
Dynamics of high-dimensional
covariance matrices

Dissertation

zur Erlangung des akademischen Grades

Dr. Rer. Nat.

im Fach Mathematik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät

Humboldt-Universität zu Berlin von

M.Sc. Valeriy Avanesov

Präsidentin der Humboldt-Universität zu Berlin:

Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:

Prof. Dr. Elmar Kulke

Gutachter:

1. Prof. Dr. Vladimir Spokoiny

2. Dr. Alexandra Carpentier

3. Prof. Dr. Denis Chetverikov

Tag der mündlichen Prüfung: 30. Januar 2018
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Abstract

We consider the detection and localization of an abrupt break in the covariance structure
of high-dimensional random data. The study proposes two novel approaches for this
problem. The approaches are essentially hypothesis testing procedures which requires a
proper choice of a critical level. In that regard calibration schemes, which are in turn
different non-standard bootstrap procedures, are proposed. One of the approaches relies
on techniques of inverse covariance matrix estimation, which is motivated by applications
in neuroimaging. A limitation of the approach is a sparsity assumption crucial for precision
matrix estimation which the second approach does not rely on. The description of the
approaches are followed by a formal theoretical study justifying the proposed calibration
schemes under mild assumptions and providing the guaranties for the break detection.
Theoretical results for the first approach rely on the guaranties for inference of precision
matrix procedures. Therefore, we rigorously justify adaptive inference procedures for
precision matrices. All the results are obtained in a truly high-dimensional (dimensionality
p ≫ n) finite-sample setting. The theoretical results are supported by simulation studies,
most of which are inspired by either real-world neuroimaging or financial data.





Zusammenfassung

Wir betrachten die Detektion und Lokalisation von plötzlichen Änderungen in der Ko-
varianzstruktur hochdimensionaler zufälliger Daten. Diese Arbeit schlägt zwei neuartige
Ansätze für dieses Problem vor. Die Vorgehensweise beinhaltet im Wesentlichen Ver-
fahren zum Test von Hypothesen, welche ihrerseits die Wahl geeigneter kritischer Wer-
te erfordern. Dafür werden Kalibrierungsschemata vorgeschlagen, die auf unterschiedli-
chen Nichtstandard-Bootstrap-Verfahren beruhen. Der eine der beiden Ansätze verwen-
det Techniken zum Schätzen inverser Kovarianzmatrizen und ist durch Anwendungen
in der neurowissenschaftlichen Bildgebung motiviert. Eine Beschränkung dieses Ansatzes
besteht in der für die Schätzung der

”
Precision matrix“ wesentlichen Voraussetzung ih-

rer schwachen Besetztheit. Diese Bedingung ist im zweiten Ansatz nicht erforderlich. Die
Beschreibung beider Ansätze wird gefolgt durch ihre theoretische Untersuchung, welche
unter schwachen Voraussetzungen die vorgeschlagenen Kalibrierungsschemata rechtfertigt
und die Detektion von Änderungen der Kovarianzstruktur gewährleistet. Die theoreti-
schen Resultate für den ersten Ansatz basieren auf den Eigenschaften der Verfahren zum
Schätzen der Präzisionsmatrix. Wir können daher die adaptiven Schätzverfahren für die
Präzisionsmatrix streng rechtfertigen. Alle Resultate beziehen sich auf eine echt hochdi-
mensionale Situation (Dimensionalität p ≫ n) mit endlichem Stichprobenumfang. Die
theoretischen Ergebnisse werden durch Simulationsstudien untermauert, die durch reale
Daten aus den Neurowissenschaften oder dem Finanzwesen inspiriert sind.
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Chapter 1

Introduction

The analysis of high-dimensional time series is crucial for many fields including neu-
roimaging and financial engineering. There, one often has to deal with processes involv-
ing abrupt structural changes which necessitates a corresponding adaptation of a model
and/or a strategy. Structural break analysis comprises determining if an abrupt change
is present in the given sample and if so, estimating the change-point, namely the mo-
ment in time when it takes place. In literature both problems may be referred to as
change-point or break detection. In this study we will be using terms break detection and
change-point localization respectively in order to distinguish between them. The majority
of approaches to the problem consider only a univariate process [17] [1]. However, in
recent years the interest for multi-dimensional approaches has increased. Most of them
cover the case of fixed dimension [35] [33] [2] [51] [52]. Some approaches [13, 29, 14] feature
high-dimensional theoretical guaranties but only the case of dimensionality polynomially
growing in sample size is covered. The case of exponential growth has not been considered
so far.

In order to detect a break, a test statistic is usually computed for each point t (e.g.
[35]). The break is detected if the maximum of these values exceeds a certain threshold. A
proper choice of the latter may be a tricky issue. Consider a pair of plots (Figure 1.1) of
the statistic A(t) defined in Section 3.2. It is rather difficult to see how many breaks are
there, if any. The classic approach to the problem is based on the asymptotic behaviour of
the statistic [17] [1] [2] [29] [8] [52]. As an alternative, permutation [29] [35] or parametric
bootstrap may be used [29]. Clearly, it seems attractive to choose the threshold in a
solely data-driven way as it is suggested in the recent paper [13], but a careful bootstrap
validation is still an open question.

In the current study we are interested in a particular kind of a break – an abrupt trans-
formation in the covariance matrix – which is motivated by applications to neuroimaging
and finance. The covariance structure of data in functional Magnetic Resonance Imaging
has recently drawn a lot of interest, as it encodes so-called functional connectivity net-
works [46] which refer to the explicit influence among neural systems [23]. The analysis
of the dynamics of these networks is particularly important for the research on neural
diseases and also in the context of brain development with emphasis on characterizing the
re-configuration of the brain during learning [6].

Analogously, in finance the dynamics of the covariance structure of a high-dimensional
process modelling exchange rates and market indexes is crucial for a proper asset allocation
in a portfolio [16, 7, 18, 37].

One approach allowing for the change-point localization is developed in [33], the cor-
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responding significance testing problem is considered in [2]. However, neither of these
papers address the high-dimensional case.

A widely used break detection approach (named CUSUM) [14, 2, 29] suggests to
compute a statistic at a point t as a distance of estimators of some parameter of the
underlying distributions obtained using all the data before and after that point. This
technique requires the whole sample to be known in advance, which prevents it from
being used in online setting. In order to overcome this drawback we propose the following
augmentation: choose a window size n ∈ N and compute parameter estimators using
only n points before and n points after the central point t (see Section 3.2 for formal
definition). Window size n is an important parameter and its choice is case-specific (see
Section 3.4 for theoretical treatment of this issue). Using small window results in high
variability and low sensitivity, while large window implies higher uncertainty in change-
point localization yielding the issue of a proper choice of window size. The multiscale
nature of the proposed methods enables us to incorporate the advantages of narrower and
wider windows by considering multiple window sizes at once in order for wider windows
to provide higher sensitivity while narrower ones improve change-point localization.

The contribution of our study is the development of a pair of novel break detection
approaches which are

• high-dimensional, allowing for up to exponential growth of the dimensionality with
the window size

• suitable for on-line setting

• multiscale, attaining trade-off between break detection sensitivity and change-point
localization accuracy

• using a fully data-driven threshold selection algorithm rigorously justified under
mild assumptions

• featuring formal sensitivity guaranties in high-dimensional setting

The thesis is comprised of three Chapters. Chapter 3 (based on [5]) establishes the-
oretical results for pre-existing approaches for estimation and inference of sparse high-
dimensional precision matrices. These results are crucial for the construction and the-
oretical justification of a novel break detection and change-point localization approach
which Chapter 2, based on the paper [4], is devoted to. This approach is specifically
designed for break detection in a functional connectivity network. A modification of the
approach, not relying on precision matrix inference, featuring a wider application range
is introduced and analyzed in Chapter 4, which, in turn, is based on the paper [3]. Proofs
for Chapters 2, 3 and 4 are collected in Appendices A, B and C. Appendix D lists known
results essential for our theoretical study.
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Figure 1.1: Plots of test statstics A(t) computed on synthetically generated data without
(left) and with a single change-point at t = 150 (right). Clearly, the choice of a threshold
is not obvious.
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Chapter 2

Precision matrix inference

2.1 Introduction

This chapter is devoted to analysis of adaptive approaches for high-dimensional precision
matrix estimation and inference. Specifically, in this chapter we consider an i.i.d. sample
X1, ... Xn ∈ R

p with zero mean, where n is the length of the fMRI time series. Let X
be the n× p matrix of samples. The FC network is then characterized by the covariance
matrix Σ or the precision matrix Θ = Σ−1. An estimate of the precision matrix is obtained
by minimizing over the cone Sp

++ of positive-definite p× p matrices:

arg min
Θ∈Sp

++

[

tr(ΘΣ̂)− log detΘ + pλ(Θ)
]

with some suitable penalization pλ(Θ) and the empirical covariance Σ̂ = 1
n
XTX.

In order to address the problem ℓ1-penalization approaches which were initially sug-
gested by [47] may be used imposing the required sparsity on the estimate:

Θ̂ = arg min
Θ∈Sp

++

[

tr(ΘΣ̂)− log detΘ + ‖Λ ∗Θ‖1
]

(2.1)

where Λ is a p×p matrix of non-negative off-diagonal elements and zero diagonal elements
and · ∗ · denotes matrix element-wise product.

There are consistency results of such estimators for samples of finite size [42] along
with asymptotic confidence intervals for the elements of the true precision matrix for
the case of equal amount of penalization applied to each element of the precision matrix
[27]. On the other hand, there is some experimental evidence that adaptive penalization
approaches may perform better [19].

2.1.1 Contribution

In this chapter, we provide consistency results for adaptive ℓ1-penalized estimators of
precision matrices (SCAD graphical lasso [54] [19] [20] and classical adaptive graphical
lasso [53] [19]) using the approach by [42]. We also construct confidence intervals based
on these estimators for the elements of the true precision matrix following the technique
from [27]. We show, that the bias introduced by the penalization and the non-normality
of the constructed confidence intervals depends only on the largest amount of penalization
applied to non-zero elements of the true precision matrix. In particular, denoting θmin the
minimal absolute value of non-zero elements of the true precision matrix:
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• All the results are obtained in a finite-sample-size setting

• We show improved rates of convergence and non-normality of confidence intervals
based on classical adaptive graphical lasso in comparison with graphical lasso for a
suitable lower bound for θmin.

• We demonstrate that the SCAD penalty may not be applicable if p > n since the
corresponding optimization problem might be not well-defined

• Nevertheless, we also improve the mentioned rates for SCAD and its one-step ap-
proximation in the case p ≤ n for a suitable lower bound for θmin

• We introduce a new SCADǫ penalty in order to overcome the aforementioned limi-
tation of SCAD for p > n. For this penalty as well as for its one-step approximation
we provide improved theoretical results in comparison to those for graphical lasso
for a suitable lower bound for θmin

• The obtained rates are never worse than the known rates for non-adaptive graphical
lasso for SCAD (if p ≤ n), SCADǫ and their one-step approximations

• The aforementioned results are supported by an extensive application-driven sim-
ulation study of a functional connectivity network of the human brain based on
experimental functional Magnetic Resonance Imaging data

2.1.2 Chapter organization

The chapter is organized as follows. Section 2.1.2 introduces the notation used through-
out the chapter. Section 2.2 gives the definition and consistency results for adaptive
approaches such as the classical adaptive graphical lasso and SCAD lasso respectively
while Section 2.3 comes up with the definition of a de-sparsified estimator and provides
the results estimating its distribution which gives rise to confidence intervals construction
along with hypotheses testing. Finally, Section 2.4 describes our experimental study. In
Section A we provide the proofs of the claimed results.

Notation

We denote the empirical covariance matrix as Σ̂ = 1
n
XTX, the true covariance matrix as

Σ∗ and their difference as W = Σ̂−Σ∗. Throughout the chapter we assume that the true
precision matrix Σ∗−1 exists and we denote it as Θ∗.

Also define the set of non-zero entries of Θ∗ as S = {(i, j) : Θ∗
ij 6= 0} and its comple-

ment as Sc = {1..p}2 \ S.
We use the following notations for matrix norms: ‖A‖1 =

∑

i,j |Aij|, ‖A‖∞ = maxi,j |Aij|
and |||A|||∞ = |||AT |||1 = maxj ‖A·j‖1.

For a matrix A its vectorization is denoted as Ā or, equivalently as vecA .
Let Γ∗ = Σ∗ ⊗ Σ∗ where · ⊗ · stands for Kronecker product, κΣ∗ = |||Σ∗|||∞, κΘ∗ =

|||Θ∗|||1 and also denote a norm of sub-matrix Γ∗
SS as κΓ∗ = |||(Γ∗

SS)
−1|||∞.

Our main results assume lower bounds on the smallest absolute value of non-zero
elements of the true precision matrix which is denoted as θmin = mini,j:Θij 6=0

∣
∣Θ∗

ij

∣
∣.
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Other values we keep track of are the maximum number of non-zero elements in a
row of the true precision matrix d = maxi |{j : Θ∗

ij 6= 0}| and the minimal penalization
parameter corresponding to zero elements of the true precision matrix ρ = min

(i,j)∈Sc
Λij.

2.2 Consistency results

Assumption 1 (Irrepresentability condition). Denote an active set

S :=
{
(i, j) ∈ 1..p× 1..p : Θ∗

ij 6= 0
}

and define a p2 × p2 matrix Γ∗ := Θ∗ ⊗ Θ∗ where ⊗ denotes Kronecker product. Irrepre-
sentability condition holds if there exists ψ ∈ (0, 1] such that

max
e/∈S

∥
∥Γ∗

eS(Γ
∗
SS)

−1
∥
∥
1
≤ 1− ψ.

The irrepresentability condition is usually interpreted under normality as follows [27]
[42]. Define a centered random variable for each edge (i, j) ∈ {1..p}2

Y(i,j) = X1iX1j − E[X1iX1j]

then covariances of these variables may be expressed in terms of matrix Γ∗ as

cov(Y(i,j), Y(k,l)) = Γ∗
(i,j),(k,l) + Γ∗

(j,i),(k,l).

Assumption 1 requires low correlation between edges from active set S and its complement
Sc. The higher the constant ψ is, the stricter upper bound is assumed.

2.2.1 Adaptive graphical lasso

Definition

Let Θ̂init be a solution of optimization problem (2.1) with penalization parameters Λij =
λinit for i 6= j.

Then, the adaptive graphical lasso estimator Θ̂ada is defined as the solution of the
optimization problem (2.1) with tuning parameters Λada

ij = λinit
1

|Θ̂init
ij |γ for i 6= j where

γ ∈ (0, 1] (γ = 0.5 is usually used). If Θ̂init
ij = 0, we define Λij = +∞, thereby excluding

the corresponding variable from optimization and forcing it to equal zero.

Consistency result

Theorem 1. Consider a distribution satisfying Assumption 1 with some ψ ∈ (0, 1]. Fur-
thermore, suppose the following sparsity assumption holds for some δn:

d ≤ δn

6
(

δn +
λn

(θmin−rinit)γ

)2

max{κΓ∗κΣ∗ , κ2
Γ∗κ3

Σ∗}
(2.2)

where rinit := 2κΓ∗ (δn + λinit) and λinit =
8
ψ
δn. Also assume that

θmin > r := 2κΓ∗

(

δn +
λn

(θmin − rλ)γ

)

(2.3)

11



Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

the following holds:
∥
∥
∥Θ̂ada −Θ∗

∥
∥
∥
∞

≤ r and Θ∗
ij = 0 ⇔ Θ̂ada

ij = 0.

Remark 1. The main results in the chapter are conditioned on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

.

The lower bound for the probability of the set T under sub-Gaussianity Assumption D.4.3
is provided by Lemma 41.

2.2.2 SCAD graphical lasso

Definition

SCAD was suggested in [20] and was applied for sparse precision matrix estimation in
[32] as an alternative adaptive penalization approach.

Consider the following optimization problem:

Θ̂ = arg min
Θ∈Sp

++

[

tr(ΘΣ̂)− log detΘ +
∑

i 6=j

SCADλ,a(|Θij|)
]

for some positive λ and a (usually a = 3.7 is used) with the first derivative of SCADλ,a(·)
defined as

SCAD′
λ,a(x) = λ

{

I(x ≤ λ) +
(aλ− x)+
(a− 1)λ

I(x ≥ λ)

}

where (·)+ denotes a positive cut: (x)+ = max{0, x}. In order to solve this non-convex
optimization problem, the following approximate recurrent algorithm was suggested in
[19]

Θ̂(k) = arg max
Θ∈Sp

++

tr(ΘΣ̂)− log detΘ +
∑

i,j

SCAD′
λ,a(|Θ̂(k−1)

ij |)|Θij| (2.4)

where Θ̂(0) is obtained as a solution of (2.1) with Λij = λ ∀i 6= j. Denote the limiting

point of the algorithm as Θ̂SCAD = lim
k→∞

Θ̂(k). On the other hand the paper [54] provides

asymptotic properties of one-step estimate Θ̂OSSCAD = Θ̂(1).
As one can see, SCAD′

λ,a(x) = 0 for x large enough, so the problem (2.4) may have no

optimum in case if Σ̂ is singular. Therefore, in order to establish consistency results for
SCAD penalty we have to assume that Σ̂ is non-singular. However, this rather restrictive
assumption may be dropped if we replace SCAD′

λ,a(·) with

SCAD′
ǫ,λ,a := max{SCAD′

λ,a(x), ǫ}

for some positive ǫ. In the same way denote the limiting point as Θ̂SCADǫ and one-step
estimate as Θ̂OSSCADǫ .

SCAD graphical lasso consistency results

Theorem 2. Consider a distribution satisfying Assumption 1 with some ψ ∈ (0, 1]. Fur-
thermore, suppose the following sparsity assumption holds for some δn:

d ≤ δn
6(δn + λn)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ3
Σ∗}

12



and assume that

θmin > r := 2κΓ∗(δn + λn).

Also suppose that the matrix Σ̂ is non-singular. Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

the following holds:

∥
∥
∥Θ̂OSSCAD −Θ∗

∥
∥
∥
∞

≤ 2κΓ∗

(
δn + SCAD′

λ,a(θmin − r)
)

and Θ∗
ij = 0 ⇔ Θ̂OSSCAD

ij = 0.

Theorem 3. Assume the conditions of Theorem 2. Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

the following holds:

∥
∥
∥Θ̂SCAD −Θ∗

∥
∥
∥
∞

≤ 2κΓ∗

(

δn +

(
aλn − θmin + 2κΓ∗δn

2κΓ∗ + a− 1

)

+

)

and Θ∗
ij = 0 ⇔ Θ̂SCAD

ij = 0.

The counterparts of these two theorems for SCADǫ penalty may be proven in a rather
similar way.

Theorem 4. Consider a distribution satisfying Assumption 1 with some ψ ∈ (0, 1]. Fur-
thermore, suppose the following sparsity assumption holds for some δn:

d ≤ δn
6(δn + λn)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ3
Σ∗}

Also assume that

θmin > r := 2κΓ∗(δn + λn)

Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

for some ǫ > 0 the following holds:

∥
∥
∥Θ̂OSSCADǫ −Θ∗

∥
∥
∥
∞

≤ 2κΓ∗ (δn + SCADǫ,λ,a(θmin − r))

and Θ∗
ij = 0 ⇔ Θ̂OSSCADǫ

ij = 0.

Theorem 5. Assume the conditions of Theorem 4 holds. Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

the following holds:

∥
∥
∥Θ̂SCADǫ −Θ∗

∥
∥
∥
∞

≤ 2κΓ∗

(

δn +

(
aλn − θmin + 2κΓ∗δn

2κΓ∗ + a− 1

)

+,ǫ

)

and Θ∗
ij = 0 ⇔ Θ̂SCADǫ

ij = 0 where (x)+,ǫ = max{x, ǫ}.
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2.3 Inference result

In this section we aim to construct confidence intervals for true values of the precision
matrix Θ∗

ij. In order to do so we mostly follow the approach suggested in [48] and apply
it to the problem of estimation of high-dimensional precision matrix introduced in [27].
Consider the stationarity condition corresponding to the problem (2.1):

−Θ̂−1 + Σ̂ + Λ ∗ Z = 0

where Z ∈ ∂ ‖Θ‖1. Multiply on both sides by Θ̂:

Θ̂Σ̂Θ̂− Θ̂ + Θ̂(Λ ∗ Z)Θ̂ = 0.

By rearranging obtain

Θ̂ + Θ̂(Λ ∗ Z)Θ̂ = Θ∗ −Θ∗WΘ∗ + r (2.5)

where

r = −(Θ̂−Θ∗)WΘ∗ − (Θ̂Σ̂− Ip)(Θ̂−Θ∗).

Finally, we define a de-sparsified estimator as

T̂ := 2Θ̂− Θ̂Σ̂Θ̂

= Θ̂ + Θ̂(Λ ∗ Z)Θ̂
= Θ∗ −Θ∗WΘ∗ + r.

(2.6)

Theorem 6. Consider a distribution satisfying Assumption 1 with some α ∈ (0, 1], let Θ̂
be the solution of optimization problem (2.1). Suppose also the following restrictions on
the penalization parameters Λ hold:

‖ΛS‖∞ ≤ 8

α
δn and ρ ≥ 8

α
δn.

Furthermore, suppose the following sparsity assumption holds:

d ≤ δn
6(δn + ‖ΛS‖∞)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ3
Σ∗} .

Moreover, suppose, pT := P {T } > 0. Then, for all (i, j) the following upper and lower
bounds hold:

sup
c

∣
∣
∣P

{√
n(T̂ij −Θ∗

ij)/σij ≤ c | T
}

− Φ(c)
∣
∣
∣ ≤

(

Φ

(
R
√
n

σij

)

− 1

2

)

+
Aµij3

σ3
ij

√
n
+ 2(1− pT )

where A < 0.4748, Φ(·) is the c.d.f. of a standard normal distribution, σ2
ij = V ar[Θ∗

iXkΘ
∗
jXk−

Θ∗
ij] and µij3 is the third moment of |Zijk| (see (A.17)) and R is defined by (A.15).

14



Remark 2. The residual term R involved in the statement of Theorem 6 is quite compli-
cated. Here we note that under sub-Gaussianity Assumption D.4.3 for n, d(n) → +∞ it
holds that

R = O

(
d2

n3/2

)

and hence, R is small (R = o(1)), if

d = o
(
n3/4

)
.

Remark 3. Theorem 6 applies to solutions of (2.1) which all of Θ̂ada, Θ̂SCAD and Θ̂SCADǫ

are. Moreover, the residual term R involved in the statement of Theorem 6 is smaller for
smaller rΛ which can be reduced using either Θ̂ada, Θ̂SCAD or Θ̂SCADǫ (see results in
Section 2.2).

2.4 Simulation experiments

2.4.1 Functional connectivity network from experimental data

For our experiments we rely on a functional connectivity network that we determined from
an experimental fMRI dataset in a recent study [40] that examined learning-dependent
plasticity in the human auditory cortex. There, fMRI data with a total of 1680 EPI
volumes were acquired with a 3 T Siemens MAGNETOM Trio MRI scanner (Siemens AG,
Erlangen, Germany) with an eight-channel head array. We randomly selected a dataset
from a single subject. The subject performed a learning experiment with auditory stimuli,
number comparison task and reward. The details of the experiment and data acquisition
can be found in [40]. We do not repeat them here, because we used the fMRI data only to
obtain a realistic network with a natural sparsity pattern for the simulation experiments.

In order to define suitable nodes for the functional connectivity network we used the
parcellation atlas defined in a recent study [21] which is available online at the BioImage
Suite NITRC page 1. We normalized the atlas to the motion-corrected functional dataset
using SPM12 2 with standard parameters. Mean time courses of the p = 256 regions-
of-interest were determined to estimate a functional connectivity network. In order to
exclude changes in the network due to the learning effect in the experiment, only the last
n = 300 time points were used. The network analysis was conducted on the residuals of
linear modeling common in fMRI experiments [39]. This way a matrix X∗ of size 256×300
of real data was acquired.

2.4.2 Software

All simulations were performed with the R language and environment for statistical com-
puting and graphics [41]. The data and the R script running the simulations are available
at http://www.wias-berlin.de/preprint/2229/codeANDdata_2229.zip. The follow-
ing R packages were used: oro.nifti [50] was used in order to work with the format the
data were stored in, as an implementation of graphical lasso the package glasso [22] was
used, igraph package [15] was used in order to manipulate and visualize graphs, sampling

1https://www.nitrc.org/frs/?group_id=51
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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from multivariate normal distribution was conducted by MASS package [49], and an im-
plementation of partial correlation matrix estimator by Pearson’s method was borrowed
from ppcor package [30].

2.4.3 Simulation study

Data generation

In the first step we estimate the precision matrix from the observed mean time courses X∗

using thresholded graphical lasso with penalization parameter λ1 and threshold 0.1 for
absolute values of non-diagonal elements of the resulting partial correlation matrix. Let
C be the largest connected subgraph in the graph V defined by this partial correlation
matrix and X∗

C be the matrix containing the columns of X∗ that correspond to nodes
within C. We define our ground truth as the network obtained from X∗

C by thresholded
graphical lasso with penalization parameter λ2 and threshold 0.1. It is easy to see that
λ1 controls the size of the ground truth network and λ2 controls its sparsity.

Simulated data were drawn independently from a Gaussian distribution N (0,Θ∗−1)
varying n from 50 to 4500.

In all the experiments involving either adaptive or non-adaptive graphical lasso the

penalization parameter was chosen as λ =
√

log p
n

which is an asymptotically optimal

choice [27]. In all the experiments one-step SCAD graphical lasso was used as an adaptive
approach.

Hypotheses testing

For each non-diagonal element of the precision matrix the null-hypothesis Hij
0 = {Θ∗

ij = 0}
can be tested against an alternative H

ij
1 = {Θ∗

ij 6= 0}. In order to do so a de-sparsified

estimator T̂ij  N (Θ∗
ij, σ

2
ij) was used with σ2

ij replaced by the suitable estimator

σ̂2
ij := Θ̂iiΘ̂jj + Θ̂2

ij

(see also Lemma 40). Finally, Bonferroni-Hochberg multiplicity correction was applied
and the power of the test was computed.

In our experiments we compared tests based on the de-sparsified estimator produced
by the ℓ1-penalized estimator, the adaptive estimator and on the classical approach em-
ploying Fisher z-transform z(·) on the elements of the partial correlation matrix. The
classical approach can be summarized as follows: the partial correlation matrix was es-
timated with the Pearson method. Fisher z-transform was applied afterwards producing
approximately normally distributed values zij  N (z(ρ∗ij), n− p− 1) where ρ∗ is the true
partial correlation matrix. Clearly, ρ∗ij = 0 iff. Θ∗

ij = 0, so one can use values zij as a test
statistic.

The powers (the fraction of null-hypotheses Hij
0 rejected for non-zero elements of Θ∗)

of these tests were compared.

Confidence intervals

Using the de-sparsified estimator T̂ij approximate (1 − α)100% confidence intervals for
the individual values of precision matrix were constructed as

Iα,nij (Θ̂) = [T̂ij − Φ−1(1− α/2)σij/
√
n, T̂ij + Φ−1(1− α/2)σij/

√
n]
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Figure 2.1: Upper-left: Graph obtained with λ1 = 0.6, λ2 = 0.3, resulting in p = 60
and sparsity = 0.100. Upper-right: power of hypotheses testing for adaptive (red), non-
adaptive (black) and the classical approach (green). Lower-left: coverage probability for
adaptive (red) and non-adaptive (black) approach. Lower-right: accuracy of classification
between zero and non-zero parameters using adaptive (red) and non-adaptive approach
(black)
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Figure 2.2: As Fig 2.1 but with λ1 = 0.6, λ2 = 0.6, p = 60, sparsity = 0.050
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Figure 2.3: As Fig 2.1 but λ1 = 0.6, λ2 = 0.65, p = 60, sparsity = 0.034
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Figure 2.4: As Fig 2.1 but λ1 = 0.6, λ2 = 0.67, p = 60, sparsity = 0.030
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Figure 2.5: As Fig 2.1 but λ1 = 0.65, λ2 = 0.65, p = 23, sparsity = 0.130
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Figure 2.6: As Fig 2.1 but λ1 = 0.65, λ2 = 0.67, p = 23, sparsity = 0.107
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Figure 2.7: As Fig 2.1 but λ1 = 0.65, λ2 = 0.7, p = 23, sparsity = 0.063
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Figure 2.8: As Fig 2.1 but λ1 = 0.65, λ2 = 0.75, p = 23, sparsity = 0.024
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where Φ(·) stands for cumulative distribution function of standard normal distribution
and Φ−1(·) denotes its inverse.

In order to compare the approaches we estimated the mean probability for the interval
to cover the true value 1

p(p−1)

∑

i 6=j P{Θ∗
ij ∈ Iα,nij (Θ̂)} and compared its absolute deviation

from 1− α for the approaches under comparison.
In our experiments the confidence level was chosen as α = 0.05.

Classification between zero and non-zero elements

We compared the ability of the adaptive and non-adaptive approaches to classify between
zero and non-zero elements of the precision matrix. The estimated elements of the preci-
sion matrix are compared against 0.05 (half of the threshold parameter, see sub-Section
2.4.3) in order to determine whether the correlation coefficient equals zero or not.

The accuracies (probabilities of correct classification between zero and non-zero ele-
ments) of such classifiers were compared.

Description of the figures

The graphs obtained in the manner described in Section 2.4.3 along with the results
obtained (see Sections 2.4.3–2.4.3 for details) are given in Fig 2.1 – 2.8. The values of the
penalization parameters λ1 and λ2 used to produce these graphs along with dimensionality
p and sparsity (the fraction of non-zero off-diagonal elements of Θ∗) are given in the
captions. The upper-left plots represent the ground truth graph. In all these plots each
vertex occupies the same spot and disconnected components are shown in different colors.
The upper-right plots report the powers of hypotheses testing based on the adaptive, non-
adaptive graphical lasso and on a classical approach (see sub-Section 2.4.3). The lower-left
plots compare the coverage probabilities of the constructed confidence intervals using the
estimator based on the adaptive and non-adaptive estimator (see sub-Section 2.4.3). The
lower-right plots represent the comparison of accuracies of classification between zero and
non-zero parameters based on the adaptive and non-adaptive approach (see sub-Section
2.4.3). The performance of non-adaptive graphical lasso is shown in black, of the adaptive
approach in red and the performance of the classical approach (on the plots reporting the
powers of statistical tests) is shown in green.

2.5 Discussion

The experiments showed that the tests based on the classical approach are always outper-
formed by those based on graphical lasso approaches (apart from the cases where n ≫ p
where all the approaches perform nearly perfect). At the same time adaptive graphical
lasso tends to notably outperform non-adaptive graphical lasso in case of short samples,
though sometimes (in case of a denser true precision matrix, see Fig 2.1) non-adaptive
approach performs better for sufficiently large samples.

The confidence intervals constructed using the adaptive graphical lasso estimate ex-
hibit coverage probabilities significantly closer to the desired confidence level in compari-
son to those obtained using non-adaptive graphical lasso estimates.

In experiments on the accuracy of classification between zero and non-zero elements
the adaptive approach performs notably better for all sample sizes n apart from the case
of a denser precision matrix (see Fig 2.1).
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We believe, that superiority of adaptive graphical lasso over non-adaptive graphical
lasso is related to the fact that non-adaptive lasso penalizes all the values with the same
penalty parameter λ whereas adaptive graphical lasso might reduce penalization of non-
zero parameters which leads to the reduction of bias brought in by penalization (compare
Theorem 2 and Lemma 38 ). At the same time, non-normality of the de-sparsified estima-
tor depends on the largest penalization parameter corresponding to a non-zero element
‖ΛS‖∞ (see Theorem 6), which in case of non-adaptive graphical lasso equals λ while in
case of an adaptive approach it might be smaller.
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Chapter 3

Change point detection based on
precision matrix

3.1 Introduction

This chapter presents a novel approach to break detection and change-point localization.
The approach is based on precision matrix inference and is designed specifically for break
detection in brain function connectivity networks.

Formally, we consider the following setup. Let X1, ... XN ∈ R
p denote an independent

sample of zero-mean vectors (the on-line setting is discussed in Section 4.3) and we want
to test a hypothesis

H0 := {∀i : Var [Xi] = Var [Xi+1]}

versus an alternative suggesting the existence of a break:

H1 := {∃τ : Var [X1] = Var [X2] = ... = Var [Xτ ] 6= Var [Xτ+1] = ... = Var [XN ]}

and localize the change-point τ as precisely as possible or (in online setting) to detect a
break as soon as possible.

In the current study it is also assumed that some subset of indices Is ⊆ 1..N of size s
(possibly, s = N) is chosen. The threshold is chosen relying on the sub-sample {Xi}i∈Is
while the test-statistic is computed based on the whole sample.

To this end we define a family of test statistics in Section 3.2.1 which is followed by
Section 3.2.2 describing a data-driven (bootstrap) calibration scheme and Section 3.2.3 de-
scribing change-point localization procedure. The theoretical part of the chapter justifies
the proposed procedure in a high-dimensional setting. The result justifying the validity
of the proposed calibration scheme is stated in Section 3.3. Section 3.4 is devoted to the
sensitivity result yielding a bound for the window size n necessary to reliably detect a
break of a given extent and hence bounding the uncertainty of the change-point localiza-
tion (or the delay of detection in online setting). The theoretical study is supported by a
comparative simulation study (described in Section 3.5) demonstrating conservativeness
of the proposed test and higher sensitivity compared to a recent algorithm. Appendix B.1
provides a a finite-sample version of bootstrap sensitivity result which is followed by the
proofs. Appendix B.2 contains a finite-sample version of sensitivity result along with the
proofs.
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3.2 Proposed approach

This section describes the proposed approach along with a data-driven calibration scheme.
Informally the proposed statistic can be described as follows. Provided that the break
may happen only at moment t, one could estimate some parameter of the distribution
using n data-points to the left of t, estimate it again using n data-points to the right
and use the norm of their difference as a test-statistic An(t). Yet, in practice one does
not usually possess such knowledge, therefore we propose to maximize these statistics
over all possible locations t yielding An. Finally, in order to attain a trade-off between
break detection sensitivity and change-point localization accuracy we build a multiscale
approach: consider a family of test statistics {An}n∈N for multiple window sizes n ∈ N ⊂
N at once.

3.2.1 Definition of the test statistic

Now we present a formal definition of the test statistic. In order to detect a break we
consider a set of window sizes N ⊂ N. Denote the size of the widest window as n+ and
of the narrowest as n−. Given a sample of length N , for each window size n ∈ N define
a set of central points Tn := {n + 1, ..., N − n + 1}. Next, for all n ∈ N define a set
of indices which belong to the window on the left side of the central point t ∈ Tn as
I l
n(t) := {t − n, ..., t − 1} and correspondingly for the window on the right side define

Ir
n(t) := {t, ..., t + n − 1}. Denote the sum of numbers of central points for all window

sizes n ∈ N as

T :=
∑

n∈N

|Tn| .

For each window size n ∈ N, each central point t ∈ Tn and each side S ∈ {l, r} we define
a de-sparsified estimator of precision matrix [27] [28] as

T̂S

n (t) := Θ̂S

n (t) + Θ̂S

n (t)
T − Θ̂S

n (t)
T Σ̂S

n (t)Θ̂
S

n (t)

where

Σ̂S

n (t) =
1

n

∑

i∈IS
n (t)

XiX
T
i

and Θ̂S

n (t) is a consistent estimator of precision matrix which can be obtained by graphical
lasso [43] or node-wise procedure [28] (see Definition 1 for details).

Now define a matrix of size p× p with elements

Zi,uv := Θ∗
uXiΘ

∗
vXi −Θ∗

uv (3.1)

where Θ∗ := E
[
XiX

T
i

]
−1 for i ≤ τ , Θ∗

u stands for the u-th row of Θ∗. Denote their vari-
ances as σ2

uv := Var [Z1,uv] and introduce the diagonal matrix S = diag(σ1,1, σ1,2...σp,p−1, σp,p).
Denote a consistent estimator (see Definition 1 for details) of the precision matrix Θ∗ ob-
tained based on the sub-sample {Xi}i∈Is as Θ̂, where Is ⊂ 1..N . In practice, the variances
σ2
uv are unknown, but under normality assumption one can plug in σ̂2

uv := Θ̂uuΘ̂vv + Θ̂2
uv

which have been proven to be consistent (uniformly for all u and v) estimators of σ2
uv

[27] [5]. If the node-wise procedure is employed, the uniform consistency of an empirical
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estimate of σ2
uv has been shown under some mild assumptions (not including normality)

[28].
For each window size n ∈ N and a central point t ∈ Tn we define a statistic

An(t) :=

∥
∥
∥
∥

√
n

2
S−1(T̂ l

n(t)− T̂ r
n(t))

∥
∥
∥
∥
∞

(3.2)

where we write M for a vector composed of stacked columns of matrix M . Finally we
define our family of test statistics for all n ∈ N as

An = max
t∈Tn

An(t).

Our approach heavily relies on the following expansion under H0

√
n(T̂S

n (t)−Θ∗) =
1√
n

∑

i∈IS
n (t)

Zi + rSn (t)
√
n, (3.3)

where the residual term

rSn (t) := T̂S

n (t)−
(

Θ∗ −Θ∗
(

Σ̂S

n (t)− Σ∗
)

Θ∗
)

can be controlled under mild assumptions [27] [28] [5].
This expansion might have been used in order to investigate the asymptotic properties

of An and obtain the threshold, however we propose a data-driven scheme.

Remark 4. A different test statistic An(t) can be defined as the maximum distance be-
tween elements of empirical covariance matrices Σ̂(t)ln and Σ̂(t)rn. However, application
to neuroimaging motivates the search for a structural change in a functional connectivity
network which is encoded by the structure of the corresponding precision matrix. Clearly,
a change in the precision matrix also means a change in the covariance matrix, though
we believe that the definition (4.2) increases the sensitivity to this kind of alternative –
compare the definitions of break extent in sensitivity results Theorem 8 and Theorem 10.

3.2.2 Bootstrap calibration

Our approach rejects H0 in favor of H1 if at least one of statistics An exceeds the corre-
sponding threshold x♭

n(α) or formally if ∃n ∈ N : An > x♭
n(α).

In order to properly choose the thresholds, we define bootstrap statistics A♭
n in the fol-

lowing non-standard way. Note, that we cannot use an ordinary scheme with replacement
or weighted bootstrap since in a high-dimensional case (|Is| ≤ p) the covariance matrix
of bootstrap distribution would be singular which would make inverse covariance matrix
estimation procedures meaningless.

First, draw with replacement a sequence {κi}Ni=1 of indices from Is and denote

X♭
i
= Xκi

− EIs [Xj]

where EIs [·] stands for averaging over values for indexes belonging to Is e.g., EIs [Xj] =
1

|Is|

∑

j∈Is
Xj. Denote the measure X♭

i are distributed with respect to as P♭. In accordance

with (A.17) define
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Z♭
i,uv := Θ̂uX

♭
i Θ̂vX

♭
i − Θ̂uv

and for technical purposes define

Ẑi,uv := Θ̂uXiΘ̂vXi − Θ̂uv.

Now for all central points t define a bootstrap counterpart of An(t)

A♭
n(t) :=

∥
∥
∥
∥
∥
∥
∥

1√
2n

S−1




∑

i∈Il
n(t)

Z♭
i −

∑

i∈Ir
n(t)

Z♭
i





∥
∥
∥
∥
∥
∥
∥
∞

(3.4)

which is intuitively reasonable due to expansion (3.3). And finally we define the bootstrap
counterpart of An as

A♭
n = max

t∈Tn

A♭
n(t).

Now for each given x ∈ [0, 1] we can define quantile functions z♭n(x) such that

z♭n(x) := inf
{
z : P♭

{
A♭

n > z
}
≤ x

}
.

Next for a given significance level α we apply multiplicity correction choosing α∗ as

α∗ := sup
{
x : P♭

{
∃n ∈ N : A♭

n > z♭n(x)
}
≤ α

}

and finally choose thresholds as x♭
n(α) := z♭n(α

∗).

Remark 5. One can choose Is = 1, 2, ..., N and use the whole given sample for calibration
as well as for detection. In fact, it would improve the bounds in Theorem 7 and Theorem
8, since it effectively means s = N . However, in practise such a decision might lead to
reduction of sensitivity due to overestimation of the thresholds.

3.2.3 Change-point localization

In order to localize a change-point we have to assume that Is ⊆ 1..τ . Consider the
narrowest window detecting a change-point:

n̂ := min
{
n ∈ N : An > x♭

n(α)
}

(3.5)

and denote the central point where this window detects a break for the first time as

τ̂ := min
{
t ∈ Tn̂ : An̂(t) > x♭

n̂(α)
}
.

By construction of the family of test statistics we conclude (up to the confidence level α)
that the change-point τ is localized in the interval

[τ̂ − n̂; τ̂ + n̂− 1] .

Clearly, if a non-multiscale version of the approach is employed, i.e. |N| = {n}, n = n̂
and the precision of localization (delay of the detection in online setting) equals n.
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3.3 Bootstrap validity

This section states and discusses the theoretical result demonstrating the validity of the
proposed bootstrap scheme i.e.

P
{
∀n ∈ N : An ≤ x♭

n(α)
}
≈ 1− α.

Our theoretical results require the tails of the underlying distributions to be light.
Specifically, we impose Sub-Gaussianity vector condition.

Assumption 2 (Sub-Gaussianity vector condition).

∃L : ∀i ∈ 1..N sup
a∈Rp

||a||
2
≤1

E

[

exp

((
aTXi

L

)2
)]

≤ 2.

Naturally, in order to establish a theoretical result we have to assume that a method
featuring theoretical guaranties was used for estimating the precision matrices. Such
methods include graphical lasso [43], adaptive graphical lasso [53] and thresholded de-
sparsified estimator based on node-wise procedure [28]. These approaches overcome the
high dimensionality of the problem by imposing a sparsity assumption, specifically bound-
ing the maximum number of non-zero elements in a row: d := maxi

∣
∣{j|Θ∗

ij 6= 0}
∣
∣. These

approaches are guaranteed to yield a root-n consistent estimate revealing the sparsity
pattern of the precision matrix [43, 5, 28] or formally

Definition 1. Consider an i.i.d. sample x1, x2, ...xn ∈ R
p. Denote their precision matrix

as Θ∗ = E [x1]
−1. Let p and d grow with n. A positive-definite matrix Θ̂n is a consistent

estimator of the high-dimensional precision matrix if

∥
∥
∥Θ∗ − Θ̂n

∥
∥
∥
∞

= Op

(√

log p

n

)

and
∀i, j ∈ 1..p and Θ∗

ij = 0 ⇒ Θ̂n
ij = 0.

Assumption 3.3.A. Suppose, either graphical lasso or its adaptive version was used with
regularization parameter λn ≍

√

log p/n and also impose Assumption 1.

Assumption 3.3.B. Suppose, thresholded de-sparsified estimator based on node-wise pro-
cedure was used with regularization parameter λn ≍

√

log p/n.

Now we are ready to establish a result which guarantees that the suggested bootstrap
procedure yields proper thresholds.

Theorem 7. Assume H0 holds and furthermore, let X1, X2, ...XN ∈ R
p be i.i.d. Let

Assumption 2 and Assumption 3.3.A hold. Also assume, the spectrum of Θ∗ is bounded.
Allow the parameters d, s, p, |N| , n−, n+ grow with N . Further let N > 2n+, n+ ≥ n− and
also impose the sparsity assumption

d = o

(√

max{s, n−}
log p

)

.
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Then

∣
∣
∣
∣
P
{
∀n ∈ N : An ≤ x♭

n(α)
}
− (1− α)

∣
∣
∣
∣

= O

(

|N|
{(

d log7(pN)

n−

)1/6
(
log2(ps) + d1/6 log p

)

+

(
d4

s

)1/6

log2/3(pN)

})

.

The finite-sample version of this result, namely, Theorem 11, is given in Appendix B.1
along with the proofs.

Bootstrap validity result discussion Theorem 7 guarantees under mild assumptions
(Assumption 1 seems to be the most restrictive one, yet it may be dropped if the node-
wise procedure is employed) that the first-type error rate meets the nominal level α if
the narrowest window size n− and the set Is are large enough. Clearly, the dependence
on dimensionality p is logarithmic which establishes applicability of the approach in a
high-dimensional setting. It is worth noticing that, unusually, the sparsity bound gets
stricter with N but the dependence is only logarithmic. Indeed, we gain nothing from
longer samples, since we use only 2n data points each time.

On-line setting As one can easily see, the theoretical result is stated in off-line setting,
when the whole sample of size N is acquired in advance. In on-line setting we suggest
to control the probability α to raise a false alarm for at least one central point t among
N data points (which differs from the classical techniques controlling the mean distance
between false alarms [44]). Having α and N chosen one should acquire s data-points (the
set Is), use the proposed bootstrap scheme with bootstrap samples of length N in order
to obtain the thresholds. Next the approach can be naturally applied in on-line setting
and Theorem 7 guarantees the capability of the proposed bootstrap scheme to control the
aforementioned probability to raise a false alarm.

Proofs The proof of the bootstrap validity result, presented in Appendix B.1, mostly
relies on the high-dimensional central limit theorems obtained in [12], [11]. These papers
also present bootstrap justification results, yet do not include a comprehensive bootstrap
validity result. The theoretical treatment is complicated by the randomness of x♭

n(α). We
overcome it by applying the so-called “sandwiching” proof technique (see Lemma 10),
initially used in [45] and extended by [9]. The authors of [45] had to assume normality
and low dimensionality of the data, while in [9] only continuous probability measures P

and P
♭ were considered. Our result is free of such limitations.

3.4 Sensitivity result

Consider the following setting. Let there be index τ , such that {Xi}i≤τ are i.i.d. and
{Xi}i>τ are i.i.d. as well. Denote precision matrices Θ1

−1 := E
[
X1X

T
1

]
and Θ2

−1 :=
E
[
Xτ+1X

T
τ+1

]
. Define the break extent ∆ as

∆ := ‖Θ1 −Θ2‖∞ .
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The question is, how large the window size n should be in order to reliably reject H0 and
how firmly can we localize the change-point.

Theorem 8. Let Assumption 2 and either Assumption 3.3.A or Assumption 3.3.B hold.
Also assume, the spectrums of Θ1 and Θ2 are bounded. Allow the parameters d, s, p, |N| , n−, n+

grow with N and let ∆ decay with N . Further let N > 2n+, n+ ≥ n−,

d = o

(√

max{s, n−}
d log7(pN)

)

(3.6)

and
log2(pN)

n+∆
= o(1). (3.7)

Then H0 will be rejected with probability approaching 1.

This result is a direct corollary of the finite-sample sensitivity result established and
discussed in Appendix B.2.

The assumption Is ⊆ 1..τ is only technical. The result may be proven without relying
on it by methodologically the same argument.

Sensitivity result discussion Assumptions (3.6) and (3.7) are essentially a sparsity
bound and a bound for the largest window size n+. Clearly, they do not yield a particular
value n+ necessary to detect a break, since it depends on the underlying distributions,
however, the result includes dimensionality p only under the sign of logarithm, which
guarantees high sensitivity of the test in high-dimensional setting.

Online setting Theorem 8 is established in offline setting as well. In online setting it
guarantees that the proposed approach can reliably detect a break of an extent not less
than ∆ with a delay at most n+ bounded by (3.7).

Change-point localization guaranties Theorem 8 implies by construction of statistic
An that the change-point can be localized with precision up to n+. Hence condition (3.7)
provides the bound for change-point localization accuracy.

3.5 Simulation study

3.5.1 Design

In our simulation we test
H0 =

{
{Xi}Ni=1 ∼ N (0, I)

}

versus an alternative

H1 =
{
∃τ : {Xi}τi=1 ∼ N (0, I) and {Xi}Ni=τ+1 ∼ N (0,Σ1)

}

The alternative covariance matrix Σ1 was generated in the following way. First we draw
k ∼ Poiss(3). The matrix Σ1 is composed as a block-diagonal matrix of k matrices of size
2 × 2 with ones on their diagonals and their off-diagonal element drawn uniformly from
[−0.6;−0.3]∪[0.3; 0.6] and an identity matrix of size (p−2k)×(p−2k). The dimensionality
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Table 3.1: First type error rate, power and precision of change-point localization of the
proposed approach for various sets of window sizes N

N I type error rate Power Localization precision
{70} 0.02 0.09 70
{100} 0.00 0.37 100
{140} 0.01 0.81 140

{70, 140} 0.01 0.76 135
{100, 140} 0.01 0.75 124

{70, 100, 140} 0.01 0.74 123

of the problem is chosen as p = 50, the length of the sample N = 1000 and we choose the
set Is = [1, 2, ..100]. The absence of positive effect of large sample size N is discussed in
Sections 3.3 and 3.4. Moreover, in all the simulations under alternative the sample was
generated with the change point in the middle: τ = N/2 but the algorithm was oblivious
about this as well as about either of the covariance matrices. The significance level
α = 0.05 was chosen. In all the experiments graphical lasso with penalization parameter

λn =
√

log p
n

was used in order to obtain Θ̂S

n (t). In the same way, graphical lasso with

penalization parameter λs was used in order to obtain Θ̂.
We have also come up with an approach to the same problem not involving bootstrap.

The paper [34] defines a high-dimensional two-sample test for equality of matrices. More-
over, the authors prove asymptotic normality of their statistic which makes computing
p-value possible. We suggest to run this test for every t ∈ Tn and every n ∈ N, adjust
the obtained p-values using Holm method [24] and eventually compare them against α.

The paper [35] suggests an approach based on comparing characteristic functions of
random variables. The critical values were chosen with permutation test as proposed by
the authors. In our experiments the method was allowed to consider all the sample at
once. The R-package ecp [26] was used.

The first type error rate and power for our approach are reported in Table 3.1. As
one can see, our approach allows to properly control first type error rate. As expected, its
power is higher for larger windows and it is decreased by adding narrower windows into
consideration which is the price to be paid for better localization of a change point.

In our study the approach proposed in [35] and the one based on the two sample test
[34] turned out to be conservative, but neither of them exhibited power above 0.1.

Also, in order to justify application of the multiscale approach (i. e. |N| > 1) for
the sake of better change-point localization we report the distribution of the narrowest
detecting window n̂ (defined by (3.5)) over N in Figure 3.1. The Table 3.1 represents
average precision of change-point localization for various choices of set of window sizes
N. One can see, that the multiscale approach significantly improves the precision of
localization.
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Figure 3.1: Pie charts representing distribution of narrowest detecting window n̂ and
the precision of localization in cases of |N| = {70, 140}, |N| = {100, 140} and |N| =
{70, 100, 140} respectively
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Chapter 4

Change point detection based on
covariance matrix

4.1 Introduction

This chapter presents a novel approach to break detection and change-point localization.
In contrast to the approach suggested in Chapter 2 it does not impose any sparsity
assumption, which makes it naturally applicable in the field of finance, yet it does not focus
on precision matrices and hence might be less suitable for applications in neuroimaging.

Formally, we consider the following setup. Let X1, ...XN ∈ R
p denote an independent

sample of zero-mean vectors (the on-line setting is discussed in Section 4.3) and we want
to test a hypothesis

H0 := {∀i : Var [Xi] = Var [Xi+1]}

versus an alternative suggesting the existence of a break:

H1 := {∃τ : Var [X1] = Var [X2] = ... = Var [Xτ ] 6= Var [Xτ+1] = ... = Var [XN ]}

and localize the change-point τ as precisely as possible or (in online setting) to detect a
break as soon as possible.

In the current study it is also assumed that some subset of indices Is ⊆ 1..N of size s
(possibly, s = N) is chosen. The threshold is chosen relying on the sub-sample {Xi}i∈Is
while the test-statistic is computed based on the whole sample.

To this end we define a family of test statistics in Section 4.2.1 which is followed by
Section 4.2.2 describing a data-driven (bootstrap) calibration scheme and Section 4.2.3
proposing a change-point localization procedure. Section 4.3 presents and discusses a
theoretical result justifying the bootstrap scheme while Section 4.4 presents a sensitivity
result providing a lower bound for a window size n necessary to detect a break of a given
extent and hence bounding the uncertainty of the change-point localization (or the delay
of detection in online setting). Finally, Section 4.5 presents a simulation study inspired by
real-world financial data supporting the theoretical findings and demonstrating superiority
of our approach to a recent one.
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4.2 Proposed approach

The first part of this Section formally defines the test statistics while the second part
concentrates on the calibration scheme. Informally, the test statistics may be defined
as follows. Provided that the break may happen only at point t, one could estimate the
covariance matrix using n data-points to the left of t, estimate it again using n data-points
to the right of it and use the norm of their difference as a test-statistic Bn(t). Yet, in
practice one does not usually possess such knowledge, therefore we propose to maximize
these statistics over all possible locations t yielding Bn. Finally, in order to attain a
trade-off between break detection sensitivity and change-point localization we propose a
multiscale approach considering multiple window sizes n ∈ N and multiple respective test
statistics {Bn}n∈N at once.

4.2.1 Definition of the test statistics

Now we present a formal definition of the test statistics. In order to detect a break we
consider a set of window sizes N ⊂ N. Denote the size of the widest window as n+ and
of the narrowest as n−. Given a sample of length N for each window size n ∈ N define a
set of central points Tn := {n + 1, n + 2, ..., N − n + 1}. Next, for all n ∈ N define a set
of indices which belong to the window on the left side from the central point t ∈ Tn as
I l
n(t) := {t − n, t − n + 1, ..., t − 1} and correspondingly Ir

n(t) := {t, t + 1, ..., t + n − 1}.
Denote the sum of numbers of central points for all window sizes n ∈ N as

T :=
∑

n∈N

|Tn| . (4.1)

For each window size n ∈ N and each central point t ∈ Tn define a pair of estimators of
covariance matrix as

Σ̂l
n(t) :=

1

n

∑

i∈Il
n(t)

XiX
T
i and Σ̂r

n(t) :=
1

n

∑

i∈Ir
n(t)

XiX
T
i .

Let some subset of indices Is ⊆ 1..N of size s (possibly, s = N) be chosen. Define a
scaling diagonal matrix

S = diag(σ1,1, σ1,2...σp,p−1, σp,p)

where the elements σj,k are standard deviations of corresponding elements of XiX
T
i aver-

aged over Is:

σ2
j,k :=

1

s

∑

i∈Is

Var
[
(XiX

T
i )jk

]
.

In practice the matrix S is usually unknown, hence we propose to plug-in empirical
estimators σ̂j,k.

For each window size n ∈ N and central point t ∈ Tn we define a test statistic Bn(t)

Bn(t) :=

∥
∥
∥
∥

√
n

2
S−1(Σ̂l

n(t)− Σ̂r
n(t))

∥
∥
∥
∥
∞

. (4.2)

Here and below we write A for a vector composed of stacked columns of matrix A and
use ‖·‖∞ to denote sup norm. Finally the family of test statistics {Bn}n∈N is obtained
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via maximization over the central points:

Bn := max
t∈Tn

Bn(t).

4.2.2 Decision rule and bootstrap calibration scheme

Our approach rejects H0 in favor of H1 if at least one of statistics Bn exceeds a corre-
sponding threshold x♭

n(α) or formally if ∃n ∈ N : Bn > x♭
n(α).

In order to choose thresholds x♭
n(α) the following bootstrap scheme is proposed. Define

vectors Ẑi for i ∈ Is as

Ẑi := XiXT
i − 1

s

∑

i∈Is

XiXT
i .

Elements Z♭
i for i ∈ 1..N of bootstrap sample are proposed to be drawn with replacements

from the set
⋃

i∈Is
{Ẑi,−Ẑi}. Denote the measure which Z♭

i are distributed with respect

to as P♭.
Now we are ready to define a bootstrap counterpart B♭

n(t) of Bn(t) for all n ∈ N and
t ∈ Tn as

B♭
n(t) :=

∥
∥
∥
∥
∥
∥

1√
2n

S−1




∑

i∈Il
n(t)

Z♭
i −

∑

i∈Ir
n(t)

Z♭
i





∥
∥
∥
∥
∥
∥
∞

. (4.3)

The counterparts B♭
n of Bn for all n ∈ N are naturally defined as

B♭
n := max

t∈Tn

B♭
n(t).

Now for each given x ∈ (0, 1) we can define quantile functions z♭n(x) such that

z♭n(x) := inf
{
z : P♭

{
B♭

n > z
}
≤ x

}
.

Next for a given significance level α we apply multiplicity correction choosing α∗ as

α∗ := sup
{
x : P♭

{
∃n ∈ N : B♭

n > z♭n(x)
}
≤ α

}

and finally choose thresholds as x♭
n(α) := z♭n(α

∗).

Remark 6. In most of the cases one may simply choose Is = 1...N but at the same
time it seems appealing to use some sub-sample which a priori does not include a break, if
such information is available. On the other hand, the bootstrap justification result (The-
orem 9) and sensitivity result (Theorem 10) benefit from larger set Is. The experimental
comparison of these options is given in Section 4.5.

4.2.3 Change-point localization

In order to localize a change-point we have to assume that Is ⊆ 1..τ . Consider the
narrowest window detecting a change-point as n̂:

n̂ := min
{
n ∈ N : Bn > x♭

n(α)
}

and the central point where this window detects a break for the first time as

τ̂ := min
{
t ∈ Tn̂ : Bn̂(t) > x♭

n̂(α)
}
.
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By construction of the family of the test statistics we conclude (up to the confidence level
α) that the change-point τ is localized in the interval

[τ̂ − n̂; τ̂ + n̂− 1] .

Clearly, if a non-multiscale version of the approach is employed, i.e. |N| = {n}, n = n̂
and precision of localization (delay of the detection in online setting) equals n.

4.3 Bootstrap validity

This section states and discusses the theoretical result demonstrating validity of the pro-
posed bootstrap scheme i.e.

P
{
∀n ∈ N : Bn ≤ x♭

n(α)
}
≈ 1− α. (4.4)

Our theoretical results require the tails of the underlying distributions to be light.
Specifically, we impose Sub-Gaussianity vector condition Assumption 2.

Theorem 9. Let Assumption 2 hold and let X1, X2, ..., XN be i.i.d. Moreover, assume
that the residual R < α/2 where

R := (3 + 2 |N|)
(
RB +RB♭ +R±

Σ

)
,

R±
Σ := C∆

1/3
Y log2/3

(
Tp2

)
,

∆Y , RB and RB♭ are defined in Lemma 36, Lemma 28 and Lemma 32 respectively and C
is an independent positive constant. Then for all positive x, t and χ it holds that

∣
∣P

{
∀n ∈ N : Bn ≤ x♭

n(α)
}
− (1− α)

∣
∣ ≤ R + 2(1− q),

where
q := 1− pZs(κ)− pΩs (t, x)− pWs (x)− pΣ(χ), (4.5)

probabilities pZs(κ), p
Ω
s (t, x), p

W
s (x) and pΣ(χ) come from Lemma 31, Lemma 35, Lemma

33 and Lemma 20 respectively and quantiles {x♭
n(α)}n∈N are yielded by bootstrap procedure

described in Section 4.2.2.

Proof sketch The proof consists of four straightforward steps.

1. Approximate statistics Bn by norms of a high-dimensional Gaussian vector up to
the residual RB using the high dimensional central limits theorem by [12].

2. Similarly, approximate bootstrap counterparts B♭
n of the statistics up to the residual

RB♭ .

3. Prove that the covariance matrix of Gaussian vector used to approximate B♭
n in

step 2 is concentrated in the ball of radius ∆Y centered at its real-world counterpart
involved in the step 1 and employ the Gaussian comparison result provided by [12]
and [11].

4. Finally, obtain the bootstrap validity result combining the results of steps 1-3.

The formal treatment for each of these steps is given in Appendices C.4, C.5, C.6 and in
Lemma 10 respectively.
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Proof discussion The proof of the bootstrap validity result mostly relies on the high-
dimensional central limit theorems obtained by [12]. That paper also presents bootstrap
justification results, yet does not include a comprehensive bootstrap validity statement.
The theoretical treatment is complicated by the randomness of x♭

n(α). Indeed, consider
Lemma 27 which is a straightforward combination of steps 1-3. One cannot trivially
obtain result of sort (4.4) substituting {x♭

n(α)}n∈N in (C.1) due to randomness of x♭
n(α) and

dependence between x♭
n(α) and Bn. We overcome this by means of so-called “sandwiching”

proof technique (see Lemma 10), initially used by [45]. The authors had to assume
normality and low dimensionality of the data. Our result is free of such a limitations.

Bootstrap validity result discussion The remainder terms RB, RB♭ and R±
Σ involved

in the statement of Theorem 9 are rather complicated. Here we just note that for p, s,
N , n−, n+ → +∞, N > 2n+, n+ ≥ n−

RB ≤ C1

(
L4 log7 (p2Tn+)

n−

)1/6

,

RB♭ ≤ C2

(
L4 log7 (p2Tn+)

n−

)1/6

log2(ps), (4.6)

R±
Σ ≤ C3

(
L4 log4(ps)

s

)1/6

log2/3
(
p2T

)
,

while the parameters κ, x, χ, t are chosen in order to ensure the probability q defined by
(4.5) to be above 0.995, e.g.

x = 7.61 + log(ps), (4.7)

κ = 6.91 + log s, (4.8)

t = 7.61 + 2 log p, (4.9)

χ = 6.91.

Here C1, C2, C3 are some positive constants independent of N,N, p, s, L. In fact, proba-
bility q can be made arbitrarily close to 1 at the cost of worse constants.

It is worth noticing that, unusually, remainder terms RB, RB♭ and R±
Σ grow with T

defined by (4.1) and hence with the sample size N but the dependence is logarithmic.
Really, we gain nothing from longer samples since we use only 2n data points each time.

Online setting As one can easily see, the theoretical result is stated in off-line setting,
when the whole sample of size N is acquired in advance. In online setting we suggest to
control the probability α to raise a false alarm for at least one central point t among N
data points (which differs from classical techniques controlling the mean distance between
false alarms [44]). Having α andN chosen, one should acquire s data-points (set {Xi}i∈Is),
employ the proposed bootstrap scheme with the bootstrap samples of length N in order
to obtain the critical values. Next the approach can be naturally applied in online setting
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and Theorem 9 guarantees the capability of the proposed bootstrap scheme to control the
aforementioned probability to raise a false alarm.

4.4 Sensitivity result

Consider the following setting. Let there be index τ , such that {Xi}i≤τ are i.i.d. and
{Xi}i>τ are i.i.d. as well. Denote covariance matrices Σ1 := E

[
X1X

T
1

]
and Σ2 :=

E
[
Xτ+1X

T
τ+1

]
. Define the break extent ∆ as

∆ := ‖Σ1 − Σ2‖∞ .

The question is, how large the window size n+ should be in order to reliably reject H0.

Theorem 10. Let Assumption 2 hold. Also let ∆Y < 1/2 and

RB♭ <
α

6 |N| ,

where ∆Y and RB♭ come from Lemma 36 and Lemma 32. Moreover, assume Is ⊆ 1..τ
and τ ≥ nsuff , where

nsuff :=




q
∥
∥S−1

∥
∥
∞
− 2ρ+

√
(
2ρ− q

∥
∥S−1

∥
∥
∞

)2 − 4∆ρ2
√
2∆





2

, (4.10)

q =

√

2 (1 + ∆Y ) log

(
2N |N| p2

α− 3 |N|RB♭

)

, (4.11)

ρ =
√

2 log p+ χ.

Let it hold for the widest window that n+ > nsuff . Then with probability at least

1− pZs(κ)− 3pΣ(χ)− pΩs (t, x)− pWs (x) (4.12)

where pZs(κ), p
Ω
s (t, x), p

W
s (x) and pΣ(χ), come from Lemma 31, Lemma 35, Lemma 33

and Lemma 41 respectively, the hypothesis H0 will be rejected by the proposed approach at
confidence level α.

The formal proof is given in Appendix C.1.

Discussion of the sensitivity result The expression (4.10) and the residual RB♭

involved in the statement of Theorem 10 are rather complicated. Here we note that for
N , s and p → +∞, for some positive constant C4 independent of N , s, p and ∆ it holds
that

nsuff ≤ C4

(

1 +
log2(ps)√

s

)
log (|N|Np2)

∆2

while the bound (4.6) for RB♭ holds as well, and the parameters x, t and κ may be chosen
as specified by (4.7), (4.9) and (4.8) respectively and χ may be chosen as χ = 7.32 in
order to ensure the probability (4.12) to be at least 0.99.
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As expected, the bound for sufficient window size decreases with the growth of the
break extent ∆ and the size of the set Is, but increases with dimensionality p. It is worth
noticing, that the latter dependence is only logarithmic. And again, in the same way as
with Theorem 9, the bound increases with the sample size N (only logarithmically) since
we use only 2n data points.

The assumption Is ⊆ 1..τ is only technical. The result may be proven without relying
on it by methodologically the same argument.

Obviously, we still cannot exactly compute nsuff , since it depends on the underlying
distributions. However this result guarantees that the sensitivity of the test does not
vanish in high-dimensional setting.

Online setting Theorem 10 is established in offline setting as well. In online setting it
guarantees that the proposed approach can reliably detect a break of an extent not less
than ∆ with a delay at most nsuff .

4.5 Simulation study

4.5.1 Real-world covariance matrices

We have downloaded stock market quotes for p = 87 companies included in S&P 100
with 1-minute intervals for approximately a week (N = 2211) using the API provided by
Google Finance1. A sample of interest was composed of 1-minute log returns for each
of the companies. Our approach with window size N = {30} has detected a break at
confidence level α = 0.05, while the approach proposed by [35] (referred to as ecp below)
has detected nothing. The change-point was localized at the morning of Monday 19
December 2016 (the day when the Electoral College had voted).

Discarding the portion of the data around the estimated change-point we have acquired
a pair of data samples which both approaches fail to detect a break in. Denote the realistic
covariance matrices estimated on each of these samples as Σ1 and Σ2.

4.5.2 Design of the simulation study, results and discussion

The goal of the current simulation study is to verify that the bootstrap procedure controls
first type error rate and evaluate the power of the test and compare it to the power of
ecp. Hence we need to generate two types of realistic datasets – with and without a
break for power and first type error rate estimation respectively. In order to generate
a dataset without a break we independently draw 520 vectors from normal distribution
N (0,Σ1). As for the datasets including a break, they are generated by binding 400 vectors
independently drawn from N (0,Σ1) and 120 vectors independently drawn from N (0,Σ2).

The results obtained in the simulation study are given in Table 4.1. One can easily see
that the proposed test exhibits proper control of the first type error rate. Being tested in
the same setting, ecp has demonstrated proper first type error rate as well, but the power
did not exceed 0.1. So, our approach outperforms ecp in all cases apart from N = {7}
and Is = 1..100.

As expected, the power is higher for larger windows and it may be decreased by adding
narrower windows into consideration which is the price to be paid for better change-point

1https://www.google.com/finance
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Table 4.1: First type error rate and power exhibited by the proposed approach for various
choice of set of window sizes N and sub-set used for bootstrap Is at significance level
α = 0.05. For the case Is ⊂ 1..τ mean precision of change-point localization is reported
as well.

Is = 1..520 Is = 1..100
N I type error rate power I type error rate power localization

{60} .02 1.00 .00 .90 60
{30} .01 .90 .00 .52 30
{15} .00 .76 .00 .38 15
{7} .00 .34 .00 .03 7

{60, 30} .01 .99 .00 .84 47.1
{60, 30, 15} .01 .99 .00 .82 41.1
{60, 30, 15, 7} .01 .99 .00 .78 42.0

{30, 15} .01 .90 .00 .49 21.8
{30, 15, 7} .01 .84 .00 .34 19.9

localization.
It should be noted that contrary to the intuition expressed in Remark 6 using only a

data sub-sample which a priori does not include a break does not necessarily improve the
power of the test.

For the case of Is = 1..100 ⊂ 1..τ Table 4.1 also provides mean precision of change-
point localization. One can see, that multiscale approach significantly improves it.
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Appendix A

Proofs for Chapter 2

A.1 Proofs of Consistency results

In order to prove the claimed consistency results we employ the primal-dual witness
technique which suggest to consider the following optimization problem:

Θ̃ = arg min
Θ∈Sp

++

ΘSc=0

[

tr(ΘΣ̂)− log detΘ + ‖Λ ∗Θ‖1
]

. (A.1)

The only difference between the problems (2.1) and (A.1) is that the latter one forces all
zero elements to be estimated as zero, e.g. Θ̃Sc = 0. The main idea of the technique is to
show that Θ̃ = Θ̂ on some set of high probability.

We use ∆ = Θ̃− Θ∗ to denote the mis-tie between the true precision matrix and the
solution of the problem (A.1).

In our derivations we also make use of properties of the residuals of the first-order
Taylor expansion of the gradient of the log-det functional which takes form:

R(∆) = Θ̃−1 −Θ∗−1 +Θ∗−1∆Θ∗−1.

A.1.1 Existence and uniqueness of solutions of problems (2.1)
and (A.1)

Since we are about to investigate the properties of solutions of the problems (2.1) and
(A.1), we first need to give sufficient conditions for their existence and uniqueness. The
lemma below is a slightly generalized version of Lemma 3 given in [42] and can be proven
by exactly the same argument.

Lemma 1. Let ∀i 6= j Λij > 0, Λii = 0 and Σii > 0 ∀i, then the problems (2.1) and (A.1)
have unique solutions.

We also give sufficient conditions which do not include positiveness of all non-diagonal
elements of Λ but in turn rely on non-singularity of the sample covariance matrix Σ̂.

Lemma 2. Suppose, Σ̂ is non-singular. Then the problems (2.1) and (A.1) have unique
solutions.

Proof. We give the proof for the problem (2.1). The uniqueness of the solution for the
problem (A.1), as well as for a problem with any set of non-diagonal values of Θ restricted
to zero (in case it does not violate symmetry) can be established by the same argument.
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By Lagrange duality we can rewrite the problem (2.1) in form

Θ̂ = min
Θ∈Sp

++

‖C(Λ)∗Θ‖
1
≤1

[

tr(ΘΣ̂)− log detΘ
]

for some Cij(Λ) < +∞ for Λij > 0 and Cij(Λ) = 0 for Λij = 0. Now, since Σ̂ is
non-singular and it is a covariance matrix, it is positive-definite. Thus, there exists and
orthogonal transform S such that ST Σ̂S = D = diag(d1...dp) and ∀i di > 0.

Then, by using the fact that trΘΣ̂ = trSTΘΣ̂S and by noting that detS = 1, we
further rewrite the problem as

Θ̂ = min
Θ′∈Sp

++

‖C(Λ)∗(SΘ′ST )‖
1
≤1

[tr(Θ′D)− log detΘ′] ,

where Θ′ = STΘS. Here we have also used the fact that Θ′ ∈ S++ iff. Θ ∈ S++.
Now we just substitute the definition of the trace:

Θ̂ = min
Θ′∈Sp

++

‖C(Λ)∗(SΘ′ST )‖
1
≤1

[
∑

i

diΘ
′
ii − log detΘ′

]

.

But, due to the fact that di > 0 by Lagrange duality we finally obtain

Θ̂ = min
Θ′∈Sp

++

‖C(Λ)∗(SΘ′ST )‖
1
≤1

∀i |Θ′
ii|≤Ci(di)

− log detΘ′ (A.2)

for some Ci(di) < +∞.
So, the diagonal elements of Θ′ are bounded. Therefore, its trace is bounded, thus

the sum of its eigenvalues is bounded, so the feasible set is compact. Thus (recalling the
convexity of the log-det functional) the optimum exists and is unique.

Using the fact of equivalence of the problems (A.2) and (2.1) we obtain the claimed
statement.

A.1.2 Proof of adaptive lasso consistency result

Lemma 3 (generalization of Lemma 6, [42]). Suppose that

r := 2κΓ∗(‖W‖∞ + ‖ΛS‖∞) ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}

, (A.3)

then

∥
∥
∥Θ∗ − Θ̃

∥
∥
∥
∞

≤ r.

Proof (adaptation of the one given in [42]). The problem (A.1) has a unique solution,
thus the gradient condition holds:

G(ΘS) := −[Θ−1]S + Σ̂S + ΛS ∗ ZS = 0
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where ZS denotes an element of the sub-gradient: ZS ∈ ∂S

∥
∥
∥Θ̃

∥
∥
∥
1
.

Now we define a continuous function F : B(r) → R
|S| (where B(r) stands for a zero-

centered |S|-dimensional l∞ ball of radius r)

F (∆S) := −(Γ∗
SS)

−1G(Θ∗ +∆S) + ∆S.

We now claim that F (B(r)) ⊆ B(r). First, rewrite the expression for G(Θ̃S) as

G(Θ∗
S +∆S) = [−[(Θ∗ +∆)−1]S + [Θ∗−1]S] +WS + ΛS ∗ ZS. (A.4)

By Lemma 39 (which applies due to assumption (A.3) and the choice of ∆ ) we have

R(∆S)S = vec((Θ∗ +∆)−1 −Θ∗−1)S + Γ∗
SS∆S = vec(Θ∗−1∆Θ∗−1∆JΘ∗−1)S. (A.5)

Using (A.4) and (A.5) obtain

F (∆S) = (Γ∗
SS)

−1vec(Θ∗−1∆Θ∗−1∆JΘ∗−1)S
︸ ︷︷ ︸

T1

− (Γ∗
SS)

−1(W S + ΛS ∗ ZS)
︸ ︷︷ ︸

T2

.

Clearly, ‖T2‖∞ ≤ κΓ∗(‖W‖∞ + ‖Λ‖∞) = r/2. As for T1, by Lemma 39 we have

‖T1‖∞ ≤ 3

2
dκ3

Σ∗κΓ∗ ‖∆‖2∞ ≤ 3

2
dκ3

Σ∗κΓ∗r2

and again, by assumption (A.3), we obtain ‖T1‖∞ ≤ r/2.

Now, we have shown that the continuous function F (·) maps a ball B(r) into itself.
Thus, we can apply the fixed-point theorem. Obviously, this function has a fixed point
iff. ∃∆S ∈ B(r) : G(Θ∗

S+∆S) = 0 which is a sufficient and necessary condition for Θ∗+∆

to be a solution of optimization problem (A.1) and thus
∥
∥
∥Θ∗ − Θ̃

∥
∥
∥
∞

≤ r.

Proof of Theorem 1. First, we note that Θ̂init
ij = 0 iff. Θ∗

ij = 0 (by Lemma 38). Thus, by

the choice of Λada, Θ̂ada = Θ̃ada, so we can analyze the problem (A.1). Note, that this also

implies the fact that Θ∗
ij = 0 ⇔ Θ̂ada

ij = 0. Also, by Lemma 38
∥
∥
∥Θ̂ada −Θ∗

∥
∥
∥
∞

≤ r. Thus,

∥
∥Λada

S

∥
∥
∞

≤ λn
(

min
i,j : Θ̂init

ij 6=0
Θ̂init

ij

)γ ≤ λn

(θmin − r)γ
. (A.6)

Lemma 3 applies to the problem (A.1) with tuning parameters Λada due to the sparsity

bound (2.2) and the bound we have just obtained. Thus,
∥
∥
∥Θ∗ − Θ̃ada

∥
∥
∥
∞

≤ 2κΓ∗(‖W‖∞+
∥
∥Λada

S

∥
∥
∞
). Substituting the bound (A.6), recalling that we are considering the set T and

that Θ̂ada = Θ̃ada we obtain the claimed bound.
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A.1.3 Proof of SCAD graphical lasso consistency result

Lemma 4 (generalization of Lemma 4, [42]). Let

max{‖W‖∞ , ‖R(∆)‖∞} ≤ α

8
ρ

and

‖ΛS‖∞
ρ

≤ 1. (A.7)

Also, suppose Assumption 1 holds for some α ∈ (0, 1]. Then Θ̂ = Θ̃.

Proof (adaptation of the one given in [42]). First, rewrite the stationarity condition for
the problem (2.1) as

Θ∗−1∆Θ∗−1 +W −R(∆) + Λ ∗ Z = 0.

By vectorizing obtain:

Γ∗∆+W −R + Λ ∗ Z = 0.

Now, using the fact that ∆Sc = 0 rewrite it in terms of disjoint decomposition:

Γ∗
SS∆S +WS −RS + ΛS ∗ ZS = 0, (A.8)

Γ∗
ScS∆S +WSc −RSc + ΛSc ∗ ZSc = 0. (A.9)

Solving (A.8) we obtain

∆S = −(Γ∗
SS)

−1[WSc −RSc + ΛSc ∗ ZSc ].

Now, by solving (A.9) for ZSc and by substituting ∆S:

ZSc = −[Γ∗
ScS∆S +WSc −RSc ]⊘ ΛSc

=
[
(I − Γ∗

ScSΓ
∗
SS

−1)(W S +RS)− Γ∗
ScSΓ

∗
SS

−1ΛS ∗ ZS

]
,

where · ⊘ · denotes matrix element-wise division. Now we take the ℓ∞ norm of both sides
and recall Assumption 1

∥
∥ZSc

∥
∥
∞

≤ 2− α

ρ
(‖W‖∞ + ‖R‖∞) + (1− α)

‖ΛS‖∞
ρ

≤ 2

ρ
(‖W‖∞ + ‖R‖∞) + (1− α)

≤ 2

ρ

(
2α

8
ρ

)

+ (1− α)

= 1− α

2
< 1.

The strict dual feasibility condition holds. Therefore, we have Θ̂ = Θ̃.
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Lemma 5 (generalization of Theorem 1, [42]). Consider a distribution satisfying As-
sumption 1 with some α ∈ (0, 1], let Θ̂ be the solution of the optimization problem (2.1).
Suppose also the following restrictions on the penalization parameters Λ hold

‖ΛS‖∞ ≤ 8

α
δn

and

ρ ≥ 8

α
δn.

Furthermore, suppose the following sparsity assumption holds:

d ≤ δn
6(δn + ‖ΛS‖∞)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ3
Σ∗} . (A.10)

Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

the following hold:

∥
∥
∥Θ̂−Θ∗

∥
∥
∥
∞

≤ rΛ := 2κΓ∗(δn + ‖ΛS‖∞)

and

Θ∗
ij = 0 ⇒ Θ̂ij = 0. (A.11)

Proof. First, we show that Lemma 3 applies. The inequality

2κΓ∗(‖W‖∞ + ‖ΛS‖∞) ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}

(A.12)

holds due to assumption (A.10). Therefore, we have a bound

∥
∥
∥Θ̃−Θ∗

∥
∥
∥
∞

≤ 2κΓ∗(‖W‖∞ + ‖ΛS‖∞). (A.13)

Now, we show the applicability of Lemma 4. First, observe that

‖W‖∞ ≤ δn ≤ α

8
ρ.

In order to bound R(∆) we use Lemma 39 which applies due to bounds (A.13) and (A.12)
and make use of the sparsity bound (A.10):

‖R(∆)‖∞ ≤ 3

2
d ‖∆‖2∞ κ3

Σ∗ ≤ δn ≤ α

8
ρ.

The assumption (A.7) of Lemma 4 clearly holds as well.
Thus, Θ̃ = Θ̂ which combined with (A.13) gives the claimed bound along with the

sparsistency property (A.11).

In the next two proofs we denote the penalization matrix used at the k-th iteration
as Λ

(k)
ij = SCAD′

λ,a(|Θ(k−1)
ij |) and its minimal value corresponding to zero elements of the

true precision matrix as ρ(k) = min
(i,j)∈Sc

Λ
(k)
ij .
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Proof of Theorem 2. Since, the conditions of the Lemma 38 hold,
∥
∥
∥Θ̂(0) −Θ∗

∥
∥
∥
∞

≤ r and

Θ∗
ij = 0 ⇔ Θ

(0)
ij = 0.

Therefore,
∥
∥
∥Λ

(1)
S

∥
∥
∥
∞

≤ λn ≤ 8
α
δn and ρ(1) = λn ≥ 8

α
δn and, due to Σ̂ being non-singular,

the problem (2.4) has a unique solution. Thus, Lemma 5 applies here giving the bound
for Θ̂OSSCAD. Moreover, due to the bound (2.3) we have Θ∗

ij = 0 ⇔ Θ̂OSSCAD
ij = 0 (since

the bound for Θ̂
(1)
ij is not less strict that the one for Θ̂

(0)
ij ).

Proof of Theorem 3. Theorem 2 provides the bound for Θ̂(1) along with the sparsistency
property: Θ∗

ij = 0 ⇔ Θ̂
(1)
ij = 0.

Following the same argument we prove the following bound for every Θ̂(k):

∥
∥
∥Θ̂(k) −Θ∗

∥
∥
∥
∞

≤ 2κΓ∗

(

δn +
∥
∥
∥Λ

(k)
S

∥
∥
∥
∞

)

(A.14)

and we have the following recurrent expression for Λ
(k)
S

∥
∥
∥Λ

(k)
S

∥
∥
∥
∞

≤
(

aλn − |θmin − 2κΓ∗(δn + Λ
(k−1)
S )|

a− 1

)

+

.

Some algebra yields

∥
∥
∥Λ

(k)
S

∥
∥
∥
∞

k→∞−−−→
∥
∥
∥Λ

(∞)
S

∥
∥
∥
∞

≤
(
aλn − θmin + 2κΓ∗δn

2κΓ∗ + a− 1

)

+

.

And the passage to the limit in inequality (A.14) yields the claimed bound. The second
statement of the theorem follows from (2.3).

Theorem 4 and Theorem 5 can be proved in the same way as Theorem 2 and Theorem
3 but Lemma 1 should be used instead of Lemma 5 in order to show the existence and
uniqueness of the underlying optimization problems.

A.2 Proof of the inference result

The next lemma bounds the remainder r on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

.

Lemma 6. Suppose, assumptions of Lemma 5 hold. Then, on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

it holds that

‖r‖∞ ≤ R := drΛ(drΛ(νΣ∗ + δn) + 2κΘ∗δn) (A.15)

where νΣ∗ := ‖Θ∗‖∞.

Proof.

‖r‖∞ ≤
∥
∥
∥(Θ̂−Θ∗)WΘ∗

∥
∥
∥
∞
+
∥
∥
∥(Θ̂Σ̂− Ip)(Θ̂−Θ∗)

∥
∥
∥
∞

≤ |||(Θ̂−Θ∗)|||1(‖WΘ∗‖∞ +
∥
∥
∥(Θ̂Σ̂− Ip)

∥
∥
∥
∞
)

≤ drΛ(‖WΘ∗‖∞ +
∥
∥
∥Θ̂Σ̂− Ip

∥
∥
∥
∞
)
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∥
∥
∥(Θ̂Σ̂− Ip)

∥
∥
∥
∞

=
∥
∥
∥(Θ̂−Θ∗)Σ̂ + Θ∗(Σ̂− Σ∗)

∥
∥
∥
∞

≤ drΛ(νΣ∗ + δn) + κΘ∗δn

‖r‖∞ ≤ drΛ(drΛ(νΣ∗ + δn) + 2κΘ∗δn).

The next lemma shows that conditioning on a set of high probability does not signifi-
cantly change the measure of the set.

Lemma 7. Consider a measure P and a pair of sets A and B. Then denoting p := P {B}

|P {A} − P {A|B}| ≤ 2(1− p).

Proof.

|P {A} − P {A|B}| =
∣
∣P {A|B}P {B}+ P

{
A|B

}
P
{
B
}
− P {A|B}

∣
∣

=
∣
∣P {A|B} (p− 1) + P

{
A|B

}
(1− p)

∣
∣

≤ |P {A|B} (p− 1)|+
∣
∣P

{
A|B

}
(1− p)

∣
∣

≤ 2(1− p).

Proof of Theorem 6. Using (2.5), and the definition of T̂ (4.9) we obtain for all (i, j)

√
n(T̂ij −Θ∗

ij) =
1√
n

∑

k

Zijk +
r√
n
, (A.16)

where

Zijk := Θ∗
iXkΘ

∗
jXk −Θ∗

ij. (A.17)

Observe that Zijk are i.i.d. (for (i, j) fixed) and E [Zijk] = 0.
Now we divide both sides of (A.16) by σij :=

√

V ar[Zijk]

√
n(T̂ij −Θ∗

ij)/σij =
1

σij

√
n

∑

k

Zijk

︸ ︷︷ ︸

S

+
r
√
n

σij

.

The cumulative distribution function of S can be estimated by Berry-Esseen inequality
[31]

|P {S < c} − Φ(c)| ≤ Aµij3

σ3
ij

√
n

with A < 0.4748.
Now from Lemma 7 we have

|P {S < c} − P {S < c| T }| ≤ 2(1− pT ).

Combining the latter two inequalities yields

|P {S < c| T } − Φ(c)| ≤ Aµij3

σ3
ij

√
n
+ 2(1− pT ). (A.18)
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Next we make use of the bound for the residual r provided by Lemma 6.

P

{√
n(T̂ij −Θ∗

ij)/σij ≤ c | T
}

≤ P

{

S − R
√
n

σij

< c | T
}

.

And making use of (A.18)

P

{√
n(T̂ij −Θ∗

ij)/σij ≤ c | T
}

≤ Φ

(

c+
R
√
n

σij

)

+
Aµij3

σ3
ij

√
n
+ 2(1− pT ). (A.19)

In the same manner one obtains

Φ

(

c− R
√
n

σij

)

− Aµij3

σ3
ij

√
n
− 2(1− pT ) ≤ P

{√
n(T̂ij −Θ∗

ij)/σij ≤ c | T
}

. (A.20)

Also notice that

∀a : argmax
c

|Φ(c)− Φ(c+ a)| = 0. (A.21)

Combining (A.19), (A.20) and (A.21) yields

sup
c

∣
∣
∣P

{√
n(T̂ij −Θ∗

ij)/σij ≤ c | T
}

− Φ(c)
∣
∣
∣ ≤

(

Φ

(
R
√
n

σij

)

− 1

2

)

+
Aµij3

σ3
ij

√
n
+2(1− pT ).
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Appendix B

Proofs for Chapter 3

B.1 Proof of bootstrap validity result

Proof of Theorem 7. Proof consists in applying the finite-sample Theorem 11. Its appli-
cability is guaranteed by the consistency results given in papers [43, 5, 28] and by the
results from [27, 28, 5] bounding the term RT̂ . High probability of set TT is ensured by
Lemma 41.

Theorem 11. Assume H0 holds and furthermore, let X1, X2, ...XN be i.i.d. Let Θ̂ denote
a symmetric estimator of Θ∗ s.t. for some positive r

∥
∥
∥Θ∗ − Θ̂

∥
∥
∥
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Suppose Assumption 2 holds and there exists RT̂ such that√

n
∥
∥rSn (t)

∥
∥
∞

≤ RT̂ for all S ∈ {l, r}, n ∈ N and t ∈ Tn on set

TT :=
{

∀S ∈ {l, r}, n ∈ N, t ∈ Tn :
∥
∥
∥Σ̂S

n (t)− E
[
X1X

T
1

]
∥
∥
∥
∞

≤ δn

}

.

Moreover, let

R := (3 + 2 |N|)
(
2RA(RT̂ ) + 2RAb +R±

Σ(r)
)
≤ α

2
,

where the remainders RA, RAb, R±
Σ are defined in Lemma 13, Lemma 18 and Lemma 10

respectively and the mis-tie ∆Y involved in the definition of R±
Σ comes from Lemma 21.

Then on set TT it holds that

∣
∣P

{
∀n ∈ N : An ≤ x♭

n(α)
}
− (1− α)

∣
∣ ≤ R + 2(1− q),

where
q = 1− pΣY

s (x, q)− pΣ(γ)− pMs (x) (B.1)

and the terms pΣY
s (x, q), pΣ(γ) and pMs (x) are defined in Lemma 21, Lemma 41 and

Lemma 18 respectively.

Discussion of finite-sample bootstrap validity result The terms ∆Y , RA, RAb

and R±
Σ involved in the statement of Theorem 11 are rather complicated. The exact

expressions for them are provided by Lemma 21, Lemma 13, Lemma 18 and Lemma 10
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respectively, 3rd and 4th moments M3
3 and M4

4 involved therein are bounded by Lemma
16 and Lemma 22 while asymptotic bounds for RT̂ are provided in [28] (for node-wise
procedure) and [27] (for graphical lasso). For the case of graphical lasso an explicit form
of RT̂ is given in [5].

Here we just note that if Θ̂ is a root-n consistent estimator, recovering sparsity pattern
(graphical lasso [43], adaptive graphical lasso [53] or thresholded de-sparsified estimator
based on node-wise procedure [28]), then for d, s, p,N, n−, n+ → ∞, N > 2n+, n+ ≥ n−,
s ≥ n− and d2

n−
= o(1) given the spectrum of Θ∗ is bounded

RAb ≤ D1

(
L4d log7(2p2Tn+)

n−

)1/6

log2(ps). (B.2)

If either graphical lasso, adaptive graphical lasso or node-wise procedure [36] is used with

λn ≍
√

log p
n

in order to obtain Θ̂S

n (t), then on set TT it holds that

RA ≤ D2

(
L4d log7(2p2Tn+)

n−

)1/6

+D3

√

log 2p2T

n−

d log p.

The high probability of TT may be ensured by means of Lemma 41 e.g., choosing γ =
log(500T ) for P {TT} ≥ 0.99. Further

∆Y ≤ D4
L4d2√

s
,

R±
Σ ≤ D5

(
L4d2√

s

)1/3

log2/3(2p2T ).

Here D1, ..., D5 are positive constants independent of N , N, d, p and s. We also note that
the proper choice of x, γ and q in (B.1) is

x = 6, (B.3)

γ = log(500T ), (B.4)

q = 7 + 4 log(p) (B.5)

which ensures the probability defined by (B.1) to be above 0.99. For exact expressions
for pΣY

s (x, q), pΣ(γ) and pMs (x) see Lemma 21, Lemma 20 and Lemma 18.

Proof of Theorem 11. The proof consists in application of Lemma 17, Lemma 14 and
Lemma 12 justifying applicability of Lemma 10.

B.2 Proof of sensitivity result

Proof of Theorem 8. Proof consists in applying the finite-sample Theorem 12. Its appli-
cability is guaranteed by the consistency results given in papers [43, 5, 28] and by the
results from [27, 28, 5] bounding the term RT̂ . High probability of set T↔ is ensured by
Lemma 20.
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Theorem 12. Let Is ⊆ 1..τ . Let Θ̂ denote a symmetric estimator of Θ1 s.t. for some
r ∈ R it holds that

∥
∥
∥Θ1 − Θ̂

∥
∥
∥
∞

< r

and (Θ1)ij = 0 ⇒ Θ̂ij = 0. Suppose Assumption 2 holds and there exists RT̂ such that
∥
∥rSn+

(t)
∥
∥
∞

≤ RT̂ for all S ∈ {l, r} and t ∈ Tn+
on some set

T↔ :=
{

∀t ≤ τ − n+ :
∥
∥
∥Σ̂S

n (t)− Σ∗
1

∥
∥
∥
∞

≤ δn+

}

⋂{

∀t ≥ τ + n+ :
∥
∥
∥Σ̂S

n (t)− Σ∗
2

∥
∥
∥
∞

≤ δn+

}

.

Moreover, let the residual RAb defined in Lemma 18 be bounded:

RAb ≤ α

6 |N| .

Also let √
n+

2
‖S‖∞ (∆− 2RT̂ ) ≥ q, (B.6)

where

q :=

√

2 (1 + ∆Y (r)) log

(
2N |N| p2

α− 3 |N|RAb

)

(B.7)

and ∆Y is defined in Lemma 21. Then on set T↔ with probability at least

1− pΣY
s (x, q),

where pΣY
s (x, q) is defined in Lemma 21, H0 will be rejected.

Discussion of finite-sample sensitivity result The assumption (B.6) is rather com-
plicated. Here we note that if either graphical lasso [43], adaptive graphical lasso [53] or
thresholded de-sparsified estimator based on node-wise procedure [28] with penalization
parameter chosen as λs ≍ o(

√

log p/n) was used, given d, s, p,N, n−, n+ → ∞, N > 2n+,
n+ ≥ n−, s ≥ n− and d = o(

√
n+) it boils down to

n+ ≥ D6
1

∆

(∥
∥S−1

∥
∥
∞
log(N |N| p2)

)2

for some positive constant D6 independent of N,N, p, d, S while the parameters q, γ and
x may be chosen as in (B.5), (B.4), (B.3) (high probability of T↔ is ensured by Lemma
41). At the same time the remainder RAb can be bounded by (B.2).

As expected, the bound for sufficient window size decreases with growth of the break
extent ∆ and the size of the set Is, but increases with dimensionality p. It is worth
noticing, that the latter dependence is only logarithmic. And again, in the same way as
with Theorem 7, the bound increases with the sample size N (only logarithmically) since
we use only 2n data points.

Proof of Theorem 12. Consider a pair of centered normal vectors

η :=
(
η1 η2 ... η|N|

)
∼ N (0,Σ∗

Y ),
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ζ :=
(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

Σ∗
Y :=

1

2n+

2n+∑

j=1

Var
[
Y n
·j

]
,

Σ̂Y :=
1

2n+

2n+∑

j=1

Var
[
Y n♭
·j

]
,

where vectors Y n
·j and Y n♭

·j are defined in proofs of Lemma 14 and Lemma 17 respectively.
Lemma 9 applies here and yields for all positive q

P {‖ζn+‖∞ ≥ q} ≤ 2
∣
∣Tn+

∣
∣ p2 exp



− q2

2
∥
∥
∥Σ̂Y

∥
∥
∥
∞



 ,

where Σ̂Y = Var [ζ] and
∣
∣Tn+

∣
∣ is the number of central points for the window of size n+.

Applying Lemma 21 on a set of probability at least 1− pΣY
s (x, q) yields

∥
∥
∥Σ∗

Y − Σ̂Y

∥
∥
∥
∞

≤
∆Y , and hence, due to the fact that ‖Σ∗

Y ‖∞ = 1 by construction,

P {‖ζn+‖∞ ≥ q} ≤ 2
∣
∣Tn+

∣
∣ p2 exp

(

− q2

2 (1 + ∆Y )

)

.

Due to Lemma 18 and continuity of Gaussian c.d.f.

P
♭
{
A♭

n+
≥ x♭

n+
(α)

}
≥ α/ |N| − 2RAb

and due to Lemma 18 along with the fact that
∣
∣Tn+

∣
∣ < N , choosing q as proposed by

equation (B.7) we ensure that x♭
n+
(α) ≤ q.

Now by assumption of the theorem and by construction of the test statistics An

An+
≥

√
n+

2
‖S‖∞ (∆− 2RT̂ ) .

Finally, we notice that due to assumption (B.6) An+
> q and therefore, H0 will be

rejected.

Lemma 8. Consider a centered random Gaussian vector ξ ∈ R
p with arbitrary covariance

matrix Σ. For any positive q it holds that

P

{

max
i

ξi ≥ q
}

≤ p exp

(

− q2

2 ‖Σ‖∞

)

.

Proof. By convexity we obtain the following chain of inequalities for any t

etE[tmaxi ξi] ≤ E
[
etmaxi ξi

]
≤ E

[
et

∑
i ξi

]
≤ pet

2‖Σ‖∞/2.

Chernoff bound yields for any t

P

{

max
i

ξi ≥ q
}

≤ pet
2‖Σ‖∞/2

etq
.

Finally, optimization over t yields the claim.

As a trivial corollary, one obtains

Lemma 9. Consider a centered random Gaussian vector ξ ∈ R
p with arbitrary covariance

matrix Σ. For any positive q it holds that

P {‖ξ‖∞ ≥ q} ≤ 2p exp

(

− q2

2 ‖Σ‖∞

)

.
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B.3 Sandwiching lemma

The following lemma is a generalization covering the case of non-continuous probability
measures of Lemma 21 of [9].

Lemma 10. Consider a normal multivariate vector η with a deterministic covariance
matrix and a normal multivariate vector ζ with a possibly random covariance matrix such
that

sup
{xn}n∈N⊂R

|P {∀n ∈ N : An ≤ xn} − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ RA, (B.8)

sup
{xn}n∈N⊂R

∣
∣P

♭
{
∀n ∈ N : A♭

n ≤ xn

}
− P

♭ {∀n ∈ N : ‖ζn‖∞ ≤ xn}
∣
∣ ≤ RAb , (B.9)

sup
{xn}n∈N⊂R

∣
∣P {∀n ∈ N : An ≤ xn} − P

♭
{
∀n ∈ N : A♭

n ≤ xn

}∣
∣ ≤ R. (B.10)

where ηn and ζn are sub-vectors of η and ζ respectively. Then

∣
∣P

{
∀n ∈ N : An ≤ x♭

n(α)
}
− (1− α)

∣
∣ ≤ (3 + 2 |N|) (R +RA +RAb) .

Proof. Let us introduce some notation. Denote multivariate cumulative distribution func-
tions of An, A

♭
n, ‖ηn‖∞ , ‖ζn‖∞ as P, P ♭,N ,N ♭ : R

|N| → [0, 1] respectively. Define the
following sets for all δ ∈ [0, α]

Z+(δ) := {z : N (z) ≥ 1− α− δ} ,

Z−(δ) := {z : N (z) ≤ 1− α + δ}
and their boundaries

∂Z+(δ) := {z : N (z) = 1− α− δ} , (B.11)

∂Z−(δ) := {z : N (z) = 1− α + δ} .
Consider δ = R+RA+RAb and denote sets Z+ = Z+(δ), Z− = Z−(δ), ∂Z− = ∂Z−(δ), ∂Z+ =
∂Z+(δ). Define a set of thresholds satisfying the confidence level

Z♭ :=
{
z : P ♭(z) ≥ 1− α & ∀z1 < z : P ♭(z1) < 1− α

}

here and below comparison of vectors should be understood element-wise. Notice that
due to continuity of multivariate normal distribution and assumption (B.9) ∀z♭ ∈ Z♭

∣
∣P ♭(z♭)− (1− α)

∣
∣ ≤ RAb . (B.12)

Now for all z− ∈ ∂Z− and for all z♭ ∈ Z♭ it holds that

P ♭(z−) ≤ P (z−) +R

≤ N (z−) +R +RA

≤ 1− α−RAb

≤ P ♭(z♭)
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where we have consequently used (B.10), (B.8), (B.11) and (B.12). In the same way one
obtains for all z+ ∈ ∂Z+ and for all z♭ ∈ Z♭

P ♭(z+) ≥ P ♭(z♭)

which implies that Z♭ ⊂ Z− ∩ Z+.
Now denote quantile functions of ‖ηn‖∞ as zN : [0, 1] → R

|N|:

∀n ∈ N : P
{
‖ηn‖∞ ≥ zNn (x)

}
= x.

In exactly the same way define quantile functions zN
♭
: [0, 1] → R

|N| of ‖ζn‖∞. Clearly
for all x ∈ [0, 1],

zN(x + δ) ≤ z♭(x) ≤ zN(x− δ)

and hence
z♭(α∗) ≤ zN(α∗ − δ) ≤ z♭(α∗ − 2δ),

1− α ≤ P ♭(zN(α∗ − δ)) ≤ P ♭(z♭(α∗ − 2δ)).

Using Taylor expansion with Lagrange remainder term we obtain for some 0 ≤ κ ≤ 2δ

N ♭
(
z♭(α∗ − 2δ)

)
≤ N ♭

(

zN
♭

(α∗ − 2δ)
)

+ δ

= N ♭
(

zN
♭

(α∗)
)

+
∑

n∈N

∂z♭nN
♭(zN

♭

(α∗))∂αz
N♭

n (α∗)κ+ δ

≤ 1− α +
∑

n∈N

∂z♭nN
♭(zN

♭

(α∗))∂αz
N♭

n (α∗)κ+ 3δ.

Next successively using Lemma 11 and the fact that the quantile function is the inverse
function of the c.d.f. we obtain

N ♭
(
z♭(α∗ − 2δ)

)
≤ 1− α + 3δ + 2δ |N|

and therefore
1− α ≤ P ♭

(
z♭(α∗ − 2δ)

)
≤ 1− α + δ (3 + 2 |N|) ,

1− α ≤ P ♭
(
zN(α∗ − δ)

)
≤ 1− α + δ (3 + 2 |N|) .

In the same way one obtains

1− α− δ (3 + 2 |N|) ≤ P ♭
(
zN(α∗ + δ)

)
≤ 1− α.

Next, by the argument used in the beginning of the proof we obtain

zN(α∗ + δ), zN(α∗ − δ) ∈ Z−(δ (3 + 2 |N|)) ∩ Z+ (δ (3 + 2 |N|)) .

As the final ingredient, we need to choose deterministic α+ and α− such that

N(zN(α− + δ)) = 1− α− δ (3 + 2 |N|) ,

N(zN(α+ − δ)) = 1− α + δ (3 + 2 |N|)
(which is possible due to continuity), so α− ≤ α∗ ≤ α+ and hence by monotonicity

zN(α− + δ) ≤ zN(α∗ + δ) ≤ z♭(α∗) ≤ zN(α∗ − δ) ≤ zN(α+ − δ)
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and finally

1− α− δ (3 + 2 |N|) ≤ P (zN(α− + δ))

≤ P (z♭(α∗))

≤ P (zN(α+ − δ))

≤ 1− α + δ (3 + 2 |N|) .

Lemma 11. Consider a random variable ξ and an event A defined on the same probability
space. Let c.d.f. P {ξ ≤ x} and P {ξ ≤ x&A} be differentiable. Then

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x} ≤ 1

Proof. Indeed, denoting the complement of set A as A we obtain,

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x} =

∂xP {ξ ≤ x&A}
∂x

(
P {ξ ≤ x&A}+ P

{
ξ ≤ x&A

})

=
∂xP {ξ ≤ x&A}

∂xP {ξ ≤ x&A}+ ∂xP
{
ξ ≤ x&A

}

=
1

1 +
∂xP{ξ≤x&A}
∂xP{ξ≤x&A}

Using the fact that derivative of c.d.f. is non-negative we finalize the proof.

B.4 Similarity of joint distributions of {An}n∈N and

{A♭
n}n∈N

Lemma 12. Under assumptions of Theorem 7 it holds on set T with probability at least

1− pΣY
s (x, q)− pΣ(γ)− pMs (x)

that

sup
{xn}n∈N⊂R

∣
∣P {∀n ∈ N : An ≤ xn} − P

♭
{
∀n ∈ N : A♭

n ≤ xn

}∣
∣ ≤ RA +RAb +R±

Σ .

Proof. The proof consists in applying Lemma 17, Lemma 14, Lemma 21 and Lemma
44.

B.5 Gaussian approximation result for An

Lemma 13. Suppose there exists RT̂ such that
√
n
∥
∥rS(t)

∥
∥
∞

≤ RT̂ for all S ∈ {l, r} and
t on some set T . Then on set T it holds that

sup
x

|P {∀n ∈ N : An ≤ xn} − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ RA

:= CA

((
F log7(p2Tn+)

)1/6
+ 4RT̂

√

log(2p2T )
)

.

where F is defined by (B.14) and ηn by (B.13).
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Proof. Substituting (3.3) to (4.2) yields

An(t) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1√
2n

S−1




∑

i∈Il
n(t)

Zi −
∑

i∈Ir
n(t)

Zi





︸ ︷︷ ︸

Sn
Z(t)

+
1√
2
(rln − rrn)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∞

.

Now denote stacked Sn
Z(t) for all t as S

n
Z and for all n and t as SZ . Lemma 14 bounds the

c.d.f. of ‖SZ‖∞ as

sup
x

|P {∀n ∈ N : ‖Sn
Z‖∞ ≤ xn} − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ CA

(
F log7(p2Tn+)

)1/6
.

But clearly on set T

|An − ‖Sn
Z‖∞| ≤

√
2RT̂

and hence for all {xn}n∈N ⊂ R

|P {∀n ∈ N : An < xn|T } − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ CA

(
F log7(p2Tn+)

)1/6

+ P

{

∀n ∈ N : ‖ηn‖∞ ≤ xn +
√
2RT̂

}

− P

{

∀n ∈ N : ‖ηn‖∞ ≤ xn −
√
2RT̂

}

.

Now notice that ∀i : (Σ∗
Y )ii = 1 and bound the latter two terms by means of Lemma 43:

sup
{xn}n∈N⊂R|N|

|P {∀n ∈ N : An < xn|T } − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ CA

(
F log7(p2Tn+)

)1/6

+ 4RT̂ (
√

log(2p2T ))

Lemma 14. Let Assumption 2 hold. Then

sup
x

|P {∀n ∈ N : ‖Sn
Z‖∞ ≤ xn} − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ CA

(
F log7(2p2Tn+)

)1/6
,

where
(
η1 η2 ... η|N|

)
∼ N (0,Σ∗

Y ), (B.13)

Σ∗
Y =

1

N

N∑

i=1

Var [Y·i] ,

F =
1

2n−

(

β log 2 ∨
√
2√

2− 1
γ

)2

∨ 1

2n+

(
n+

n−

)1/3

M2
3 ∨

√

1

2n+n−

M2
4 (B.14)

with γ defined by (B.17), β by (B.18) and Y by (B.15) and an independent constant CA .
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Proof. Consider a matrix Yn with 2n+ columns

Y T
n :=

√
n+

n
×























ZS
1 O ... O −ZS

2n++1 ...

ZS
2 ZS

2 ... ... ... ...
... ZS

3 ... ... ... ...
ZS

n ... ... ... ... ...
−ZS

n+1 ZS
n+1 ... ... ... ...

−ZS
n+2 −ZS

n+2 ... ... ... ...
... −ZS

n+3 ... O ... ...
−ZS

2n ... ... ZS
2n+−2n+1 O ...

O −ZS
2n+1 ... ZS

2n+−2n+2 ZS
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −ZS

2n+−1 −ZS
2n+−1 ...

O O ... −ZS
2n+

−ZS
2n+

...























where ZS
i := (S−1Zi)

T . Clearly, columns of the matrix are independent and

Sn
Z =

1√
2n+

2n+∑

l=0

(Yn)·l

Next define a block matrix composed of Yn matrices:

Y :=







Y1

Y2

...
Y|N|







(B.15)

Clearly vectors Y·l are independent and

SZ =
1√
2n+

2n+∑

l=0

Y·l

In order to complete the proof we make use of Lemma 42. Denote

Bn+
=

√
n+

n−

(

β log 2 ∨
√
2√

2− 1
γ

)

∨
(
n+

n−

)1/6

M3 ∨
(
n+

n−

)1/4

M4 (B.16)

By means of Lemma 22 one shows that the assumptions of Lemma 15 hold for com-
ponents of ZS

i with

γ := 12L2
√
dΛ (Θ∗) ‖Θ∗‖∞

∥
∥S−1

∥
∥
∞

(B.17)

β :=

(
9

2
L2

√
dΛ (Θ∗) + 1

)

‖Θ∗‖∞
∥
∥S−1

∥
∥
∞

(B.18)
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where Λ (Θ∗) denotes the maximal eigen value of Θ∗. Therefore condition (D.1) holds
with Bn defined by equation (B.16). Further,

1

N

N∑

i=1

E
[
(Y n

ij )
2
]
≥ min

j
Var

[
ZS

1j

]
= 1.

Hence, Assumption D.5.4 is fulfilled with b = 1. Next notice that for some k-th component
of ZS

i and a central point t (both defined by j):

1

2n+

2n+∑

i=1

E

[∣
∣Y n

ij

∣
∣
3
]

=
1

2n+

∑

i∈Il
n(t)∪I

r
n(t)

E

[(√
n+

n

∣
∣ZS

ik

∣
∣

)3
]

=
1

2n+

∑

i∈Il
n(t)∪I

r
n(t)

(n+

n

)3/2

E

[∣
∣ZS

ik

∣
∣
3
]

=
2n

2n+

(n+

n

)3/2

E

[∣
∣ZS

ik

∣
∣
3
]

=

√
n+

n
E

[∣
∣ZS

ik

∣
∣
3
]

≤
√

n+

n−

M3
3

and in the same way:

1

2n+

N∑

i=1

E

[∣
∣Y n

ij

∣
∣
4
]

≤ n+

n−

M4
4 .

Therefore Assumption D.5.5 holds with Bn+
so Lemma 42 applies here and provides us

with the claimed bound. Moreover, CA depends only on b which equals one which implies
that the constant CA is independent.

Lemma 15. Consider a random variable ξ. Suppose the following bound holds ∀x ≥ 0:

P {|ξ| ≥ γx+ β} ≤ e−x.

Then

E

[

exp

( |ξ|
B

)]

≤ 2

for

B = β log 2 ∨
√
2√

2− 1
γ

Proof. Integration by parts yields

E

[

exp

( |ξ|
B

)]

≤ exp

(
β

B

)

+
γ

B

∫ +∞

0

exp

(
γx+ β

B

)

e−xdx
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∫ +∞

0

exp

(
γx+ β

B

)

e−xdx =
B

B − γ
exp

(
β

B

)

E

[

exp

( |ξ|
B

)]

≤ B

B − γ
exp

(
β

B

)

≤ 2

By the same technique the following lemma can be proven

Lemma 16. Under assumptions of Lemma 15

E
[
|ξ|3

]
≤ β3 + 3γβ2 + 6βγ2 + 2γ3,

E
[
ξ4
]
≤ β4 + 4γβ3 + 12β2γ26βγ3 + 24γ4.

B.6 Gaussian approximation result for A♭
n

Lemma 17.

sup
{xn}n∈N⊂R

∣
∣P

♭
{
∀n ∈ N : A♭ ≤ xn

}
− P

♭ {∀n ∈ N : ‖ζn‖∞ ≤ xn}
∣
∣ ≤ ĈA♭

(
F ♭ log7(2p2Tn+)

)1/6
,

where

(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

Σ̂Y =
1

N

N∑

i=1

Var
[
Y ♭
·i

]
,

F ♭ =

(

1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨
√

1

2n+n−

)

∥
∥S−1

∥
∥
2

∞
(M ♭)2

M ♭ = max
i∈Is

∥
∥
∥Ẑi

∥
∥
∥
∞

Y ♭
n are defined by (B.19), and ĈA♭ depends only on min1≤k≤p(Σ̂Y )kk.

Proof. Denote the term under the sign of ‖·‖∞ in (4.3) as Sn♭
Z (t)

Sn♭
Z (t) :=

1√
2n




∑

i∈Il
n(t)

ZS♭
i −

∑

i∈Ir
n(t)

ZS♭
i





T

where ZS♭
i := (S−1Z♭

i )
T and let S♭

Z be a vector composed of stacked vectors Sn♭
Z (t) for all

n ∈ N and central points t.
Consider a matrix

62



(Y ♭
n)

T :=

√
n+

n
×
























ZS♭
1 O ... O −ZS♭

2n++1 ...

ZS♭
2 ZS♭

2 ... ... ... ...
... ZS♭

3 ... ... ... ...
ZS♭

n ... ... ... ... ...
−ZS♭

n+1 ZS♭
n+1 ... ... ... ...

−ZS♭
n+2 −ZS♭

n+2 ... ... ... ...
... −ZS♭

n+3 ... O ... ...
−ZS♭

2n ... ... ZS♭
2n+−2n+1 O ...

O −ZS♭
2n+1 ... ZS♭

2n+−2n+2 ZS♭
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −ZS♭

2n+−1 −ZS♭
2n+−1 ...

O O ... −ZS♭
2n+

−ZS♭
2n+

...
























(B.19)

which is a bootstrap counterpart of Yn from the proof of Lemma 14 and construct a block
matrix Y ♭ :

Y ♭ =







Y ♭
1

Y ♭
2

...

Y ♭
|N|







Clearly vectors Y ♭
·l are independent and

S♭
Z =

1√
2n+

N∑

l=0

Y ♭
·l

Now notice

1

2n+

N∑

i=1

E
[
|Yij|3

]
≤

√
n+

n−

max
i∈Is

∥
∥
∥Ẑi

∥
∥
∥

3

∞

∥
∥S−1

∥
∥
3

∞

1

2n+

N∑

i=1

E
[
|Yij|4

]
≤ n+

n−

max
i∈Is

∥
∥
∥Ẑi

∥
∥
∥

4

∞

∥
∥S−1

∥
∥
4

∞

And finally apply Lemma 42.

Lemma 18. Let Θ̂ denote an estimator of Θ∗ s.t. for some positive r

∥
∥
∥Θ∗ − Θ̂

∥
∥
∥
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0, furthermore, let ∆Y (r) < 1/2, also suppose Assumption 2 holds.

Then at least with probability 1− pMs (x)− pΣY
s (x, q)

sup
{xn}n∈N⊂R

∣
∣P

♭
{
∀n ∈ N : A♭ ≤ xn

}
− P

♭ {∀n ∈ N : ‖ζn‖∞ ≤ xn}
∣
∣ ≤ RAb := CA♭

(

F̂ log7(2p2Tn+)
)1/6
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where

F̂ =

(

1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨
√

1

2n+n−

)

∥
∥S−1

∥
∥
2

∞
(C♭)2

C♭ := Zs(x) + (3(dx)2 + 1)r

and constant CA♭ depends only on ∆Y .

Proof. The proof consists in subsequently applying Lemma 17 and Lemma 19 ensuring

C♭ ≥ M ♭ = maxi∈Is

∥
∥
∥Ẑi

∥
∥
∥
∞

with probability at least 1 − pMs (x) and applying Lemma

21 providing that
∥
∥
∥Σ∗

Y − Σ̂Y

∥
∥
∥
∞

≤ ∆Y ≤ 1 = min1≤k≤p(Σ
∗
Y )kk with probability at least

1− pΣY
s (x, q) which implies the existence of a deterministic constant CA♭ > ĈA♭ .

Lemma 19. Let Θ̂ denote an estimator of Θ∗ s.t. for some positive r

∥
∥
∥Θ∗ − Θ̂

∥
∥
∥
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Also let Assumption 2 hold. Then with probability at least

1− pMs (x)

M ♭ ≤ Zs(x) + ∆Z(x) (B.20)

where pMs (x) := pZs(x) + pXs (x).

Proof. Direct application of Lemma 23 yields

P {∀i ∈ Is : ‖Zi‖∞ ≤ Zs(x)} ≥ 1− pZs(x)

which in combination with the fact (provided by Lemma 25) that
∥
∥
∥Ẑi − Zi

∥
∥
∥
∞

≤ ∆Z(x)

implies (B.20).

B.7 Σ̂Y ≈ Σ∗
Y

First of all, if Σ∗
Z := Var

[
Zi

]
≈ Var♭

[

Z♭
i

]

, then Σ∗
Y ≈ Σ̂Y as well (Lemma 21). The idea

is to notice that

Cov
[

Z♭
i

]

= Σ̂Ẑ := EIs

[(

Ẑi − EIs

[

Ẑi

])(

Ẑi − EIs

[

Ẑi

])T
]

due to the choice of the bootstrap scheme. Next we show that Σ∗
Z ≈ Σ̂Z := EIs

[(
Zi − EIs

[
Zi

]) (
Zi − EIs

[
Zi

])T
]

(Lemma 24) and finalize the proof by proving that Σ̂Z ≈ Σ̂Ẑ (Lemma 26).

The results of this section rely on a lemma which is a trivial corollary of Lemma 6 by
[27] providing the concentration result for the empirical covariance matrix
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Lemma 20. Let Assumption 2 hold for some L > 0. Then for any positive γ

P

{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

≥ δn(γ)
}

≤ pΣ(γ) := 2e−γ,

where

δn(γ) := 2L2

(

2 log p+ γ

n
+

√

4 log p+ 2γ

n

)

.

Lemma 21. Assume, Assumption 2 holds. Moreover, let

∥
∥EIs

[
XiX

T
i

]
− Σ∗

∥
∥
∞

≤ δs

and let Θ̂ denote a symmetric estimator of Θ∗ s.t.

∥
∥
∥Θ∗ − Θ̂

∥
∥
∥
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Then for any positive x and q

P

{∥
∥
∥Σ̂Y − Σ∗

Y

∥
∥
∥
∞

≥ ∆Y

}

≤ pΣY
s (x, q)

where

pΣY
s (x, q) := pΣZ1

s
(x, q) + pΣZ2

s
(x)

∆Y :=
∥
∥S−1

∥
∥
2

∞

(

∆
(1)
ΣZ

+∆
(2)
ΣZ

)

and ∆
(1)
ΣZ

and ∆
(2)
ΣZ

along with the probabilities pΣZ1

s
(x, q) and pΣZ2

s
(x) are defined in Lemma

24 and Lemma 26 respectively.

Proof. Notice that

∥
∥
∥Σ̂Y − Σ∗

Y

∥
∥
∥
∞

=
∥
∥
∥S

−1Σ̂ẐS
−1 − S−1Σ∗

ZS
−1

∥
∥
∥
∞

≤
∥
∥S−1

∥
∥
2

∞

∥
∥
∥Σ̂Ẑ − Σ∗

Z

∥
∥
∥
∞

because the matrices Σ̂Y and Σ∗
Y are composed of blocks S−1Σ̂ZS

−1 and S−1Σ∗
ZS

−1 respec-
tively, each block multiplied by some positive value not greater than 1 (which can be
verified by simple algebra).

By Lemma 26 and Lemma 24

∥
∥
∥Σ̂Ẑ − Σ∗

Z

∥
∥
∥
∞

≤ ∆
(1)
ΣZ

+∆
(2)
ΣZ

and hence

∥
∥
∥Σ̂Y − Σ∗

Y

∥
∥
∥
∞

≤
∥
∥S−1

∥
∥
2

∞
(∆

(1)
ΣZ

+∆
(2)
ΣZ

)

with probability at least

1− pΣZ1

s
(x, q)− pΣZ2

s
(x)
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Lemma 22. Under Assumption 2 it holds for arbitrary u, v ∈ 1..p and positive x that

P

{

|Z1,uv| ≤
(

3L2
√
dΛ (Θ∗)

(
3

2
+ 4x

)

+ 1

)

‖Θ∗‖∞
}

≥ 1− e−x

Proof. Re-write the definition (A.17) of an element Zi,uv for arbitrary u, v ∈ 1..p

Zi,uv = Θ∗
uXiΘ

∗
vXi −Θ∗

uv

= XT
i

[
Θ∗

u(Θ
∗
v)

T
]
Xi −Θ∗

uv.

The first term is clearly a value of a quadratic form defined by the matrix B = Θ∗
u(Θ

∗
v)

T .
Note that rankB = 1 which implies that it is either positive semi-definite or negative
semi-definite. Next we apply Lemma 45 and obtain for all positive x

P

{∣
∣XT

i BXi

∣
∣ ≥ 3L2

(

|trB|+ 2
√

tr(B2)x+ 2 |Λ (B)| x
)}

≤ e−x. (B.21)

Again, due to the fact that B is a rank-1 matrix

trB = Λ (B) =
√
trB2 (B.22)

and by construction of matrix B

|trB| =
∣
∣Θ∗

u(Θ
∗
v)

T
∣
∣

≤ ‖Θ∗
u‖1 ‖Θ∗‖∞

≤
√
d||Θ∗

u||2 ‖Θ∗‖∞
≤

√
dΛ (Θ∗) ‖Θ∗‖∞ .

(B.23)

Substitution of (B.22) and (B.23) to (B.21) yields

P

{∣
∣XT

i BXi

∣
∣ ≥ 3L2

√
dΛ (Θ∗) ‖Θ∗‖∞

(
1 + 2

√
x+ 2x

)}

≤ e−x.

And since
√
x ≤ x+ 1

4

P

{
∣
∣XT

i BXi

∣
∣ ≥ 3L2

√
dΛ (Θ∗) ‖Θ∗‖∞

(
3

2
+ 4x

)}

≤ e−x.

Finally, we obtain a bound for Zi,uv as

P

{

|Zi,uv| ≥
(

3L2
√
dΛ (Θ∗)

(
3

2
+ 4x

)

+ 1

)

‖Θ∗‖∞
}

≤ e−x.

Correction for all i, u and v establishes the following result

Lemma 23. Consider an i.i.d. sample X1, .., Xn. Under Assumption 2 for positive x it
holds that

P {∀i ∈ {1..n} : ‖Zi‖∞ ≤ Zn(x)} ≥ 1− pZn(x)

where

Zn(x) :=

(

3L2
√
dΛ (Θ∗)

(
3

2
+ 4 log p2n+ 4x

)

+ 1

)

‖Θ∗‖∞ ,

pZn(x) := e−x.
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Lemma 24. Under Assumption 2 for positive x and q

P

{∥
∥
∥Σ̂Z − Σ∗

Z

∥
∥
∥
∞

≥ ∆
(1)
ΣZ

}

≤ pΣZ1

s
(x, q)

where

∆
(1)
ΣZ

:=
s

s− 1

(
4Z2

s (x) +
s−1
s

‖Σ∗
Z‖∞

)
q

3s

(

1 +

√

1 +
9sσ2

W

q
(
4Z2

s (x) +
s−1
s

‖Σ∗
Z‖∞

)2

)

pΣZ1

s
(x, q) := p4e−q + pZs(x)

Proof. Denote

W (i) := (Zi − EIs

[
Zi

]
)(Zi − EIs

[
Zi

]
)T − s− 1

s
Σ∗

Z

and note that

s− 1

s

(

Σ̂Z − Σ∗
Z

)

=
1

s

∑

i∈Is

W (i).

By Lemma 23 we have ‖Zi‖∞ ≤ Zs(x) with probability at least 1 − pZs(x) which

implies
∥
∥W (i)

∥
∥
∞

≤ 4Z2
s (x) +

s−1
s

‖Σ∗
Z‖∞. Since W

(i)
kl are i.i.d., bounded and centered,

Bernstein inequality applies here:

P

{

EIs

[

W
(i)
kl

]

≥
(
4Z2

s (x) +
s−1
s

‖Σ∗
Z‖∞

)
q

3s

(

1 +

√

1 +
9sσ2

W

q
(
4Z2

s (x) +
s−1
s

‖Σ∗
Z‖∞

)2

)}

≤ e−q

where σ2
W is the smallest variance of components of W (i). Therefore

P

{

∥
∥EIs

[
W (i)

]∥
∥
∞

≥
(
4Z2

s (x) +
s−1
s

‖Σ∗
Z‖∞

)
q

3s

(

1 +

√

1 +
9sσ2

W

q
(
4Z2

s (x) +
s−1
s

‖Σ∗
Z‖∞

)2

)}

≤ p4e−q.

The following lemma bounds the mis-tie between Zi and Ẑi.

Lemma 25. Let Assumption 2 hold and let Θ̂ be a symmetric estimator of Θ∗ s.t.

∥
∥
∥Θ∗ − Θ̂

∥
∥
∥
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Then for positive x

P

{

∀i ∈ Is :
∥
∥
∥Zi − Ẑi

∥
∥
∥
∞

≤ ∆Z(x)
}

≥ 1− pXs (x)

where

∆Z(x) := 2rd3/2x2 ‖Θ∗‖∞ + (rdx)2,

pXs (x) := se−x2/L2
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Proof. Due to sub-Gaussianity,

∀α ∈ R
p : P

{∣
∣αTXi

∣
∣ ≤ x

}
≥ 1− se−x2/L2

. (B.24)

Now consider the mis-tie of arbitrary elements Zi,uv and Ẑi,uv :

∣
∣
∣Zi,uv − Ẑi,uv

∣
∣
∣ =

∣
∣
∣Θ∗

uXiΘ
∗
vXi +Θ∗

uv − Θ̂uXiΘ̂vXi − Θ̂uv

∣
∣
∣

≤
∣
∣
∣(Θ∗

u − Θ̂u)XiΘ
∗
vXi

∣
∣
∣+

∣
∣
∣(Θ∗

u − Θ̂u)XiΘ̂vXi

∣
∣
∣+ r.

Now note that due to (B.24) and assumptions imposed on Θ∗

|Θ∗
vXi| ≤

√
d ‖Θ∗‖∞ x,

∣
∣
∣(Θ∗

v − Θ̂v)Xi

∣
∣
∣ ≤ rdx,

∣
∣
∣Θ̂vXi

∣
∣
∣ ≤ |Θ∗

vXi|+
∣
∣
∣(Θ∗

v − Θ̂v)Xi

∣
∣
∣ ≤

√
d ‖Θ∗‖∞ x+ rdx.

And hence

∣
∣
∣Zi,uv − Ẑi,uv

∣
∣
∣ ≤ 2rd3/2x2 ‖Θ∗‖∞ + (rdx)2.

Lemma 26. Assume Assumption 2 holds. Let Θ̂ be a symmetric estimator of Θ∗ s.t.

∥
∥
∥Θ∗ − Θ̂

∥
∥
∥
∞

< r

and Θ∗
ij = 0 ⇒ Θ̂ij = 0. Then for positive x

P

{∥
∥
∥Σ̂Z − Σ̂Ẑ

∥
∥
∥
∞

≥ ∆
(2)
ΣZ

}

≤ pΣZ2

s
(x),

where

pΣZ2

s
(x) := pXs (x) + pZs(x),

∆
(2)
ΣZ

= ∆Z(x)(2Zs(x) + ∆Z(x)).

Proof. By Lemma 23 with probability at least 1− pZs(x) we have ‖Zi‖∞ ≤ Zs(x) and in

combination with Lemma 25 we obtain
∥
∥
∥Ẑi

∥
∥
∥
∞

≤ Zs(x) +∆Z(x) with probability at least

1− pZs(x)− pXs (x). Now denote

ξi := Zi − EIs

[
Zi

]
and ξ̂i := Ẑi − EIs

[

Ẑi

]

.

And deliver the bound

∥
∥
∥Σ̂Z − Σ̂Ẑ

∥
∥
∥
∞

≤ EIs

[

ξi(ξi − ξ̂i)
T + (ξi − ξ̂i)ξ̂

T
i

]

≤
(∥
∥
∥ξ̂i

∥
∥
∥
∞
+ ‖ξi‖∞

)∥
∥
∥ξi − ξ̂i

∥
∥
∥
∞

≤ ∆Z(x)(2Zs(x) + ∆Z(x)).
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Appendix C

Proofs for Chapter 4

C.1 Proof of the sensitivity result

Proof of Theorem 10. Consider a pair of centered normal vectors

η :=
(
η1 η2 ... η|N|

)
∼ N (0,Σ∗

Y ),

ζ :=
(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

where

Σ∗
Y :=

1

2n+

2n+∑

j=1

Var
[
Y n
·j

]
,

Σ̂Y :=
1

2n+

2n+∑

j=1

Var
[
Y n♭
·j

]
,

where vectors Y n
·j and Y n♭

·j are defined in proofs of Lemma 28 and Lemma 30 respectively.
Lemma 9 applies here and yields for all positive q

P {‖ζn+‖∞ ≥ q} ≤ 2
∣
∣Tn+

∣
∣ p2 exp



− q2

2
∥
∥
∥Σ̂Y

∥
∥
∥
∞



 ,

where Σ̂Y = Var [ζ] and
∣
∣Tn+

∣
∣ is the number of central points for window of size n+.

Applying Lemma 36 on a set of probability at least 1 − pΩs (t, x) − pWs (x) − pΣ(χ) yields∥
∥
∥Σ∗

Y − Σ̂Y

∥
∥
∥
∞

≤ ∆Y , and hence, due to the fact that ‖Σ∗
Y ‖∞ = 1 by construction,

P {‖ζn+‖∞ ≥ q} ≤ 2
∣
∣Tn+

∣
∣ p2 exp

(

− q2

2 (1 + ∆Y )

)

.

Due to Lemma 32 and continuity of Gaussian c.d.f.

P
♭
{
B♭

n+
≥ x♭

n+
(α)

}
≥ α/ |N| − 2RB♭

and due to Lemma 32 along with the fact that
∣
∣Tn+

∣
∣ < N , choosing q as proposed by

equation (4.11) we ensure that x♭
n+
(α) ≤ q.

Now using Lemma 20 twice for Σ̂l
n(τ) and Σ̂r

n(τ) respectively we obtain that with
probability at least 1− 2pΣ(χ)
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Bn ≥
√

n

2
‖S‖∞ (∆− 2δn(χ)) .

Finally, we notice that due to definition (4.10) of nsuff and since n+ > nsuff

Bn+
> q

and therefore, H0 will be rejected.

C.2 Proof of bootstrap validity result

Proof of Theorem 9. The proof consists in applying Lemma 28, Lemma 32 and Lemma
27 justifying applicability of sandwiching Lemma 10 on a set of probability not less than
q (defined by (4.5)) which are followed by applying Lemma 7.

C.3 Similarity of joint distributions of {Bn}n∈N and

{B♭
n}n∈N

Lemma 27. Let Assumption 2 hold and ∆Y < 1/2 where ∆Y comes from Lemma 36.
Also let X1, X2, ..., XN be i.i.d. Then for all positive x, t and χ on a set of probability at
least 1− pZs(κ)− pΩs (t, x)− pWs (x)− pΣ(χ)

sup
{xn}n∈N⊂R

∣
∣P {∀n ∈ N : Bn ≤ xn} − P

♭
{
∀n ∈ N : B♭

n ≤ xn

}∣
∣ ≤ R (C.1)

where

R := RB +RB♭ +R±
Σ

R±
Σ := C∆

1/3
Y log2/3

(
Tp2

)

pZs(κ), pΩs (t, x), pWs (x) and pΣ(χ), come from Lemma 31, Lemma 35, Lemma 33 and
Lemma 20 respectively, RB and RB♭ are defined in Lemma 28 and Lemma 32 respectively
and C is an independent constant.

Proof. Consider a pair of normal vectors η and ζ

η :=
(
η1 η2 ... η|N|

)
∼ N (0,Σ∗

Y ),

ζ :=
(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

where

Σ∗
Y :=

1

2n+

2n+∑

j=1

Var
[
Y n
·j

]
,

Σ̂Y :=
1

2n+

2n+∑

j=1

Var
[
Y n♭
·j

]
,

where vectors Y n
·j and Y n♭

·j are defined in proofs of Lemma 28 and Lemma 32 respectively.
Applying Lemma 44 along with Lemma 37 yields
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sup
A∈Are

|P {η ∈ A} − P {ζ ∈ A}| ≤ C∆
1/3
Y log2/3

(
Tp2

)

and the fact that ∀k ∈ 1..p : (Var [ζ])kk = 1 provides independence of the constant C.
Here Are denotes a set of hyperrectangles in the sense of Definition 2 and clearly for all
{xn}n∈N ⊂ R the set {∀n ∈ N : Bn < xn} is a hyperrectangle. Subsequently applying
Lemma 28 and Lemma 32 we finalize the proof.

C.4 Gaussian approximation result for Bn

Lemma 28. Let Assumption 2 hold. Then

sup
{xn}n∈N⊂R

|P {∀n ∈ N : Bn ≤ xn} − P {∀n ∈ N : ‖ηn‖∞ ≤ xn}| ≤ RB,

where
(
η1 η2 ... η|N|

)
∼ N (0,Σ∗

Y ),

Σ∗
Y :=

1

2n+

2n+∑

j=1

Var
[
Y n
·j

]
,

RB := CB

(
F log7(2p2Tn+)

)1/6
,

F :=
1

2n−

(

β log 2 ∨
√
2√

2− 1
γ

)2

∨ 1

2n+

(
n+

n−

)1/3

(
∥
∥S−1

∥
∥
∞
M3)

2 ∨
√

1

2n+n−

(
∥
∥S−1

∥
∥
∞
M4)

2

with γ defined by (C.6), β by (C.7) and Y along with its sub-matrices Y n by (C.4) and
(C.3). Also, M3

3 and M4
4 stand for the third and the fourth maximal centered moments of

(X1)k(X1)l and CB is an independent constant.

Proof. First, we define for all i ∈ 1..N

Zi := S−1
(

XiXT
i − Σ∗

)

(C.2)

and notice that

Bn(t) :=

∥
∥
∥
∥
∥
∥

1√
2n




∑

i∈Il
n(t)

Zi −
∑

i∈Ir
n(t)

Zi





∥
∥
∥
∥
∥
∥
∞

.

Next consider a matrix Y n with 2n+ columns
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(Y n)T :=

√
n+

n
×























Z1 O ... O −Z2n++1 ...
Z2 Z2 ... ... ... ...
... Z3 ... ... ... ...
Zn ... ... ... ... ...

−Zn+1 Zn+1 ... ... ... ...
−Zn+2 −Zn+2 ... ... ... ...

... −Zn+3 ... O ... ...
−Z2n ... ... Z2n+−2n+1 O ...
O −Z2n+1 ... Z2n+−2n+2 Z2n+−2n+2 ...
O O ... ... ... ...
... ... ... −Z2n+−1 −Z2n+−1 ...
O O ... −Z2n+

−Z2n+
...























(C.3)

Clearly, columns of the matrix are independent and

Bn =
1√
2n+

2n+∑

l=0

(Y n)·l

Next we define a block matrix composed of Y n matrices:

Y :=







Y 1

Y 2

...

Y |N|







. (C.4)

Again, vectors Y·l are independent and for all {xn}n∈N ⊂ R the set

{∀n ∈ N : Bn ≤ xn}

is a hyperrectangle in the sense of Definition 2.
The rest of the proof consists in applying Lemma 42. Denote

Gn+
=

√
n+

n−

(

β log 2 ∨
√
2√

2− 1
γ

)

∨
(
n+

n−

)1/6

M3 ∨
(
n+

n−

)1/4

M4. (C.5)

In the same way as in Lemma 29 one shows that the assumptions of Lemma 15 hold for
components of Zi with

γ := L2
∥
∥S−1

∥
∥
∞
, (C.6)

β := L2
∥
∥S−1

∥
∥
∞
‖Σ∗‖∞ . (C.7)

Therefore condition (D.1) holds with Gn+
defined by equation (C.5). In order to see that

Assumption D.5.4 is fulfilled with b = 1 notice that

1

2n+

n+∑

j=1

E
[
(Y n

ij )
2
]
≥ min

j
Var [(Z1)j] = 1.
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Next observe that for any k-th component Zik of Zi and a central point t (both determined
by j):

1

2n+

2n+∑

j=1

E

[∣
∣Y n

ij

∣
∣
3
]

=
1

2n+

∑

i∈Il
n(t)∪I

r
n(t)

E

[(√
n+

n
|Zik|

)3
]

=
1

2n+

∑

i∈Il
n(t)∪I

r
n(t)

(n+

n

)3/2

E
[
|Zik|3

]

=
2n

2n+

(n+

n

)3/2

E
[
|Zik|3

]

=

√
n+

n
E
[
|Zik|3

]

≤
√

n+

n−

(∥
∥S−1

∥
∥
∞
M3

)3
.

In the same way:

1

2n+

N∑

i=1

E

[∣
∣Y n

ij

∣
∣
4
]

≤ n+

n−

(∥
∥S−1

∥
∥
∞
M4

)4
.

Therefore, Assumption D.5.5 holds with Bn+
, so Lemma 42 applies here and provides us

with the claimed bound. Moreover, CB depends only on b = 1 which implies that the
constant CB is independent.

Lemma 29. Under Assumption Assumption 2 it holds for all i ∈ 1..N and positive κ that

P
{
∀k ∈ 1..p : |(Zi)k| ≤

∥
∥S−1

∥
∥
∞
L2 (κ+ log p+ ‖Σ∗‖∞)

}
≥ 1− e−κ.

Proof. According to the definition (C.2) of Zi for its arbitrary element (Zi)k one obtains
for some l,m ∈ 1..p:

(Zi)k = S−1

kk ((Xi)l(Xi)m − Σ∗
lm) .

By sub-Gaussianity Assumption 2 it holds for all positive x that

P {∀k ∈ 1..p : |(Xi)k| ≤ x} ≥ 1− pe−x2/L2

.

Hence
P
{
∀k ∈ 1..p : |(Zi)k| ≤

∥
∥S−1

∥
∥
∞

(
x2 + ‖Σ∗‖∞

)}
≥ 1− pe−x2/L2

and finally a change of variables establishes the claim.

C.5 Gaussian approximation result for B♭
n

Denote

Σ∗
Y :=

1

2n+

2n+∑

j=1

Var [Y·j] ,
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Σ̂Y :=
1

2n+

2n+∑

j=1

Var
[
Y ♭
·j

]
,

where vectors Y·j and Y ♭
·j are defined by (C.3) and (C.8) respectively.

Lemma 30.

sup
{xn}n∈N⊂R

∣
∣P

♭
{
∀n ∈ N : B♭

n ≤ xn

}
− P

♭ {∀n ∈ N : ‖ζn‖∞ ≤ xn}
∣
∣ ≤ ĈB♭ ,

(
F ♭ log7(2p2Tn+)

)1/6

where ĈB♭ depends only on mink∈1..p(Σ̂Y )kk,
(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

Σ̂Y :=
1

2n+

2n+∑

j=1

Var
[
Y n♭
·j

]
,

F ♭ =

(

1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨
√

1

2n+n−

)

∥
∥S−1

∥
∥
2

∞
(M ♭)2

M ♭ = max
i∈Is

∥
∥
∥Ẑi

∥
∥
∥
∞
.

Proof. This proof is similar to the proof of Lemma 28.
Consider a matrix which is a bootstrap counterpart of Y n

(Y n♭)T :=

√
n+

n
×
























Z♭
1 O ... O −Z♭

2n++1 ...

Z♭
2 Z♭

2 ... ... ... ...
... Z♭

3 ... ... ... ...
Z♭

n ... ... ... ... ...
−Z♭

n+1 Z♭
n+1 ... ... ... ...

−Z♭
n+2 −Z♭

n+2 ... ... ... ...
... −Z♭

n+3 ... O ... ...
−Z♭

2n ... ... Z♭
2n+−2n+1 O ...

O −Z♭
2n+1 ... Z♭

2n+−2n+2 Z♭
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −Z♭

2n+−1 −Z♭
2n+−1 ...

O O ... −Z♭
2n+

−Z♭
2n+

...
























.

Clearly, columns of the matrix are independent and

B♭
n =

1√
2n+

2n+∑

l=0

(Y n♭)·l

Next, we define a block matrix composed of Y n♭ matrices:

Y ♭ :=







Y 1♭

Y 2♭

...

Y |N|♭







. (C.8)
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Again, vectors Y ♭
·l are independent, and for all {xn}n∈N ⊂ R the set

{
∀n ∈ N : B♭

n < xn

}

is a hyperrectangle in the sense of Definition 2. Now notice that

1

2n+

2n+∑

j=1

E
[
|Yij|3

]
≤

√
n+

n−

∥
∥S−1

∥
∥
3

∞
max
i∈Is

‖Zi‖∞ ,

1

2n+

2n+∑

j=1

E
[
|Yij|4

]
≤ n+

n−

∥
∥S−1

∥
∥
4

∞
max
i∈Is

‖Zi‖∞ .

And finally apply Lemma 42.

Lemma 31. Under Assumption 2 it holds for all positive κ that

P {∀i ∈ Is : ‖Zi‖∞ ≤ Zs(κ)} ≥ 1− pZs(κ),

where

Zs(κ) :=
∥
∥S−1

∥
∥
∞
L2 (κ+ log p+ ‖Σ∗‖∞) ,

pZs(κ) := se−κ.

Proof. The proof consists in applying Lemma 29 and appropriate multiplicity correction.

Lemma 32. Let Assumption 2 hold and ∆Y < 1/2. Then for all positive κ with probability
at least 1− pZs(κ)

sup
{xn}n∈N⊂R

∣
∣P

♭
{
∀n ∈ N : B♭

n ≤ xn

}
− P

♭
{
∀n ∈ N :

∥
∥Y n♭

∥
∥
∞

≤ xn

}∣
∣ ≤ RB♭ ,

where

RB♭ := CB♭

(

F̂ log7(2p2Tn+)
)1/6

,

F̂ :=

(

1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨
√

1

2n+n−

)

∥
∥S−1

∥
∥
2

∞
(Zs(κ))

2

and ĈB♭ is an independent constant.

Proof. The proof consists in subsequently applying Lemma 30 and Lemma 31 ensuring

M ♭ ≤ Zs(κ) with probability at least 1 − pZs(κ), while assumed bound
∥
∥
∥Σ∗

Y − Σ̂Y

∥
∥
∥
∞

≤
∆Y < 1/2 = min1≤k≤p(Σ

∗
Y )kk implies the existence of a deterministic constant CB♭ >

ĈB♭ .
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C.6 Σ∗
Y ≈ Σ̂Y

Denote

Wi := XiXT
i ,

Ω∗ := E

[(
W1 − Σ∗

) (
W1 − Σ∗

)T
]

,

Ω̂ := EIs

[(
Wi − Σ∗

) (
Wi − Σ∗

)T
]

,

where notation EIs [·] is used as a shorthand for averaging over Is, e.g.

EIs [ξi] =
1

s

∑

i∈Is

ξi,

and similarly VarIS [·] denotes an empirical covariance matrix computed using the same
set, e.g.

VarIS [ξi] = EIs

[
ξiξ

T
i

]
.

The results of this section rely on the Lemma 20 which is a trivial corollary of Lemma
6 by [27] providing the concentration result for empirical covariance matrix.

Straightforwardly applying Assumption 2 and a proper multiplicity correction yields
the following result.

Lemma 33. Under Assumption 2 it holds for all positive x that

P
{
∀i ∈ Is :

∥
∥Wi − Σ∗

∥
∥
∞

≤ Ws(x)
}
≥ 1− pWs (x),

where

Ws(x) := x2 + ‖Σ∗‖∞ ,

pWs (x) := pse−x.

Lemma 34. Under Assumption 2 with probability at least 1− pWx (s)− pΣ(χ)

∥
∥
∥VarIS [Wi − EIs [Wi]]− Ω̂

∥
∥
∥
∞

≤ 2Ws(x)δs(χ) + δs(χ)
2.

Proof. By the construction of bootstrap procedure and definition (C.2)

VarIS [Wi − EIs [Wi]] =
1

s

∑

i∈Is

(Wi − EIs [Wi]) (Wi − EIs [Wi])
T

=
1

s

∑

i∈Is

(
Wi − Σ∗ + Σ∗ − EIs [Wi]

) (
Wi − Σ∗ + Σ∗ − EIs [Wi]

)T

= Ω̂ +
1

s

∑

i∈Is

(
Σ∗ − EIs [Wi]

) (
Σ∗ − EIs [Wi]

)T

+
2

s

(
Wi − Σ∗

) (
Σ∗ − EIs [Wi]

)T
.

Applying Lemmas Lemma 33 and Lemma 20 yields the claim.
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Lemma 35. Let Assumption 2 hold for some L > 0. Then for any positive t and x

P

{∥
∥
∥Ω∗ − Ω̂

∥
∥
∥
∞

≥ ∆Ω
s (t, x)

}

≤ pΩs (t, x),

where

∆Ω
s (t, x) :=

(2(Ws(x))
2) t

3s

(

1 +

√

1 +
9sσ2

Ω

t (2(Ws(x))2)
2

)

,

pΩs (t, x) := p2e−t + pWs (x).

Proof. Consider a random variable

ζ ilm :=
(
Wi − Σ∗

)

l

(
Wi − Σ∗

)

m
− Ω∗

lm.

By Lemma 33 we can bound it as |ζ ilm| ≤ 2(Ws(x))
2 with probability at least 1− pWs (x).

Due to ζ ilm being centered Bernstein inequality applies:

P

{

EIs

[
ζ ilm

]
≥ (2(Ws(x))

2) t

3s

(

1 +

√

1 +
9sσ2

Ω

t (2(Ws(x))2)
2

)}

≤ e−t.

Lemma 36. Under Assumption 2 for any positive t, x and χ with probability at least
1− pΩs (t, x)− pWs (x)− pΣ(χ) it holds that

∥
∥Var [Zi]− Var

[
Z♭

i

]∥
∥
∞

≤ ∆Y :=
∥
∥S−1

∥
∥
2

∞

(
∆Ω

s (t, x) + 2Ws(x)δs(χ) + δ2s(χ)
)
.

Proof. Proof consists in applying Lemma 35 and Lemma 34.

Using the fact that the covariance matrices Σ∗
Y and Σ̂Y are block matrices composed

of blocks Var [Zi] and Var
[
Z♭

i

]
respectively, multiplied by some positive values ≤ 1, we

trivially obtain the following result.

Lemma 37. Under Assumption 2 for any positive t, x and χ with probability at least
1− pΩs (t, x)− pWs (x)− pΣ(χ) it holds that

‖Σ∗
Y − Σ∗

Y ‖∞ ≤ ∆Y ,

∆Y comes from Lemma Lemma 36.
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Appendix D

Known results

D.1 Consistency result for the ℓ1-penalized estimator

by [42]

Lemma 38 (Theorem 1, [42]). Consider a distribution satisfying Assumption 1 with some
α ∈ (0, 1], let Θ̂ be a solution of the optimization problem (2.1) with tuning parameters
Λij = λn = 8

α
δn for i 6= j. Furthermore, suppose the following sparsity assumption:

d ≤ δn
6(δn + λn)2 max{κΓ∗κΣ∗ , κ2

Γ∗κ3
Σ∗} .

Also assume that

θmin > r := 2κΓ∗(δn + λn)

Then on the set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

the following holds:
∥
∥
∥Θ̂−Θ∗

∥
∥
∥
∞

≤ r and Θ∗
ij =

0 ⇔ Θ̂ij = 0.

D.2 The bound for R(∆) by [42]

Lemma 39 (Lemma 5, [42]). Suppose, ‖∆‖∞ ≤ 1
3κΣ∗d

. Then the matrix J :=
∑∞

k=0(−1)k(Θ∗−1∆)k

satisfies the bound ‖J‖∞ ≤ 3/2 and the matrix

R(∆) = Θ∗−1∆Θ∗−1∆JΘ∗−1

is bounded as

‖R(∆)‖∞ ≤ 3

2
d ‖∆‖2∞ κ3

Σ∗

.

D.3 The estimation σ̂2
ij for σ2

ij

Lemma 40 (generalization of Lemma 2 by [27]). Assume conditions of Lemma 5 hold.
Moreover, let Xi ∼ N (0,Σ∗). Define the estimator σ̂2

ij as

σ̂2
ij := Θ̂iiΘ̂jj + Θ̂2

ij.
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Then on set T =
{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

< δn

}

∣
∣σ̂2

ij − σ2
ij

∣
∣ ≤ 2rΛ(2νΘ∗ + rΛ),

where νΘ∗ = ‖Θ∗‖∞.

Proof. Since Xi ∼ N (0,Σ∗), clearly Θ∗X ∼ N (0,Θ∗). Some algebra yields

σ2
ij = Θ∗

iiΘ
∗
jj +Θ∗2

ij .

Therefore

∣
∣σ̂2

ij − σ2
ij

∣
∣ ≤

∣
∣
∣Θ̂iiΘ̂jj −Θ∗

iiΘ
∗
jj

∣
∣
∣+

∣
∣
∣Θ̂2

ij −Θ∗2
ij

∣
∣
∣ .

Now using the bound provided by Lemma 5 we can bound the terms on the right hand

∣
∣
∣Θ̂iiΘ̂jj −Θ∗

iiΘ
∗
jj

∣
∣
∣ ≤ (Θ∗

ii +Θ∗
jj)rΛ + r2Λ,

∣
∣
∣Θ̂2

ij −Θ∗2
ij

∣
∣
∣ =

∣
∣
∣(Θ̂ij −Θ∗

ij)(Θ̂ij +Θ∗
ij)
∣
∣
∣

≤ rΛ(2Θ
∗
ij + rΛ).

And finally

∣
∣σ̂2

ij − σ2
ij

∣
∣ ≤ rΛ(2νΘ∗ + rΛ) + 2νΘ∗rΛ + r2Λ

= 2rΛ(2νΘ∗ + rΛ).

D.4 Probability of the set T
Assumption D.4.3 (Sub-Gaussianity condition). Denote the normalized components of
the vector X1 as ξi =

X1i√
Σ∗

ii

. Then, we say that the Sub-Gaussianity condition holds for

vector X1 if

∃K > 0 : ∀i E
[

exp

(
ξ2i
K2

)]

≤ 2.

Lemma 41 (by [42] in form by [27]). Let Assumption D.4.3 hold for some K > 0. Then
for

δ(n, r) = 8(1 + 12K2)max
i

Σ∗
ii

√

2
log(4r)

n

and for any γ > 2 and for n such that δ(n, pγ) < 8(1 + 12K2)maxi Σ
∗
ii we have

P

{∥
∥
∥Σ̂− Σ∗

∥
∥
∥
∞

≤ δ(n, pγ)
}

≥ 1− 1

pγ−2
.
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D.5 Gaussian approximation result

In this section we briefly describe the result obtained in [12].

Throughout this section consider an independent sample x1, ..., xn ∈ R
p of centered

random variables. Define their Gaussian counterparts yi ∼ N (0,Var [xi]) and denote their
scaled sums as

SX
n :=

1√
n

n∑

i=1

xi,

SY
n :=

1√
n

n∑

i=1

yi.

Definition 2. We call a set A of a form A = {w ∈ R
p : ai ≤ wi ≤ bi ∀i ∈ {1..p}} a

hyperrectangle. A family of all hyperrectangles is denoted as Are.

Assumption D.5.4. ∃b > 0 such that

1

n

n∑

i=1

E
[
x2
ij

]
≥ b for all j ∈ {1..p}.

Assumption D.5.5. ∃Gn ≥ 1 such that

1

n

n∑

i=1

E

[

|xij|2+k
]

≤ G2+k
n for all j ∈ {1..p} and k ∈ {1, 2},

E

[

exp

( |xij|
Gn

)]

≤ 2 for all j ∈ {1..p} and i ∈ 1..n. (D.1)

Lemma 42 (Proposition 2.1 by [12]). Let Assumption D.5.4 hold for some b and As-
sumption D.5.5 hold for some Gn. Then

sup
A∈Are

∣
∣P

{
SX
n ∈ A

}
− P

{
SY
n ∈ A

}∣
∣ ≤ C

(
G2

n log
7(pn)

n

)1/6

and C depends only on b.

D.6 Anti-concentration result

Lemma 43 (Nazarov’s inequality [38]). Consider a normal p-dimensional vector X ∼
N (0,Σ) and let ∀i : Σii = 1. Then for any y ∈ R

p and any positive a

P {X ≤ y + a} − P {X ≤ y} ≤ Ca
√

log p,

where C is an independent constant.
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D.7 Gaussian comparison result

By the technique given in the proof of Theorem 4.1 by [12] one obtains the following
generalization of the result given in [10]

Lemma 44. Consider a pair of covariance matrices Σ1 and Σ2 of size p× p such that

‖Σ1 − Σ2‖∞ ≤ ∆

and ∀k : C1 ≥ Σ1,kk ≥ c1 > 0. Then for random vectors η ∼ N (0,Σ1) and ζ ∼ N (0,Σ2)
it holds that

sup
A∈Are

|P {η ∈ A} − P {ζ ∈ A}| ≤ C∆1/3 log2/3 p,

where C is a positive constant which depends only on C1 and c1.

D.8 Tail inequality for quadratic forms

The following result is a direct corollary of Theorem 1 in [25]

Lemma 45. Consider a positive semi-definite or negative semi-definite matrix B and
suppose Assumption 2 holds. Then for all t > 0

P

{∣
∣XT

1 BX1

∣
∣ ≥ 3L2

(

|trB|+ 2
√

tr(B2)t+ 2 |Λ (B)| t
)}

≤ e−t.
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[17] M. Csörgő and L. Horváth. Limit theorems in change-point analysis. Wiley series in
probability and statistics. J. Wiley & Sons, Chichester, New York, 1997.

[18] R. F. Engle, V. K. Ng, and M. Rothschild. Asset pricing with a factor-arch covariance
structure. Empirical estimates for treasury bills. Journal of Econometrics, 45(1-
2):213–237, 1990.

[19] J. Fan, Y. Feng, and Y. Wu. Network exploration via the adaptive lasso and scad
penalties. Ann. Appl. Stat., 3(2):521–541, 2009.

[20] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties, 2001.

[21] E. S. Finn, X. Shen, D. Scheinost, M. D. Rosenberg, J. Huang, M. M. Chun, X. Pa-
pademetris, and R. T. Constable. Functional connectome fingerprinting: Identifying
individuals using patterns of brain connectivity. Nat. Neurosci., 18:1664–1671, 2015.

[22] J. Friedman, T. Hastie, and R. Tibshirani. glasso: Graphical lasso- estimation of
Gaussian graphical models, 2014. R package version 1.8.

[23] K. J. Friston. Functional and effective connectivity: A review. Brain Connectivity,
1(1):13–36, 2011.

[24] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6:65–70, 1979.

[25] D. Hsu, S. M. Kakade, and T. Zhang. A tail inequality for quadratic forms of
subgaussian random vectors. Electronic Communications in Probability, 17(0), Jan.
2012.

[26] N. A. James and D. S. Matteson. ecp: An R package for nonparametric multiple
change point analysis of multivariate data. Journal of Statistical Software, 62(7):1–25,
2014.
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