is clear that mea-
surability implies weak measurability since 〈 f , X〉X ∗ is then a composition of the
continuous mapping 〈 f , ·〉X ∗ : X → R and the measurable mapping X : Ω → X ,
thus, measurable. Moreover, from classical measure theory we know that the point-
wise limit of measurable functions is again measurable, see, e.g., Kallenberg [96,
Lemma 1.10], thus, strong measurability implies measurability. A useful relation
between strong and weak measurability is given by Pettis’ theorem, see Yosida [180,
Section V.4], which states that X : (Ω,A) → (X ,B(X )) is strongly measurable iff it
is weakly measurable and P-almost surely separably valued. The latter means that
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there exists a P-null set A0 ∈ A such that X(Ω \ A0) ⊆ X is separable. An imme-
diate consequence of Pettis’ theorem is

Proposition 2.13. Let X be a separable Banach space. Then each X -valued random
variable is strongly measurable.

We will mainly work with separable spaces later on. However, for elliptic PDEs
with random diffusion coefficients we will also consider L∞(D)-valued random
variables where D denotes a bounded domain in Rd. In that case, the random
variables under consideration will be given by expansions which ensures strong
measurability, see also Proposition 2.22.

Analogously to the classical Lebesgue integral for real-valued functions we can
define the Bochner integral of X -valued strongly measurable mappings. This leads
to Lebesgue–Bochner spaces.

Definition 2.14 (Lebesgue–Bochner space). By Lp(Ω,A,P;X ), or shorter Lp(Ω;X ),
p ∈ [1, ∞), we denote the Lebesgue–Bochner space of all X -valued strongly measur-
able random variables X with

‖X‖p
Lp(Ω;X )

:=
∫

Ω
‖X(ω)‖p

X P(dω) < ∞. (2.6)

We will often use the shorter notation ‖ · ‖Lp instead of ‖ · ‖Lp(Ω;X ). Moreover, for
p = 2 we define an inner product by

〈X, Y〉L2 :=
∫

Ω
〈X(ω), Y(ω)〉HP(dω), X, Y ∈ L2(Ω;H). (2.7)

Condition (2.6) with p ≥ 1 ensures that the strongly measurable random vari-
able X is Bochner integrable, i.e., the integral

∫
Ω X(ω)P(dω) ∈ X is defined. The

Lebesgue–Bochner spaces Lp(Ω;X ) are again Banach spaces and the space L2(Ω;H)

is again a Hilbert space w.r.t. its inner product.

Remark 2.15 (Separability of Lebesgue–Bochner spaces). If the Banach space X it-
self is separable and the σ-algebra A is countably generated, i.e., there exist An ⊂ Ω,
n ∈N, such thatA = σ(An : n ∈N), then the Lebesgue–Bochner space Lp(Ω;X ) is
also separable. The first condition is obviously necessary and the second condition
ensures that the usual Lebesgue spaces Lp(Ω,A,P;R) are separable, see Schilling
[153, Lemma 23.19]. Moreover, A being countably generated is a rather mild as-
sumption, e.g., the Borel σ-algebra of any separable metric space is countably gen-
erated.
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Definition 2.16 (Mean). Let X ∈ L1(Ω;X ), then the mean or expectation E [X] of X
is given by the Lebesgue–Bochner integral

E [X] :=
∫

Ω
X(ω)P(dω) ∈ X . (2.8)

Definition 2.17 (Covariance). For X ∈ L2(Ω;X ) and Y ∈ L2(Ω;Y), where Y de-
notes another separable Banach space, we define the covariance Cov(X, Y) of X and
Y as the bounded linear operator C : Y∗ → X uniquely determined by

〈 f , Cg〉X ∗ = Cov (〈 f , X〉X ∗ , 〈g, Y〉Y∗) ∀ f ∈ X ∗, g ∈ Y∗. (2.9)

We set Cov(X) := Cov(X, X) ∈ L(X ∗,X ).

In the following we will mainly work with covariance operators for Hilbert space-
valued random variables. Due to the Riesz representation theorem we will identify
the covariance Cov(X, Y) of X ∈ L2(Ω;H1) and Y ∈ L2(Ω;H2), where H1,H2 are
two separable Hilbert spaces, with the bounded linear operator C ∈ L(H2,H1)

given by

〈x, Cy〉H = Cov
(
〈x, X〉H1 , 〈Y, y〉H2

)
∀x ∈ H1, y ∈ H2. (2.10)

The covariance operator Cov(X) inherits the properties of covariance matrices,
i.e., symmetry and positive definiteness. Moreover, Cov(X) is a trace class operator,
see Appendix A for the corresponding definition.

Proposition 2.18 (cf. [40, Proposition 1.8]). For each X ∈ L2(Ω;H) the covari-
ance operator Cov(X) is self-adjoint, positive and trace class. Moreover, for X ∈
L2(Ω;H1) and Y ∈ L2(Ω;H2) the covariance operator Cov(X, Y) is Hilbert-Schmidt.

Proof. The statements about Cov(X) are proven in Da Prato and Zabczyk [40, Propo-
sition 1.8], thus, we only show that C := Cov(X, Y) is Hilbert-Schmidt. For simplic-
ity, we assume that X and Y have mean zero. Let {ek : k ∈ N} be a CONS for H1

and { fn : n ∈N} denote a CONS forH2. Then there holds

∞

∑
n=1
‖C fn‖2

H1
=

∞

∑
n=1

∞

∑
k=1
〈ek, C fn〉2H1

=
∞

∑
n=1

∞

∑
k=1

Cov
(
〈ek, X〉H1 , 〈 fn, Y〉H2

)2

≤
∞

∑
n=1

∞

∑
k=1
E
[
〈ek, X〉2H1

]
E
[
〈 fn, Y〉2H2

]
= E

[
∞

∑
k=1
〈ek, X〉2H1

]
E

[
∞

∑
n=1
〈 fn, Y〉2H2

]
= ‖X‖2

L2 ‖Y‖2
L2 < ∞,
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where we have applied the Cauchy-Schwarz inequality and dominated conver-
gence in the second line. Hence, C is Hilbert-Schmidt. �

It could be that the covariance Cov(X, Y) is even a nuclear operator, however, we
were not able to prove it nor did we find a corresponding result in the literature.
Anyway, the statement of Proposition 2.18 is sufficient for our purposes. In partic-
ular, Proposition 2.18 allows us to exploit the isomorphy L2(H2,H1) ' H1 ⊗H2,
see Proposition B.3 in Appendix B, in order to express the covariance of Hilbert
space-valued random variables as tensor products:

Cov(X, Y) = E [(X−E [X])⊗ (Y−E [Y])] , (2.11)

where (X − E [X]) ⊗ (Y − E [Y]) is now a (mean-zero) H1 ⊗ H2-valued random
variable.

As for random fields, we are particularly interested in Gaussian random variables
taking values in Banach or Hilbert spaces. To this end, we recall that one charac-
terization of multivariate normally distributed random vectors X ∼ N(m , Σ) with
mean m ∈ Rn and covariance matrix Σ ∈ Rn×n is that

a>X ∼ N(a>m ,a>Σa) ∀a ∈ Rn.

This extends naturally to Banach spaces:

Definition 2.19 (Gaussian random variable). An X -valued random variable X ∈
L2(Ω;X ) with mean E [X] = m ∈ X and covariance Cov(X) = C ∈ L(X ∗;X ) is
called Gaussian if

〈 f , X〉X ∗ ∼ N (〈 f , m〉X ∗ , 〈 f , Cov(X) f 〉X ∗) ∀ f ∈ X ∗. (2.12)

We then denote X ∼ N(m, C).

In the Hilbert space case (2.12) reads as

〈x, X〉H ∼ N (〈x,E [X]〉H, 〈x, Cov(X)x〉H) ∀x ∈ H.

We will consider Gaussian measures on Hilbert spaces in more detail in Section 3.1
and Appendix C.

As for multivariate normally distributed random vectors the class of Gaussian
X -valued random variables is invariant w.r.t. linear transformations:
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Proposition 2.20 ([39, Proposition 1.2.3]). Let X ∼ N(m, C) be an X -valued Gaus-
sian random variable. Then for each b ∈ Y and A ∈ L(X ,Y), where Y denotes
another separable Banach space, there holds

b + AX ∼ N(b + Am, ACA∗) (2.13)

with A∗ ∈ L(Y∗, X∗) denoting the adjoint of A.

Although, Da Prato and Zabczyk [39, Proposition 1.2.3] stated the result only for
Hilbert spaces, it can also easily be verified for Banach spaces.

2.2.1. Expansions of Hilbert Space-Valued Random Variables

Since the Hilbert spaceH is assumed to be separable, it has a complete orthonormal
system (CONS), say, {φm : m ∈ N}. Then, for each X ∈ L2(Ω;H), we can define
the real-valued random variables

ξm(ω) := 〈φm, X(ω)〉H, m ∈N.

Thus, P-almost surely there holds

X(ω) =
∞

∑
m=1

ξm(ω) φm. (2.14)

By construction we also have ξm ∈ L2(Ω;R), since |ξm(ω)|2 ≤ ‖X(ω)‖2
H holds

P-almost surely, and, in particular, the series above converges also in L2(Ω;H) to
X: it is known, see Kallenberg [96, Proposition 4.12], that a sequence of random
variables which converges P-a.s. also converges in the Lp-sense if their Lp-norms
are uniformly bounded and for the above series we obtain for p = 2∥∥∥∥∥ M

∑
m=1

ξm(ω) φm

∥∥∥∥∥
2

L2

= E

[
〈

M

∑
m=1

ξm(ω) φm,
M

∑
n=1

ξn(ω) φn〉H

]

= E

[
M

∑
m=1

ξ2
m(ω)

]
=

M

∑
m=1

E
[
ξ2

m(ω)
]

≤
∞

∑
m=1

E
[
ξ2

m(ω)
]
= E [〈X(ω), X(ω)〉H]

= ‖X‖2
L2 < ∞.
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Concerning the distribution of the random variables ξm, m ∈N, we easily see that

E [ξm] = 〈E [X] , φm〉H, Cov(ξm, ξn) = 〈φm, Cov(X)φn〉H, m, n ∈N.

Recalling that covariance operators are selfadjoint and compact, we can apply the
spectral theorem for compact operators, see, e.g., Dunford and Schwartz [50, Chap-
ter VII], and choose the eigenfunctions of Cov(X) as a CONS ofH. This yields

Theorem 2.21 ([156, Theorem C.29]). Let X ∈ L2(Ω;H) and let (λm, φm)m∈N de-
note the eigenpairs of Cov(X) ∈ L(H). Then there exist uncorrelated mean-zero
random variables ξm ∈ L2(Ω;R), m ∈N, with unit variance such that

X = E [X] +
∞

∑
m=1

√
λmφmξm (2.15)

holds in L2(Ω;H) and also P-almost surely. Moreover, if X is Gaussian, then ξm ∼
N(0, 1) i.i.d. .

The representation (2.15) is an abstract version of the well-known Karhunen-Loève
expansion for stochastic processes or random fields which we will encounter later. In
particular, (2.15) guides us to a construction of finite dimensional approximations
of a Hilbert space-valued random variable X by truncating the series in (2.15)

XM := E [X] +
M

∑
m=1

√
λmφmξm, M ∈N, (2.16)

where the resulting error in L2(Ω;H) is then given by

‖X− XM‖2
L2 =

∞

∑
m>M

λm. (2.17)

As it turns out the approximation (2.16) is the best M-term approximation of X,
where by the former we mean approximations given by ∑M

m=1 φ̃m ξ̃m for φ̃m ∈ H
and ξ̃m ∈ L2(Ω;R) for m ≥ 1. We will not give a proof of this optimality statement
but refer to Ghanem and Spanos [70, Section 2.3] for a discussion in the case of
H = L2(D). Another consequence of Theorem 2.21 is that for X ∈ L2(Ω;H) we can
write

Cov(X) =
∞

∑
m=1

λm φm ⊗ φm, (2.18)

where (λm, φm) are again the eigenpairs of Cov(X), see, e.g., Schwab and Gittelson
[156, Corollary C.28] for a proof. We close this subsection with two kind of converse



2.2. Banach and Hilbert Space Valued Random Variables 31

statements to Theorem 2.21, i.e., constructing Banach and Hilbert space-valued ran-
dom variables via expansions.

Proposition 2.22. Let ξm ∈ L2(Ω;R), m ∈ N, be stochastically independent with
E [ξm] = 0 and Var(ξm) = 1 for m ∈ N. Given {φm}m∈N ⊆ X where X denotes a
Banach space and

∞

∑
m=1
‖φm‖X < ∞,

then the limit X := ∑∞
m=1 φmξm exists P-a.s. and defines an X -valued strongly mea-

surable random variable with X ∈ L2(Ω;X ), E [X] = 0 and Cov(X) : X ∗ → X
given by

Cov(X) f =
∞

∑
m=1
〈 f , φm〉X ∗ φm, ∀ f ∈ X ∗.

Moreover, if all ξm, m ∈ N, are normally distributed, then X defines a Gaussian
random variable.

Proof. We start with∥∥∥∥∥ ∞

∑
m=1

φmξm(ω)

∥∥∥∥∥
X
≤

∞

∑
m=1
‖φm‖X |ξm(ω)| =

∞

∑
m=1
‖φm‖X E [|ξm|] +

∞

∑
m=1
‖φm‖X ζm,

where we set ζm := |ξm| −E [|ξm|]. Since E [|ξm|] ≤ E
[
|ξm|2

]1/2
= Var(ξm)1/2 = 1,

we obtain due to the assumption

∞

∑
m=1
‖φm‖X E [|ξm|] ≤

∞

∑
m=1
‖φm‖X < ∞.

Moreover, the random variables ζm are stochastically independent, mean-zero and
Var(ζm) = E

[
|ξm|2

]
−E [|ξm|]2 ≤ E

[
|ξm|2

]
≤ 1. Thus, due to the assumption there

holds

∑
m≥1

Var(‖φm‖X ζm) = ∑
m≥1
‖φm‖2

X Var(ζm) ≤ ∑
m≥1
‖φm‖2

X ≤ ∑
m≥1
‖φm‖X < ∞.

This, in turn, implies that ∑m≥1 ‖φm‖X ζm converges P-almost surely, see Kallen-
berg [96, Lemma 4.16]. Hence, we have∥∥∥∥∥ ∞

∑
m=1

φmξm(ω)

∥∥∥∥∥
X
< ∞ P-a.s.

and, therefore, X is well-defined and measurable. The strong measurability follows
from the fact that X is weakly measurable and clearly separably valued.
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Next, we show that X ∈ L2(Ω;X ): due to the independence of the ξm there holds
for arbitrary M ∈N

E

∥∥∥∥∥ M

∑
m=1

φmξm

∥∥∥∥∥
2

X

 ≤ E
( M

∑
m=1
‖φm‖X |ξm|

)2
 =

M

∑
m,n=1

‖φm‖X ‖φn‖X E [|ξm||ξn|]

=
M

∑
m=1

M

∑
n,m,n=1

‖φm‖X ‖φn‖X E [|ξm|] E [|ξn|]

+
M

∑
m=1
‖φm‖2

X E
[
|ξm|2

]
≤
(

M

∑
m=1
‖φm‖X E [|ξm|]

) (
M

∑
n=1
‖φn‖X E [|ξn|]

)
+

M

∑
m=1
‖φm‖2

X

≤
(

∞

∑
m=1
‖φm‖X

)2

+
∞

∑
m=1
‖φm‖X < ∞

which implies thatE
[
‖X‖2

X
]
< ∞. Exploiting again the independence of the ξm we

obtain for f , g ∈ X ∗

Cov (〈 f , X〉X ∗ , 〈g, X〉X ∗) =
∞

∑
m,n=1

〈 f , φm〉X ∗ , 〈g, φn〉X ∗ Cov(ξm, ξn)

=
〈

g,
∞

∑
m=1
〈 f , φm〉X ∗φm

〉
X ∗

where all series converge under the given assumption that ∑∞
m=1 ‖φm‖2

X < ∞. If the
ξm are Gaussian, then with XM := ∑M

m=1 φmξm we obtain for each f ∈ X ∗

〈 f , Xm〉X ∗ =
M

∑
m=1
〈 f , φm〉X ∗ξm ∼ N

(
0,

M

∑
m=1
〈 f , φm〉2X ∗ Var(ξm)

)
.

Now, due to ‖X−XM‖L2(Ω;X ) → 0, it follows that 〈 f , Xm〉X ∗ → 〈 f , X〉X ∗ in L2(Ω;R)
which implies, in particular, convergence in distribution. Thus, the assertion fol-
lows by noticing that limM→∞〈 f , Xm〉X ∗ is normally distributed with mean 0 and
variance ∑∞

m=1〈 f , φm〉2X ∗ . Again, the latter converges due to the summability of
‖φm‖2

X , m ∈N. �

We remark, that if the assumption on the stochastic independence of the ξm in
Proposition 2.22 would be omitted, then X := ∑∞

m=1 φmξm would still define an
X -valued random variable but in the sense of an L2(Ω;X )-limit. Moreover, in the
case of series expansions for Hilbert space-valued random variables, we can obtain
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a well-defined L2(Ω;H)-limit under a milder assumption on the summability of the
norms ‖φm‖H given orthogonality.

Proposition 2.23. Assume that for m ∈ N we have ξm ∈ L2(Ω;R) with E [ξm] = 0
and Var(ξm) = 1. Then, for an orthogonal system {φm}m∈N ⊆ H with

∞

∑
m=1
‖φm‖2

H < ∞,

the limit X := ∑∞
m=1 φmξm in L2(Ω;H) exists with E [X] = 0 and Cov(X) : H → H

given by

Cov(X) =
∞

∑
m,n=1

Cov(ξm, ξn) φm ⊗ φn.

Moreover, if all ξm, m ∈ N, are normally distributed, then X defines a Gaussian
random variable.

Proof. We notice that for arbirary M ∈N

E

∥∥∥∥∥ M

∑
m=1

φmξm

∥∥∥∥∥
2

H

 =
M

∑
m=1
‖φm‖2

H E
[
ξ2

m

]
=

M

∑
m=1
‖φm‖2

H =
∞

∑
m=1
‖φm‖2

H < ∞.

This implies, that the series X = ∑∞
m=1 φmξm converges in L2(Ω;H). Moreover, for

f , g ∈ H we obtain

Cov (〈 f , X〉H, 〈g, X〉H) =
∞

∑
m,n=1

〈 f , φm〉H 〈g, φn〉H Cov(ξm, ξn)

=
∞

∑
m,n=1

(φm ⊗ φn)( f , g)Cov(ξm, ξn)

where all series converge under the given assumption that ∑∞
m=1 ‖φm‖2

H < ∞. The
proof for the Gaussianity of X follows analogously to Proposition 2.22. �

2.2.2. Random Fields as Banach and Hilbert Space-Valued
Random Variables

As mentioned earlier, we can view random fields on D ⊆ Rd as random functions
from D toRwhere the σ-algebra on the linear spaceRD of all mappings f : D → R

is specified in Proposition 2.2. Thus, it is tempting to assume that random fields
with realizations which belong P-a.s. to a certain function space such as X = C(D)

are X -valued random variables. This requires the measurability of the mapping
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Ω→ X . In the following we will outline when random fields are C(D)- and L2(D)-
valued random variables. A first and classical result is

Proposition 2.24 ([96, Lemma 16.1], [136, Theorem 1]). Let a be a random field on
a compact domain D̄ ⊂ Rd with P-almost surely continuous paths. Then a : Ω →
C(D̄) is a C(D̄)-valued random variable. Conversely, each C(D̄)-valued random
variable defines a random field on D̄ withP-almost surely continuous paths. More-
over, each Gaussian random field on D̄ with P-a.s. continous paths defines a Gaus-
sian C(D̄)-valued random variable and vice versa.

The first part of the proposition follows by virtue of a result in Kallenberg [96,
Lemma 16.1] which tells us that B(C(D̄)) = S with S = σ(πx : x ∈ D) as given in
Proposition 2.2. The second part about Gaussian random fields follows by a result
of Rajput and Cambanis [136, Theorem 1] which states that a GRF on D̄ with P-
a.s. continuous paths yields a Gaussian measure on C(D̄) and vice versa. A similar
result to the first part of Proposition 2.24 holds also for random fields on [0, ∞)

with P-a.s. rcll (right continuous with lefthand limits) realizations, i.e., they are
then D(0, ∞)-valued random variables with D(0, ∞) denoting the space of all rlcc
function on [0, ∞), see Kallenberg [96, Theorem A2.2] for more details.

However, we would like to work with Hilbert space-valued random variables,
since this will be more convenient. If a has P-almost surely continuous paths a nat-
ural candidate for a Hilbert space would be H = L2(D), since then the realizations
of a are also elements of L2(D). As before we have to ensure the measurability
of the mapping a : (Ω,A) → (L2(D),B(L2(D))), but this can be easily concluded
from the continuous embedding of C(D̄) in L2(D) for a bounded domain D ⊂ Rd:

Proposition 2.25. Let X and Y be two Banach spaces such that X is continuously
embedded in Y and let X : (Ω,A) → (X ,B(X )) be measurable. Then also the
mapping X : (Ω,A) → (Y ,B(Y)) is measurable. Moreover, if X is a Gaussian X -
valued random variable, then X is also a Gaussian Y-valued random variable.

Proof. Since the embedding is continuous the inclusion map ι : X → Y is continu-
ous and, thus, measurable. Therefore, the composition ι ◦ X : Ω → Y is again mea-
surable. The second assertion follows by the linearity of ι and Proposition 2.20. �

By the continuous embedding of C(D̄) into Lp(D), p ∈ [1, ∞], for a bounded
domain D ⊂ Rd and applying Proposition 2.25, we obtain

Proposition 2.26. There holds:

• If a is a random field on a compact domain D̄ ⊂ Rd with P-a.s. continuous
realizations, then it defines an Lp(D)-valued random variable for p ∈ [1, ∞].
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• Let a be a second-order random field such that a(·, ω) ∈ L2(D) holds P-
a.s. and a : Ω → L2(D) is measurable. Then a ∈ L2(Ω; L2(D)) if the mean
field m and covariance function c of the random field a satisfy m ∈ L2(D) and∫

D c(x, x)dx < ∞.

Moreover, if a is a Gaussian random field in any of the above cases, then it defines
a Gaussian Lp(D)-random variable with p corresponding to the above cases.

We highlight that this time a converse statement as in Proposition 2.24 does, in
general, not hold, i.e., an Lp(D)-valued random variable with p ∈ [1, ∞] does not,
in general, yield a random field, because pointwise evaluations are not defined.
Even if a mapping a : D × Ω → R is given and we have a ∈ L2(Ω; Lp(D)), p ∈
[1, ∞], then a(x, ·) : Ω → R does not necessarily need to be measurable for each
x ∈ D. However, if a is a Sobolev space-valued random variable, for instance,
an Hd/2+ε

0 (D)-valued random variable with ε > 0, then by Sobolev embedding
theorems, see Gilbarg and Trudinger [72, Section 7.7], and Propositon 2.24 and 2.25
we obtain that a defines again a random field with P-a.s. paths.

We now derive a representation for the covariance operator Cov(a) : L2(D) →
L2(D) of a second-order random field a which satisfies the assumptions of Propo-
sition 2.26. For simplicity we assume a to be mean-zero and that the covariance
function c of a satisfies c ∈ L2(D × D). Then, by applying Fubini’s theorem, we
obtain for each f , g ∈ L2(D)

Cov
(
〈a, f 〉L2(D), 〈a, g〉L2(D)

)
= E

[∫
D

a(x, ω) f (x)dx
∫

D
a(y, ω) g(y)dy

]
=
∫

D

∫
D

f (x)E [a(x, ω) a(y, ω)] g(y)dy dx

=
∫

D

∫
D

f (x) Cov(a(x), a(y)) g(y)dy dx

=
∫

D
f (x)

∫
D

Cov(a(x), a(y)) g(y)dy dx.

Proposition 2.27. Let a be a second-order random field on D ⊂ Rwith mean m and
covariance function c. If a is an L2(D)-valued random variable and m ∈ L2(D) as
well as c ∈ L2(D × D), then the covariance operator of a : Ω → L2(D) is given by
the integral operator C : L2(D)→ L2(D) defined as

C f (x) :=
∫

D
c(x, y) f (y)dy, f ∈ L2(D). (2.19)

Note, that c ∈ L2(D × D) ensures that C f ∈ L2(D) for f ∈ L2(D) which can be
easily seen by applying the Cauchy-Schwarz inequality.
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As an immediate consequence of Theorem 2.21 we get

Theorem 2.28 (Karhunen-Loève expansion (KLE)). Let a be a second-order random
field on D ⊂ R satisfying the assumptions of Proposition 2.27. If (λm, φm), m ∈
N, denote the eigenpairs of the integral operator given in (2.19) then there exist
mutually uncorrelated mean zero random variables ξm, m ∈ N, with unit variance
such that

a(x, ω) = E [a(x)] +
∞

∑
m=1

√
λmφm(x)ξm(ω) (2.20)

holds in L2(Ω; L2(D)) and P-almost surely w.r.t. ‖ · ‖L2(D). Moreover, if a is a Gaus-
sian random field, then ξm ∼ N(0, 1) i.i.d. .

A convenient property of the expansion (2.20) is that the spatial and random
variations are separated.

Theorem 2.29 (Mercer’s theorem, [114, Theorem 1.80 & Theorem 7.53]). Let a be a
second-order random field on D̄ ⊂ R with P-almost surely continuous paths. If
its mean m and covariance function c are continuous, then the series given in (2.20)
converges in L2(Ω; C(D̄)) and P-a.s. in C(D̄), and there holds uniformly in x and y
that

c(x, y) =
∞

∑
m=1

λmφm(x)φm(y), x, y ∈ D̄.

Thus, under mild assumptions random fields can be represented via a Karhunen-
Loève expansion. The other way round, i.e., defining a random field via such an
expansion is also possible due to Proposition 2.22:

Proposition 2.30. Let D ⊂ Rd, φm ∈ C(D̄) for m ≥ 0 and ξm ∈ L2(Ω;R) for
m ≥ 1 be stochastically independent and have zero mean and unit variance. If
(‖φm‖C(D̄))m∈N ∈ `1(N), then by

a(x, ω) = φ0(x) +
∞

∑
m=1

φm(x) ξm(ω) ∀x ∈ D, P-a.s. ,

a second-order random field with P-a.s. continuous paths, continuous mean and
covariance function is given. Moreover, if the ξm are Gaussian, then a is a Gaussian
random field.

Proof. That a(·, ω) ∈ C(D̄) is well-defined and a C(D̄)-valued random variable fol-
lows by Proposition 2.22 which, moreover, also implies a ∈ L2(Ω; C(D̄)). Thus, a is
a second-order random field. The continuity of the mean is obvious and concerning
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the covariance function we get, due to independence,

Cov(a(x), a(y)) = Cov

(
φ0(x) +

∞

∑
m=1

φm(x) ξm, φ0(y) +
∞

∑
m=1

φm(y) ξm

)

=
∞

∑
m=1

φm(x)φm(y).

The series on the right hand side defines a function in C(D×D), since for the func-
tions fm(x, y) := φm(x)φm(y) there holds fm ∈ C(D̄× D̄) and

∞

∑
m=1
‖ fm‖C(D̄×D̄) =

∞

∑
m=1
‖φm‖2

C(D̄) < ∞.

The last assertion is obvious, since, e.g.,

φ0(x) +
M

∑
m=1

φm(x) ξm(ω) ∼ N

(
φ0(x),

M

∑
m=1

φ2
m(x)

)
.

�

Example 2.31 (Karhunen-Loève expansions of Brownian motion and bridge). We
recall the two Gaussian processes Brownian motion B and Brownian bridge BB
introduced in Example 2.10. Since both processes are mean-zero with continuous
covariance function and possess P-a.s. continuous paths on finite intervals, they
can be treated as C([0, 1])- or L2([0, 1])-valued random variables. Their covariance
operators on L2(0, 1) are given by

CB f (x) =
∫ 1

0
min(x, y) f (y)dy, CBB f (x) =

∫ 1

0
(min(x, y)− xy) f (y)dy,

where f ∈ L2(D), respectively, which yields the following Karhunen-Loève expan-
sions

B(x, ω) =
∞

∑
m=1

1
(m + 1/2)π

√
2 sin((m + 1/2)πx) ξm(ω), ξm ∼ N(0, 1) i.i.d. ,

BB(x, ω) =
∞

∑
m=1

1
mπ

√
2 sin(mπx) ξm(ω), ξm ∼ N(0, 1) i.i.d. ,

see Lord et al. [114, Chapter 5]. Note, that due to BB(x) = B(x)− xB(1) or B(x) =
BB(x) + xB(1), respectively, and

Cov(B(1), BB(x)) = Cov(B(1), B(x))− x Cov(B(1), B(1)) = 0,



38 2. Random Fields and Random Elliptic PDEs

we get another expansion for the Brownian motion on [0, 1] by

B(x, ω) = xξ0(ω) +
∞

∑
m=1

1
mπ

√
2 sin(mπx) ξm(ω), ξm ∼ N(0, 1) i.i.d.

Remark 2.32 (Decay of eigenvalues for Matérn covariance functions). As we have
motivated in the discussion following Theorem 2.21, the series of the remaining
eigenvalues ∑m>M λm quantifies the L2(Ω; L2(D))-error of a truncated KLE of M
terms. Thus, the faster the eigenvalues decay, the fewer terms we need for a “good”
approximation of a second-order random field. In case of a random field with
Matérn covariance function cσ2,ρ,ν, as given in Example 2.8, the asymptotic decay
rate is known to be

λm ≤ Cσ2,ν m−
d+2ν

d ,

see Widom [174] or Lord et al. [114, Example 7.59], where ν denotes the smooth-
ness parameter of the Matérn covariance function and d the dimension of the do-
main D ⊂ Rd. We mention that for ν ≥ 1

2 a random field with continous mean
and Matérn covariance function cσ2,ρ,ν is a C(D̄)- and, thus, L2(D)-valued random
variable by means of Proposition 2.26 and the discussion at the end of Section 2.1.

2.3. Elliptic Partial Differential Equations with

Random Coefficients

Since we know how to treat random fields and function space-valued random vari-
ables, we will consider PDEs with random fields or function space-valued random
variables as coefficients. The motivation behind these random PDEs is the in prac-
tice often incomplete knowledge of, e.g., material properties, boundary conditions
or forcing terms which is modelled by constructing random fields describing the
limited knowledge about the uncertain coefficients. The resulting solutions of such
random PDEs are again function space-valued random variables which can be used
to quantify the uncertainty about the state of the physical systems described by the
corresponding PDE. In this thesis we focus on elliptic problems of second-order,
namely, for a given bounded domain D ⊂ Rd, we consider the BVP

−∇ · (a(x, ω)∇u(x, ω)) = f (x, ω) in D, P-a.s. , (2.21a)

p(x, ω) = g(x, ω) on ∂D, P-a.s. , (2.21b)
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with a, f and g random fields on D and ∂D, respectively. The differential operator
∇ acts w.r.t. the spatial variable x and we require the equations to hold P-almost
surely. For details on the underlying concepts and spaces concerning PDEs we refer
to, e.g., Gilbarg and Trudinger [72]. For simplicity and without loss of generality,
we will assume g ≡ 0 P-a.s. in the following.

For numerical simulations of (2.21), particularly by the Galerkin method, see Re-
mark 2.33 below, one often considers the pathwise weak formulation of (2.21) given
by: find u : Ω→ H1

0(D) such that

〈a(ω)∇u(ω),∇v〉L2(D) = 〈 f (ω), v〉L2(D) ∀v ∈ H1
0(D), P-a.s. , (2.22)

where a is understood as an L∞(D)- and f as an L2(D)-valued random variable.

Remark 2.33 (Galerkin method and finite elements). Solving (2.22) numerically for
a fixed realization ω is usually done by the Galerkin method: we construct a finite
dimensional subspace of Vh ⊂ H1

0(D) and compute uh ∈ Vh which satisfies

〈a(ω)∇uh(ω),∇v〉L2(D) = 〈 f (ω), v〉L2(D) ∀v ∈ Vh.

This yields a system of linear equations for the coefficients of uh(ω) w.r.t. a basis
of Vh. If we increase the dimension of Vh then the error ‖u(ω)− uh(ω)‖H1

0(D) de-
creases. In the finite element Galerkin method the finite dimensional subspace Vh ⊂
H1

0(D) is constructed via finite elements: we decompose D by, e.g., a triangular mesh
of meshsize h into finitely many elements and define Vh as the span of (continuous)
elementwise polynomials. We refer to Ern and Guermond [53] for more details.

The random variational problem (2.22) is well studied in the literature on PDEs
with random data, see, e.g., [5, 6, 27]. Less often considered, but maybe more rele-
vant in pratice, is the mixed form of (2.21)

a−1(x, ω)u(x, ω) = ∇p(x, ω) in D, P-a.s. , (2.23a)

∇·u(x, ω) = − f (x, ω) in D, P-a.s. , (2.23b)

p(x, ω) = 0 on ∂D, P-a.s. , (2.23c)

respectively, its weak form: find (u , p) : Ω→ H(div; D)× L2(D) such that

〈a−1(ω)u(ω), v 〉L2(D) − 〈p(ω),∇· v 〉L2(D) = 0 ∀v ∈ H(div; D), P-a.s. , (2.24a)

−〈v,∇·u(ω)〉L2(D) = 〈 f (ω), v〉L2(D) ∀v ∈ L2(D), P-a.s. ,

(2.24b)
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where we require P-a.s. that a(x, ω) > 0 for each x ∈ D and introduce

H(div; D) :=
{
v ∈ L2(D;Rd) : ∇· v ∈ L2(D;R)

}
. (2.25)

The reason why (2.23) or (2.24), respectively, are favorable for pratical purposes is
that the flux u is often the relevant quantity, e.g., when we consider transport of
pollutants. By simulating and discretizing (2.24), by, e.g., Galerkin methods, we
obtain immediately an approximation of u . In the remainder of the chapter we will
focus on (2.22), but revisit the mixed problem (2.24) in Chapter 7.

Concerning the existence of solutions to (2.22) or (2.24), we can apply the corre-
sponing theory for deterministic variational problems pathwise. In case of (2.22)
the key theoretical tool is the Lax-Milgram lemma

Lemma 2.34 (Lax-Milgram lemma [72, Theorem 5.8]). Let B : H × H → R be a
continuous bilinear form on a Hilbert spaceHwhich is also coercive, i.e., there exists
an α > 0 such that

B(u, u) ≥ α‖u‖2
H ∀u ∈ H.

Then for each bounded linear form F : H → R there exists a unique u∗ ∈ H such
that

B(u∗, v) = F(v) ∀v ∈ H

and there holds ‖u∗‖H ≤ ‖F‖/α.

Existence results of a pathwise solution to (2.24) can already be found in Babuška
et al. [5] in case of a lower bound a(x, ω) ≥ amin > 0 for all x ∈ D which holds
P-almost surely, and later in Charrier [27] without this assumption. By verifying
the assumptions of Lemma 2.34 for (P-almost) each ω, we can define the pathwise
solution u(ω) ∈ H1

0(D) of (2.22). Its continuous dependence on a and f yields
measurability and by Hölder’s inequality we easily obtain

Theorem 2.35 (cf. [27, Proposition 2.4]). Let f ∈ Lp(Ω; L2(D)) for a p > 2 and let a
be an L∞(D)-valued random variable such that for

amin(ω) := ess inf
x∈D

a(x, ω) (2.26)

there holds P(amin > 0) = 1 and a−1
min ∈ Lq(Ω;R) with q > 2p

p−2 , then (2.22) pos-
sesses a unique solution u ∈ L2(Ω; H1

0(D)).

The same approach can be applied for the mixed problem (2.24). We refer, e.g.,
to Ernst and Sprungk [55] and the recent paper by Graham et al. [77]. For appli-
cations where the random field a models, e.g., an uncertain material conductivity,
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a common modelling assumption is that a is a lognormal random field, see Defini-
tion 2.9. This ensures the P-a.s. positiveness of a(x), x ∈ D, and is often justified
by measurement data, see, e.g., Freeze [64, p. 728] and the references therein. For
these special random fields there holds

Proposition 2.36 ([27, Proposition 2.2]). Let a be a lognormal random field on D ⊂
Rd with P-a.s. continuous paths. Then for amin as in (2.26) there holds a−1

min ∈
Lq(Ω;R) for each q ≥ 1. Thus, if f ∈ Lp(Ω; L2(D)) with p > 1, then (2.22) pos-
sesses a unique solution u ∈ Lq(Ω; H1

0(D)) for q < p.

Remark 2.37 (Monte Carlo FEM). In Remark 2.33 the Galerkin and finite element
method (FEM) for the pathwise numerical solution of (2.22) was outlined. If we
are interested in certain moments such as the mean or the variance of the solution
u ∈ Lq(Ω; H1

0(D)) of (2.22) or of functionals Q : H1
0(D) → R of u, we can apply

the Monte Carlo FEM as described in Babuška et al. [5]. To this end, we generate
samples a(ωn) and f (ωn), n = 1, . . . , N, of the random fields (or random variables)
a and f , respectively, cf. Remark 2.11, and compute the corresponding Monte Carlo
estimate of, e.g., E [Q(u)]

EQ(h, N) :=
1
N

N

∑
n=1

Q (uh(ωn)) .

For the resulting mean squared error there holds typically

E
[
|EQ(h, N)−E [Q(u)] |2

]
≤ CQ,u

(
N−1 + h−r

)
,

where the decay rate r of the FEM error depends on the choice of the underlying fi-
nite elements. We refer to Babuška et al. [5] for more details. In recent years, several
improvements of the basic Monte Carlo FEM have been developed. We mention the
multilevel Monte Carlo FEM (MLMC FEM), see, e.g., Cliffe et al. [32] and Teckentrup
et al. [169], which combines independent MC FEM estimates obtained for several
mesh sizes h`, ` = 0, . . . , L, in order to reduce the variance of the resulting MLMC
FEM estimate, and the Quasi Monte Carlo FEM (QMC FEM), see, e.g., Graham et
al. [76], which employs Quasi Monte Carlo sampling instead of plain Monte Carlo
sampling and in this way obtains higher convergence rates w.r.t. N.

Besides the Monte Carlo approaches described in the previous remark to com-
pute expectations of functionals of the solution u of (2.22), there now exist also nu-
merous numerical methods to approximate the random variable u in L2(Ω; H1

0(D)).
These methods rely particularly on the fact that we can represent random fields and
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Hilbert space-valued random variables by (abstract) Karhunen-Loève expansions
which yield a more convenient parametric reformulation of the random PDE (2.22).

2.3.1. Parametric Reformulation

The assumptions of Theorem 2.35 and Proposition 2.36 allow us to apply Theorem
2.28 and 2.29 to a and f , i.e., to represent these P-a.s. by their Karhunen-Loève
expansions. Of course, in general, the random variables appearing in the KLE of a
and f are different ones, but to ease notation and also w.l.o.g. we make the following

Assumption 2.38. There exist stochastically independent ξm ∈ L2(Ω;R) for m ∈N
as well as φm ∈ L∞(D) and ψm ∈ L2(D) for m ∈ N0 such that P-a.s. there holds in
L∞(D) and L2(D), respectively,

log a(x, ω) = φ0(x) +
∞

∑
m=1

φm(x)ξm(ω), f (x, ω) = ψ0(x) +
∞

∑
m=1

ψm(x)ξm(ω).

(2.27)

Let µm denote the distribution of the random variables ξm ∼ µm, m ∈N, appear-
ing in Assumption 2.38. Then for the random sequence ξ : Ω→ RN given by

ξ(ω) := (ξm(ω))m∈N, ω ∈ Ω,

there holds ξ ∼ µ with µ given as the following product measure on the product
measurable space (RN,

⊗
m≥1 B(R)):

µ(dξ) :=
∞⊗

m=1

µm(dξm). (2.28)

For more details about the notation of measures used in this thesis, we refer the
reader to Section 3.1. Further, we note that ξ : (Ω,A)→ (RN,

⊗
m≥1 B(R)) as given

above is measurable by construction.

Thus, concerning the random fields (or random variables, respectively) a and f ,
we can reformulate them – with a slight abuse of notation – as mappings of ξ rather
than ω:

log a(x, ξ) = φ0 +
∞

∑
m=1

φm(x)ξm, f (x, ξ) = ψ0 +
∞

∑
m=1

ψm(x)ξm, µ-a.e. (2.29)

In other words, by the change of variables ω 7→ ξ(ω) we switch from the abstract
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probability space (Ω,A,P) to the more convenient product probability space(
RN,

⊗
m≥1

B(R), µ

)
=

∞⊗
m=1

(R,B(R), µm). (2.30)

Concerning Lebesgue–Bochner spaces for this new probability space we will use
the notation

L2
µ(R

N;X ) :=
{

f : RN → X
∣∣ f is strongly measurable and

‖ f ‖2
L2

µ
:=
∫
RN
‖ f (ξ)‖2

X µ(dξ) < ∞
}

whereX denotes again an arbitrary Banach space. It follows that if a and f given by
(2.27) belong to the Lebesgue–Bochner spaces L2(Ω; L∞(D)) and L2(Ω; L2(D)), re-
spectively, then a and f given in (2.29) belong to L2

µ(R
N; L∞(D)) and L2

µ(R
N; L2(D)),

respectively, and vice versa.

Assume that a and f given in Assumption 2.38 satisfy the assumptions of Theo-
rem 2.35, then the pathwise solution u : Ω→ H1

0(D) of (2.22) exists. Let S : L∞(D)×
L2(D)→ H1

0(D) denote the solution operator associated to the (deterministic) vari-
ational problem (2.22), i.e., u(ω) = S(a(ω), f (ω)) P-almost surely. By virtue of
the Lax-Milgram lemma, the mapping S is continuous and, therefore, measurable.
Hence, also the pathwise solution u can be represented by a measurable mapping
of ξ, i.e., there exists a measurable mapping û : RN → H1

0(D) such that we have
u(ω) = û(ξ(ω)) P-almost surely. This mapping û coincides with the solution of
the parametric variational problem: find u : RN → H1

0(D) such that

〈a(ξ)∇u(ξ),∇v〉L2(D) = 〈 f (ξ), v〉L2(D) ∀v ∈ H1
0(D), µ-a.e. (2.31)

We consider (2.31) as the parametric reformulation of (2.22) given Assumption 2.38.
We state a corresponding existence result for (2.31) adapted from Bachmayr et al.
[6] where the authors considered only deterministic forcing terms f in (2.31).

Theorem 2.39 (cf. [6, Theorem 2.1 & Corollary 2.1]). Let Assumption 2.38 be sat-
isfied with ξm ∼ N(0, 1) if φm . 0. Further assume that there exists a sequence
(ρm)m∈N of positive numbers ρm > 0 and a p > 0 such that

∑
m≥1

exp(−ρ2
m) < ∞, ∑

m≥1
ρm ‖φm‖L∞(D) < ∞, ∑

m≥1
‖ψm‖p

L2(D)
Var(ξm)

p < ∞.

Then, there exists a unique solution u of (2.31) and u ∈ Lq
µ(R

N; H1
0(D)) for q < p.
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The assumptions of Theorem 2.39 imply, in particular, that a is a lognormal ran-
dom field with a ∈ L2

µ(R
N; H1

0(D)) and that f ∈ L2
µ(R

N; L2(D)), but f need not
necessarily be a Gaussian random field.

Remark 2.40 (On truncation errors). For numerical simulations we have to truncate
the expansions given in (2.27) after, say, M ∈ N terms. Let us denote the resulting
random fields by aM and fM, respectively. Then the solution uM : RN → H1

0(D) of

〈aM(ξ)∇uM(ξ),∇v〉L2(D) = 〈 fM(ξ), v〉L2(D) ∀v ∈ H1
0(D), µ-a.e. (2.32)

differs from the solution u of (2.31). In Charrier [27] and Charrier and Debussche
[28] the error u− uM has been investigated in case of a deterministic f and lognor-
mal a. Under suitable assumptions on the φm in (2.27) they were able to estimate
the error u − uM in Lp

µ(R
N; H1

0(D)) by certain functionals of the remainder term
a− aM, i.e., for M→ ∞ they showed uM → u in Lp

µ(R
N; H1

0(D)) for any p ≥ 1. We
refer to their works for details.

The parametric problem (2.31) allows now for approximation methods, since we
deal with functions depending on a parameter ξ ∈ RN rather than with random
fields depending on an abstract ω. In the next section we provide a brief overview
on existing approximation methods for the solution of parametric elliptic PDEs in
the form (2.31).

2.3.2. Approximation Methods

In this section we outline some basic methods to approximate objects in L2
µ(R

N;H)

with H a separable Hilbert space and µ as in (2.28), for example, the solution
u ∈ L2

µ(R
N; H1

0(D)) of the (random) parametric variational problem (2.31). We
will focus on approximating the dependence on ξ ∈ RN rather than spatial ap-
proximations in H or H1

0(D), respectively, because the latter are well-known, see
Remark 2.33.

Since L2
µ(R

N; H1
0(D)) is again a separable Hilbert space, there exists a CONS

{ϕn : n ∈N} of L2
µ(R

N;R) and we can represent each u ∈ L2
µ(R

N;H) by

u(ξ) =
∞

∑
n=1

un ϕn(ξ), (2.33)

where the equality holds in L2
µ(R

N;H) and

un :=
∫
RN

u(ξ) ϕn(ξ) µ(dξ) ∈ H. (2.34)
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In order to contruct a CONS of the space L2
µ(R

N;R), we can exploit once more the
underlying product structure (2.30) of the probability space (RN,

⊗
m≥1 B(R), µ)

and obtain

Theorem 2.41 ([156, Theorem 2.12]). For each m ∈ N let {ϕ
(m)
n : n ∈ N0} denote a

CONS of L2
µm(R;R) with ϕ

(m)
0 ≡ 1. For each multiindex α = (αm)m∈N ∈NN

0 define

|α|0 := |{j ∈N : αj > 0}| (2.35)

and set
F := {α ∈NN

0 : |α|0 < ∞}. (2.36)

Then {ϕα : α ∈ F} is a CONS of L2
µ(R

N;R) with µ as in (2.28) and

ϕα := ∏
m≥1

ϕαm , α ∈ F .

We note, that for α ∈ F the function ϕα is actually given by a finite product,
since |α|0 < ∞ and ϕ

(m)
0 ≡ 1. A common choice of orthonormal systems in the

spaces L2
µm(R;R) are the orthogonal polynomials w.r.t. the measure µm. However,

they need not be complete in L2
µm(R;R), see Ernst et al. [54] for a discussion. For

many common cases, such as µm = N(c, σ2) or µm = U[a, b], the corresponding
orthogonal polynomials, i.e., Hermite or Legendre polynomials, respectively, form a
CONS of L2

µm(R;R). In the following we will focus on the standard Gaussian case,
i.e., µm = N(0, 1) for m ∈ N, and work with Hermite polynomials. For details on
the latter we refer to Szegő [168] and Gautschi [66].

Definition 2.42 ((Wiener-Hermite) Polynomial chaos expansion). Let µm = N(0, 1)
for m ∈N and u ∈ L2

µ(R
N;H) with µ as in (2.28). Moreover, let Hn : R→ R denote

the L2-normalized Hermite polynomial of degree n ∈N0 w.r.t. the measure N(0, 1)
onR and define for α ∈ F with F as in (2.36) the multivariate Hermite polynomial
Hα : RN → R by Hα(ξ) := ∏m≥1 Hαm(ξm). Then the expansion

u(ξ) = ∑
α∈F

uαHα(ξ), uα :=
∫
RN

u(ξ)Hα(ξ) µ(dξ), (2.37)

which converges in L2
µ(R

N;H) is called (Wiener-Hermite) polynomial chaos expansion
(PCE) of u and the uα ∈ H are called (polynomial) chaos coefficients of u.

The term “Wiener-Hermite” relates, besides to Charles Hermite, to Norbert Wiener,
who introduced such polynomial expansions in his work [175]. More recently,
Xiu and Karniadakis [178] introduced the notion generalized polynomial chaos expan-
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sion for expansions such as (2.37) but based on orthogonal polynomials w.r.t. non-
Gaussian probability measures µm.

We will focus in the following on numerical methods which yield approximations
ûF of u ∈ L2

µ(R
N;H) of the form

ûF(ξ) = ∑
α∈F

ûαHα(ξ), F ⊂ F , |F| < ∞, (2.38)

where ûα ∈ H are approximations of the chaos coefficients uα of u since the latter
are typically unknown or not exactly computable. The error u− ûF in L2

µ(R
N;H) is

then given by
‖u− ûF‖2

L2
µ
= ∑

α∈F
‖uα − ûα‖2

H + ∑
α∈F\F

‖uα‖2
H. (2.39)

Thus, for proving convergence rates of such approximations the decay of the chaos
coefficients ‖uα‖H plays an important role. As in classical Fourier analysis, there is a
relation between the smoothness of u w.r.t. ξ and the rate of decay of ‖uα‖H which
we will discuss later on. In the following we outline several common numerical
methods for computing such approximations of u ∈ L2

µ(R
N;H).

Best N-term approximations. Let u ∈ L2
µ(R

N;H), then following DeVore [44,
Section 2] an N-term (polynomial chaos) approximation of u is a function ûF as given in
(2.38) with |F| = N. Let us denote the set of all such functions by SN ⊂ L2

µ(R
N;H),

i.e.,

SN :=

{
∑
α∈F

vαHα : vα ∈ H, |F| ≤ N

}
.

Then the best N-term (polynomial chaos) approximation u∗N of u is defined as

u∗N := argmin
v∈SN

‖u− v‖L2
µ
.

Obviously, see (2.39), u∗N is given by

u∗N(ξ) = ∑
α∈F∗N

uαHα(ξ)

where F∗N denotes the set of the multiindices α ∈ F corresponding to the N largest
‖uα‖H. The resulting error is

‖u− u∗N‖L2
µ
=

 ∑
α∈F\F∗N

‖uα‖2
H

1/2
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and convergence rates can be established via Stechkin’s lemma, see Cohen and De-
Vore [33, Lemma 3.6]: let (‖uα‖H)α∈F ∈ `p(F ) with p < 2, then

 ∑
α∈F\F∗N

‖uα‖2
H

1/2

≤ C N−
1
p+

1
2 .

For further details on best N-term approximations on solutions u of parametric
PDEs and variational problems such as (2.31) we refer to Cohen et al. [34], Hoang
and Schwab [88] and Bachmayr et al. [7, 6]. Of course the Hermite coefficients
uα are usually unknown, thus, best N-term approximations are usually not com-
putable in practice. However, their convergence rates provide an upper bound for
the convergence rate of other numerical methods.

Stochastic Galerkin methods. One way to approximate the chaos coefficients of
the solution u ∈ L2

µ(R
N; H1

0(D)) of the parametric variational problem (2.31) are
Galerkin methods. To this end, we test the parametric variational equation

〈a(ξ)∇u(ξ),∇v〉L2(D) = 〈 f (ξ), v〉L2(D) ∀v ∈ H1
0(D) µ-a.e.

with the real-valued multivariate Hermite polynomials Hα, α ∈ F , and, hence,
obtain the following stochastic variational formulation:∫

RN
〈a(ξ)∇u(ξ),∇v〉L2(D)Hα(ξ) µ(dξ) =

∫
RN
〈 f (ξ), v〉L2(D)Hα(ξ) µ(dξ) (2.40)

for all v ∈ H1
0(D) and all α ∈ F . We notice that on both sides of (2.40) the inner

product in L2
µ(R

N; L2(D)) appears. In order to ensure that the integrals or inner
products, respectively, in (2.40) are finite, we require that f ∈ L2

µ(R
N; L2(D)) and

a∇u ∈ L2
µ(R

N; L2(D)). The latter is, for instance, satisfied if u ∈ L2
µ(R

N; H1
0(D))

and if there exists a finite constant K such that µ-a.e. ‖a(ξ)‖L∞(D) ≤ K. Since the
Hermite polynomials {Hα : α ∈ F} form a CONS of L2

µ(R
N;R), the formulation

(2.40) motivates the following stochastic variational problem: given the energy space

Va :=
{

v ∈ L2
µ(R

N; H1
0(D)) : a∇v ∈ L2

µ(R
N; L2(D))

}
equipped with the inner product 〈u, v〉a := 〈a∇u,∇v〉L2

µ(RN;L2(D)), find u ∈ Va such
that

〈a∇u,∇v〉L2
µ(RN;L2(D)) = 〈 f , v〉L2

µ(RN;L2(D)) ∀v ∈ Va. (2.41)
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If there exists a lower bound a(x, ξ) ≥ amin > 0, then Va is again a Hilbert space
which is continuously embedded in L2

µ(R
N;R) due to

‖v‖L2
µ(RN;H1

0(D)) ≤
1

amin
‖v‖a ∀v ∈ Va,

where ‖v‖a := 〈v, v〉a. Moreover, in this case the Lax-Milgram lemma can be ap-
plied to show the existence of a unique solution u ∈ Va ⊂ L2

µ(R
N; H1

0(D)) of the
stochastic variational problem (2.41) which will coincide with the pathwise solution
of (2.31) whenever the latter belongs to Va.

However, in case of a lognormal random field a, i.e., when a satisfies Assumption
2.38, then there exists no deterministic lower bound a(x, ξ) ≥ amin > 0 which leads
to several technical difficulties. For instance, the bilinear form 〈a∇·,∇·〉L2

µ(RN;L2(D))

appearing on the left hand side of (2.41) is then not coercive, i.e., there exists no
constant α > 0 such that

〈a∇v,∇v〉L2
µ(RN;L2(D)) ≥ α ‖v‖2

a ∀v ∈ Va,

and, thus, the Lax-Milgram lemma can not be applied. However, by a suitable
change of measure µ 7→ ν, a theory for stochastic variational problems can be es-
tablished. We refer to Galvis and Sarkis [65], Gittelson [74] and Mugler and Starkloff
[121] for more details.

Given there exists a solution u ∈ Va of (2.41), we can again apply the Galerkin
method to approximate it. To this end, let us assume that vHα ∈ Va for each v ∈
H1

0(D) and α ∈ F . Then, for each finite-dimensional subspace VF ⊂ L2
µ(R

N;R),
e.g.,

VF := span(Hα : α ∈ F), F ⊂ F , |F| < ∞,

and each a finite subspace of Vh ⊂ H1
0(D), there holds

Vh ⊗ VF =

{
∑
α∈F

uα,hHα : uα,h ∈ Vh for all α ∈ F

}
⊂ Va

and we can compute the solution ûF,h ∈ Vh ⊗VF of the discretized stochastic varia-
tional problem

〈a∇ûF,h,∇v〉L2
µ(RN;L2(D)) = 〈 f , v〉L2

µ(RN;L2(D)) ∀v ∈ Vh ⊗ VF. (2.42)

This leads again to a finite dimensional linear system for the finitely many chaos
coefficients of ûF,h represented in a basis of Vh which can then be solved numerically.
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A comprehensive introduction to the stochastic Galerkin method is given, e.g., by
Ghanem and Spanos [70] and by Le Maitre and Knio [108].

Collocation methods. Another way to approximate a given mapping u : RN →
H, u ∈ L2

µ(R
N;H), is by sparse grid collocation methods which are based on Lagrange

interpolation. To this end, let us introduce In as the univariate Lagrange interpo-
lation operator based on n + 1 distinct nodes Ξn := {ξ0,n, ξ1,n, . . . , ξn,n}, Ξn ⊂ R,
i.e.,

(Inu)(ξ) =
n

∑
i=0

u(ξi,n) Li,n(ξ), u : R→ R,

where Li,n denotes the canonical ith Lagrange polynomial of degree n associated to
the nodes Ξn. For a multiindex α ∈ F we can then define the tensorized operator
Iα :=

⊗
m∈N Iαm , i.e.,

(Iαu)(ξ) = ∑
i :im≤αm

u(ξi ,α)Li ,α(ξ), u : RN → R, (2.43)

where Li ,α(ξ) := ∏m≥1 Lim,αm(ξm) and ξi ,α = (ξim,αm)m∈N. Note, that Li ,α is well-
defined due to α ∈ F and L0,0 ≡ 1. Moreover, the set of all grid points ξi ,α is then
given by

Ξα :=×
m∈N

Ξαm . (2.44)

Again, due to α ∈ F and |Ξ0| = 1 the set Ξα is finite with |Ξα| = ∏m∈N |1 + αm|.
The resulting interpolating approximation Iαu ∈ L2

µ(R
N;H) for anH-valued map-

ping u : RN 7→ H is called full grid collocation approximation of u and corresponds
again to an approximation of the form (2.38). Full grid collocation methods for ap-
proximating solutions of parametric PDEs such as (2.31) were introduced by Xiu
and Hesthaven [177] and later analyzed by, e.g., Babuška et al. [4]. The setting in
both cases was a finite dimensional one, i.e., they considered finite expansions for
the random or parametric coefficients in the PDE and, thus, the corresponding so-
lution u depended only on finitely many ξ1, . . . , ξN. In general, full grid collocation
is not suited for high-dimensional (or infinite-dimensional) approximation due to
the fast growth of |Ξα| for increasing α.

Based on sparse grids and hierarchical approximations, see Bungartz and Griebel
[23], Nobile et al. [125, 124] introduced sparse grid collocation approximations, again
in finite dimensions. These methods were later extended to the infinite dimen-
sional setting by Chkifa et al. [30, 31] and they also established convergence results
for sparse grid collocation approximations of functions u : [−1, 1]N → H. Sim-
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ilar results were recently obtained by Ernst et al. [58] for the unbounded case,
i.e., for sparse grid collocation applied to approximate functions u ∈ L2

µ(R
N;H)

such as the solution u to the parametric (lognormal) elliptic BVP (2.31). We briefly
outline the idea of sparse grid collocation and refer to the publications above for
more details and motivation. First, we introduce the univariate detail operators
∆n := In − In−1 for n > 0 and set ∆0 := I0. Analogously to Iα the tensorized
operator ∆α :=

⊗
m∈N ∆αm can be defined for α ∈ F . Then, given a finite subset

F ⊂ F we set

SFu := ∑
α∈F

∆αu, u : RN → R, (2.45)

and call SFu a sparse grid collocation approximation of u. For computational as well
as analytical reasons, it is often assumed that the finite set F is monotone, i.e., for
each α ∈ F also α − em ∈ F, m ∈ N, where em denotes the mth unit vector in
RN. Given this assumption on F the approximation SFu can be written in the form
(2.38) and the corresponding set F in (2.38) is the same as in (2.45), see Ernst et al.
[58, Section 2.1]. The advantage of the sparse grid collocation is that we are more
flexible w.r.t. refining the approximation: for the full grid collocation approximation
Iαu an increase in one of the components of α yields a possibly dramatic increase in
the number of grid points |Ξα| = ∏m∈N |1 + αm|, whereas we refine SFu by adding
a new multiindex α ∈ F to F which under the condition that F ∪ {α} is again
monotone yields only a moderate growth of the associated sparse grid

ΞF :=
⋃

α∈F
Ξα, |ΞF| ≤ ∑

α∈F
|Ξα|. (2.46)

For example, for activating a dimension, say, n, i.e., allowing the collocation approx-
imation to depend (non-constantly) on ξn , we have to increase in case of a full grid
collocation approximation Iαu the component αn from 0 to 1 which immediately
doubles the number of grid points in the associated full grid. On the other hand,
for a sparse grid collocation approximation SFu we just have to add the multiindex
α = en to the set F which increases the number grid points in the associated sparse
grid at most by |Ξen | = 2. Moreover, given some regularity of the function of inter-
est u : RN → H, convergence of SFu to u in L2

µ(R
N;H) can be shown. In particular,

Ernst et al. [58, Theorem 19] established under some regularity assumptions on
u ∈ L2

µ(R
N;H) – which were motivated by the results of Bachmayr et al. [6] – that

for sparse grid collocation based on Gauss-Hermite nodes, there exists a sequence
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of nested, monotone subsets Fn ⊂ F , n ∈N, with |Fn| = n such that

‖u− SFn u‖L2
µ(RN;H) ≤ Cu |ΞFn |

−s ,

where the constant Cu depends on u and the rate s > 0 on the regularity of u, cf. the
next paragraph.

Regularity w.r.t. ξ and decay of chaos coefficients. In classical harmonic anal-
ysis, smoothness or regularity of a function f : [−π, π) → R relates to the decay
rate of its Fourier coefficients, i.e., the order of weak differentiability corresponds
to the algebraic decay of the coefficients. Similar results hold for the decay of Her-
mite coefficients of functions f : R → R. Perhaps the first one to obtained results
on the decay of Hermite coefficients was Hille [85, 86]. He considered functions
which are anlytic in a strip {z ∈ C : |=(z)| < τ} of the complex plane and estab-
lished necessary and sufficient conditions for the pointwise convergence of Hermite
expansions within this strip. If these assumptions are fulfilled then the Hermite co-
efficients fn ∈ C, n ∈ N0, of f : C → C decay like exp(−(τ + ε)

√
2n + 1) where

ε > 0 is arbitrary. Hille’s result was later extended and refined by Boyd [20, 21]
who showed that also the order of decay of f on the real line influences the decay
of its Hermite coefficients. However, to the author’s knowledge there exist so far
no extensions of Hille’s or Boyd’s work to analytic functions of several variables.

Concerning finite differentiability, we get similar results as for classical Fourier
coefficients which in this case can be extended to the case of countably many vari-
ables as shown by Bachmayr et al. [6]: Let f : R → R have a weak derivative
f (k) ∈ L2

µ1
(R) with µ1 = N(0, 1) and k ≥ 0. Then by the Rodrigues’ formula for

Hermite polynomials, see Abramowitz and Stegun [1, Section 22.11],

Hn(ξ) =
(−1)n
√

n!
eξ2/2 dn

dξn e−ξ2/2, n ∈N0,

and integration by parts, we obtain for the Hermite coefficient fn, n > k, of f

fn =
∫
R

f (ξ)Hn(ξ) µ1(dξ) =
∫
R

f (ξ)Hn(ξ) e−ξ2/2 dξ√
2π

=

√
(n− k)!

n!

∫
R

f (k)(ξ)Hn−k(ξ) e−ξ2/2 dξ√
2π

=

√
(n− k)!

n!
f (k)n−k

where f (k)n−k denotes the (n− k)th Hermite coefficient of f (k). In other words, there
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holds f (k)n =
√
(n + k)!/n! fn+k for n ∈ N and, thus, by Parseval’s identity we

obtain
‖ f (k)‖2

L2
µ1

= ∑
n≥0

(n + k)!
n!

| fn+k|2.

We note that (n + k)!/n! = n · (n− 1) · · · (n− k + 1) ∈ O(nk). Thus, if f ∈ L2
µ1
(R)

has a weak derivative f (k) ∈ L2
µ1
(R) — i.e., if f has finite Sobolev regularity — then

there exists a constant C f < ∞ such that

| fn| ≤ C f n−(k+1)/2 ∀n ∈N0.

This reasoning can easily be extended to several dimensions and Bachmayr et al. [6]
showed that a weighted `2-summability (with increasing weights) of the Hermite
coefficients ‖uα‖H of u ∈ L2

µ(R
N;H) is equivalent to a weighted `2-summability

(with other increasing weights) of the L2
µ-norms of the partial derivatives ‖∂j u‖L2

µ
,

j ∈ F and maxm∈N jm ≤ k. We refer to their work for details. Again, the weighted
`2-summability of (‖uα‖H)α∈F implies a certain decay analogously to above which
can be used to establish convergence rates of approximation methods via Stechkin’s
lemma.
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Chapter 3

Bayesian Inference

This chapter is based on the publications [56, 57], but the presentation has been
modified and many details and remarks as well as some new theoretical results
have been added.

In this and the subsequent chapters we consider the inverse problem in uncertainty
quantification. This time we do not propagate uncertainty through a forward map
such as the solution operator of an elliptic PDE as in the previous chapter. We rather
modify our uncertainty about coefficient functions by statistical inference given
noisy observations of a random variable defined by such a forward map. From the
UQ perspective the inverse problem is of tremendous interest, since incorporating
any available information into the probability law for an uncertain quantity may
reduce the uncertainty and lead to improved stochastic models and predictions.

Assume that we have made a finite-dimensional noisy observation modeled as

y = G(u) + ε, (3.1)

where u ∈ H represents the unknown in a separable Hilbert spaceH, G : DG → Rd

denotes the deterministic unknown-to-observation map with domain DG ⊆ H and
ε the observational noise. Of course, we need to assume that u ∈ DG in (3.1). More-
over, we suppose that our current state of knowledge about u, which may be based
on physical reasoning, expert knowledge or previously collected data, is described
by a prior probability measure µ0 on H. Besides that, the observational noise ε is
assumed to be random with a known distribution based, again, on physical or sta-
tistical reasoning. Thus, a more appropriate model for the observation is

Y = G(U) + ε, (3.2)

where now U ∼ µ0 denotes a random variable in H distributed according to the
prior measure µ0, ε denoting the random variable for the observational noise and,
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hence, Y the Rd-valued random variable describing our prior probabilistic model
for the observation (before we have made it). Here, we need to assume µ0(DG) = 1
to give Y in (3.2) meaning which in turn requires DG to be a measurable set.

The observation Y = y then provides new information to us which we would
like to take into account and merge with our prior belief or prior uncertainty about
u. This can be realized mathematically by conditioning the prior probability mea-
sure µ0 on the event of observing Y = y. Such conditional measures are rooted
in Kolmogorov’s fundamental concept of conditional expectation, see, e.g., Rao [137],
which we will explain later in detail. Furthermore, the famous Bayes’ rule provides
an analytic expression for the resulting conditional probability measure or posterior
measure under certain mild assumptions. It is this posterior measure which repre-
sents our remaining uncertainty about u after having made the observation Y = y.
In fact, computing the resulting posterior measure via Bayes’ rule is nothing else
than performing Bayesian inference for u given the prior µ0 and the noisy data y.
Bayesian inference is a type of statistical inference – the other common one is called
Frequentist inference – where the unknown parameters which we want to infer are
considered as random parameters following a postulated prior probability distri-
bution. Again, this prior measure is supposed to represent our current knowledge
about the parameters before we infer them given the observational data. Both types
of statistical inference are based on a corresponding interpretation of probability
which led to many, still ongoing debates between Bayesians and Frequentists. In
light of uncertainty quantification, perhaps the Bayesian point of view, that proba-
bility is a mathematical representation of one’s subjective beliefs, seems to be more
appropriate than the Frequentist interpretation as an (objective) limit of relative fre-
quencies for infinitely many trials. However, we will not deepen this philosophical
discussion, since, as Williams [176, p. 220] remarks, “Enough paper has already
been devoted to the topic”, and refer the interested reader to Jaynes [94] and Lind-
ley [112].

In this chapter, we will outline the Bayesian approach to inferring knowledge
about an uncertain function given indirect observations of it and we will relate the
Bayesian methodology to the concept of conditioning. Moreover, we derive the
basic results such as Bayes’ rule and the continuous dependence of the resulting
posterior measure on the data in a quite general setting. Besides this we introduce
Bayes estimates and Bayes estimators which are also an important part of Bayesian
statistics. At the end of the chapter, we make a few remarks about the relation be-
tween the Bayesian approach and regularization theory for (deterministic) inverse
problems and provide an overview of numerical methods for Bayesian inference.

Before we start recalling the necessary basics on probability measures, we illus-
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trate the abstract observational model (3.1) and (3.2), respectively, with our running
example.

Example 3.1 (Elliptic PDE). We consider an elliptic BVP stated on a bounded do-
main D ⊂ R3

−∇ · (eu∇p) = f on D, p ≡ 0 on ∂D, (3.3)

or its weak formulation, respectively, where p may describe a stationary ground-
water pressure head and u ∈ L∞(D) the logarithm of the uncertain hydraulic
conductivity of a porous medium. Given observations of the pressure head p at
d locations x1, . . . , xd ∈ D, e.g., by measurements at boreholes, we would like to
infer the log conductivity u. Thus, here we have u ∈ L∞(D) ⊂ L2(D) =: H
as the unknown and the observation map G : L∞(D) → Rd is given by the map-
ping u 7→ (`1(p), . . . , `d(p)), where the linear functionals `i(p) :=

∫
|y−xi|≤ε p(y)dy

model local averages of p around the borehole centers xi ∈ D.

In pratice one often has already some limited prior knowledge about the log
conductivity u, e.g., by geological information, which may be encoded in a path-
wise continuous Gaussian random field model for u, i.e., u(·, ω) ∈ C(D̄) P-almost
surely. As we know from Chapter 2, this yields an L2(D)-valued random vari-
able U whose distribution µ0 on H = L2(D) serves as prior measure and satisfies
µ0(C(D̄)) = µ0(L∞(D)) = 1. Furthermore, measurement errors ε are usually mod-
eled as Gaussian. Given the accuracy of the measurement instrument in terms of
a standard deviation σ, we may assume ε ∼ N(0, σ2 Id) with Id denoting the d-
dimensional identity matrix.

We can also apply the Karhunen-Loève expansion of the Gaussian random field
u, see Theorem 2.28,

u(x, ω) = φ0(x) +
∞

∑
m=1

φm(x)ξm(ω),

where ‖φm‖L2(D) = 1 and the ξm ∼ N(0, λm) are stochastically independent with
(λm)m∈N ∈ `2(N), and equivalently infer the random coefficients ξ = (ξm)m∈N

given the observational data. The underlying Hilbert space is then `2(N), since for
the ξm as above there holds P-almost surely ξ(ω) ∈ `2(N), see, e.g., Schwab and
Gittelson [156, Proposition C.12].

Remark 3.2. Given Example 3.1 where the prior measure µ0 is supported on a sep-
arable Banach space C(D̄) one might ask why we consider the larger Hilbert space
H = L2(D) as the basic setting for the Bayesian inference. The reason here is that
it is easier to work with measures on Hilbert spaces rather than with measures on
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Banach spaces, although all of the results in this chapter are extendable to separable
Banach spaces. Moreover, when considering Kalman filter methods in Chapter 4,
we actually need an inner product space.

3.1. Preliminaries on Probability Measures

We first recall some basic notation from probability theory. For two measures µ1

and µ2 on a separable Hilbert spaceH we define the notation

µ1(du) ∝ µ2(du) ⇐⇒ ∃c ∈ R ∀A ∈ B(H) : µ1(A) = cµ2(A),

and, given a measurable function ρ : H → [0, ∞),

µ1(du) = ρ(u)µ2(du) ⇐⇒ µ1(A) =
∫

A
ρ(u)µ2(du) ∀A ∈ B(H),

i.e., du serves as a placeholder for measurable sets. We say ν is a dominating measure
of µ if µ is absolutely continuous w.r.t. ν, i.e., there exists a measurable ρ : H →
[0, ∞) such that µ(du) = ρ(u) ν(du). In the following, let Y denote a second sepa-
rable Hilbert space and recall that P(H) and P(Y) denote the sets of all probability
measures on H and Y , respectively. Given two probability measures µ1 ∈ P(H)

and µ2 ∈ P(Y) we denote by µ1⊗ µ2 the product measure on the measurable space
(H×Y ,B(H)⊗B(Y)), i.e., for any A ∈ B(H) and B ∈ B(Y) we have

µ1 ⊗ µ2(A× B) = µ1(A)µ2(B).

Here, B(H)⊗ B(Y) denotes the tensor-product σ-algebra on H× Y generated by
all sets A × B, A ∈ B(H) and B ∈ B(Y). In particular, if two random variables
X ∼ µ1 and Y ∼ µ2 are independent, we have (X, Y) ∼ µ1 ⊗ µ2 and vice versa.

For a measurable mapping f : H → Y we denote by f∗µ the pushforward measure
of µ under f on Y , i.e., f∗µ(A) := µ( f−1(A)) for all A ∈ B(Y). Besides this we will
sometimes use the notation

Eµ [ f ] :=
∫
H

f (u) µ(du),

Covµ( f ) :=
∫
H

(
f (u)−Eµ [ f ]

)
⊗
(

f (u)−Eµ [ f ]
)

µ(du),

for the expectation and covariance of f w.r.t. µ, respectively. For a real-valued
f : H → R we denote by Varµ( f ) the resulting variance of f w.r.t µ. Furthermore,
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analogously to Definition 2.14 we will use the notation

Lp
µ(H;Y) :=

{
f : H → Y

∣∣ f measurable and ‖ f ‖p
Lp

µ
:=
∫
H
‖ f (u)‖p

Y µ(du) < ∞
}

,

where p ∈ [1, ∞), and denote the inner product in L2
µ(H;Y) by

〈 f , g〉L2
µ

:=
∫
H
〈 f (u), g(u)〉Y µ(du), f , g ∈ L2

µ(H;Y).

We will also use the short notation Lp
µ(H) := Lp

µ(H;R).

Definition 3.3 (Mean and covariance of probability measures). For q ∈N the set of
all probability measures µ onH with qth absolute moment is denoted by

P q(H) :=
{

µ ∈ P(H) :
∫
H
‖u‖q

H µ(du) < ∞
}

.

For a measure µ ∈ P1(H) its mean m ∈ H is given by the Bochner integral

m =
∫
H

u µ(du)

and for µ ∈ P2(H) its covariance (operator) is defined as the unique bounded linear
operator C ∈ L(H) satisfying

〈u1, Cu2〉H =
∫
H
〈u1, v−m〉H 〈u2, v−m〉H µ(dv) ∀u1, u2 ∈ H.

There holds a similar statement to Proposition 2.18, i.e., for µ ∈ P2(H) its covari-
ance operator C is self-adjoint, positive and trace class. In the following, we will
denote the set of all linear self-adjoint, positive and trace class operators A : H → H
by L1

+(H) and refer to Appendix A for more details on subspaces of linear opera-
tors.

We also require the notion of distance between probability measures. In this the-
sis we will mainly work with the total variation distance dTV and Hellinger distance
dH as well as with the weak convergence of measures. For a survey on metrics for
probability measures and their relations we refer to Gibbs and Su [71].

Definition 3.4 (Weak convergence). Let (µn)n∈N ⊂ P(H) be a sequence of prob-
ability measures on H. We say the measures µn converge weakly to a measure µ ∈
P(H), written as µn

w−→ µ, if

lim
n→∞

∫
H

f (u) µn(du) =
∫
H

f (u) µ(du) ∀ f ∈ Cb(H;R), (3.4)
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where Cb(H;R) denotes the set of all bounded, continuous functions f : H → R.

Weak convergence of measures on Polish spaces is induced by the Lévy-Prokhorov
metric, we refer to Klenke [99, Remark 13.14] for details. Moreover, there are several
equivalent characterizations of weak convergence usually summarized under the
name Portmanteau theorem. For example, we can replace Cb(H;R) in (3.4) by the set
of all bounded, Lipschitz continuous functions f ∈ Lipb(H;R), see again Klenke
[99, Theorem 13.16], and obtain the same topology on P(H). This particular state-
ment of the Portmanteau theorem will be used in Section 4.2.2.

Definition 3.5 (Total variation distance). The total variation distance between two
probability measures µ1, µ2 ∈ P(H) is given by

dTV(µ1, µ2) := sup
A∈B(H)

|µ1(A)− µ2(A)| . (3.5)

The definition of the total variation distance is quite natural, since it measures
the difference of probabilities for the same event. Moreover, there holds for µ, µn ∈
P(H), n ∈N, that

dTV(µn, µ)→ 0 =⇒ µn
w−→ µ, (3.6)

see Gibbs and Su [71], i.e., convergence in total variation implies weak convergence.

Definition 3.6 (Hellinger distance). For two probability measures µ1, µ2 ∈ P(H)

their Hellinger distance is defined as

dH(µ1, µ2) :=

∫
H

(√
dµ1

dν
(u)−

√
dµ2

dν
(u)

)2

ν(du)

1/2

,

where ν is a dominating measure for µ1 and µ2, e.g., ν = (µ1 + µ2)/2.

It can be easily checked that the definition of the Hellinger distance is indepen-
dent of the dominating measure. Furthermore, there holds, see again Gibbs and Su
[71],

d2
H(µ1, µ2)

2
≤ dTV(µ1, µ2) ≤ dH(µ1, µ2), µ1, µ2 ∈ P(H), (3.7)

i.e., they induce the same topology on P(H). The Hellinger distance possesses the
convenient property that continuity w.r.t. dH implies the continuity of moments as
stated in Dashti and Stuart [43]:

Lemma 3.7 ([43, Lemma 7.14]). Let µ1, µ2 ∈ P(H) and f ∈ L2
µ1
(H;Y) ∩ L2

µ2
(H;Y).
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Then there holds

∥∥Eµ1 [ f ]−Eµ2 [ f ]
∥∥
Y ≤

(
2‖ f ‖2

L2
µ1
+ 2‖ f ‖2

L2
µ2

)1/2

dH(µ1, µ2). (3.8)

Gaussian measures on Hilbert spaces. As for random fields and Hilbert space-
valued random variables we will often work with Gaussian measures on Hilbert
spaces and exploit their properties. Gaussian measures are very convenient to work
with. We refer to Bogachev [18] for a comprehensive presentation as well as to Da
Prato and Zabczyk [39, Chapter 1] and Hairer [80, Section 3] for lucid introductions.

Definition 3.8 (Gaussian measure). A measure µ ∈ P(H) is called a Gaussian mea-
sure with mean m ∈ H and covariance operator C ∈ L1

+(H), denoted by µ =

N(m, C), if for each u ∈ H there holds with fu : H → R given as fu(v) := 〈u, v〉H
that

( fu)∗ µ ∼ N (〈m, u〉H, 〈u, Cu〉H) ,

where ( fu)∗µ ∈ P(R) denotes the push-forward measure of µ under the mapping
fu.

Needless to say, that the distribution onH of a GaussianH-valued random vari-
able X, i.e., the pushforward measure µ = X∗P ∈ P(H), is Gaussian with mean
E [X] and covariance Cov(X).

Remark 3.9. An equivalent characterization of Gaussian measures can be obtained
via characteristic functions, i.e., µ = N(m, C) iff∫

H
ei〈u,v〉H µ(dv) = ei〈m,u〉H− 1

2 〈Cu,u〉H , ∀u ∈ H.

Moreover, analogously to Definition 2.19, we can define Gaussian meaures also in
Banach spaces. However, in this thesis we focus on the Hilbert space case.

Gaussian measures are uniquely determined by their mean and covariance, i.e.,
for any m ∈ H and any C ∈ L1

+(H) there exists a unique Gaussian measure
µ = N(m, C) on H, see, e.g., Da Prato and Zabczyk [38, Proposition 2.18]. Con-
cerning equivalence of Gaussian measures, there holds that µ1 = N(m1, C1) and
µ2 = N(m2, C2) are either singular or equivalent, see Da Prato and Zabczyk [38,
Theorem 2.23]. More details on the latter case are provided in Appendix C.

In the following, we will use upper case latin letters such as X, Y, U to denote
random variables on Hilbert spaces and lower case latin letters such as x, y, u for



60 3. Bayesian Inference

elements in these Hilbert spaces or realizations of the associated random variables.
The greek letter ε will be used to denote random observational noise as well as
its realization, and µ and ν (with various subscripts) will denote measures on the
Hilbert spaceH and on Rd, respectively.

3.2. Conditional Measures

Bayesian inference consists in updating prior knowledge on an unknown quantity
modeled as a random variable U, reflecting a gain in knowledge due to new ob-
servations. The distribution of U, characterized by the probabilities P(U ∈ B) for
B ∈ B(H), quantifies, in stochastic terms, our knowledge about the uncertainty as-
sociated with U. When new information becomes available, such as knowing that
the event Y = y has occurred, this is reflected in our quantitative description as the
“conditional distribution of U given {Y = y}”, denoted P(U ∈ B |Y = y).

Before we present the general approach to define conditional distributions via
conditional expectation, we illustrate the procedure of conditioning for a very sim-
ple case: assume we know that an event A with positive probability P(A) > 0 has
occured. Then, the conditional probability P(U ∈ B | A) of U ∈ B, B ∈ B(H), given
the event A is defined as

P(U ∈ B | A) :=
P({ω : U(ω) ∈ B} ∩ A)

P(A)
,

and Bayes’ rule in its simplest form then reads

P(U ∈ B | A) =
P(A |U ∈ B)

P(A)
P(U ∈ B),

which can be verified by a simple calculation. Here, the term P(A |U ∈ B) repre-
sents the probability (or later likelihood) for A to occur given that U ∈ B. Thus, the
change from the prior probability P(U ∈ B) to the conditional or posterior proba-
bility P(U ∈ B | A) is a simple reweighting by the normalized likelihood P(A |U ∈
B)/P(A). This structure will remain the same also in a more general setting.

If the occured event A is not assigned a positive probability, e.g., we observed
Y = y where the distribution of Y is absolutly continuous w.r.t. Lebesgue measure,
the approach above is clearly not well-defined. In finite dimensions, i.e., H = Rn,
we can then define conditional densities w.r.t. the Lebesgue measure to make sense
of conditional probabilities. However, we omit the corresponding statements here
and continue with the general approach of conditional distributions which also works
in infinite dimensional spaces. The key concept here is that of conditional expectation.
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Definition 3.10 (Conditional expectation, conditional probability). Let X ∈ L1(Ω;H)

and Y : Ω → S be random variables, where (S,S) denotes an arbitrary measur-
able space. We define the conditional expectation E[X|Y] of X given Y as any σ(Y)-
measurable mapping E[X|Y] : Ω→ H which satisfies∫

A
E[X|Y] P(dω) =

∫
A

X P(dω) ∀A ∈ σ(Y).

For any B ∈ B(H) the conditional probabilityP(X ∈ B|Y) of X ∈ B given Y is defined
as any σ(Y)-measurable mapping P(X ∈ B|Y) : Ω→ [0, 1] satisfying

P(X ∈ B|Y) = E
[
1{X∈B}|Y

]
P-almost surely.

Thus, conditional expectation and conditional probability are unqiuely defined
only up to P-null sets. By the Doob-Dynkin Lemma, see Kallenberg [96, Lemma
1.13], there exists a measurable function φ : S → H such that E[X|Y] = φ(Y)
holds P-almost surely. Again, we note that this does not determine a unique func-
tion φ but rather an equivalence class of measurable functions where φ1 ∼ φ2 iff
P(φ1(Y) , φ2(Y)) = 0. For a specific realization y ∈ S of Y (and a specific φ), we
set

E[X|Y = y] := φ(y), y ∈ S,

and analogously

P(X ∈ B|Y = y) := E[1{U∈B}|Y = y], y ∈ S,

and, thus, obtain mappings E[X|Y = ·] : S → H and P(X ∈ B|Y = ·) : S → [0, 1]
representing conditional expectation and probability. Concerning the latter, one
could now ask for a family of probability measures P(X ∈ ·|Y = y) : B(H)→ [0, 1]
parametrized by the realization y of Y, providing the conditional distribution of X
resulting from the observation Y = y. Before stating the corresponding definition
we introduce the concept of a stochastic kernel which plays an important role in many
fields of probability theory, particularly, in the theory of Markov chains which we
will consider in detail in Chapter 5.

Definition 3.11 (Stochastic kernel). A mapping K : H × B(H) → [0, 1] is called a
stochastic kernel or Markov kernel on (H,B(H)), or simply onH, if

• K(u, ·) : B(H)→ [0, 1] is a probability measure on (H,B(H)) for each u ∈ H,

• K(·, A) : H → [0, 1] is a measurable function for each A ∈ B(H).
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Thus, a stochastic kernel K can be viewed as a parametrized probability mea-
sure, i.e., as a mapping from H into P(H). The relation to the idea of conditional
distributions as above is obvious and we state

Definition 3.12 (Conditional distribution). For two random variables X : (Ω,A)→
(H,B(H)) and Y : (Ω,A)→ (S,S), where (S,S) denotes an arbibtrary measurable
space, the regular conditional distribution of X given Y is a stochastic kernel

µX|Y : S×B(H)→ [0, 1]

such that for each B ∈ B(H) there holds

µX|Y(Y(ω), B) = P(X ∈ B|Y)(ω) P-almost surely.

Thus, given a regular conditional distribution µX|Y we can employ the probability
measure µX|Y(y, ·) as the distribution of X conditioned on the event Y = y.

Remark 3.13 (On the existence of regular conditional distributions). The existence
of regular conditional distributions can be ensured under very general assump-
tions. In particular, if X : Ω → T and Y : Ω → S are random variables with S as a
general measurable space and T a Polish space, i.e., a complete and separable met-
ric space, there exists a regular conditional distribution of X given Y, see Kallenberg
[96, Theorem 6.3]. For cases where regular conditional distributions do not exist we
refer to Rao [137].

3.3. Bayes’ Rule and the Posterior Measure

We will now provide an expression for the conditional distribution of U given Y
if Y is defined as in (3.2) by Bayes’ rule and, moreover, discuss stability results for
the resulting posterior measure. We mention that similar statements can be found in
Stuart [167] for Gaussian random variables U and ε in (3.2) and in Dashti and Stuart
[43] for a more general setting. To this end, we make the following assumptions for
the model equation (3.2).

Assumption 3.14.

1. Let U ∼ µ0, ε ∼ νε and (U, ε) ∼ µ0 ⊗ νε, i.e., U and ε are independent.

2. The distribution νε of ε is absolutely continuous w.r.t. the Lebesgue measure
in Rd with density ρ(ε) ∝ e−`(ε) where ` : Rd → [0, ∞).
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3. For G : DG → Rd there holds that DG ∈ B(H) with µ0(DG) = 1 and that G is
measurable w.r.t. the Borel σ-algebras B(H) and B(Rd).

In the following, when we consider integrals overHw.r.t. µ0 where the integrand
involves G, we understand them in the sense that they are taken over DG or, equiv-
alently, the G appearing in the integral is an extension of G to H with G(u) = 0 for
u < DG.

Since the random variable Y in (3.2) is, by Assumption 3.14, the sum of two inde-
pendent random variables, G(U) and ε, its distribution νY is given as

νY(B) =
∫
H

νε(B− G(u)) µ0(du) =
∫

B

∫
H

ρ(y− G(u)) µ0(du)dy, B ∈ B(Rd),

see Kallenberg [96, Lemma 1.28 & Corollary 3.12], hence,

νY(dy) = C γ(y)dy, γ(y) :=
∫
H

e−`(y−G(u)) µ0(du), C−1 :=
∫
Rd

γ(y)dy. (3.9)

We remark that γ(y) is well-defined and strictly positive, since 0 < | e−`(y−G(u)) | ≤
1, and that γ ∈ L1(Rd) due to Fubini’s theorem, see Kallenberg [96, Theorem
1.27]. In particular, the distribution νY of Y is also absolutely continuous w.r.t. the
Lebesgue measure. Moreover, it follows by construction that the conditional prob-
ability of Y ∈ B, B ∈ B(Rd), given U = u ∈ DG is

P(Y ∈ B|U = u) ∝
∫

B
e−`(y−G(u)) dy, (3.10)

and, in particular, that the joint distribution µ of (U, Y) onH×Rd is given by

µ(du, dy) = C e−`(y−G(u)) µ0(du)⊗ dy. (3.11)

Definition 3.15 (Potential). Given Assumption 3.14 we define the potential Φ as the
mapping Φ : H×Rd → [0, ∞) given by

Φ(u, y) := `(y− G(u)) (3.12)

where G(u) := 0 for u < DG.

Note, that Φ represents the negative log likelihood of observing Y = y given
U = u and that Φ is a measurable function. We now show that under Assumption
3.14 Bayes’ rule yields a regular conditional distribution µU|Y of U given Y where Y
is defined by (3.2).
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Theorem 3.16 (Bayes’ rule). Consider the model (3.2) and let Assumption 3.14 be
satisfied. For each y ∈ Rd we define a probability measure µy on (H,B(H)) by

µy(du) :=
1

γ(y)
exp(−Φ(u, y)) µ0(du) (3.13)

where γ(y) is as in (3.9). Then the mapping µU|Y : Rd ×B(H)→ [0, 1] given by

µU|Y(y, B) := µy(B) ∀B ∈ B(H)

is a regular conditional distribution of U given Y.

Proof. First, we verify that µU|Y with µU|Y(y, B) := µy(B) for y ∈ Rd and B ∈ B(H)

is a stochastic kernel. That µU|Y(y, ·) is a probability measure for each y ∈ Rd

follows by construction. Moreover, we argue that for a fixed B ∈ B(H) the mapping
y 7→ µy(B) is measurable. To this end, we recall that for any measurable function
f : H×Rd → R and any probability measure η onH the mapping

y 7→
∫
H

f (u, y) η(du)

is again measurable, see, e.g., Kallenberg [96, Lemma 1.41]. Thus, since the potential
Φ : H×Rd → [0, ∞) is measurable by assumption, we obtain that

y 7→
∫

B
exp(−Φ(u, y)) µ0(du) =

∫
H
1 B(u) exp(−Φ(u, y)) µ0(du)

is measurable for any B ∈ B(H) which implies that also

y 7→
∫

B exp(−Φ(u, y)) µ0(du)∫
H exp(−Φ(u, y)) µ0(du)

= µy(B).

is measurable. Hence, µU|Y is a stochastic kernel.

Next, we prove that for any B ∈ B(H) there holds P-a.s. µU|Y(Y, B) = P(U ∈
B|Y). To this end, we verify that∫

A
µU|Y(Y(ω), B)P(dω) =

∫
A
1 B(U(ω))P(dω) ∀A ∈ σ(Y).

Recall the joint distribution µ of (U, Y) given in (3.11). There holds

µ(du, dy) = C e−Φ(u,y) µ0(du)⊗ dy = Cγ(y) µU|Y(y, du)dy = µU|Y(y, du) νY(dy)

where νY denotes the distribution of Y given in (3.9). Since σ(Y) = {Y−1(A) : A ∈
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B(Rd)}, we choose an arbitrary A ∈ B(Rd) and obtain∫
Y−1(A)

1 B(U(ω))P(dω) =
∫

B×A
µ(du, dy) =

∫
A

µU|Y(y, B) νY(dy)

=
∫

Y−1(A)
µU|Y(Y(ω), B)P(dω)

which concludes the proof. �

Definition 3.17 (Prior measure, posterior measure). Let Assumption 3.14 be satis-
fied for the model (3.2). Then the measure µ0 is called the prior measure of U and the
measure µy given in (3.13) the posterior measure of U given Y = y.

It is helpful to maintain a clear distinction between conditional and posterior quan-
tities in the following: the former contain the – as yet unrealized – observation as
a parameter, while in the latter the observation has been made. Specifically, µX|Y
is the conditional measure of X conditioned on Y, whereas µX|Y(y, ·) denotes the
posterior measure of X for the observation Y = y. Moreover, prior quantities do not
depend on the observation random variable Y or its realizations at all.

Stability of the posterior measure. We will now study the continuity of the pos-
terior measure w.r.t. the observed data and its stability w.r.t. approximations of the
forward map G. Again, these issues were already adressed by Stuart [167] for Gaus-
sian priors and Gaussain noise and were recently extended by Dashti and Stuart
[43] to a more general setting including ours. Nevertheless, we will not just cite the
corresponding results in [43], but try to explain the underlying mathematics. The
key observation for the stability analysis of the posterior is

Proposition 3.18 (cf. Stuart [167, Theorem 4.6]). Let µ0 ∈ P(H) and let Φ, Φ̃ : H →
[0, ∞) be measurable functions and such that Φ, Φ̃ ∈ L2

µ0
(H). Then there holds for

the two probability measures µ, µ̃ ∈ P(H) given by

µ(du) :=
1
Z

e−Φ(u) µ0(du), Z :=
∫
H

e−Φ(u) µ0(du),

µ̃(du) :=
1
Z̃

e−Φ̃(u) µ0(du), Z̃ :=
∫
H

e−Φ̃(u) µ0(du),

that
dH(µ, µ̃) ≤ 1

min(Z, Z̃)
‖Φ− Φ̃‖L2

µ0
, (3.14)

and also |Z− Z̃| ≤ ‖Φ− Φ̃‖L2
µ0

.
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Proof. Analogous to the proof of [167, Theorem 4.6] we start with

dH(µ, µ̃)2 =
∫
H

(
e−Φ(u)/2
√

Z
− e−Φ̃(u)/2

√
Z̃

)2

µ0(du)

≤ 2
∫
H

(
e−Φ(u)/2
√

Z
− e−Φ̃(u)/2

√
Z

)2

+

(
e−Φ̃(u)/2
√

Z
− e−Φ̃(u)/2

√
Z̃

)2

µ0(du)

= I1 + I2

where

I1 :=
2
Z

∫
H

(
e−Φ(u)/2− e−Φ̃(u)/2

)2
µ0(du), I2 :=

2
Z

(√
Z̃−

√
Z
)2

.

Since | e−x− e−y | = e−min(x,y) |1− e−|x−y| | ≤ 1 · |x− y| for any x, y ≥ 0, we get

I1 ≤
2
Z

∫
H

∣∣Φ(u)− Φ̃(u)
∣∣2

4
µ0(du) =

1
2Z
‖Φ− Φ̃‖2

L2
µ0

and since |x1/2 − y1/2| ≤ 1
2 min(x, y)−1/2 |x− y| we obtain

I2 ≤
1

2Z min(Z, Z̃)
|Z− Z̃|2.

Now, as for I1 we get

|Z− Z̃|2 ≤
∫
H

∣∣∣e−Φ(u)− e−Φ̃(u)
∣∣∣2 µ0(du) ≤ ‖Φ− Φ̃‖2

L2
µ0

and due to Z, Z̃ ≤ 1 we have

1
2Z

+
1

2Z min(Z, Z̃)
≤ 1

2 min(Z, Z̃)2
+

1
2 min(Z, Z̃)2

=
1

min(Z, Z̃)2

which concludes the proof. �

Proposition 3.18 guides us to establish assumptions under which we can show
continuity in the Hellinger distance of µy w.r.t. y or w.r.t. G, since for µy we have
Φ(u) = Φ(u, y) = `(y− G(u)). In particular, the regularity of ` will determine the
corresponding modulus of continuity. Moreover, due to the term min(Z, Z̃)−3/2

on the righthand side of (3.14) we will usually obtain only a local modulus of con-
tinuity, e.g., only a local Hölder continuity of µy w.r.t. y. We make the following
assumption about the continuity of `.
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Assumption 3.19. The negative log likelihood ` : Rd → [0, ∞) is locally Hölder con-
tinuous with exponent α > 0. In particular, there exists a nondecreasing function
L : [0, ∞)→ [0, ∞) such that

|`(y)− `(ỹ)| ≤ L(r) |y− ỹ|α ∀ |y|, |ỹ| ≤ r.

This assumption is satisfied by many standard probability distribution functions.
For example, if the negative log likelihood ` is continuously differentiable Assump-
tion 3.19 holds with α = 1 and L(r) := max|y|≤r |∇`(y)|. In order to establish conti-
nuity of µy w.r.t. y, we then have to ensure a specific integrability of the function L
in Assumption 3.19.

Theorem 3.20 (cf. Stuart [167, Theorem 4.2], Dashti and Stuart [43, Theorem 4.5]).
Let Assumption 3.14 and 3.19 be satisfied. Assume further that for the mapping L
in Assumption 3.19 there holds∫

H
L2(r + |G(u)|) µ0(du) ≤ Cr < ∞ ∀r ≥ 0 (3.15)

where Cr denotes a finite constant depending on r. Moreover, we assume that there
exists a measurable function f : H → R+ such that

`(y− G(u)) ≤ cr + f (u) ∀|y| ≤ r (3.16)

where cr denotes another finite constant depending on r. Then the measure µy in
(3.13) is locally Hölder continuous in the Hellinger distance w.r.t. y with exponent
α, i.e., for any y, ỹ ∈ Rd with |y|, |ỹ| ≤ r there holds

dH(µ
y, µỹ) ≤ Kr |y− ỹ|α,

with a constant Kr independent of y and ỹ.

Proof. We define

Φ(u) := `(y− G(u)), Φ̃(u) := `(ỹ− G(u))

and let Z and Z̃ be as in Proposition 3.18. Then, we get due to Assumption 3.19 and
(3.15) as well as |y− G(u)|, |ỹ− G(u)| ≤ r + |G(u)| that

‖Φ− Φ̃‖2
L2

µ0
=
∫
H
|`(y− G(u))− `(ỹ− G(u))|2 µ0(du)

≤ |y− ỹ|2α
∫
H

L(r + |G(u)|)2 µ0(du) ≤ Cr|y− ỹ|2α.
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Moreover, by assumption (3.16) we obtain

min(Z, Z̃) ≥
∫
H

exp (−cr − f (u)) µ0(du) =: γr > 0.

Thus, by Proposition 3.18 the assertion follows with Kr =
√

Cr/γr. �

Theorem 3.21 (cf. Stuart [167, Corollary 4.9], Dashti and Stuart [43, Theorem 4.8]).
Let Assumption 3.14 and 3.19 be satisfied and let Gh : DG → Rd, h > 0, be an
approximation of the forward map G : DG → Rd such that

|G(u)− Gh(u)| ≤ K(u)ψ(h) ∀u ∈ DG,

where K : H → [0, ∞) and ψ : [0, ∞)→ [0, ∞) denote measurable mappings. If there
exists a finite constant Cr depending on r ≥ 0 such that∫

H
K2α(u) L2(r + |G(u)|+ |Gh(u)|) µ0(du) ≤ Cr < ∞ ∀r ≥ 0 (3.17)

and if there exists a measurable function f : H → R+ and another finite constant cr

such that there holds (3.16) and

`(y− Gh(u)) ≤ cr + f (u) ∀|y| ≤ r, (3.18)

then for the posterior measures µy as in (3.13) and µ
y
h(du) ∝ e−`(y−Gh(u)) µ0(du)

there holds
dH(µ

y, µ
y
h) ≤ 2Kr ψ(h)α, |y| ≤ r,

with Kr depending only on r.

Proof. We denote Φ(u) := `(y− G(u)) and Φ̃(u) := `(y− Gh(u)) and let Z, Z̃, µ

and µ̃ be again as in Proposition 3.18. Due to assumption (3.16) and (3.18) we get
analogously

min(Z, Z̃) ≥
∫
H

exp (−cr − f (u)) µ0(du) =: γr > 0

and by Assumption 3.19 and (3.17) we have due to |y| ≤ r

‖Φ− Φ̃‖2
L2

µ0
=
∫
H
|`(y− G(u))− `(y− Gh(u))|2 µ0(du)

≤
∫
H

L2(r + |G(u)|+ |Gh(u)|) |G(u)− Gh(u)|2α µ0(du) ≤ Crψ(h)2α.

Thus, by Proposition 3.18 the assertion follows with Kr =
√

Cr/γr. �
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In Theorem 3.20 and Theorem 3.21 we applied the analogous convention as be-
fore that Gh(u) := 0 for u < DG̃. Next, we investigate how Assumption 3.19 looks
like for the Gaussian case and try to recover the corresponding assumptions made
in Stuart [167] for the continuity of the posterior w.r.t. y.

Example 3.22 (Gaussian prior and noise). Let µ0 = N(0, C) and ε ∼ N(0, Id), i.e.,
we have `(y) = 1

2 |y|2 for y ∈ Rd, hence,

|`(y)− `(ỹ)| ≤ max {|y|, |ỹ|} |y− ỹ|,

i.e., concerning Assumption 3.19 the Hölder exponent α is one and the function L is
L(r) = r. Then, if for any β > 0 there exists a constant Kβ such that

|G(u)| ≤ exp
(

β‖u‖2
H + Kβ

)
, ∀u ∈ DG, (3.19)

which is exactly [167, Assumption 2.7 (i)], we can ensure (3.15) by Fernique’s theo-
rem, see, e.g., Da Prato and Zabczyk [38, Theorem 2.6]. Analogously, (3.19) ensures
(3.16), since

`(y− G(u)) =
1
2
|y− G(u)|2 ≤ |y|2 + |G(u)|2 ≤ r2 + exp

(
2β‖u‖2

H + 2Kβ

)
.

Moreover, if the bound (3.19) also holds for an approximation Gh of G and if

|G(u)− Gh(u)| ≤ exp
(

β‖u‖2
H + Kβ

)
ψ(h), u ∈ DG,

which is the assumption (4.11) in [167, Corollary 4.9], then also (3.17) and (3.18) are
ensured by the same arguments.

As mentioned before continuity w.r.t. the Hellinger distance implies continuity of
moments.

Corollary 3.23 (Continuity of posterior moments). Assume for the prior measure
that µ0 ∈ P2(H). Then there hold the following statements:

• Let the assumptions of Theorem 3.20 be satisfied and let my and Cy denote
the mean and covariance of µy and mỹ and Cỹ the mean and covariance of µỹ.
Then there exists a constant Kr depending on r = max(|y|, |ỹ|) such that

‖my −mỹ‖H ≤ Kr |y− ỹ|α, ‖Cy − Cỹ‖ ≤ Kr |y− ỹ|α.

• Let the assumptions of Theorem 3.21 be satisfied and let my
h and Cỹ

h denote
the mean and covariance of µ

y
h. Then there exists a constant Kr depending on
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r = |y| such that

‖my −my
h‖H ≤ Krψ(h)α, ‖Cy − Cy

h‖ ≤ Krψ(h)α.

Proof. First of all, due to

∫
H
‖u‖2

H µy(du) =
1

γ(y)

∫
H
‖u‖2

H e−Φ(u,y) µ0(du) ≤ 1
γ(y)

∫
H
‖u‖2

H µ0(du) < ∞

we have µy ∈ P2(H) and the mean and covariance of µy exist for each y ∈ Rd.
Hence, the function f (u) := u belongs to L2

µy(H;H) ∩ L2
µỹ(H;H) and Lemma 3.7

can be applied which yields by

‖ f ‖2
L2

µy
+ ‖ f ‖2

L2
µỹ
≤ 2

γr
‖ f ‖2

L2
µ0

where γr is as in the proof of Theorem 3.20, the assertion ‖my−mỹ‖H ≤ Kr |y− ỹ|α.
For the covariances of µy and µỹ there holds

∥∥Cy − C̃y∥∥ =
∥∥∥Eµy [u⊗ u]−Eµy [u]⊗Eµy [u]−

(
Eµỹ [u⊗ u]−Eµỹ [u]⊗Eµỹ [u]

)∥∥∥
≤
∥∥∥Eµy [u⊗ u]−Eµỹ [u⊗ u]

∥∥∥+ ∥∥∥Eµy [u]⊗Eµy [u]−Eµỹ [u]⊗Eµỹ [u]
∥∥∥ .

Since g(u) := u ⊗ u belongs to L2
µy(H;H ⊗ H) ∩ L2

µỹ(H;H ⊗ H) – due to µy ∈
P2(H) for each y ∈ Rd – we can again apply Lemma 3.7 and get analogously to
above ∥∥∥Eµy [u⊗ u]−Eµỹ [u⊗ u]

∥∥∥ ≤ 2√
γr
‖g‖L2

µ0
|y− ỹ|α.

Moreover, due to a⊗ a− b⊗ b = (a + b)⊗ (a− b), we get

‖Eµy [u]⊗Eµy [u]−Eµỹ [u]⊗Eµỹ [u] ‖ = ‖Eµy [u] +Eµỹ [u] ‖H ‖Eµy [u]−Eµỹ [u] ‖H

≤ 2
γr
‖Eµ0 [u] ‖H Kr|y− ỹ|α

which yields the corresponding statement on ‖Cy − C̃y‖. The second part of the
corollary follows analogously. �

3.4. Bayes Estimators

Although the posterior measure µy is the solution object to the Bayesian inference
problem of inferring U from noisy observations of Y, it is usually not easy to com-



3.4. Bayes Estimators 71

pute in practice and needs to be approximated. Moreover, when the dimension
of H is large or infinite, visualizing, exploring or using µy for post-processing are
demanding tasks.

More accessible quantities from Bayesian statistics than the posterior measure
itself are point estimates for the unknown u, see, e.g., Bernardo [10]. In the Bayesian
setting a point estimate is a “best guess” û of u based on the posterior knowledge,
i.e., the posterior measure µy. Here “best” is determined by a cost function c : H →
[0, ∞) which describes the loss or costs c(u− û) incurred when û is substituted for
(the true) u for post-processing or decision making.

Definition 3.24. A mapping c : H → [0, ∞) is called a cost function if it satisfyies
c(0) = 0 and c(u) ≤ c(λu) for any u ∈ H and λ ≥ 1. For y ∈ Rd and µy given by
(3.13) we define the (posterior) Bayes cost of an estimate û ∈ H w.r.t. c by

Bc(û; y) :=
∫
H

c(u− û) µy(du).

We remark that also more general forms of a cost function than stated in Defini-
tion 3.24 are possible, see Berger [9] and Bernardo [10].

Definition 3.25. Under the assumptions of Definition 3.24 we define the Bayes esti-
mate ûc(y) as the minimizer

ûc(y) := argmin
û∈H

Bc(û; y),

assuming a unique minimizer exists. Moreover, the Bayes estimator is defined as the
mapping ûc : Rd → H which assigns to an observation y ∈ Rd the associated Bayes
estimate ûc(y).

So far, it does not seem easier to determine Bayes estimates or Bayes estimators
than sampling w.r.t. the posterior, since for the former we have to solve a minimiza-
tion problem involving integrals w.r.t. the posterior. However, because ûc obtains
for each y ∈ Rd the minimum of the posterior Bayes cost, it will also minimize an
averaged Bayes cost.

Definition 3.26. Under the assumptions of Definition 3.24 and Assumption 3.14 the
prior Bayes cost of a measurable mapping φ : Rd → H is given by

Bc(φ) := E [Bc(φ(Y); Y)] =
∫
Rd

∫
H

c(u− φ(y)) µy(du) νY(dy) = E [c(U − φ(Y))] .

where U and Y are as in (3.2).
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Thus, assuming measurability of the Bayes estimator ûc in the following, we can
characterize ûc by

ûc := argmin
φ : Rd→H measurable

Bc(φ), (3.20)

or, equivalently,

E [c(U − û(Y))] ≤ E [c(U − φ(Y))] ∀measurable φ : Rd → H. (3.21)

Since the expectations in (3.21) are w.r.t. prior measures it is possible to determine
the estimator ûc without actually computing the posterior measure µy. Therefore,
Bayes estimators are typically easier to compute or approximate than µy. Next, we
will recall two very common Bayes estimators.

Posterior Mean Estimator For the cost function c(u) = ‖u‖2
H the posterior Bayes

cost
Bc(û; y) =

∫
H
‖u− û‖2

H µy(du)

is minimized by the posterior mean E[U|Y = y] =
∫
H u µy(du). This is due to

Proposition 3.27. Let X ∈ L2(Ω;H) and define a functional JX : H → [0, ∞) by

JX(x) := E[‖X− x‖2
H].

Then we have
E[X] = argmin

x∈H
JX(x).

Proof. Let 0 , x ∈ H be arbitrary. Then we obtain by linearity

JX(E[X] + x) = E[‖X−E[X]− x‖2
H] = E[〈X−E[X]− x, X−E[X]− x〉H]

= E[〈X−E[X], X−E[X]〉H]− 2E[〈X−E[X], x〉H] +E[〈x, x〉H]
= JX(E[X])− 2〈E[X−E[X]]︸            ︷︷            ︸

≡0

, x〉H + 〈x, x〉H > JX(E[X]).

Thus, E[X] is the unique minimizer of JX. �

Remark 3.28. If we consider Banach spaces X instead of Hilbert spaces H then
Proposition 3.27 does not hold anymore. For example, let X = R2, ‖v‖X = |v1|+
|v2| and X = (X1, X2) with independent random variables X1, X2 such that

P(Xi = −1) = pi, P(Xi = 1) = 1− pi, i = 1, 2.
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Here E[X] minimizes E[‖X − v‖2
H] iff p1 = p2 = 0.5. In fact, one can show E[X] =

argminv∈X E[‖X− v‖2
X ] if X is distributed symmetrically w.r.t. its mean, i.e., if there

holds P(X−E[X] ∈ A) = P(E[X]− X ∈ A) for all A ∈ B(X ).

Definition 3.29. The conditional mean estimator or posterior mean estimator is defined
by

uCM(y) :=
∫
H

u µy(du), y ∈ Rd, (3.22)

provided that µy ∈ P1(H) for each y ∈ Rd.

By Corollary 3.23 we immediately obtain

Proposition 3.30. Let the assumptions of Corollary 3.23 be satisfied, then the map-
ping uCM : Rd → H given by (3.22) is continuous.

Thus, the posterior mean estimator is in particular measurable. Let us recall
that E[U|Y] is the best approximation of U in L2(Ω, σ(Y),P;H) w.r.t. the norm in
L2(Ω,A,P;H). Hence, we view the posterior mean estimator uCM(y) as the best
L2-approximation to U based on the information σ(Y) provided by observations of
Y.

Remark 3.31. If H = Rn and µy is unimodal, then the posterior mean is the Bayes
estimator for any symmetric, convex cost function c, see Lewis et al. [110, Remark
16.2.2] or Speyer [162].

Maximum A Posteriori Estimator Another common estimator in Bayesian statis-
tics is the maximum a posteriori estimator (MAPE) uMAP. For finite-dimensional spaces
H = Rn and priors µ0 which are absolutely continuous w.r.t. the Lebesgue measure,
i.e., µ0(du) = π0(u) du, the MAPE is defined as

uMAP(y) := argmin
u∈Rn

(Φ(u, y)− log π0(u)) , (3.23)

provided the minimum exists for all y ∈ Rd. Thus, the estimate uMAP(y) is the
point in Rn where the posterior density obtains its maximum. We, therefore, can
view uMAP(y) as the Bayesian counterpart of the maximum likelihood estimate uML

from Frequentist statistics

uML(y) := argmin
u∈Rn

Φ(u, y).

For the corresponding cost function for which uMAP provides the Bayes estimator
we refer to Burger and Lucka [24]. In the older literature the MAPE is usually
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introduced as the minimizer of the limit of a sequence of cost functions, see e.g.,
Lewis et al. [110, Section 16.2]. Burger and Lucka [24] were the first to show that it
can be defined as a proper Bayes estimator in case of linear forward maps G.

If H is infinite dimensional there exists no posterior density w.r.t. the Lebesgue
measure, since the latter does also not exist. However, in case of Gaussian priors
µ0 = N(m, C) and under certain assumptions on Φ it is shown by Dashti et al. [41],
that the MAPE can be defined analogously to above by

uMAP(y) = argmin
u∈rg(C1/2)

Φ(u, y)− ‖C−1/2u‖H. (3.24)

3.5. Relation to Regularizational Approaches to

Inverse Problems

In the deterministic setting the usual approach to solve the inverse problem of re-
constructing u given y as in (3.1) is by regularized least squares problems. The
reason for the least squares approach is that in general y < rg(G) due to the noise ε.
Hence, determining u = G−1(y) is replaced by

u = argmin
v∈DG

|y− G(v)|2,

but the solution to the least squares problem does, in general, not depend contin-
uously on the data y. Therefore, the problem is regularized by incorporating ad-
ditional prior information about the desired u by introducing a regularizing func-
tional R : H → [0, ∞], see, e.g., Engl et al. [52], and to solve for

uα = argmin
v∈DG

|y− G(v)|2 + α R(v), (3.25)

where α ∈ [0, ∞) serves as a regularization parameter. For example, we may reg-
ularize by restricting u to a subset or subspace H̃ ⊂ H which can be realized by
using a stronger norm than ‖ · ‖H as the regularizing functional R.

We immediately notice the common structure between the regularized solution
uα in (3.25) and the MAP estimate given in (3.23). In particular, if H = Rn and the
regularizing functional R : Rn → [0, ∞) satisfies∫

Rn
exp

(
− α

σ2 R(u)
)

du < +∞,

then the regularized solution uα coincides with the MAP estimate uMAP(y) for a
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prior
µ0(du) ∝ exp

(
− α

σ2 R(u)
)

du

and ε ∼ N(0, σ2 I). The same holds in infinite dimensions if the regularizing func-
tional takes a form

R(u) =

‖A(u− uref)‖2
H, u− uref ∈ DA,

∞, otherwise,

where DA denotes the domain of the operator A : DA → H. If A is the inverse
of a bounded, positive, nonsingular and self-adjoint Hilbert-Schmidt operator, i.e.,
A−2 ∈ L1

+(H), then the resulting regularized solution uα coincides again with the
MAP estimate given a Gaussian prior µ0 = N(uref, α

σ2 A−2) and ε ∼ N(0, σ2 I) as
before. We refer to Kaipio and Somersalo [95], Stuart [167] and Dashti and Stuart
[43] for a more detailed discussion about the relation of both approaches.

Broadly speaking, the Bayesian approach may be viewed as a probabilistic reg-
ularization where prior information on u is modeled by a prior measure µ0 on the
Hilbert space H. Thus, a quantitative preference of some solutions u over others
is given by assigning higher and lower probabilities. However, the Bayesian ap-
proach is not only dedicated to the task of identifying one specific u ∈ H which
explains the observed data best. The goal in Bayesian inference is to learn from the
observed data in a statistical or probabilistic sense by adjusting our prior belief µ0

about u in accordance with the available data. Of couse, as we have seen, the task of
identification may also be achieved within the Bayesian framework by Bayes esti-
mates and Bayes estimators. But besides this, the Bayesian approach provides also a
quantification of our remaining uncertainty on u in terms of the posterior measure.

3.6. Computational Methods for Bayesian Inference

In special cases, the posterior measure is given in a closed form. For instance, if
the forward map G is linear and the prior µ0 as well as the noise distribution νε

are Gaussian measures, then the resulting posterior is also Gaussian and explicit
formulas for its mean and covariance are available, see Theorem 4.3 in the next
chapter. Furthermore, in finite dimensionsH = RN given the noise distribution we
may sometimes choose a conjugate prior which means that the resulting posterior
density function (w.r.t. the Lebesgue measure) belongs to the same family of proba-
bility density functions as the prior. In these cases, the corresponding parameters of
the posterior density, e.g., mean, variance, skewness or shape, are often given in an
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analytic form. We refer to Hoff [89] for more details. Aside from these special situ-
ations the posterior µy and its statistics can only be approximated. In the following
we provide a brief overview of existing numerical methods for Bayesian inference
– with no claim of exhaustiveness.

Methods for approximate sampling from the posterior. Perhaps the simplest
and most natural idea to provide approximations to a measure is by empirical mea-
sures, i.e., by sampling. Typically, the posterior measure is of a complicated form
and its density (w.r.t. a reference or prior measure) only available upon pointwise
evaluation. Thus, direct sampling is unfeasible or even impossible and approximate
sampling methods have to be applied.

Maybe the most established method for this purpose is the Markov Chain Monte
Carlo method which we will discuss in detail in Chapter 5. The basic idea of MCMC
is to construct a sequence of random variables which converge in distribution to the
posterior measure.

Besides MCMC another common method in Bayesian inference are particle filters
or sequential Monte Carlo methods, see, e.g., Kaipio and Somersalo [95, Section 4.3]
or Doucet et al. [48]. These methods are well suited for sequential data assimilation,
e.g., when the observational data arrives sequentially in time and, thus, a recursive
comptutation or approximation of the posterior is desirable. The basic principle
behind particle filters is as follows: we generate samples according to the prior
and assign to each sample a weight according to posterior density evaluated for
this sample. If new data arrives, we can employ the previous posterior weighted
samples as initial ensemble and update their weights by multiplying them with the
likelihood function associated to the new observations. For more details, we refer
to the references above.

One extension of particle filters are Gaussian mixture filters, see, e.g., Stordal et al.
[166]. The idea there is to approximate the posterior density by a weighted mean
of Gaussian kernels located at each sample and in addition to the weights also the
location of the samples are updated according to the posterior.

A further technique for sampling from the posterior is presented by El Moselhy
and Marzouk [51]: a mapping F : H → X is constructed in such a way that F(U) ∼
µy for a random variable U ∼ µ0. Given F, which is obtained by solving an optimal
transport problem, samples according to µy can then easily be generated by evaluat-
ing F for samples from the prior. The mapping F can usually be only approximated
yielding, thus, samples which are again only approximately distributed according
to µy.
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Numerical integration w.r.t. the posterior. Since many posterior statistics such
as mean, covariance or even probabilites, are given by expectations w.r.t. the pos-
terior, we can apply numerical integration methods to compute those. Concerning
probabilites the integration would involve an indicator function, thus, numerical in-
tegration which requires some smoothness of the integrand would not be appropri-
ate. Nonetheless, for posterior moments of smooth functionals of interest efficient
numerical quadrature methods have been developed in recent years. Often the idea
is to perform quadrature w.r.t. the known prior measure and to include the unnor-
malized posterior density dµy

dµ0
(u) ∝ exp(Φ(u, y)) in the integrand. Of course, then

the normalizing constant has to be computed as well by quadrature. We mention
Schwab and Stuart [157] and Schillings and Schwab [154] who investigated sparse
quadrature formulas for Bayesian inference. Due to the assumed smoothness of the
likelihood e−Φ(u,y) w.r.t. u, these methods can yield faster convergence rates than
Monte Carlo or Markov chain Monte Carlo integration and are also suited to infi-
nite dimensions. Beside these works a recent paper by Scheichl et al. [151] presents
quasi and multilevel Monte Carlo methods for estimating posterior expectations.

Methods for Bayesian state estimation. In dynamical systems where the un-
derlying state is unknown but noisy observations of related quantites are available,
the main interest is often to estimate the current state of the system. In the Bayesian
framework this corresponds to computing Bayes estimates for state. A well-known
and widely applied computational method is the Kalman filter and its extensions
which provide approximations for the posterior mean estimate and which we will
consider in detail in Chapter 4. Similar to particle filters these methods are adapted
to sequentially arriving data and allow for a recursive computation of the estimate.

Alternatively, one can use the MAP estimate for the unknown state of a dynami-
cal system. By definition we can apply numerical optimization methods to compute
the MAP estimate, see, e.g., Vogel [173]. Two popular algorithms in, e.g., weather
prediction, are 3DVar and 4DVar. Both methods compute the MAP estimate, but
the difference between them is that 3DVar treats the sequentially arriving data re-
cursively, while 4DVar performs the optimization w.r.t. the entire data set at once,
see also Lewis et al. [110] or Law and Stuart [105].
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Chapter 4

Kalman Filter Methods for Bayesian
Inference

The content of this chapter is based on the publications [56, 57], but the way of pre-
sentation has been modified and many details and remarks added.

This chapter is devoted to Kalman filter methods and their application to Bayesian
inference for an unknown u in a separable Hilbert spaceH given noisy observations

y = G(u) + ε ∈ Rd (4.1)

where G : DG → Rd, DG ⊆ H, denotes the forward map and ε the noise. We will
follow the same notations and assumptions as in the previous chapter.

Kalman filter techniques are often applied in practice, since they are easy to im-
plement and require less computational work than, e.g., MCMC methods, in terms
of fewer evaluations of the forward map G. In particular, if G involves solving a
PDE, then evaluations of G constitute the main computational work for Bayesian
inference. Moreover, filtering methods are well adapted to inference in dynamical
systems where observational data arrives sequentially in time, see, e.g., Stuart [167,
Section 5.4] for a more detailed discussion of this issue.

The Kalman filter (KF) was introduced by Kalman [97] and developed for state
estimation in linear dynamics. Already in Kalman’s seminal paper the principle
for deriving the filter equations was based on minimizing the average cost of an
estimate w.r.t. quadratic loss functions, i.e., Kalman employed the terminology of
Bayes estimators. Later, the KF was extended to nonlinear dynamics resulting in
the extended Kalman filter (EKF), see, e.g., Kaipio and Somersalo [95, Section 4.2.2].
The EKF is based on local linearizations of the underlying nonlinear dynamics or
forward maps. A few years later, Evensen [59] proposed another extension of the
KF to nonlinearities, called the ensemble Kalman filter (EnKF). This method employs
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Monte Carlo sampling according to a prior measure for the unknown state, prop-
agates the ensemble through the dynamics and updates each ensemble member
given observational data by a procedure analogous to the KF. The mean of the en-
semble then serves as an estimate for the unknown state. The EnKF is widely used
by practicioners and seems to perform well for state and parameter estimation, see,
e.g., Evensen [62].

In recent years, the EnKF has also drawn the attention of the growing UQ com-
munity and has been investigated in the context of inverse problems and Bayesian
inference by, e.g., Iglesias et al. [93, 92] and Law and Stuart [105]. Since the EnKf
yields not only a single estimate but an analysis ensemble of states it is tempting to
use the latter for quantifying the uncertainty about the unknown state. Although it
is known, see, e.g., Apte et al.[3], Le Gland et al. [75] or Evensen and Van Leeuwen
[63], that the analysis ensemble generated by the EnKF is in general not distributed
according to the posterior measure defined by Bayes’ rule, the relation between the
empirical measure associated with the EnKF analysis ensemble and the posterior
measure is yet missing in the literature.

As a further improvement of the KF, the authors of [149, 148, 17, 129, 144, 143]
have combined the idea of the EnKF with the computationally attractive represen-
tation of random variables by a polynomial chaos expansion.Their method repre-
sents the uncertain state not by an ensemble drawn according to a prior measure
but by a truncated PCE of a prior distributed random variable. The PC coefficients
are then updated — again in a similar way as the original KF update — given the
observational data y which results in a vector of analysis PC coefficients. We will refer
to this approach in the following as the Polynomial Chaos Kalman filter (PCKF). It was
mainly the study of the PCKF which led to the content of this chapter. Although
the authors of the above mentioned papers provide a motivation for deriving their
algorithm, they do not clearly characterized how to understand the random vari-
able determined by the analysis PC coefficients, i.e., if its distribution may provide
a reasonable approximation to the posterior measure.

The results presented in this chapter try to fill this gap. In particular, we clarify
the stochastic model underlying the EnKF and PCKF in the special case of a single
update given data y as in (4.1). We show that both methods, the EnKF and the PCKF,
provide different types of approximations to the same random variable, which we
term the analysis variable. Specifically, the empirical distribution of the EnKF ensem-
ble provides an approximation to the distribution of the analysis variable whereas
the PCKF constructs an approximation to the PCE of the analysis variable. This will
be made precise by two convergence results in Section 4.2 where we show that in
the large ensemble limit and the large polynomial basis limit the outcome of the



4.1. The Kalman Filter and its Generalizations 81

EnKF and the PCKF will converge to the distribution and the PCE of the analysis
variable, respectively. To the authors’ knowledge, a convergence analysis for PCKF
is missing in the literature so far. In case of the EnKF, convergence results were
already given by Le Gland et al. [75], Mandel et al. [116] and Law et al. [106].
In each of these works the general setting was sequential data assimilation for a
discrete-time dynamical system with linear or (locally) Lipschitz continuous drift
and linear observation operators, but the convergence analysis was always done
w.r.t. a different type of convergence (details will be given later). Our result comes
closest to that of Le Gland et al. [75], but we consider an abstract Hilbert space
setting and a nonlinear parameter-to-observation map G which need not satisfy a
Lipschitz condition.

Furthermore, we will provide an explicit characterization of the analysis variable
in the context of Bayesian inference in Section 4.3. Therefore, we will determine
how the analysis ensemble of the EnKF and the analysis PCE of the PCKF relate to
the posterior measure and Bayes estimators. In fact, both fail to approximate the
posterior measure and rather approximate a certain Bayes estimator and its prior
error. This insight explains the observations made in numerical experiments by
Law and Stuart [105] and yield implications for the usage of Kalman filter methods
in uncertainty quantification

4.1. The Kalman Filter and its Generalizations

In this section we introduce the classical Kalman filter as well as the Ensemble and
Polynomial Chaos Kalman filter. Although these methods are desigend for data
assimilation in discrete-time dynamical systems, we will apply them to the nonlin-
ear Bayesian inference problem of inferring U ∼ µ0 given the event Y = y where
y ∈ Rd and

Y := G(U) + ε (4.2)

with G : DG → Rd and ε ∼ νε as in Assumption 3.14 in Chapter 3. We assume an
underlying probability space (Ω,A,P) in the following and require

Assumption 4.1. Assumption 3.14 holds with µ0 ∈ P2(H) and νε ∈ P2(Rd) as well
as ∫

H
|G(u)|2 µ0(du) < ∞.

This assumption implies the existence of the first and second moments of U, ε

and Y appearing in the model (4.2).
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4.1.1. The Kalman Filter

The Kalman filter [97] is a well-known method for sequential state estimation for
incompletely observable, linear discrete-time dynamics of the form

Un = FnUn−1 + ηn, n = 1, 2, . . . ,

Yn = GnUn + εn, n = 1, 2, . . . ,
(4.3)

where (Un)n∈N denotes the unobservable state and (Yn)n∈N the observable process.
The linear operators Fn ∈ L(H) and Gn ∈ L(H,Rd) are mappings in state space
and from state to observation space, respectively, and the noise processes (ηn)n∈N

and (εn)n∈N onH andRd, respectively, are usually assumed to have zero mean and
known covariances. In addition, the mean and covariance of U0 need to be known
and the random variables U0, ηn, εn, n ∈ N, are supposed to be mutually indepen-
dent. The filtering problem consists then of computing an estimate of the current
unknown state Un given the sequentially arrived observations Y1 = y1, . . . , Yn = yn.
Particularly, we ask for the minimum variance estimate ua

n = ua
n(y1, . . . , yn) defined

by
E
[
‖Un − ua

n(Y1, . . . , Yn)‖2
H

]
≤ E

[
‖Un − φ(Y1, . . . , Yn)‖2

H

]
for all measurable φ : Rd×n → H. The superscript a in the notation of the estimate
ua

n refers to the term analysis, since in the filtering literature, particularly in the liter-
ature on the EnKF, the incorporation of observational data is called analysis step. As
we know from the previous chapter, the minimal variance estimate ua

n as charac-
terized above corresponds to the posterior mean of Un given Y1 = y1, . . . , Yn = yn.
Under the assumption that U0, ηn, εn, n ∈ N are Gaussian, Kalman [97] then de-
rived a coupled system of recursive equations for the estimates ua

n and their error
covariances

Ca
n := Cov(Un − ua

n(Y1, . . . , Yn)), n ∈N.

The recursive structure of the Kalman filter represents a main advantage, because
for computing the estimate ua

n we only have to use the former estimate ua
n−1, its

error covariance Ca
n−1 and the new observation yn — besides Fn, Gn and the co-

variances of ηn and εn — rather than taking into account all previous observations
y1, . . . , yn. Again we refer to Stuart [167, Section 5.4] for details about that issue.
However, we will not state the Kalman filter equations for dynamical system here
and only provide the reasoning for deriving the equation for n = 1 in the following
paragraph. For a comprehensive introduction and discussion of the Kalman filter
we refer to Catlin [26] and Simon [159].
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The Kalman filter for a time-independent Bayesian inference problem. As
mentioned above we will focus on the application of the Kalman filter and its gen-
eralizations to time-independent Bayesian inference problems of the form (4.2). For
applying the classical Kalman filter, we restrict the forward G : H → Rd to be linear:

Y = GU + ε, (U, ε) ∼ µ0 ⊗ νε (4.4)

where we assume µ0 = N(0, C) and νε = N(0, Σ) are zero-mean Gaussian measures
onH and Rd, respectively, with invertible covariances C ∈ L(H) and Σ ∈ Rd×d.

Remark 4.2. We note that (4.2) or (4.4) can be seen as one step of the dynamical
system (4.3) for Fn ≡ I, ηn ≡ 0 and Gn = G. Conversely, the estimation problem for
the initial U0 in (4.3) given Y1 = y1, . . . , Yn = yn can be reformulated as (4.4) with
Y := (Y1, . . . , Yn)> and G := (G1, . . . , Gn) where Gj = Fj ◦ · · · ◦ F1. However, the
task of inferring the current state Un given Y1 = y1, . . . , Yn = yn does, in general,
not fit the form of (4.4), since there does not necessarily exist a mapping relating
Un and Yj for j ≤ n. Only if the dynamics Fn are invertible for all n ∈ N, then we
have Yj = GjF−1

j · · · F
−1
n Un + ε̃ j where ε̃ j is then the sum of ε j and GjF−1

j · · · F
−1
k ηk,

j ≤ k ≤ n.

Given the model (4.4) for the observable random variable Y it follows by Propo-
sition 2.20 that (U, Y) is jointly Gaussian(

U
Y

)
=

(
I 0
G I

)(
U
ε

)
∼ N

((
0
0

)
,

(
C CG∗

GC GCG∗ + Σ

))
.

Moreover, it is well known that the conditional distribution of jointly Gaussian ran-
dom variables is again Gaussian, see, e.g., Mandelbaum [117]:

Theorem 4.3 ([117, Corollary 2]). Let X and Y be two Gaussian random variables on
separable Hilbert spacesH and Y with mean mX and mY and covariance operators
CX and CY, respectively, where CY is invertible. Further let CXY := Cov(X, Y) and
CYX := Cov(Y, X). Then a regular conditional distribution µX|Y : Y → P(H) of X
given Y is given by

µX|Y(y) = N
(

mX + CXYC−1
Y (y−mY), CX − CXYC−1

Y CYX

)
.

Mandelbaum [117] actually considers two Gaussian random variables on the
same Hilbert space H, but the result can be extended to the setting in Theorem
4.3. Recall now, that the Kalman filter was designed to compute the minimial vari-
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ance estimate of the unknown U given the observation Y = y. Since this estimate is
the posterior mean of U given Y = y we end up with

Definition 4.4 (Kalman Filter). Given the model (4.4), the Kalman filter for estimat-
ing U given Y = y is as follows

1. Initialization: Set as inital estimate u0 := E [U] and as initial error covariance
C0 := Cov(U).

2. Forecast: Set as forecast y0 := Gu0 and as forecast covariances CY := GC0G∗+
Σ and CUY := C0G∗.

3. Analysis: Compute K := CUYC−1
Y and the analysis estimate and error covariance

ua := u0 + K(y− y0),

Ca := CU −KC∗UY,
(4.5)

where the operator K: Rd → H is called Kalman gain.

Note, that C−1
Y exists, since Σ is positive definite and GC0G∗ positive semi-definite.

Moreover, by linearity we easily see that there holds

y0 = E [Y] , CY = Cov(Y), CUY = Cov(U, Y),

as well as
ua = ua(y) = E [U |Y = y] , Ca = Cov(U |Y = y),

i.e., the estimate ua = ua(y) generated by the Kalman filter is the posterior mean
and the error covariance Ca coincides with posterior covariance of U given Y = y
as stated in Theorem 4.3. We observe also that the covariance Ca does not depend
on the data y by construction — a fact which will reappear in our Bayesian inter-
pretation of the EnKF and PCKF.

Remark 4.5 (On error covariances). The reason why all the appearing covariances
in the Kalman filter algorithm are called error covariances is that they can be un-
derstood as covariances of the errors of the associated estimates, i.e.,

C0 = Cov(U) = Cov(U − u0), CY = Cov(Y) = Cov(Y− y0),

CUY = Cov(U, Y) = Cov(U − u0, Y− y0), Ca = Cov(U − ua(Y)),
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where the last equality follows by a straight forward calculation noting that ua(Y) =
u0 + K(Y− y0):

Cov(U − ua(Y)) = Cov(U, U)−Cov(U, ua(Y))−Cov(ua(Y), U)

+ Cov(ua(Y), ua(Y))

= C0 −Cov(U, Y)K∗ −K Cov(Y, K) + K Cov(Y)K∗

= C0 − CUYC−1
Y C∗UY = Ca.

We see that by incorporating the observations y into the estimate for the unknown
we obtain an improvement in the error covariance, since KC∗UY is a positive op-
erator. Hence, the trace of Ca — which coincides with the mean squared error
E
[
‖U − ua(Y)‖2

H
]

— is smaller than the trace of C0 — which coincides with the
mean squared error E

[
‖U − u0‖2

H
]
.

Since the Kalman filter yields the posterior mean and the posterior covariance
of U given Y = y in case of model (4.4) and since the posterior is then Gaussian
and determined by its first two moments, one can say, that the Kalman filter also
provides the posterior distribution of U given Y = y. However, without the as-
sumption that µ0 and νε are Gaussian the Kalman filter will, in general, not yield
the first two posterior moments, nor is the posterior measure necessarily Gaussian.
In that case the outcome of the Kalman filter represents the linear minimal variance
estimate for U given Y = y where the term linear refers to the dependence on y.
This was already mentioned in the original work by Kalman [97]. Again we will
recall this fact later in Section 4.3.

Remark 4.6 (On the extension to dynamical systems). In case of a dynamical system
(4.3) the estimate ua

n of Un given Y1 = y1, . . . , Yn = yn is propagated through the
dynamics to serve as initial estimate for the next time step, i.e., Fnua

n would be the
initial estimate for Un+1 before taking into account the new observation yn+1 of
Yn+1 = Gn+1Un+1 + εn+1 in a similar procedure as explained above. The inital
error covariance of the estimate Fnua

n is then given by FnCa
nF∗n + Cov(ηn).

4.1.2. The Ensemble Kalman Filter

The Ensemble Kalman filter was first introduced by Evensen [59] and its final form
was published by Burgers et al. [25]. The EnKF extends the Kalman filter procedure
to nonlinear dynamical systems (and nonlinear observation operators) employing
an ensemble methodology. Since its introduction the EnKF has been investigated
and evaluated in many publications, see, e.g., [60, 62, 61, 122]. However, the focus is
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usually on its application to state or parameter estimation, see Evensen [62], rather
than for Bayesian inference and uncertainty quantification. Again, we focus on the
application of the EnKF to the Bayesian inference problem (4.2).

Definition 4.7 (Ensemble Kalman Filter). Given the model (4.2), the Ensemble Kalman
filter for estimating U given Y = y is as follows:

1. Initial ensemble: Choose a sample size M ∈N and draw samples u1, . . . , uM

of U ∼ µ0. Set u := (u1, . . . , uM).

2. Forecast: Draw M samples ε1, . . . , εM of ε ∼ νε, compute

yj := G(uj) + ε j, j = 1, . . . , M,

and set y := (y1, . . . , yM). Compute the empirical covariances Cov(u ,y) and
Cov(y), i.e.,

Cov(u ,y) =
1

M− 1

M

∑
j=1

(uj − ūM)⊗ (yj − ȳM),

where ūM = 1
M (u1 + · · ·+ uM) and ȳM = 1

M (y1 + · · ·+ yM) and analogously
for Cov(y) = Cov(y ,y).

3. Analysis: Compute K̃M := Cov(u ,y)Cov(y)−1 and

ua
j := uj + K̃M(y− yj), j = 1, . . . , M, (4.6)

and set u a := (ua
1, . . . , ua

M) as well as C̃a
M := Cov(u a).

The ensemble u a is called analysis ensemble.

In Definition 4.7 we simply assume the invertibility of the empirical covariance
Cov(y) which requires, e.g., M > d. Furthermore, we highlight that P-almost
surely there holds uj ∈ DG for all j = 1, . . . , M. Thus, the ensemble y generated in
the forecast step of the EnKF consists of samples of Y by construction. Furthermore,
the empirical mean

ūa
M =

1
M

(ua
1 + · · ·+ ua

M)

of the analysis ensemble ua serves as an estimate for the unknown U and the em-
pirical covariance

Cov(u a) =
1

M− 1

M

∑
j=1

(ua
j − ūa

M)⊗ (ua
j − ūa

M)
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of u a is usually viewed as the error covariance of the estimate. The outcome of
the EnKF, i.e., the analysis ensemble, is random due to the sampling involved in
the algorithm. Therefore, in the subsequent convergence analysis of the EnKF we
will consider H-valued random variables Ua

j , j = 1, . . . , M, such that the analysis
ensemble generated by the EnKF algorithm is a realization of U a := (Ua

1 , . . . , Ua
M).

Moreover, we introduce the empirical measure associated with the (random) anal-
ysis ensemble.

Definition 4.8 (Empirical analysis measure). Let Ua
j for j = 1, . . . , M denote H-

valued random variables such that samples of U a := (Ua
1 , . . . , Ua

M) are generated
by the EnKF algorithm as described in Definition 4.7. Then the empirical analysis
measure is defined as

µ̃a
M(du) :=

1
M

M

∑
j=1

δUa
j
(du), (4.7)

where δua
j

denotes the Dirac measure at ua
j ∈ H.

Empirical measures such as µ̃a
M in (4.7) are by definition random probability mea-

sures, i.e., µ̃a
M(A) is a real-valued random variable for each A ∈ B(H). We will

also investigate to which (deterministic) probability measure the empirical analysis
measures µ̃a

M converge in the large ensemble limit M→ ∞ in Section 4.2.2.

Remark 4.9 (On extension to dynamical systems). For dynamical systems such as
(4.3), each member ua

j of the analysis ensemble u a would be propagated through
the system dynamics and the resulting ensemble would then be used as the initial
ensemble for incorporating the new observational data.

4.1.3. The Polynomial Chaos Kalman Filter

Saad et al. [149, 148] as well as later Blanchard et al. [17] and Rosić et al. [143, 144]
proposed a sampling-free Kalman filtering scheme for nonlinear systems. Rather
than updating samples of the unknown U, the updating is carried out for the co-
efficient vector of a polynomial chaos expansion of the unknown U — we refer to
Section 2.3.2 and Definition 2.42 for the introduction of PCEs. This approach ne-
cessitates the construction of a PCE for U ∼ µ0 based on certain real-valued basis
random variables ξm : Ω → R, m ∈ N. To this end, we can apply Theorem 2.21:
since due to Assumption 4.1 we have U ∈ L2(Ω;H) and ε ∈ L2(Ω;Rd), there ex-
ist mutually uncorrelated mean-zero random variables ξ

(u)
m ∈ L2(Ω;R) for m ∈ N

and ξ
(ε)
k ∈ L2(Ω;R) for k = 1, . . . , d, as well as φm ∈ H, m ∈ N, and ek ∈ Rd,
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k = 1, . . . , d, such that there holds

U = E [U] +
∞

∑
m=1

φmξ
(u)
m , ε = E [ε] +

d

∑
k=1

emξ
(ε)
k ,

P-a.s. as well as in L2(Ω;H) and L2(Ω;Rd), respectively. These abstract Karhunen-
Loève expansions are already PCEs which consist only of constant and linear poly-
nomials in ξ

(u)
m and ξ

(ε)
m , respectively. However, it is not always easy to compute

the corresponding φm ∈ H, for example, if U itself is the solution of a PDE with
random fields as coefficients. Therefore, and in order to ease the notation we make
the following

Assumption 4.10. There exist countably many independent real-valued random
variables ξ := (ξm)m∈N with ξm ∼ νm ∈ P(R) as well as mappings f ∈ L2

ν(R
N;H)

and g ∈ L2
ν(R

N;Rd), where ν :=
⊗

m≥1 νm, such that for the random variables U
and ε in (4.2) there holds

U = f (ξ), ε = g(ξ) P-almost surely.

Furthermore, the normalized orthogonal polynomials {P(m)
α }α∈N0 in L2

νm(R;R) form
a complete systems of L2

νm(R;R).

We recall that in the case of U and ε being Gaussian, e.g., U representing a Gaus-
sian random field, Assumption 4.10 is satisfied. Moreover, we refer to Ernst et al.
[54] for a discussion in which cases the second part of Assumption 4.10 is satisfied.
Given 4.10 we can represent U and ε by PCEs

U = ∑
α∈F

uαPα(ξ), ε = ∑
α∈F

εαPα(ξ), (4.8)

where uα ∈ H and εα ∈ Rd denote the chaos coefficients of U and ε, respectively
and

F = {α ∈NN
0 : αj , 0 for only finitely many j}, Pα(ξ) := ∏

m≥1
P(m)

αm (ξm) ∀α ∈ F .

Remark 4.11. In Assumption 4.10 we require U and ε already to be given, but an
alternative assumption would be the existence of chaos coefficients uα and εα, α ∈
F , such that (

∑
α∈F

uαPα(ξ), ∑
α∈F

εαPα(ξ)

)
∼ µ0 ⊗ νε.

Then, equation (4.8) would define the random variables U and ε appearing in (4.2).
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Moreover, an expansion in polynomials Pα(ξ) is not crucial for constructing and ap-
plying the PCKF. In principle, any countable CONS (Ψα)α∈N of the space L2

ν(R
N;R)

such that
(

∑α uαΨα(ξ), ∑α εαΨα(ξ)
)
∼ µ0 ⊗ νε would be suitable.

For numerical simulations and, particularly, for the PCKF we will have to trun-
cate the PCE and, therefore, introduce

Definition 4.12. Let X ∈ L2(Ω;H) be given as X = f (ξ) with ξ as in Assumption
4.10 and f : RN → Hmeasurable. Then, denoting the chaos coefficients of X by xα,
α ∈ F , we define for a subset J ⊆ F

PJ X := ∑
α∈J

xαPα(ξ).

In the construction of the PCKF we will also have to employ the PCE of deter-
ministic objects, such as the observed data y ∈ Rd. It is clear, that only the chaos
coefficient associated with the constant polynomial can be non-zero for such deter-
ministic quantities - otherwise they would be random. In the following we will use
the Kronecker symbol for multi-indices

δα,β :=
∞

∏
m=1

δαj,β j =

1, α = β

0, otherwise,
(4.9)

to describe the vector of chaos coefficients zα of deterministic quantities z ∈ Rd:

(zα)α∈F = (δα0z)α∈F = (z, 0, 0, . . .).

Definition 4.13 (Polynomial Chaos Kalman Filter). Given the model (4.2) and As-
sumption 4.10, the Polynomial Chaos Kalman filter for estimating U given Y = y is as
follows:

1. Initialization: Choose a finite subset J ⊂ F and compute the chaos coeffi-
cients uα of U ∼ µ0 for α ∈ J. Set UJ := PJ U.

2. Forecast: Compute the chaos coefficients gJ,α of G(UJ) for α ∈ J and set

yJ,α := gJ,α + εα ∀α ∈ J,

where εα, α ∈ J , denote the chaos coefficients of ε. Set YJ := PJ(G(UJ) + ε)

and compute the covariances Cov(UJ , YJ) : Rd → H and Cov(YJ) : Rd → Rd
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where, e.g., Cov(UJ , YJ) is determined by

Cov(UJ , YJ)x = ∑
α∈J\{0}

(
y>J,α x

)
uα, x ∈ Rd.

3. Analysis: Compute KJ := Cov(UJ , YJ)Cov(YJ)
−1 ∈ L(Rd,H) and

ua
J,α := uα + KJ (δα,0y− yJ,α) ∀α ∈ J. (4.10)

The coefficients ua
α, α ∈ J, are called analysis PC coefficients and we define

Ua
J := ∑

α∈J
ua

J,αPα(ξ). (4.11)

In Definition 4.13 we assume again the invertibility of the covariance Cov(YJ)

which is, for example, ensured if Cov(ε) is invertible and J sufficiently large such
that PJ ε = ε. Furthermore, we note that the random variable G(UJ) is well-defined,
since UJ ∈ DG P-almost surely for a finite set J:

UJ = ∑
α∈J

uαPα(ξ), uα = E [Pα(ξ)U] ∈ DG,

where the latter holds due to U ∈ DG P-almost surely. However, we need to as-
sume that G(UJ) ∈ L2(Ω;Rd) in the definition of the PCKF, in order to ensure the
existence of the PC coefficients gJ,α, α ∈ F . Moreover, by linearity the coefficients
yJ,α, α ∈ J, are indeed the chaos coefficients of YJ = PJ(G(UJ) + ε), but due to
the nonlinearity of G there holds in general PJ G(U) , G(PJ U) , PJ G(UJ), and,
hence, YJ , PJ Y. For numerical methods to compute the chaos coefficients gJ,α of
G(UJ) we refer to Section 2.3.2. In the next section we will analyze to which random
variable Ua

J converges if the finite set J tends to F .

Remark 4.14 (On extension to dynamical systems). Again, the PCKF can also be
applied to dynamical systems. Then, given nonlinear dynamics Fn : H → H, i.e.,
Un+1 = Fn(Un) + ηn we have to compute the chaos coefficients of Fn(Ua

J,n) + ηn

in order to obtain the initial PC vector for incorporating the observations yn+1 of
G(Un+1) + εn+1.

Remark 4.15 (On computational complexity). Although a detailed complexity anal-
ysis of the EnKF and PCKF is beyond the scope of this work, we mention that the
EnKF requires M evaluations of the forward map with M denoting the ensemble
size, whereas the PCKF requires the computation of the chaos coefficients of G(U)
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by, e.g., the stochastic Galerkin method, cf. Section 2.3.2. Thus the former yields,
in general, many small systems to solve, whereas the latter typically requires the
solution of a large coupled system. Moreover, we emphasize the computational
savings by applying Kalman filters compared to a “full Bayesian update”, i.e., sam-
pling from the posterior measure by MCMC methods. In particular, each MCMC
simulation may require hundreds of thousands evaluations of the forward map G,
i.e., (at least) one for each iteration.

4.2. Convergence of Generalized Kalman Filters

The algorithmic descriptions of the EnKF and PCKF look quite similiar. Indeed,
both algorithms perform discretized versions of an update for random variables,
namely,

Ua := U + K(y−Y), K := Cov(U, Y)Cov(Y)−1, (4.12)

where Y is as in (4.2) and (U, ε) ∼ µ0⊗ νε. The difference between the EnKF and the
PCKF is that the former provides samples and the latter chaos coefficients of Ua.

Definition 4.16 (Analysis variable). The random variable Ua given by (4.12) is called
analysis variable and the linear operator K ∈ L(Rd;H) in (4.12) is called Kalman gain.

The output of the EnKF and the PCKF is corrupted by the approximation of the
Kalman gain operator K by the empirical covariances K̃M and the operator KJ , re-
spectively. In the following we will prove that both methods do indeed converge to
Ua in some sense for increasing sample size M ∈ N or an increasing subset J ⊂ F
of chaos coefficients.

4.2.1. Convergence of the PCKF

We start with the convergence of the PCKF for increasing subsets Jn ⊂ F . In partic-
ular, we assume in the following a nested and exhaustive sequence of finite subsets
(Jn)n∈N, i.e, Jm ⊂ Jn for m ≤ n and Jn ↑ F . An example of such a sequence is

Jn :=
{

α ∈ F : αj = 0 ∀j > n,
∞

∑
j=1
|αj| ≤ n

}
.

Given such a sequence (Jn)n∈N the error ‖U −UJn‖L2(Ω;H), where UJn = PJn U,
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will tend to zero:

‖U −UJn‖2
L2(Ω;H) = ∑

α∈F\Jn

‖uα‖2
H

Jn↑F−−→ 0.

The same will, in general, not hold for the error ‖G(U)− PJn G(U)‖L2(Ω;Rd) — even
if G is smooth — since the L2-convergence is not preserved under continuous map-
pings (unlike convergence in the almost sure sense, in probability and in distribu-
tion). This implies that also KJ → K can not be ensured in general. However, under
an additional assumption, we can prove the following result.

Theorem 4.17. Consider the model (4.2) and let Assumption 4.10 be satisfied. Let
(Jn)n∈N be a nested and exhaustive sequence of finite subsets of F with 0 ∈ J1 and
let

• G : DG → Rd be continuous,

• there exists constans δ > 0 and C < +∞ such that

E
[
|G(UJn)|2+δ

]
≤ C ∀n ∈N. (4.13)

Then for YJn := PJn(G(UJn) + ε) and

Ua
Jn
= ∑

α∈Jn

ua
Jn,αPα(ξ),

denoting the random variable generated by the PCKF in the analysis step for the
subset J = Jn, there holds

lim
n→∞
‖Y−YJn‖L2(Ω;Rd) = 0

and

‖Ua −Ua
Jn
‖L2(Ω;H) ∈ O

(
‖U −UJn‖L2(Ω;H) + ‖Y−YJn‖L2(Ω;Rd)

)
, (4.14)

which means, in particular, that Ua
Jn
→ Ua in L2(Ω;H) as n→ ∞.

Proof. In the following we use ‖ · ‖L2 as shorthand for ‖ · ‖L2(Ω;H) and ‖ · ‖L2(Ω;Rd),
respectively. Since the sequence (Jn)n∈N is exhaustive, we obtain UJn → U in

L2(Ω;H), and hence UJn
P−→ U, where P−→ denotes convergence in probability. Since

G is continuous, it follows by the continuous mapping theorem, see Kallenberg
[96, Lemma 4.3] that also G(UJn)

P−→ G(U). Now the boundedness assumption
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(4.13) implies the uniform integrability of the random variables |G(UJn)|2, n ∈ N,
see again Kallenberg [96, p. 67], and by [96, Proposition 4.12] we then obtain
G(UJn)→ G(U) in L2(Ω;H). Thus,

‖Y−YJn‖L2 ≤ ‖Y− PJn Y‖L2︸             ︷︷             ︸
→0

+ ‖PJn(Y− G(UJn)− ε)‖L2︸                             ︷︷                             ︸
≤‖G(U)−G(UJn )‖L2→0

→ 0.

Next, consider Jn as fixed. Since Ua = U + K(y− Y) and Ua
Jn
= UJn + KJn(y− YJn),

we have

‖Ua −Ua
Jn
‖L2 ≤ ‖U −UJn‖L2 + ‖K−KJn‖ ‖y−YJn‖L2 + ‖K‖ ‖Y−YJn‖L2 ,

where the norm for K and K−KJn is the usual operator norm for linear mappings
fromRd → H. Due to assumption (4.13) there exists a finite constant which we will
also denote by C such that

‖YJn‖L2 = ‖PJn(G(UJn) + ε)‖L2 ≤ ‖G(UJn) + ε‖L2 ≤ ‖G(UJn)‖L2 + ‖ε‖L2 ≤ C.

Hence, we can estimate ‖y−YJn‖L2 ≤ |y|+ C < ∞. Considering ‖K−KJn‖, we can
further split this error into

‖K−KJn‖ ≤ ‖Cov(U, Y)−Cov(UJn , YJn)‖ ‖Cov−1(Y)‖
+‖Cov(UJn , YJn)‖ ‖Cov−1(Y)−Cov−1(YJn)‖.

Next, we recall that the covariance Cov(X, Z) of two random variables depends
continuously on X and Z. In particular, for zero-mean Hilbert space-valued random
variable X1, X2 ∈ L2(Ω;H) and Z1, Z2 ∈ L2(Ω;Rd) we obtain

‖Cov(X1, Z1)−Cov(X2, Z2)‖ = ‖E [X1 ⊗ Z1]−E[X2 ⊗ Z2] ‖
≤ E [‖(X1 − X2)⊗ Z1‖+ ‖X2 ⊗ (Z1 − Z2)‖]
= E [‖X1 − X2‖H |Z1|] +E[‖X2‖H |Z1 − Z2|]
≤ (‖Z1‖L2 + ‖X2‖L2) (‖X1 − X2‖L2 + ‖Z1 − Z2‖L2),

where we have used Jensen’s and the triangle inequality in the second line and the
Cauchy-Schwarz inequality in the last line. Since Cov(X, Z) = Cov(X −E[X], Z−
E[Z]) and ‖X−E[X]‖L2 ≤ ‖X‖L2 the above estimate holds also for non-zero-mean
random variables. Thus, we get

‖Cov(U, Y)−Cov(UJn , YJn)‖ ≤ (‖U‖L2 + ‖Y‖L2) (‖U −UJn‖L2 + ‖Y−YJn‖L2),



94 4. Kalman Filter Methods for Bayesian Inference

since ‖UJn‖L2 ≤ ‖U‖L2 , and

‖Cov(Y)−Cov(YJn)‖ ≤ 4C ‖Y−YJn‖L2 ,

due to ‖YJn‖L2 ≤ C. Now, we exploit that the sequence (Jn)n∈N is nested and
exhaustive and recall that, by taking a sufficiently large n, the error ‖U − UJn‖L2

and ‖Y − YJn‖L2 can be made arbitrarily small. Thus, also ‖Cov(Y) − Cov(YJn)‖
will tend to zero as n → ∞. We then apply the continuity of the matrix inverse to
estimate ‖Cov−1(Y)−Cov−1(YJn)‖. Recall that Cov(Y), Cov(YJn) ∈ Rd×d. Let n be
sufficiently large such that

‖Cov(Y)−Cov(YJn)‖ <
1

2‖Cov−1(Y)‖
,

then there holds, see Horn and Johnson [90, Section 5.8],

‖Cov−1(Y)−Cov−1(YJn)‖ ≤ 2‖Cov−1(Y)‖2‖Cov(Y)−Cov(YJn)‖.

Summing up all previous estimates, we obtain

‖K−KJn‖ ≤ C1(‖U −UJn‖L2 + ‖Y−YJn‖L2) + C2‖Y−YJn‖L2 ,

with C1 = ‖Cov−1(Y)‖(‖U‖L2 + ‖Y‖L2) and C2 = 8C2‖U‖L2 ‖Cov−1(Y)‖2 where
we have used

‖Cov(UJn , YJn)‖ ≤ ‖UJn‖L2 ‖YJn‖L2 ≤ C‖U‖L2

to obtain C2. Finally, we arrive at

‖Ua −Ua
Jn
‖L2 ≤ ‖U −UJn‖L2 + (|y|+ C)‖K−KJn‖+ ‖K‖ ‖Y−YJn‖L2

≤ C3(‖U −UJn‖L2 + ‖Y−YJn‖L2),

with C3 = 1 + ‖K‖+ |y|+ C + C1 + C2, and the assertion follows. �

Remark 4.18. Since for many applications evaluating the forward map G corre-
sponds to solving a differential or integral equation, an additional error arises due
to numerical approximations Gh of G. This error affects the filters by sampling or
computing chaos coefficients of Yh = Gh(U) + ε instead of Y. We neglect this error
in our analysis since it is beyond the scope of this work. However, if G is the so-
lution operator for differential equations, we expect that (4.13) could be verified in
many cases, such as for elliptic boundary value problems with U a random diffu-
sion coefficient or source term, cf. Section 2.3.
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4.2.2. Convergence of the EnKF

A first large ensemble convergence analysis for the EnKF was carried out by Le
Gland et al. [75]. The authors considered filtering for finite-dimensional locally
Lipschitz dynamical systems. They proved that the empirical mean of f (ua

j ), j =
1, . . . , M, where f : Rn → R denotes a locally Lipschitz continuous function and ua

j

the members of the analysis ensemble, convergesP-almost surely to the expectation
of f w.r.t to a certain limit distribution. The randomness which is meant here by the
term “P-a.s.” refers to the randomness in the EnKF algorithm, i.e., the sampling
involved in generating the analysis ensemble u a. In our case this limit distribution
coincides with the distribution of the analysis variable Ua. Furthermore, the authors
of [75] proved an Lp-type convergence for the empirical analysis measures associ-
ated with the analysis ensembles. Mandel et al. [116] proved the Lp-convergence of
the ensemble members to random variables distributed according to the posterior
measure in case of linear dynamics. More recently, Law et al. [106] extended the
Lp-convergence result of Le Gland et al. [75] to more general forms of dynamical
systems and stated them in terms of a suitably chosen metric for random measures.
However, large ensemble limits are rather of academic interest, since in practice the
number of ensemble members is usually at most a few hundred. We mention the
work of Schillings and Stuart [155] where the behaviour of the EnKF with a finite
number of samples is analyzed in case of linear dynamical systems.

In the following, we derive a result similar to Le Gland et al. [75] for the con-
sidered Bayesian inference problem setting, i.e., we extend their result in case of
one update to Hilbert spaces and data obtained by general nonlinear continuous
observation operators. Although the proof employs similar ideas as the one of [75,
Theorem 5.1] we present it for completion.

Theorem 4.19. We consider the model (4.2) and assume that G : DG → Rd is con-
tinuous and Assumption 4.1 is satisfied. For a fixed M ∈ N let Ua

j,M, j = 1, . . . , M,
denote the M random variables whose realizations form the analysis ensemble gen-
erated by the EnKF algorithm in Definition 4.7. Furthermore, let µa denote the dis-
tribution on H of the analysis variable Ua given in Definition 4.16. Then for each
j ∈N the random variable Ua

j,M converges in distribution to Ua for M→ ∞. More-
over, we have

lim
M→∞

1
M

M

∑
i=1

f (Ua
j,M) =

∫
H

f (u) µa(du) P-a.s.

for any function f : H → Y , where Y denotes an arbitrary separable Hilbert space,
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which satisfies

‖ f (u)− f (v)‖Y ≤ C(1 + ‖u‖H + ‖v‖H) ‖u− v‖H ∀u, v ∈ H,

This implies, in particular, for Ūa
M := 1

M ∑M
j=1 Ua

j,M and U a
M := (Ua

1,M, . . . , Ua
M,M)

lim
M→∞

Ūa
M = E[Ua] and lim

M→∞
Cov(U a

M) = Cov(Ua) P-almost surely.

Proof. Let us denote by Uj and ε j, j ∈N, i.i.d. random variables such that (Uj, ε j) ∼
µ0 ⊗ νε. We set Yj := G(Uj) + ε j and assume w.l.o.g. that for j ≤ M

Ua
j,M = Uj + K̃M(y−Yj), K̃M = Cov(UM,YM)Cov−1(YM),

where Cov(UM,YM) and Cov(YM) are empirical covariances, e.g.,

Cov(U M, Y M) =
1

M− 1

M

∑
j=1

(Uj − ŪM)⊗ (Yj − ȲM)

with ŪM = 1
M (U1 + · · ·+ UM) and ȲM = 1

M (Y1 + · · ·+ YM). Further, we define

Ua
j := Uj + K(y−Yj), K = Cov(U, Y)Cov−1(Y), j ∈N,

i.e., the random variables Ua
j are i.i.d. copies of the analysis variable Ua. We esti-

mate for each j = 1, . . . , M

‖Ua
j,M −Ua

j ‖H ≤ ‖K− K̃M‖ |y−Yj| P-a.s. ,

where we can further split

K− K̃M =
(

Cov(U, Y)−Cov(UM,YM)
)

Cov−1(Y)

+ Cov(UM,YM)
(

Cov−1(Y)−Cov−1(YM)
)

.

Then, we recall that the empirical covariance converges P-almost surely to the true
covariance which follows easily by writing

Cov(UM,YM) =
1

M− 1

M

∑
j=1

(Uj −E[U])⊗ (Yj −E[Y])

− M
M− 1

(ŪM −E[U])⊗ (ȲM −E[Y])

and applying the strong law of large numbers (SLLN) for i.i.d. Hilbert space-valued
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random variables, see Padgett and Taylor [128], which yields P-almost surely

1
M− 1

M

∑
j=1

(Uj −E[U])⊗ (Yj −E[Y])
M→∞−−−→ E[(U −E[U])⊗ (Y−E[Y])

as well as
M

M− 1
(ŪM −E[U])⊗ (ȲM −E[Y])

M→∞−−−→ 0.

Thus, we have P-almost surely

Cov(U, Y)−Cov(UM,YM)
M→∞−−−→ 0, Cov(Y)−Cov(YM)

M→∞−−−→ 0.

Now, since the matrix inverse is a continuous mapping, there follows also P-a.s.

Cov−1(Y)−Cov−1(YM)
M→∞−−−→ 0

and, hence, P-almost surely KM
M→∞−−−→ K. Thus, for any j ∈Nwe get that P-a.s.

lim
M→∞

‖Ua
j,M −Ua

j ‖H ≤ |y−Yj| lim
M→∞

‖K− K̃M‖ = 0,

i.e., as M→ ∞ we have P-a.s. Ua
j,M → Ua

j , hence, Ua
j,M → Ua

j also in distribution.

Next, for any f : H → Y satisfying the assumptions stated in the theorem, we
have

1
M

M

∑
j=1

f (Ua
j,M) =

1
M

M

∑
j=1

(
f (Ua

j,M)− f (Ua
j )
)
+

1
M

M

∑
j=1

f (Ua
j ).

Due to the SLLN there holds

lim
M→∞

1
M

M

∑
j=1

f (Ua
j ) = E [ f (Ua

1)] = E [ f (Ua)] P-a.s.

Hence, we need only ensure that∥∥∥∥∥ 1
M

M

∑
j=1

(
f (Ua

j,M)− f (Ua
j )
)∥∥∥∥∥
Y

≤ 1
M

M

∑
j=1

C(1 + ‖Ua
j ‖H + ‖Ua

j,M‖H) ‖Ua
j,M −Ua

j ‖H

≤
(

C
M

M

∑
j=1

(1 + ‖Ua
j ‖H + ‖Ua

j,M‖H)2

)1/2

·

(
C
M

M

∑
j=1
‖Ua

j,M −Ua
j ‖2
H

)1/2
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converges P-a.s. to 0 as M → ∞ to prove the second statement. Since by the SLLN
we have

lim
M→∞

1
M

M

∑
j=1
|y−Yj|p = E[|y−Y|p] P-a.s. ,

we get by the above reasoning that P-a.s.

lim
M→∞

1
M

M

∑
j=1
‖Ua

j,M−Ua
j ‖

p
H ≤ lim

M→∞
‖K− K̃M‖p 1

M

M

∑
j=1
|y−Yj|p = 0 ·E[|y−Y|p] = 0.

Moreover, there holds

(1 + ‖Ua
j ‖H + ‖Ua

j,M‖H)2 ≤ (1 + 2‖Ua
j ‖H + ‖Ua

j,M −Ua
j ‖H)2

≤ 2(1 + 2‖Ua
j ‖H)2 + 2‖Ua

j,M −Ua
j ‖2
H

and, hence,

1
M

M

∑
j=1

(1 + ‖Ua
j ‖H + ‖Ua

j,M‖H)2 ≤ 2
M

M

∑
j=1

(1 + 2‖Ua
j ‖H)2 +

2
M

M

∑
j=1
‖Ua

j,M −Ua
j ‖2
H

M→∞−−−→ 2E[(1 + 2‖Ua‖H)2]

P-almost surely. Thus, we finally obtain∥∥∥∥∥ 1
M

M

∑
j=1

(
f (Ua

j,M)− f (Ua
j )
)∥∥∥∥∥
Y

M→∞−−−→ 0 P-a.s.,

proving the second statement of the theorem. The remaining statements follow
immediately. �

It is possible to extend the statement of Theorem 4.19, similiar to Le Gland et
al. [75, Theorem 5.1], to functions f : H → Y with polynomially growing local
Lipschitz constant

‖ f (u)− f (v)‖Y ≤ C(1 + ‖u‖p
H + ‖v‖p

H) ‖u− v‖H, u, v ∈ H,

where p ≥ 1, if for the prior holds µ0 ∈ P p(H) and
∫
H |G(u)|p µ0(du) < ∞.

Moreover, the almost sure convergence of the random members Ua
j,M of the anal-

ysis ensemble to the i.i.d. copies Ua
j of the analysis variable might suggest that

1
M ∑M

j=1 f (Ua
j,M) converges P-almost surely to E [ f (Ua)] for any continuous func-

tion f . However, as we have seen in the proof of Theorem 4.19, we need to show
the P-almost sure convergence of ‖ 1

M ∑M
j=1 f (Ua

j,M)− f (Ua
j )‖H to zero. The result
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which we will establish in the next paragraph implies the P-a.s. convergence of
1
M ∑M

j=1 f (Ua
j,M) to E [ f (Ua)] for each bounded, continuous function f .

Almost sure convergence of empirical analysis measures. We recall the em-
pirical analysis measure µ̃a

M associated with the (random) analysis ensemble U a
M :=

(Ua
1,M, . . . , Ua

M,M) as stated in Definition 4.8. Then Theorem 4.19 implies that for any
Lipschitz continuous function f : H → Y we have

lim
M→∞

∫
H

f (u) µ̃a
M(du) =

∫
H

f (u) µa(du) P-a.s.,

where µa denotes the distribution of the analysis variable Ua on H. Moreover, we
know due to Klenke [99, Theorem 13.16] that weak convergence of probability mea-
sures µn

w−→ µ is equivalent to

µn( f )→ µ( f ) ∀ f ∈ Lipb(H;R),

where for each ν ∈ P(H) we set ν( f ) :=
∫
H f (u) ν(du) and where Lipb(H;R)

denotes the space of all bounded, Lipschitz continuous functions f : H → R. Thus,
one might assume that Theorem 4.19 immediately implies

µ̃a
M

w−→ µa P-almost surely. (4.15)

However, this is a nontrivial implication, because the P-a.s. weak convergence of
µ̃a

M to µa means that

P
(
µ̃a

M( f )→ µa( f ) ∀ f ∈ f ∈ Lipb(H;R)
)
= 1 (4.16)

whereas Theorem 4.19 only states that

P
(
µ̃a

M( f )→ µa( f )
)
= 1 ∀ f ∈ f ∈ Lipb(H;R). (4.17)

Since the space Lipb(H;R) ⊂ C(H;R) is not separable w.r.t. the supremum norm
‖ · ‖C(H;R) if H is not compact, the condition (4.17) does not per se imply (4.16).
However, Berti et al. [11] were able to prove the following result.

Theorem 4.20 ([11, Theorem 2.2]). Let E be a Polish space with Borel σ-algebra
B(E) and let (Ω,A,P) denote a probability space. Further, let µ : Ω → P(E) and
µn : Ω → P(E), n ∈ N, be random probability measures on E , i.e., such that ω 7→
µ(ω)(A) and ω 7→ µn(ω)(A), n ∈ N, are measurable for each A ∈ B(E). Then the
following conditions are equivalent:
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1. µn
w−→ µ converges P-almost surely,

2. µn( f )→ µ( f ) converges P-almost surely for each f ∈ Cb(E ;R).

By virtue of this theorem we obtain the following corollary.

Corollary 4.21 (Almost sure weak convergence of the empirical analysis measures).
Under the assumptions and with the notations of Theorem 4.21 the statement (4.15)
holds, i.e., the empirical analysis measures µ̃a

M associated with the analysis ensem-
ble of size M generated by the EnKF algorithm converge P-a.s. weakly to the dis-
tribtution µa of the analysis variable Ua.

Proof. Let (Ω,A,P) denote the underlying probability space. By Theorem 4.21 we
know that there exists a set A ∈ A with P(A) = 1 such that for each ω ∈ A there
holds

µ̃a
M(ω)( f )→ µa( f ) ∀ f ∈ f ∈ Lipb(H;R),

where µ̃a
M(ω) denotes now the realization of µ̃a

M for ω, i.e., a (deterministic) prob-
ability measure on H. By Klenke [99, Theorem 13.16] the latter is equivalent to
µ̃a

M(ω)
w−→ µa or

µ̃a
M(ω)( f )→ µa( f ) ∀ f ∈ f ∈ Cb(H;R).

Thus, we have that µ̃a
M( f )→ µa( f ) convergesP-almost surely for each f ∈ Cb(H;R)

which with Theorem 4.20 yields the assertion. �

Remark 4.22 (On rates of convergence). The results in Theorem 4.19 and Corollary
4.21 do not state any rate of convergence which is usually hard to obtain for P-
almost sure convergence. On the other hand, when considering Lp-convergence as
done by Le Gland et al. [75, Theorem 5.2], Mandel et al. [116, Corollary 1] and Law
et al. [106, Theorem 5.2] rates of convergence can be derived. Of course, the rate de-
pends on the norm involved, but in case of the above results, the authors obtained
the usual Monte Carlo rate of M−1/2. At this point we would like to highlight that
the PCKF can yield faster rates of convergence, since it employs spectral approxi-
mations, cf. Theorem 4.17. However, since our goal is to understand and analyze
the common principle behind both generalized Kalman filters rather than compar-
ing their convergence rates (w.r.t. different types of convergence) or computational
cost we do not deepen this discussion and leave it for futher research.
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4.3. Bayesian Interpretation of Generalized Kalman

Filters

In the previous section we have characterized the limit of the EnKF and PCKF ap-
proximations for increasing sample size or polynomial degree, respectively. We
now investigate how this limit, the analysis variable Ua, may be understood in the
context of Bayesian inference. By analyzing the properties of this random variable
we are able to characterize the approximations provided by the two Kalman filter-
ing methods. In particular, we show that the EnKF and the PCKF do, in general,
not provide sensible approximations to the posterior distribution. They are rather
related to a linear approximation of the conditional mean estimator uCM, see Defi-
nition 3.29, and the associated estimation error.

4.3.1. The Linear Conditional Mean

We recall from Section 3.4 that the conditional mean estimator uCM : Rd → H for a
H-valued random variable U given realizations of an random vector Y is character-
ized by

uCM := argmin
φ : Rd→H measurable

E
[
‖U − φ(Y)‖2

H

]
.

In general, the computation of the corresponding Bayes estimate uCM(y) can be
costly. By restricting to linear maps φ : Rd → H one obtains a new estimator which
is explicitly computable in the Hilbert space setting.

Definition 4.23 (Linear conditional mean estimator). The linear conditional mean esti-
mator or linear posterior mean estimator for a random variable U onH given a random
variable Y on another separable Hilbert space Y is defined as

uLCM := argmin
φ∈P1(Y ;H)

E
[
‖U − φ(Y)‖2

H

]
, (4.18)

where P1(Y ;H) = {φ : φ(z) = b+ Az with b ∈ H, A ∈ L(Y ,H)} denotes the set of
all linear mappings from Y to H. The random variable uLCM(Y) is called the linear
conditional mean.

Again, we assume a unique minimizer of (4.18). The linear posterior mean es-
timator is the Bayesian equivalent of the best linear unbiased estimator (BLUE)
known in Frequentist statistics. Furthermore, we recall that the conditional mean
uCM(Y) = E[U |Y] is the best approximation of U in L2(Ω, σ(Y),P;H) w.r.t. the
L2(Ω;H)-norm. Thus, the linear conditional mean uLCM(Y) can be seen as the
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best approximation of U in the subspace P1(Y;H) ⊂ L2(Ω, σ(Y),P;H), where
P1(Y;H) := {φ(Y) : φ ∈ P1(Y ;H)}.

Lemma 4.24. The linear conditional mean as defined in (4.18) is given by

uLCM(y) = E [U] + Cov(U, Y)Cov(Y)−1(y−E [Y]), y ∈ Y .

Proof. The assertion follows by verifying that

uLCM(Y) = E [U] + K(Y−E [Y]), K = Cov(U, Y)Cov(Y)−1,

coincides with the orthogonal projection of U to P1(Y;H). To do so, we will show
that U − uLCM(Y) is orthogonal to P1(Y;H) w.r.t. the inner product in L2(Ω;H).
Let b ∈ H and A ∈ L(Y ,H) be arbitrary. Then there holds

E [〈U − uLCM(Y), b + AY〉H] = E [〈U −E[U], b〉H]︸                     ︷︷                     ︸
= 0

−E [〈K(Y−E[Y]), b〉H]︸                         ︷︷                         ︸
= 0

+E [〈U −E[U], AY〉H]−E [〈K(Y−E[Y]), AY〉H]
= E [〈U −E[U], A(Y−E[Y])〉H]
−E [〈K(Y−E[Y]), A(Y−E[Y]〉H]

= Cov(U, Y)A∗ −K Cov(Y)A∗ = 0,

since
E[〈U −E[U], AE[Y]〉H] = E[〈K(Y−E[Y]), AE[Y]〉H] = 0

and Cov(AX, BY) = A Cov(X, Y)B∗ for Hilbert space valued random variable X, Y
and bounded, linear operators A, B. �

This result is not entirely new. For example in finite dimensions similiar results
were already stated by Luenberger [115, Section 4.5]. We mention though that
Lemma 4.24 fails to hold in Banach spaces X , since then the expectation E[U] and
covariance Cov(U, Y) no longer minimizeE[‖U− b‖2

X ], b ∈ X , andE[‖U− AY‖2
X ],

A ∈ L(Y ,X ), respectively; see also Remark 3.28.

4.3.2. Bayesian Interpretation of the Analysis Variable

Lemma 4.24 immediately yields a characterization of the analysis variable Ua de-
fined in (4.12).

Theorem 4.25. Let Assumption 4.1 be satisfied for the model (4.2). Then for any y ∈
Rd the analysis variable Ua = U + K(y− Y), K = Cov(U, Y)Cov(Y)−1, coincides
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with
Ua = uLCM(y) + (U − uLCM(Y)).

In particular, there holds

E [Ua] = uLCM(y) and Cov(Ua) = Cov(U)−K Cov(Y, U).

We summarize the consequences of Theorem 4.25 as follows:

1. The analysis variable Ua, to which the EnKF and the PCKF provide approx-
imations, is the sum of a Bayes estimate uLCM(y) and the (prior) error U −
uLCM(Y) of the corresponding Bayes estimator uLCM.

2. The mean of the EnKF analysis ensemble or PCKF analysis vector provide
approximations to the linear posterior mean estimate. How far the latter de-
viates from the true posterior mean depends on the model and observation
y.

3. The covariance approximated by the empirical covariance of the EnKF anal-
ysis ensemble, as well as that of the PCKF analysis vector, is independent of
the actual observational data y ∈ Rd. Therefore, it constitutes a prior rather
than a posterior measure of uncertainty.

4. In particular, the randomness in Ua is entirely determined by the prior mea-
sures µ0 of U and νε of ε. Only the location, i.e., the mean, of Ua is influenced
by the observational data y; the randomness of Ua is independent of the data
y and determined only by the prior projection error U − uLCM(Y).

5. In view of the last two items, the analysis variable Ua, and therefore the EnKF
analysis ensemble or the result of the PCKF, are in general not distributed
according to the posterior measure µy. Moreover, the difference between µy

and the distribution of Ua depends on the data y and can become quite large
for nonlinear problems, see Example 4.27.

Remark 4.26. We mention that the second and third item above explain the observa-
tions made for the EnKF by Law and Stuart [105], i.e., that “[...] (i) with appropriate
parameter choices, approximate filters can perform well in reproducing the mean of
the desired probability distribution, (ii) they do not perform as well in reproducing
the covariance [...] ”.

In the following section we will demonstrate the second and fourth item from
above in numcerical examples. In order to illustrate the conceptual difference be-
tween the distribution of the analysis variable Ua and the posterior measure µy we
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Figure 4.1.: Density of the posterior µy (dashed, blue line) and the probability density of the
analysis variable Ua (solid, red line) for y = 9 and σ = 0.5.

provide a simple yet striking example, cf. also Apte et al. [3, Section 7], Le Gland et
al. [75, Example 2.2] or Evensen and Van Leeuwen [63, Section 5]:

Example 4.27. We consider U ∼ N(0, 1), ε ∼ N(0, σ2) and G(u) = u2. Given data
y ∈ R, the posterior measure defined by Bayes’ rule is

µy(du) = C exp
(
−σ2u2 + (y− u2)2

2σ2

)
du.

Due to the symmetry of µy we have uCM(y) =
∫
H u µy(du) = 0 for any y ∈ Rd.

Thus, E[U |Y] ≡ 0 and uLCM ≡ uCM. In particular, we have K = 0 due to

Cov(U, Y) = Cov(U, U2) =
1√
2π

∫
R

u(u2 − 1) e−u2/2 du = 0,

which in turn yields Ua = U ∼ N(0, 1). Thus, the analysis variable is distributed
according to the prior measure µ0. This is not surprising as, by definition, its mean
is the best linear approximation to the posterior mean and its fluctuation is simply
the prior estimation error U − uLCM(Y) = U − 0 = U. This illustrates that Ua

is suited for approximating the posterior mean, but not appropriate as a method
for uncertainty quantification for the nonlinear inverse problem. As displayed in
Figure 4.1, the distribution of Ua can be markedly different from the true posterior
distribution.

4.4. Numerical Examples

To illustrate the application of the EnKF and PCKF to simple Bayesian inference
problems, we consider in the following a one-dimensional elliptic boundary value
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problem and a time-dependent RLC circuit model as dynamical system. Although
in other papers much more complicated problems such as elasto-plastic deforma-
tions or Lorenz systems are considered to demonstration, we have chosen these
rather simple model problems in order to illustrate the basic limitations of Kalman
filter methods.

4.4.1. 1D Elliptic Boundary Value Problem

Let D = [0, 1] and

− d
dx

(
exp(u1)

d
dx

p(x)
)
= f (x), p(0) = p0, p(1) = u2, (4.19)

be given where u = (u1, u2) are unknown scalar parameters. The solution of (4.19)
is

p(x) = p0 + (u2 − p0)x + exp(−u1) (Sx(F)− S1(F) x) , (4.20)

where Sx(g) :=
∫ x

0 g(y)dy and F(x) = Sx( f ) =
∫ x

0 f (y)dy. For simplicity we
choose f ≡ 1, p0 = 0 in the following and assume that noisy measurements
of p have been made at x1 = 0.25 and x2 = 0.75 with values y = (27.5, 79.7).
We seek to infer u based on this data and on a priori information modelled by
(u1, u2) ∼ N(0, 1)⊗Uni(90, 110), where Uni(a, b) denotes the uniform distribution
on the interval [a, b]. Thus the forward map here is G(u) = (p(x1), p(x2)), where
p is given in (4.20) with f ≡ 1 and p0 = 0. For the measurement noise we assume
ε ∼ N(0, 0.01 I2).

Applying the EnKF. In Figure 4.2 we show the level curves of the prior and poste-
rior densities as well as 1, 000 ensemble members of the initial and analysis ensem-
ble obtained by the EnKF. A total ensemble size of M = 105 was chosen in order
to reduce the sampling error to a negligible level. It can be seen, however, that
the analysis EnKF-ensemble does not follow the posterior distribution, although
its mean (−2.92, 105.14) is quite close to the true posterior mean (−2.65, 104.5)
(computed by quadrature). To illustrate the difference between the distribution of
the analysis ensemble/variable and the true posterior distribution, we present the
marginal posterior distributions of u1 and u2 in Figure 4.3. The posterior marginals
were evaluated by quadrature, whereas for the analysis ensemble we show a rela-
tive frequency plot.

We remark that slightly changing the observational data to ỹ = (23.8, 71.3) moves
the analysis ensemble as well as the distribution of the analysis random variable
much closer to the true posterior, as shown in Figure 4.4. Moreover, for these mea-
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Figure 4.2.: Left: Contour plot of the negative logarithm of the prior density and the loca-
tions of 1000 ensemble members of the initial EnKF-ensemble.
Right: Contour plot of the logarithm of the negative logarithm of the posterior
density and the locations of the updated 1, 000 ensemble members in the analy-
sis EnKF-ensemble.
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Figure 4.3.: Posterior marginals and correspoding relative frequencies in the analysis en-
semble for u1 (left) and u2 (right).

surement values the mean of the analysis ensemble (0.33, 94.94) provides a better
fit to the true posterior mean (0.33, 94.94).

To reaffirm the fact that only the mean of the analysis variable Ua depends on
the actual data, we show density estimates for the marginals of u1 and u2 of Ua

in Figure 4.5 obtained from the observational data y = (27.5, 79.7) (blue, solid
lines) and ỹ = (23.8, 71.3) (red, dashed lines), respectively. The density estimates
were obtained by normal kernel density estimation (KDE, in this case MATLAB’s
ksdensity routine) based on the resulting analysis ensembles (ua

1, ua
2) and (ũa

1, ũa
2)

for the data sets y and ỹ, respectively. We observe that the marginal distributions of
the centered ensembles coincide, in agreement with Theorem 4.25.

In addition, whenever the prior and, thus, also the posterior support for u2 is
bounded — as in this example — the EnKF may generate members in the anal-
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Figure 4.4.: Left: Contours of the logarithm of the negative log posterior density and loca-
tions of 1, 000 members of the analysis EnKF-ensemble.
Middle, Right: Posterior marginals and corresponding relative frequencies in
the analysis ensemble for u1 (middle) and u2 (right).
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Figure 4.5.: Left: Kernel density estimates for ua
1 (blue, solid line) and ũa

1 (red, dashed line).
Middle, Right: Kernel density estimates for ua

i −E[ua
i ] (blue, solid) and ũa

i −E[ũa
i ]

(red, dashed), i = 1, 2.

ysis ensemble which lie outside of this support. This is a further consequence of
Theorem 4.25: Since the analysis ensemble of the EnKF follows the distribution of
the analysis variable rather than the true posterior distribution, ensemble members
lying outside the posterior support can always occur whenever the support of the
analysis variable is not a subset of the support of the posterior.

Finally, we emphasize that whether or not the distribution of the analysis variable
is a good fit to the true posterior distribution depends entirely on the observed data
— which can neither be controlled nor be known a priori.

Applying the PCKF. The calculations for applying the PCKF to this simple exam-
ple problem can be carried out analytically: we require four independent random
variables ξ1 ∼ N(0, 1), ξ2 ∼ Uni(0, 1), ξ3 ∼ N(0, 1) and ξ4 ∼ N(0, 1) to define
PCEs which yield random variables distributed according to the prior and error
distributions:

U := (ξ1, 90 + 20ξ2)
> ∼ µ0, ε := (0.1ξ3, 0.1ξ4)

> ∼ νε.
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Moreover, due to (4.20), G(U) is also available in closed form as

G(U) =

c11(90 + 20ξ2) + c12 ∑∞
n=0(−1)n

√
e√
n!

Hn(ξ1)

c21(90 + 20ξ2) + c22 ∑∞
n=0(−1)n

√
e√
n!

Hn(ξ1)

 ,

where Hn denotes the nth normalized Hermite polynomial and c11, c12, c21, c22 can
be deduced from inserting x = 0.25 and x = 0.75 into (4.20). Here we have used
the Hermite expansion of exp(−ξ), see also Ullmann [172, Example 2.2.7]. Thus,
the chaos coefficient vectors of U and G(U) + ε w.r.t. the polynomials

Pα(ξ) = Hα1(ξ1) Lα2(ξ2) Hα3(ξ3) Hα4(ξ4), α ∈N4
0,

can be obtained explicitly where Hα and Lα denote the normalized Hermite and
Legendre polynomials of degree α, respectively. In particular, the nonvanishing
chaos coefficients involve only the basis polynomials

P0(ξ) ≡ 1, P1(ξ) = L1(ξ2), P2(ξ) = H1(ξ3), P3(ξ) = H1(ξ4)

and Pα(ξ) = Hα−3(ξ1) for α ≥ 4. Arranging the resulting chaos coefficients uα ∈ R2

and gα ∈ R2, α , 0, of U and G(U), respectively, as column vectors in matrices
U ,G ∈ R2×N we obtain

K = UG>
(
GG> + 0.01I2

)−1
.

Thus, the only numerical error incurred in applying the PCKF in this example is the
truncation of the PCE. We have carried out a simulation using a truncated PCE of
length J = 4 + 50 according to the reduced basis above. In particular, we evaluated
the approximation KJ to K by using only the first 53 columns of G in the formula
above and then performed the update of the chaos coefficients according to (4.10).
Subsequently M = 105 samples of the resulting random variable Ua

J were drawn,
but, since the empirical distributions were essentially indistinguishable from those
obtained by the EnKF described previously, they are omitted here.

4.4.2. Dynamical System: RLC circuit

This time we consider sequential data assimilation in a simple dynamical system: a
damped LC-circuit or RLC-circuit. Denoting the initial voltage by U0, the resistance
by R, the inductance by L and the capacitance by C, and assuming R < 2

√
LC, the
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voltage and current in the circuit can be modelled as

U(t) = U0 eδt ( cos(wet) +
δ

we
sin(wet)

)
, (4.21a)

I(t) = − U0

weL
eδt sin(wet), (4.21b)

where δ = R/(2L), we =
√

w2
0 − δ2 and w0 = 1/

√
LC. The data assimilation set-

ting is now as follows. We observe the state of the system (4.21) at four time points
tn = 5n, n = 1, . . . , 4, where all observations z ∈ R8 are corrupted by measurement
noise ε ∼ N(0, diag(σ2

1 , . . . , σ2
8 )). Here, we set σ2

n to be 10% of the true, undisturbed
observations. We want to infer U0 and L based on these observations, i.e, the un-
known is u = (U0, L), and we take as the prior (U0, L) ∼ N(0.5, 0.25)⊗Uni(1, 5).

We will only apply the EnKF in this example for simplicity. Given the observa-
tions y ∈ R8 we compare two assimilation strategies using the EnKF:

• Simultaneous: We apply the EnKF to the inverse problem

y = G(u) + ε,

where G maps (U0, L) to the states (U(t1), I(t1), . . . , U(t4), I(t4)) ∈ R8. Thus,
we perform one EnKF update using all the available data at once, resulting in
one EnKF analysis ensemble.

• Sequential: We apply the EnKF to the inverse problem

yn = Gn(u) + εn, n = 1, . . . , 4,

where Gn maps (U0, L) to the state (U(tn), I(tn)) ∈ R2. In particular, we
will perform four EnKF updates using at each update only the corrupted data
yn = (U(tn) + ε2n−1, I(tn) + ε2n). This yields, for each update, one EnKF
analysis ensemble which serves as the initial ensemble for the next update.

Again we use two different data sets y, ỹ1, obtained by two realizations of ε given
the solution of (4.21) for U0 = 0.75, R = 0.5, L = 1.5, C = 0.5. The resulting poste-
riors and EnKF analysis ensembles for the simultaneous and sequential update are
presented in Fig. 4.6. We make again the observation, that for different data sets
the analysis ensemble follows a distribution which is in one case quite close and
in the other case quite far away from the true posterior distribution. This can be

1y = (0.505, 0.237, 0.014, 0.096, 0.036, 0.011,−0.002,−0.003) and ỹ = (0.265, 0.066, 0.058, 0.002,
0.021, 0.012, 0.007, −0.01)
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also seen in Table 4.1, where we compare the empirical means of the EnKF analysis
ensembles with the true posterior mean for both data sets y and ỹ.
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Figure 4.6.: Contours of the logarithm of the negative log posterior density and locations
of 1, 000 members of the analysis ensembles resulting from simultaneous and
sequential EnKF updates given the observational data y (left column) and ỹ,
respectively (right column).

update EnKF mean posterior mean EnKF mean posterior mean
for data y for data y for data ỹ for data ỹ

1 (0.42, 1.56) (0.42, 2.42) (0.27, 2.25) (0.35, 2.61)
2 (0.44, 1.53) (0.39, 2.36) (0.20, 2.20) (0.32, 2.56)
3 (0.43, 1.59) (0.38, 2.34) (0.19, 2.26) (0.31, 2.52)
4 (0.43, 1.59) (0.38, 2.32) (0.19, 2.24) (0.30, 2.50)

Simu. (0.58, 1.84) (0.38, 2.32) (0.38, 2.40) (0.30, 2.50)

Table 4.1.: Means of the EnKF analysis ensembles and corresponding true posterior means.

Finally, we are again interested in the marginals of the posterior and the asso-
ciated histograms of the EnKF analysis ensembles which give us a rough impres-
sion of the difference between the distribution of the analysis variable and the true
posterior. In Fig. 4.7 and Fig. 4.8 we compare for both data sets the marginals of
u2 and the corresponding relative frequencies in the analysis ensemble resulting
from sequential and simultaneous updating. The distribution of the simultaneous
EnKF analysis ensemble does not depend on the data (as predicted by our theory)
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whereas the distribution of the final EnKF analysis ensemble for the sequential up-
dating clearly does in this example. The latter is probably caused by the nonlinear-
ity of the forward map G: in the sequential updating the former analysis variable
Ua

n serves as initial one for the current update step n + 1, therefore, the difference
in the mean of the former analysis variables Ua

n, Ũa
n for different data sets y, ỹ may

yield different forecast random variables G(Ua
n), G(Ũa

n) due to the nonlinearity of
G which in turn yields different next analysis variables Ua

n+1, Ũa
n+1.

(a) Observational data y
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Figure 4.7.: Posterior marginal distribution of u2 (red line) and corresponding relative fre-
quencies in the analysis ensemble resulting from the simultaneous EnKF up-
date.

(a) Observational data y
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Figure 4.8.: Posterior marginal distribution of u2 (red line) and corresponding relative fre-
quencies in the final analysis ensemble resulting from sequential EnKF updates.
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Chapter 5

Markov Chain Monte Carlo Methods

This chapter is based on [146]. Although the presented mathematical content is in
general the same, the presentation and explanation has been adapted and extended
and also some new numerical results added.

We will consider Markov chain Monte Carlo methods for (approximate) sam-
pling of a target probability measure µ defined on a separable Hilbert spaceH by

dµ

dµ0
(u) ∝ exp(−Φ(u)), u ∈ H, (5.1)

where µ0 denotes a Gaussian reference measure, e.g., µ0 = N(0, C), onH and Φ : H →
R+ a measurable mapping. Such probability measures µ arise as posterior distri-
butions in Bayesian inference with µ0 as a Gaussian prior as described in Chapter
3. Although we will sometimes recall the Bayesian inference setting, we rather use
the terminology of target and reference measure for µ and µ0, respectively, as it is
common in the literature on MCMC methods.

Since the measure µ is only known up to a normalizing constant and Φ is in
general only available in the form of function evaluations, a direct sampling of µ

is often not feasible. Another idea to generate samples which are (approximately)
distributed according to µ, which goes back at least to Metropolis et al. [119], is
to construct a Markov chain, i.e., a sequence of random variables (Xn)n∈N on H
satisfying the Markov property, with limit distribution µ. Then Xn for n sufficiently
large follows a distribution close to µ and given ergodicity — details will be given
in the subsequent section — averages taken along a path of the Markov chain will
converge to expectations w.r.t. µ. However, in comparison to basic Monte Carlo
simulations the samples generated by a Markov chain Monte Carlo simulation are
typically correlated. In this case, the MCMC sampling is statistically less efficient
than basic MC sampling and it is the autocorrelation of the Markov chain which
serves for example for comparing different MCMC algorithms.
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We will focus on a particular class of MCMC methods: Metropolis-Hastings (MH)
algorithms. These algorithms go back to the seminal paper of Metropolis et al. [119]
and were later generalized by W. K. Hastings [84]. They are usually easy to im-
plement and quite popular. As a historical note, at the beginning MH algorithms
were mainly employed for computations in statistical mechanics and physics. Just
since Gelfand and Smith [67] and Tierney [170] they have also became one of the
standard computational methods in Bayesian inference. Their principal idea to con-
struct Markov chains with µ as their limit distribution is as follows: Given the cur-
rent state of the Markov chain Xn = u a new state v is drawn according to a measure
P(u, dv) depending on u. Thus, P itself is a stochastic or Markov kernel as stated in
Defintion 3.11 which in this context is typically called proposal kernel. Then the new
state y is only accepted, i.e., Xn+1 = v, with a certain probability α(u, v), otherwise
the Markov chain remains where it is, i.e., Xn+1 = u. This acceptance probability
α : H×H → [0, 1] is chosen in such a way that the resulting Markov chain has µ

as its invariant measure. The latter means that if Xn ∼ µ, then also Xn+1 ∼ µ — a
necessary property for µ to be the limit distribution of the Markov chain. Given a
proposal kernel P the choice of the acceptance probability α follows the guidelines
given by Tierney [171] and, thus, the construction of the proposal P remains as the
only parameter of design for MH algorithms.

A simple proposal kernel in finite dimensions is the (Gaussian) random walk pro-
posal P(u) = N(u, s2CP) where s > 0 denotes a (proposal) stepsize parameter and
CP ∈ RN×N a covariance matrix, e.g., the covariance CP = C of the Gaussian refer-
ence measure µ0. The efficiency of the MH algorithm based on this proposal as well
as of other common MH algorithms suffers in high dimensional state spaces: as the
state-space dimension N increases we have to decrease the stepsize parameter s of
the corresponding proposals in order to maintain the same average acceptance rate,
i.e., the mean of α(u, v) w.r.t. the measure P(u, dv)µ(du), see Roberts and Rosen-
thal [141]. Thus, either by decreasing s or by the decreased average acceptance rate
the Markov chain will show a higher autocorrelation and the statistical efficiency of
the MCMC scheme will deteriorate. This is a clear drawback for many applications
such as Bayesian inference for functions, since then the unknown to infer is an el-
ement of an infinite dimensional Banach or Hilbert space, respectively, or at least
from a high dimensional space stemming from numerical discretizations.

These kind of applications motivated the recent research on MH algorithms for
sampling from target measures in infinite dimensional Hilbert spaces. For exam-
ple, as shown by Cotter et al. [35] the simple random walk proposal mentioned
above does not yield a well-defined MH algorithm in infinite dimensions, since
then a corresponding acceptance probability according to Tierney [171] does not
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exist. Beskos et al. [15] suggested a modified Gaussian random walk proposal
P(u) = N(

√
1− s2u, s2C) which is µ0-reversible, i.e., it satisfies the detailed balance

equation P(u, dv)µ0(du) = P(v, du)µ0(dv) in the sense of measures on H×H. The
µ0-reversibility leads to a well-defined acceptance probability following Tierney
[171] and, thus a well-defined MH algorithm in arbitrary separable Hilbert spaces.
This particular proposal was referred to by Cotter et al. [35] as preconditioned Crank-
Nicolson (pCN) proposal. Furthermore, it was shown by Hairer et al. [81] that the
Markov chain of the resulting pCN Metropolis algorithm has dimension-independent
efficiency stated in terms of a dimension-independent spectral gap of the associated
Markov operators – details about spectral gaps will be given below and in Section
5.3.

The main purpose of this chapter is to extend the pCN proposal in order to
allow for other proposal covariances than the covariance C of the reference mea-
sure µ0. Thus, we will combine the idea of dimension-independent MH algorithms
in Hilbert spaces with another recent development in Markov chain Monte Carlo
methods: exploiting geometric information about the target measure µ. Such infor-
mation can, for instance, be the varying concentration of the target marginal distri-
bution in different directions provided by the (anisotropy of the) target covariance
operator, or the local curvature of the log density Φ which can be employed as
a metric tensor measuring distances on the “manifold generated by µ”. By using
such geometric information for proposing new states, one might obtain a larger
average step size for the resulting Markov chain and, thus, a faster state space ex-
ploration. However, this idea is not entirely new. It is already mentioned by Tierney
[170] who suggested to choose a proposal covariance matrix which is similar to the
target covariance matrix. Later in [73] Girolami and Calderhead explain how to
propose new states in finite dimensions using general local metric tensors which
relate to local curvatures of the Lebesgue density of µ. Moreover, in [118] Martin et
al. employ the Hessian of the negative log density Φ of µ as such a local curvature
information to design a stochastic Newton MH method in finite dimensions, and
Cui et al. [37] and Law [104] outline a Gauss-Newton variant for capturing global
curvature in an infinite dimensional setting.

Our approach for adapting the pCN proposal to the target measure µ has a si-
miliar motivation as the proposals considered by Cui et al. [37] and Law [104].
Based on approximating the nonlinear forward map in a Bayesian inference prob-
lem by local linearization which leads to a Gaussian approximation of the poste-
rior measure with a particular covariance, we consider Gaussian proposals with
covariances of the form (C + Γ)−1 where Γ denotes an arbitrary self-adjoint and
positive bounded linear operator. By enforcing µ0-reversibility we derive our class



116 5. Markov Chain Monte Carlo Methods

of generalized pCN (gpCN) proposal kernels PΓ. Besides proving well-definedness of
the resulting Metropolis-Hastings algorithm in the infinite dimensional setting in
Section 5.2 we also present a geometric ergodicity result for the gpCN Metropo-
lis algorithm in Section 5.3. The latter roughly means that the distribution of the
nth step of the Markov chain converges exponentially fast to its invariant mea-
sure. The proof is based on an L2-spectral gaps approach which appears to be a
common strategy in literature: each µ-reversible Markov chain is associated with
a self-adjoint bounded linear operator on L2

µ(H) – its Markov operator – and it is
well known, see Roberts and Rosenthal [139], that the L2

µ-geometric ergodicity of a
µ-reversible Markov chain is equivalent to a positive (L2

µ-)spectral gap of its associ-
ated Markov operator. For details we refer to Section 5.3. In particular, we derive
and employ a new comparison theorem for spectral gaps of Markov operators. By
verifying the assumptions of this comparison result for Markov chains generated
by the pCN and gpCN Metropolis algorithms, we arrive at our main theoretical re-
sult Theorem 5.45. This states that whenever the pCN Metropolis algorithm yields a
nonzero L2

µ-spectral gap, see Hairer et al. [81] for conditions, then a restriction of the
gpCN Metropolis algorithm which targets a restriciton µR of µ to an arbitrary R-ball
yields a nonzero L2

µR
-spectral gap. Although the mentioned restricted version has

a slightly different invariant measure, µR, the difference between both in total vari-
ation distance can be made arbitrarly small by choosing R sufficiently large. Thus,
we will show the exponentially fast convergence of the gpCN Metropolis algorithm
to an arbitrarily close approximation of the target.

Moreover, our analysis enables us to extend the gpCN Metropolis to allow also
state-dependent proposal covariances which will be outlined in Section 5.5. Such
MH algorithms with state-dependent proposal covariances have also become an
active field of research in recent years, we refer, e.g., to the works [73, 118, 113, 102,
12]. In particular, Beskos et al. [12] follow similar ideas and constructions as ours.

Finally, we present some numerical illustrations for the developed algorithm in
Section 5.6 and show that it outperforms other classical MH algorithms including
the pCN Metropolis. In particular, we observe a performance of the new algorithm
which seems to be independent of dimension and robust to the noise or likelihood
variance. The latter refers to the variance of the observational noise in a Bayesian
inference setting and typically a decreased noise variance leads to more concen-
trated posterior measures which are then usually harder to sample by MH algo-
rithms. However, our numerical results indicate that mimicking the behavior of
the posterior covariance in the proposal covariances as described above seems to
yield a larger robustness w.r.t. decreasing noise variance. This fact is also adressed
in Chapter 6 in a mathematically rigorous way.
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5.1. Preliminaries and Metropolis-Hastings

Algorithms

We refer again to the basic notation of this thesis as introduced in Section 1.2,
i.e., H denotes a separable Hilbert space with inner-product and norm 〈·, ·〉H and
‖ · ‖H, respectively, and (Ω,A,P) an underlying probability space. Further, let
µ0 = N(0, C) denote a Gaussian reference measure on H with C ∈ L1

+(H) be-
ing nonsingular, i.e., ker C = {0}. Moreover, in the remainder of the chapter we
assume that the target measure µ ∈ P(H) is given by (5.1).

5.1.1. Markov Chains and Markov Chain Monte Carlo

We provide only a short introduction to Markov chains and Markov chain Monte
Carlo (MCMC) methods on general state spaces. For more details, we refer to, e.g.,
Meyn and Tweedie [120].

Definition 5.1. A Markov chain in H is a sequence of H-valued random variables
(Xn)n∈N satisfying the Markov property, i.e.,

P(Xn+1 ∈ A | X1, . . . , Xn) = P(Xn+1 ∈ A | Xn) P-a.s.

for each n ∈ N and A ∈ B(H). A stochastic or Markov kernel K : H× B(H) →
[0, 1] is the transition kernel of a Markov chain (Xn)n∈N if for all n ∈ N and A ∈
B(H) there holds

K(Xn, A) = P(Xn+1 ∈ A | Xn) P-a.s.

Most properties of a Markov chain can be expressed as properties of its transition
kernel. We therefore introduce the following notions.

Definition 5.2. Let K be a Markov kernel on H and ν ∈ P(H). Then by νK we
denote the probability measure on (H,B(H)) given by

(νK)(A) :=
∫
H

K(v, A) ν(dv) ∀A ∈ B(H). (5.2)

Moreover, for n ∈ N we define in a recursive manner the Markov kernel Kn on H
by

Kn(u, A) :=
∫
H

Kn−1(v, A)K(u, dv) ∀u ∈ H, ∀A ∈ B(H). (5.3)
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By this notation, we can express the distribution of the nth state Xn of a Markov
chain with transition kernel K and initial distribution X1 ∼ ν simply by Xn ∼
νKn−1.

Remark 5.3 (On the notation νK). The definition of νK is of course a slight abuse of
notation, since K denotes a Markov kernel but in νK the symbol K rather plays the
role of a mapping from P(H) to P(H). Given this point of view, it seems odd to
place ν on the left hand side of K instead of writing Ku . However, the notation νK
is quite common in the Markov chain literature. It likely stems from Markov chains
in discrete state spaces where the transition kernel K is simply a stochastic matrix
K ∈ RN×N — typically a row stochastic matrix — and, thus, for a column vector
ν ∈ RN of initial probabilities, the vector given by ν>K describes the distribution
of the next state of the Markov chain.

Definition 5.4. Let µ ∈ P(H) and K be the transition kernel of a Markov chain
(Xn)n∈N in H. The measure µ is called an invariant measure of the Markov chain
(Xn)n∈N or invariant w.r.t. K if µ = µK. Furthermore, the kernel K is called µ-
reversible if it satisfies the detailed balance condition

K(u, dv) µ(du) = K(v, du) µ(dv) (5.4)

where equality holds in the sense of measures onH×H.

It is easily verified that (5.4) implies the invariance of µ w.r.t. K, i.e., µ = µK: for
any A ∈ B(H) there holds

(µK)(A) =
∫
H

K(u, A) µ(du) =
∫
H

∫
A

K(u, dv) µ(du) =
∫
H

∫
A

K(v, du) µ(dv)

=
∫

A

∫
H

K(v, du) µ(dv) =
∫

A
K(v,H) µ(dv) =

∫
A

µ(dv) = µ(A).

We will now introduce a notion of geometric convergence of Markov chains to
their stationary distribution.

Definition 5.5. A Markov chain (Xn)n∈N in H with transition kernel K is L2
µ(H)-

geometrically ergodic if there exists a number r ∈ [0, 1) such that for any probability
measure ν which has a density dν

dµ ∈ L2
µ(H) w.r.t. µ there holds

dTV(νKn, µ) ≤ Cν rn ∀n ∈N.

Remark 5.6 (On orders of convergence). Consider again Markov chain in a finite
state space with a row-stochastic matrix K ∈ RN×N representing its transition ker-
nel. Then the convergence of the distribution ν>Kn ∈ RN of the nth state of the



5.1. Preliminaries and Metropolis-Hastings Algorithms 119

Markov chain given an initial distribution ν ∈ RN is typically a geometric con-
vergence as in Definition 5.5 where r depends on the eigenvalues of K. However,
already for Markov chains in continuous state space such asRN we can distinguish
between uniform ergodicity, meaning that there exists a constant C < ∞ and an
r ∈ [0, 1) such that

dTV(δxKn, µ) ≤ C rn ∀n ∈N, ∀x ∈ Rd,

and geometric ergodicity, meaning that there exists a measurable function C : Rd → R

such that
dTV(δxKn, µ) ≤ C(x) rn ∀n ∈N, ∀x ∈ Rd.

Besides that, there exist also results on other orders of convergence such as subgeo-
metric convergence for Markov chains in general state spaces, see, e.g., Douc et al.
[47] or Kovchegov and Michalowksi [100].

If the distribution of Xn converges to µ, then the Markov chain (Xn)n∈N can be
used for approximate sampling from µ. This leads to Markov chain Monte Carlo
methods for the computation of expectations. In particular, the expectation Eµ( f )
of a function f : H → Rw.r.t. µ can then be approximated by the path average

Sn,n0( f ) :=
1
n

n

∑
j=1

f (Xj+n0), (5.5)

where n is the sample size and n0 a burn-in parameter to decrease the influence of
the initial distribution. In fact, a strong law of large numbers and also a central limit
theorem holds for the path average Sn,n0 under appropriate assumptions.

Theorem 5.7 (Central limit theorem for reversible Markov chains [139, Corollary
2.1], [98]). Let (Xn)n∈N be a µ-reversible and L2

µ(H)-geometrically ergodic Markov
chain and f ∈ L2

µ(R). Then there holds

√
n
(
Sn,n0( f )−Eµ[ f ]

) D−→ N(0, σ2
f )

where σ2
f denotes the asymptotic variance σ2

f := limn→∞ n Var (Sn,n0( f )) which, in
this case, satisfies

σ2
f = Var( f (X1)) + 2

∞

∑
k=1

Cov( f (X1), f (X1+k)) < ∞. (5.6)

We want to motivate the specific form (5.6) of the asymptotic variance and, first,
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consider the variance of Sn,n0( f ):

Var (Sn,n0( f )) = Var

(
1
n

n

∑
j=1

f (Xj+n0)

)
=

1
n2

n

∑
i=1

n

∑
j=1

Cov
(

f (Xi+n0), f (Xj+n0)
)

=
1
n2

n

∑
j=1

Var( f (Xj+n0)) +
1
n2

n

∑
i,j=1
i,j

Cov
(

f (Xi+n0), f (Xj+n0)
)

.

If we now assume that (Xn)n∈N is µ-reversible and X1 ∼ µ, then Xn ∼ µ for any
n ∈ N which further implies that (Xn, Xn+k) for n ∈ N follows the same dis-
tribution as (X1, X1+k). Hence, there holds Var( f (Xn)) = Var( f (X1)) as well as
Cov( f (Xi+n0), f (Xj+n0)) = Cov( f (X1), f (X1+|i−j|)) and we get

Var (Sn,n0( f )) =
1
n

Var( f (X1)) +
2
n

n

∑
k=1

Cov ( f (X1), f (X1+k)) .

Of course, the assumption X1 ∼ µ is rather academic and, in general, not given in
practice. However, since the Markov chain in Theorem 5.7 is assumed to be L2

µ(H)-
geometrically ergodic, the distribution of its nth state Xn converges exponentially
fast to µ as n→ ∞.

By Theorem 5.7 and the reasoning above the asymptotic variance σ2
f in (5.6) pro-

vides a measure for the statistical efficiency of Markov chain Monte Carlo methods
and can therefore be used to compare them. We introduce two common terms re-
lated to σ2

f in the following definition which we will also employ in the numerical
experiments in Section 5.6.

Definition 5.8 (Integrated autocorrelation time, effective sample size). Under the
assumptions and with the notations of Theorem 5.7 the integrated autocorrelation
time τf of the stochastic process ( f (Xn))n∈N is given by

τf :=
σ2

f

Varµ( f )
= 1 + 2

∞

∑
k=1

Corr( f (X1), f (X1+k)),

and for the path average Sn,n0( f ) as given in (5.5) we define the associated effective
sample size by

ESS = ESS(n, f , (Xk)k∈N) :=
n
τf

.

Remark 5.9. The value of ESS(n, f , (Xk)k∈N) corresponds to the number of inde-
pendent samples X̃k ∼ µ which yield the same mean squared error as the MCMC
estimator Sn,n0( f ) for computing Eµ( f ). This can be justified under the assumption
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that Xn0 ∼ µ, since then a result by Rudolf [145, Proposition 3.26] yields

lim
n→∞

n ·E
∣∣Sn,n0( f )−Eµ( f )

∣∣2 = σ2
f = τf ·Varµ( f )

and

n ·E

∣∣∣∣∣ 1n n

∑
k=1

X̃k −Eµ( f )

∣∣∣∣∣
2
 = Varµ( f ).

5.1.2. Metropolis-Hastings Algorithms and the pCN Metropolis
Algorithm

We will focus on Markov chains generated by Metropolis-Hastings algorithms.

Definition 5.10 (Metropolis-Hastings algorithm). Let P denote a Markov kernel on
(H,B(H)) and α : H × H → [0, 1] be a measurable function. Then a Metropolis-
Hastings algorithm with proposal kernel P and acceptance probability α generates recur-
sively realizations of a Markov chain (Xn)n∈N in the following way:

1. Given the current state Xn = u, draw independently a sample v of a random
variable V ∼ P(u, ·) and a sample a of a random variable A ∼ Uni(0, 1).

2. If a < α(u, v), then set Xn+1 = v, otherwise set Xn+1 = u.

A Markov chain which is generated by a Metropolis-Hastings algorithm pos-
sesses a transition kernel of a particular form.

Definition 5.11 (Metropolis kernel). A Metropolis kernel M on (H,B(H)) is a Markov
kernel on (H,B(H)) which can be written as

M(u, dv) = α(u, v)P(u, dv) + δu(dv)
∫
H
(1− α(u, w)) P(u, dw) (5.7)

where P denotes another Markov kernel on (H,B(H)) and α : H ×H → [0, 1] a
measurable function.

Proposition 5.12. If a Metropolis-Hastings algorithm uses a proposal kernel P and
an acceptance probability α the transition kernel of the resulting Markov chain is
given by (5.7).

Remark 5.13 (On notation). In this chapter we use the following notational conven-
tion: K denotes a general Markov or transition kernel, P denotes a Markov kernel
employed as proposal kernel in a Metropolis-Hastings algorithm and M denotes the
transition kernel of a Markov chain generated by a Metropolis-Hastings algorithm.
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We hope that this notation makes it easier for the reader to follow the presentation
and statements of results.

It is well known, see Tierney [171], that a Metropolis kernel M is reversible w.r.t. µ

if the associated acceptance probability α(·, ·) is chosen in a specific way. In order
to state the latter we first define two measures on (H×H,B(H)⊗B(H))

η(du, dv) := P(u, dv) µ(du), η>(du, dv) := η(dv, du),

given a proposal kernel P. Assume now the two measures η and η> are equiva-
lent, i.e., the Radon-Nikodym derivative dη>

dη exists and is positive on H. Then by
choosing the acceptance probability as

α(u, v) = min

{
1,

dη>

dη
(u, v)

}
, u, v ∈ H, (5.8)

the resulting Metropolis kernel M employing P and α is µ-reversible: let A, B ∈
B(H) with A ∩ B = ∅ for simplicity, then∫

A

∫
B

M(u, dv) µ(du) =
∫

A

∫
B

α(u, v)P(u, dv) µ(du)

=
∫

A

∫
B

min

{
1,

dη>

dη
(u, v)

}
η(du, dv)

=
∫

A

∫
B

min
{

dη

dη>
(u, v), 1

}
η>(du, dv)

=
∫

B

∫
A

min
{

dη

dη>
(v, u), 1

}
η(du, dv)

=
∫

B

∫
A

min

{
dη>

dη
(u, v), 1

}
η(du, dv)

=
∫

B

∫
A

M(u, dv) µ(du),

where the last line follows from dη>

dη (u, v) = dη

dη>
(v, u) for u, v ∈ H.

Remark 5.14. The choice of α given in (5.8) is not the only one which yields µ-
reversibility, see, e.g., Peskun [131] and the references therein for further examples.
However, (5.8) is the optimal admissible choice in the sense that it leads to the small-
est asymptotic variance σ2

f , f ∈ L2
µ(H), for the resulting Markov chain, see Tierney

[171].

In finite dimensional state spaces the equivalence of η and η> can often be veri-
fied by considering the densities of η and η> w.r.t. Lebesgue measure. However, in
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infinite dimensional separable Hilbert spaces there exists no Lebesgue measure and
equivalence of measures becomes a more delicate issue. As pointed out by Beskos
et al. [15] a possible way to ensure the existence of dη>

dη is to choose a proposal kernel
P which is µ0-reversible, i.e.,

η0(du, dv) := P(u, dv) µ0(du) = P(v, du) µ0(dv) =: η>0 (du, dv). (5.9)

Then, due to the fact that dµ
dµ0

and dµ0
dµ exist, see (5.1), it follows that

dη>

dη
(u, v) =

dµ

dµ0
(v)

dη>0
dη0

(u, v)︸        ︷︷        ︸
≡1

dµ0

dµ
(u) = exp(Φ(u)−Φ(v))

and, hence,
α(u, v) = min {1, exp(Φ(u)−Φ(v))} . (5.10)

Remark 5.15. In fact, µ0-reversibility of the proposal kernel P is not necessary for
dη>

dη to exist. It is sufficient that P be reversible w.r.t. a measure ν which is equivalent
to µ, i.e., µ(du) = ρ(u) ν(du) with a positive density ρ : H → (0, ∞). Then

P(u, dv) ν(du) = P(v, du) ν(dv)

analogously implies

dη>

dη
(u, v) =

dµ

dν
(v)

dν

dµ
(u) =

ρ(v)
ρ(u)

and choosing α(u, v) = min
{

1, ρ(v)
ρ(u)

}
will yield again a µ-reversible Metropolis

kernel.

In the following paragraph we will introduce a common µ0-reversible proposal,
the preconditioned Crank-Nicolson (pCN) proposal, but beforehand we make a short
remark on history and notation:

Remark 5.16 (On Metropolis and Metropolis-Hastings algorithms). In the original
Metropolis algorithm as stated by Metropolis et al. [119] the proposal kernel was
chosen in a symmetric way, e.g., ifH = RN and P(u) has a Lebesgue density p(u, ·),
then p(u, v) = p(v, u) for each u, v ∈ RN. This yields that the acceptance probabil-
ity α as in (5.8) only involves ratios of the density of µ. Hastings [84] generalized
the Metropolis algorithm to allow also for nonsymmetric proposals. Therefore, the
term dη>

dη in (5.8) is sometimes called Hastings ratio. Moreover, MH algorithms with
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an acceptance probability α(·, ·) which only involves ratios of densities of µ (e.g.,
w.r.t. µ0) are simply called Metropolis algorithms.

The preconditioned Crank-Nicolson Metropolis algorithm First, we describe a
general approach to construct proposal kernels based on discretization schemes for
stochastic differential equations (SDE) which leads, in particular, to the construction
of the preconditioned Crank-Nicolson proposal.

Assume a given SDE of Langevin type

dXt = f (Xt)dt + σ dWt, (5.11)

where Wt denotes a Q-Brownian motion in H, i.e., a Brownian motion with in-
crements Wt −Ws ∼ N(0, |t − s|Q) and Q ∈ L1

+(H), and f : H → H a measur-
able mapping. If we apply appropriate time-stepping schemes, e.g., linear one-step
schemes, to (5.11), then the resulting time-discrete solution is again a Markov chain.
The transition kernel of this Markov chain can then be employed within an MH al-
gorithm, e.g., as the proposal kernel. The idea behind this SDE-based approach is,
that by suitable choices of f and σ in (5.11) one can specify the limit distribution of
the solution process Xt which, in turn, might be inherited by the discretized solu-
tion. For example, by setting f (x) = −(u + C∇Φ(u)), σ =

√
2 and Q = C the limit

distribution of Xt is µ as given in (5.1) provided some assumptions on Φ and ∇Φ
hold, see Hairer et al. [82, Theorem 3.6]. By applying the forward Euler scheme to
the resulting SDE we obtain a Markov chain and may hope that this Markov chain
also has µ as its invariant measure. This would allow to omit the accept/reject step
in the MH algorithm and, thus, yield a less correlated chain. However, as it turns
this is not the case, i.e., the resulting Markov chain does not possess µ as an in-
variant measure and still requires a Metropolization, i.e., the accept/reject procedure
as described earlier, see, e.g., Roberts and Tweedie [142] for details. The resulting
algorithm is also known as Metropolis adjusted Langevin algorithm (MALA).

Now, we recall that our previous considerations for well-defined Metropolis-
Hastings algorithms in infinite dimensions called for a µ0-reversible proposal ker-
nel. Hence, if we can construct an SDE with µ0 as the limit distribution of its solu-
tion, then perhaps we can obtain µ0-reversible proposal kernels by applying suit-
able time-discretization scheme to the corresponding SDE. Such an SDE is given by
an Ornstein-Uhlenbeck process Xt with equilibirum state 0:

dXt = (0− Xt)dt +
√

2 dWt
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where Wt is again a C-Brownian motion, C denoting the covariance operator of
µ0 = N(0, C), see Hairer et al. [82] for more details. Moreover, as it turns out, see
Cotter et al. [35, Theorem 6.2], the only linear one-step scheme which leads to a
µ0-reversible Markov chain is given by applying the Crank-Nicolson scheme to the
drift term combined with an Euler-Maruyama step for the diffusion:

Xn+1 = Xn − h
Xn + Xn+1

2
+
√

2hξn (5.12)

where h > 0 is the time stepsize and the ξn ∼ N(0, C) are i.i.d. H-valued random
variables. The transition kernel of the resulting Markov chain (Xn)n∈N is given by

P0(u, ·) = N(
√

1− s2u, s2C), (5.13)

where s ∈ [0, 1] relates to h in (5.12) by s =
√

8h
2+h . It is straightforward to verify that

P0 is µ0-reversible: we have to show that for η0(du, dv) = P0(u, dv) µ0(du) there
holds η0 = η>0 . We prove this by constructing a random vector (U, V)> ∼ η0 and
then verifying that (V, U)> ∼ η0. Let U ∼ µ0 and W ∼ µ0 independently, then(

U
V

)
:=

(
U√

1− s2U + sW

)
=

(
I 0√

1− s2 I sI

) (
U
W

)
∼ η0,

and by applying Proposition 2.20 we obtain particularly

η0(du, dv) = N

([
0
0

]
,

[
C

√
1− s2C√

1− s2C C

])

as well as(
V
U

)
=

(√
1− s2 I sI

I 0

) (
U
W

)
∼ N

([
0
0

]
,

[
C

√
1− s2C√

1− s2C C

])
,

i.e., η0 = η>0 .

Definition 5.17 (pCN proposal, pCN Metropolis). Let µ0 = N(0, C) and µ be given
as in (5.1). The Markov kernel P0 in (5.13) is called preconditioned Crank Nicol-
son (pCN) proposal kernel. The Metropolis algorithm based on the proposal P0 and
the acceptance probability (5.10) is called pCN Metropolis algorithm or simply pCN
Metropolis and its Metropolis kernel will be denoted by M0.

Remark 5.18. As mentioned by Cotter et al. [35] the pCN proposal kernel (5.13)
was already suggested and employed by Neal [123, Equation (15)] for MCMC sam-
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pling in finite dimensions with Gaussian priors. Although Neal noticed the prior
reversibility of the proposal (5.13), he did not comment on the well-definedness of
the resulting Metropolis algorithm in infinite dimensions nor did he provide a mo-
tivation or a derivation of the proposal. However, he remarked that the proposal
(5.13) “is a bit faster and seems to work somewhat better” than the basic random
walk proposal P(u) = N(u, s2C).

5.2. A Metropolis Algorithm with Generalized pCN

Proposal

In recent years many authors have proposed and pursued the idea to construct pro-
posals which try to exploit geometrical features of the target measure, see for exam-
ple [73, 118, 104, 37]. In the following we will propose a generalized pCN (gpCN)
proposal which allows to incorporate approximations to the covariance operator
of the target measure µ. First, we prove a brief motivation before establishing the
well-definedness of the resulting gpCN Metropolis algorithm in the Hilbert space
H.

5.2.1. Motivation from Bayesian Inference

As mentioned earlier there are numerous hints in the literature dating back at least
to Tierney [170] which suggest that in case of a (Gaussian) random walk proposal
P(u) = N(u, Q) it is beneficial to choose the covariance operator Q as a scaled ver-
sion of the covariance operator Cµ of the target measure µ. Although a rigourous
proof of Q ∝ Cµ being always optimal, e.g., in terms of the resulting asymptotic
variance, is missing, numerical experiments, e.g., [118, 73, 104], and theoretical re-
sults from scaling theory, see Roberts and Rosenthal [139], strengthen this conjec-
ture.

We provide a simple, graphical motivation why the choice Q ∝ Cµ can be benefi-
cial. Assume that the target measure µ is a bivariate Gaussian measure and that we
employ two Gaussian random walk proposals for MH algorithms: one with covari-
ance Q1 = s2

1 I and the other with covariance Q2 = s2
2Cµ, where the parameters s1,

s2 are chosen such that tr (Q1) = tr (Q2)
1, i.e., the total variance of both proposals

is the same. Then, as indicated in Figure 5.1, the latter proposal will yield a higher
acceptance rate, since the intersection of its level sets with regions of certain or high
acceptance are larger than for the choice Q1. This, in turn, leads to a less correlated

1By tr (Q) we denote the trace of an operator Q, see Appendix A for more details.
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Markov chain and a faster exploration of the state space.

(a)

u

(b)

u

Figure 5.1.: For a Gaussian target measure µ = N(mµ, Cµ) and current state u the region of
acceptance {v : α(u, v) = 1} (dark grey region) as well as two regions of possible
rejection {v : p ≤ α(u, v) < p ≤ 1} (lighter grey regions) are displayed. More-
over, we present the contour lines (blue and red, resp.) of Gaussian proposals
N(u, s2Q) with covariance Q = I in part (a) and target covariance Q = Cµ in
part (b).

Based on this guideline, many authors have developed different strategies to ob-
tain estimates on Cµ and to employ these within MH algorithms. For example the
adaptive MH algorithm by Haario et al. [78] computes empirical estimates of Cµ given
the history of the Markov chain and employs this for proposing new states.

We follow rather the approach of Martin et al. [118] to approximate Cµ in the
case where µ results from Bayesian inference by linearization of the corresponding
forward map. We briefly recall the setting of Bayesian inference which was descibed
in more detail in Chapter 3: let U be a random variable in H with distribution
µ0 = N(0, C) and let Y be a random variable on Rd given by

Y = G(U) + ε (5.14)

with a continuous map G : H → Rd and ε ∼ N(0, Σ), independent of U, with
Σ ∈ Rd×d. Then, given some observation y ∈ Rd of Y we want to infer U, i.e.,
we are interested in the conditional distribution of U given the event Y = y which
admits a representation of the form (5.1) with

Φ(u) =
1
2
|y− G(u)|2Σ−1 , u ∈ H. (5.15)

A special situation results if G(u) = Lu+ b with L ∈ L(H;Rd) and b ∈ Rd. Then,
it is known, see Mandelbaum [117] or Theorem 4.3, that µ = N(mµ, Cµ) with

mµ = CL∗(LCL∗ + Σ)−1(y− b), Cµ = (C−1 + L∗Σ−1L)−1, (5.16)

where L∗ denotes the adjoint operator of L.
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The affine case indicates how we can construct good Gaussian proposal kernels
if the map G is nonlinear but smooth. For a fixed u0 ∈ H local linearization leads to

G(u) = G(u0) +∇G(u0) (u− u0) + r(u)

with a remainder term r(u) ∈ Rd. For a sufficiently smooth G the remainder r is
small (in a neighborhood of u0), so that

G̃(u) = G(u0) +∇G(u0) (u− u0)

is close to G(u) (in a neighborhood of u0). The substitution of G by G̃ in the model
(5.14) leads to a Gaussian target measure µ̃ = N(m̃, C̃) with covariance

C̃ = (C−1 + L∗Σ−1L)−1, L = ∇G(u0).

By the fact that G and G̃ are close, we also have that the measures µ and µ̃ are close
as well, cf. Theorem 3.21. Then, it is reasonable to use the covariance operator C̃
for proposing new states in a Metropolis algorithm. Of course, there might be other
choices besides a simple linearization of G at one point. For example, averaging
linearizations at several points u1, . . . , un ∈ H leads to

C̃ =
(

C−1 +
1
N

N

∑
n=1

L∗n Σ−1Ln

)−1
, Ln = ∇G(un).

Natural candidates for the points u1, . . . , uN are samples drawn according to the
prior or samples taken from a short run of a preliminary Markov chain with the
posterior as stationary measure, cf. the adaptive method in Cui et al. [37, Section
3.4]. In view of the suggested approximations C̃ of Cµ above we will consider in
the following proposals which use covariances of the form CΓ = (C−1 + Γ)−1 for
suitably chosen operators Γ.

5.2.2. Well-Defined gpCN Proposals

In this section we introduce the gpCN proposal kernel and prove that the Metropo-
lis algorithm with this proposal is well-defined in the sense that it leads to a µ-
reversible transition kernel. Let L+(H) denote the set of all bounded, self-adjoint
and positive linear operators Γ : H → H. Then, we define the operators

CΓ := (C−1 + Γ)−1, Γ ∈ L+(H), (5.17)
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motivated in Section 5.2.1, where C denotes the covariance operator of the prior
measure µ0 = N(0, C), for which we also use the equivalent representation

CΓ = C1/2 (I + HΓ)
−1 C1/2, HΓ := C1/2ΓC1/2. (5.18)

Next, we show that the operators CΓ are again covariance operators and can, there-
fore, be used for constructing Gaussian proposal kernels.

Proposition 5.19. Let C be a nonsingular covariance operator on H, Γ ∈ L+(H),
and CΓ and HΓ given as in (5.18). Then HΓ ∈ L+(H) is trace class and CΓ is also a
nonsingular covariance operator onH.

Proof. We have HΓ ∈ L+(H) by construction. Moreover, we note that C1/2 is a
Hilbert-Schmidt operator, because C itself is trace class, see Theorem A.7. Hence,
HΓ is a composition of two Hilbert-Schmidt operators (C1/2) and one bounded op-
erator (Γ) and, therefore, by virtue of Theorem A.7 it is trace class.

We now show the second assertion, i.e., that CΓ is nonsingular, selfadjoint, pos-
itive and trace class: since HΓ is selfadjoint and compact, we have from Fredholm
operator theory that the operator I + HΓ is invertible if and only if ker HΓ = {0}.
The latter is the case since HΓ is positive which implies 〈(I + HΓ)u, u〉H ≥ 〈u, u〉H.
Hence, the inverse (I + HΓ)

−1 exists and, moreover, (I + HΓ)
−1 ∈ L+(H) with

‖(I + HΓ)
−1‖ ≤ 1. The self-adjointness and positivity of CΓ follows immediately

and since CΓ is a composition of two nonsingular Hilbert-Schmidt operators and a
nonsingular bounded operator, C1/2 and (I + HΓ)

−1, respectively, it is trace class
and nonsingular as well. �

Proposition 5.19 allows us to define and consider proposal kernels of the follow-
ing form:

P(u, ·) = N(Au, s2CΓ), s ∈ [0, 1), Γ ∈ L+(H), (5.19)

with A ∈ L(H). We would like to choose A such that P is µ0-reversible, which
implies that a Metropolis kernel with proposal P is µ-reversible, see Section 5.1.2.
By applying Proposition 2.20 to(

U
V

)
:=

(
U

AU + sW

)
=

(
I 0
A sI

) (
U
W

)
, (U, W) ∼ µ0 ⊗ N(0, CΓ),

and (V, U)>, we obtain in this setting

P(u, dv) µ0(du) = N

([
0
0

]
,

[
C CA∗

AC ACA∗ + s2CΓ

])
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and

P(v, du) µ0(dv) = N

([
0
0

]
,

[
ACA∗ + s2CΓ AC

CA∗ C

])
.

Thus, for satisfying (5.9) we need to choose A so that

AC = CA∗, ACA∗ + s2CΓ = C. (5.20)

By straightforward calculation we obtain as the formal solution to (5.20)

A = AΓ = C1/2
√

I − s2 (I + HΓ)
−1C−1/2. (5.21)

The following lemma ensures that this choice of A yields a well-defined bounded
linear operator onH.

Lemma 5.20. Let the assumptions of Proposition 5.19 be satisfied and let s ∈ [0, 1).
Then (5.21) defines a bounded linear operator AΓ : rg(C1/2)→ H.

Proof. From the proof of Proposition 5.19 we know that (I + HΓ)
−1 : H → H is self-

adjoint and that ‖(I + HΓ)
−1‖ ≤ 1. Thus, I − s2(I + HΓ)

−1 is also a self-adjoint,
bounded and positive operator on H and its square root operator appearing in
(5.21) exists. This yields the well-definedness of AΓ : rg(C1/2)→ H. We now prove
that AΓ is a bounded operator on rg(C1/2). For s = 0 we get AΓ = I and the as-
sertion follows, so that we assume s ∈ (0, 1). Let us now define f : C \ {−1} → C

by

f (z) =
√

1− s2(1 + z)−1.

The function f is analytic in the complex half plane {z ∈ C : <(z) > s2 − 1}, since
<(1 + z) > s2 implies

<
(
(1 + z)−1

)
=
<(1 + z)
|1 + z|2 ≤

1
<(1 + z)

<
1
s2 .

Denoting γ := ‖HΓ‖ ∈ R the spectrum of HΓ = C1/2ΓC1/2 is contained in [0, γ].
Then, since s < 1 we have that f is analytic in a neighborhood, say, N [0, γ] of
[0, γ]. Hence, by the holomorphic functional calculus, see Dunford and Schwartz
[50, Section VII.3], we obtain√

I − s2 (I + HΓ)
−1 = f (HΓ) =

1
2πi

∫
∂N [0,γ]

f (ζ) (ζ I − HΓ)
−1 dζ.

Due to analyticity we can approximate f by a sequence of polynomials pn with
degree n which converge uniformly on N [0, γ] to f for n → ∞. Then, by [50,
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Lemma VII.3.13] holds
‖pn(HΓ)− f (HΓ)‖ → 0,

for n→ ∞. Since the polynomials pn can be represented as pn(z) = ∑n
k=0 a(n)k zk, we

obtain further

C1/2 pn(HΓ) = C1/2
n

∑
k=0

a(n)k (C1/2ΓC1/2)k = pn(CΓ)C1/2.

By a result of Hladnik and Omladič [87, Proposition 1] we have

spec(CΓ | H) = spec(C1/2ΓC1/2 | H) ⊆ [0, γ]

where spec(· | H) denotes the spectrum onH, and, thus, we can conclude ‖pn(CΓ)−
f (CΓ)‖ → 0 as n→ ∞ again by [50, Lemma VII.3.13]. Hence,

C1/2 f (HΓ) = lim
n→∞

C1/2 pn(HΓ) = lim
n→∞

pn(CΓ)C1/2 = f (CΓ)C1/2

and
AΓ = C1/2 f (HΓ)C−1/2 = f (CΓ)C1/2C−1/2 = f (CΓ)

where f (CΓ) is by construction a bounded operator onH. �

Remark 5.21. Although the well-definedness of AΓ : rg(C1/2) → H follows rather
easily, its boundedness is not trivial. Namely, in general, there exist operators B ∈
L(H) such that C1/2BC−1/2 is unbounded on rg(C1/2). For instance, let (λn, en),
n ∈ N, denote the eigenpairs of C and assume λn ∝ n−p for a p > 1, then the
operator B : H → H given by

Ben =

e√n, if
√

n ∈N,

0, otherwise,

is bounded with norm ‖B‖ = 1, but ‖C1/2BC−1/2en2‖H = np/2 → ∞ as n→ ∞.

Lemma 5.20 allows us now to extend AΓ to H by continuation, because rg(C1/2)

is a dense subspace of H if C is a nonsingular trace class operator. For simplicity
we denote this continuous extension again by AΓ : H → H.

Definition 5.22 (gpCN proposal). For s ∈ [0, 1) and Γ ∈ L+(H) the generalized pCN
proposal kernel is given by

PΓ(u, ·) := N(AΓu, s2CΓ). (5.22)
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For the zero operator Γ = 0 we recover the pCN proposal. By Lemma 5.20 and
the arguments given in Section 5.1.2 we obtain the following important result.

Corollary 5.23. Let µ0 = N(0, C) and µ be given by (5.1). Let the assumptions of
Lemma 5.20 be satisfied. Then, a gpCN proposal kernel PΓ given by (5.22) and an
acceptance probability as in (5.10) induce a µ-reversible Metropolis kernel denoted
by MΓ.

For simplicity we will sometimes call the Metropolis algorithm with transition
kernel MΓ just gpCN Metropolis. There are relations of the gpCN Metropolis to
other recently developed Metropolis algorithms for general Hilbert spaces which
also use more sophisticated choices for the proposal than the pCN proposal. The
following two remarks address these relations.

Remark 5.24. The gpCN proposals form a subclass of the operator weighted proposals
introduced by Law [104] and Cui et al. [37]. The particular form of the gpCN
proposal allows us to derive properties such as boundedness of the “proposal mean
operator” AΓ and the convergence of the resulting Markov chain, see Section 5.4.
These issues were left open in [37, 104].

Remark 5.25. Pinski et al. [133] compute a Gaussian measure µ∗ = N(m∗, C∗)
which comes closest to µ w.r.t. the Kullback-Leibler distance. The admissible class
of Gaussian measures considered there is closely related to our parametrized pro-
posal covariances CΓ, although their class of Gaussian measures is slightly larger.
The measure µ∗ is then used to construct a proposal kernel P∗(u, ·) = N(m∗ +√

1− s2(u−m∗), s2C∗) for Metropolis algorithms. Note that P∗ is not µ0-reversible
but µ∗-reversible, since it is a pCN proposal given the prior µ∗. In order to obtain a
µ-reversible Metropolis kernel the authors need to adapt the acceptance probability
by including terms of dµ∗

dµ0
, cf. Remark 5.15. Thus, Pinski et al. [133] also use a dif-

ferent covariance operator than the prior covariance in a pCN proposal in order to
increase the efficiency of the Metropolis algorithm. The difference to our approach
is the way they ensure the µ-reversibility of the algorithm. They keep the mean
of the original pCN proposal and modify the acceptance probability whereas we
modify also the mean of the proposal to maintain its µ0-reversibility and, therefore,
can leave the acceptance probability unchanged.

5.3. Spectral Gaps and Geometric Ergodicity

In this section we provide a brief summary of the spectral gap approach for proving
L2

µ-geometric ergodicity of Markov chains and the concept of conductance. Based
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on the latter we then develop a general comparison result for spectral gaps of
Metropolis algorithms with equivalent proposals. Although this comparison result
is of interest in its own right, our main motivation for it is to apply it for proving the
L2

µ-geometric ergodicity of the gpCN Metropolis algorithm which will be done in
the next section. In particular, our strategy there is to relate the existence of a spec-
tral gap for the gpCN to the existence of a spectral gap of the pCN Metropolis. Here
it is worth mentioning that Hairer et al. [81] established sufficient conditions for the
latter under additional regularity assumptions on the function Φ in (5.1). However,
with our comparative approach we do not need to rely on those conditions and will
benefit from any improvement of the results stated in [81].

5.3.1. Spectral Gaps of Markov Operators

We will explain the relation between the L2
µ-geometric ergodicity of a Markov chain

and spectral properties of the associated Markov operator.

Definition 5.26. Let K be a µ-reversible Markov kernel where µ denotes a probabil-
ity measure on (H,B(H)). Then the associated Markov operator K: L2

µ(H)→ L2
µ(H)

is given by

(K f )(u) =
∫
H

f (v)K(u, dv) ∀ f ∈ L2
µ(H)

where L2
µ(H) = L2

µ(H;R) is the Hilbert space of measurable functions f : H → R

which are square integrable w.r.t. µ equipped with the inner product

〈 f , g〉L2
µ
=
∫
H

f (u)g(u) µ(du).

By the µ-reversibility of K we have that K : L2
µ(H) → L2

µ(H) is a self-adjoint
bounded linear operator with norm 1: there holds

〈K f , g〉L2
µ
=
∫
H
(K f )(u) g(u) µ(du) =

∫
H

∫
H

f (v) g(u)K(u, dv) µ(du)

=
∫
H

∫
H

f (v) g(u)K(v, du) µ(dv) =
∫
H

f (v) (Kg)(v) µ(dv) = 〈 f , Kg〉L2
µ
,

and by Jensen’s inequality and the invariance of µ w.r.t. K, i.e., µ = µK,

‖K f ‖2
L2

µ
=
∫
H

(∫
H

f (v)K(u, dv)
)2

µ(du) ≤
∫
H

∫
H

f 2(v)K(u, dv) µ(du)

=
∫
H

f 2(v) µ(dv) = ‖ f ‖2
L2

µ
.

We will now define the (L2
µ-)spectral gap of a Markov operator. The term “gap”
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relates, roughly said, to the distance between the largest eigenvalue of K — which
is λ = 1, see below — and its second largest eigenvalue in absolute terms. In the
following, we will use the notation as in Rudolf [145] and define the (L2

µ-)spectral
gap in terms of an operator norm. To this end, we introduce a linear subspace
of L2

µ(H) which excludes the nonzero constant functions, since they are the trivial
eigenfunctions to the eigenvalue λ = 1: let f ∈ L2

µ(H) with f ≡ c ∈ R then

K f (u) =
∫
H

f (v)K(u, dv) = c
∫
H

K(u, dv) = c = f (u).

Definition 5.27. We set

L2
µ,0(H) :=

{
f ∈ L2

µ(H)

∣∣∣∣ ∫H f (u) µ(du) = 0
}

and define for any linear bounded operator A : L2
µ(H)→ L2

µ(H)

‖A‖µ := sup
f∈L2

µ,0(H), f,0

‖A f ‖L2
µ

‖ f ‖L2
µ

.

The term ‖A‖µ is nothing else than the usual operator norm ‖A
∣∣

L2
µ,0(H)

‖ of the

restriction of A to L2
µ,0(H), but we find the notation ‖A‖µ more convenient.

We note that for a Markov operator K and f ∈ L2
µ,0(H) holds K f ∈ L2

µ,0(H) since

∫
H

K f (u) µ(du) =
∫
H

∫
H

f (v)K(u, dv) µ(du) =
∫
H

f (v) µ(du).

Thus, we can state

Definition 5.28 (L2
µ-spectral gap). For a Markov operator K given as in Definition

5.26 we define its (L2
µ-)spectral gap by

gapµ(K) := 1− ‖K‖µ . (5.23)

The relation between the spectral gap of a Markov operator K and the conver-
gence of the distribution of the states of the related Markov chain (Xn)n∈N with
transition kernel K is given in the next result.

Theorem 5.29 ([139, Theorem 2.1]). Let K be a µ-reversible Markov kernel on (H,B(H))

with associated Markov operator K: L2
µ(H)→ L2

µ(H). Then a Markov chain (Xn)n∈N

with transition kernel K is L2
µ-geometrically ergodic iff

gapµ(K) > 0.
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Moreover, we can express autocovariances Cov( f (X1), f (X1+k)) for f ∈ L2
µ(H;R)

of Markov chains with µ-reversible transition kernel K starting at stationarity X1 ∼
µ by the associated Markov operator. The joint distribution of consecutive states
(Xk, Xk+1) is then given by the measure η(du, dv) := K(u, dv)µ(du) and we obtain

Cov( f (X1), f (X2)) =
∫
H

∫
H
( f (u)−Eµ [ f ]) ( f (v)−Eµ [ f ])K(u, dv) µ(du)

=
∫
H
( f (u)−Eµ [ f ])

(∫
H
( f (v)−Eµ [ f ])K(u, dv)

)
µ(du)

= 〈K( f −Eµ [ f ]), ( f −Eµ [ f ])〉µ.

By recursion, we get

Cov( f (X1), f (X1+k)) = 〈Kk( f −Eµ [ f ]), ( f −Eµ [ f ])〉µ, k ∈N, (5.24)

and, thus,

σf = Varµ( f ) + 2
∞

∑
k=1
〈Kk( f −Eµ [ f ]), f −Eµ [ f ]〉µ. (5.25)

Assuming now that gapµ(K) > 0 we can express and bound the asymptotic vari-
ance σ2

f of f ∈ L2
µ(H;R) appearing in the Markov chain CLT in Theorem 5.7 by

σ2
f = 〈(I + K)(I −K)−1( f −Eµ [ f ]), ( f −Eµ [ f ])〉µ ≤

2 ‖ f ‖2
L2

µ

gapµ(K)
, (5.26)

cf. Kipnis and Varadhan [98] and Rudolf [145]. The latter establishes also a non-
asymptotic bound for the mean square error E

[∣∣Sn,n0( f )−Eµ [ f ]
∣∣2],

sup
‖ f ‖L4

µ
≤1
E
[∣∣Sn,n0( f )−Eµ [ f ]

∣∣2] ≤ 2
n · gapµ(K)

+
Cν ‖K‖n0

µ

n2 · gapµ(K)2

where the constant Cν ≥ 0 depends on the initial distribution ν. This emphasizes
once more the importance of gapµ(K) in the study of Markov chains and the nu-
merical analysis of MCMC methods.

5.3.2. Conductance and Spectral Gaps

A useful concept in analyzing spectral gaps is the conductance of a Markov kernel
and Cheeger’s inequality.

Definition 5.30. Let K be a µ-reversible Markov kernel on (H,B(H)). Then its
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conductance (w.r.t. µ) is given by

ϕ(K) := inf
µ(A)∈(0,1/2]

∫
A K(u, Ac)µ(du)

µ(A)
.

The definition of ϕ(K) maybe seems a bit cryptic at first glance, but ϕ(K) basically
provides a lower bound for the (conditional) probability that a Markov chain with
transition kernel K switches between A and its complement within one step, since
then with Xn ∼ µ we have∫

A K(u, Ac)µ(du)
µ(A)

= P(Xn+1 ∈ Ac |Xn ∈ A), ∀A : µ(A) < {0, 1}.

This interpretation might explain why ϕ(K) is called conductance in the literature.
Moreover, by µ-reversibility of K the infimum in Definition 5.30 remains the same
when taken over all sets A with µ(A) ∈ (0, 1):∫

A
K(u, Ac)µ(du) =

∫
A

∫
Ac

K(u, dv)µ(du) =
∫

Ac

∫
A

K(u, dv)µ(du)

=
∫

Ac
K(u, A)µ(du).

The conductance of Markov kernel can be used to obtain bounds on the second
largest eigenvalue of the associated Markov operator:

Theorem 5.31 (Cheeger’s inequality [107]). Let K be µ-reversible Markov kernel on
(H,B(H)). Then there holds

ϕ(K)2

2
≤ 1−Λ(K) ≤ 2ϕ(K) (5.27)

where
Λ(K) := sup{λ : λ ∈ spec(K | L2

µ,0(H))}.

denotes the spectral abscissa of K in L2
µ,0(H).

Hence, provided the Markov operator is positive, Theorem 5.31 enables us to
bound its spectral gap by the conductance of its Markov kernel.

5.3.3. Comparison of Conductance and Spectral Gaps

In the following we will derive results on comparing the conductance and later
also the spectral gaps of two µ-reversible Metropolis kernels M1 and M2 which
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differ only in the proposal — as it is the case for the pCN and the gpCN Metropolis
algorithm.

The main idea here is that provided the proposals P1 and P2 of the two Metropolis
algorithms admit a Radon-Nikodym derivative, we can use it in the definition of
the conductance in order to relate ϕ(M1) and ϕ2(M2). For example, assume that
the Radon-Nikodym derivative dP1(u)

dP2(u)
(v) exists for any u ∈ H and is uniformly

(w.r.t. u and v) bounded by 0 < c < ∞, then due to∫
A

M1(u, Ac)µ(du) =
∫

A

∫
Ac

α(u, v) P1(u, dv)µ(du)

=
∫

A

∫
Ac

α(u, v)
dP1(u)
dP2(u)

(v) P2(u, dv)µ(du)

≤ c
∫

A

∫
Ac

α(u, v) P2(u, dv)µ(du) = c
∫

A
M2(u, Ac)µ(du),

for any A ∈ B(H) we get ϕ(M1) ≤ cϕ(M2). The following result extends this
approach to the case where dP1(u)

dP2(u)
is not necessarily bounded but satisfies certain

integrability conditions.

Lemma 5.32. Let µ be a probability measure on (H,B(H)) and for i = 1, 2 let

Mi(u, dv) = α(u, v)Pi(u, dv) + δu(dv)
∫
H
(1− α(u, w)) Pi(u, dw)

be µ-reversible Metropolis kernels. Assume that for any u ∈ H the Radon-Nikodym
derivative of P1(u, dv) w.r.t. P2(u, dv) exists, i.e., the proposal kernels admit a den-
sity

ρ(u, v) =
dP1(u)
dP2(u)

(v), u, v ∈ H.

If for a number p > 1 we have

κp := sup
µ(A)∈(0,1/2]

∫
A

∫
Ac ρ(u, v)pP2(u, dv) µ(du)

µ(A)
< ∞, (5.28)

then
ϕ(M1) ≤ κ

1/p
p ϕ(M2)

(p−1)/p.

Proof. Let A ∈ B(H) with µ(A) ∈ (0, 1/2]. Further, let q = p/(p − 1) such that
1/q + 1/p = 1. Then∫

A
M1(u, Ac) µ(du) =

∫
H

∫
H
1Ac(v)1A(u) α(u, v) P1(u, dv) µ(du)

=
∫
H

∫
H
1Ac(v)1A(u) α(u, v) ρ(u; v) P2(u, dv) µ(du).
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Note that P2(u, dv)µ(du) is a probability measure on (H×H,B(H×H)) and we
can apply Hölder’s inequality according to this measure with parameters p and q.
Thus, by using α(u, v) = α(u, v)1/qα(u, v)1/p we obtain∫

A
M1(u, Ac) µ(du)

≤
(∫

A
M2(u, Ac) µ(du)

)1/q (∫
A

∫
Ac

ρ(u, v)pα(u, v) P2(u, dv) µ(du)
)1/p

≤
(∫

A
M2(u, Ac) µ(du)

)1/q (∫
A

∫
Ac

ρ(u, v)pP2(u, dv) µ(du)
)1/p

Dividing by µ(A), applying µ(A)−1 = µ(A)−1/q µ(A)−1/p and taking the infimum
yields

ϕ(M1) ≤ ϕ(M2)
1/qκ

1/p
p .

�

We would like to mention that employing comparison inequalities in terms of the
conductance is not an entirely new idea, see for example Lee and Łatuszyński [109,
Proof of Theorem 4]. There the authors obtained a conductance inequality for tran-
sition kernels with mutually bounded Radon-Nikodym derivatives. An immediate
consequence of Lemma 5.32 and (5.27) is the following theorem.

Theorem 5.33 (Spectral gap comparison). Let the assumptions of Lemma 5.32 be
satisfied and let the Markov operators associated with M1 and M2 be positive on
L2

µ(H). Then (
gapµ(M1)

2

)p

≤ κp (2 gapµ(M2))
(p−1)/2.

Proof. The assertion follows by Theorem 5.31 and Lemma 5.32, since then

gapµ(M1)

2
≤ ϕ(M1) ≤ ϕ(M2)

(p−1)/pκ
1/p
p ≤

(
2gapµ(M2)

)(p−1)/(2p)
κ

1/p
p .

�

Theorem 5.33 serves as a guideline to prove our convergence result for the gpCN
Metropolis. In particular, in the next section we will investigate if the conditions of
Theorem 5.33 are fulfilled for the pCN and the gpCN Metropolis kernel.
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5.4. Geometric Ergodicity of the (Restricted) gpCN

Metropolis Algorithm

We summarize the assumptions and statement of Theorem 5.33 with P1 as the pCN
Metropolis and P2 as the gpCN Metropolis kernel: if

1. the Markov operators M0 and MΓ, Γ ∈ L+(H), are positive,

2. the Radon-Nikodym derivative ρΓ(u, v) := dP0(u)
dPΓ(u)

(v) exists for each u ∈ H,

3. and this derivative ρΓ satisfies for a p > 1

sup
µ(A)∈(0,1/2]

∫
A

∫
Ac ρΓ(u, v)p PΓ(u, dv) µ(du)

µ(A)
< ∞,

then gapµ(M0) > 0 implies gapµ(MΓ) > 0.

In the following two subsections we show that the first two assumptions are satis-
fied and also provide a bound for the integral

∫
H ρΓ(u, v)p PΓ(u, dv). Unfortunately,

the latter will not enable us to verify the third assumption. We therefore introduce
and study restrictions of measures and Metropolis kernels to balls in H to which
we can then apply Theorem 5.33 and prove our convergence result for the restricted
gpCN Metropolis algorithm.

5.4.1. Positivity of the gpCN Metropolis Kernel

In the following we will equivalently use the phrase that a Markov kernel is positive
meaning that its associated Markov operator is positive. We will state positivity
results for Metropolis algorithms with general Gaussian proposals at the beginning
and verify afterwards the positivity of the gpCN Metropolis.

Lemma 5.34 (Positivity of proposal kernels). Let µ0 = N(0, C) be a Gaussian mea-
sure on a separable Hilbert space H and let P(u, ·) = N(Au, Q) be a µ0-reversible
proposal kernel with A ∈ L(H). If there exists an operator B ∈ L(H) such that

B2 = A, BC = CB∗,

and D := C− BCB∗ is positive and trace class, then, the Markov operator associated
with the proposal P is positive on L2

µ0
(H).
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Proof. Because of the assumptions on B and D we obtain that the proposal kernel
P1(u, ·) = N(Bu, D) is well-defined. Further, since BCB∗ + D = C we derive

P1(u, dv)µ0(du) = N

([
0
0

]
,

[
C CB∗

BC C

])
,

which leads by BC = CB∗ to the µ0-reversibility of P1 and, thus, to the self-adjointness
of its associated Markov operator in L2

µ0
(H). It remains to prove that P2

1 = P holds
for the associated Markov operators which then immediately yields the assertion.
The equality of the Markov operators is equivalent to the equality of the measures
P2

1 (u, ·) and P(u, ·) for all u ∈ H, since by Fubini’s theorem

P2
1 f (u) =

∫
H

P1 f (v) P1(u, dv) =
∫
H

∫
H

f (w) P1(v, dw) P1(u, dv)

=
∫
H

∫
H

f (w) P1(u, dv) P1(v, dw) =
∫
H

f (w)
∫
H

P1(u, dv) P1(v, dw)

=
∫
H

f (w)P2
1 (u, dw).

In order to show that P2
1 (u, ·) = P(u, ·) for all u ∈ H, we take (ξn)n∈N to be an i.i.d.

sequence with ξ1 ∼ N(0, D) and construct an auxiliary Markov chain by

Xn+1 = BXn + ξn, n ≥ 1,

where X1 = u for an arbitrary u ∈ H. The transition kernel of the Markov chain
(Xn)n∈N is the kernel P1. In particular, for G ∈ B(H) holds P(X3 ∈ G) = P2

1 (u, G).
By

X3 = BX2 + ξ2 = B2u + Bξ1 + ξ2

and Bξ1 + ξ2 ∼ N(0, BDB∗ + D) we obtain X3 ∼ N(B2u, BDB∗ + D). Due to the
assumptions we have B2 = A and

BDB∗ + D = B(C− BCB∗)B∗ + C− BCB∗ = C− ACA∗.

The last step C− ACA∗ = Q follows by the assumed µ0-reversibility of P, because
we know from Section 5.2.2 that P being µ0-reversible is equivalent to A and Q
satisfying AC = CA∗ and ACA∗ + Q = C. We thus arrive at X3 ∼ N(Au, Q) which
proves P2

1 (u, ·) = P(u, ·). �

The next lemma extends the previous result to Markov operators associated with
Metropolis algorithms. The proof follows along the same line of arguments as de-
veloped by Rudolf and Ullrich [147, Section 3.4] and is therefore omitted.
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Lemma 5.35 (Positivity of Metropolis kernels, cf. [147, Section 3.4]). Let µ be a mea-
sure on H given by (5.1) and let P be a µ0-reversible proposal kernel whose associ-
ated Markov operator is positive on L2

µ0
(H). Then the Markov operator associated

with a µ-reversible Metropolis kernel

M(u, dv) = α(u, v)P(u, dv) + δu(dv)
∫
H
(1− α(u, w))P(u, dw)

with α(u, v) = min{1, dµ
dµ0

(v)dµ0
dµ (u)} is positive on L2

µ(H).

The previous two lemmas lead to the following result about the gpCN Metropolis
kernel.

Theorem 5.36 (Positivity of gpCN Metropolis kernel). Let µ0 = N(0, C) and µ as in
(5.1) and let MΓ denote the gpCN Metropolis kernel as in Corollary 5.23. Then the
associated Markov operator MΓ is self-adjoint and positive on L2

µ(H).

Proof. It is enough to verify the assumptions of Lemma 5.34 for the gpCN pro-
posal. Recall that PΓ(u, ·) = N(AΓu, s2CΓ) which is µ0-reversible by construction
with bounded AΓ = C1/2

√
I − s2(I + HΓ)−1C−1/2. By choosing

B := C1/2 4
√

I − s2(I + HΓ)−1C−1/2,

we obtain B2 = AΓ and BC = CB∗. Moreover,

D = C− BCB∗ = C1/2(I −
√

I − s2(I + HΓ)−1)C1/2.

The eigenvalues of I −
√

I − s2(I + HΓ)−1 take the form 1−
√

1− s2

1+λ ≥ 0 with

λ ≥ 0 being an eigenvalue of HΓ. Thus, I −
√

I − s2(I + HΓ)−1 is positive and
bounded which yields D being positive and trace class since D is then a product
of two Hilbert-Schmidt and one bounded operator. Thus, the conditions of Lemma
5.34 are satisfied and the assertion follows. �

5.4.2. The Density between the pCN and gpCN Proposal

We now show that for any state u ∈ H the gpCN proposal is equivalent to the
pCN proposal in the sense of measures. Moreover, we will also derive an integra-
bility result for the corresponding density. For proving the equivalence we need the
following technical result the proof of which is similar to the proof of Lemma 5.20.
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Lemma 5.37. Let the assumptions of Corollary 5.23 be satisfied and define the
bounded, linear operator ∆Γ : H → H by

∆Γ := A0 − AΓ =
√

1− s2 I − C1/2
√

I − s2 (I + HΓ)
−1C−1/2. (5.29)

Then rg(∆Γ) ⊆ rg(C1/2), i.e., C−1/2∆Γ is a bounded operator onH.

Proof. By Douglas [49, Theorem 1] the relation rg(∆Γ) ⊆ rg(C1/2) holds iff there
exists a bounded operator B : H → H such that ∆Γ = C1/2B. Thus, rg(∆Γ) ⊆
rg(C1/2) is equivalent to C−1/2∆Γ being bounded on H. In order to construct and
analyze the operator B, we define f : C \ {−1} → C by

f (z) :=
√

1− s2(1 + z)−1 −
√

1− s2,

which is analytic in {z ∈ C : <(z) > s2 − 1}, cf. the proof of Lemma 5.20, and
particularly in

V = {z ∈ C : dist(z, [0, γ]) ≤ ε}, 0 < ε < 1− s2,

where γ := ‖HΓ‖ and dist(z, A) := infa∈A |z − a| for any A ⊂ C. We have the
following representation

−∆Γ = AΓ −
√

1− s2 I = C1/2
(√

I − s2 (I + HΓ)
−1 −

√
1− s2 I

)
C−1/2

= C1/2 f (HΓ)C−1/2

with
f (HΓ) =

1
2πi

∫
∂V

f (ζ) (ζ I − HΓ)
−1 dζ

see Dunford and Schwartz [50, Chapter VII.3]. Hence, if we can prove that B =

− f (HΓ)C−1/2 is a bounded operator onH, we have shown the assertion.

To this end let pn(z) = ∑n
k=0 a(n)k zk be polynomials of degree n, with n ∈ N,

which converge uniformly on V to f . Such polynomials exist due to the analyticity
of f and by the fact that f (0) = 0 we can assume w.l.o.g. that a(n)0 = 0 for all n ∈N.
This leads to

pn(HΓ) = C1/2Γ1/2

(
n

∑
k=1

a(n)k (Γ1/2CΓ1/2)k−1

)
Γ1/2C1/2

= C1/2Γ1/2 qn−1(Γ1/2CΓ1/2) Γ1/2C1/2
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with qn−1(z) := ∑n
k=1 a(n)k zk−1 = pn(z)/z. Now, a result by Hladnik and Omladič

[87, Proposition 1] implies that the operators C1/2ΓC1/2 and Γ1/2CΓ1/2 share the
same spectrum, since C and Γ are positive. Thus, spec(Γ1/2CΓ1/2 | H) ⊂ [0, γ] and
we have

qn(Γ1/2CΓ1/2) =
1

2πi

∫
∂V

qn(ζ) (ζ I − Γ1/2CΓ1/2)−1 dζ, n ∈N.

Moreover, the polynomials qn are a Cauchy sequence in C(∂V), since

sup
ζ∈∂V
|qn(ζ)− qm(ζ)| ≤ sup

ζ∈∂V

|ζ|
minη∈∂V |η|

|qn(ζ)− qm(ζ)|

=
1

minη∈∂V |η|
sup
ζ∈∂V
|ζqn(ζ)− ζqm(ζ)|

=
1

minη∈∂V |η|
sup
ζ∈∂V
|pn+1(ζ)− pm+1(ζ))|

where minη∈∂V |η| = ε > 0 due to our choice of V. Thus, the polynomials qn con-
verge uniformly on ∂V to a function g. This implies that the operators qn(Γ1/2CΓ1/2)

converge in the operator norm to a bounded operator

g(Γ1/2CΓ1/2) :=
1

2πi

∫
∂V

g(ζ) (ζ I − Γ1/2CΓ1/2)−1 dζ

cf. Dunford and Schwartz [50, Lemma VII.3.13]. We arrive at

f (HΓ) = lim
n→∞

pn(C1/2ΓC1/2) = lim
n→∞

C1/2Γ1/2 qn−1(Γ1/2CΓ1/2) Γ1/2C1/2

= C1/2Γ1/2 g(Γ1/2CΓ1/2) Γ1/2C1/2,

which yields

B = − f (HΓ)C−1/2 = −C1/2Γ1/2 g(Γ1/2CΓ1/2)Γ1/2

being bounded onH. �

Lemma 5.37 ensures that we can apply the Cameron-Martin theorem, Theorem C.5
in Appendix C, in the proof of the following result. The other main tool for deriving
the next theorem is a variant of the Feldman-Hajek theorem as stated in Theorem
C.8 in Appendix C.

Theorem 5.38 (Density of pCN w.r.t. gpCN). With the notation and assumptions of
Corollary 5.23 there holds:
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1. the measures µ0 = N(0, C) and µΓ = N(0, CΓ) are equivalent with

dµ0

dµΓ
(v) =

exp
(

1
2〈Γv, v〉H

)
√

det(I + HΓ)
=: πΓ(v), (5.30)

2. For u ∈ H the measures P0(u, ·) and PΓ(u, ·) are equivalent with density

dP0(u)
dPΓ(u)

(v) = πCM

(
∆Γu,

1
s
(v− AΓu)

)
πΓ

(1
s
(v− AΓu)

)
(5.31)

where ∆Γ as in (5.29) and

πCM(h, v) := exp
(
−1

2
‖C−1/2h‖2

H + 〈C−1h, v〉H
)

. (5.32)

(The subscript in πCM refers to the Cameron-Martin formula.)

Proof. We prove (5.30) by verifying the assumptions of Theorem C.8. We observe

I − C−1/2CΓC−1/2 = I − (I + HΓ)
−1

and set TΓ := I − (I + HΓ)
−1. The eigenvalues (tn)n∈N of the self-adjoint operator

TΓ are given by

tn = 1− 1
1 + λn

=
λn

1 + λn
< 1

where (λn)n∈N are the eigenvalues of the positive trace class operator HΓ. Thus, TΓ

is also trace class and satisfies 〈TΓu, u〉H < ‖u‖2
H for any u ∈ H. Then, the assertion

follows by Theorem C.8 and

TΓ(I − TΓ)
−1 =

(
I − (I + HΓ)

−1
)
(I + HΓ) = HΓ

as well as
〈HΓ C−1/2v, C−1/2v〉H = 〈Γv, v〉H ∀v ∈ H.

To show the equivalence of P0(u, ·) and PΓ(u, ·) for any u ∈ H we introduce the
auxiliary kernel KΓ(u, ·) = N(AΓu, s2C). The first assertion and a simple change of
variables, see Lemma C.9 in the appendix, lead to

dKΓ(u)
dPΓ(u)

(v) = πΓ

(
1
s
(v− AΓu)

)
, u, v ∈ H.

Thus, it remains to prove the equivalence of KΓ(u, ·) and P0(u, ·) for any u ∈ H. By
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the Cameron-Martin formula, see Theorem C.5, this holds iff

rg(AΓ −
√

1− s2 I) ⊆ rg(C1/2)

which was shown in Lemma 5.37. Now Theorem C.5 combined with a change of
variables, see Lemma C.9, yields

dP0(u)
dKΓ(u)

(v) = πCM

(
(
√

1− s2 I − AΓ)u,
1
s
(v− AΓu)

)
and the assertion follows by

dP0(u)
dPΓ(u)

(v) =
dP0(u)
dKΓ(u)

(v)
dKΓ(u)
dPΓ(u)

(v). �

Note, that Theorem 5.38 implies for any Γ1, Γ2 ∈ L+(H) the existence of
dPΓ1 (u)
dPΓ2 (u)

.

Theorem 5.39 (Integrability of gpCN density). Let the assumptions of Lemma 5.37
be satisfied and set

ρΓ(u, v) :=
dP0(u)
dPΓ(u)

(v), u, v ∈ H.

Then, for any 0 < p < 1 + 1
2‖HΓ‖

there exist constants c = c(p, HΓ) < ∞ and
b = b(p, ‖C−1/2∆Γ‖) < ∞ such that

∫
H

ρ
p
Γ(u, v) PΓ(u, dv) ≤ c exp

(
b
2
‖u‖2

H

)
where b ≤ 0 for 0 < p ≤ 1

2 and b > 0 for p > 1
2 .

Proof. We employ the same notation as in Theorem 5.38, i.e., let µ0 = N(0, C) and
µΓ = N(0, CΓ) as well as πΓ and πCM be as in (5.30) and (5.32), respectively. By
Theorem 5.38 we know

ρΓ(u, v) = πCM

(
∆Γu,

1
s
(v− AΓu)

)
πΓ

(1
s
(v− AΓu)

)
.

By first applying a change of variables, see Lemma C.9, and then the Cauchy-
Schwarz inequality we obtain∫
H

ρ
p
Γ(u, v) PΓ(u, dv) =

∫
H

π
p
CM(∆Γu, v) π

p−1
Γ (v) µ0(dv)

≤
(∫
H

π
2p
CM(∆Γu, v)µ0(dv)

)1/2 (∫
H

π
2p−2
Γ (v)µ0(dv)

)1/2

.
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Furthermore, we have by applying Proposition C.4 from Appendix C∫
H

π
2p
CM

(
∆Γu, v

)
µ0(dv) =

∫
H

e−
2p
2 ‖C−1/2∆Γu‖2

H e2p 〈C−1∆Γu,v〉H µ0(dv)

= exp
(
(2p2 − p)‖C−1/2∆Γu‖2

H

)
.

We apply ‖C−1/2∆Γu‖H ≤ ‖C−1/2∆Γ‖ ‖u‖H and set

b := (2p2 − p) ‖C−1/2∆Γ‖2.

Note, that b ≤ 0 for p ≤ 1
2 . Due to the assumptions on p we have

〈(2p− 2)HΓv, v〉H <
〈HΓv, v〉H
‖HΓ‖

≤ ‖v‖2
H, v ∈ H.

Thus, we can apply Proposition C.7 and get

∫
H

π
2p−2
Γ (v)µ0(dv) =

∫
H

exp
(

1
2〈(2p− 2)HΓ C−1/2v, C−1/2v〉

)
det(I + HΓ)(2p−2)/2

µ0(dv)

=
(

det(I − (2p− 2)HΓ) det(I + HΓ)
2p−2

)−1/2

=: c2.

Since HΓ is positive and trace class, det(I + HΓ) is well-defined (see Definition A.5
in Appendix A) and det(I + HΓ) ∈ [1, ∞). Furthermore, due to 〈(2p− 2)HΓv, v〉H <

‖v‖2
H, the eigenvalues of (2p− 2)HΓ lie within (−∞, 1) which ensures that det(I −

(2p− 2)HΓ) > 0 and, hence 0 < c2 < ∞. This proves the assertion. �

Thus, the above theorem allows us to estimate the integral in (5.28). We obtain
for 1 < p < 1 + 1/(2‖HΓ‖) that

∫
A

∫
Ac

ρΓ(u; v)pPΓ(u, dv) µ(du) ≤ c
∫

A
exp

(
b
2
‖u‖2

H

)
µ(du), b > 0, c < ∞.

Unfortunately, if we divide the right-hand side by µ(A) and take the supremum
over all {A : 0 < µ(A) ≤ 0.5} this will be unbounded. This can be seen by choosing
the sequence (An)n∈N ⊂ B(H) with An := {u ∈ H : ‖u‖H > 2n}: since µ(An) ∝
µ0(An) → 0 as n → ∞ there exists an n0 such that µ(An) ≤ 0.5 for n ≥ n0 but on
the other hand we also have∫

An
exp

(
b
2
‖u‖2

H

)
µ(du) ≥ µ(An) exp(bn).
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Thus, we can not yet verify (5.28). In the next section we introduce restrictions of
the target measure and the pCN and gpCN Metropolis kernel for which we can
circumvent this problem of unboundedness.

5.4.3. Restrictions of the Target Measure and Restricted Markov
Kernels

In order to prove the boundedness of κp in (5.28) for the gpCN proposal we con-
sider restrictions of the target measure to bounded sets. Let us mention here that re-
stricted measures appear, for example, also in Bou-Rabee and Hairer [19, Equation
(3.5)] and in the recent work by Hu et al. [91], in order to analyze the convergence
of Metropolis-Hastings algorithms.

Definition 5.40 (Restricted measure). Let R ∈ (0, ∞] and µ be a probability measure
on (H,B(H)). We set

HR := {u ∈ H : ‖u‖H < R}.

and define the restriction of µ toHR as the probability measure µR onH given by

µR(du) :=
1

µ(HR)
1HR(u)µ(du) (5.33)

For sufficiently large R the measure µR is close to µ, because

dTV(µR, µ) =
∫
H

∣∣∣∣dµR

dµ
(u)− 1

∣∣∣∣ µ(du) = µ(Hc
R) + 1− µ(HR) = 2µ(Hc

R)

and since µ is a probability measure on (H,B(H)) there exists for any ε > 0 a
number R > 0 such that 2µ(Hc

R) < ε.
We ask now whether good convergence properties of a µ-reversible Markov ker-

nel K are inherited on a suitably modified µR-reversible Markov kernel KR.

Definition 5.41 (Restricted Markov kernel). Let K be a Markov kernel on (H,B(H))

and R ∈ (0, ∞]. Then the restricted Markov kernel KR : H×B(H) → [0, 1] is defined
by

KR(u, dv) := 1HR(v)K(u, dv) + K(u,Hc
R) δu(dv). (5.34)

The next result shows that restricting Markov kernels preserves the Metropolis
form (5.7) and also reversibility (w.r.t. an appropriate measure).

Proposition 5.42. Let µ be a probability measure on (H,B(H)) and K be a µ-reversible
Markov kernel. Then for any R > 0 the Markov kernel KR given in (5.34) is µR-
reversible with µR as in (5.33). Moreover, for a Metropolis kernel M of the form
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(5.7) the corresponding restricted kernel MR is again a Metropolis kernel

MR(u, dv) = αR(u, v)P(u, dv) + δu(dv)
(

1−
∫
H

αR(u, w)P(u, dw)

)
with αR(u, v) := 1HR(v)α(u, v).

Proof. Recall that K is µ-reversible iff∫
A

K(u, B) µ(du) =
∫

B
K(u, A) µ(du), ∀A, B ∈ B(H).

Let A, B ∈ B(H). We have∫
A

KR(u, B) µR(du) =
∫

A
K(u, B ∩HR) µR(du) +

∫
A∩B

K(u,Hc
R) µR(du)

=
1

µ(HR)

∫
A∩HR

K(u, B ∩HR) µ(du) +
∫

A∩B
K(u,Hc

R) µR(du).

Because of the µ-reversibility of K we can interchange A and B which leads to the
first assertion. The second statement follows by

MR(u, dv) = 1HR(v)M(u, dv) + δu(dv)M(u,Hc
R)

= 1HR(v)α(u, v)P(u, dv)

+ δu(dv)
(

1−
∫
H

α(u, w)P(u, dw) +
∫
Hc

R

α(u, w)P(u, dw)

)
= 1HR(v)α(u, v)P(u, dv) + δu(dv)

(
1−

∫
HR

α(u, w)P(u, dw)

)
.

�

Now we want to investigate if a spectral gap of K on L2
µ(H) implies a spectral

gap of the Markov operator associated with the restricted kernel KR on L2
µR
(H). We

first observe that

KR f (u) =
∫
H

f (v)KR(u, dv) =
∫
HR

f (v)K(u, dv) + f (u)K(u,Hc
R).

This yields the following relation between ‖KR‖µR and ‖K‖µ, and gapµR
(KR) and

gapµ(K), respectively.

Lemma 5.43. Under the assumptions of Proposition 5.42 holds

gapµR
(KR) ≥ gapµ(K)− sup

u∈HR

K(u,Hc
R). (5.35)
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Furthermore, if the Markov operator K is positive on L2
µ(H), then KR is also positive

on L2
µR
(H).

Proof. For f ∈ L2
µR
(H) let

(E f )(u) := 1HR(u) f (u) ∈ L2
µ(H).

Note that ‖ f ‖L2
µR

= 1√
µ(HR)

‖E f ‖L2
µ

and for
∫
HR

f dµR = 0 follows
∫
H E f dµ = 0.

Further, for any f ∈ L2
µR
(H) we have

‖KR f ‖2
L2

µR
=
∫
HR

∣∣∣∣∫HR

f (v)K(u, dv) + f (u)K(u,Hc
R)

∣∣∣∣2 µR(du)

=
∫
HR

∣∣∣∣∫H E f (v)K(u, dv) + E f (u)K(u,Hc
R)

∣∣∣∣2 µR(du)

= ‖K(E f ) + g E f ‖2
L2

µR

with g(u) := 1HR(u)K(u,Hc
R). Then

‖KR f ‖L2
µR

‖ f ‖L2
µR

=
‖K(E f ) + g E f ‖L2

µR

‖E f ‖L2
µR

=
‖E(K(E f )) + g E f ‖L2

µ

‖E f ‖L2
µ

≤
‖K(E f )‖L2

µ
+ ‖g E f ‖L2

µ

‖E f ‖L2
µ

≤
‖K(E f )‖L2

µ

‖E f ‖L2
µ

+ sup
u∈HR

K(u,Hc
R),

where we applied ‖E f ‖L2
µ
≤ ‖ f ‖L2

µ
in the first inequality. By taking the supremum

over all f ∈ L2
µR,0(H) and because of E(L2

µR,0(H)) ⊆ L2
µ,0(H) we obtain

‖KR‖µR ≤ ‖K‖µ + sup
u∈HR

K(u,Hc
R)

and the first assertion follows. Moreover, we have for f ∈ L2
µR
(H) that

〈KR f , f 〉µR =
∫
H

KR f (u) f (u) µR(du)

=
∫
H

(∫
HR

f (v)K(u, dv) + f (u)K(u,Hc
R)

)
f (u) µR(du)

=
∫
H

∫
H
(E f )(v)K(u, dv) (E f )(u)

µ(du)
µ(HR)

+
∫
H

f 2(u)K(u,Hc
R) µR(du).

The second term is always positive since f 2(u)K(u,Hc
R) ≥ 0 for all u ∈ H and

the first term coincides with 〈K(E f ), E f 〉µ /µ(HR). Thus, the second statement is
proven. �
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Lemma 5.43 tells us that the Markov operator KR associated with the restricted
Markov kernel KR possesses an L2

µR
-spectral gap if K has an L2

µ-spectral gap and if
supu∈HR

K(u,Hc
R) is sufficiently small. We can now apply this result to the pCN

Metropolis algorithm as done in the next subsection.

5.4.4. The Spectral Gap of the Restricted gpCN Metropolis
Kernel

Now we can combine all our previous results to establish our main convergence
result for the restricted gpCN-Metropolis algorithm. But let us first consider the re-
stricted pCN Metropolis which we need later for applying the comparison theorem
for spectral gaps, Theorem 5.33.

Theorem 5.44 (Spectral gap of restricted pCN Metropolis). Let µ be as in (5.1) and
let M0 denote the µ-reversible pCN Metropolis kernel. If there holds gapµ(M0) > 0,
then for any ε > 0 there exists a number R ∈ (0, ∞) such that

gapµR
(M0,R) ≥ gapµ(M0)− ε,

where µR is as in (5.33) and M0,R according to Definition 5.41.

Proof. Given the results of Proposition 5.42 and Lemma 5.43 it suffices to prove
that for any ε > 0 there exists an R > 0 such that supu∈HR

M0(u,Hc
R) ≤ ε. We

recall that the proposal kernel of M0 is P0(u, ·) = N(
√

1− s2u, s2C) and obtain
with µs

0 := N(0, s2C) that

sup
u∈HR

M0(u,Hc
R) ≤ sup

u∈HR

P0(u,Hc
R) = sup

u∈HR

∫
‖
√

1−s2u+v‖H≥R
dµs

0(v)

≤ sup
u∈HR

∫
‖
√

1−s2u‖H+‖v‖H≥R
dµs

0(v)

= sup
u∈HR

∫
‖v‖H≥R−

√
1−s2‖u‖H

dµs
0(v)

≤
∫
‖v‖H≥(1−

√
1−s2)R

dµs
0(v) = µ0(Hc

Rs
)

where Rs =
1−
√

1−s2

s R and µ0 = N(0, C). Again, since µ0 is a probability measure
onH we know that there exists a number R, such that µ0(Hc

Rs
) ≤ ε. �

We apply now Theorem 5.33 to the restricted pCN and restricted gpCN Metropo-
lis and obtain:
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Theorem 5.45 (Convergence of restricted gpCN Metropolis). Let µ be as in (5.1)
and assume that the pCN Metropolis kernel possesses a spectral gap in L2

µ(H), i.e.,
gapµ(M0) > 0. Then, for any Γ ∈ L+(H) and any ε ∈ (0, gapµ(M0)) there exists a
number R0 = R0(ε) ∈ (0, ∞) such that for any R ≥ R0 holds

dTV(µR, µ) < ε and gapµR
(MΓ,R) > 0

where µR is as in (5.33) and MΓ,R according to Definition 5.41.

Proof. By Theorem 5.44 we have that for any ε ∈ (0, gapµ(M0)) there exists a num-
ber R0 ∈ (0, ∞) such that for any R ≥ R0 holds

dTV(µR, µ) ≤ ε and gapµ(M0,R) > 0.

Next, we will verify the assumptions of Theorem 5.33 for M1 := M0,R and M2 :=
MΓ,R which then yields the assertion. By Proposition 5.42 we know that MΓ,R is
again a Metropolis kernel with proposal PΓ and acceptance probability αR for any
Γ ∈ L+(H). Thus, M1 and M2 employ the same acceptance probability and pro-
posal kernels P1 = P0 and P2 = PΓ, respectively. Moreover, by Theorem 5.38 we
know that

dP1(u)
dP2(u)

(v) =
dP0(u)
dPΓ(u)

(v) = ρΓ(u, v)

exists for each u ∈ H. Since M1 and M2 are µR-reversible due to Proposition 5.42,
we are left to verify that for a p > 1 there holds

κp,R := sup
µR(A)∈(0,1/2]

∫
A

∫
Ac ρΓ(u, v)p PΓ(u, dv) µR(du)

µR(A)
< ∞

and that the associated Markov operators M1 = M0,R and M2 = MΓ,R are positive
on L2

µR
(H). The latter follows immediately by Lemma 5.43 in combination with

Theorem 5.36. And by Theorem 5.39 we have for any p < 1 + 1
2‖HΓ‖

that

κp,R ≤ sup
µR(A)∈(0,1/2]

∫
A c exp

(
b
2 ‖u‖2

H

)
µR(du)

µR(A)
≤ c exp

(
b
2

R2
)
< ∞.

Thus, Theorem 5.33 can be applied to M1 and M2 and yields

gapµR
(MΓ,R)

(p−1)/2 ≥ 1
2(3p−1)/2

gapµR
(M0,R)

p

κp,R
> 0

for any p < 1 + 1
2‖HΓ‖

which concludes the proof. �
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Theorem 5.45 tells us that the corresponding restricted gpCN Metropolis con-
verges exponentially fast to any, arbitrarily close, restriction µR of µ whenever the
pCN Metropolis has a spectral gap, e.g., under the conditions of Hairer et al. [81,
Theorem 2.14]. In particular, Theorem 5.45 is a statement about the inheritance of
geometric convergence from the pCN to the restricted gpCN Metropolis. We em-
phasize that a quantitative comparison of their spectral gaps is not proven. We
provide a lower bound for the spectral gap of MΓ,R in nonlinear terms of the spec-
tral gap of the pCN Metropolis. Additionally, the stated estimate behaves rather
poorly w.r.t. R, more precisely, it decays exponentially as R→ ∞.

Although we argued in the above theorem with restrictions of µ in order to bound
κp from Theorem 5.33, let us mention that, in simulations when R is sufficiently
large one cannot distinguish between µ and µR as well as between Markov chains
with transition kernels MΓ and MΓ,R.

Moreover, we conjecture that the gpCN Metropolis targeting µ has a strictly pos-
itive spectral gap whenever the pCN Metropolis has one. In particular, regarding
the results of the numerical simulations in Section 5.6 we even conjecture that the
spectral gap of the gpCN Metropolis with suitably chosen Γ ∈ L+(H) is much
larger than the one of the pCN Metropolis.

5.5. A gpCN Metropolis Algorithm with

State-Dependent Proposal Covariance

So far, the gpCN proposal employs one fixed covariance operator which is sup-
posed to approximate the covariance of the target measure. We extend now the
gpCN proposal in order to allow for state-dependent proposal covariances. The
advantage of such a state-dependent approach is that the resulting Metropolis al-
gorithm might be even better adapted to the target measure by allowing locally
different proposal covariances. For an illustrative motivation for state-dependent
proposal covariances we refer to Girolami and Calderhead [73] and Martin et al.
[118]. First theoretical results on the geometric ergodicity of random walk propos-
als with state-dependent covariances were recently obtained by Livingstone [113]
in the case of finite dimensional state spaces. Moreover, we mention the work by
Beskos et al. [12] where the authors construct MALA and Hamiltonian Monte Carlo
(HMC) algorithms in Hilbert spaces which employ local metric tensors for propos-
ing new states. Their algorithms are derived by inserting state-dependent metric
tensors into the stochastic and Hamiltonian differential equations underlying the
standard MALA and HMC algorithm, respectively, and then applying the same
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semi-implicit time stepping scheme as done for the pCN Metropolis, cf. Section
5.1.2. We will take a slightly different approach to define our local gpCN and pCN
Metropolis algorithm. In particular, we will exploit the existence of the density be-
tween the gpCN and pCN proposal as shown in Theorem 5.38.

Definition 5.46. Given a measureable mapping H 3 u 7→ Γ(u) ∈ L+(H) and
µ0 = N(0, C) on (H,B(H)) we define the local gpCN proposal by

Ploc(u, ·) = N(AΓ(u)u, s2CΓ(u)) (5.36)

where CΓ(u) = CΓ = (C−1 + Γ(u))−1 and

AΓ(u) = C1/2

√
I − s2

(
I + HΓ(u)

)−1
C−1/2, HΓ(u) = C1/2Γ(u)C1/2.

Remark 5.47. Following the heuristic presented in Section 5.2.1 for Bayesian infer-
ence problems where Φ in (5.1) is of the form (5.15), we could choose for instance

Γ(u) = ∇G(u)∗ Σ−1∇G(u). (5.37)

A similar idea appears in the paper by Beskos et al. [12]: motivated by the stochastic
Newton algorithm by Martin et al. [118], they consider Γ(u) as (a suitable positive
modification of) the Hessian of Φ(u) := |y− G(u)|2Σ−1 .

In order to derive the appropriate acceptance probability for a Metropolis algo-
rithm with the local gpCN proposal, we define the measure

ηloc(du, dv) := Ploc(u, dv)µ0(du).

We notice that ηloc is no longer a Gaussian measure due to the dependence of Γ on
u. However, to construct a µ-reversible Metropolis kernel with a proposal Ploc as
above, we can apply the same trick as Beskos et al. [15, Theorem 4.1]. Namely, with
ρΓ(u, v) = dP0(u)

dPΓ(u)
(v) as given in Theorem 5.38 we obtain

Ploc(u, dv)µ0(du) =
1

ρΓ(u)(u, v)
P0(u, dv)µ0(du) =

1
ρΓ(u)(u, v)

P0(v, du)µ0(dv)

=
ρΓ(v)(v, u)
ρΓ(u)(u, v)

Ploc(v, du)µ0(dv),

where we used the µ0-reversibility of the pCN proposal P0. Hence, according to
the general Metropolis kernel construction outlined in Section 5.1.2 we obtain the
following result.
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Corollary 5.48. Let µ0 = N(0, C), µ be given by (5.1) and let Ploc be a local gpCN
proposal as in Definition 5.46. Then

Mloc(u, dv) := αloc(u, v)Ploc(u, dv) + δu(dv)
∫
H
(1− αloc(u, w)) Ploc(u, dw)

with

αloc(u, v) = min

{
1, exp(Φ(u)−Φ(v))

ρΓ(u)(u, v)
ρΓ(v)(v, u)

}
, (5.38)

where ρΓ(u, v) = dP0(u)
dPΓ(u)

(v) as given in Theorem 5.38, defines a µ-reversible Metropo-
lis kernel which we call local gpCN Metropolis kernel.

Note, that the same construction can analogously be applied to local variants of
the pCN proposals.

Definition 5.49. Under the same assumptions as in Definition 5.46 we define the
local pCN proposal by

P′loc(u, ·) := N(
√

1− s2u, s2CΓ(u)). (5.39)

Corollary 5.50. Let µ0 = N(0, C), µ be as in (5.1) and P′loc denote a local pCN pro-
posal according to Definition 5.49. Then the local pCN Metropolis kernel given by

M′loc(u, dv) := α′loc(u, v)P′loc(u, dv) + δu(dv)
∫
H
(1− α′loc(u, w)) P′loc(u, dw),

where

α′loc(u, v) = min

{
1, exp(Φ(u)−Φ(v))

πΓ(u)(
1
s [v− A0u])

πΓ(v)(
1
s [u− A0v])

}
(5.40)

with πΓ as stated in Theorem 5.38, is µ-reversible.

Thus, we defined in the above corollaries two Metropolis-Hastings algorithms
employing state-dependent proposal covariances which are well-posed in infinite
dimensions. Unfortunately, the tools and results developed and presented in Sec-
tion 5.3 are not sufficient to prove also spectral gaps of these MH algorithms. The
main reason for this is the missing reversibility of the proposals Ploc and P′loc w.r.t. the
prior measure µ0. This reversibility condition played a key role in proving Theorem
5.33 and, therefore, the analysis of Section 5.4 which was driven by this theorem is
not applicable to Mloc and M′loc. This could be a topic for future research.

Of course, also the question arises if the additional computational cost of evalu-
ating Γ(u) and, maybe even more costly, evaluating ρΓ(u) or πΓ(u) in each step pays
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off in a significantly higher statistical efficiency — see also the next section for nu-
merical experiments with the local pCN and the local gpCN Metropolis algorithm.

Remark 5.51. Related to the concern of computational work, one could think of
substituting ∇G(u) in (5.37) by a cheaper approximation in order to reduce the
computational work. This might help to make MH algorithms with local proposal
covariances feasible and is again left for future research.

5.6. Numerical Experiments

We illustrate the gpCN Metropolis algorithm for approximate sampling of a poste-
rior distribution in Bayesian inference. In particular, we compare different Metropo-
lis algorithms and examine which of those perform independently of the state space
dimension and of the variance of the involved observational noise.

Remark 5.52 (Error due to numerical discretizations). In every numerical simu-
lation we have to apply discretizations and approximations, e.g., of functions or
operators. In the setting of Bayesian inference where we condition on observations
y = G(U) + ε with G : H → Rd and U being a H-valued random variable, we typ-
ically have to employ finite dimensional subspaces of H as well as approximations
of the forward map G. Both will contribute to the error in the resulting approxi-
mation of the true posterior. Concerning an error analysis for projections to finite
dimensional subspaces, we refer to Dashti and Stuart [42, Section 2.3] whereas the
error due to approximating G is estimated in Theorem 3.21.

5.6.1. Problem Setting

We consider the same setting and inference problem as Pinski et al. [133, Section
6.1]: given noisy observations yj = p(0.2j) + ε j with j = 1, . . . , 4, of the solution p
of

d
dx

(
eu(x) d

dx
p(x)

)
= 0 on D = [0, 1], p(0) = 0, p(1) = 2, (5.41)

we want to infer u. Here, the ε j are independent realizations of the normal distri-
bution N(0, σ2

ε ). We place a Gaussian prior N(0,−∆−1) with ∆ = d2

dx2 on the com-
pletion Hc of H1

0(D) ∩ H2(D) in L2(D). Recall the underlying probability space
(Ω,A,P) and let U : Ω → Hc ⊂ L2(D) be a random function with distribution
N(0, ∆−1). This allows us to represent the random function U as

U(ω)(x) =
√

2
π

∞

∑
k=1

ξk(ω) sin(kπx), ξk ∼ N(0, k−2), (5.42)
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P-a.s. where all random variables ξk are independent. In other words U describes
a Brownian bridge, see Example 2.31. Thus, inferring U is equivalent to inferring
ξ = (ξk)k∈N. This leads to the prior µ0 = N(0, C) with C = diag(k−2 : k ∈ N) on
H := `2(N), sinceP-a.s. ξ(ω) ∈ `2(N), see Schwab and Gittelson [156, Proposition
C.12]. Further, we denote by µ the resulting conditional distribution of ξ given the
observed data y = (y1, . . . , y4). The measure µ is given by a density of the form
(5.1) with Φ as in (5.15) where Σ = σ2

ε I and G(ξ) is the mapping

ξ 7→ u(·, ξ) 7→ p(·, ξ) 7→ (p(0.2j, ξ))4
j=1.

The solution p(ξ) of (5.41) for a diffusion coefficient u(ξ) is given by

p(x, ξ) =
2

S1(e−u(ξ))
Sx(e−u(ξ)) (5.43)

with Sx( f ) =
∫ x

0 f (y)dy. For numerical simulations we use a uniform discretiza-
tion of [0, 1] with ∆x = 2−10 and apply the trapezoidal rule for evaluating Sx( f )
and integrals w.r.t. dx, respectively. Furthermore, we truncate the expansion (5.42)
after N terms where we vary N in order to test the Metropolis algorithms for di-
mension independent performance. The data y is generated by the specific choice
u(x) = 2 sin(2πx). We also consider different noise levels σε to examine the effect
of smaller variances σ2

ε , leading to more concentrated posterior distributions µ, on
the performance of the Metropolis algorithms.

We choose four quantities of interest

f1(ξ) :=
∫ 1

0
eu(x,ξ) dx, f2(ξ) := max

0≤x≤1
eu(x,ξ), f3(ξ) := p(0.5, ξ), f4(ξ) := ξ1,

for our experiments. However, the obtained results for the comparison of MCMC
methods will be essentially the same for any of the mentioned quantities and we
will sometimes only present the results for the first quantity f1.

5.6.2. Comparison of Different Metropolis Algorithms

We apply four Metropolis algorithms denoted by RW, pCN, GN-RW and gpCN
resulting from the following four proposal kernels:

• RW: Gaussian random walk proposal P1(ξ, ·) = N(ξ, s2C),

• pCN: pCN proposal P2(ξ, ·) = N(
√

1− s2ξ, s2C),

• GN-RW: Gauss-Newton random walk proposal P3(ξ, ·) = N(ξ, s2CΓ),
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• gpCN: gpCN proposal P4(ξ, ·) = N(AΓξ, s2CΓ).

We choose Γ = σ−2
ε LL> with L = ∇G(ξMAP) and

ξMAP = argmin
ξ∈rg(C1/2)

(
σ−2

ε |y − G(ξ)|2 + ‖C−1/2ξ‖2
H

)
. (5.44)

Since we observe linear functionals of p, the gradient ∇G(ξ) can be obtained by
differentiating the explicit formula (5.43) for p w.r.t. ξ. In particular, we obtain by
the linearity of Sx(·)

∂

∂ξk
p(x, ξ) =

(
∂

∂ξk

2
S1(e−u(ξ))

)
Sx

(
e−u(ξ)

)
+

2
S1(e−u(ξ))

Sx

(
∂

∂ξk
e−u(ξ)

)
= 2

S1(φk e−u(ξ))[
S1(e−u(ξ))

]2 Sx

(
e−u(ξ)

)
− 2

S1(e−u(ξ))
Sx

(
φk e−u(ξ)

)
=

S1(φk e−u(ξ))

S1(e−u(ξ))
p(x, ξ)− 2

S1(e−u(ξ))
Sx

(
φk e−u(ξ)

)
,

where φk(x) := 2
π sin(kπx). Again, we evaluate the appearing integrals numeri-

cally by the trapezoidal rule mentioned above. We apply the Levenberg-Marquardt
algorithm to solve the above optimization problem for the MAP estimator ξMAP

(5.44). Specifically, we used MATLAB’s lsqnonlin function to do so.

Remark 5.53. In general, elliptic PDEs can be solved in a weak sense by variational
methods, see Section 2.3. Then, adjoint methods known from PDE constrained op-
timization and parameter identification can be employed to compute ∇G(ξ), see
Vogel [173, Chapter 6] for more details and Section 7.3 for an example.

As a metric for comparing the performance and efficiency of MCMC algorithms
we consider and estimate the effective sample size

ESS = ESS(n, f , (ξk)k∈N) := n

[
1 + 2 ∑

k≥0
γ f (k)

]−1

where n is the number of samples taken from a Markov chain (ξk)k∈N generated by
an Metropolis algorithms and γ f denotes the autocorrelation function for a quantity
of interest f ∈ L2

µ(H):

γ f (k) = Corr( f (ξn0
), f (ξn0+k)).
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To estimate the ESS we compute the empirical autocorrelation function

γ̂ f (k) :=
1

n− k

n−k

∑
i=1

(
f (ξn0+i)− Sn0,n( f )

) (
f (ξn0+i+k)− Sn0,n( f )

)
, k < n,

with Sn0,n( f ) denoting the path average as in (5.5), and use the initial monotone
sequence estimators (IMSE) proposed by Geyer [68, Section 3.3]. For robustness
reasons we also employ batch means to estimate the ESS [68, Section 3.2]. Since this
led to similar results we only present the estimates obtained by the former method
unless stated otherwise.

Remark 5.54 (On IMSE). The IMSE is based on the fact that for a µ-reversible
Markov chain starting at its stationary measure, the mapping Γ f (k) := γ f (2k) +
γ f (2k − 1), k ∈ N, is strictly positive, strictly decreasing and strictly convex, see
Geyer [68, Theorem 3.1]. In particular, in order to estimate the ESS the IMSE takes
into account only the first K terms of the empirical values Γ̂ f (k) := γ̂ f (2k)+ γ̂ f (2k−
1) such that (Γ̂ f (k))K

k=1 is strictly positive and monotone but (Γ̂ f (k))K+1
k=1 is not.

Remark 5.55 (On batch means). The idea behind batch means is that the n real-
izations along a path of the Markov chain, e.g., (x1, . . . , xn), which are used for
MCMC integration are divided into m batches of same size k, i.,e., (x1, . . . , xk),
(xk+1, . . . , x2k) and so on. Then the empirical mean of each batch converges in dis-
tribution to i.i.d. normal random variables with Eµ[ f ] as mean and σ2

f from (5.6)
as their variance. Hence, σ2

f can be esimated by the empirical variance of the batch
means.

For all Metropolis algorithms we tune the step size parameter s such that the
average acceptance rate is about 0.25, since the empirical performance of each algo-
rithm was best for this particular tuning. In all cases we take n0 = 105 as burn-in
length and n = 106 as sample size.

Remark 5.56 (On tuning the average acceptance rate). For the random walk MH al-
gorithm the usual rule of thumb is that the stepsize s should be chosen such that the
average acceptance rate is approximately 0.234, see Roberts and Rosenthal [141].
However, their result is an asymptotic result for Metropolis-Hastings algorithms
which are not well-defined in infinite dimensions and the stepsize s of which must,
therefore, deteriorate with increasing dimension — otherwise the Markov chains
will reject the proposed new state more and more often. Thus, for the pCN and
gpCN Metropolis algorithm this rule of thumb does not really apply. However, our
numerical experiments suggest that an average acceptance rate of approximately
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25% leads to the best performance of pCN and gpCN in terms of the ESS or inte-
grated autocorrelation time, see Table 5.1.

N = 50, σε = 0.1 N = 400, σε = 0.01
MH proposal α ≈ 0.25 α ≈ 0.5 α ≈ 0.75 α ≈ 0.25 α ≈ 0.5 α ≈ 0.75
RW 115.2 169.3 598.6 1332.8 2013.0 4157.9
pCN 60.4 80.4 265.9 382.0 650.3 2324.3
GN-RW 127.9 195.1 591.8 1098.0 1451.5 3868.7
gpCN 24.4 34.4 109.1 17.2 25.5 82.1

Table 5.1.: Estimated integrated autocorrelation times for quantity f1 based on Metropolis
algorithms based on the four proposals and tuned to certain average acceptance
rates α for two different settings of number of dimensions N and noise variance
σε.

The final results of the simulations are illustrated in Figure 5.2, Figure 5.3 and Fig-
ure 5.4. The first one displays the empirical autocorrelation functions γ̂ f1 resulting
from the four Metropolis algorithms for various combinations of state space dimen-
sion N and noise variances σ2

ε . We can already observe some interesting behavior
in this figure:

• The two random walk Metropolis algorithms (RW, GN-RW) seem to yield
more strongly correlated chains with increasing dimension — comparing (a)
with (c) or (b) with (d) — whereas the autocorrelation of the Markov chains
generated by the pCN and gpCN Metropolis seem not to be negatively af-
fected by increasing N.

• If we compare (a) with (b) or (c) with (d), we detect a slower decaying autocor-
relation for the Markov chains generated by the RW and the pCN Metropolis
algorithm. Again the gpCN Metropolis and also the GN-RW seem to be less
affected by a decreased noise variance.

We investigate these two observations a bit further and display in Figure 5.3 the
estimated ESS for varying state space dimensions N = 50, 100, 200, 400, 800, for a
fixed noise standard deviation σε = 0.1. This time we present the resulting ESS
for all four quantities of interest ((a) to (d)) and include the estimates for ESS ob-
tained by the batch means method for comparison (as dashed lines). The observa-
tion made in 5.2 is confirmed in Figure 5.3: the pCN and the gpCN Metropolis show
an efficiency independent of the dimension N, whereas the random walk Metropo-
lis algorithms show the well-known, see Roberts and Rosenthal [141], deterioating
efficiency which seems to decay roughly like N−1. This holds for each of the four
quantities of interest.
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(a) N = 50, σε = 0.1
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(c) N = 400, σε = 0.1
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(d) N = 400, σε = 0.01
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Figure 5.2.: Empirical autocorrelation of f1 given samples generated by the four Metropolis
algorithms denoted by RW, pCN, GN-RW and gpCN for various choices of state
dimension N and noise standard deviation σε.

The second observation from above is confirmed by Figure 5.4 which displays
again the estimated ESS for f1, . . . , f4, but now for varying noise standard deviation
σε = 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, and a fixed state space
dimension N = 100. We see that the gpCN and the GN-RW Metropolis algorithm
perform more robust w.r.t. σε. The latter shows for quite a range of σε an almost
constant ESS whereas the gpCN even improves its ESS when σε drops from 0.1 to
0.01. However, at the end, when σε becomes very small all four algorithms show a
decaying efficiency.

Summarizing, the gpCN Metropolis seems to combine both desirable properties
of dimension independent performance and robustness w.r.t. the noise variance
whereas the other algorithms suffer from one or the other. Moreover, the gpCN
performs best among the four algorithms also in absolute terms of the ESS.

Remark 5.57. The effect of a decreasing noise or likelihood variance on the perfor-
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(a) ESS for quantity f1
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(b) ESS for quantity f2
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(c) ESS for quantity f3
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(d) ESS for quantity f4
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Figure 5.3.: Dependence of empirical ESS — estimated by IMSE (markers, solid lines) and
batch means (dashed lines) — for each Metropolis algorithm RW, pCN, GN-RW
and gpCN w.r.t. state dimension N with fixed noise variance σ2

ε = 0.01.

mance of MH algorithms is, surprisingly, a rather less studied issue in the MCMC
community. However, it seems to gain more attention recently, see Beskos et al.
[16]. We will revisit this issue in Chapter 6 where we will prove a specific notion
of variance independent performance for the GN-RW Metropolis in case of a linear
forward map G.

5.6.3. Performance of Metropolis Algorithms with
State-Dependent Proposal Covariances

We also apply the local gpCN and the local pCN Metropolis algorithm for approxi-
mate sampling of the posterior and, in particular, compare their performance to the
corresponding “nonlocal” counterparts, i.e., the gpCN and pCN Metropolis algo-
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(a) ESS for quantity f1
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(b) ESS for quantity f2

10
-6

10
-4

10
-2

noise variance 
2

10
2

10
4

10
6

E
S

S

RW

pCN

GN-RW

gpCN

(c) ESS for quantity f3
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(d) ESS for quantity f4
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Figure 5.4.: Dependence of empirical ESS — estimated by IMSE (solid lines) and batch
means (dashed lines) — for each Metropolis algorithm RW, pCN, GN-RW and
gpCN w.r.t. noise variance σ2

ε with fixed state dimension N = 100.

rithm. We choose the mapping

Γ(ξ) := σ−2
ε ∇G(ξ)∇G(ξ)>

for both local Metropolis algorithms as motivated in Remark 5.47. Again, the gra-
dient of G is evaluated as explained in Subsection 5.6.2. Moreover, we compute in
each iteration of the local pCN and gpCN Metropolis algorithm the singular value
decomposition (SVD) of HΓ(η) = C1/2Γ(η)C1/2, where η denotes the proposed new
state, by MATLAB’s svd routine. This might be kind of a computational overkill,
however, it makes the computation of AΓ(η) and CΓ(η) as well as the evaluation of
the densities

πΓ(η)

(
1
s
[ξn − A0η]

)
=

exp
(

1
2s2 [ξn − A0η]>Γ(η)[ξn − A0η]

)
√

det(I + HΓ(η))



5.6. Numerical Experiments 163

(a) ESS for quantity f1
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Figure 5.5.: Dependence of empirical ESS — estimated by IMSE (solid lines) and batch
means (dashed lines) — for the pCN and gpCN Metropolis algorithm and their
local variants w.r.t. noise variance (left) and w.r.t. state space dimension (right).

and ρΓ(η)(ξn) quite comfortable where we recall that πΓ(η) and ρΓ(η) appear in the
acceptance probability of the local pCN and the local gpCN Metropolis, respec-
tively. For example, given a η ∈ RN and HΓ(η) = C1/2Γ(η)C1/2 = VΛV> with
Λ = diag(λ1, . . . , λn) and orthogonal V ∈ RN×N, we have

AΓ(η) = C1/2

√
I − s2

(
I + HΓ(η)

)−1
C−1/2

= C1/2 V
√

I − s2 diag ((1 + λ1)−1, . . . (1 + λn)−1)V>C−1/2

and

det(I + HΓ(η)) = exp

(
n

∑
i=1

(1 + λi)

)
.

Remark 5.58 (On additional computational work.). The computational work re-
quired for the local pCN and local gpCN Metropolis algorithms is quite large com-
pared to their nonlocal counterparts. The most dramatic additional computations
in case of the local pCN Metropolis are the evaluation of ∇G(η) — usually at the
cost of one forward solve of the adjoint of G — and the computation of the deter-
minant det(I + HΓ(η)) in each iteration. We display an algorithmic description of
one transition step of the local pCN Metropolis in Algorithm 5.1. There, Lines 3
to 8 represent the additional work compared to the pCN Metropolis. For the local
gpCN Metropolis the computatinal effort is even larger, since also AΓ(·) and ρΓ(·)
have to be calculated.

In Figure 5.5 we display the estimated ESS for the quantity f1 resulting simula-
tions with the pCN, gpCN, local pCN and local gpCN Metropolis algorithm. In the



164 5. Markov Chain Monte Carlo Methods

Input : current state ξn, value Φ(ξn), matrix Γ(ξn) and determinant
dξn

= det(I + HΓ(ξn)
)

1 Draw ζ ∼ N(0, I);
2 Compute proposed state η :=

√
1− s2ξn + s ·

√
CΓ(ξn)

· ζ;

3 Compute ∇G(η);
4 Compute Γ(η) := σ−2

ε ∇G(η)∇G(η)> and HΓ(η) :=
√

C · Γ(η) ·
√

C;
5 Compute dη := det(I + HΓ(η));
6 Set ∆ξη := 1

s [η− A0ξn] and ∆ηξ := [ξn − A0η];

7 Compute qξη := πΓ(ξn)
(1

s [η− A0ξn]) =
1

dξn
exp

(
1
2 ∆>ξηΓ(ξ)∆ξη

)
;

8 Compute qηξ := πΓ(η)(
1
s [ξn − A0η]) = 1

dη
exp

(
1
2 ∆>ηξΓ(η)∆ηξ

)
;

9 Evaluate G(η) and Φ(η) := 1
2σ2

ε
|y− G(η)|2;

10 Calculate the acceptance probability α := min
{

1, exp(Φ(ξ)−Φ(η)) · qξη

qηξ

}
.;

11 Draw a ∼ Uni(0, 1);
12 if a < α then
13 ξn+1 ← η, Φ(ξn+1)← Φ(η), Γξn+1

← Γη, dξn+1
← dη, ;

14 else
15 ξn+1 ← ξn, Φ(ξn+1)← Φ(ξn), Γξn+1

← Γξn
, dξn+1

← dξn
, ;

16 end
Output: next state ξn+1, value Φ(ξn+1), matrix Γ(ξn+1) and determinant

dξn+1

Algorithm 5.1: One transition step of the local pCN Metropolis algorithm.

left panel we fix the state space dimension to N = 100 and vary the noise standard
deviation σε = 0.1, 0.05, 0.025, 0.01, whereas in the right panel we fix σε = 0.1 and
let N = 50, 100, 200, 400. The smaller range of values for varying σε and N is due
to the increased computational cost for the local pCN and local gpCN Metropo-
lis. Again, we can observe a dimension independent performance of all algorithms
as we expected due to their construction. Moreover, the local gpCN seems to per-
form as robust as the nonlocal gpCN w.r.t. noise variance whereas the local pCN (as
the nonlocal pCN) is strongly affected by decreasing σε. However, in this example
we observe that the local versions do not pay off. Actually, they seem to perform
worse than their nonlocal counterparts. In particular, the local pCN Metropolis
performs quite poorly compared to the other methods. A possible reason why
state-dependent proposal covariances do not improve the performance, might be
that in this example the resulting posterior measure is close to a Gaussian measure.
However, in other situations the application of Metropolis algorithms with state-
dependent proposal covariances may be beneficial — if the computational costs of
the local pCN and local gpCN Metropolis can be reduced.
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Chapter 6

Variance Independence of Metropolis-
Hastings Algorithms

In this chapter we investigate and, at least partly, explain the observation made in
Section 5.6, i.e., that the performance of the random walk and gpCN Metropolis
algorithm — measured in terms of the effective sample size — did not change or
only slightly changed for decreasing measurement noise variance when they em-
ploy (approximations of) the target covariance for proposing new states. To this
end, we consider target measures

µσ(du) ∝ exp
(
− 1

2σ2 Φ(u)
)

µ0(du), σ > 0, (6.1)

where Φ : H → [0, ∞), on the finite-dimensional Hilbert space H = Rn and exam-
ine the efficiency of MH algorithms targeting µσ when σ drops to 0, i.e., when the
measure µσ becomes more concentrated. The reason for the finite dimensional set-
ting is that the random walk MH algorithm, which we also want to investigate, is
not well-defined in infinite dimensions. However, some auxillary results and def-
initions will be stated for general Hilbert spaces H and we will also comment on
the generalization of the obtained results for the gpCN MH algorithm to infinite
dimensions.

Intuitively, a variance independent performance of MH algorithms is rather sur-
prising: for a small σ the target measure µσ will concentrate around the manifold
M := {u ∈ Rn : Φ(u) = 0}— given that minu∈Rn Φ(u) = 0 — and proposed new
states are likely to be rejected unless they are close to this manifold (given the cur-
rent state is also close toM). The usual approach to increase then the acceptance
probability is to decrease the proposal variance which, however, leads to smaller
moves of the Markov chain and, thus, a higher autocorrelation. Therefore, except
when the proposal kernel is informed about the manifoldM, we would expect that
the efficiency of a MH algorithm to be worse for smaller values of σ.
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On the other hand, variance independence or variance robustness (i.e., only small
changes in efficiency for decreasing σ) is a desirable property of MH algorithms.
Recall the setting of Bayesian inference for an unknown U ∼ µ0 given realizations
y ∈ Rd of an observable random variable

Y = G(U) + ε, ε ∼ N(0, σ2Σ), (6.2)

where this time the Gaussian noise ε is scaled by a variance parameter σ > 0. In
this setting the posterior measure of U given Y = y takes a form as in (6.1) with
Φ(u) = 1

2 |y − G(u)|2Σ−1 . If the variance parameter σ is small, then the measure-
ments of Y are quite accurate measurements of G(U) and, thus, the realization y is
informative about G(U) and U, respectively. In the other case, if σ is relatively large
compared to the magnitude of G(U), then the observational data is corrupted by a
large noise and we mainly observe realizations of ε, i.e., the observed data y carries
less information about the unknown U. Hence, we prefer MH algorithms which
also perform well for highly informative data, i.e., small values of σ in (6.2). This
motivates the study of the behaviour of MH algorithms applied for approximate
sampling of targets µσ as in (6.1) for σ decaying to 0.

Besides the work presented here, the only related research on MH algorithms for
approximate sampling of increasingly concentrated target measures known to the
author is the work by Beskos et al. [16]. In their article Beskos et al. assume that Φ
varies only on a linear subspace of Rn, i.e., Rn = U1 ⊕U2 such that for u = u1 + u2,
ui ∈ Ui, there holds (with slight abuse of notation)

Φ(u) = Φ(u1, u2) = Φ(u2). (6.3)

Thus, the target measure µσ will concentrate on the manifold M = {u ∈ Rn :
Φ(u2) = 0} as σ → 0. Beskos et al. then investigate optimal scalings for Gaussian
random walk proposals P(u) = N(u, s2(σ)I) where s(σ) denotes a proposal step-
size which is allowed to depend on σ. By considering diffusion limits of Markov
chains they show under some assumptions that the proposal stepsize has to satisfy
s(σ) ∈ O(σ) in order to ensure a non-deterioating acceptance rate in the resulting
MH algorithm. This yields that the resulting Markov chains will make smaller and
smaller steps as σ→ 0 and, thus, yields an increasing autocorrelation. Hence, such
a rescaling does not seem to yield a variance independent or robust performance,
e.g., in terms of the effective sample size.

An obvious drawback of the scaled proposals considered by Beskos et al. [16]
is that the proposal stepsize decreases also in dimensions which are not affected
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by the likelihood Φ, i.e., the subspace U1. By keeping the proposal stepsize fixed
in the dimensions corresponding to U1 and only rescaling the proposal stepsize
in the subspace affected by the likelihood Φ should also lead to non-deterioating
Metropolis algorithms. As it turns out, such a modified rescaling is implicitly done
by considering random walk proposals P(u) = N(u, s2Cσ) where Cσ denotes the
covariance matrix of the target measure µσ.

In this chapter, we will first discuss several concepts for variance independent
performance of MH algorithms and then focus on analyzing variance indepen-
dence of the expected squared jump distance of Markov chains generated by MH
algorithms. This quantity is often examined in the MCMC literature, see, e.g.,
[13, 14, 126, 130, 140], since it is easier to estimate than, for instance, spectral gaps
or effective samples sizes. In particular, we will prove that for a Gaussian target
µσ = N(mσ, Cσ) the Metropolis algorithms based on the random walk proposal
P(u) = N(u, s2Cσ), s > 0, or the gpCN proposal P(u) = N(AΓσ u, s2CΓσ), s ∈ (0, 1),
with CΓσ = Cσ, yield a variance independent expected squared jump distance. Of
course, a Gaussian target is a rather academic example, but analyzing variance in-
dependence in this setting is already non-trivial. Furthermore, we present numeri-
cal simulations illustrating our analysis and suggesting that the proven theoretical
result also holds for non-Gaussian target measures in certain cases.

6.1. Variance Independent Performance of

Metropolis-Hastings Algorithms

To ease the distinction between indexed vectors and their components in the re-
mainder of the chapter, we will denote vectors in Rn by bold symbols such as u , v
and their ith or jth component by ui or vj, respectively. However, we denote ran-
dom vectors as well as real-valued random variables by capital letters such as X
and Y. Moreover, we apply the same notation as in Chapter 5, i.e., by K we denote
a general Markov kernel as given in Definition 3.11, by M the transition kernel of
a Markov chain generated by a MH algorithm as in Definition 5.11, and by P and
α the proposal kernel and acceptance probability employed in a MH algorithm, see
Definition 5.10.

In the following the target measure µσ on Rn is assumed to be given as in (6.1)
for σ > 0 where µ0 ∈ P2(Rn) denotes an arbitrary reference measure and Φ : Rn →
[0, ∞) a measurable mapping. We will investigate how MH algorithms perform
when σ tends to zero, i.e., how a specific measure of performance for a µσ-reversible
Metropolis kernel Mσ behaves for σ→ 0.
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6.1.1. Notions of Variance Independent Performance

As already outlined in Chapter 5, there are several measures of efficiency or per-
formance of MH algorithms. Maybe the strongest one is the spectral gap of the
associated Markov operator, see Definition 5.28, because this quantity controls the
rate of convergence to the limit distribution and also provides an upper bound on
the resulting error Eµ [ f ]− Sn,n0( f ) of the MCMC integration, see (5.26). Thus, we
could ask for MH algorithms which generate µσ-reversible Metropolis kernels Mσ

such that
lim
σ→0

gapµσ
(Mσ) ≥ β > 0, (6.4)

i.e., for σ → 0 the spectral gap associated with Mσ is bounded from below by a
positive constant β.

Another measure of performance is the effective sample size or, equivalently, the
integrated autocorrelation time τf given a function of interest f : Rn → R, see Defi-
nition 5.8. This quantity was examined in the numerical experiments in Section 5.6.
Let τf (Kσ) denote the integrated autocorrelation time for f ∈ L2

µσ
(Rn;R) associated

with a µσ-reversible Markov chain with transition kernel Kσ. Recall, that τf (Kσ) can
be represented as

τf (Kσ) = 1 + 2
∞

∑
k=1

〈Kk
σ( f −Eµσ( f )), f −Eµσ( f )〉µσ

Varµσ( f )
,

see Chapter 5. Then, another notion of variance independent performance of a MH
algorithm which generates µσ-reversible Metropolis kernels Mσ, could be

lim
σ→0

τf (Mσ) ≤ β f < ∞ ∀ f ∈
⋂

σ>0
L2

µσ
(Rn;R), (6.5)

where the finite constant β f is allowed to depend on f . Note, that
⋂

σ>0 L2
µσ
(Rn;R)

is not empty, in particular, there holds L2
µ0
(Rn;R) ⊆ ⋂

σ>0 L2
µσ
(Rn;R). Moreover,

we mention that (6.5) is weaker than (6.4), since the latter imples a (w.r.t. f ) uniform
upper bound for limσ→0 τf (Mσ) due to (5.26).

However, both conditions (6.4) and (6.5) are hard to prove, since spectral gaps
and integrated autocorrelation times are not easy to estimate. Therefore, we will
settle for something simpler. Namely, we will consider the expected squared jump
distance (ESJD) of Metropolis kernels and prove lower bounds for these as σ → 0.
The ESJD is considered by several authors, see, e.g., [13, 14, 126, 130, 140], since it is
more convenient to analyze and still a relevant measure of efficiency. In particular,
it relates to the lag one autocovariance for the functions fi(v ) = vi, i = 1, . . . , n.
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Definition 6.1 (Expected squared jump distance). Let µ ∈ P(Rn) and let K denote
a µ-reversible Markov kernel. The expected squared jump distance of K is given by

ESJD(K) :=
∫
Rn

∫
Rn
|u − v |2 K(u , dv ) µ(du). (6.6)

Furthermore, we define the expected squared jump distance in the ith dimension by

ESJDi(K) :=
∫
Rn

∫
Rn

(ui − vi)
2 K(u , dv ) µ(du), i = 1, . . . , n. (6.7)

We see that ESJD(K) = ESJD1(K) + · · · + ESJDn(K), i.e., a lower bound for
ESJDi(K) for at least one i ∈ {1, . . . , n} implies a lower bound for ESJD(K), but if
ESJD(K) is bounded from below, there can still exist a dimension i with ESJDi(K) =
0. Thus, we will be interested in lower bounds for each ESJDi(Kσ) of a µσ-reversible
Markov kernel Kσ as σ→ 0. The next paragraph provides already some insights on
what we can hope for.

The ESJD and the lag one autocorrelation. Let us consider the functions fi(v ) :=
vi, i = 1, . . . , n, and let (X(σ)

k )k∈N denote a Markov chain with µσ-reversible transi-
tion kernel Kσ starting at stationarity X(σ)

1 ∼ µσ. We recall that for real-valued ran-
dom variables X and Y, there holds Var(X−Y) = Var(X) + Var(Y)− 2 Cov(X, Y).
Thus, due to stationarity of the Markov chain there holds

Cov
(

fi(X(σ)
k ), fi(X(σ)

k+1)
)
= Varµσ( fi)−

1
2

Var
(

fi(X(σ)
k )− fi(X(σ)

k+1)
)

and E
[

fi(X(σ)
k )

]
= E

[
fi(X(σ)

k+1)
]
, i.e., the associated lag one autocorrelation reads

as
Corr

(
fi(X(σ)

k ), fi(X(σ)
k+1)

)
= 1− ESJDi(Kσ)

2 Varµσ( fi)
. (6.8)

This yields, in particular, that

ESJDi(Kσ) ≤ 4 Varµσ( fi),

which in turn implies that there exists no positive lower bound for ESJDi(Kσ) if
Varµσ( fi) → 0 for σ → 0, i.e., if the marginal of µσ in the ith dimension converges
to a Dirac distribution. Thus, the best we can hope for is that ESJDi(Kσ) decays not
faster than Varµσ( fi) as σ→ 0, i.e., that there exist a β > 0 such that

lim
σ→0

ESJDi(Kσ)

Varµσ( fi)
≥ β ∀i = 1, . . . , n. (6.9)
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This seems to be a reasonable and, moreover, feasible concept of a variance inde-
pendent ESJD which we will pursue in the remainder of the chapter. Obviously
(6.9) is equivalent to

lim
σ→0

Corr
(

fi(X(σ)
k ), fi(X(σ)

k+1)
)
≤ 1− β

2
∀i = 1, . . . , n, (6.10)

i.e., that the limit for σ → 0 of the corresponding lag one autocorrelations for the
functions fi is bounded away from 1. This, in turn, has some interesting impli-
cations: if the lag one autocorrelation is smaller than one, then this also holds for
autocorrelations of larger lags under some additional assumptions:

Proposition 6.2. Let K be a µ-reversible Markov kernel on a separable Hilbert space
H with positive associated Markov operator K. Then for any function f ∈ L2

µ(H)

there holds for k, l ∈Nwith k ≤ l that

〈Kl f , f 〉µ ≤ 〈Kk f , f 〉µ.

Hence, for a Markov chain (Xk)k∈N with transition kernel K starting at X1 ∼ µ the
autocorrelation function k 7→ Corr( f (X1), f (X1+k)) is nonincreasing.

Proof. Since K is self-adjoint there exists a spectral measure E : B(H) → L(L2
µ(H))

such that
〈Kk f , f 〉µ =

∫
spec(K | L2

µ(H))
λk E f (dλ),

where E f : B(H) → [0, ∞) denotes the resulting pushforward measure E f (·) :=
〈E(·) f , f 〉µ, see, e.g., Halmos [83]. Since K is positive, we have

spec(K | L2
µ(H)) ⊆ [0, 1]

and the first statement follows by λl ≤ λk for λ ∈ [0, 1] and k ≤ l. The second
statement is a consequence of the representation (5.24) for the autocovariances and
applying the first assertion to f −Eµ [ f ]. �

Thus, under the assumptions of Proposition 6.2 we get the implication

ESJDi(Kσ)

Varµσ( fi)
≥ β > 0 ⇒ Corr

(
fi(X(σ)

1 ), fi(X(σ)
1+k)

)
≤ 1− β

2
∀k ≥ 1.

Unfortunately, the right-hand side does not yield any upper bound for the associ-
ated integrated autocorrelation time τfi nor does (6.9) or (6.10) imply a lower bound
for the spectral gap as in (6.4). However, we state the following two relations be-
tween spectral gaps and lag one autocorrelations.
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Proposition 6.3. For σ → 0 let µσ be given by (6.1), let {Kσ}σ>0 denote a family of
µσ-reversible Markov kernels with positive associated Markov operators Kσ and let
(X(σ)

k )k∈N denote a Markov chain with transition kernel Kσ starting at X(σ)
1 ∼ µσ.

Then if limσ→0 gapµσ
(Kσ) > 0, we get for any f ∈ L2

µ0
(Rn) with Varµσ( f ) > 0 for

all σ > 0 that
lim
σ→0

Corr
(

f (X(σ)
k ), f (X(σ)

k+1)
)
< 1.

Equivalently, if there exists a function f ∈ L2
µ0
(Rn) such that Varµσ( f ) > 0 for all

σ > 0 and
lim
σ→0

Corr
(

f (X(σ)
k ), f (X(σ)

k+1)
)
= 1,

then limσ→0 gapµσ
(Kσ) = 0.

Proof. We prove the first assertion. Let f ∈ L2
µ0
(Rn) and set

f̄σ :=
f −Eµσ [ f ]

Varµσ( f )1/2 .

Thus, we have Eµσ

[
f̄σ

]
= 0 and ‖ f̄σ‖L2

µσ
= Varµσ( f̄σ) = 1 and, in particular, f̄σ ∈

L2
µσ,0(R

n). Then, we get with K1/2
σ denoting the self-adjoint root operator of Kσ

Corr
(

f (X(σ)
k ), f (X(σ)

k+1)
)
=
〈Kσ( f −Eµσ [ f ]), f −Eµσ [ f ]〉µσ

〈f−Eµσ [ f ] , f −Eµσ [ f ]〉µσ

= 〈Kσ f̄σ, f̄σ〉µσ = ‖K1/2
σ f̄σ‖2

L2
µσ

≤ ‖K1/2
σ ‖2

µσ
= ‖Kσ‖µσ = 1− gapµσ

(Kσ)

which yields the first assertion. �

Variance independence of the ESJD. In the subsequent definition of variance
independence of the ESJD we will allow for a change of basis or coordinate systems,
respectively. This is mainly motivated by the increased flexibility for verifying the
resulting condition in practice. We will provide an interpretation of the definition
afterwards, but first we introduce the concept of the pushforward Markov kernel
as an analogue to the pushforward measure.

Definition 6.4 (Pushforward Markov kernel). Let K : H×B(H)→ [0, 1] be a Markov
kernel on a separable Hilbert spaceH and let T : (H,B(H))→ (S,S) denote a bijec-
tive and measurable mapping to another measurable space. Then the pushforward
Markov kernel T∗K : S× S → [0, 1] of K under T is defined by

T∗K(x, A) := K(T−1(x), T−1(A)), x ∈ S, A ∈ S .
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We note that if K is µ-reversible, then T∗K is T∗µ-reversible, since for A, B ∈ S
there holds ∫

A

∫
B

T∗K(x, dy) T∗µ(dx) =
∫

T−1(A)
K(u, T−1(B)) µ(du)

=
∫

T−1(B)
K(u, T−1(A)) µ(du)

=
∫

B

∫
A

T∗K(x, dy) T∗µ(dx).

In particular, we have forH = Rn and a regular T ∈ Rn×n that

ESJD(T∗K) =
∫
Rn

∫
Rn
|u − v |2 T∗K(u , dv ) T∗µ(du)

=
∫
Rn

∫
Rn
|Tu − Tv |2 K(u , dv ) µ(du).

We are now ready to state

Definition 6.5 (Variance independent ESJD). Let µσ ∈ P(Rn) be given as in (6.1). A
MH algorithm which generates µσ-reversible Metropolis kernels Mσ yields a vari-
ance independent ESJD if there exists a regular matrix T ∈ Rn×n and a constant β > 0,
both independent of σ, such that for fi(v ) := vi, i = 1, . . . , n there holds

lim
σ→0

ESJDi(T∗Mσ)

VarT∗µσ( fi)
≥ β ∀i = 1, . . . , n. (6.11)

As motivated above, the matrix T in Definition 6.5 represents a change of basis,
i.e., the condition (6.11) means that the ESJD in the ith coordinate of the result-
ing Markov chain (TX(σ)

k )k∈N does not decay faster than the associated posterior
marginal variance. Of course, Definition 6.5 depends on the choice of T, but by
(6.8) and Proposition 6.3 we have for each regular T ∈ Rn×n that

lim
σ→0

gapµσ
(Mσ) > 0 ⇒ max

i=1,...,n
lim
σ→0

ESJDi(T∗Mσ)

VarT∗µσ( fi)
> 0.

Moreover, it seems likely that, if (6.11) holds for a specific regular T ∈ Rn×n, then
it may hold also for (many) other changes of basis. However, we were not able to
prove such statements, see the following remark for some comments.

Remark 6.6 (On a stronger notion of variance independent ESJD via Rayleigh quo-
tients). In order to get rid of the dependence on the choice of T in Definition 6.5,
one can require (6.11) to hold for any regular matrix T ∈ Rn×n. This, in turn, is
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equivalent to
v> Cov(X(σ)

k , X(σ)
k+1)v

v> Cov(X(σ)
k )v

≤ 1− β ∀v ∈ Rn, (6.12)

where X(σ)
k denotes again the kth state of a Markov chain with transition kernel Mσ

starting at stationarity X(σ)
1 ∼ µσ. The quotient on the left-hand side in (6.12) is a

Rayleigh quotient R(v ) of the, in general, nonsymmetric matrix Cov(X(σ)
k , X(σ)

k+1) ∈
Rn×n w.r.t. the inner product induced by Cov(X(σ)

k ). Thus, (6.12) is equivalent to
bounding the largest eigenvalue λmax = λmax(σ) of the generalized eigenproblem

1
2

(
Cov(X(σ)

k , X(σ)
k+1) + Cov(X(σ)

k , X(σ)
k+1)

>
)
v = λ Cov(X(σ)

k )v

by 1− β. However, we were not able to obtain theoretical results for this stronger
notion of variance independent ESJD and, therefore, leave it for future research.

The expected acceptance probability. We consider another common measure
for the performance of MH algorithms:

Definition 6.7 (Expected acceptance probability). Let µ ∈ P(Rn) and let M denote
a µ-reversible Metropolis kernel with proposal kernel P and acceptance probability
α. The expected acceptance probability (EAP) of M is defined as

EAP(M) :=
∫
Rn

∫
Rn

α(u , v ) P(u , dv ) µ(du).

Hence, a corresponding notion of variance independent performance is given by

Definition 6.8 (Variance independent EAP). Let µσ ∈ P(Rn) be given as in (6.1).
A MH algorithm generating µσ-reversible Metropolis kernels Mσ yields a variance
independent EAP if

lim
σ→0

EAP(Mσ) = β > 0. (6.13)

Let Pσ and ασ denote the proposal kernel and the acceptance probability, respec-
tively, of a µσ-reversible Metropolis kernel Mσ on Rn, then

ESJDi(Mσ) =
∫
Rn

∫
Rn

(ui − vi)
2 ασ(u , v ) Pσ(u , dv ) µσ(du). (6.14)

Hence, if EAP(Mσ) decays to zero as σ → 0, then so will ESJD(Mσ) in usual situ-
ations: for u , v ∈ Rn from any bounded subset of Rn ×Rn the squared jumpsize
|u − v |2 is also bounded and the only possibility that then ESJD(Mσ) 6→ 0 is that
larger and larger jumps become more probable as σ → 0. The latter seems rather
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unlikely, since this would at least require an increasing proposal variance as well
as that high probability regions of µσ are drifting further apart from each other as
σ → 0. Moreover, by the same reasoning a lower bound for ESJDi(Mσ) as σ → 0
should usually imply a variance independent EAP.

Thus, we conjecture, that under suitable assumptions a variance independent
ESJD as defined in (6.11) implies a variance independent EAP as given in (6.13),
but so far we could not to prove this conjecture rigorously. On the other hand,
as we will see in the next section, condition (6.13) does, in general, not ensure that
condition (6.11) holds. Hence, we may say, that (6.13) is a weaker notion of variance
independent performance than (6.11). Moreover, by applying Cheeger’s inequality,
we can state

Proposition 6.9. For σ > 0 let µσ be given by (6.1) and let Mσ denote a µσ-reversible
Metropolis kernel. If (6.13) does not hold, then

lim
σ→0

gapµσ
(Mσ) = 0.

Proof. We recall the definition of the conductance ϕ(Mσ) of Mσ and obtain

ϕ(Mσ) = inf
µσ(A)∈(0,1/2]

∫
A

∫
Ac ασ(u , v ) Pσ(u , dv )µσ(du)

µσ(A)
≤ 2 EAP(Mσ)

which yields by Theorem 5.31 that

gapµσ
(Mσ) ≤ 4 EAP(Mσ).

The assertion follows. �

Remark 6.10. Summarizing, we have discussed four notions of variance indepen-
dent performance of MH algorithms in this subsection, which were based on spec-
tral gaps (6.4), integrated autocorrelation times (6.5), ESJD or lag one autocorrela-
tion (6.11) and EAP (6.13). Given µ0 ∈ P2(Rn) they are related as follows:

(6.4) ⇒ (6.5) ⇒ (6.11), (6.4) ⇒ (6.13).

6.1.2. Main Result on Variance Independent ESJD for Gaussian
Target Measure

For the following result we require that the reference measure µ0 and the target
measure µσ are Gaussian:
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Assumption 6.11. Let µ0 and Φ in (6.1) be given by µ0 = N(0, C), with a regular
covariance matrix C ∈ Rn×n, and

Φ(u) =
1
2
|y − Gu |2Σ−1 , u ∈ Rn,

for a y ∈ Rd, d ≤ n, a matrix G ∈ Rd×n, and a symmetric, positive definite matrix
Σ ∈ Rd×d, respectively. Moreover, we define r := rank(G) ≤ d.

Assumption 6.11 implies by Theorem 4.3 that the target µσ given by (6.1) is also
Gaussian, i.e., µσ = N (mσ, Cσ) with

mσ := CG>(GCG> + σ2Σ)−1y = σ−2 (C−1 + σ−2G>Σ−1G)−1 G>Σ−1y (6.15)

and
Cσ := (C−1 + σ−2G>Σ−1G)−1. (6.16)

Theorem 6.12. Let Assumption 6.11 be satisfied and for σ > 0 let µσ be given by
(6.1). Then there holds:

• The random walk Metropolis algorithm that generates µ-reversible Metropo-
lis kernels Mσ with proposal kernel

Pσ(u) := N(u , s2Cσ),

with Cσ as in (6.16) and s > 0, yields a variance independent ESJD as in (6.11)
and a variance independent EAP as in (6.13). In both cases the resulting limit
β depends only on s and the state space dimension n.

• The gpCN Metropolis algorithm that generates µ-reversible Metropolis ker-
nels MΓσ with gpCN proposal kernel

PΓσ(u) := N(AΓσu , s2CΓσ),

where Γσ = σ−2G>Σ−1G, i.e., CΓσ = Cσ, and s ∈ (0, 1), yields also a variance
independent ESJD as in (6.11) and a variance independent EAP as in (6.13).
This time, the resulting limit β depends in both cases only on s and the rank r
of G.

Moreover, if r < n, then we even have

lim
σ→0

ESJD(Mσ) > 0, lim
σ→0

ESJD(MΓσ) > 0.
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We highlight, that for the gpCN Metropolis the lower bound β in (6.11) and (6.13)
is independent of the state space dimension n — which is not the case for the ran-
dom walk Metropolis Mσ defined in Theorem 6.12. This is a consequence of the
reversibility of the gpCN proposal w.r.t. the reference (or prior) measure µ0.

We will prove Theorem 6.12 in Section 6.3. In the next section we will construct
the basis {v1, . . . , vn} of Rn, respectively the regular matrix T ∈ Rn×n, w.r.t. which
we will verify condition (6.11).

Remark 6.13 (On negative results for scaled Gaussian proposals). We show that for
the scaled Gaussian random walk proposals P̃σ(u) = N(u , s2(σ)I) with s(σ) = σs0,
s0 > 0, as examined by Beskos et al. [16] there holds no variance independence of
the ESJD under Assumption 6.11 with r < n. Let M̃σ denote the µσ-reversible
Metropolis kernel resulting from the proposal P̃σ. Then for any regular matrix T ∈
Rn×n we get

ESJD(T∗M̃σ) ≤ ‖T‖ESJD(M̃σ)

= ‖T‖
∫
Rn

∫
Rn
|u − v |2 α̃σ(u , v ) P̃σ(u , dv ) µσ(du)

≤ ‖T‖
∫
Rn

∫
Rn
|u − v |2 P̃σ(u , dv ) µσ(du)

= ‖T‖
∫
Rn

n s2
0 σ2µσ(du) = n ‖T‖ s2

0 σ2,

i.e., ESJDi(T∗M̃σ)→ 0 as σ→ 0 for each i = 1, . . . , n. On the other hand, if Assump-
tion 6.11 is satisfied with r < n, then rank(G>Σ−1G) ≤ r < n. As we will see in the
next section, particularly Proposition 6.14, this yields that the trace of the resulting
posterior covariance Cσ will not become 0 as σ → 0, i.e., there exists a β > 0 such
that tr (Cσ) → β as σ → 0. Then, for any regular T ∈ Rn×n we obtain for the trace
of the covariance matrix TCσT> of the resulting pushfoward measure T∗µσ that

tr (TCσT>) =
n

∑
i=1

Var([TX(σ)]i) = E

[∣∣∣T(X(σ) −E
[

X(σ)
]
)
∣∣∣2]

≥ 1
‖T−1‖ E

[∣∣∣X(σ) −E
[

X(σ)
]∣∣∣2] = tr (Cσ)

‖T−1‖

where X(σ) ∼ µσ. Moreover, since limσ→0 tr (Cσ) = β > 0, this implies that there
exists at least one i ∈ {1, . . . , n} such that Var([TX(σ)]i) ≥ β/‖T−1‖ > 0. Thus, for
this particular i we have

lim
σ→0

ESJDi(T∗M̃σ)

VarT∗µσ( fi)
= 0,

i.e., condition (6.11) is not satisfied by the Metropolis kernels M̃σ for any T ∈ Rn×n.
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6.2. Intrinsic Structure of a Gaussian Target Measure

and Its Implications

The fact that the forward map G is linear and the target measure µσ is again Gaus-
sian allows us to exploit the structure of its covariance matrix Cσ for constructing
an appropriate basis of Rn and, thus, an appropriate regular matrix T ∈ Rn×n to
prove our main result.

We follow an approach due to Cui et al. [37] and Spantini et al. [161] and consider,
motivated by the structure of the inverse of Cσ,

C−1
σ = C−1 + σ−2H, H := G>Σ−1G, (6.17)

the C−1-orthonormal system {vj : j ∈ N} consisting of the eigenvectors of the
generalized eigenproblem

Hv = λC−1v . (6.18)

The vectors vj are given by vj = C1/2ṽj where (λj, ṽj) are the eigenpairs of the
operator C1/2HC1/2, i.e.,

C1/2HC1/2ṽj = λjṽj, j = 1, . . . , n.

In the following, we assume an ordering λ1 ≥ λ2 ≥ . . . ≥ λr > 0 and λj = 0 for
j > r, i.e.,

ker H = ker G = span(vj : j > r).

By construction we get

C−1
σ vj = (C−1 + σ−2H)vj = (1 + σ−2λj)C−1vj.

This implies two things: (a) unless C is a scaled identity matrix the vectors vj, j =
1, . . . , n, are not the eigenvectors of the target covariance Cσ, but (b) they are a C−1

σ -
orthogonal basis of Rn, i.e.,

v>j C−1
σ vk = (1 + σ−2λk)v

>
j C−1vk = (1 + σ−2λk)δjk, (6.19)

where δjk denotes the Kronecker delta. A consequence of the C−1
σ -orthogonality of

the vectors vj is that the Gaussian target measure µσ factorizes w.r.t. the projections
onto span(vj). To make this statement precise, let us define the matrix T ∈ Rn×n

for the corresponding change of basis. Since the eigenvectors {vj : j = 1, . . . , n} of
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(6.18) are a C−1-orthonormal system in Rn, there holds

T := [v1 . . . vn]
−1 =


v>1

...
v>n

C−1, (6.20)

where [v1 . . . vn] denotes an n× n-matrix with column vectors vj, j = 1, . . . , n. We
note that

v>j C−1 =
1

v>j C−1
σ vj

v>j C−1
σ , j = 1, . . . , n,

which will prove useful in the following. Furthermore, we introduce the following
notation for convenience:

v = (v1, . . . , vn) := Tv , v ∈ Rn,

i.e., for a vector v ∈ Rn we denote by the corresponding upright bold letter v
the vector of its coordinates w.r.t. the basis {vj : j = 1, . . . , n} consisting of the
eigenvectors vj of (6.18). Since the vectors vj are, in general, not orthogonal w.r.t. the
Euclidean inner product, we have |v| = |Tv | , |v |. However, there holds

1
‖T−1‖ |v | ≤ |v| ≤ ‖T‖ |v |, v ∈ Rn. (6.21)

We now analyze the pushforward measure of the target µσ given the change of basis
matrix T ∈ Rn×n in (6.20).

Proposition 6.14. Let Assumption 6.11 be satisfied and µσ be given as in (6.1). Then
the pushforward measure T∗µσ with T as in (6.20) is given by

T∗µσ =
n⊗

j=1

N
(

mj,σ, γ2
j,σ

)
, mj,σ :=

v>j G>Σ−1y

(σ2 + λj)
, γ2

j,σ :=
1

1 + σ−2λj
, (6.22)

where j = 1, . . . , n.

Proof. Let U ∼ µσ, then the distribution of TU is T∗µσ. By Proposition 2.20 T∗µσ is
again Gaussian with mean Tmσ and covariance matrix TCσT>where mσ and Cσ are
as in (6.15) and (6.16), respectively. We obtain for the mean mσ = (m1,σ, . . . , mn,σ) =

Tmσ

mj,σ =
v>j C−1

σ mσ

v>j C−1
σ vj

=
σ−2v>j C−1

σ CσG>Σ−1y

1 + σ−2λj
=

v>j G>Σ−1y

σ2 + λj
.
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Furthermore, the (j, k)-entry of the matrix TCσT> is given by

v>j C−1
σ CσC−1

σ vk

(v>j C−1
σ vj)(v

>
k C−1

σ vk)
=

(1 + σ−2λj)δjk

(1 + σ−2λj)(1 + σ−2λk)
=

1
1 + σ−2λk

δjk.

Thus, TCσT> is diagonal, and, hence, the components [TU]j of TU are independent
with [TU]j ∼ N(mj,σ, γ2

j,σ). �

Recalling that λj > 0 for j ≤ r equation (6.22) implies that for j = 1, . . . , r, the
variance γj,σ of the target marginal in uj will converge to 0 as σ → 0 and, thus, the
marginal itself will converge to a Dirac measure at v>j G>Σ−1y/λj. Moreover, we
see that for j > r the marginal variance of uj is equal to 1 due to λj = 0 for j > r. In
the next paragraph we show that also mj,σ is independent of σ for j > r.

Representation of the data y and the mapping Φ. We will state a representation
of the data y ∈ Rd, which appears in Assumption 6.11, w.r.t. a specific basis of Rd.
Namely, let {w1, . . . ,wd} denote a Σ−1-orthonormal basis of Rd such that rg(G) =

span(w1, . . . ,wr). This yields the following decomposition

y = yG + y⊥, yG ∈ rg(G), y⊥ ∈ span(wr+1, . . . ,wd). (6.23)

Moreover, by construction there exists a unique vector u† ∈ Rn satisfying

Gu† = yG, u† ∈ span(v1, . . . , vr). (6.24)

Remark 6.15 (SVD of G). Let us equip Rn with the inner product w.r.t. C−1 and
Rd with the inner product w.r.t. Σ−1. Then the eigenvectors v1, . . . , vn are the corre-
sponding right-singular vectors of G,

√
λ1, . . . ,

√
λd the associated singular values

and the vectors w1, . . . ,wd are the corresponding left-singular vectors.

Proposition 6.16. Let Assumption 6.11 be satisfied, T be as in (6.20), mσ as in (6.15)
and u† as in (6.24). Then there holds with mσ = Tmσ and u† = Tu†

mj,σ =
λju†

j

σ2 + λj
, ∀j = 1, . . . , n,

thus, in particular, mj,σ = 0 for j > r. Moreover, with u = Tu , u ∈ Rn, we have

Φ(u) =
1
2
|y⊥|2Σ−1 +

1
2

r

∑
j=1

λj(u†
j − uj)

2.



180 6. Variance Independence of Metropolis-Hastings Algorithms

Proof. The first assertion can be shown by a straightforward calculation:

mj,σ =
v>j G>Σ−1y

σ2 + λj
=

v>j G>Σ−1(yG + y⊥)

σ2 + λj
=

v>j G>Σ−1yG

σ2 + λj
=

v>j G>Σ−1Gu†

σ2 + λj

=
v>j Hu†

σ2 + λj
=

λjv
>
j C−1u†

σ2 + λj
=

λju†
j

σ2 + λj
.

Moreover, since u† ∈ span(v1, . . . , vr), there holds for j > r that vjC−1u† = 0 and,
hence, 0 = u†

j = mj,σ. Furthermore, for u = ∑n
j=1 ujvj ∈ Rn we obtain

2Φ(u) = (y − Gu)>Σ−1(y − Gu) = y>⊥Σ−1y⊥ + (u† − u)>H(u† − u)

= |y⊥|2Σ−1 +
n

∑
i,j=1

(u†
i − ui)(u†

j − uj)v
>
i Hvj = |y⊥|2Σ−1 +

r

∑
j=1

λj(u†
j − uj)

2,

since v>i Hvj = λjv
>
i C−1vj = λjδij and λj = 0 for j > r. �

An immediate consequence of Proposition 6.16 (and Proposition 6.14) and λj = 0
for j > r is that

T∗µσ =
r⊗

j=1

N

(
λju†

j

σ2 + λj
,

σ2

σ2 + λj

)
⊗

n⊗
j=r+1

N (0, 1) . (6.25)

This special structure of the pushforward target measure is a special case of the
assumption made by Beskos et al. [16] where Φ decomposes as in (6.3): here, the af-
fected or informed subspace is U2 = span(v1, . . . , vr). Its C−1-orthogonal complement
U1 = span(vr+1, . . . , vn) represents the unaffected or uninformed subspace, i.e., the
subspace where the target marginal actually coincides with the reference marginal.
Such a decomposition (6.25) is also exploited in the mentioned works by Cui et al.
[37] and Spantini et al. [161]. Furthermore, Proposition 6.16 implies

lim
σ→0

mσ =
r

∑
j=1

(
v>j u†

)
vj = u†. (6.26)

Pushforward proposal kernels given the transformation T. In order to apply
the change of variables u 7→ Tu = u in the proof of Theorem 6.12 we also need a
representation of the corresponding pushforward proposal kernels T∗Pσ and T∗PΓσ .

Proposition 6.17. Let Assumption 6.11 be satisfied and T defined as in (6.20). Then
there holds for the proposal kernel Pσ and the gpCN proposal PΓσ as given in The-
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orem 6.12 that

T∗Pσ(u) =
n⊗

j=1

N
(

uj, s2γ2
j,σ

)
, T∗PΓσ(u) =

n⊗
j=1

N
(

aj,σuj, s2γ2
j,σ

)
,

where we set aj,σ :=
√

1− s2γ2
j,σ.

Proof. Recall the notation u = Tu for u ∈ Rn. Then, since T∗P(u) = P(T−1(u)) ◦
T−1 and Pσ(u) = N(u , s2Cσ), we can apply the same reasoning as in the proof of
Proposition 6.14 and obtain

T∗Pσ(u) = Pσ(u) ◦ T−1 = N(Tu , s2TCσT>),

where s2TCσT> = s2 diag(γ2
1,σ, . . . , γ2

n,σ), see the proof of Proposition 6.14 for de-
tails. Hence, the first statement is shown. Moreover, for PΓσ(u) = N(AΓσu , s2Cσ)

there holds
T∗PΓσ(u) = PΓσ(u) ◦ T−1 = N(TAΓσu , s2TCσT>).

Thus, it remains to show that TAΓσu = (a1,σu1, . . . , an,σun)>. For each k = 1, . . . , n
we get for the eigenvector vk of (6.18)

AΓσvk = C1/2
√

I − s2(I + σ−2C1/2HC1/2)−1C−1/2vk

= C1/2
√

I − s2(I + σ−2C1/2HC1/2)−1ṽk

= C1/2
(√

I − s2(1 + σ−2λk)−1ṽk

)
=
√

I − s2(1 + σ−2λk)−1vk

=
√

1− s2γ2
σ,kvk,

which yields for j = 1, . . . , n,

v>j C−1AΓσu = v>j C−1AΓσ

(
n

∑
k=1

uk vk

)
= v>j C−1

(
n

∑
k=1

uk ak,σ vk

)
= aj,σ uj,

since v>j C−1vk = δjk. Hence, TAΓσu = (a1,σu1, . . . , an,σun)> for each u ∈ Rn. �

Thus, Proposition 6.17 shows that the proposal kernels Pσ and PΓσ decrease their
proposal variance only in the subspace span(v1, . . . , vr) as σ → 0. This is exactly
the subspace on which the target measure will concentrate for decreasing σ.
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6.3. Proof of the Main Result

The proof is splitted into two parts corresponding to the two proposals Pσ and PΓσ .
In both parts we will follow a similar approach to Norton and Fox [126, Theorem 3.4
and 4.2] who examine the limit of the EAP and the ESJD of Gaussian proposals for
an increasing state space dimension n→ ∞. The adapted approach for the first part
consists of constructing two n-dimensional random vectors Uσ = (U1,σ, . . . , Un,σ)

and Vσ = (V1,σ, . . . , Vn,σ) such that (Uσ, Vσ) follows the distribution ηT
σ (du, dv) :=

T∗Pσ(u, dv) T∗µσ(du). In other words, the combined random vector (Uσ, Vσ) mod-
els two consecutive states of the Markov chain inRn generated by T∗Mσ starting at
stationarity (here T∗µσ). Then, we prove the assertion for Mσ by studying

ESJDi(T∗Mσ) = E
[
|Ui,σ −Vi,σ|2 αT

σ (Uσ, Vσ)
]

, i = 1, . . . , n,

where αT
σ denotes the reformulation of the acceptance probability α given the coor-

dinate transform T. We proceed analogously in the second part.

6.3.1. Proof for the Random Walk Proposal Pσ

Let pσ(u ; ·) : Rn → [0, ∞) denote the probability density funtion of the proposal
kernel Pσ(u) = N(u , s2Cσ), i.e., a multivariate normal density function. Then, we
easily see, that pσ(u ; v ) = pσ(v ;u) holds for each u , v ∈ Rn. This implies, that the
resulting acceptance probability ασ according to (5.8) of the µσ-reversible Metropo-
lis kernel Mσ takes the form

ασ(u , v ) = 1∧ πσ(v )

πσ(u)
, u , v ∈ Rn,

where a ∧ b denotes min(a, b) and πσ : Rn → [0, ∞) denotes the probability density
function of µσ = N(mσ, Cσ). Hence,

ασ(u , v ) = 1∧ exp
(

1
2

[
|u −mσ|2C−1

σ
− |v −mσ|2C−1

σ

])
, u , v ∈ Rn.

Furthermore, with u = Tu , v = Tv and mσ = Tmσ we get

ασ(u , v ) = 1∧ exp

(
1
2

n

∑
j=1

γ−2
j,σ

[
(mj,σ − uj)

2 − (mj,σ − vj)
2
])

=: αT
σ (u, v).

Now, let W = (W1, . . . , Wn) ∼ N(0, In) and Z = (Z1, . . . , Zn) ∼ N(0, In) be
independent. Then, we define two random vectors Uσ = (U1,σ, . . . , Un,σ) and
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Vσ = (V1,σ, . . . , Vn,σ) by

Uj,σ = mj,σ + γj,σWj, Vj,σ = mj,σ + γj,σWj + sγj,σZj, j = 1, . . . , n,

and notice that by construction there holds with ηT
σ (du, dv) = T∗Pσ(u, dv) T∗µσ(du)

that Uσ ∼ T∗µσ and (Uσ, Vσ) ∼ ηT
σ . Thus, we get

ESJDi(T∗Mσ) =
∫
Rn

∫
Rn

(ui − vi)
2αT

σ (u, v) ηT
σ (du, dv)

= E
[
|Ui,σ −Vi,σ|2 αT

σ (Uσ, Vσ)
]

.

It is easy to see that |Ui,σ −Vi,σ|2 = s2γ2
i,σZ2

i and

αT
σ (Uσ, Vσ) = 1∧ exp

(
1
2

n

∑
j=1

γ−2
j,σ

[
(mj,σ −Uj,σ)

2 − (mj,σ −Vj,σ)
2
])

= 1∧ exp

(
1
2

n

∑
j=1

[
W2

j − (W2
j + sZj)

2
])

.

Hence, recalling that Uσ ∼ T∗µσ we get VarT∗µσ(ui) = Var(Ui,σ) = γ2
i,σ and

ESJDi(T∗Mσ)

Var(Ui,σ)
=

γ2
i,σE

[
s2Z2

i

(
1∧ e

1
2 |W|2−

1
2 |W+sZ|2

)]
γ2

i,σ

= s2E
[
Z2

i

(
1∧ e

1
2 |W|2−

1
2 |W+sZ|2

)]
where the right-hand side is independent of σ and strictly positive, i.e., we have
proven a variance independent ESJD according to Definition 6.5 for the Metropolis
kernels Mσ. The calculation above implies, in particular, that

ESJD(T∗Mσ) =
n

∑
i=1

ESJDi(T∗Mσ) = s2E
[
|Z|2

(
1∧ e

1
2 |W|2−

1
2 |W+sZ|2

)]
> 0

and by (6.21) we get

ESJD(Mσ) ≥
ESJD(T∗Mσ)

‖T‖2 > 0.

Moreover, we easily see that

EAP(Mσ) = E
[
1∧ e

1
2 |W|2−

1
2 |W+sZ|2

]
> 0.

Thus, we have proven the assertions for Mσ.
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6.3.2. Proof for the gpCN Poposal PΓσ

For the gpCN proposal PΓσ(u) = N(AΓσu , s2CΓσ) we get according to (5.8) the ac-
ceptance probability ασ(u , v ) = 1 ∧ exp

(
− 1

2σ2 (Φ(u)−Φ(v ))
)

, u , v ∈ Rn. With

u = Tu , v = Tv and u† = Tu† this yields due to Proposition 6.16

ασ(u , v ) = 1∧ exp

(
1

2σ2

[
r

∑
j=1

λj(u†
j − uj)

2 −
r

∑
j=1

λj(u†
j − vj)

2

])
=: αT

σ (u, v).

We proceed analogously to the proof for Pσ and construct two random vectors
Uσ and Vσ such that with ηT

Γσ
(du, dv) := T∗PΓσ(u, dv) T∗µσ(du) we have

Uσ ∼ T∗µσ, (Uσ, Vσ) ∼ ηT
Γσ

.

Such random vectors are given by

Uj,σ = mj,σ + γj,σWj, Vj,σ = aj,σ
(
mj,σ + γj,σWj

)
+ sγj,σZj, 1 ≤ j ≤ n,

where again we assumed W, Z ∼ N(0, In) independently. Thus, similar to Section
6.3.1 we get

ESJDi(T∗MΓσ) = E
[
|Ui,σ −Vi,σ|2 αT

σ (Uσ, Vσ)
]

,

where now

|Ui,σ −Vi,σ|2 = |(1− ai,σ)Ui,σ − sγi,σZi|2 = γ2
i,σ

∣∣∣∣1− ai,σ

γi,σ
Ui,σ − sZi

∣∣∣∣2 .

Since Uσ = (U1,σ, . . . , Un,σ) ∼ T∗µσ, i.e., VarT∗µσ(ui) = Var(Ui,σ) = γ2
i,σ, we study

lim
σ→0

ESJDi(T∗MΓσ)

Var(Ui,σ)
= lim

σ→0

ESJDi(T∗MΓσ)

γ2
i,σ

= lim
σ→0

E

[∣∣∣∣1− ai,σ

γi,σ
Ui,σ − sZi

∣∣∣∣2 αT
σ (Uσ, Vσ)

]

in the following. Due to γ2
i,σ = (1 + σ−2λi)

−1 and λi = 0 iff i > r, we get P-a.s.

lim
σ→0

Ui,σ = lim
σ→0

mi,σ +

(
lim
σ→0

γi,σ

)
Wi =

u†
i , i ≤ r,

Wi, i > r,

where we used limσ→0 mi,σ = u†
i , see Proposition 6.16, and u†

i = 0 for i > r. Further,
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due to ai,σ =
√

1− s2γ2
i,σ and by applying L’Hôpital’s rule, we obtain for 1 ≤ i ≤ r

lim
σ→0

1− ai,σ

γi,σ
= lim

x→0

1−
√

1− s2x2

x
= lim

x→0

s2x
2
√

1−s2x2

1
= 0,

and for i > r there holds, since then γi,σ = 1, that

1− ai,σ

γi,σ
= 1−

√
1− s2.

Thus, we obtain P-almost surely

S2
i := lim

σ→0

∣∣∣∣1− ai,σ

γi,σ
Ui,σ − sγi,σZi

∣∣∣∣2 =

s2Z2
i , 1 ≤ i ≤ r,(

(1−
√

1− s2)Wi − sZi

)2
, i > r.

Further, we investigate the limit of the acceptance probability and obtain P-a.s.

lim
σ→0

αT
σ (Uσ, Vσ) = 1∧ lim

σ→0
exp

(
1

2σ2

r

∑
j=1

λj

[
(u†

j −Uj,σ)
2 − (u†

j −Vj,σ)
2
])

= 1∧ exp

(
1
2

r

∑
j=1

λj lim
σ→0

[
(u†

j −Uj,σ)
2

σ2 −
(u†

j −Vj,σ)
2

σ2

])
.

Moreover, there holds P-a.s.

lim
σ→0

u†
j −Uj,σ

σ
= lim

σ→0

u†
j −mj,σ − γj,σWj

σ
= lim

σ→0

u†
j −mj,σ

σ
−
(

lim
σ→0

γj,σ

σ

)
Wj,

where we obtain by Proposition 6.16 for 1 ≤ j ≤ r

lim
σ→0

u†
j −mj,σ

σ
= lim

σ→0

u†
j −

λju†
j

σ2+λj

σ
= lim

σ→0

σ2u†
j

σ(σ2 + λj)
= 0

and

lim
σ→0

γj,σ

σ
= lim

σ→0

(1 + σ−2λj)
−1/2

σ
= lim

σ→0

1√
σ2 + λj

= λ−1/2
j ,

recalling that λj > 0 for j = 1, . . . , r. We get that P-a.s.

lim
σ→0

u†
j −Vj,σ

σ
= lim

σ→0

u†
j − aj,σmj,σ

σ
−
(

lim
σ→0

aj,σγj,σ

σ

)
Zj −

(
lim
σ→0

γj,σ

σ

)
Wj.
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Since for 1 ≤ j ≤ r

lim
σ→0

γj,σ

σ
= λ−1/2, lim

σ→0

aj,σγj,σ

σ
= lim

σ→0
aj,σ lim

σ→0

γj,σ

σ
= λ−1/2,

where limσ→0 aj,σ = limσ→0

√
1− s2(1 + σ−2λj)−1 = 1, we only need to investigate

further

lim
σ→0

u†
j − aj,σmj,σ

σ
= lim

σ→0

1− λj aj,σ
σ2+λj

σ
u†

j = lim
σ→0

σ2 + (1− aj,σ)λj

σ(σ2 + λj)
u†

j

= lim
σ→0

1− aj,σ

σ(σ2 + λj)
λju†

j =
limσ→0

1−aj,σ
σ

limσ→0(σ2 + λj)
λju†

j

=

(
lim
σ→0

1− aj,σ

σ

)
u†

j .

By another application of L’Hôpital’s rule we obtain

lim
σ→0

1− aj,σ

σ
= lim

σ→0

1−
√

1− s2(1 + σ−2λj)−1

σ
= lim

σ→0

2s2σ−3λj (1+σ−2λj)
−2

2
√

1−s2(1+σ−2λj)−1

1

= lim
σ→0

s2λjσ (σ2 + λj)
−2√

1− s2(1 + σ−2λj)−1
= 0.

In summary, we have

lim
σ→0

αT
σ (Uσ, Vσ) = 1∧ exp

(
1
2

r

∑
j=1

λj lim
σ→0

[
(u†

j −Uj,σ)
2

σ2 −
(u†

j −Vj,σ)
2

σ2

])

= 1∧ exp

(
1
2

r

∑
j=1

(W2
j − (Zj + Wj)

2

)
P-a.s. ,

and, hence, by dominated convergence

lim
σ→0

ESJDi(T∗MΓσ)

Var(Ui,σ)
= E

[
S2

i

(
1∧ e

1
2 ∑r

j=1(W
2
j−(Zj+Wj)

2)
)]

,

i.e., we have shown that the Markov kernels MΓσ have a variance independent ESJD
according to Definition 6.5. The statements

lim
σ→0

ESJD(MΓσ) > 0, lim
σ→0

EAP(MΓσ) > 0

follow with the same reasoning as for Mσ. �
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6.4. Numerical Illustrations

In the first part of this section, we choose a Bayesian inference setting which satisfies
Assumption 6.11, i.e., the corresponding forward map G is linear. We apply MH al-
gorithms for approximate sampling of the posterior where we choose the same four
MH algorithms as in Section 5.6. We then investigate how the resulting acceptance
rate, expected squared jump distance and effective sample size of these MH algo-
rithms depend on the noise variance parameter σ. In particular, we will verify the
statements of Theorem 6.12 and show that even in terms of the ESS the random
walk and gpCN proposal Pσ and PΓσ , respectively, seem to perform independently
w.r.t. the noise variance.

In the second part we change the forward map G slightly such that it becomes
nonlinear and compare again the acceptance rate and mean squared step size of the
four MH algorithms. We will proceed as in Section 5.6 and linearize the forward
map at the MAPE in order to get an approximation of the target covariance which
we then employ for the random walk proposal Pσ and the gpCN proposal PΓσ . We
choose two stages of nonlinearity. At the first stage we observe simply a nonlinear
functional of the observations which we made in the linear case. This construc-
tion preserves the existence of an informed and an uninformed subspace as in the
first example, in particular, the manifold M on which the posterior concentrates
is again a linear subspace. However, due to the nonlinearity the posterior is non
longer Gaussian. At the second stage we will insert a nonlinear mapping before we
apply the same linear forward map as in the first example. The resulting nonlinear
forward is of such a kind that there exist no longer an uninformed subspace, i.e., a
decomposition of Φ as in (6.3) no longer holds. In the nonlinear case we observe
the following results:

• For the nonlinearity at the first stage the experimental results remain the same
as for the linear forward, i.e., we observe a variance independent ESJD of
those Metropolis algorithms which employ, this time, approximations of the
posterior covariance in the proposal. This suggests that the Gaussianity of the
target measure is not crucial for the statements of Theorem 6.12.

• In case of the second nonlinear example we do not observe a variance inde-
pendent ESJD for any of the four MH algorithms. However, the two MH
algorithms employing an approximation to the target covariance in the pro-
posals show a more robust dependence of the ESJD w.r.t. noise variance than
the simple random walk and pCN Metropolis algorithm.
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6.4.1. Linear Forward Maps

We consider a convolution operator A : C(0, 1)→ C(0, 1)

Au(x) :=
∫ 1

0
exp

(
− (x− y)2

2w2

)
f (y)dy, f ∈ C(0, 1),

where we choose w = 1/20 and define the forward map G : C(0, 1)→ R4 by

G f := [A f (0.2), A f (0.4), A f (0.6), A f (0.8)]> .

We then would like to infer a random function U in C(0, 1) based on noisy observa-
tions of

Y = GU + εσ, εσ ∼ N(0, σ2 I4),

where our prior for U is a truncated Brownian motion prior, i.e.,

U(x, ω) = x ξ1(ω) +
n−1

∑
k=1

√
2 sin(kπx) ξ1+k(ω),

with ξ1 ∼ N(0, 1) and ξk ∼ N(0, (k − 1)−2), k > 1, stochastically independent.
Thus, as in Section 5.6 we actually infer ξ = (ξ1, . . . , ξn) given the prior µ0 =

N(0, C) with covariance matrix C = diag(1, 1, 1/4, 1/9, . . . , 1/(n − 1)2) ∈ Rn×n,
and the forward map

ξ 7→ Gu(·, ξ), u(x, ξ) := x ξ1 +
n−1

∑
k=1

√
2 sin(kπx) ξ1+k,

where G is as given above. In the following we will always use n = 100 and the
data y = Gu† resulting from u†(x) = 5sinc(5(x − 0.5)). Moreover, for numerical
computation of A f we use a uniform discretization of [0, 1] with ∆x = 2−10 and
apply the trapezoidal rule for quadrature.

For approximate sampling from the target distribution of ξ given Y = y we em-
ploy the same four proposals in the MH algorithm as in Section 5.6, i.e.,

• RW: Gaussian random walk proposal P(ξ) = N(ξ, s2C),

• pCN: pCN proposal P(ξ) = N(
√

1− s2ξ, s2C),

• GN-RW: Gauss-Newton random walk proposal P(ξ) = Pσ(ξ) = N(ξ, s2Cσ),

• gpCN: gpCN proposal P(ξ) = PΓσ(ξ) = N(AΓσ ξ, s2CΓσ),
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where the posterior covariance matrix Cσ = CΓσ and the matrix Γσ — both de-
pending on σ — are as given in Theorem 6.12. We vary σ ∈ (0, 1] and examine
numerically the performance of the four MH algorithms in terms of the expected
acceptance probability, the expected squared jump distances in each direction and
the effective sample size for several functions of interest. In all experiments we have
chosen a burn-in length of 105 iterations and let the chain run afterwards for 106 it-
erations. The run length seemed to be sufficiently long in terms of sufficiently small
estimated sampling errors for the expected acceptance probability and expected
squared jump distances.

(a) RW proposal
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(b) pCN proposal
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(c) GN-RW proposal
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(d) gpCN proposal
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Figure 6.1.: Estimated dependence of expected acceptance probability w.r.t. proposal step-
size parameter s for several noise variance levels σ for the four Metropolis algo-
rithms employing the RW, pCN, GN-RW and gpCN proposal.

Results for the expected acceptance probability. In Figure 6.1 we present the
dependence of the expected acceptance probability w.r.t. the proposal stepsize pa-
rameter s ∈ (0, 1] for all four MH algorithms and certain values of σ. We observe
for the RW and pCN proposal a deteriorating behaviour as σ → 0, i.e., to obtain
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the same expected acceptance probability α we would have to choose smaller and
smaller proposal stepsizes s as σ tends to zero. On the other hand, the correspond-
ing behaviour in case of the GN-RW proposal seems to be independent of σ. And
for the gpCN proposal the behaviour even starts to improve when σ drops below
0.025, i.e., we even can allow for a slightly larger proposal stepsize and maintain
the same expected acceptance probability. In summary, we observe for each chosen
s a positive lower bound for the expected acceptance probability as σ → 0 in case
of the GN-RW and gpCN proposal — as predicted by Theorem 6.12 — whereas the
same does not hold for the RW and pCN proposal.

Results for expected squared jump distances in each coordinate. Analo-
gously to Figure 6.1, we display in Figure 6.2 the dependence of

min
i=1,...,n

ESJDi(Mσ)

Varµσ(ξi)
,

which we will call minimal relative ESJD (minimal RESJD). We recall that Theorem
6.12 just states that there exists a specific coordinate system w.r.t. which we should
observe a positive non-zero bound for the minimal RESJD as σ → 0. However, out
of curiosity and for simplicity we consider the minimal RESJD w.r.t. canonical basis
of Rn. Indeed, we observe in case of the GN-RW and the gpCN proposal for each
fixed s a positive lower bound the minimal RESJD as σ → 0. However, for the RW
and pCN proposal we obtain deteriorating minimal RESJD as σ → 0. This clearly
shows that the efficient exploration of the state space by MH algorithms based on
the GN-RW or gpCN proposal is independent of the spread or concentration of the
target measure.

Results for the effective sample size. In Figure 6.3 we present estimated ESS for
four quantities of interest f j : Rn → R, j = 1, . . . , 4, and their dependence on σ for
each proposal. For details of the estimation of the effective sample size we refer to
Section 5.6. Each time the corresponding MH algorithm was tuned to an expected
acceptance probability of 0.25%. The solid lines correspond to the estimated ESS
using initial monotone sequence estimators and the dashed lines to the estimated
ESS using batch means. Again, we display both curves for validation. The four
quantities of interest we are considering are given in Figure 6.3. There we denote
by v1 ∈ Rn the first eigenvector of the generalized eigenproblem given in (6.17).
Thus, quantity f4(ξ) = v>1 C−1ξ corresponds to the C−1-orthogonal projection of ξ

onto span(v1). We recall that the pushforward measure ( f4)∗µσ becomes more and
more concentrated as σ→ 0, see Proposition 6.14.



6.4. Numerical Illustrations 191

(a) RW proposal
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(b) pCN proposal
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(c) GN-RW proposal
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(d) gpCN proposal
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Figure 6.2.: Estimated dependence of the minimal RESJD mini ESJDi(Mσ)/ Varµσ(ξi) w.r.t.
stepsize parameter s for several noise variance levels σ for the four Metropolis
algorithms employing the RW, pCN, GN-RW and gpCN proposal.

We observe even in terms of the ESS that the GN-RW and the gpCN perform
independently w.r.t. the noise variance σ for all four quantities. In particular, the
gpCN again seems to improve its ESS for decreasing σ after σ dropped below 0.025.
The other two proposals show a deteriorating ESS for the first three quantities of
interest — as we would expect given the previous numerical results. However, we
notice an interesting behaviour of the ESS for f4: here, also the RW and pCN pro-
posal show a stable ESS which is apparently slightly larger than the corresponding
ESS of the GN-RW and gpCN proposal. This is surprising at the first glance. At
the second glance we might explain it as follows: since all proposal are tuned to
the same expected acceptance probability of 25%, we only compare the resulting
proposal step sizes in the direction of v1 of the four MH algorithms. For the GN-
RW and the gpCN proposal the proposal stepsize in the direction of v1 is given by

s2

1+σ−2λ1
= σ2 s2

σ2+λ1
, see Proposition 6.17, i.e., it is of orderO(σ2). On the other hand,

we know from Beskos et al. [16] that proposal stepsize of the RW proposal has to
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(a) f1(ξ) =
∫ 1

0 |u(x, ξ)|2 dx
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(b) f2(ξ) = maxx∈[0,1] u(x, ξ)
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(c) f3(ξ) = ξ2
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(d) f4(ξ) = v>1 C−1ξ
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Figure 6.3.: Estimated dependence of the ESS w.r.t. σ given functions of interst fi, i =
1, . . . , 4, for the four Metropolis algorithms based on the RW, pCN, GN-RW and
gpCN proposal (solid lines correspond to estimated ESS using IMSE, dashed
lines to results using batch means).

scale w.r.t. σ like O(σ2) in order to guarantee a fixed expected acceptance probabil-
ity. Assuming the same holds for the pCN proposal, all four proposals apply the
same scaling of the proposal step size in the direction of v1 when tuned to a com-
mon fixed expected acceptance probability. This might provide an explanation for
the observed ESS for f4.

6.4.2. Nonlinear Forward Maps

We now slightly change the forward map G to obtain a nonlinear problem, but the
other parts of the Bayesian inference setting such as prior and noise model and
numerical discretization remain the same.
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First stage. We consider the forward map Rn ∈ ξ 7→ G (u(·, ξ)) ∈ R4 where the
mapping G : C(0, 1)→ R4 is given by

G( f ) := [G1( f ), . . . , G4( f )], Gj( f ) := exp (5 A f (0.2j)) , j = 1, . . . , 4, (6.27)

and where A denotes the linear convolution operator introduced in the previous
subsection. Again, we set n = 100 and y = G(u†) with u† as in Subsection 6.4.1 and
perform the same tests for the expected squared jump distance of the four proposals
as before. We emphasize that the nonlinear forward is chosen in such a way that,
although the posterior is non-Gaussian, there still exists a linear subspace on which
the posterior marginal is not affected by changes in σ, namely,

{ξ ∈ Rn : Φ(ξ) = 0} = {ξ ∈ Rn : |y− G(u(ξ))| = 0}
= {ξ ∈ Rn : ln(yj) =

(
Au(ξ)

)
(0.2j) ∀j = 1, . . . , 4}

which is clearly a linear subspace of dimension n− 4.

For constructing the GN-RW and gpCN proposal we proceed as in 5.6 and lin-
earize the forward G at the MAPE to obtain an approximation to the target covari-
ance. For the partial derivatives of the forward map we get with φ1(x) = x and
φk(x) =

√
2 sin(kπx) for k ≥ 2 that

∂Gj(u(·, ξ))

∂ξk
= 5 Aφk(0.2k) Gj(u(·, ξ)).

The MAPE is computed as described in Section 5.6, i.e., we apply the MATLAB
function lsqnonlin to solve the corresponding minimization problem.

We observe in Figure 6.4 again a variance independent expected acceptance prob-
ability and minimal RESJD for the GN-RW and gpCN proposals as in the linear ex-
ample. The results for the RW and pCN proposal are not displayed, but they are
basically also unchanged to the linear example.

Second stage. In the second nonlinear example we first compute the exponential
exp( f ) of a function f ∈ C(0, 1) before we apply the linear convolution operator A
as in (6.4.1), i.e., we set for f ∈ C(0, 1)

G( f ) := [G1( f ), . . . , G4( f )], Gj( f ) := [A exp( f )] (0.2j), j = 1, . . . , 4. (6.28)

The rest remains unchanged compared to the first stage example. Of course, the
data y is modified, i.e., we take y = G(u†) with u† as before but with G as given
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(a) EAP for GN-RW proposal
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(b) EAP for gpCN proposal
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(c) min. RESJD for GN-RW proposal
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(d) min. RESJD for gpCN proposal
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Figure 6.4.: Estimated dependence of expected acceptance probability and minimal RESJD
w.r.t. stepsize parameter s for several noise variance levels σ in case of the first
nonlinear forward map G as given in (6.27).

in (6.28). This forward map comes a bit closer to the boundary value problem with
lognormal diffusion coefficient considered in Section 5.6, since we apply here the
convolution operator A to a lognormal random function u(·, ξ) and evaluate the
result at some points. Moreover, there exists no longer a linear subspace on which
the posterior marginal is not affected by σ in contrast to the previous nonlinear
example. We run the same test for the four proposals and linearize G again at the
MAPE to get the proposal covariances for Pσ and PΓσ . Here we have with φk as
above

∂Gj(u(·, ξ))

∂ξk
= A [φk exp(u(·, ξ))] (0.2j).

This time, we do not observe a variance independence of the minimal RESJD for the
GN-RW and gpCN proposals in Figure 6.5, but their minimal RESJD is significantly
less affected by σ → 0 than the minimal RESJD of the RW and pCN Metropolis.
These results coincide with the observations made in Section 5.6 in terms of the
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(a) RW proposal
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(b) pCN proposal
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(c) min. RESJD for GN-RW proposal
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(d) min. RESJD for gpCN proposal
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Figure 6.5.: Estimated dependence of minimal relative expected squared jump distance
w.r.t. stepsize parameter s for several noise variance levels σ in case of the sec-
ond nonlinear forward map G as given in (6.28).

ESS. Thus, also for this second nonlinear example Metropolis algorithms based on
proposals using approximations to the posterior covariance outperform standard
random walk Metropolis algorithms, although they do suffer from a decreasing
variance.
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Chapter 7

Case Study: Bayesian Inference for
the WIPP Groundwater Flow Problem

In the following we will apply the numerical methods for uncertainty quantification
and Bayesian inference established in the previous chapters to a real-world prob-
lem. The UQ problem we are considering is related to the waste isolation pilot plant
(WIPP), a deep geological repository for radioactive waste located close to Carls-
bad, New Mexico (USA), which is operating since 1999. The site of the repository
has been investigated geologically for decades and several reports and compliance
(re)certifications are publicly available on the WIPP website1. The repository itself
lies approx. 655m below ground in a halite formation. However, above the repos-
itory there exists a groundwater transmissive layer called the Culebra Dolomite.
One important scenario in the safety analysis and compliance recertification of the
repository is that radionuclides are accidently released from the repository and
transported by groundwater through the Culebra Dolomite. People are particularly
interested in the chance that these released radionuclides exit a specific rectangular
domain around the location of the repository, called the WIPP site, within 10, 000
years. This constitutes a UQ task par excellence, because (a) we only have limited
knowledge about the porosity and hydraulic conductivity of the Culebra Dolomite
layer provided by roughly 40 borehole measurements, and (b) experimental ap-
proaches via tracers to estimate the exit time are unfeasible due to the low conduc-
tivity. Thus, only numerical simulations and mathematical methods for UQ remain
to provide answers.

In the following section we will explain our UQ approach to compute the proba-
bility that released radionuclides need less than 10,000 years to exit the WIPP site.
Since we do not have access to the original computer models employed in the com-
pliance recertification reports, our physical model for the groundwater flow will
be much simpler: it is an elliptic PDE based on Darcy’s law. The same model was

1http://www.wipp.energy.gov/index.htm
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m East m North

Computational domain D
Southwest corner 602 700 3 566 500
Southeast corner 624 000 3 566 500
Northeast corner 624 000 3 597 100
Northwest corner 602 700 3 597 100
WIPP site D0

Southwest corner 610 567 3 578 623
Southeast corner 617 015 3 578 681
Northeast corner 616 941 3 585 109
Northwest corner 610 495 3 585 068
Repository x0 613 602 3 581 425

Table 7.1.: UTM coordinates of the four corners of the computational domain and the WIPP
site as well as the location of the repository.

applied by Stone [165] who also considered UQ methods for the WIPP problem.
Furthermore, we employ a two-dimensional PDE model (as also done in the recer-
tification reports), since the thickness of the Culebra Dolomite layer is rather small
(7.7m) compared to the computational domain (roughly 20km times 30km). As in
[165] we use the measurement data provided in LaVenue et al. [103].

7.1. Problem Setting and General Approach

As the computational domain D we consider the same reactangular area given in
LaVenue et al [103]. The UTM coordinates of D as well as of the WIPP site D0 are
presented in Table 7.1.

Employing Darcy’s law and the law of mass conservation we obtain the following
sytem of differential equations for the random groundwater pressure head p and
the random groundwater flux u :

u(x, ω) = −a(x, ω)∇p(x, ω) in D,P-a.s. , (7.1a)

∇·u(x, ω) = 0 in D,P-a.s. , (7.1b)

p(x, ω) = g(x) on ∂D,P-a.s. , (7.1c)

where a(x, ω) describes the random hydraulic conductivity. Moreover, we assume
deterministic Dirichlet boundary data g. Of course, the groundwater head p is also
unknown at the boundary ∂D, but for simplicity we assume g to be deterministic.
In particular, we estimate g by geostatistical methods (see next section) applied to
the pressure head measurements taken in the domain D.
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Besides the equations (7.1) determing the groundwater flow we employ the fol-
lowing simple ordinary differential equation (ODE) for modelling the transport of
radionuclides via groundwater when released at the repository location x0:

d
dt

x(t, ω) = u(x, ω), x(0, ω) = x0 ∈ D0, P-a.s. , (7.2)

i.e., we are neglecting molecular dispersion. The quantity of interest (QoI) is then
the random exit time or travel time

texit(ω) := min{t > 0 : x(t, ω) < D0 and x solves (7.2)}. (7.3)

Although the main interest for the compliance recertification of the WIPP site is
the probability P(texit < 10, 000 years), we will estimate the cumulative distribu-
tion function (CDF) of the real-valued random variable log10 texit in the subsequent
simulations. Besides this, we sometimes also present kernel density estimates for
the associated probability distribution function (PDF) of log10 texit.

In order to establish a random field model for the uncertain conducticity a we
will employ all available relevant observational data provided in LaVenue et al.
[103]. This data consists of 38 measurements of the log transmissivity log T taken
at locations xj ∈ D, j = 1 . . . , 38, and 33 noisy measurements of the groundwater
pressure head p at locations xk ∈ D, k = 1 . . . , 33, both given in LaVenue et al. [103,
Table 2.4 and Table 2.6]. Here, transmissivity is the rate at which the groundwater
flows horizontally through the transmissive rock and relates to the conductivity a
by a(x, ω) = 1

bφ T(x, ω) where b = 7.7 denotes the constant layer thickness and
φ = 0.16 the constant rock porosity. That b and φ do not vary spatially is again a
simplifying assumption. We build our random field model for a or log a, respec-
tively, following a two-step procedure:

1. Given some common assumptions on log a, we apply standard geostatisti-
cal methods to build a prior model for log a based only on the transmissivity
measurements log T(xj) = log a(xj) + log(bφ), j = 1, . . . , 38, and compute
the Karhunen-Loève expansion of this prior random field. The geostatistical
approach itself consists of two steps:

a) We estimate the parameters appearing in the assumed covariance func-
tion of log a by maximum likelihood methods.

b) We condition the random field log a on the observations of log a taken at
the measurement locations xj ∈ D, j = 1 . . . , 38, by kriging methods. This
results again in an explicit random field model for log a.
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2. We condition the random coefficients appearing in the KLE of log a on the
noisy pressure head measurements p(xk) + εk, k = 1, . . . , 33 via Bayes’ the-
orem. In particular, we will run a Markov chain Monte Carlo simulation to
generate samples of these coefficients which are approximately distributed
according to the resulting posterior measure. These samples yield (posterior)
samples of texit which we use to estimate the (posterior) CDF of log10 texit.

Numerical discretization. For solving (7.1) we apply the finite element method
to the corresponding pathwise weak form:

〈a−1(ω)u(ω), v 〉L2(D) − 〈p(ω),∇· v 〉L2(D) = −
∫

∂D
g v · n ds ∀v ∈ H(div; D),

(7.4a)

〈v,∇·u(ω)〉L2(D) = 0 ∀v ∈ L2(D), (7.4b)

P-almost surely, where n denotes the outward unit normal vector of ∂D. The finite
elements employed are Raviart-Thomas elements of lowest order, i.e., given a trian-
gulation of D of mesh size h > 0 the pressure head p(ω) is approximated by a
piecewise constant function ph(ω) and u(ω) by a piecewise linear function uh(ω)

with continuous normal component along the edges of the triangular mesh. For
details about Raviart-Thomas elements, we refer to Brezzi and Fortin [22, Chapter
III]. By the properties of the finite element space and due to 〈v,∇·u(ω)〉L2(D) = 0
the approximation uh(ω) is P-almost surely elementwise constant. This makes the
elementwise solution of the resulting particle transport equation

d
dt

xh(t, ω) = uh(x, ω), xh(0, ω) = x0 ∈ D0, P− a.s. , (7.5)

trivial and, thus, the main computational work is required for solving (7.4). We
mention that the employed triangular mesh respects the boundary ∂D0 of the WIPP
site.

Remark 7.1 (On the wellposedness of (7.2) and (7.5)). The Picard-Lindelöf theorem
ensures a unique pathwise solution x(·, ω) and xh(·, ω) of the random ODEs (7.2)
and (7.5), respectively, if u(·, ω) and uh(·, ω) are P-a.s. Lipschitz continuous. This
condition is clearly satisfied for uh(·, ω), since it is a piecewise linear function with
continuous normal component along the edges. For the pathwise solution u(·, ω)

of (7.1) the Lipschitz continuity is a more delicate issue: given that a has P-a.s. Lip-
schitz continuous realizations, then it can be shown that also u(·, ω) is Lipschitz
continuous, see the discussion in Graham et al. [77, Section 5.3]. However, our
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case where we assume that a is a lognormal random field with a Matérn covariance
function with smoothness parameter ν = 0.5, see next section, we get only Hölder
continuity with exponent less than 1/2 for the realizations of a. Thus, in that case
the existence of a unique solution of (7.2) is unclear. On the other hand, if we sub-
stitute log a by a finite truncation of its KLE, then the resulting realizations are Lip-
schitz and (7.2) well-posed, because the Karhunen-Loève eigenfunctions inherit the
regularity of the covariance function, see Schwab and Todor [158, Propostion 2.23].

7.2. Prior Random Field Model for the Log

Conductivity

Our general assumptions about log a are the following: log a is a Gaussian random
field on D with

• a mean field of the form

E [log a(x)] =
I

∑
i=1

βi fi(x) (7.6)

where fi : D → R denote known regression functions and βi, i = 0, . . . , I, the
corresponding unknown regression coefficients

• an isotropic exponential covariance function c : [0, ∞)→ [0, ∞),

cσ2,ρ(r) := σ2 exp
(
− r

ρ

)
, r ≥ 0, (7.7)

with variance parameter σ2 and correlation length parameter ρ.

Linear regression models for the mean and the exponential covariance are com-
mon models in geostatistics, see Stein [164] or Chilès and Delfiner [29]. A widely
used method for estimating the unknown parameters β = (β1, . . . , β I), σ2 and ρ

given observational data z := (log a(xj))j=1,...,38 is the maximum likelihood (ML)
method. The ML approach is as follows: since the random field log a is assumed
Gaussian, the joint probability density function of the random vector Z(ω) :=
(log a(xj, ω))j=1,...,38 is a multivariate normal density

p(z ; β, σ2, ρ) :=
1√

2π det(Cσ2,ρ)
exp

(
−1

2
(z −F>β)>C−1

σ2,ρ(z −F>β)

)
,
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where

Cσ2,ρ :=
[
cσ2,ρ(|xi − xj|)

]38

i,j=1
∈ R38×38, F =


f1(x1) . . . f I(x1)

... . . . ...
f1(x38) . . . f I(x38)

 ∈ R38×I .

The ML estimates for β, σ2 and ρ are then given by

(β̂ML, σ̂2
ML, ρ̂ML) = argmin

β∈RI , σ2>0, ρ>0
(z −F>β)>C−1

σ2,ρ(z −F>β) + log det(Cσ2,ρ).

(7.8)

The simultaneous estimation of the mean and covariance function parameters leads,
in general to an underestimation of the variance parameter σ2, see Stein [164, Sec-
tion 6.4]. An alternative approach which avoids this problem is the restricted max-
imum likelihood method (ReML) which we will describe below. But first, we choose
suitable regression functions fi for the mean model (7.6).

Choosing the regression model for the mean field. Concerning the mean field
model for log a there are several regression functions f j conceivable, e.g., a linear
trend in a coordinate direction, f (x) = x1, or the thickness d(x) of the overburden
above the Culebra layer, f (ξ) = d(x), see, e.g., Stone [165]. However, each such
regression function would imply a certain structure of the mean field which may or
may not be true. Therefore, we follow the principle of parsimony and assume the
simplest possible regression model

E [log a(x)] = β1 f1(x), f1(x) ≡ 1.

Estimating the parameters of the Matérn covariance function. After we have
chosen a linear regression model for the mean field of log a, we can estimate the
covariance function parameters independently of any “true” or estimated value of
β by the ReML method. Here, the data vector z = (log a(x1), . . . , log a(x38))

> ∈ R38

is projected on the orthogonal complement of the span of F , where F is as defined
above, by

r = (I38 −F (F>F )−1F>)z .

The resulting residual vector r , or, to be more precise, the random vector (I38 −
F (F>F )−1F>)Z with Z as above, follows again a multivariate normal distribu-
tion which depends now only on σ2 and ρ. Thus, we can compute a ML estimate
for σ2 and ρ independently of β by employing the likelihood of the residuals. For
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more details we refer again to Stein [164, Section 6.4].

Using the observational data of the log transmissivity given in LaVenue et al.
[103] we obtain by ReML the following estimates

σ̂2 = 25.78, ρ̂ = 17, 665.

Remark 7.2. We also checked if the assumed form of the covariance function (7.7)
is justified: we allowed for a covariance function belonging to the Matérn, see Ex-
ample 2.8, and performed ReML estimation for the resulting three parameters σ2,
ρ and ν. For the latter we obtained ν̂ = 0.5882, i.e., the simpler choice (7.7), which
corresponds to a Matérn covariance functions with ν = 0.5, is justified.

Conditioning Gaussian random fields and universal kriging. Given the data
zj = log a(xj), j = 1, . . . , 38, we can already apply Bayesian inference and condi-
tion our current Gaussian random field model for log a on these linear observations.
This results, again, in a Gaussian random field for log a. In particular, let us consider
an x , xj, then the random vector (log a(x), log a(x1), . . . , log a(x38)) is jointly Gaus-
sian and we can apply Theorem 4.3 to obtain the posterior distribution of log a(x)
given the data z = (log a(xj))j=1,...,38. Clearly, Theorem 4.3 can also be applied
to obtain the jointly Gaussian posterior distribution of log a at several distinct lo-
cations. Thus, the conditioned random field log a given z = (log a(xj))j=1,...,38 is
again a Gaussian random field and its mean and covariance function are given by

mz (x) := m(x) + c>σ̂2,ρ̂(x)C−1
σ̂2,ρ̂ (z −m) , x ∈ D

cz (x, y) := cσ̂2,ρ̂(|x− y|)− cσ̂2,ρ̂(x)>C−1
σ̂2,ρ̂cσ̂2,ρ̂(y), x, y ∈ D,

where cσ̂2,ρ̂ and Cσ̂2,ρ̂ are as defined above employing the ReML estimates for σ2

and ρ, and where m denotes the mean function of the unconditioned random field
log a as well as

m := (m(x1), . . . , m(x38))
> , cσ̂2,ρ̂(x) :=

(
cσ̂2,ρ̂(|x− x1|), . . . , cσ̂2,ρ̂(|x− x38|)

)>
.

We highlight that the functions mz and cz coincide with the prediction and cor-
responding prediction error covariance provided by a geostatistical method called
simple kriging which we outline in detail in Appendix D.

However, since we do not know the exact mean field m of log a, we can just use
an estimate for it in the above formulas. This is, of course, a valid approach, but we
could also apply another variant of kriging called universal kriging. For the latter
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we just need to assume a linear regression model for the mean field such as in (7.6),
in particular, we do not need to know the exact regression coefficients. Then, the
resulting universal kriging prediction is given by

log âuk(x) =

(
cσ̂2,ρ̂(x)
f (x)

)>(
Cσ̂2,ρ̂ F

F> 0

)−1(
z

0

)
, (7.9)

with cσ̂2,ρ̂, F and Cσ̂2,ρ̂ just as above and f (x) := ( f1(x), . . . , f I(x))>. Moreover, the
universal kriging error covariance takes the form

cuk(x, y) = cz (x, y) + γT(x)(F TC−1
σ̂2,ρ̂F )−1γ(y) (7.10)

where cz is as above and γ(x) := f (x)−F>C−1
σ̂2,ρ̂c(x). As we explain in Appendix

D the additional term in the universal kriging error covariance relates to the error
in the predicition caused by the ML estimation of β. Furthermore, it can be shown
that the universal kriging prediction log âuk(x) coincides with the simple kriging
prediciton for β = β̂ML being the ML estimate for β, see again Appendix D. Thus,
by universal kriging we get almost the same random field model as by simple krig-
ing, but we take into account our uncertainty about the unknown mean field of
log a.

Of course, we are also uncertain about the true parameters in the covariance func-
tion cσ2,ρ of log a, but considering and quantifying also this uncertainty is not as easy
as for the mean function and out of the scope of this thesis. However, we refer to,
e.g., Stone [165] and Remark (7.4) for an approach to quantify the uncertainty about
the covariance function.

The (final) prior random field. As our (final) prior random field model for log a
which was supposed to be based only on the observational data of log a(x), we
take the Gaussian random field with mean and covariance function resulting from
universal kriging, i.e.,

mprior(x) := log âuk(x), cprior(x, y) := cuk(x, y). (7.11)

Contour plots of the resulting mprior(x) and cprior(x, x) given the data in LaVenue
et al. [103] are provided in Figure 7.1. We note, that although we started with a
stationary Gaussian random field with an isotropic covariance function, after the
universal kriging we end up with a non-stationary random field.

Remark 7.3 (On the regularity of the resulting prior random field). In our case, since
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Figure 7.1.: Contour plots of the mean (left) and pointwise variance (right) resulting from
universal kriging for the WIPP data. The filled dots correspond to the measure-
ment locations and values.

we have chosen just a constant mean model, i.e., f (x) ≡ 1, the covariance function
resulting from universal kriging has the same regularity as the exponential covari-
ance (7.7) we started with. This follows from (7.10). In general, the smoothness
of the universal kriging covariance and, thus, also the smoothness of the associated
Karhunen-Loève eigenfunctions, depends as well on the regularity of the regression
functions fi employed for the mean. However, the smoothness of the realizations of
the kriged and unkriged random field is the same, since they are linear combinations
of the correspoding mean and KL eigenfunctions.

Remark 7.4. One can argue that our procedure for building up the prior model for
log a is not strictly Bayesian, since we used the available data of log a twice: the first
time to estimate the parameters of the covariance function and a second time for
conditioning the random field. A proper Bayesian procedure would have been to
define also priors for the parameters β, σ2 and ρ and condition these on the data
z . However, as mentioned above this is out of the scope of this thesis, since we
then could not work with just one KLE of log a but would have to compute for each
posterior sample of β, σ2 and ρ a new KLE. For a recent work on this issue we refer
to Sraj et al. [163].

Numerical computation of the Karhunen-Loève expansion. The eigenvalue
problem

Cpriorφ(x) =
∫

D
cprior(x, y) φ(y)dy = λφ(x), x ∈ D,
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can be solved numerically again by the Galerkin method and finite elements. First,
we transform it into a variational eigenvalue problem: find φ ∈ L2(D) such that for
all v ∈ L2(D)

〈Cpriorφ, v〉L2(D) =
∫

D×D
cprior(x, y) φ(y) v(x)dy dx = λ

∫
D

φ(x)v(x)dx

= λ〈Cφ, v〉L2(D).

Then, we choose finite subspaces Vh ⊂ L2(D) and seek for φh ∈ Vh such that

〈Cpriorφh, vh〉L2(D) = λ〈Cφh, vh〉L2(D), ∀vh ∈ Vh,

which yields a generalized eigenvalue problem for the coefficients φh ∈ RN of φh

w.r.t. a basis {v1, . . . , vN} of Vh:

Aφh = λh Bφh, A =
[
〈Cvi, vj〉L2(D)

]N

i,j=1
, B =

[
〈vi, vj〉L2(D)

]N

i,j=1
.

As finite subspace we employ piecewise constant functions based on a triangulation
of D. The triangulation is chosen much finer than the corresponding one for solv-
ing (7.4), i.e., we have chosen a triangulation of N = 142, 872 elements. The matrix
B is diagonal due to our choice of Vh and the large matrix A ∈ RN×N is approxi-
mated by hierarchical matrices, see Hackbusch [79]. The eigenvalue problem is then
solved via a restarted Lanczos method. We used MATLAB and C code provided by
Ingolf Busch to compute the Karhunen-Loève expansion of our prior random field
model for log a. We computed the first M = 2, 500 terms of the KLE, i.e., the M
largest eigenvalues and their associated eigenfunctions which account for 95% of
the variance of log a or, equivalently

∑
m>M

λm < 0.05 ∑
m≥1

λm,

i.e., denoting the random field resulting from truncating the KLE of log a after M
terms,

log aM(x, ω) = φ0(x) +
M

∑
m=1

√
λmφm(x)ξm(ω), ξm ∼ N(0, 1) i.i.d. , (7.12)

there holds
‖ log a− log aM‖L2(Ω;L2(D))

‖ log a‖L2(Ω;L2(D))
≤ 0.05.

The numerical decay of the eigenvalues is displayed in Figure 7.2 and coincides
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with prediction by theory, i.e., λm ≤ C m−r with r = 3
2 , cf. Remark 2.32. Moreover,

we show in Figure 7.3 some numerically computed eigenfunctions of log a. We
observe that the eigenfunctions have value 0 at the measurement locations xj of the
transmissivity, since the covariance function cprior resulting from universal kriging
attains zero there, cf. Remark D.4. We also see the increasingly oscillating behaviour
of φm as m→ ∞.
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Figure 7.2.: Decay of the computed eigenvalues in the Karhunen-Loève expansion for the
prior Gaussian random field.

Figure 7.3.: Computed eigenfunctions φm in the Karhunen-Loève expansion for the prior
Gaussian random field. The filled dots correspond to the measurement loca-
tions and values.

Prior mesh and truncation error. In this paragraph, we will quantify the error
in estimating the CDF of log10 texit caused by the finite element method and by
truncating the KLE of log a after M terms. We use the usual estimator for CDFs:
given N (independent) samples tj, j = 1, . . . , N, of texit we use the simple function
given by

F̂N(t) :=
1
N

N

∑
n=1

1(−∞,tj]
(t), t ∈ R,
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as an estimate for the true CDF of texit. The statistical error of the empirical estima-
tor F̂ can bounded due to Donsker’s theorem, see Kallenberg [96, Theorem 14.15],
which tells us that for

eN := sup
t∈R

∣∣F(t)− F̂N(t)
∣∣ (7.13)

the term
√

NeN converges in distribution to supt∈[0,1] |BB(t)|, where BB denotes a
standard Brownian bridge. Hence, in order to obtain, for instance,

P (eN ≤ 0.01) ≤ 0.95, (7.14)

we need roughly N = 20, 000 independent samples.
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Figure 7.4.: Empirical cumulative distribution functions of log10 texit resulting from 20, 000
samples of the truncated prior random field log a2500 evaluated on different
meshes.

For quantifying the mesh error, we employed several meshes with different mesh
sizes on which we solve (7.4) and (7.2). For each mesh we draw 20, 000 independent
realizations of log a2500 and compute the resulting 20, 000 samples of texit. In Figure
7.4 we show the resulting empirical CDFs where we used a mesh with mesh size
href = 200 (yields 55, 874 triangles) as reference and show results for h = 350 (18, 142
triangles), h = 500 (8, 894 triangles) and h = 700 (4, 454 triangles). In the eyeball
norm the lines for h = 350 and h = 200 are indistinguishable which is verified by a
two-sample Kolmogorov-Smirnov test, see, e.g., Williams [176, Section 8.4]. This test
computes the Kolmogorov-Smirnov statistic eN,N := supt∈R |F̂N,href

(t)− F̂N,h(t)| of the
two empirical CDFs obtained by the different meshes, and tests the null hypothesis
that both samples were drawn from the same distribution. In case of h = 350 and
h = 200 the test did not reject the null hypothesis, i.e., the discretization error is
smaller than the sampling error. Recall that for the latter (7.14) holds. Thus, it
seems sufficient for our purposes to use a mesh with mesh size parameter h = 350
in the following.
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Figure 7.5.: Empirical cumulative distribution functions of log10 texit resulting from 20, 000
samples of the truncated prior random field log aM evaluated for several M.

We run an analogouos test for quantifying the effect of the length M for truncat-
ing the KLE of log a and display the empirical CDFs resulting from different trunca-
tion lengths M in Figure 7.5. We see M = 256 yields a statistically significant trunca-
tion error, but for M = 1, 024 we pass again the two-sample Kolmogorov-Smirnov
test. However, we will continue our posterior simulations with a truncated KLE of
length M = 2, 500.

Remark 7.5. Given the large number of relevant dimensions (M > 256) it seems
challenging to provide sufficiently accurate approximations to the solution of (7.4)
by surrogate methods for random and parametric PDEs as outlined in Section 2.3.2.
Therefore, we continue our simulations by simply solving each time the weak for-
mulation (7.4) by the finite element method.

7.3. Posterior Simulations

Now, we incorporate the 33 noisy groundwater pressure head measurements yk :=
p(xk) + εk, k = 1, . . . , 33, into our random field model for log a by Bayesian in-
ference. Since we use a truncated Karhunen-Loève expansion log aM as given in
(7.12) of length M to approximate the prior random field log a, we can apply a
reparametrization, see Section 2.3, and infer the M-dimensional random vector con-
sisting of the random coefficients appearing in the truncated KL

ξ(ω) := (ξ1(ω), . . . , ξM(ω))>, ξ ∼ µ0 :=
M⊗

m=1

N(0, 1).
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Thus, the observation model reads

y = G(ξ) + ε, ε ∼ N(0, I33),

where G : RM → R33 denotes the mapping

G : ξ 7→ log aM(x, ξ) 7→ p(x, ξ) 7→ (p(xk, ξ))33
k=1,

i.e., evaluating G includes solving the mixed variational problem (7.4).

Remark 7.6. Since p(·, ξ) ∈ L2(D) we could view the measurements as L2(D)-
functionals, i.e.,

yk =
∫

Bε(xk)
p(x, ξ)dx, k = 1, . . . , 33

with Bε(x) = {y ∈ D : |x− y| < ε} and ε � 1 which might be even more realistic,
since the groundwater pressure head is always measured via a finite volume and
not precisely at a single point.

Remark 7.7. (On measurement errors) The distribution of the measurement noise ε

is not explicitly described in LaVenue et al. [103]. However, in [103, Table 2.6] the
authors provide asymmetric uncertainties for the head measurements varying from
±0.1 up to +2.6/−2.2 depending on the borehole. For simplicity we have chosen
the model ε ∼ N(0, I33) for our simulations. Moreover, LaVenue et al. provide
in [103, Table 2.4] also standard deviations for the transmissivity measurements.
They are relatively small (from 0.25 to 0.5) and, again for simplicity, we neglected
these errors in the previous section for deriving the prior random field model for
log a. However, we mention that these standard deviations can be easily included,
in, e.g., the universal kriging procedure by adding the corresponding values to the
diagonal of the matrix Cσ2,ρ in (7.9) and (7.10), respectively, which represents then
the covariance of the noisy observations Z̃(ω) := (log a(xj, ω))j=1,...,38 + ε̃.

We apply the Bayesian procedure outlined in Chapter 3 and use the Markov chain
Monte Carlo methods established in Chapter 5 for approximate sampling of the
resulting posterior distribution for ξ given y = G(ξ) + ε. Particularly, we will apply
the gpCN Metropolis algorithm with

Γ = ∇G(ξ̂CM)∇G(ξ̂CM)>

where ξ̂CM denotes an approximation to the posterior mean which was computed
by a small preliminary run using the pCN Metropolis. An alternative would be to
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compute the MAP estimate ξMAPE by numerical optimization and linearize G there.
In the next paragraph we explain how we evaluated the gradient ∇G.

Adjoint methods for mixed variational problems. Let us denote by O : L2(D)→
R33, O = (o1, . . . , o33), the linear measurement operator which maps p(ξ) ∈ L2(D)

to the observable data. By linearity there holds ∂ξm G(ξ) = O(∂ξm p(ξ)) and the
partial derivatives ∂ξm p(·, ξ) can be computed by adjoint methods. To this end, we
formally differentiate the parametric variational equations

〈a−1(ξ)u(ξ), v 〉L2(D) − 〈p(ξ),∇· v 〉L2(D) = −
∫

∂D
g v · n ds (7.15a)

〈v,∇·u(ξ)〉L2(D) = 0, (7.15b)

and get by interchanging differentiation w.r.t. ξm and integration w.r.t. x

〈a−1(ξ)∂ξmu(ξ), v 〉L2(D) − 〈∂ξm p(ξ),∇· v 〉L2(D) = −〈∂ξm a−1(ξ)u(ξ), v 〉L2(D)

(7.16a)

〈v, ∂ξm ∇·u(ξ)〉L2(D) = 0, (7.16b)

for all test functions v ∈ H(div; D) and v ∈ L2(D). Let us now define (θk(ξ), qk(ξ)) ∈
(H(div; D), L2(D)), k = 1, . . . , 33, as the solution to

〈a−1(ξ)θk(ξ), v 〉L2(D) − 〈qk(ξ),∇· v 〉L2(D) = 0 ∀v ∈ H(div; D), (7.17a)

〈v,∇· θk(ξ)〉L2(D) = ok(v), ∀v ∈ H1
0(D). (7.17b)

Then we have for each ξ ∈ R33 and eack k = 1, . . . , 33

ok
(
∂ξm p(ξ)

)
= 〈∂ξm p(ξ),∇· θk(ξ)〉L2(D)

= 〈a−1(ξ)∂ξmu(ξ), θk(ξ)〉L2(D) + 〈∂ξm a−1(ξ)u(ξ), θk(ξ)〉L2(D)

= 〈qk(ξ),∇ · ∂ξmu(ξ)〉L2(D) + 〈∂ξm a−1(ξ)u(ξ), θk(ξ)〉L2(D)

= 〈∂ξm a−1(ξ)u(ξ), θk(ξ)〉L2(D).

Thus, for computing ∇G(ξ̂CM) we need to

1. solve (7.15) for ξ = ξ̂CM,

2. solve for each k = 1, . . . , 33 the mixed problem (7.17) with ξ = ξ̂CM,
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3. evaluate for each m = 1, . . . , M the inner product

〈∂ξm a−1(ξ̂CM)u(ξ̂CM), θk(ξ̂CM)〉L2(D)

where ∂ξm a−1(x, ξ) = −
√

λmφm(x)a−1(x, ξ).

Remark 7.8. In PDE-constrained optimization, one typically only needs to compute
the action ∇G(ξ̂CM)>ζ for ζ ∈ R33. This yields that we would only have to solve
one adjoint problem, namely,

〈a−1(ξ̂CM)θk(ξ̂CM), v 〉L2(D) − 〈qk(ξ̂CM),∇· v 〉L2(D) = 0 ∀v ∈ H(div; D),

〈v,∇· θk(ξ̂CM)〉L2(D) =
33

∑
k=1

ζk ok(v), ∀v ∈ H1
0(D).

However, for our purposes, i.e., computing once Γ = ∇G(ξ̂CM)∇G(ξ̂CM)> and
employing it for the gpCN Metropolis, we simply solve once the 33 corresponding
adjoint problems.

The following numerical results were all obtained by applying the gpCN Metropo-
lis algorithm if not stated otherwise. We always tuned the proposal stepsize to
achieve an average acceptance rate of approximately 25%. Moreover, we allowed
for a burn-in of 50, 000 iterations and let the Markov chain run afterwards for 500, 000
iterations. To check, if there is evidence that our Markov chain simulation of log10 texit

has not yet converged, we applied the Geweke and Heidelberger and Welch tests, see
Remark 7.9. Both tests were passed for all presented simulations.

Remark 7.9 (On MCMC convergence diagnostics). In general, we can not verify
that a Markov chain “has converged”, i.e., if it is sufficiently close to its stationary
distribution, unless the latter is known. We refer to Geyer [69] for a discussion.
However, there are several diagnostics available to verify that a Markov chain has
not yet converged, see Cowles and Carlin [36] for an overview. The two diagnostics
we apply in this thesis are designed for scalar-valued Markov chains. Geweke’s
diagnostic computes the empirical mean of the first 0.1N iterations and the last 0.5N
iterations of a generated path of length N and tests if there is statistical evidence
that both means differ. The Heidelberger and Welch diagnostic uses the Cramer-
von Mises statistic to test if the simulated path can be considered as a realization
of a stationary process which would be the case if the Markov chain would have
already converged to its stationary distribution. Again, we refer to Cowles and
Carlin [36] for details.
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Figure 7.6.: Empirical cumulative distribution functions of log10 texit resulting from 500, 000
samples taken from MCMC simulations of the posterior random field log a2500
evaluated on different meshes.

Quantifying the mesh and truncation error. We quantify, again, the effect caused
by numerical discretization and truncation of the KLE of log a for simulations of the
posterior measure of log10 texit. To this end, we choose again several meshes and
several truncated KLEs and perform for each a MCMC simlulation. Analogously,
to Figure 7.4 and 7.5 we plot the corresponding numerical results for the empirical
posterior CDF in Figure 7.6 and 7.7, respectively. We observe a much more sensi-
tive dependence on the mesh and the length of the truncated KLE than for the prior
simulations. The behaviour w.r.t. the mesh size parameter h seems odd, i.e., we can
not yet detect a convergence of the CDFs, in particular, the empirical CDF obtained
on the coarsest mesh is closer to the reference CDF than the corresponding one ob-
tained on a finer mesh. This calls for further investigation in the future. Moreover,
we observe also a much stronger effect of the truncation of the KLE than for the
simulations w.r.t. prior distribution.

However, in the subsequent simulations we will use a mesh with mesh size pa-
rameter h = 350 and a truncation length of M = 2, 500.

Effects of conditioning. We illustrate the effects of conditioning the prior ran-
dom field on the available groundwater head measurements. In Figure 7.8 and 7.9
we show the approximated mean and variance field for the prior and the poste-
rior distribution of log aM. Concerning the variance fields we observe a significant
decrease in the pointwise variance from prior to posterior across the whole compu-
tational domain. Also the posterior mean looks more detailed than the prior mean
field, showing, for example, two subdomains of very low hydraulic conductivity
on the right-hand part of the computational domain.

The corresponding posterior mean and variance of the ξm are displayed in Figure
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Figure 7.7.: Empirical cumulative distribution functions of log10 texit resulting from 500, 000
samples taken from MCMC simulations of the posterior random field log aM for
several M.

7.10. We see that the largest changes in the mean E [ξm] from prior to posterior ap-
pears in the, say, first 100 dimensions m = 1, . . . , 100, although we can also observe
some significant changes for some higher dimensions. For the reduction in vari-
ance Var(ξm) from prior to posterior we also observe the most dramatic changes in
the first, roughly, 100 dimensions. For example, for ξ8 we obtain a reduction of the
variance from 1 (prior) to approx. 0.3732 (posterior). For some ξm it seems that the
variance increased from prior to posterior, but these observations might be simply
caused by the sampling error of the MCMC integration. That only the first variables
ξm are informed or influenced by incorporating measurements of the pressure head
is to be expected, because finitely many observations of the solution of an elliptic
PDE carry usually less information about the high-frequency modes of the diffusion
coefficient.

Moreover, concerning our quantity of interest, we present kernel density esti-
mates of the prior and posterior probability density function of log10 texit as well as
1, 000 particle paths resulting from prior and posterior simulations of log aM. Each
kernel density estimate was based on 20, 000 samples of ξ. For the prior PDF we
generated independent samples whereas for the posterior PDF we subsampled the
Markov chain, i.e., we took only each 25th state of the Markov chain after burn-
in. By the same procedure we obtained the 1, 000 samples for the particle path
simulations, i.e., this time we took only each 500th state of the Markov chain. By
subsampling we reduce the correlation between the samples, i.e., we get only a
few but less correlated samples. However, subsampling does, in general, not im-
prove the MCMC estimate, see Yue and Chan [181]. We see that the posterior PDF
of log10 texit is significantly more concentrated than the corresponding prior PDF.
Moreover, also the location, i.e., the center of the probability mass and the peak of
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Figure 7.8.: Prior and posterior mean field of log aM with M = 2500 obtained by solving
the forward map on a triangular mesh with 18, 142 elements. The filled dots
correspond to the measurement locations and values.

Figure 7.9.: Prior and posterior variance field of log aM with M = 2500 obtained by solving
the forward map on a triangular mesh with 18, 142 elements. The dots corre-
spond to the transmissivity measurement location.
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Figure 7.10.: Empirical posterior mean and variance of the random variables ξm for m =
1, . . . , 2500 obtained by solving the forward map on a triangular mesh with
18, 142 elements.

the PDF changed from prior to posterior, particularly, to smaller values. Besides
that, we can also observe much more focused particle paths in case of the poste-
rior simulations. All this illustrates the reduction in the uncertainty about log10 texit

obtained by Bayesian inference using groundwater pressure head measurements.
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Figure 7.11.: Kernel density estimates of the probability density function of log10 texit result-
ing from prior and posterior simulations (left), 1, 000 particle paths according
to the prior (middle) and posterior (right) distribution of ξ or log aM, respec-
tivly. All numerical simulations were based on a triangular mesh with 18, 142
elements.

Performance of gpCN Metropolis. We also compare the performance of the gpCN
Metropolis to the pCN Metropolis algorithm. To this end, we let both algorithms
run for a length of 500, 000 iterations after an initial burn-in phase of 50, 000 iter-
ations. Again, for both algorithms we tuned the proposal stepsize such that an
average acceptance rate of 25% was achieved. In Figure 7.12 we present the result-
ing empirical autocorrelation function of log10 texit and observe a much faster decay
in case of the gpCN Metropolis. In particular, an estimation of the corresponding
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Figure 7.12.: Estimated autocorrelation times for the quantity of interest log10 texit resulting
from simulations of the gpCN and pCN Metropolis algorithm.

integrated autocorrelation time (IACT) via initial monotone sequence estimators
(IMSE) and batch means (BM) yields the results displayed in Table 7.2. Although
the values obtained by the two estimators differ slightly, the IACT resulting from
running the gpCN Metropolis is roughly one third of the corresponding IACT re-
sulting from the pCN Metropolis. We recall that the computational work for both
Metropolis algorithms is roughly the same: the only difference is the cost for sam-
pling from the proposal, here:

PpCN(ξ, ·) = N(
√

1− s2ξ, s2 I), PgpCN(ξ, ·) = N(AΓξ, s2CΓ),

i.e., in case of the gpCN proposal we have to perform two additional matrix vector
multiplications, namely, AΓξ and LΓζ where LΓL>Γ = CΓ and ζ ∼ N(0, I). However,
compared to the work required for evaluating the forward map, i.e., solving a PDE
by the finite element method, this additional work is neglegible. In particular, the
required CPU time for running the Markov chain for 550, 000 iterations was 63.94
hours in case of the gpCN Metropolis and 63.42 hours in case of pCN Metropolis.
Thus, for estimating, e.g., the posterior mean of log10 texit the pCN Metropolis takes
three times as long as the gpCN Metropolis to achieve the same accuracy.

IACT via IMSE IACT via BM
pCN Metropolis 789.36 720.20
gpCN Metropolis 231.58 188.63

Table 7.2.: Integrated autocorrelation times for the QoI log10 texit resulting from pCN and
gpCN Metropolis simulations estimated by initial monotone sequence estimators
and batch means.
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Performance of EnKF. For comparison, we also apply the EnKF as presented in
Section 4.1.2 to the WIPP Bayesian inference problem. As ensemble size we use
N = 100, 000. We know that the results obtained by the EnKF are in general dif-
ferent to those obtained by MCMC simulations, since the EnKF yields an analysis
ensemble (ξa

1, . . . , ξa
N) which is not distributed according to the posterior measure.

In fact, we can observe this in Figure 7.13. There we compare the empirical mean
and variances of the obtained analysis ensemble as well as the empirical PDF of the
resulting ensemble (log10 texit(ξ

a
1), . . . , log10 texit(ξ

a
N)) to the corresponding results

obtained by the gpCN Metropolis algorithm. Concerning the mean and the vari-
ance of the ξm, the EnKF performs rather poorly, i.e., the resulting empirical means
and variances show significant mismatches to the true posterior moments. How-
ever, we observe the same general effect of conditioning, i.e., the first dimensions
ξm are effected the most by incorporating the observational data and, surprisingly,
the resulting PDF for the exit time shows a quite good match to the one resulting
from the MCMC simulation — which might be pure coincidence.
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Figure 7.13.: Comparison between the results obtained by gpCN Metropolis and EnKF sim-
ulations for mean and variance of ξm (left and middle) and empirical PDF of
log10 texit (right).

Test for synthetic data. Finally, we test how well we can recover a synthetic
“true” log conductivity field log a† by Bayesian inference given corresponding syn-
thetic observational data. We generate the true log conductivity field log a† by sam-
pling a Gaussian random field with constant mean m(x) ≡ −11 and covariance
function cσ2,ρ as in (7.7) with parameters σ2 = σ̂2 = 25.78 and ρ = ρ̂ = 17, 665, i.e.,
the ReML estimates for σ2 and ρ obtained from the original WIPP data. We generate
log a† on a fine triangular mesh of mesh size h = 200 (55, 874 elements) and solve
also the PDE (7.4) and the ODE (7.2) on that mesh, resulting, e.g., in a true pressue
head p†. As synthetic observational data we take the values of log a† at exactly the
same 38 measurement locations of the original WIPP transmissivity data as well as
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perturbed values of p† at the same 33 measurement locations of the original WIPP
pressure head data. The perturbations for the pressure head data were simulated
by sampling from the assumed Gaussian noise model ε ∼ N(0, I33). Then, we ap-
ply the same procedure as for the original WIPP data: we perform universal kriging
using the synthetic log conductivity measurements to obtain a prior mean and co-
variance function, compute and truncate the resulting KLE of the prior random
field and perform Bayesian inference by conditioning the M random coefficients in
the truncated KLE on the synthetic pressure head data. We omit another ReML es-
timation of the parameters σ2 and ρ in the exponential covariance model (7.7) based
on the synthetic log conductivity data and simply use the parameters σ2 = 25.78
and ρ = 17, 665. Moreover, since the universal kriging error does not depend on
the actual observed data, but only on the measurement locations, the covariance
function resulting from universal kriging given the synthetic data is the same as for
the original WIPP data. Hence, also the KL eigenfunctions and eigenvalues remain
the same and only the prior mean, i.e., the universal kriging prediction is different.
For the Bayesian inference we run again a MCMC simulation emplying a mesh of
mesh size h = 350 (18, 142 elements) for evaluating the forward map and use as
before a truncated KLE of length M = 2, 500.

Figure 7.14.: Synthetic true log conductivity field, resulting prior and posterior mean field.
The filled dots mark the location and value of the synthetic measurements.

We display the true log conductivity field, the corresponding prior mean field
obtained by universal kriging and the resulting posterior mean field obtained by
gpCN Metropolis simulation in Figure 7.14. We can observe an improvement from
prior to posterior mean, i.e., some features of the true field are better resolved by
the posterior mean field than by the prior mean field, e.g., the relatively low con-
ductivity in the lower part.

Concerning the quantity of interest we present kernel density estimates for the
PDF of log10 texit as well as particle paths resulting from prior and posterior sam-
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Figure 7.15.: Kernel density estimates of the prior and posterior PDF of log10 texit (left) and
1, 000 particle paths resulting from prior (middle) and posterior (right) samples
of log aM. The red curve in the particle path plots shows the particle path
resulting from the true log conductivity field.

ples in Figure 7.15. In all plots of Figure 7.15 we also present the corresponding
“truth”, i.e., the value of texit and the associated particle path obtained for the true
log conductivity field. Although the posterior yields a better prediction of the true
particle path, the posterior distribution of log10 texit seems to concentrate on values
smaller than the true exit time. If this is a coincidence or may have a particular
reason, is an open question for future reseach.
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Chapter 8

Conclusions and Outlook

In this thesis we provided a short introduction into uncertainty quantification for
elliptic PDEs and made theoretical as well as algorithmic contributions to numerical
methods for the associated inverse problem, i.e., for Bayesian inference in function
spaces.

In particular, we presented in Chapter 2 the key points of the existing theory for
the UQ forward problem, including random fields, function space-valued random
variables and their relation as well as the basic approach to PDEs with random data
and associated approximation methods. Then, we focused in Chapter 3 on Bayesian
inference in general Hilbert spaces, explained how Bayes’ rule and the posterior
measure relates to conditional measures and presented some stability results for the
posterior which were slight extension of the corresponding results given by Stuart
[167]. We also recalled the concept of Bayes estimators in Chapter 3 which proved
useful in the analysis and understanding of the EnKF and PCKF in Chapter 4. There
we showed that in the general Bayesian inference setting, given mild assumptions
on prior, noise and forward map,

• the random variable generated by one update of the PCKF converges in the
large polynomial basis limit in the L2-sense to the analysis variable associated
to the Bayesian inference problem,

• the empirical measure associated to the analysis ensemble generated by one
update of the EnKF converges in the large ensemble limit almost surely weakly
to the distribution of the analysis variable,

• the analysis variable coincides with the linear conditional mean estimate for
the given observational data plus the prior random error of the linear condi-
tional mean estimator.

These facts imply that both methods, EnKF and PCKF, are not suitable methods for
the UQ inverse problem, since the distribution of the analysis variable can differ
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significantly from the posterior measure. For example, only the mean of the analy-
sis variable – and, thus, also the mean of the analysis ensemble and of the random
variable provided by the PCKF – depends on the observational data. Indeed, EnKF
and PCKF can be viewed as numerical methods for the approximation of the poste-
rior mean which are typically cheaper than MCMC integration. However, there are
still several questions open for future research, e.g.,

◦ How good is the estimate for the posterior mean provided by the EnKF and
PCKF? Is it possible to establish error bounds?

◦ How do the EnKF and PCKF behave if we perform several updates for the
same data? Does an iterative procedure as presented by Iglesias et al. [92] and
Schillings and Stuart [155] improve the estimate for the posterior mean?

◦ Can we derive reasonable bounds for the difference between the posterior
measure and the distribution of the analysis variable under suitable assump-
tions?

The latter question aims at characterizing situations in which EnKF and PCKF may
be applied to get cheap yet reasonable approximations of the posterior measure.

In Chapter 5 we outlined the MCMC method for approximate sampling of poste-
rior measures and explained how Metropolis-Hastings algorithms can be defined in
infinite-dimensional Hilbert spaces. We then presented a generalization of the pCN
Metropolis algorithm which allows to use (approximations of) the posterior covari-
ance for proposing new states, since the latter potentially yield a higher statistical
efficiency. In particular, we showed

• the well-definedness of the resulting gpCN Metropolis algorithm in separable
Hilbert spaces,

• the L2
µR

-geometric ergodicity of the restricted gpCN Metropolis algorithm tar-
geting arbitrarily close approximations µR of the posterior measure µ,

• the higher efficiency of the gpCN compared to the pCN Metropolis algorithm
in case of a simple but common Bayesian inference problem.

Our approach to combine infinite-dimensional MCMC algorithms with the idea of
“geometric MCMC”, i.e., MCMC methods exploiting geometric information about
the posterior measure such as covariance or local curvature, is one of several recent
contributions to this topic [37, 104, 12]. In particular, we focus on the rather simple
pCN Metropolis whereas other authors consider generalizations of MALA or HMC
algorithms to infinite dimensions. However, we provide well-definedness of the
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algorithm under very mild conditions which are easy to verify, i.e., the operator Γ
in the definition of the gpCN proposal just has to be bounded, self-adjoint and pos-
itive. Moreover, due to the special structure of our gpCN proposal we were able to
establish a geometric ergodicity result for our MH algorithm whereas convergence
results for the proposed algorithms are missing in the above publications. Again,
there are various open question we would like to answer in the future:

◦ Can we rigorously prove, given reasonable assumptions, that for suitable Γ
the gpCN Metropolis algorithm has a higher (statistical) efficiency than the
pCN Metropolis algorithm, e.g., in terms of spectral gaps or the ESS?

◦ Does there exist an “optimal” Γ, i.e., an operator Γ∗ such that the resulting
gpCN Metropolis performs better (again in terms of larger spectral gaps or
ESS) than for any other admissible choice of Γ?

◦ Can we show geometric ergodicity of the local gpCN and local pCN Metropo-
lis algorithm?

◦ How do these local variants of the gpCN and pCN Metropolis relate and per-
form w.r.t. the algorithms proposed by Beskos et al. [12]?

◦ Can we reduce the computational cost for the local gpCN and local pCN
Metropolis algorithm by appyling Krylov methods and random determinant
estimators? (See, e.g., Saibaba et al. [150] for the latter.)

Motivated by the numerical results presented in Chapter 5, we investigated in
Chapter 6 how Metropolis-Hastings algorithms perform when the target measures
becomes more concentrated. This is an important question, since, for example, a
highly concentrated posterior measure means a small remaining uncertainty about
the unknown or, equivalently, that we have incorporated highly informative data.
Surprisingly, this question has not yet drawn much attention within the statistics
or UQ community. In Chapter 6 we presented a first attempt to define and prove
a variance independent performance of Metropolis-Hastings algorithms where the
term variance refers to the (decreasing) variance of the noise corrupting the obser-
vational data used for Bayesian inference. In particular, we provided

• a discussion about several concepts for variance independent performance
resulting in a definition of variance independent expected squared jump dis-
tance,

• a theorem about the variance independence of the expected squared jump
distance and expected acceptance probability of the Gaussian random walk
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and the gpCN Metropolis algorithm if both apply the covariance matrix of a
Gaussian target measure for proposing new states.

Numerical experiments suggested that the latter statement holds also for non-Gaussian
targets provided the target measure concentrates on a linear subspace. Open issues
for future research are

◦ the extension of the established theorem about variance independent perfor-
mance to non-Gaussian posterior measures which concentrate on linear sub-
spaces for vanishing observational noise,

◦ a better understanding of this “subspace condition” and a resulting approach
to analyze variance independent performance under more general conditions,

◦ and, based on that an analysis, guidelines on how to develop variance robust
MCMC methods.

Finally, we applied the methods studied in the previous chapters to a real-world
UQ problem in Chapter 7. We explained how geostatistical methods can be used to
build prior random field models given measurement data and showed the effects of
Bayesian inference for groundwater flow and related quantities of intest. We have
seen that taking into account noisy pressure head measurements can yield a signif-
icantly reduced uncertainty about the transport of polutants by groundwater flow.
Moreover, the proposed gpCN Metropolis provided also in this real-world applica-
tion a substantial computational gain compared to the pCN Metropolis algorithm.
Of course, we can think of further approaches to reduce the computational cost of
the MCMC simulation, e.g.,

◦ by applying multilevel MCMC methods, see, e.g., Dodwell et al. [46],

◦ by applying reduced basis methods to solve the involved PDE, see, e.g., Quar-
teroni et al. [135],

◦ by determining the, hopefully small, subspace of those coefficients in the KLE
of the random log conductivity which are significantly affected by the con-
ditioning on the observed pressure head data, cf. the approach of Cui et al.
[37], and inferring only those coefficents where we could then apply surrogate
techniques to approximate the forward map – given the number of relevant
coefficients is moderate.

Hence, this thesis provided several contributions to numerical methods for inverse
problems in UQ or Bayesian inference in function spaces, respectively, which, in
turn, also lead to interesting questions for future research.
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Appendix A

Spaces of Linear Operators

We present the definitions of trace class and Hilbert-Schmidt operators on Hilbert
spaces and state some related results. Subsequently, let H and Hi, i = 1, 2, be a
separable Hilbert spaces with inner products 〈·, ·〉H and 〈·, ·〉Hi , i = 1, 2, respec-
tively. The norms induced by these inner products are denoted by ‖ · ‖H and
‖ · ‖Hi , i = 1, 2, respectively. We recall that the space of all bounded linear opera-
tors A : H1 → H2 is denoted by L(H1,H2) and that L(H) = L(H,H) .

Definition A.1 (Positive operators). A linear operator A : H → H is called positive
if for each x ∈ H there holds 〈x, Ax〉 ≥ 0. We denote the space of all bounded,
positive and self-adjoint linear operators by L+(H).

Definition A.2 (Nuclear operators). A linear operator A : H1 → H2 is called nuclear
if there exist {an : n ∈N} ⊂ H1 and {bn : n ∈N} ⊂ H2 such that

Au =
∞

∑
n=1
〈an, u〉H1 bn ∀u ∈ H1,

and
∞

∑
n=1
‖an‖H1 ‖bn‖H2 < ∞.

We denote the space of all nuclear operators A : H1 → H2 byL1(H1,H2) and define
on L1(H1,H2) the nuclear norm

‖A‖1 := inf

{
∞

∑
n=1
‖an‖H1 ‖bn‖H2 : Au =

∞

∑
n=1
〈an, u〉H1 bn ∀u ∈ H1

}
.

We state some properties of nuclear operators provided by Peszat and Zabczyk
[132]:

Theorem A.3 ([132, Appendix A.2]). There holds:

1. The linear space L1(H1,H2) equipped with the norm ‖ · ‖1 is a Banach space.
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2. If A ∈ L1(H,H1) and B ∈ L(H1,H2), then AB ∈ L1(H,H2). The same holds,
if A ∈ L(H,H1) and B ∈ L1(H1,H2).

3. Every nuclear operator is compact.

Definition A.4 (Trace of an operator). A nuclear operator A : H → H is also called
trace class and its trace is defined by

tr (A) :=
∞

∑
n=1
〈en, Aen〉H.

Moreover, we set L1(H) := L1(H,H) and L1
+(H) := L1(H) ∩ L+(H).

The definition of tr (A) is indeed independent of the employed CONS, see [132,
Appendix A.2]. Moreover, if A ∈ L(H) is self-adjoint and compact, then A is
trace class iff its eigenvalues λn satisfy (λn)n∈N ∈ `1(N), see Reed and Simon [138,
Theorem VI.22].

Definition A.5 (Fredholm determinant). Let A ∈ L1(H) be self-adjoint with eigen-
values λn, n ∈N. Then its (Fredholm) determinant is given by

det(I + A) :=
∞

∏
n=1

(1 + λn).

Due to the trace class property and ln |1 + x| ≤ |x| for x , −1 the determinant
det(I + A) is indeed finite: assume that λn , −1 for each n ∈N, otherwise we have
det(I + A) = 0, then

|det(I + A)| =
∞

∏
n=1
|1 + λn| = exp

(
∞

∑
n=1

ln |1 + λn|
)
≤ exp

(
∞

∑
n=1
|λn|

)
= exp(tr (A)) < ∞.

Definition A.6 (Hilbert-Schmidt operators). A linear operator A : H1 → H2 is Hilbert-
Schmidt if

∞

∑
n=1
‖Aen‖2

H2
< ∞,

where {en}n∈N denotes an arbitrary CONS forH1. The space of all Hilbert-Schmidt
operators fromH1 to H2 is denoted by L2(H1,H2) and we set L2(H) := L2(H,H)

as well as L2
+(H) := L2(H) ∩ L+(H).

Again, we state some basic results about Hilbert-Schmidt operators.
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Theorem A.7 ([132, Appendix A.2], [138, Theorem VI.22], [156, Proposition B.22]).
There holds:

1. Nuclear operators are Hilbert-Schmidt operators.

2. The linear space L2(H1,H2) equipped with the inner product

〈A, B〉HS :=
∞

∑
n=1
〈Aen, Ben〉H2 ,

where {en}n∈N denotes a CONS for H1, is a Hilbert space. In particular,
〈A, B〉HS does not depend on the choice of the CONS.

3. A ∈ L1(H) if and only if A = BC with B, C ∈ L2(H).

4. If A ∈ L2(H) and B ∈ L(H), then AB, BA ∈ L2(H)

5. Every Hilbert-Schmidt operator is compact. Moreover, a self-adjoint compact
operator A ∈ L(H) is Hilbert-Schmidt iff its eigenvalues λn satisfy (λn)n∈N ∈
`2(N).
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Appendix B

Tensor Products of Hilbert Spaces

We provide the basic details about tensor products of Hilbert spaces. The pre-
sentation mainly follows Reed and Simon [138] and several results are taken from
Schwab and Gittelson [156]. For a more detailed introduction, particularly, to ten-
sor products of Banach spaces, we refer to Light and Cheney [111]. In the following
let H1 and H2 denote two Hilbert spaces with inner products and norms 〈·, ·, 〉Hi

and ‖ · ‖Hi , i = 1, 2, respectively.

Definition B.1 (Tensor product). For each x ∈ H1 and y ∈ H2 we define x⊗ y to be
a bilinear mapping x⊗ y : H1 × H2 → R given by

(x⊗ y)(u, v) := 〈x, u〉H1 〈y, v〉H2 , u ∈ H1, v ∈ H2.

The tensor product H1 ⊗H2 is then the completion of all finite linear combinations
of such bilinear forms w.r.t. the inner product

〈x1 ⊗ y1, x2 ⊗ y2〉H1⊗H2 := 〈x1, x2〉H1 〈y1, y2〉H2 , x1, x2 ∈ H1, y1, y2 ∈ H2.

We obtain for the norm ‖ · ‖H1⊗H2 induced by 〈·, ·〉H1⊗H2 onH1 ⊗H2 that

‖x⊗ y‖H1⊗H2 = ‖x‖H1 ‖y‖H2 , x⊗ y ∈ H1 ⊗H2. (B.1)

As one might suppose, the Hilbert space H1 ⊗H2 is again separable if H1 and H2

are:

Proposition B.2 ([138, Proposition II.4.2]). If {em : m ∈ N} and { fn : n ∈ N}
are CONS for H1 and H2, respectively, then {em ⊗ fn : m, n ∈ N} is a CONS for
H1 ⊗H2.

As usual, we can identify the bilinear mapping x⊗ y ∈ H1⊗H2 with a bounded
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linear operator fromH2 toH1 which we will denote again by x⊗ y:

(x⊗ y)z := 〈y, z〉H2 x, z ∈ H2, (B.2)

For the linear operator x⊗ y ∈ L(H) we obtain

‖x⊗ y‖ = ‖x‖H1 ‖y‖H2 = ‖x⊗ y‖H1⊗H2 ,

where ‖ · ‖ denotes the usual operator norm in L(H2,H1). Actually, there holds the
following isomorphism.

Proposition B.3 ([156, Section B.4]). The tensor product H1 ⊗H2 is isomorphic to
the Hilbert space L2(H2,H1) of Hilbert-Schmidt operators from H2 to H1 as de-
fined in Appendix A, i.e.,

H1 ⊗H2 ' L2(H1,H2).

We now state some further isomorphisms which are useful to us.

Theorem B.4 ([156, Theorem B.17], [111, Theorem 1.39]). Let (Ω,A, µ) denote a
measure space andH a Hilbert space, then there holds

L2
µ(Ω;H) ' L2

µ(Ω;R)⊗H.

Furthermore, let (Ωi,Ai, µi), i = 1, 2, denote two measure spaces, then we have

L2
µ1⊗µ2

(Ω1 ×Ω2;R) ' L2
µ1
(Ω1;R)⊗ L2

µ2
(Ω2;R).

A corollary of the above results is then

Corollary B.5 ([138, Theorem VI.23]). Let (Ω,A, µ) denote a measure space and set
H = L2

µ(Ω;R). Then A ∈ L(H) is Hilbert-Schmidt iff there exists a k ∈ L2(µ ⊗
µ)(Ω×Ω;R) such that

A f (x) =
∫

Ω
k(x, y) f (y) µ(dy), f ∈ H.
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Appendix C

Equivalence of Gaussian Measures on
Hilbert Spaces

The following is a collection of useful results about the equivalence of Gaussian
measures µ1 = N(m1, C1), µ2 = N(m2, C2) on a separable Hilbert space H given
in Da Prato and Zabczyk [39, Section 1]. As before, let ‖ · ‖H and 〈·, ·〉H denote the
norm and inner-product inH.

Definition C.1 (Cameron-Martin space). The Cameron-Martin space Hµ of a Gaus-
sian measure µ = N(m, C) onH is defined as the range of C1/2, i.e.,Hµ := rg(C1/2),
equipped with the inner product

〈u, v〉C−1 := 〈C−1/2u, C−1/2v〉H, ∀u, v ∈ rg(C1/2).

It is easy to see, that the Cameron-Martin space is again Hilbert space and that
Hµ is dense in H if C is nonsingular. Moreover, Hµ can be characterized as the
intersection of all measurable linear subspaces X ⊆ H with µ(X ) = 1, but if H is
infinite dimensional, then µ(Hµ) = 0. We refer to Hairer [80, Proposition 3.42] for a
proof. The space Hµ plays a crucial role for the equivalence of Gaussian measures
as rigorously expressed in the Cameron-Martin theorem below. Before stating the
result we need some more notation.

Definition C.2. Let µ = N(0, C) be a Gaussian measure on H. Then, for each u ∈
Hµ we define a random variable Wu : (H,B(H))→ (R,B(R)) by

Wu(v) := 〈C−1/2u, v〉H, v ∈ H.

By applying the Cauchy-Schwarz inequality we can verify that Wu ∈ L2
µ(H;R).

Moreover, the mapping Hµ 3 u 7→ Wu ∈ L2
µ(H;R) is an isometry, see [39, Section

1.2.4]. This allows to state the following

Definition C.3. Given a Gaussian measure µ = N(0, C) on H and u ∈ H, let
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(un)n∈N denote a sequence inHµ such that limn→∞ ‖un− u‖H = 0. We then denote
the limit of the random variables (Wun)n∈N in L2

µ(H;R) by

〈C−1/2u, ·〉 := L2
µ(H;R)- lim

n→∞
Wun .

Moreover, for each u ∈ Hµ we set 〈C−1u, ·〉 := 〈C−1/2(C−1/2u), ·〉.

We note, that the definition of 〈C−1/2u, ·〉 is independent of the choice of the
sequence (un)n∈N due to the isometry mentioned above. However, we highlight,
that for v ∈ H there holds, in general, 〈C−1/2u, v〉 , limn→∞〈C−1/2un, v〉H, since
the pointwise limit does not necessarily exist.

Proposition C.4 ([39, Proposition 1.2.7]). Let µ = N(0, C) be a Gaussian measure
onH. Then there holds∫

H
e〈C

−1/2u,v〉 µ(dv) = e
1
2‖u‖2

H ∀u ∈ H. (C.1)

Theorem C.5 (Cameron-Martin formula, [39, Theorem 1.3.6]). Let µ = N(0, C) and
µh = N(h, C) be Gaussian measures on H. Then, µ and µh are equivalent iff h ∈
Hµ = rg(C1/2) in which case

dµh
dµ

(v) = exp
(
−1

2
‖C−1/2h‖2

H + 〈C−1h, v〉
)

.

Thus, two Gaussian measures N(m, C) and N(m + h, C) are equivalent only if
h ∈ rg(C1/2). Next, we will consider the equivalence of two Gaussian measures
µ = N(0, C) and ν = N(0, Q) with C , Q. Before we state the corresponding
results, we introduce again some more notations.

Definition C.6. Let µ = N(0, C) be a Gaussian measure on H and T ∈ L1(H) be a
self-adjoint with eigenvalues tn, n ∈N. Then, we define

〈TC−1/2u, C−1/2u〉 := lim
N→∞

〈TC−1/2 ΠNu, C−1/2 ΠNu〉H, µ-a.e. ,

where ΠN denotes the orthogonal projection to the span of first N eigenvectors
e1, . . . , eN of C.

The existence of the µ-a.e.-limit in Definition C.6 is proven in Da Prato and Zabczyk
[39, Proposition 1.2.10]. Moreover, there holds

Proposition C.7 ([39, Proposition 1.2.11]). Let µ = N(0, C) denote a Gaussian mea-
sure on H and T ∈ L1(H) be self-adjoint and such that 〈Tu, u〉H < ‖u‖2

H for each
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u ∈ H. Then, we have∫
H

e
1
2 〈TC−1/2u,C−1/2u〉 dµ(u) =

1√
det(I − T)

. (C.2)

For the definition of the determinant det(I− T) we refer to Appendix A and note,
that det(I− T) , 0 follows by the assumption 〈Tu, u〉H < ‖u‖2

H, i.e., all eigenvalues
of T are smaller than 1.

Theorem C.8 ([39, Proposition 1.3.11]). Let µ = N(0, C) and ν = N(0, Q) be Gaus-
sian measures onH. If T := I−C−1/2QC−1/2 is self-adjoint, trace class and satisfies
〈Tu, u〉H < ‖u‖2

H for each u ∈ H, then µ and ν are equivalent with

dν

dµ
(u) =

1√
det(I − T)

exp
(
−1

2
〈T(I − T)−1 C−1/2u, C−1/2u〉

)
.

The assumptions of Theorem C.8 can be relaxed to I−C−1/2QC−1/2 being Hilbert-
Schmidt which is known as the Feldman-Hajek theorem. Also in this case explicit
expression of the Radon-Nikodym derivative can be established, see Bogachev [18,
Corollary 6.4.11].

Finally, we recall two simple but useful facts resulting from a change of variables.

Lemma C.9. Let 0 < s < ∞ and h ∈ H. Then, for µ = N(m, C) and ν = N(m +

h, s2C) there holds

∫
H

f (v)µ(dv) =
∫
H

f
(

1
s
(v− h)

)
ν(dv), f : H → R.

Moreover, if µ1 = N(m1, C1) and µ2 = N(m2, C2) are equivalent with dµ2
dµ1

(u) =

π(u), then the measures ν1 = N(m1 + h, s2C1) and ν2 = N(m2 + h, s2C2) are also
equivalent with

dν2

dν1
(u) = π

(
u− h

s

)
.
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Appendix D

Kriging

The term kriging is due to the French founder of the field of geostatistics Georges
Matheron. It refers to a technique for predicting the value of a random field a given
its covariance function and a set of obervations of a at known spatial locations.
The method was first introduced by the South African mining engineer D. G. Krige
[101] and yields predictions which are linear in the observations, unbiased, and op-
timal in the sense of minimizing the mean squared error (MSE). Thus, the kriging
prediction represents the best unbiased linear prediction (BLUP) or best unbiased
linear estmimatior (BLUE). Moreover, the kriging prediction coincides with a suit-
able kernel interpolation given the observed data, see Scheurer et al. [152] for a
discussion. However, we will follow the geostatistical point of view in the follow-
ing and outline two common kriging variants, simple and universal kriging. We will
also provide interpretations of both methods in the light of uncertainty quantifica-
tion. For a general introduction to kriging we refer to Chilès and Delfiner [29] or
Stein [164].

Simple kriging

Let a be a second-order random field on D ⊆ Rd with known mean m(x) = E [a(x)]
and known covariance function c(x, y) = Cov(a(x), a(y)). Further, assume that we
can observe a at n spatial locations xj ∈ D, j = 1, . . . , n. The goal is then to construct
a linear predictor (or estimator)

â(x, ω) = λ0(x) + λ(x)>a(ω), a(ω) := (a(x1, ω), . . . , a(xn, ω))> , (D.1)

where a denotes the random vector of the (yet unobserved) values of a(xj), j =

1, . . . , n, and λ0 : D → R as well as λ := (λ1, . . . , λn) : D → Rn denote weighing
functions to be determined such that for each x ∈ D and any other ν0 : D → Rn and
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ν : D → Rn we have

E [a(x)] = E [â(x)] , E
[
(a(x)− â(x))2

]
≤ E

[(
a(x)− ν0(x)− ν(x)>a

)2
]

. (D.2)

The first equation expresses the unbiasedness of the predictor and yields

λ0(x) = m(x)− λT(x)m , m := (m(x1), . . . , m(xn))
> .

The mean squared error then reads

E
[
(a(x)− â(x))2

]
= Var (a(x)− â(x)) = Var (a(x)) + Var (â(x))− 2 Cov (a(x), â(x))

= Var (a(x)) + Var
(

λ(x)>a
)
− 2 Cov

(
a(x), λ(x)>a

)
= c(x, x) + λT(x)Cλ(x)− 2λT(x)c(x),

where
C :=

[
c(xi, xj)

]n
i,j=1 , c(x) := (c(x, x1), . . . , c(x, xn))

> .

Thus, we have to minimize the quadratic form λ(x)>Cλ(x)− 2λ(x)>c(x) which
is obtained by

λ(x) = C−1c(x), x ∈ D.

Hence, we end up with

Definition D.1 (Simple Kriging prediciton and error). For a second-order random
field a on D ⊆ Rd with mean function m : D → R and covariance function c : D×
D → R the simple kriging prediction or simple kriging mean based on the observation
a = (a(x1), . . . , a(xn))

> is given by

âsk(x) := m(x) + c>(x)C−1 (a −m) (D.3)

with m , c and C as above, and the corresponding simple kriging (error) covariance
function is

csk(x, y) := Cov(a(x)− âsk(x), a(y)− âsk(y)) = c(x, y)− c(x)>C−1c(y). (D.4)

Remark D.2 (On interpolation). We easily see that for x = xj, j = 1, . . . , n, we get

âsk(xj) = m(xj) + c>(xj)C
−1 (a −m) = m(xj) + e>j (a −m) = a(xj),

where ej denotes the jth unit vector in Rn and C−1c(xj) = ej by construction.
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Thus, the simple kriging mean indeed interpolantes the values of a at the locations
xj. Again, for the relation of (simple) kriging to kernel interpolation we refer to
Scheurer et al. [152] and the references therein. Analogously, we get

csk(xj, xj) = c(xj, xj)− c(xj)
>C−1c(xj) = c(xj, xj)− c(xj)

>ej = 0, j = 1, . . . , n.

Simple kriging and conditioning. Obviously, the minimization in (D.2) is the
same one as for the linear conditional mean of U := a(x) given observations of Y :=
a = (a(x1), . . . , a(xn))

>, see Section 4.3.1. Thus, the simple kriging prediction for
a(x) based on a provides the linear conditional mean estimate for a(x) given a and
csk(x, x) is equal to the correspoding (prior) error variance of the linear conditional
mean estimator.

If a is a Gaussian random field, we know that the linear conditional mean coicides
with the conditional mean, i.e., the simple kriging prediciton â(x) yields the poste-
rior mean of a(x) given the observation of a . Moreover, by virtue of Theorem 4.3
the conditional distribution of a(x) given a is again Gaussian and the correspond-
ing variance coincides with csk(x, x). Thus, the Gaussian random field ask deter-
mined by the mean function msk(x) = âsk(x) with âsk as in (D.3) and the covariance
function csk as in (D.4) coincides with the conditioned random field a given a and
is also called the kriged random field. We observe that the pointwise variance of a
the (simple) kriged random field ask is always equal or smaller than the pointwise
variance of the unkriged random field, since C−1 is positive semi-definite.

Universal kriging

An extension of simple kriging is to allow for an unknown mean function m : D →
R of the second-order random field a on D. However, we require m to follow a
linear regression model of the form

m(x) = f (x)>β, f (x) = ( f1(x), . . . , fk(x))> , (D.5)

where f j : D → R, j = 1, . . . , k are known regression functions and β ∈ Rk yet un-
known regression coefficients to be determined. Given observations a = (a(xi))

n
i=1

one usually estimates β by a (weighted) least squares approach

β̂ := argmin
β∈Rk

|a −Fβ|2C−1
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with C as in the previous section and

F :=


f1(x1) . . . fk(x1)

...
...

f1(xn) . . . fk(xn)

 ∈ Rn×k.

The weight matrix C−1 appears naturally in the least squares problem for β̂ given
the assumed correlation structure of a. The least squares approach yields

β̂LS =
(
F>C−1F

)−1
F>C−1a .

Of course, given the estimate β̂LS we can perform simple kriging assuming the
estimated mean function m̂(x) = f (x)>β̂LS to be true. However, for universal
kriging we ask again for the best unbiased prediction â(x) of a(x) which is linear
w.r.t. a as in (D.1). Since the unbiasedness, i.e.,

E [â(x)] = λ0(x) + λ(x)>Fβ,

requires that
λ0(x) + λ(x)>Fβ = f (x)>β ∀β ∈ Rk,

it follows that
λ0(x) = 0, F>λ(x) = f (x), x ∈ D. (D.6)

Thus, the best linear unbiased predictor minimizes E
[
(a(x)− â(x))2] subject to

(D.6). By introducing a Lagrange multiplier µ(x) ∈ Rk, x ∈ D, this results in the
unconstrained minimization of the Lagrange function

L(λ, µ) := E
[
(a(x)− â(x))2

]
− 2µ(x)>

(
F>λ(x)− f (x)

)
,

= c(x, x) + λT(x)Cλ(x)− 2λT(x)c(x)− 2µ(x)>
(
F>λ(x)− f (x)

)
with c and C as in the case of simple kriging. The minimizer of L is then given by

[
λ(x)
µ(x)

]
=

[
C F

F> 0

]−1 [
c(x)
f (x)

]
,

which yields the predicitor

â(x) = λ>a =

[
λ

µ

]> [
a

0

]
=

[
c(x)
f (x)

]> [
C F

F> 0

]−1 [
a

0

]
.
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For the resulting error covariance

Cov(a(x)− â(x), a(y)− â(y)) = c(x, y)− c(x)>λ(y)− λ(x)>c(y) + λ(x)>Cλ(y)

we obtain by

λ(x)>c(y) =

[
c(x)
f (x)

]> [
C F

F> 0

]−1 [
c(y)

0

]
=

[
c(x)
f (x)

]> [
C F

F> 0

]−1 [
I
0

] [
c(y)
f (y)

]

=

[
c(x)
f (x)

]> [
C F

F> 0

]−1 [
I
0

] [
C F

F> 0

] [
C F

F> 0

]−1 [
c(y)
f (y)

]

and

λ(x)>Cλ(y) =

[
c(x)
f (x)

]> [
C F

F> 0

]−1 [
C 0
0 0

] [
C F

F> 0

]−1 [
c(y)
f (y)

]
,

the form

Cov(a(x)− â(x), a(y)− â(y)) = c(x, y)−
[
c(x)
f (x)

]T [
C F

F T 0

]−1 [
c(y)
f (y)

]
.

Definition D.3 (Universal Kriging prediciton and error). For a second-order ran-
dom field a on D ⊆ Rd with a mean function m : D → R of the form (D.5) and
a known covariance function c : D × D → R the universal kriging prediction or uni-
versal kriging mean based on the observations of a = (a(x1), . . . , a(xn))

> is given
by

âuk(x) :=

[
c(x)
f (x)

]> [
C F

F> 0

]−1 [
a

0

]
. (D.7)

with f , c, FÂğ and C as above. The universal kriging (error) covariance is defined as
the covariance function

cuk(x, y) := c(x, y)−
[
c(x)
f (x)

]T [
C F

F T 0

]−1 [
c(y)
f (y)

]
. (D.8)

Comparing simple and universal kriging. We can employ the Schur comple-
ment S := −F>C−1F to obtain a more explicit expression of λ in the case of
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universal kriging:

λ(x) =
[
C−1 +C−1FS−1F>C−1

]
c(x) +C−1FS−1f (x).

This, however, leads to

âuk(x) = f (x)>β̂LS + c>(x)C−1
(
a −F β̂LS

)
,

i.e., the universal kriging prediciton coincides with the simple kriging prediction
if we employ for the latter the least squares estimate βLS of β in the mean function
model D.5. The main difference between both kriging methods is the resulting error
covariance. Employing the Schur complement once more we obtain, in particular,

cuk(x, y) = c(x, y)− c(x)>C−1c(y) + h>(x)S−1h(y)

= csk(x, y) + h>(x)S−1h(y),

where we set h(x) := f (x)−F>C−1c(x). Due to S−1 being positiv semi-definite,
the pointwise simple kriging variance is always smaller or equal to the universal
simple kriging variance. This is not surprising, since the simple kriging assumes a
known mean function, i.e., it ignores the uncertainty about the mean of a. Univer-
sal kriging takes this uncertainty into account. In fact, the additional term in the
universal kriging error covariance allows for the following interpretation: consid-
ering the mean squared error between the simple kriging prediction âsk(x) using
the true β in the model (D.5) and the simple kriging prediction âsk,LS(x) using the
least squares estimate β̂LS instead of β, we obtain by the unbiasedness E

[
β̂LS

]
= β

that

E
[
(âsk(x)− âsk,LS(x))2

]
= E

[ ([
f >(x)β + c>(x)C−1 (a −Fβ)

]
−[

f >(x)β̂LS + c>(x)C−1
(
a −F β̂LS

) ])2
]

= E

[((
f >(x)− c>(x)C−1F

) (
β− β̂LS

))2
]

= E

[(
h(x)>

(
β− β̂LS

))2
]
= h(x)> Cov

(
β̂LS

)
h(x)

= h(x)> S−1F>C−1CC−1F︸                       ︷︷                       ︸
=I

S−1h(x)

= h>(x)S−1h(x),
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where we have used

Cov
(

β̂LS

)
= Cov

(
SF>C−1a

)
= SF>C−1 Cov(a)︸     ︷︷     ︸

=C

(SF>C−1)>.

Hence, the additional term in the universal kriging error can be viewed as the re-
sulting mean squared error in simple kriging caused by the least squares estimate
β̂LS. Thus, very loosly speaking we have

Var(a− âuk) = Var(a− âsk) + Var(âsk(x)− âsk,LS(x)).

Remark D.4 (On interpolation). By the above relation between the universal and
simple kriging prediciton and Remark D.2 we obtain that also the universal kriging
mean is an interpolant of a at the locations xi, i = 1, . . . , n. Moreover, by

[
C

F>

]> [
C F

F> 0

]−1 [
C

F>

]
=

[
C

F>

]> [
C F

F> 0

]−1 [
C F

F> 0

] [
I 0

]

=

[
C

F>

]> [
I 0

]
= C

we also get that cuk(xi, xi) = c(xi, xi)− c(xi, xi) = 0 for i = 1, . . . , n.
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[129] O. Pajonk, B. V. Rosić, A. Litvinenko, and H. G. Matthies. A deterministic
filter for non-Gaussian Bayesian estimation — applications to dynamical sys-
tem estimation with noisy measurements. Physica D: Nonlinear Phenomena,
241(7):775–788, 2012.

[130] C. Pasarica and A. Gelman. Adaptively scaling the Metropolis algorithm us-
ing expected squared jumped distance. Statistica Sinica, 20:343–364, 2010.

[131] P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains.
Biometrika, 60(3):607–612, 1973.

[132] S. Peszat and J. Zabczyk. Stochastic Partial Differential Equations with Lévy
Noise: An Evolution Equation Approach. Cambridge University Press, Cam-
bridge, UK, 2010.

[133] F. Pinski, G. Simpson, A. Stuart, and H. Weber. Algorithms for Kullback–
Leibler approximation of probability measures in infinite dimensions. SIAM
J. Sci. Comput., 37(6):A2733–A2757, 2015.

[134] J. Potthoff. Sample properties of random fields III : Differentiability. Commu-
nications on Stochastic Analysis, 4(3):335–353, 2010.

[135] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial
Differential Equations. Springer International Publishing, Cham, 2016.

[136] B. S. Rajput and S. Cambanis. Gaussian processes and Gaussian measures.
Ann. Math. Statist., 43(6):1944–1952, 1972.



254 Bibliography

[137] M. M. Rao. Conditional measures and applications. Chapman and Hall/CRC,
Boca Raton, 2010.

[138] M. Reed and B. Simon. Functional Analysis, volume 1 of Methods of Modern
Mathematical Physics. Academic Press, San Diego, 2nd edition, 1980.

[139] G. Roberts and J. Rosenthal. Geometric ergodicity and hybrid Markov chains.
Electron. Comm. Probab., 2(2):13–25, 1997.

[140] G. Roberts and J. Rosenthal. Optimal scaling of discrete approximations to
Langevin diffusions. J. R. Stat. Soc. Ser. B, 60(1):255–268, 1998.

[141] G. Roberts and J. Rosenthal. Optimal scaling for various Metropolis–Hastings
algorithms. Stat. Sci., 16(4):351–367, 2001.

[142] G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin dis-
tributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.
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