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Abstract

The presented dissertation addresses the problem of risk evaluation and
behavior planning for future intelligent Advanced Driver Assistance Sys-
tems (ADAS). For this purpose, a novel framework for situation-based risk
evaluation and behavior planning, targeting highly automated driving, is
presented.

After properly sensing the current scene, including the current road
topology and other traffic participants, the proposed framework first esti-
mates and predicts the future behavior of all involved entities comprising
a situation classification and trajectory prediction step. This is then fol-
lowed by the generation of the own future behavior in a behavior planning
step which is based on an evaluation of possible ego behavior alternatives
in terms of risk and utility considerations. The future behavior is planned
in a way to find a tradeoff between the expected future risk and utility.

Inner-city traffic scenarios in particular are usually complex and of high
uncertainty, considering measurements as well as behavioral decisions. To
reduce the complexity, similar behavior alternatives are clustered and rep-
resented by prototypical behavior patterns using so-called situations. A
novel situation classification approach is proposed to estimate how good a
situation matches with the actual behaviors. This approach is based on a
comparison of the prototypically predicted trajectories of the considered
situations with the actual measured trajectories. For this purpose a novel
measure for spatio-temporal trajectory similarity, based on the evaluation
of longitudinal and lateral spatio-temporal distance, is derived. The sit-
uation classification system is used to detect incorrect and critical traffic
behaviors, especially in scenarios with a disregard of right-of-way. Evalu-
ating the system using real-world crash cases reveals that it is able to warn
the driver reliably of an upcoming crash, with sufficient time to initiate a
suitable evasive behavior.

For the prediction of situation-dependent prototypical scene evolution
patterns, the interaction-aware Foresighted Driver Model (FDM) is ap-
plied in a forward simulation of a sensed scene under different situation-
dependent behavioral assumptions. The proposed FDM is a novel, time
continuous driver model for the simulation and prediction of freeway and
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urban traffic. Based on the general risk evaluation and behavior plan-
ning framework developed in this thesis, the driver model equations are
introduced from the assumption that a driver tries to balance predictive
risk (e.g. due to possible collisions along its route) with utility (e.g. the
time required to travel, smoothness of ride, etc.). For this purpose, a
computationally inexpensive, approximate risk model targeting only risk
maxima and a gradient descent-based behavior generation is applied. It
is shown, how such a model can be used to simulate and predict driving
behavior with a similar performance compared to full behavior planning
models. The FDM is applicable to a wide range of different scenarios,
e.g. intersection or highway-accessing scenarios, with the consideration of
an arbitrary number of traffic entities. Thus, the FDM generalizes and
reaches beyond state-of-the-art driver models.

Complex traffic situations require the estimation of future behavior al-
ternatives in terms of predictive risks. Risk assessment has to be driven
from the knowledge that the acting scene entity requires to evaluate the
own future behavior. Based on the predicted future dynamics of traffic
scene entities, an approach is presented, where a continuous, probabilistic
model for future risk is used to build so-called predictive risk maps. These
maps indicate how risky a certain ego behavior will be at different future
times, so that they can be used to directly plan the best possible future
behavior.

The behavior in complex scenarios differs strongly, depending on the
actually occurring situation. However, sensory measurements of the ego-
and other involved entities’ states as well as the prediction of possible
future states are generally of high uncertainty. As a consequence, the cur-
rent driving situation can only be approximated. Additionally, a situation
can change very quickly, e.g. if a traffic participant suddenly changes its
behavior. In this thesis an approach is proposed, how to plan a safe, but
still efficient future behavior under consideration of multiple possible sit-
uations with different occurrence probabilities. In several traffic scenarios
comprising simulated as well as recorded real-world data, it is shown that
the approach generates an efficient behavior for situations which are likely
to occur, while generating a plan B to safely deal with improbable but
risky situations.
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Kurzfassung

Diese Dissertation behandelt das Problem der Verhaltensevaluierung und
-planung fiir zukiinftige, intelligente Fahrerassistenzsysteme (FAS). Hier-
zu wird ein neues Framework fiir die situationsbezogene Risikobewertung
und Verhaltensplanung im Bereich des hochautomatisierten Fahrens vor-
gestellt.

Nach der sensorischen Erfassung der aktuellen Szene, einschlieflich der
Straflentopologie sowie weiterer Verkehrsteilnehmer, schétzt das vorgestell-
te Framework zunéchst das zukiinftige Verhalten aller involvierten Teilneh-
mer in einem Situationsklassifikations- und Trajektorienpradiktionsschritt.
Basierend darauf wird eine Risikoauswertung von moglichen Verhaltensal-
ternativen des Ego-Fahrzeugs durchgefiihrt, um dann durch eine Verhal-
tensanpassung einen Kompromiss aus Risiko und Nutzen zu finden.

Vor allem innerstiadtische Verkehrsszenarien sind in der Regel komplex
und mit hoher Unsicherheit behaftet. Zur Reduzierung der Komplexitét
werden &dhnliche Verhaltensweisen zusammengefasst und durch prototy-
pische Verhaltensmuster in so genannten Situationen dargestellt. Um ab-
zuschéatzen, wie gut eine Situation dem tatsdchlichen Verhalten entspricht,
werden prototypische Verhaltenspradiktionen der beriicksichtigten Situa-
tionen mit dem tatséchlich gemessenen Verhalten verglichen. Hierbei wird
ein neu entwickeltes Ahnlichkeitsmaf fiir raumzeitliche Trajektorien an-
gewandt, das auf der getrennten Auswertung des lateralen und longitu-
dinalen raumzeitlichen Abstands basiert. Unter Verwendung des neuarti-
gen Systems zur Situationsklassifikation werden riskante Situationen zu-
verlassig erkannt, welche sich durch “fehlende Interaktion” zwischen Ver-
kehrsteilnehmern auszeichnen.

Fiir die prototypische Vorhersage situationsbezogener Trajektorien wird
das interaktionsbewusste Fahrermodell Foresighted Driver Model (FDM)
in einer Vorwartssimulation der sensorisch erfassten Szene unter situati-
onsbezogenen Verhaltensannahmen angewandt. Das in dieser Arbeit vor-
geschlagene Fahrermodell FDM ist ein neuartiges, zeitkontinuierliches Fah-
rermodell fiir die Simulation und Vorhersage von Autobahn- und in-
nerstidtischen Verkehrssituationen. Hierbei wird davon ausgegangen, dass
ein Fahrer durch sein Verhalten versucht, einen Kompromiss zwischen
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zukiinftigem Risiko (auf Grund méglicher Kollisionen entlang eines Pfa-
des) und Effizienz (beziiglich Reisezeit und Komfort) zu finden. Basierend
auf dem allgemeinen Framework zur Verhaltensplanung und einem an-
gendherten Risikomodell, werden die Fahrermodellgleichungen durch die
Annahme begriindet, dass ein Fahrer in erster Linie versucht, Risikoma-
xima sowohl rdumlich als auch zeitlich zu vermeiden. In dieser Arbeit
konnte gezeigt werden, dass ein solches Fahrermodell in Simulations- und
Préadiktionsanwendungen eine Leistung dhnlich der einer vollen Verhal-
tensplanung erreicht. Das FDM ist auf ein breites Spektrum an unter-
schiedlichen Szenarien, wie z.B. Kreuzungs- oder Autobahnszenarien, un-
ter Beriicksichtigung beliebig vieler Verkehrsteilnehmer anwendbar. Daher
werden die dem Stand der Technik entsprechenden Fahrermodelle durch
das FDM verallgemeinert und eine Anwendung auf weiterfithrenden Sze-
narien wird ermoglicht.

Komplexe Verkehrssituationen erfordern die Auswertung von Verhal-
tensmoglichkeiten hinsichtlich des zukiinftigen Risikos. Die Risikobewer-
tung des eigenen zukiinftigen Verhaltens ist getrieben von verhaltens-
bezogenen Bediirfnissen des agierenden Verkehrsteilnehmers. Im vorge-
schlagenen Ansatz wird basierend auf der vorhergesagten Dynamik der
Verkehrsteilnehmer ein zeitlich kontinuierliches Wahrscheinlichkeitsmodell
fiir kiinftige Risiken verwendet, um sogenannte praidiktive Risikokarten
zu erzeugen. Diese Risikokarten beschreiben, wie riskant ein bestimmtes
Ego-Verhalten zu verschiedenen zukiinftigen Zeitpunkten sein wird. Somit
konnen sie direkt dazu verwendet werden, das bestmégliche zukiinftige
Verhalten zu planen.

Verhalten in komplexen Szenarien unterscheiden sich stark in
Abhéngigkeit der tatsédchlich auftretenden Situationen. Im Allgemeinen
kann die aktuelle Situation oft nur mit hoher Unsicherheit anhand ge-
genwértiger und vergangener sensorischer Messungen des Ego-Fahrzeugs
und anderer beteiligter Fahrzeuge bestimmt werden. Zusétzlich kann sich
eine vorherrschende Verkehrssituation schnell &ndern, z.B. wenn ein Ver-
kehrsteilnehmer sein Verhalten plotzlich &ndert. In dieser Arbeit wird da-
her ein Ansatz vorgestellt, der es ermdglicht das zukiinftige Verhalten unter
Beriicksichtigung von mehreren moglichen Situationen mit unterschiedli-
chen Eintrittswahrscheinlichkeiten sicher und trotzdem effektiv zu planen.
Dieser Ansatz generiert speziell fiir Situationen mit hoher Wahrscheinlich-
keit sehr effizientes Verhalten. Fiir unwahrscheinliche, aber riskante Situa-
tionen wird ein Plan B bereit gestellt, der lediglich auf die Minimierung
des Risikos abzielt, falls eine dieser Situationen unerwartet eintritt.






1 Introduction

Road traffic accidents are one of the biggest problems in public health.
The World Health Organization (WHO) recorded 1.24 million deaths and
over 50 million injured humans related to car accidents in 2010, which
accounts for 2.1 % of the global mortality [141].

Several studies analyzing the cause of traffic accidents have determined
human error as the main accident reason. For example in [60] 2258 ac-
cidents were observed, of which 93 % can be explained by human misbe-
havior. In [44] the authors analyzed accidents registered by the German
Federal Statistical Office. Here, 84 % of the accidents were caused by the
human driver.

The prognosis given in [100] from the year 2004 expected an increase of
personal damage by 65 % in the time span from 2000 until 2020 due to an
increase of traffic volume. This prognosis was made under the assumption
that no further safety system would be developed. However, the analysis
in [125] could determine a steady decrease of deaths (by ~ 80 %) and
injured persons (by ~ 30 %) in German road traffic between 1970 and
2014. This decrease is even more valuable, if the increase in traffic volume
by 270 % in this period is considered. The early decrease in the number
of deaths and injuries, until approximately the year 2000, can mainly be
explained by the development of passive safety systems, such as seat belts,
airbags, the enhancement of the physical vehicle structure, and traffic
safety regulations. Regulations which have had a great influence on traffic
safety are e.g. the introduction of a speed limit at 100 km /h for rural roads
and the reduction of the legal blood alcohol level to 0.5 %o. For the later
decrease of personal damage after the year 2000, mainly the increasing
number of active safety functions such as the electronic stability program
(ESP) is responsible.

In 2012, only 0.9 % of the accidents could be identified as caused by
technical breakdowns or lack of maintenance [44]. Therefore, it can be
concluded that the potential for safety improvement in the area of struc-
tural reliability is largely saturated. On the other side, it can be seen that
systems incorporating environmental knowledge to assist or actively pro-
tect a driver promise high development potential. To date, there is already
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a wide range of such so-called advanced driver assistance systems (ADAS)
available to support the driver by perceiving the environment using a wide
range of sensors such as radar, LIDAR!, or cameras.

Currently available ADAS, such as lane-keeping, park assistance and
adaptive cruise control (ACC), generally try to achieve an individual target
and operate mostly independent of each other. An increasing number of
ADAS also intensifies the problem of conflicting targets and, as a result,
requires an integrated evaluation to allow joint solutions, optimizing the
integrity of parallel acting ADAS. This work originates from the need of
such an integrated evaluation method for ADAS to achieve an optimal
behavior, considering multiple different and possibly competing targets.

In general, the target of ADAS is to relief the strain on the driver by
taking over more and more responsibility, starting from any kind of warn-
ing system up to partially or fully automated driving. This evokes the
development of a suitable, integrated system framework and behavior eval-
uation method, as one of the main challenges. Especially in road traffic
environments the estimation and evaluation of possible future hazards is
crucial.

The main questions addressed in this thesis are the following:

1. How can an entity’s own behavior be generated in general traffic
environments, minimizing risk and maximizing utility?

Generating the own behavior relies on an evaluation of possible future
behavior alternatives, which raises the question:

2. How can an entity’s possible future behavior be evaluated in an inte-
grated way in terms of behavioral risk and utility?

The evaluation of possible upcoming hazards expressed by an integrated
risk estimation method requires a prediction of possible state evolutions
of the current scene into the future. In general, there are unlimited
possibilities how a scene can evolve. As a consequence, the behavior
evaluation becomes computationally infeasible, which causes the question:

3. How can the complexity in the evaluation of future behavior alterna-
tives be reduced to allow a computationally efficient evaluation of behav-
ioral risk and utility?

!Light detection and ranging (LIDAR) is an optical method for distance and velocity
measurement, similar to radar. For the measurement, the run time of laser beams
is used, instead of radio waves, as applied in radar.



Many previous works have addressed problems which target parts of the
raised questions, as it will be discussed in detail in Chapter 2. However,
current approaches are mostly designed to work under narrowly defined
conditions, e.g. limited to certain types of traffic scenarios such as highway
driving, or target only sub-problems of the those questions, e.g. the
classification of possible future traffic maneuvers. A general framework,
comprising approaches to the raised questions in an integrated way and
not restricted to certain traffic scenarios, is still missing, which is the
overall target of the presented thesis.

Approaching the three questions raised above, especially the task of be-
havior generation in traffic environments, leads to the field of automated
driving. The different approaches towards driving automation are catego-
rized by six different levels, ranging from 0 to 5, defined as follows by the
Society of Automotive Engineers (SAE) in the standard J3016 [110]:

e Level 0 - No Automation describes an automation level in which
the human driver has to handle all aspects of driving.

e Level 1 - Driver Assistance describes systems, where an assis-
tance function takes over either steering or acceleration/deceleration
for a well-defined purpose.

e Level 2 - Partial Automation describes systems, where both,
steering and acceleration/deceleration is performed by one or more
assistance functions in a well-defined driving mode.

e Level 3 - Conditional Automation describes systems, where the
entire dynamic driving task is performed by an automated driving
system. Here the human driver only has to intervene when requested
by the system.

e Level 4 - High Automation describes systems, where the entire
dynamic driving task is performed by an automated driving system.
In case the human driver does not respond to a take-over request the
system has to be able to reach a safe state.

e Level 5 - Full Automation describes systems, where the entire
dynamic driving task in any kind of traffic environment is fully per-
formed by an automated driving system, without the need of a hu-
man driver.

Parts of the presented thesis are applicable to any of the SAE-levels. How-
ever, in particular the presented framework for situation-based risk eval-
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uation and behavior planning targets SAE-level 4 and 5. The following
section summarizes the main contributions of this thesis, approaching the
questions raised above.

1.1 Contributions

The contributions of this thesis can be summarized as follows:

e Novel situation representation, clustering similar behavior alterna-
tives for each involved traffic scene entity and represent each cluster
by one prototypical behavior per entity [30, 31, 39].

e Novel probabilistic risk model, expressing the expectation value of
the damage related to critical future events, targeted for situation-
dependent, prototypically predicted, future behavior patterns [27,
30, 39].

e Novel similarity metric for spatio-temporal trajectories?, targeted at
road traffic scenarios [31].

e Novel integrated framework for situation-based risk evaluation and
behavior planning [30, 39].

e Novel microscopic driver model, called the Foresighted Driver Model
(FDM), based on a simplification of the framework for situation-
based risk evaluation and behavior planning [33, 37, 38|.

e Novel method for situation classification, based on a similarity eval-
uation between several situation-dependent expected behavior alter-
natives and the actually sensed behavior [31].

e Novel method for detecting the lack of interaction between traffic
participants, when the entities should interact to avoid upcoming
risks [31].

e Novel model-based method for trajectory prediction, utilizing the
Foresighted Driver Model in a multi-agent forward simulation, con-
sidering situation-dependent behavior assumptions [30, 31].

2A spatio-temporal trajectory describes a temporal sequence of state-vectors, e.g. of
a vehicle, such that a state comprises spatial (e.g. two-dimensional) information,
dedicated to its temporal appearance.
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e Novel method for the evaluation of risk by building so-called predic-
tive risk maps. Such a predictive risk map represents how risky a
certain behavior under consideration of a certain situation will be
in the future. The risk map is generated by building a set of dif-
ferent ego behavior alternatives and evaluating the future risk for
each [26, 27, 30, 39].

e Novel sampling-based, globally optimal method for behavior plan-
ning, minimizing risk and maximizing utility, while considering mul-
tiple situations with uncertainty [27, 30, 39].

All contributions are integrated in a system for situation-based risk eval-
uation and behavior planning, to generate a risk-aversive future behavior
in an efficient way. The system has mainly been analyzed in a simulation
environment. Nevertheless, parts of the system, such as the situation clas-
sification and trajectory prediction, have been applied to real-world data
to show their feasibility.

The contributions have been published to the Intelligent Transportation
Systems (ITS) community in [22, 26, 27, 30, 31, 33, 37-39]. Furthermore,
important aspects have been patented in [28, 29, 32].

1.2 Thesis Structure

The thesis is structured as shown in Figure 1.1. After the introduction,
Chapter 2 gives an overview of research related to the presented work
and its comprising approaches. Chapter 3 introduces novel basic con-
cepts, e.g. the concept of risk and situations, which build the basis of the
following chapters. Those concepts are covered separately, as they are ap-
plicable to tasks beyond the scope of this thesis. Section 3.1 introduces
the basic concept of situations, which combine similar and separate gener-
ally different behavior possibilities of involved entities. A situation defines
a prototypical behavior of a small number of traffic scene entities. Sec-
tion 3.2 proposes a time-continuous, probabilistic model for future risk.
Risk is considered as the expectation value of the costs related to critical
future events. The risk model naturally allows the integrated considera-
tion of different risk sources, such as several traffic participants or road
structure elements, as well as different risk types, such as the car-to-car
collision risk, the risk of skidding off the road while driving too fast on
curves, and the risk of losing control due to heavy braking. Furthermore,
from the general risk measure, this chapter derives a simplified model
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Figure 1.1: Thesis overview.

for the risk accumulated over future time based on risk indicators, which
are directly extractable from predicted, spatio-temporal trajectories, such
as the time-of-closest-encounter (TCE) and distance-of-closest-encounter
(DCE).

Chapter 4 presents the framework for situation-based risk evaluation
and behavior planning, which mainly consists of the six steps: 1) scene
observation, 2) situation classification, 3) trajectory prediction, 4) risk
evaluation, 5) behavior planning, and 6) behavior execution.

Based on this framework, Chapter 5 proposes a novel, microscopic driver
model, the Foresighted Driver Model (FDM), which integrates those steps
in a simplified, computationally inexpensive way. The FDM is applicable
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to a wide range of different scenarios, such as intersections and highway
traffic and, as a consequence, allows the application to simulation as well
as prediction tasks comprising several traffic participants.

The following Chapters 6 - 8 introduce explicit realizations for the main
steps of the framework. The different approaches are designed to collabo-
rate naturally with each other. Nevertheless, each step can be considered
separately and allows the application to individual tasks, such as driver
information or warning systems.

Chapter 6 proposes an approach to classify and select those situations,
which are relevant for an entity’s own future behavior. The presented ap-
proach is based on similarity calculations between situation-dependent pre-
dicted and actually sensed behaviors of all involved entities. Furthermore,
as a prerequisite, this chapter introduces an approach for trajectory predic-
tion, by applying the Foresighted Driver Model in a situation-dependent
multi-agent forward simulation of a sensed scene.

The following Chapter 7 introduces an approach for risk evaluation by
building so-called situation-dependent predictive risk maps which indicate
how risky a certain behavior will be at a certain point in the future.

Chapter 8 introduces a globally optimizing, sampling-based approach
for behavior planning. The presented approach minimizes risk and maxi-
mizes utility, while considering multiple situations with uncertainty. The
approach relies on the risk evaluation step, providing situation-dependent
predictive risk maps, as well as on the situation classification step, provid-
ing an estimate, how likely it is that a situation will occur. The behavior is
planned with a focus on the most likely situations. However, for unlikely
but risky situations, a “plan B”, which purely targets safety considera-
tions, is provided to keep the overall behavior safe in case one of those
situations suddenly occurs.

Finally, Chapter 9 summarizes the results and suggests possible subse-
quent work.



2 Related Work

This chapter gives an overview of relevant work in the field of situation-
based risk evaluation and behavior planning and puts the approach pre-
sented in this thesis into context. Close thematic relations between dis-
cussed work and novel approaches presented in this thesis are highlighted.

The main steps of the presented system for situation-based risk evalua-
tion and behavior planning (see Figure 2.1), which build upon one another,
are

1. situation classification and trajectory prediction
2. risk evaluation
3. behavior planning

As a consequence, the related work discussed in this chapter is structured
accordingly. Situation classification describes the joint estimation of one
or several drivers’ intended future behaviors on an abstract level. Tra-
jectory prediction is the subsequent estimation of a future behavior on a
physical level resulting in spatio-temporal trajectories. Furthermore, risk
evaluation is used to assess the criticality (the expected damage) of a pos-
sible future behavior and is applied in the behavior planning step to plan
an ego entity’s future behavior. Such a behavior is generally represented
by spatio-temporal trajectories.

In addition to future behavior planning, work related to the novel mi-
croscopic driver model, introduced in this thesis and applied to the predic-
tion step of the system, is applicable to tasks beyond trajectory prediction
(e.g. traffic simulation) and therefore covered in a separate section.

Scene Situation Trajectory Risk Future Behavior Behavior
Observation Classification Prediction Evaluation Planning Execution

Figure 2.1: Framework for situation-based risk evaluation and behavior plan-
ning.
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2.1 Situation Classification and Trajectory
Prediction

To enable a system to act safely in traffic environments, it is crucial to
predict how the traffic participants that appear in the current scene will
behave in the future. For traffic environments, this implies in particular
the prediction of spatio-temporal trajectories.

On the one hand, approaches have been developed which directly pre-
dict spatio-temporal trajectories. This can range from prediction methods
considering purely physical vehicle states, up to methods taking additional
environmental knowledge and an estimation of the driver’s intention into
account. Even the interaction between traffic participants is considered in
some prediction approaches.

On the other hand, there is the large area of situation classification
methods, for which each driver’s intent is inferred on an abstract level
(e.g. “turning left”). More advanced methods combine both, first esti-
mating each driver’s intent, followed by a detailed prediction of spatio-
temporal trajectories. Furthermore, in each area, there are approaches
applying machine learning methods to tackle the prediction problem.

The following gives an overview on current methods for spatio-temporal
trajectory prediction, followed by an outline on situation classifica-
tion/recognition techniques and finally approaches considering the joint
problem of situation-dependent trajectory prediction.

2.1.1 Spatio-temporal Trajectory Prediction

This section concentrates first on methods taking purely the vehicle’s phys-
ical states into consideration to predict its future spatio-temporal trajec-
tory, the so-called short-term prediction models. Then, with increasing
complexity, methods promising a longer prediction horizon, are discussed.

For methods with a prediction horizon less than one second, the vehicle
dynamics are generally considered as dominant [116, 117]. Furthermore,
changes of the vehicle control inputs as well as external influences on the
vehicle’s motion model are assumed to be neglectable. In this area of pre-
diction methods, it is common to apply tracking filters, e.g. the Kalman
filter [63], with an underlying model of the vehicle’s system dynamics,
to enable a probabilistic treatment of trajectory prediction. Frequently
used models are based on the assumption of constant-velocity, constant-
acceleration, or constant-turn-rate, as applied in [10, 11, 23, 91, 107, 118].
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Especially, when using probabilistic filters', more complex models such as
single- or two-track models [115], which model the physical vehicle dynam-
ics in more detail (e.g. by considering the tire forces), are often avoided
due to their increasing computational complexity.

In most cases the prediction of a single vehicle’s future behavior is not
sufficient. Moreover, systems strive for a prediction of the entire future
evolution of a sensed scene, including the ego- and several other traffic
participants. For prediction horizons below one second, each traffic par-
ticipant can be assumed as independent from others and as a result each
entity can be considered separately. As knowledge on the ego vehicle’s
states is often of greater detail, more complex physical models (e.g. single-
or two-track models) can be applied to predict the ego entity’s future
spatio-temporal trajectory.

Learning-based prediction methods for spatio-temporal trajectories with
short prediction horizons are possible, but due to the increase in complex-
ity and, compared to model-based approaches, the low gain in prediction
accuracy not widely spread. In [143] a neural network (NN) is applied
to learn the vehicle’s dynamics from training data, where only the vehi-
cle’s current steering angle and velocity are used to recursively predict the
future states of the system.

The advantage of prediction models which purely rely on physical ve-
hicle states is the low computational complexity and the little required
knowledge on vehicle states. On the contrary the prediction can only be
considered as valid for a prediction horizon up to approximately one sec-
ond [84].

In order to reach methods that provide a longer prediction horizon, fur-
ther knowledge besides the own vehicle’s state has to be taken into account.
A first step in this direction is the consideration of road geometry in the
prediction task, as it is done e.g. in [90, 102, 107]. In such approaches,
short-term prediction models, e.g. constant velocity models, are applied
longitudinally on a reference path, e.g. the current lane’s centerline, which
is derived from the current road geometry. As a consequence, those meth-
ods allow a longer prediction horizon and represent an intermediate stage
between short- and long-term prediction, while keeping the computational
effort low.

Likewise, road geometry information plays a major role in the novel tra-
jectory prediction approach introduced in Chapter 6 of this thesis, where
reachable lane centerlines are used as prediction reference paths.

! Here probabilistic filtering mainly refers to recursive Bayesian estimation (Bayes fil-
ter) [24].
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To allow even longer prediction horizons, methods have been proposed
which integrate an estimate of the driver’s intent into the prediction pro-
cess. Knowledge about a driver’s intent naturally enables an estimation of
the driver’s preferred actions (to reach the intent) and leads to a finer pre-
diction of the resulting spatio-temporal trajectories. Prediction methods
which enhance physical prediction models with intent and environment
knowledge are [6, 20, 40, 45, 46, 80, 112, 117, 123].

Predefined high-level actions or maneuvers such as lane-changing, lane-
keeping or turning at intersections can represent a driver’s intent and
can be employed to increase the prediction performance. As an example
see [117]. A target position the driver tries to reach (e.g. a final park-
ing position) can also represent a driver’s intent. For this purpose, path
planning algorithms have been employed in the trajectory prediction to
achieve possible reference paths as done in [6, 20, 40].

Furthermore, the road geometry can be considered to assess possible
driver intents. In general, the road environment is laterally strongly con-
strained which justifies the simplifying assumption that traffic participants
purely act longitudinally along the lane centerlines of the considered road
network [6, 45]. This assumption drastically reduces the computational
effort and allows more complex prediction models. In [45], all possible
connecting lanes are considered equally at an intersection for trajectory
prediction. This results in a low prediction accuracy for scenarios, where
a predicted future trajectory depends on a discrete decision on the chosen
path or maneuver.

As a consequence, estimating the likelihood of a driver’s future maneuver
or intent can further increase the prediction horizon and accuracy. Meth-
ods targeting at the estimation of a driver’s future maneuver or intent,
belong to the area of maneuver or situation classification.

2.1.2 Situation Classification

Maneuver or situation classification tries to infer one or several drivers’
intents on an abstract level. Instead of estimating a driver’s future behav-
ior in terms of predicted spatio-temporal trajectories, those methods assess
the likelihood of a high-level maneuver or situation such as “turning right”,
“stopping at stop line” or “vehicle A giving way to vehicle B”. Maneuver
classification is generally applied to tasks, where the future maneuver of
a single entity is assessed. To the contrary, situation classification ap-
plies to tasks assessing the joint maneuver constellation of multiple traffic
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participants in a scene. Numerous approaches tackle the problem of ma-
neuver or situation classification with a wide range of different methods.
Rule-based representatives for maneuver and situation classification are
provided in [58, 98, 113, 114, 124]. Those methods generally incorporate
a large and usually deeply nested rule-based assessment of the different
aspects of a maneuver or situation. Advantages of rule based methods are
the low computational effort and the human comprehensibility. On the
other side, those methods are often complex to set up and do not scale
well with the complexity of situations.

Methods for situation classification which treat the problem in a more
probabilistic way are e.g. approaches utilizing the Dempster-Shafer the-
ory of evidence [120]. These approaches combine beliefs of individually
modeled situations or maneuvers to assess the currently executed maneu-
ver [101, 134].

Another large field of probabilistic situation classification comprises
methods based on Bayesian networks. In this area, task-specific Bayesian
networks are modeled graphically to represent the relevant dependen-
cies between measurable features and the considered maneuver or sit-
uation. The network is then applied to infer if a certain situation
holds for the currently sensed scene. Representatives of this field
are [1, 12, 15, 25, 46, 72, 75, 78, 82, 93, 104-106, 114, 116, 119, 137].
In general, Bayesian filters such as Kalman or Particle filters can be rep-
resented as Bayesian networks. This allows the realization of sequential
Bayesian inference, as it is done in [46, 47, 83, 145]. Those methods can
be summarized under the term Dynamic Bayesian Networks.

When considering interaction between traffic participants, which is es-
pecially relevant for the prediction of inner-city scenes, Bayesian models
become relatively complex due to the conditional dependencies [47]. Some
approaches tackle this problem by extending the basic Bayesian Network
with so-called relations and object orientation [57, 75, 111]. In [75] an
object-oriented, probabilistic approach for estimating traffic participants’
future routes is proposed. In this approach the Bayesian inference of the
interaction between traffic participants is carried out in an intermediate
step. At an intersection scenario this approach justified that the incorpo-
ration of interaction can reduce the route prediction uncertainty.

Another approach that explicitly takes interaction into account is [8]. In
this approach the interaction-aware intention of each driver is estimated by
performing a multi-agent simulation. This estimate is then used in subse-
quent steps to perform lateral and longitudinal motion predictions. For the
lateral motion a Bayesian Network classifier is applied, while the longitu-
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dinal motion prediction utilizes the acceleration/deceleration results from
the multi-agent simulation. However, the approach targets only highway
environments and is not directly applicable to inner-city scenarios.

In the situation classification and trajectory prediction approach pre-
sented in this thesis (see Chapter 6), interaction is taken into account
similarly to [8], by applying interaction-aware microscopic?® prediction
models in situation-dependent multi-agent forward simulations. The sit-
uation representation explicitly separates interacting and non-interacting
behaviors, targeting especially, but not only, inner-city scenarios such as
intersections. Interaction is relevant to detect critical situations, as many
accidents are caused by a lack of interaction between traffic participants.

Methods from the field of machine learning are commonly applied to
maneuver or situation classification. In general, in a first step, a classifier
is trained based on labeled training data, which is then used to classify the
currently sensed situation, as it is done in [72, 104]. The training as well
as the actual classification step usually rely on extracted features, specifi-
cally chosen to separate the considered situations. Machine learning-based
approaches generally perform well, if enough training data is available.
However, especially for critical traffic situations this is often not the case.

The situation classification and trajectory prediction approach proposed
in Chapter 6 targets especially at detecting and predicting dangerous
traffic situations. Hence, a model-based approach is preferred.

2.1.3 Joint Situation Classification and Trajectory
Prediction

Methods targeting a long prediction horizon couple the tasks of situation
classification and trajectory prediction.

Approaches combining risk-aware trajectory prediction methods with
a high-level interaction-aware situation classification that detects if and
how traffic participants interact, push the prediction horizon even fur-
ther. This is because the scene understanding reaches a level, where the
predicted spatio-temporal trajectories are substantiated by the detected
cause (situation) for this specific behavior.

2Microscopic driver or traffic models describe general traffic characteristics, such as
density and flow, by modeling each driver individually.



14 2 Related Work

In [61] the assumption that drivers generally act in a risk-aversive fash-
ion, meaning that each driver usually tries to avoid collisions with other
entities, is explicitly taken into account to enhance the prediction accu-
racy as well as the prediction horizon. Such approaches incorporate an
estimation of the risk or collision probability inside the actual prediction
process. Approaches for risk estimation are discussed separately in Sec-
tion 2.2. The advantage of those methods is a high accuracy in complex
scenarios, where the future behavior significantly depends on the interac-
tion between multiple traffic participants. Disadvantages are the relatively
high computational costs as the risk assessment itself is usually a compu-
tational expensive task. Furthermore, the assumption that drivers always
act in a risk-aversive fashion makes the prediction and detection of unlikely
but risky situations difficult.

Further approaches utilize microscopic driver models to determine the
actual driving behavior. Those approaches also belong to the category of
interaction-aware, risk-aversive situation classification and trajectory pre-
diction, as microscopic driver models generally model interaction between
different traffic participants and generate the behavior in a way to avoid
collisions. Exemplarily, car-following driver models capture the longitudi-
nal behavior of each entity in relation to a leading vehicle and adapt the
velocity in a collision-avoiding way. In those approaches future maneu-
vers of the involved entities are estimated in a forward simulation using
microscopic driver models under different maneuver-dependent assump-
tions. By comparing the actually sensed behavior of each entity with the
situation- or maneuver-dependent predicted behaviors, the current high-
level driving situation can be estimated. This estimation can be used to
enhance the lower-level prediction of spatio-temporal trajectories. In [87]
a driver model based on the Intelligent Driver Model (IDM) [133] is used
to determine the actual driving behavior at intersections by comparing the
actual driving behavior with trajectory predictions for different possible
maneuvers.

In this thesis a joint situation classification and trajectory prediction
approach is presented in Chapter 6. For each relevant situation in the
current scene, spatio-temporal trajectories are predicted, which are then
compared to the actually driven trajectories of the involved entities. The
similarity between the predicted trajectories and the driven trajectory is
then applied to estimate each driver’s intent. For the trajectory predic-
tion the novel, interaction-aware Foresighted Driver Model is applied.
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The FDM is able to generate a risk-aversive behavior. Hence, the pre-
sented system can distinguish between interacting, risk-aversive and non-
interacting, risky behavior.

The machine learning-based approach presented in [97] studies the ef-
fectiveness of convolutional recurrent neural networks to predict spatio-
temporal trajectories of vehicles by using raw image-like tensors as input.
The deeper layers of the neural network learn an abstract representation of
the current situation. Consequently, those methods can also be considered
as a combined situation classification and trajectory prediction approach.

Recapitulating, situation classification and trajectory prediction is gen-
erally substantiated by the overlying goal of a safely acting system. Before
generating a safe behavior some definition how to quantify a safe behavior,
or vice versa a risky behavior, has to be provided.

2.2 Risk Evaluation

In Chapter 6 a novel approach for situation classification and trajectory
prediction is proposed. The situation classification system, acting on an
abstract level to infer the involved traffic participants’ intents, represented
by situations, has been coupled with a prediction of spatio-temporal tra-
jectories on a physical level. In Section 2.1, a variety of methods has been
discussed, relating this approach to the current state-of-the-art.

Relying on such methods for situation classification and trajectory pre-
diction, different kind of approaches have been proposed assessing an en-
tity’s future risk. Risk is generally understood as the expected damage
related to critical future events. For traffic environments, this implies an
understanding of expected damage in terms of collision prediction [84].

The majority of approaches for risk assessment performs first a predic-
tion of possible future trajectories for all entities involved in a current
scene, followed by a collision detection to achieve at a likelihood estima-
tion of future collisions. The collision estimation can be combined with an
evaluation of the severity in case the collision occurs.

The detection of collision of two predicted spatio-temporal trajectories
is often carried out by checking for spatial overlap using the predicted
vehicle states at the same moment in future time [96]. Therefore, in many
methods a vehicle’s shape is represented by a surrounding polygon [19,
20, 40, 62, 129]. However, when examining a large number of trajectories,
the overlap detection can be computationally expensive. As a consequence,
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approximate methods have been proposed [7, 13]. For this purpose, purely
distance-based methods, or methods approximating the vehicle shape by
a set of circles [7], can be employed. The overlap verification of circles is
a computational inexpensive distance calculation.

The prediction of spatio-temporal trajectories as well as the subsequent
risk assessment is usually uncertain. Consequently, probabilistic methods
for the assessment of risk have been proposed, taking the uncertainties,
e.g. in the prediction process into account.

In Section 2.1, state-of-the-art trajectory prediction approaches have
been discussed which use sampling-based methods, based on e.g. Monte-
Carlo simulations or Kalman filters, to achieve a probabilistic distribution
of possible trajectories. By integrating over the collision inspection of the
entire sampled trajectory distribution the likelihood of collision can be
estimated, as it is e.g. carried out in [80, 116, 129].

Other approaches leading to a probabilistic collision assessment utilize
prediction methods providing a stochastic reachable set for each entity’s
trajectory. This set of reachable states can be employed to check for spatial
overlap, while the amount of overlap is assumed to be proportional to the
collision probability [5, 6, 49].

A similar approach is followed in [3]|, where inevitable collision states
(ICS) are used as a risk measure. A movement for an entity is determined
in order to avoid those ICS. For a large number of scene entities the set
of ICS becomes unacceptably large and no safe movement can be deter-
mined anymore. As a consequence, the idea of ICS has been extended to
probabilistic collision states (PCS), allowing a certain collision probability
of the entity movements.

The estimation of collision probability alone is not always sufficient to
generate the best possible behavior. As an example consider [18], where in
the case of inevitable car-to-pedestrian collisions a risk function in terms of
pedestrian injury is used in pedestrian protection scenarios. The injury risk
function is based on the collision velocity. Another approach considering
the expected damage is [109], where a risk measure is introduced, that
is based on a reachable space evaluation, taking the expected collision
damage in terms of an impact factor into account.

This thesis follows a similar approach. The risk estimation in Chap-
ter 3.2, which is applied to evaluate possible ego behavior alternatives
in Chapter 7, always combines a calculation of an event/collision prob-
ability along with an estimation of the damage for the predicted critical
events.
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Risk assessment methods relying on a large sampled distribution of fu-
ture trajectories combined with a subsequent collision examination, gen-
erally have a high computational effort. To reduce the complexity, those
approaches often use relatively simple prediction models, such as constant-
velocity, as well as a simplified binary collision checking procedure, neglect-
ing the severity of a collision.

Another group of widely used approaches does not try to estimate the
collision probability, but quantifies the future risk in terms of time mea-
sures. Especially the time-to-X (TTX) indicators are very popular, to
which also the well-known time-to-collision (TTC) belongs. The TTC
represents the expected time left until a collision occurs. Representa-
tive risk evaluation approaches, which are based on the TTC measure
are [7, 17, 19, 40, 54, 77, 85, 96, 126]. In [96] the TTC is employed to se-
lect a future behavior or trajectory of lowest risk (largest TTC) from a set
of possible behaviors. Another TTX measure is the time-to-react (TTR)
which quantifies the time left for the driver to react, before a collision
occurs [54, 81]. This measure is derived by estimating the last moment
in predicted time at which a performed action of the driver could avoid
a collision. Further similar measures are the headway time [108] and the
required deceleration to avoid an incident [66]. The great benefit of these
approaches is their simplicity and the low computational effort. However,
they are generally restricted to well-defined scenarios such as car-following
or longitudinal collisions and not applicable in a straightforward way to
other scenarios.

A further class of risk estimating methods relies on the assumption that
unexpected behavior which deviates from the normal behavior in traffic
scenarios, is generally assumed to be critical. In [83] a particle filter is
applied to estimate how good a driver’s intention (what a driver actually
intends to do) fits to the expected behavior. The larger the discrepancy,
the larger the assumed risk for colliding with other entities. Those mea-
sures generally need a good estimation of what is considered as normal or
expected behavior. Each behavior that is not considered could result in a
false assessment of high risk.

2.3 Behavior Planning

To achieve a system that is able to act safely in traffic environments, a be-
havior planning step, subsequent to the situation classification, trajectory
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prediction and risk evaluation steps, is necessary.

One group of behavior generating approaches utilizes deterministic
graph search algorithms, focusing on the calculation of collision-free spa-
tial paths. For this purpose, Hybrid A* algorithms are applied in [35, 43],
while [88, 103] use state grid search approaches. In [76] a sampling-based
approach is utilized to gather a collision-free drivable path. The advantage
of those algorithms is the ability to find globally optimal paths which pre-
vents the algorithms from getting stuck in local minima. Furthermore, the
approaches are suitable for spatially very complex environments, such as
parking. However, mostly static environments are targeted, without the
consideration of other dynamic entities. Alternatively, dynamic entities
are considered as static between two consecutive planning steps. Further-
more, those approaches are generally only applicable to low-velocity sce-
narios, where the system dynamics are neglectable, as they are generally
not, considered.

Having a deeper look at road traffic environments, it can be noticed
that the environment is highly structured and laterally constrained, e.g. by
lanes and road boundaries. Additionally, for urban and highway scenarios
many dynamic objects have to be dealt with. As a consequence, in traffic
environments, the longitudinal behavior, e.g. velocity adaptation, is often
more important than the lateral component. Therefore purely spatial path
planning methods are not sufficient for the behavior generation in on-
road scenarios. To approach on-road scenarios, methods which consider
both, path planning and the vehicle’s dynamics, have been developed.
Many approaches apply model-predictive motion planning algorithms that
consider longitudinal and lateral motion [131, 135, 139]. Also sampling-
based motion planners are commonly used for the joint consideration of
spatial paths and dynamics. In [92] a large set of possible spatio-temporal
trajectories is generated to select one for execution [135]. Considering the
entire state space in terms of spatio-temporal motions as a search space is
computationally very demanding. To retain the advantages of a full spatio-
temporal motion planner but reduce the computational effort, hierarchical
methods have been proposed [50-52, 136].

The consideration of prediction, interaction, and decision uncertainty is
missing in many motion planning methods. However, it is a very impor-
tant aspect to act safely and efficiently in highly dynamic environments
such as road traffic [86]. In [142] uncertainties of the ego and other ve-
hicles’ predictions are assessed by applying Gaussian filters. In [4, 6] the
risk of a planned path is evaluated, while stochastically considering the
uncertainties in measurement and behavior.
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In [86] a hierarchical framework for trajectory planning is proposed. The
high-level planner is responsible for decision making on the maneuver level,
such as overtaking or lane-following. The actual collision-free trajectory
is then tracked by a low-level controller.

In the situation classification and trajectory prediction approach intro-
duced in Chapter 6 as well as the behavior planning approach introduced
in Chapter 8, the lane centerlines, which are derived by a navigational
planner using map data, are utilized as reference paths for prediction and
planning.

Another hierarchical approach is presented in [136]. The approach
basically consists of three layers. The highest, so-called mission-planning
layer derives possible routes on the lane-level from a starting- to a
target location. The underlying reference planner then calculates desired
spatio-temporal trajectories along the given route, considering vehicle
dynamics, but neglecting dynamically changing obstacles, such as other
traffic participants. On the lowest layer, the behavioral planning layer,
the focus lies on the adaptation of the reference trajectory to incorporate
dynamic entities. This layer includes a prediction of other entities’
trajectories, including an estimation of their intentions and an evaluation
of previously generated possible behavior alternatives in terms of a cost
function which considers safety as well a comfort aspects.

The framework for situation-based risk evaluation and behavior planning,
presented in this thesis would align to the behavioral planning layer,
assuming that a desired reference trajectory to follow is given by a higher
level instance.

Further hierarchical frameworks for behavior planning are [52, 95, 122].
In [128] a wide range of existing frameworks and architectures for
automated driving are analyzed. According to the authors a more unified
treatment of the different collaborating steps is necessary. This also
includes an integrated approach to evaluate future risk.

2.4 Traffic Models

In Chapter 5 a novel microscopic driver model is introduced, which is
based on a simplified system for situation-based risk evaluation and behav-
tor planning. This includes the consideration of multiple driving situations
with a prediction of spatio-temporal trajectories, a simplified risk assess-
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ment part and a behavior generation step performing a gradient descent on
a cost function including risk and utility considerations. This Foresighted
Driver Model is applied as a prediction model to the situation classification
and trajectory prediction step in Chapter 6.

There are in general two major categories of traffic models. Macroscopic
traffic models simulate the traffic flow by modeling its stream characteris-
tics, such as flow and density, without considering each vehicle individu-
ally [16, 74, 121], whereas microscopic traffic or driver models describe the
dynamics of each vehicle individually in relation to surrounding traffic. As
a consequence, microscopic traffic models are preferable for the prediction
of the future behavior of individual traffic participants, especially on the
level of spatio-temporal trajectories, as done in Chapter 6.

Many microscopic approaches model the longitudinal behavior, the be-
havior along a given path or lane, separately from the lateral behav-
ior [14, 16]. Ome group of such models are the so-called car-following
models. The underlying assumption of car-following models is that the
longitudinal behavior of a vehicle is mainly defined by a leading vehicle on
the same lane.

When modeling the lateral behavior?, the focus lies on lane changing
maneuvers. Lane change is usually modeled as a discrete decision. The
approaches in [2, 56, 127, 138] use a decision tree to model gap acceptance
and lane change.

Focusing on the longitudinal behavior®, microscopic traffic models for
driving dynamics can be further differentiated. On the one hand, there are
complex models which target at an accurate reproduction of a diversity
of driving situations. Usually, these models enable a fine tuning by an
extensive number of parameters and are based on a detailed case differen-
tiation using a complex decision logic. Representatives are e.g. the models
used in the traffic simulators MITSIM and VISSIM, based on variants
of [140]. On the other hand, there are simplified models that allow the
analysis of collective traffic dynamics [9]. Between the two categories, new
models have been proposed like the Gipps-model [48],[73] and particularly
the Intelligent Driver Model (IDM) [133], which combines simplicity with
good modeling accuracy for car-following behavior, and which has become
a standard reference in latest publications because it is easy to use but

4

3Lateral behavior describes the driving behavior laterally to the driving direction
and/or path the entity follows, e.g. the road centerline. This mainly involves steering
commands which depart from the original path.

4Longitudinal behavior describes the vehicle behavior longitudinally along a spatial
path which mainly comprises velocity changes without leaving the original path.
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still captures several aspects of microscopic and collective driving to a
good extent. The IDM forms an important foundation of the novel Fore-
sighted Driver Model, introduced in Chapter 5 and is therefore separately
discussed in detail in Chapter 5.

Most car-following models are purely defined longitudinally with a lead-
ing vehicle and well-defined distance between the leading and the following
vehicle. Applying the car-following driver models to arbitrary road net-
works, which also include intersections, rises the problem that no leading
vehicle is defined for crossing paths. Therefore, intersection control mod-
els have been developed, which control the traffic flow at intersections.
In [14] a method is proposed, where a right-of-way matrix determines for
each approaching vehicle, if it has to brake or can drive on. As this is
a quite conservative way of modeling intersection behavior an extension
is proposed in [42], where the expected intersection point as well as the
expected time left until a vehicle reaches the intersection point, are con-
sidered. Still, only decelerating behavior is presumed. However, in some
real-world scenarios, accelerating to clear the intersection would be the
favorable action of a human driver.

Furthermore, by treating longitudinal and lateral behavior separately
certain behavioral effects are lost, as some require a joint consideration.
This is e.g. the case when performing a lane change onto a lane with traffic
of significantly higher velocity. In this case only adapting the longitudi-
nal behavior before changing lane, namely accelerating, allows a safe lane
change. In [132] a driver model is discussed, that combines acceleration
(for car-following), lane-changing and standard car-following behavior, to
allow a more accurate modeling for such scenarios.

In Chapter 5 a novel microscopic driver model, the Foresighted Driver
Model, is presented. The main component in the driver model is a highly
general evaluation of future risk according to Chapter 3.2.3. The longi-
tudinal behavior is derived by performing a gradient descent on a cost
function combining risk with utility considerations. As a consequence,
the driver model is applicable to a wide range of scenarios, such as high-
way or intersections. A distinction between car-following and intersection
behavior is not necessary. Additionally in [33, 37] the author of this thesis
presents an extension to naturally incorporate lateral driving behaviors,
such as lane-changing, into the model.
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3 Basic Concepts

This chapter proposes several novel basic concepts, which are applied to
the framework for situation-based risk evaluation and behavior planning.
Furthermore, these concepts are applicable to tasks beyond the scope of
this thesis, as they constitute independent evaluation methods.

First in Section 3.1, the general idea of situations is introduced. Sit-
uations are defined to cluster the infinite amount of different behavior
possibilities in a traffic scenario into groups of similar behaviors and rep-
resent them by prototypical behavior patterns. Situations can be employed
to reduce the complexity of traffic scene analysis, prediction and the sub-
sequent task of behavior planning by targeting only a limited number of
prototypical behavior patterns, instead of the unfeasible processing of all
possible behaviors. Furthermore, information on how those situations and
especially the behavior patterns can be generated for traffic scene analysis
are briefly described. Here, the focus lies on distinguishing interacting and
non-interacting behavior when interaction between traffic participants is
necessary for a safe future evolution of a scene.

Second, Section 3.2 proposes a novel, highly general, probabilistic model
for future risk as a continuous function over time, indicating the criticality
of a certain future behavior. Starting from the common understanding of
risk as the expectation value of the cost related to critical future events,
a situation-dependent risk expression, incorporating the advantages of be-
havior clustering, is derived. By assuming that critical events, such as
collisions, are sparse, 1) the probability that an event occurs and 2) the
expected cost/damage in case such an event occurs, are the main parts
which have to be considered in the evaluation of risk. Starting from the
Poisson process [69] as a statistical process to model rare events, an explicit
model for the event probability can be achieved. Here, 1) the probability
that an entity “survives” until a certain event might occur, represented by
a so called survival function and 2) the probability, that the event occurs in
case the entity survives until then, represented by an instantaneous event
probability, is taken into account. Besides considering car-to-car collision
risks, additional types of risk, such as the risk of skidding off the road
in curves or losing control due to high decelerations, are introduced. All
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those different types of risk are naturally integrated in the risk model and
easily extendable to further types of risk.

For traffic scenarios the risk measure can be used to quantify the ex-
pected costs of possible future behaviors, such that the future behavior can
be planned in a risk-aversive way. In addition, an approximate model for
future risk, targeting only the expected risk maxima, using easy-to-extract
risk indicators, is derived. Such an approximate risk model can then be
employed in time-critical applications.

Finally in Section 3.3, a measure to quantify the similarity of two spatio-
temporal trajectories is derived. Traffic environments are in general spa-
tially limited. Especially, behavior lateral to the driving direction is highly
constrained by lanes and road boundaries. Therefore, it is explicitly dif-
ferentiated between longitudinal and lateral trajectory similarities. Such a
measure can then be employed to cluster similar spatio-temporal trajecto-
ries. In Chapter 6 this similarity measure is applied to compare an actual
sensed spatio-temporal trajectory with prototypically predicted trajecto-
ries, derived from different situations, in order to obtain an estimate of
the current driving situation.

3.1 Situations and their Modeling

The target of the framework for situation-based risk evaluation and behav-
ior planning (see Chapter 4) is the generation of a safe and efficient future
behavior. This involves the evaluation of possible behaviors in terms of
risk. Section 3.2 introduces the concept of risk, which can be understood
as the expectation value of the cost or benefit related to a critical future
event, e.g. a collision, and which depends heavily on the possible behav-
ior alternatives of all involved entities. In complex traffic scenarios, it is
unfeasible to evaluate all possible state evolutions of the involved traffic
participants. A way to reduce the complexity is, on the one hand, to
group similar behavior alternatives of acting entities by using situations
which represent prototypical behavior patterns, and on the other hand, to
restrict the behavior alternatives to those which are relevant for the ego
entity’s behavior.

A situation describes a prototypical behavior of a subset of involved
scene entities, comprising the states of the ego car and optionally other
traffic participants’ parameters, the road structure and their relations.
Different behavior alternatives of the involved entities lead to different
situations, resulting in a separate risk evaluation and corresponding con-



24 3 Basic Concepts

sequences for the ego vehicle’s future behavior!.

Sampling-based approaches for trajectory generation (see e.g. [117]), use
dynamic models of traffic participants and randomly sample over the pa-
rameter space to provide a large amount of possible trajectories, as shown
in Figure 3.1(a). As a result, the likelihood evaluation of trajectory con-
stellations of a certain traffic scenario ends up in a highly combinatorial
problem. Thus, similar trajectories are clustered to reduce the complexity
of the problem. Each cluster is then represented by prototypical trajec-
tories, in this case one for each traffic participant. A subset of possible
situations is shown in Figure 3.1(b).

3.1.1 Situations in Traffic Scenarios

The general traffic environment is spatially, especially laterally to the driv-
ing direction, highly constrained. As a consequence, trajectories of differ-
ent spatial appearance and trajectories of different longitudinal behavior
should be treated separately.

On the one hand, behavior alternatives of involved traffic participants
are separated by the given road structure, e.g. the type of intersection
providing possible spatial paths. On the other hand different longitudinal
behaviors along a given spatial path such as stopping at stop line or slowing
down in curvy road segments can be distinguished. So far, a situation h
is defined by a specific combination of entity? behaviors with one specific
prototypical behavior per involved entity, which results in one prototypical
spatial path x and one prototypical longitudinal behavior ¢ along this path
for each entity.

Considering IV entities ¢, where each entity has Nf( possible spatial paths
and N, 3 possible longitudinal behavior options, the entire set of situations
H in a current scene is obtained by determining all variations of the com-
binatorial set, resulting in Ny possible situations with

Ng=N_-NJ-...-NY.N}.

The process of randomly sampling a large amount of possible behaviors
or trajectories and afterward clustering them in order to reduce the com-
plexity of the scenario is a computationally demanding task. However, it

IThe main contributions of this section have been published by the author of this
thesis to the IEEE Intelligent Transportation System Society (ITSS) in [30, 31, 39].

2A traffic entity can be any dynamic or static object involved in a traffic scenario such
as other cars, parking cars, pedestrians or cyclists.
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(a) Left: Possible future behaviors/trajectories of the ego car (green) and an-
other car (red). Right: Grouping of behaviors into prototypical behaviors de-
fined by prototypical spatial paths and prototypical longitudinal behavior op-
tions (here interacting (inter) and non-interacting (imter)).
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(b) Subset of possible situations. Each situation is defined by one prototypical
spatial path for each entity (green and red path) and one prototypical longitudi-
nal behavior (influenced by yellow arrow indicating interaction). The longitudi-
nal behavior is determined here by the interaction pattern, meaning that in the
interaction-aware case the risk of the other traffic participant will be explicitly
considered for the own driving behavior. The bottom-right situation represents
an incorrect risky behavior, as the green ego car is assumed to not yield right-
of-way, whereas the other three example situations represent a correct driving
behavior.

Figure 3.1: Similar behavior alternatives are clustered and represented by pro-
totypical behavior patterns. A situation is a joint prototypical behavior pattern,
comprising one behavior alternative per involved entity.



26 3 Basic Concepts
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Figure 3.2: Map-based estimation of possible spatial paths. After projecting
the measured vehicle position (red triangle) onto the centerlines of the surround-
ing reachable lanes (blue cross), map information can be employed to derive
possible drivable paths of the vehicle (black paths).

is possible to directly predict or generate the prototypical trajectories for
each cluster instead of performing an extensive sampling and clustering
process.

The possible prototypical spatial paths can be determined in a straight-
forward way by the given road structure. For this purpose, as shown in
Figure 3.2, the current position of the entity is mapped to the center line
of the road structure element (e.g. lane or lane junction) to determine
possible future paths from the given road geometry.

For road scenarios which are spatially not as structured as intersections,
such as highway overtaking or lane-change scenarios, possible drivable path
can be determined likewise by assuming a discrete set of drivable paths,
e.g. stay on current lane, perform an immediate lane change or perform a
delayed lane change.

For the prototypical longitudinal behavior options different longitudinal
behavior generating models are necessary.

3.1.2 Interaction-aware Situation Model

It is common to use simple interaction-unaware models, such as constant
velocity, constant acceleration or similar [26, 94, 116], for the generation
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of different longitudinal behaviors. However, interaction plays a central
role in behavior prediction. The behavior of an entity is mainly influenced
by the interaction with other traffic participants and structural elements,
such as curves or traffic lights. Additionally, the breakdown of interaction
between traffic participants, e.g. caused by inattentiveness or observation
errors, are identified to be a major reason for collisions, see e.g. [130].
Thus, the detection that a traffic participant does not interact when it
indeed should interact due to criticality reasons is a substantial problem,
which is targeted in Chapter 6. Therefore, an interaction-aware prediction
model is necessary to gather meaningful prototypical behavior options. A
suitable model is e.g. the Foresighted Driver Model explained in detail in
Chapter 5.

A prerequisite is a situation model that allows to model different as-
sumptions on how/if entities interact with each other and with the road
topology. A situation is modeled such that a representing situation param-
eter h contains a set of spatial paths Z (one path x® for each entity), an
interaction matrix A, indicating which entity considers which other entity
for interaction and a set of static model parameters Prps,

h = (E, A, PFDM),

with
_ _ 0 N
— [X 7'”7X ]7
CLO’O CLO’N
A= ... ..
CLN’O CLN’N

Here, a™" = 1 indicates that entity w considers entity w for interaction,
whereas ¢ = 0 indicates no interaction. The parameter set Prpps
allows different assumptions on how the entities act and interact, e.g. the
aggressiveness of a driver, which is further explained in Chapter 6.4. As a
result, a situation provides the subsequent trajectory prediction step with
all information needed to generate a prototypically predicted trajectory
for each involved entity, which incorporates different types of interactions
of the involved entities.

In Chapter 6.4, the FDM is applied to the trajectory prediction step.
It is a highly general, interaction-aware driver model, suitable to predict
realistic, long-term stable, spatio-temporal trajectories in a wide range of
traffic scenarios, such as intersections with several acting entities, highway
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Figure 3.3: Example situation where the other car (red) considers the ego car
(green) for interaction and yields right-of-way when turning left, while the ego
car drives though without considering the other car.

driving, car following and curve driving. The entities’ prototypical spatio-
temporal trajectories are then generated by performing a multi-agent for-
ward simulation of the current scene, where each entity is modeled as an
FDM using the situation-dependent spatial paths, the entities considered
for interaction (defined by the interaction matrix A) and the predefined
model parameters.

In Figure 3.1(b) a subset of possible situations is illustrated exemplarily.
For the situation in Figure 3.3, Z; and A; have the form

E:1 = [X27Xll]7
0 O
=1 o),

where x? is the “going straight path” of the ego car (0) and x; the “turning
left path” of the other car (1). A; indicates that the other entity (red)
considers the ego entity (green) for interaction, while the ego entity does
not consider the other entity.

Section 6 utilizes the situation models, which explicitly take different
assumptions on interaction into account, to gather prototypical future
trajectories. Furthermore, a recognition or classification of the current
driving situations as well as of potentially dangerous situations by detect-
ing the lack of interaction is performed. For this purpose the actually
sensed behavior is compared with “how the driver is expected to behave”
for each considered situation.
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3.1.3 Situation Pre-Selection

Since the number of situations can become quite large, a simple rule-based
filter is defined, which reduces the entire set of situations to a subset that is
important for the ego car’s behavior. As stated in [70], a proper situation
selection approach takes the situation occurrence probability as well as the
potentially upcoming risk into account. Thus, the total set of situations is
reduced based on a worst case risk estimation. Assuming a distance-based
risk measure, as discussed in Section 3.2, the highest possible risk along
two trajectories is, where the entities get closest. Additionally taking the
vehicle dynamics, especially the maximal deceleration/acceleration, into
account, an upper bound 7, for risk can be estimated, representing the
maximal possible risk the ego entity can encounter if both (ego- and other
car) act in the worst possible way, meaning that the entities get closest
possible under consideration of their vehicle dynamics. Thus, the subset
of situations of generally low car-to-car collision risk is built as

Htow — {h & H‘T‘b(h) < brisk:},

where b,.;si is a risk threshold, defining when a situation is considered as
being “of low risk”.

In situations of low risk, the predicted behavior of the entity with and
without the consideration of interaction would be similar, as there is no
need for a driver to intervene. Consequently, interaction in situations of
low risk plays a minor role and those situations HEF**®" are removed from
the set of considered situations

H"* = {h € H|h & H"ov \/ h € "},

The result is a set of situations, which are important to understand a scene
and important for the own future behavior.

3.2 Risk

A central aspect of advanced driver assistance systems and their underly-
ing traffic scene analysis is the evaluation of future behavior in terms of
risk. According to [36], risk is the “probability of something happening
multiplied by the resulting cost or benefit if it does”. Such a consideration
of risk implies the prediction of future events in a probabilistic fashion, in-
cluding the estimation of the expected costs in case a critical event occurs.
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As a result, risk can be applied to evaluate and plan risk-aversive future
behavior.

There are many different approaches targeting different aspects of risk,
such as the risk resulting from static obstacles (e.g. road boundaries), the
probability of colliding with dynamic traffic participants, the risk caused
by loss of control due to destabilizing behavior, e.g. full braking, or the
probability of reacting to a future critical event in the remaining time. In
Chapter 2.2 those approaches were covered in more detail. Despite the
extensive research in the area of risk modeling, an approach to model risk
in a general way, including all its different aspects in a time-continuous
fashion, is missing. This section derives such a general model as a con-
tinuous future risk function over time. It can be applied directly to risk
estimation, behavior evaluation and behavior planning?.

3.2.1 Risk Estimation for Dynamic Scenes

Chapter 4 introduces a framework for situation-based risk evaluation and
behavior planning with its different components. The knowledge x; about
the scene at time ¢, acquired by sensor measurements in a scene observa-
tion step, constitutes an entry point to risk estimation. Since the scene
may be composed of several entities (e.g. different traffic participants, in-
frastructure elements, etc.) with state vectors x! (ego car state xV), we
write x; := {x¥,x},....x7}. Using discrete time step indices ¢,t + 1,....,t + s
(time step size At), state vector sequences are additionally introduced as

Xtitts i= 1Kty Xt4s ) (3.1)

which describe the states of the scene from ¢ (now) until a time ¢ + s (s
into the future).

The overall target of a system based on the framework from Chapter 4, is
to compute a behavior in form of a trajectory over the ego-car states x?,, Lss
minimizing the expected/predicted risk. Since risk is the probability that a
disruptive event (e.g. an accident) happens multiplied by the cost/damage
if it does, future risk? is defined at ¢ 4+ s as the cost expectation value

’I"(t + S,Xt) = /Ct_|_5 P(Ct+s‘Xt) dCt_|_s, (32)

where P(c;45|x¢) is the probability of a damage c;y s, happening at future

3The main contributions of this section have been published by the author of this
thesis to the IEEE ITS Society in [26, 27, 39].
4To be precise, this is the risk density over time.
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time t + s, for the known states x; of the current scene.

An all-situation risk prediction is computationally infeasible. There-
fore, the prediction space is partitioned into different prototypical situa-
tion classes (see Section 3.1). A situation combines a small subset of acting
and interacting entities (usually car-car or car-infrastructure pairs) with a
prototypical spatio-temporal behavior pattern, like “car A braking to give
right-of-way to car B at an intersection”. This results in situation-specific
state vector sequences, which depend on a current situation hypotheses
h:, such that the damage probability is

P(crys|xe) = Y Pleers|xi ) P(helxy). (3.3)
hy

The situation occurrence probabilities P(h¢|x;) are calculated at ¢ from the
evidence x; and are valid during the prediction interval [¢,t 4 s], until their
calculation is renewed. Section 3.1 provides a more detailed definition of
situations and a description of how they can be generated. Furthermore,
a prediction-based situation classification approach, providing estimations
of situation occurrence probabilities, is introduced in Chapter 6.

The situation-dependent damage probability from (3.3) can be expanded
to

Pciys|xi,he) i= / / ZP(Ct+s|€t+saXt+s) (3.4)

e
Xitts Xt41 t+s

'P(€t+s|Xt:t+s) P(Xt:t—i—s‘xtaht) dxt+s dXt+1,

i.e., a combination of

1. a damage probability P(ci4s|...) given that an event e;; s happens
at t + s and the states at the event time are known,

2. a future event triggering probability P(e;is|...), which depends on
the future state vector sequence x4+ and

3. a prediction probability P(xt.tys|...) of the state vector sequences
X¢.4+s for each situation hypothesis hy, starting with the states x;.

The discrete variable e; s describes a certain event at future time ¢ + s,
such as car-to-car, car-to-pedestrian or car-to-infrastructure collisions or
control loss at drivability limits. For each of them, a specific damage
probability P(ciys|erts,Xets) is used. E.g. car-to-car accidents are mod-
eled using an inelastic collision approach. In addition, e;;s = 0 indicates
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no event, in this case the costs are given by efficiency, utility and comfort
considerations.

The event triggering probability P(e¢4s|Xtt45) can be calculated us-
ing a so-called survival function, as will be presented in Section 3.2.2.
What remains to be calculated is the situation-dependent state prediction
P(xt.14+s|xt,ht). A standard way is to use (expensive) stochastic sam-
pling methods in combination with appropriate propagation probabilities
P(Xtts/41|Xtts,he) from one time step to the next. However, to reduce
the complexity of the integrals in (3.4), yet appropriately capturing the
growing prediction uncertainty over time, the probabilistic state vector se-
quence is approximated by its situation-specific prototypical state vector
Sequence5 }A{t;t_{_s (Wlth )A(t = Xt)

P(Xt:t—{—s‘xt;ht) ~ (5(Xt:t+s - fit:t+s (Xtaht))7 (3-5)

where 0(...) is a Dirac delta function. The growing uncertainty is modeled
in the event triggering probability by incorporating explicitly the predic-
tion time s to get P(etys|X¢tts,9)-

As a second approximation®, a deterministic damage calculation
Ciys(€trs,Xe1s) for fixed known states x4 s is introduced, resulting in the
probability of damage

P(cits|eiqs, Xits) ~ 0(Cips — Cops(Ciqs,Xets)) (3.6)

Taking (3.2), (3.3) and (3.4) and inserting (3.5) and (3.6), results in the

final risk estimation formula,

r(t+sx) = > r(t+ s,x0,he) P(helxy) (3.7)
ht

with the situation-dependent risk,

T(t + S7Xt7ht) ~ Z ét—i—s (et—i-svfct—i-s (Xtaht))

€t+s

-P(et+s\§ct:t+s(xt,ht),s). (38)

5A prototypical state vector sequence describes the predicted state of the considered
scene at every future time step. This includes states of the ego- as well as other
traffic participants, such as position and velocity.

6This is however not necessary so that a full probabilistic treatment of the damage
can be easily incorporated back again.
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The risk calculation therefore contains a damage cost calculation accord-
ing to ¢;41s(...) for critical events, a future event triggering probability
P(é¢4s|...), which depends on the predicted prototypical state sequence
Xt.t45(Xt,he ), and a situation occurrence probability P(hg|x:).

The situation-dependent prototypical prediction of future states
Xt.¢45(Xt,he) is achieved by a prediction step, performing a multi-agent
forward simulation of the current scene (see Chapter 6.4) using deter-
ministic interaction-aware agent models (see Chapter 5). However, other
arbitrary models with a sufficient behavior complexity can be applied.

In Chapter 7, a risk calculation is performed according to (3.8) for dif-
ferent ego car behavior options, resulting in so-called predictive risk maps.
In Chapter 8, behaviors are planned by searching for the best trajectories
in terms of overall cost, combining risk and utility considerations.

3.2.2 General Risk Model

Recapitulating Section 3.2.1, risk is in general defined as the expectation
value of the cost or benefit related to future critical events [89] and can be
expressed in a probabilistic way as (3.2)

r(t+s8,X¢) = /Ct+s P(ciqs|xt) degys.

By partitioning the prediction space into situation classes h; (3.3), ex-
panding the situation-dependent damage probability (3.4) and incorpo-
rating approximations on the probabilistic state vector sequence by a
situation-specific prototypical state vector sequence Xy.;1(...) and a deter-
ministic damage calculation ¢4 4(...), the general expression for situation-
dependent future risk is proposed as (3.8).

In order to advance from the general definition of situation-dependent
risk to an actual risk measure for a given prototypically predicted state
vector sequence, 1) the deterministic damage calculation using a damage
approximation model and 2) the probability of the future event happening
at time ¢t 4+ s, have to be modeled.

Event Probability

Starting with the event probability, critical events in traffic scenarios, such
as car-to-car collisions, are generally rare. Such rare events are commonly
modeled as a so-called Poisson process [69], which is a statistical process
characterized by the meantime 7 between the occurrences of events.
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Assuming an event rate 7, Jlrs(fcﬂ_s) depending on the predicted future
state vector X;4 ¢ of the scene at future time ¢ + s, an instantaneous event
probability for small time intervals [t + s,t + s + dt] can be derived as,

Plerss|Xers(Xeshe)) = 7o,y (Reps) L.

The instantaneous event probability does not consider the entire course
of the predicted state sequence of the scene. As a consequence, it does
not consider the case, that the observed entity has possibly already been
involved in another critical event, e.g. a collision, before it could actually
be involved in the considered event.

This issue can be described by a so-called inhomogeneous survival func-
tion [36], taking the entire course of the predicted state vector sequence
Xt.445(X¢,he) into account,

S(Xptys(Xe,he), S) (3.9)

S

= eXp{_/T_l(}A{t‘FS’ (Xt7ht)78/) dsl}a

0

with a total event rate, combining all possible event probabilities

T 1(Xt+s Xt,ht Z 6t+ Xt—|—s Xt,ht) ) (310)

€t+s

The survival function decreases monotonically from 1 to 0 with the pre-
dicted time s. The higher the total event rate, the faster the survival
function decreases. This is due to the fact, that the likelihood of the en-
tity being engaged in an event increases for a higher event rate and as a
consequence the likelihood that the entity “survives” decreases.

The survival function represents the probability that the entity is not
engaged in any event in the time interval [¢t,t + s]. Conversely, the prob-
ability that the entity is involved in any event, namely the accumulated
total event probability is

S

Z P(et+s|§(t:t+s (Xtaht)ys)ds =1~ S(*t:t—ks(xt?ht)a 8)-

0 €t+s
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The total event probability for small time intervals [t + s,t 4+ s + §t] is

d

Z P(€t+s|ﬁt:t+s(xt,ht),5) = _ES(&t:t—l—s(Xtaht)a 3)5t (3-11)

€t+s

=7t (Xpts(xe,h1),8) S (Xpet 45 (X¢,he), 5)0T.

Finally, the event probability P(e;4s|...) of a single event e;; s can be
expressed as the combination of the instantaneous event rate (assuming
that the entity survives until predicted time s) and the probability that
the entity actually survives

P(etss|Xetrs(xe,h),5) (3.12)

= Te_Hl_s (Xt4s(Xt,01),8) S (Rt 45 (X4,h¢ ), 5)0t

with survival function S(...) (3.9), comprising a total event rate
771(...) (3.10), and a single event rate T;i() Every single event rate
Te, i() can be modeled using appropriate risk indicators, shown in the
following for car-to-car collision risks, the risk for skidding off the road in
a curve and the risk of losing control due to strong braking.

But regardless whichever explicit risk indicators and event types are
used, there are further reasons why the probability of an entity getting
engaged in a future event decreases with predicted time. This is e.g. the
increasing probability that a driver acts in an event-/collision-avoidant way
or any other uncontrolled world state change. Furthermore the prediction
accuracy generally decreases with time. In order to model this issue, a
constant “event escape’-rate 7, 1 is introduced, leading to the survival

function

S(Xep4s (Xt he), S) (3.13)

— exp{—/TO_1 + 77N (Rppsr (x4,h),8") ds’}.
0

Assuming that critical events are usually triggered by a single cause (e.g. a
car either collides or drifts out of the curve), different risk sources are
superposed in the total event rate (3.10). Three different event rates are
exemplarily modeled as follows.

First, for car-to-car collision risks, an appropriate model for the instanta-
neous event rate depends on the distance between two traffic participants,
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such that the instantaneous event rate is large for small distances and
decreases with an increase in predicted distance

Td_l(f(t-FS(Xt)ht))S) (314)
= 77 exp{—Ba(s) - max(dy+s(x¢,11) — dimin,0)},

where th+S(Xt,ht) is the predicted distance between the ego car and an-
other traffic participant. The parameter d,,;, is the minimally allowed
distance corresponding to a physical overlap.

Second, for risks caused by accidenting in a curve the instantaneous
event rate can be modeled as

77 (Xpys(Xe,h4),8) (3.15)

= 7-c_,Ol exp{—0Bc(s) - max(ve mazx — Or4s(Xe,ht),0)},

where 04 5(x¢,h:) is the predicted longitudinal velocity while driving on
the curve, ve maz = \/@c,maz I the maximal longitudinal velocity with
the maximal centrifugal acceleration ac pqz, and R the curve radius at
the driving point”. The instantaneous event rate is maximal for velocities
larger than the maximally allowed (or physically possible) velocity ve maax
and decreases for lower velocities.

Third, the instantaneous event rate for risks caused by losing control
due to heavy braking can be modeled as

7y ' (Reps (Xe,h0)5) (3.16)
= Tb_,Ol eXp{_ﬁb(S) ) maX(bb,ma:E - i)t-{—s (Xt,ht),())},

where I;t+s(xt,ht) is the predicted deceleration and b yq, the maximally
allowed deceleration. Similar to the previous case, the instantaneous event
rate is maximal for decelerations larger than the maximal allowed decel-
eration and decreases for smaller decelerations.

The values th+S(Xt,ht), Us1s(x¢,he) and BHs(xt,ht) can directly be ex-
tracted from the situation-dependent, predicted state vector X;is(x¢,h¢).
The parameters 7, 3, T 01 and 7, 01 define the event rate at minimal dis-

"To be more precise, Ve,maz depends on the situation-dependent prototypically pre-
dicted trajectory and the predicted time, such that ¢ maz,t+s(Xtts(xt,ht)) =

\/ac,maa: Rt+8 (Xt ;ht)
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tance, at maximal longitudinal velocity in a curve, and at maximal decel-
eration. 4(s), B.(s) and By(s) define the steepness of the event rates and
can be used to model state uncertainties, directly in the event rate term.
Choosing Bq/c/p(s) = Bg?’gf;, describes constant, time independent state

uncertainties. Together, (3.14), (3.15) and (3.16) describe a continuous,
instantaneous event rate for three different types of risk, whose parameters
(especially the steepness parameters) are used to describe uncertainties in
the involved context variables d, v, R and b. Further risk sources can be
modeled in a similar way and superposed in the total event rate (3.10).

Prediction Uncertainty

So far, a known prototypical future state sequence has been assumed,
where only constant, time independent state uncertainties have been con-
sidered in (3.14), (3.15), and (3.16), by applying time-independent, instan-
taneous event rates. This uncertainty assumption is mainly characterized
by ﬁg‘/’gfg, as schematically illustrated in Figure 3.4. In this way, state
measurement uncertainties can be incorporated. However, the increas-
ing uncertainty of the state prediction in future time is not considered.
The forward propagation of uncertainty during the state prediction pro-
cess leads to a time-dependent spatial broadening of predicted states, as
schematically illustrated in Figure 3.5.

Expressing this uncertainty propagation explicitly would require to ex-
cessively solve the integrals in (3.4), which is a computationally very de-
manding task, as it requires an explicit propagation of the uncertainties
in the prediction process, e.g. by applying a sampling-based procedure as
used in [116]. Therefore, it is not suitable for a risk model targeting sparse,
prototypical trajectories, as it is the scope of the approach presented in
this chapter.

As a result, a model for time-dependent state prediction uncertainty is
incorporated directly in the event rate. Here, an explicit time dependency

t t+1 t4+2 t+3

Figure 3.4: Schematic illustration of state or measurement uncertainty (indi-
cated by green circles), assumed to be constant for different prediction times.
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Figure 3.5: Schematic illustration of the state uncertainty (green circles), con-
sidering measurement uncertainty as well as the uncertainty propagation in the
prediction process for different prediction times.

of the instantaneous event rate T )1 (X¢1s(xs,h¢),8) is proposed®, such that
the event probability is wider distributed for moments further in predicted

time and more localized for moments closer in time. For each instantaneous
event rate according to (3.14), (3.15) and (3.16), this can be achieved by,

70y Gers(xeshe),8) = 7080 (s) exp{=B{5" B (s) ()}, (3.17)

with

B0

Biy(s) = S+ 500"

as a simple model for the uncertainty propagation in state predictions
with the weighting factor 5. s 0 defines the state measurement un-
certainties of the different considered instantaneous event probabilities.
Setting s(yo = 0, would result in the assumption of no uncertainty in

state measurements, as lil’I(l) B()(s) = oo. For car-to-car collision events
S—r

with a distance-based instantaneous event rate, this specifies to
7_d_1<§(t—|—s(xt7ht)73> = T;&Bd(S) exp{_ﬁgonﬂﬁd(3> (dt—i—s (Xtaht> - dmzn)}a
with

Ba(s) = Bao

S+ 84,0

Deterministic Event Costs

In (3.8), the expected cost/damage is modeled deterministically for the
different types of events. For the car-to-car collision risk, an appropri-

8(.) denotes the different instantaneous event rate types for different considered types
of risk, namely (d/c/b) for distance based collision, curvature and deceleration risk.
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ate approximation of the damage in case a collision occurs is the energy
transfer between the colliding entities. As a result, a 2D inelastic colli-
sion model is considered (more accurate damage models can be applied in
similar ways), so that

ét+s(€t+87 )A(t—i—s(xtaht)) (3-18)

1 mom; i
~ We - [0y (e, h) — Oy (x6,00)] 7,

2 mo + m;
where mg, m; are the masses and v s (Xe,he), v +s(x¢,hy) the vectorial
velocity components of the ego- and another entity involved in the collision
risk estimation and w. is a weighting factor. The velocity components
can be derived from the prototypically predicted state vector X1 s(x¢,h¢),
which rely on the considered situation h; and the current states of the
scene X;.

For the risk of skidding in curvy road segments and the risk of losing con-
trol due to heavy deceleration, the cost/damage is modeled based on the
energy transfer between the considered entity and a static road structure
element, such as a road barrier. Therefore, from (3.18) oy,  (x¢,ht) = 0
and m; — oo is assumed, leading to

L
I

ét—i—s(et—i—sa f(t+s(Xt,ht)) ~ W - §m0|‘vg+s (Xtaht) (3-19)

Conclusion

In this section, a novel, time-continuous model for future risk has been
derived. Risk is considered as the expectation value of the costs (damage)
related to critical future events.

The risk model (3.7) is based on a set of situation-dependent state vec-
tor sequences (3.1), which are generally expressed by situation-dependent,
prototypical spatio-temporal trajectories of each involved entity. Risk is
modeled by a situation-dependent risk term and a situation occurrence
probability term.

Considering sparse critical future events, (3.8) describes the situation-
dependent risk by summing over all possible events at future times ¢t + s
and calculating the risk for each event. The event risk can then be modeled
by a combination of the expected damage in case the event actually occurs
and the event probability.

The situation-dependent probability (3.12) that a considered event hap-
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pens in a small time interval [t+s, t+s+4dt], is modeled by an instantaneous
event rate and a survival function. The total event probability, namely the
situation-dependent probability that any event happens in [t+s,t+ s+ dt],
is modeled in (3.11). The survival function (3.9) describes the likelihood
that an entity survives until a certain time in the future without being in-
volved in any earlier event, which is described by the total event rate (3.10).
The survival function has been extended in (3.13) by a so-called event es-
cape rate. The event escape rate covers all implicit causes, which do not
relate to an entity being involved in an earlier event, but which reduce the
probability of an entity being involved in a considered future event, such
as a risk-aversive behavior of a driver.

In (3.14), (3.15), and (3.16) single event rates for car-to-car collision
events, the risk of skidding off the road in a curvy segment, and the risk
of losing control due to heavy braking, have been modeled explicitly. To
consider the uncertainty propagation in the prediction process, the single
event rates have been extended to be time-dependent in (3.17).

Finally, in (3.18) and (3.19) deterministic damage models, based on the
resulting energy transfer, when colliding with another dynamic entity or
a static road structure element, have been derived for the different event

types.

3.2.3 Approximate Risk Model

In the previous subsections, a time-continuous, probabilistic model for fu-
ture risk, based on prototypically predicted, spatio-temporal trajectories,
has been derived. The risk model (3.7) can be applied to evaluate possible
behavior alternatives and select or plan a risk-minimizing future behavior.

The computational complexity of the derived risk model gets too high for
certain applications, such as prediction tasks of complex traffic situations
or traffic simulations with a large number of traffic participants. There-
fore, this section strives for an approximate model for situation-dependent
future risk, which can be applied to evaluate behavior/trajectory alterna-
tives with reduced computational effort.

Concentrating on the car-to-car collision risk, two scenarios of different
structure and different trajectory constellations are analyzed in the fol-
lowing. The accumulated event probability over future time is evaluated
in order to determine suitable indicators for a risk approximation, which
are directly extractable with low computational effort from the evaluated
trajectories. As a result, we get that for the car-to-car collision risk the
time when the entities get closest, the time-of-closest-encounter (TCE),
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and the minimal distance of the entities, the distance-of-closest-encounter
(DCE) mainly characterize the risk of a certain trajectory pair.
Therefore, these risk indicators are utilized to derive a computationally
inexpensive, approximate model for the accumulated situation-dependent
future risk, which retains the main characteristics of the full risk model.

Discussion of Collision Probability

The target of this section is to derive and justify suitable indicators for
risk or event probability maxima, which can be extracted with low com-
putational effort from the predicted trajectories, such that they can serve
for an approximate risk model. For this purpose, the two most common
dangerous traffic scenarios, namely intersections and parallel driving with
different trajectory constellations of the ego- and another entity are an-
alyzed, to discuss the characteristics of the introduced event probability
model for car-to-car collision events. The two scenarios are shown in Fig-
ures 3.6 and 3.7. For simplicity, constant velocity trajectories with differ-
ent spatial paths are evaluated”. For the intersection scenario the initial
position of both entities, before arriving at the intersection, is varied. For
the parallel driving scenario the other entity’s trajectory is kept constant,
while the lateral as well as longitudinal initial position of the ego entity is
varied. This way, a wide range of trajectory constellations, with different
approaching setups can be modeled.

First, the event probability time course according to (3.12) of three
different trajectory pairs dedicated to the intersection scenario are ana-
lyzed, as shown in Figure 3.8. A collision event probability peak with
its maximum close to the time when the considered cars are predicted to
be closest, called the time-of-closest-encounter (TCE), can be observed.
This event probability peak decreases for an increasing minimal distance,
the distance-of-closest-encounter (DCE). If the expected event probability
maximum is located further in the future, the probability that the entity
survives, until the considered event occurs, is lower!®. As a result, the
probability that the entity gets involved in the event is reduced as well, as
shown in Figure 3.8. This consideration motivates the evaluation of the
different trajectory constellations’ event probabilities in terms of the ego
entity’s TCE and DCE, because the event probability characteristics can

9Neither the assumption of only one other entity nor the constant velocity is not a
constraint of the used model for event probability.

10This considers, that the entity is possibly involved in another, earlier event, or that
the entity might act in an event-aversive way.
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Figure 3.6: Intersection scenario. Both, the ego entity’s (green) and other
entity’s (red) initial position on a fixed spatial path are varied (wire frame ve-
hicles). Constant velocity is assumed to generate a set of spatio-temporal tra-
jectories, for which the future risk is evaluated. The predicted point-of-closest-
encounter, expressed by the time-of-closest-encounter (TCE) and distance-of-
closest-encounter (DCE) is illustrated by the fainted vehicles.
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Figure 3.7: Parallel driving scenario. The ego entity’s (green) initial position
is varied in the longitudinal as well as lateral driving direction (wire frame vehi-
cles). The other entity’s trajectory is kept fixed. Constant velocity is assumed
to generate a set of spatio-temporal trajectories, for which the future risk is
evaluated. The predicted point-of-closest-encounter, expressed by the TCE and
the DCE is illustrated by the fainted vehicles.
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Figure 3.8: Evaluated event probability of the intersection scenario (see Figure
3.6) for trajectory constellations with different TCE and DCE. An event prob-
ability peak is located near the TCE. For increasing TCE the event probability
decreases due to the decreasing likelihood that the entities survive (as predicted)
until the event occurs. Likewise, with an increasing DCE the event probabil-
ity decreases due to the decrease of the distance-dependent instantaneous event
rate.

be mainly approximated by those two values.

To compare the different trajectory constellations, the event probability,
according to (3.12), accumulated over the entire future time interval [¢,00],
is evaluated as

P(6t+s‘}A(t;t_|_3(Xt,ht),8)d8 (320)

Pe,accu -

Tet+ (Xtts(Xe,h1),8) S (Xeet5(Xe,h ), 8)ds.

0\8 0\8

Figure 3.9 (a) and (b) show the accumulated event probability of differ-
ent constellations, depending on the ego entity’s TCE and DCE, for the
two considered scenarios (intersection and parallel driving). Generally, a
combination of low TCE and low DCE values result in a high accumu-
lated event probability. This is the case, when the vehicles are expected
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(a) Accumulated event probabil- (b) Accumulated event probabil-
ity (3.20) of intersection scenario. ity (3.20) of parallel driving scenario.

Figure 3.9: Comparison of the accumulated event probability landscape, for
different scenario structures, (a) intersection and (b) parallel driving, evaluated
for different trajectory constellations expressed by the corresponding TCE and
DCE. The landscape shows a maximum for TCE and DCE close to zero. By
comparing the landscapes of the structurally very different scenarios structure, it
can be concluded that the influence of the road structure is neglectable and the
event probability landscape is mainly defined by TCE and DCE. The ground
plane projection of event probability for the two different scenario structures,
reveals a shift of the probability maxima (red curve) for increasing DCEs towards
slightly larger TCEs. The plane projections intend to increase the visibility of
the plots.

to be close and insufficient time is left to react. With an increasing TCE
and an increasing DCE the accumulated event probability decreases. The
influence of the geometric variability in the evaluated scenario, e.g. the
type of road structure, is low, as it can be seen by comparing the proba-
bility landscape of the parallel driving and the intersection scenario. This
justifies the utilization of the TCE and DCE as suitable indicators for an
approximate, accumulated event probability model.

The ground plane projection of the accumulated event probability land-
scape in Figure 3.9(a) and (b) shows a shift of the maxima (red curve) for
increasing DCEs towards slightly larger TCEs. This can be explained by
the consideration of uncertainty propagation in the trajectory prediction.
For small TCEs, the uncertainty in the predicted states is small. This
means that for an expected DC'E > 0 the maximal probability that the
entity gets involved in a collision event is not located at TC'E = 0, but
moved towards larger TCEs.



3.2 Risk 45

This effect is schematically shown in Figure 3.10, where the prediction
uncertainty is illustrated by the broadening area in front of the vehicles.
The collision event probability, illustrated by the yellow, overlapping area,
is largest, before the entities are closest (TTC'E > 0). If the entities are
closest and did not yet collide (DCE > 0) the probability that they will
collide relies only on the measurement uncertainty, and is thus relatively
small.

Concluding, the discussion shows that the main characteristics of the
accumulated collision event probability can approximately be described in
terms of the time until the entities are expected to be closest (TCE) and the
expected minimal distance (DCE). Generally, for an increasing TCE, the
accumulated event probability decreases. Likewise, for an increasing DCE,
the accumulated event probability decreases as well. However, taking the
uncertainty propagation in the prediction process into account requires a
consideration of a more complex coupling of TCE and DCE, to explain the
shift of the event probability maxima towards larger TCEs for DCEs > 0.

Approximation of the Accumulated Collision Event Probability

The probability that the ego entity is involved in a future collision event
er+s in the time interval [t,00] is defined in (3.20).

The main characteristics of the accumulated collision event probability
can be described by indicators, which are extractable directly from the
prototypically predicted trajectories of the involved entities. For car-to-car
collision events, those indicators are the time-of-closest-encounter (TCE)
and the distance-of-closest-encounter (DCE).

As a consequence, an approximate model for the accumulated event
probability, relying purely on those indicators, is proposed as

P> (¢! |DCE"(x4,hs), TCE" (x¢,ht)) (3.21)

oo

~ /P(€t+s’fit:t+s(Xt,ht),8)d8-
0

Here, only one future collision event per involved other entity ¢ in a certain
situation h; is assumed!!. However, several collision events for another
entity i, related to different situations, are still considered. ¢, describes
a collision event between the ego- and another vehicle 7 happening in the
entire future time interval [0,00]. As a consequence, P> (¢’,|...) expresses

H'This is not a strict requirement, but reasonable for simplification.
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Figure 3.10: Schematic illustration of the event probability over time to ex-
plain the shift of the probability maxima for DCEs > 0 towards TCEs > 0.
Starting with a very large TCE >> 0 (top) the accumulated event probabil-
ity increases, when the cars are getting closer (the TCE decreases). Due to
the propagation of uncertainty in the prediction process (green/red widening
areas), the event probability maximum is at a TCE slightly larger than zero
(middle). At TCE = 0 the uncertainty propagation is very low (bottom) and

only measurement uncertainties have an influence.
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the approximate accumulated probability for a future collision event with
another vehicle i. DCEi(Xt,ht) and TCE'(x;,h;) are abbreviations for
DCEZ()A(t;t_FS(Xt,ht)) and TCEZ()A(t:t_f_S(Xt,ht)).

Such an approximate model is computationally significantly cheaper,
compared to the full model (3.12). An investigation of the entire spatio-
temporal course of the trajectories is no longer required. This model can
be applied to systems, where precision is less crucial than computation
time and a rough approximation of the accumulated event probability is
sufficient.

In Chapter 5 a microscopic driver model, called The Foresighted Driver
Model (FDM), is introduced, which performs a gradient descent on the
approximate, accumulated risk to achieve a risk-aversive behavior in a
computationally efficient way. The FDM is then used in Chapter 6 as a
model to predict the future evolution of a traffic scene, while considering
interactions between the involved traffic participants.

The collision event indicators are defined pairwise as the distance-of-
closest-encounter (DCE) of the prototypical future trajectories of the ego
entity 0 and another entity ¢,

DCE" (R4 (x¢,)) = ming | [pey o (X¢,he) — Py o (x0,h0) |-
Likewise, the time-of-closest-encounter (TCE) is defined as
TCE' (Rput45 (x¢,he)) = argming ||pY, o (x¢,0) — Py o (6,00,

where pY o (X¢,h¢) and Pl 1o (X¢,ht) are the predicted spatial positions of
the ego (index 0) and another (index i) entity at future time t+s’, extracted
from the situation-dependent predicted scene state vector X; ¢ (X¢,h¢).

Using those indicators, the accumulated car-to-car collision event prob-
ability can be approximated by

P> (¢! |DCE"(x4,hs), TCE" (x¢,ht)) (3.22)
_max(DCEi(xt,ht)fdo,O) _TCEi(xt,ht)
= Lo € 9d - e Oco ,

where o4 and o, account for spatial and temporal uncertainties for car-
to-car collision events and with F,, being a weighting factor!2.
In Section 3.2.2 the event probability model has been extended by a

12Here, we assume a maximum of the collision event probability, where the distance
between the vehicles and the time left until the ego vehicle reaches this point are
both minimal. The uncertainties are assumed to decrease exponentially.
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time-dependent event rate (3.17) to consider the uncertainty propaga-
tion in the prediction process. As discussed, this consideration causes
a shift of the event probability maximum for increasing minimal distances
(DCE> 0) away from TCE= 0 towards slightly larger TCEs. The red
curves in Figure 3.9 represent the TCE at which the event probability is
maximal (TCE,,,,) for different DCEs. The dependency between DCE
and TCE,, ., can be approximated as

TCE! . (DCE'(x;,h;)) = - In(DCE"(x4,h¢) +7), (3.23)
where o and v are chosen to fit the maximum course of the full event
probability model from Section 3.2.2.

The TCE-dependency of the accumulated event probability, as seen in
the equi-TCE plane-projections in Figure 3.9, can be expressed in terms
of a normalized alpha-function'® with its maximum at TCE,,.;. As a
consequence, the effect of a DCE-dependent shift of the event probability
maximum towards larger TCEs can be modeled by extending (3.22) with
an additional term B(...),

P> (¢l |DCE"(x4,hi), TOE" (x¢,ht)) (3.24)
_ max(DCE’(x¢,hy)=dg,0)  TCE(xz,hy)
— co ' € 9d e Jco

. B(TCE"(x4,ht), DCE" (x¢,h4))

with

TCEZ (Xt ,ht)TCE:nam (Xt 7ht)

TCE’L (Xt’ht)TCE}maz (xt,ht)

max

B(TCE' (x¢,h¢), DCE (x¢,h)) =

where TCE! _(x;,h;) is short for TCE! , (DCE"(x¢,hy)).

In Figure 3.11, the approximate accumulated event probability (3.21)
for the intersection scenario is evaluated and compared to the full evalua-
tion of the accumulated event probability (3.20). It can be seen that the
approximate model nicely retains the general characteristics of the accu-
mulated event probability. Furthermore, the course of the maximum shift
for larger DCEs towards higher TCEs of the approximate model, caused
by the consideration of the uncertainty propagation, resembles the one of

the full accumulated event probability model.

13Here, the used alpha function has the form f(z) = % /4% - e~ with a maximum at &
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(a) Full accumulated event probability (b) Approximate, accumulated event
according to (3.20). probability according to (3.21).

Figure 3.11: The comparison of (a) the accumulated event probability accord-
ing to the full model (3.20) and (b) the accumulated event probability according
to the approximate model (3.21), which targets only the event probability max-
ima by using the indicators TCE and DCE, shows that the main characteristics
can nicely be retained by the approximate model. The event probability max-
ima for different DCEs are indicated by the red curve. Especially the projection
onto the ground plane shows that the effect of shifted maxima for larger DCEs
towards higher TCEs is reproduced by the approximate model.

Approximate, Accumulated Event Probability for Different
Event Types

For further risk/event types, such as the risk of skidding in a curvy road
segment or the risk of losing control due to heavy braking, as introduced in
Section 3.2.2, the accumulated event probability in a future time interval
[t,00] can be approximated similarly to the collision case. A more general
form of the approximated, accumulated event probability is

P (e [IVMR(xy,h2), TMR(xy,h2)) (3.25)
_ IVMR(x4,h)  TMR(xz,hy)
= mr € ivmr - e Ttmr

- B(TMR(x¢,h¢ ), IVMR (x4, 1t ).

¢ describes any “maximal risk” event happening in the entire future time
interval [t,00]. P> (eny|...) expresses the approximate accumulated prob-
ability of a future “maximal risk” event (mr). IVMR(...) and TMR(...)
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are indicator-value-of-maximum-risk (an indicator value that is zero at
maximal risk and monotonically increasing with a decreasing risk value)
and time-of-maximum-risk, similar to DCE and TCE, which should be ex-
tractable directly from the predicted trajectories of the involved entities.
Again, the parameters o4y, and ojym, account for temporal and value-
dependent uncertainties. F},, is a weighting factor. The propagation of
uncertainty in the prediction process can be considered similarly to (3.23)
and (3.24) by substituting TCE:=TMR and DCE:=IVMR.

The approximate, total event probability, accumulated over [t,00], de-
scribes the probability of any critical event happening in the future. It can
be achieved by summing over all considered events according to (3.11), in-
cluding all different event types (e.g. car-to-car collision, losing control due
to heavy braking) and event sources (e.g. several traffic participants):

o0
Ptal ~ / D Plerys|Retss(xi,h),5)ds
0 €tts
il = > P (emr [ IVMR(x4,h¢), TMR (%4,h¢))
emr
_ 1/IVMR(x¢,hy) _ TMR(x¢,ht)
= Z Fm,’,, - e ivmr - e Ttmr
emr

. B(TMR(Xt ,ht), IVMR(Xt aht)) .

For collision events, the indicator-value-of-maximum-risk (IVMR)
resembles the distance-of-closest-encounter. Likewise, the time-of-
maximum-risk (TMR) is equal to the time-of-closest-encounter. Without
going into detail, for the risk of skidding in curvy road segments the IVMR
can be chosen inversely proportional to the expected maximal lateral accel-
eration, while the TMR is the time when the maximal lateral acceleration
is reached. For the risk of losing control due to strong braking, the IVMR
can be chose inversely proportional to the maximal expected deceleration
and the TMR as the time when the maximal deceleration occurs. All
those indicators are computationally cheap to extract from the predicted
spatio-temporal trajectories.

Approximate Risk Model

So far, an approximate model for the total event probability, accumu-
lated over future time [t,00], has been derived. This model resembles the
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general characteristics of the full event probability model, introduced in
Section 3.2.2 and can be extended to other types of risk, such as the risk
of losing control due to heavy braking. To achieve an approximate risk
model, the event probability model has to be combined with an expec-
tation of the damage or cost in case a critical event actually occurs. In
Section 3.2.2, the expected costs have been modeled deterministically, us-
ing a 2D-inelastic collision model for the car-to-car collision risk (3.18),
assuming the event happening at future time ¢ + s.

For the approximate risk model, the most obvious way of modeling the
expected damage would be assuming that the event occurs when the event
probability is maximal. For car-to-car collisions according to (3.24), this
is the case at future time ¢t + TCE — TCE,, .., taking the event probabil-
ity maxima shift (TCE,,4,) which is caused by the consideration of the
prediction uncertainty propagation into account. This would result in a
collision damage model according to (3.18) as

A

Cto(Chor Xepropi—roms  (Xi,he)).

However, in order to decrease the computational effort for the approximate
risk model, the temporal course of the trajectories is not considered. Only
the expected risk maxima are targeted, which can be approximated by
risk indicators such as TCE and DCE for the car-to-car collision case, or
generally TMR and IVMR for any kind of risk. Consequently, to achieve
an approximate risk model that purely depends on the predicted states
at TCE (or TMR for the general case) the predicted state at the TCE is
assumed to be similar to the predicted state at the time when the event
probability is maximal,

Xiprop (Xeht) = Xepropi—rop:  (Xeht).

This leads to the expected damage in case a “maximal risk” event (mr)
occurs, which is derived in the following explicitly for car-to-car collision
events (co), according to (3.18).

Coo(Ceos Xeprom (Xesht)) (3.26)

1 mom ) ~0 i 2

~ §m”vt+TC’Ei (xt,ht) = Oy rop (Xe,ha) |7,

where X, rcp(X¢,ht) is the predicted state vector at the TCE.
For any other event types, such as skidding off the road in curvy segments
and losing control due to heavy braking the expected damage at the risk
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maxima can be derived likewise according to (3.19) with the corresponding
risk indicators.

The general model for the accumulated future risk in [t,00], according
to (3.8) is

r(t + s,x¢,ht)ds

0

N/Zét—l—s(et—l—saﬁt—i—s(Xtaht)>P(et—{—s‘)A(t:t—l—s(xt;ht)as)ds'

0 €t+s

Incorporating the approximate event probability (3.25) (for collision
events (3.24)) and the approximated expected damage (3.26) in case the
event occurs, leads to the approximate model for future risk

oo

TOO(Xt7ht) ~ /T(t + Saxtaht)ds (327)
0

r(xe,he) = Z Cmr (Cmars Xe+TMR(Xt5h4))

Cmor

. Poo<€mr|IVMR(Xt,ht), TMR(Xt,ht)).

The derived approximate model for the accumulated future risk is due
to its low computational effort well suited for complex multi-agent sim-
ulations, which are used in the predictions of situation-dependent future
scene evolutions in Chapter 6.

Conclusion

After extracting indicators for risk maxima, considering different types
of events, like the time-of-closest-encounter and the distance-of-closest-
encounter for car-to-car collision events, the evaluation of future risk us-
ing the approximate risk model is computationally significantly cheaper
than the more accurate risk model from Section 3.2.2. While the accurate
risk model from Section 3.2.2 performs an evaluation of risk, considering
the full temporal course of the predicted spatio-temporal trajectories, the
approximate model targets purely the risk maxima to approximate the
accumulated future risk.
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The reduction of necessary computational effort makes the approximate
risk model applicable to tasks, where a low computational time is impor-
tant. Such applications are e.g. microscopic traffic simulators with a large
number of traffic entities or risk-aversive driver models used in prediction
tasks to predict the future evolution of traffic situations, as performed in
Chapter 6.

3.3 Trajectory Similarity

Comparing trajectories in terms of similarity is crucial in many areas. For
example in the area of data mining'* in a large set of trajectories, cluster
analysis'® is a very common method. Here, a key component is a similarity
measure to group similar trajectories.

Furthermore, in Chapter 6 situation-dependent, prototypically pre-
dicted spatio-temporal trajectories are compared with actually sensed and
recorded trajectories of all involved traffic participants, to achieve an es-
timate of the occurrence probability of a certain situation. The higher
the similarity value the higher is the probability that the corresponding
situation holds.

Therefore, the target of this section is to derive a similarity measure for
spatio-temporal trajectories in the context of traffic environments!®.

In literature there are multiple measures of trajectory similarity. In [59]
error measures are divided into four types, termed scale dependent, percent-
age, relative and scale free. An example of the first type is e.g. the mean
absolute error. The authors favor a scale free error measure, especially the
mean absolute scaled error (MASE) to compare predicted trajectories, due
to its property of never resulting in infinite or undefined values. In [146]
the authors compare different common similarity measures for trajectories,
namely the Fuclidean distance, Haudorff distance, Hidden Markov Model
(HMM)-based, Longest Common Subsequence (LCSS) and Dynamic Time
Warping (DTW). It has been shown, that LCSS and DTW cannot take
full advantage of the shape similarity for trajectories in traffic scenarios.
Additionally those measures are computationally very demanding.

14Data mining describes a computational method to find patterns in large data
sets [144].

15Cluster analysis describes the process of grouping objects, such that the objects in
each group can be considered to be similar [67].

16The main contributions of this section have been published by the author of this
thesis to the IEEE ITS Society in [31].
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Traffic environments are generally highly structured and, especially in
the lateral direction, constrained. This is not considered in currently avail-
able similarity measures which are therefore not well suited.

In the following, two spatio-temporal trajectories x! , and x2,,, e.g. one
sensed and one predicted trajectory (see Figure 3.12), are assumed to be
given in a time interval [a,b]. For trajectory comparison, only the positional

information p is used and expressed as an explicit function of time s
p'/%(s) | s € [a,b].
First the lengths of the trajectories are calculated as

LY2(s) —/S

a

d /9
@P/(S/)

ds’. (3.28)

Then, using linear referencing methods, the spatio-temporal trajectory
pl(s) is projected onto p?(s) using (3.28) (see Figure 3.12)

p'(s) = (L7 (L'(s),
where L2~ is the inverse function of L?, such that

L2 H(L2(s)) = s.

In the next step, as shown in Figure 3.12, the longitudinal and lateral'”

distances between two trajectory points are calculated
Atar(s) = [P 7*(s) = p'(s)] (3.29)
and!®

Ajon(s) =[P 72(s) = p*(s)Il.

1"Here lateral does not mean orthogonal, but quantifies the difference between the
original trajectory points and the corresponding points projected onto the other
trajectory, as formulated in (3.29). See Figure 3.12 for a more detailed explanation.

I8For a trajectory p? with strong curvature a more accurate way of calculating is
Ajon(s) = |AL(s)| with AL(s) = L'(s) — L?(s). Here only the absolute value
|AL(s)| is used. However, in general AL(s) can be utilized to distinguish which
trajectory has traveled a longer distance at time s, e.g. for AL(s) > 0 trajectory
p!(s) has traveled a longer distance than p?(s).
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Figure 3.12: Calculation of longitudinal and lateral distances between two
trajectories p?(s) (red) and p'(s) (blue). The blue crosses and red triangles
denote points of the corresponding trajectories at the same moment in time
starting from the top right. The blue circles denote the projected points p* 72 (s)
of p'(s) onto p*(s). Ayat(s) and Ajon(s) are exemplarily indicated for the 5th
point in time.
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Based on those distances, the following mean similarities are calculated
as the mean lateral /longitudinal similarity of the trajectories

b
1
Mlat/lon - b_a /MAlat/lon (Alat/lon(s))ds (330)

and the mean similarity of the temporal derivative of lateral /longitudinal
distance

b
Mlat/lon = b—_a /MALat/Lon (Alat/lon(s))ds' (331)

The single similarity values M4 /10, and M, Jlon are derived by apply-
ing nonlinear weighted assignment functions to the lateral/longitudinal
distances and their derivatives, as shown in Figure 3.13.

The resulting measure for trajectory similarity is derived as the combi-
nation of the mean similarities as

Msim - Mlat : Mlat : Mlon : Mlon- (332)

For two identical trajectories the measure provides a value of Mg;,, = 1.
For highly dissimilar trajectories the similarity value tends to Mg;,, — 0.

In Chapter 6, the similarity measure is applied to a situation classifi-
cation system, which tries to assess the likelihood of a certain situation,
by comparing situation-dependent, predicted spatio-temporal trajectories
with actually sensed trajectories in terms of spatio-temporal trajectory
similarity.

3.4 Conclusion

In this chapter, novel basic concepts have been proposed, which build the
basis of the following thesis. In Section 3.1, the concept of situations has
been presented, which define joint prototypical behavior patterns of all
involved scene entities. For traffic scenarios, different spatial paths and
different longitudinal behavior possibilities are separated. The longitudi-
nal behavior separation focuses on interacting and non-interacting longi-
tudinal behaviors. Instead of sampling a large set of possible behaviors of
all involved entities and then clustering similar behaviors into situations,
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(d) Similarity assignment for the
time derivative of the longitudinal
distance. A temporal derivative of
the longitudinal distance of zero in-
dicates equal longitudinal behavior
and thus high similarity. Derivatives
above Aion’max are considered as not
similar.

Figure 3.13: Similarity assignment functions for (a) lateral distance, (b) tempo-
ral derivative of the lateral distance, (c) longitudinal distance and (d) temporal
derivative of the longltudmal distance. The used parameters are Aion max = H0m,
Alat,max = 9.6m, Alon max = DM/, Alat max = Dm/s, lane = 3.2m, car = 2m.
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an approach has been presented to directly generate situations using road
structure information and assumptions on the interaction between traffic
participants.

In Section 3.2 a novel probabilistic, time-continuous model for future
risk has been proposed, which targets at situation-dependent, prototypi-
cally predicted trajectories. Under the assumption that risks are caused
by sparse critical events, the risk model consists of 1) the probability that
a critical event will happen and 2) the expected damage in case the event
actually happens. Several risk types have been considered, such as the
collision risk between two cars, the risk of losing control due to heavy
braking and the risk of skidding in narrow curve segments. As the pro-
posed risk model is computationally demanding and not suitable for time
critical tasks like situation-dependent scene predictions or traffic simula-
tions, an approximate risk model, targeting only the expected risk maxima
has been proposed. This approximate risk model is based on risk indica-
tors, which can directly be extracted from the predicted trajectories with
low computational costs, such as the time-of-closest-encounter (TCE) and
distance-of-closest-encounter (DCE) for the car-to-car collision case.

Finally in Section 3.3 a novel similarity measure for spatio-temporal
trajectories has been proposed. This measure is based on a dedicated
evaluation of the longitudinal as well as lateral similarity, taking the char-
acteristics of traffic environments into account, which are then recombined
for the final evaluation.
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4 Framework for
Situation-based Risk
Evaluation and Behavior
Planning

This chapter introduces a general framework for situation-based risk eval-
uation and behavior planning. The target of any behavior generating
system is to find a behavior that maximizes benefits and minimizes costs.
For traffic scenarios this implies e.g. minimizing travel time while avoiding
the risk of a collision.

The generation of an ego entity’s behavior comprises an evaluation of
possible behavior alternatives in terms of future risk! (expected costs) and
future utility (expected benefits).

This evaluation requires an accurate prediction of how a scene evolves
in the future for different ego behaviors. Such a prediction is uncertain
and as a consequence, several possible scene evolutions have to be con-
sidered. There are basically infinite possibilities how a scene can evolve,
which makes the task of finding the optimal behavior highly complex and
computationally infeasible.

In order to reduce the complexity it is necessary to reduce the number of
possibilities. This can e.g. be achieved by considering only scene evolutions
which are relevant for the ego entity’s future behavior. Also considering
only significantly different scene evolutions by clustering similar ones into
situations reduces the complexity. A situation? is then defined to represent
exactly one prototypical scene evolution.

As possible scene evolution patterns/situations are not equally likely to
happen, it is beneficial to consider a likelihood estimation®, while gener-
ating the ego entity’s behavior. For traffic scenarios a suitable solution is

1See Chapter 3.2 for more information on risk.

2Chapter 3.1 gives a more detailed introduction in the concept of situations.

3Such a likelihood estimation is e.g. the situation classification approach presented in
Chapter 6
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the proposed framework for situation-based risk evaluation and behavior
planning?.

4.1 Framework Overview

The framework consists of the following six steps in the evaluation and
planning cycle, as shown in Figure 4.1, namely 1) scene observation, 2)
situation classification, 3) trajectory prediction, 4) risk evaluation, 5) be-
havior planning and 6) behavior execution.

1. In the scene observation step the system reads all sensor data to
update the current state of the environment. This includes all states
of dynamic objects, such as other cars or pedestrians, which are rele-
vant for the ego car as well as infrastructure related information, like
parking cars, traffic signs and map data. Here, the most important
information are states of dynamic objects and the road topology de-
livered by map data. In the course of this work x; is referred as the
measured state vector of the scene at the current time t.

2. In the situation classification step the current state of the scene
is used to generate a set of possible prototypical situations, classify
it and select those situations, which are relevant to determine the
ego car’s future behavior. As a result, a set of relevant situations
and occurrence probabilities, one for each situation, is retrieved. A
suitable approach for situation classification is presented in Chap-
ter 6. This approach is based on similarity calculations, comparing
the actually sensed, with situation-dependent, previously predicted
states of the scene.

3. As presented in Chapter 3.1, each situation describes one behavior
alternative for each involved scene entity. In the trajectory pre-
diction step, one prototypical scene evolution is predicted for each
considered situation. In the approach presented in Chapter 6.4, the
Foresighted Driver Model (FDM) is applied as a prediction model
in a multi-agent forward simulation of the sensed scene. For each
relevant situation one prototypical state evolution is predicted, con-
sidering all involved entities. This results in one prototypically pre-
dicted, spatio-temporal trajectory for each entity in each situation.

4The main contributions have been published by the author of this thesis to the IEEE
ITS Society in [30, 39] and patented in [28, 29].
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4.1 Framework Overview
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4 Framework for Risk Evaluation and Behavior Planning

Applying the FDM in a situation-dependent forward simulation en-
ables the incorporation of interaction, such as one entity giving way
to another approaching entity. Additionally, the incorporation of
different assumptions on how the entities interact, such as one en-
tity considering one other to give way, but accidentally overlooking
a third entity, is possible.

. Next, in the risk evaluation step a variation of ego-car trajectories

is build. The risk for each variation is evaluated, based on the pre-
dicted spatio-temporal trajectories of the other entities, according to
the probabilistic model for risk, introduced in Chapter 3.2. Accord-
ing to Chapter 7.1, such an evaluation can be employed to generate
predictive risk maps, one for each situation. A predictive risk map
indicates how risky a certain behavior alternative in a certain situa-
tion will be at a certain future time and allows the determination of
the best future behavior.

. After evaluating the situation-dependent risk for possible ego behav-

ior alternatives, the target in the behavior planning step is to find
a future ego behavior, which minimizes risk while maximizing utility,
meaning that a future behavior that is of low risk, but still efficient
in terms of e.g. travel time, comfort, etc., is striven for.

Combining risk with a utility term, which defines a desired future
behavior in case no or only low risk is present, allows the deter-
mination of a future behavior by finding a tradeoff between both,
risk and utility. As presented in Chapter 8.1, for each situation
this can be achieved in a straightforward way using a suitable plan-
ning algorithm, e.g. a sampling based approach, to find a satisfying
trajectory through the risk map. Furthermore, considering several
uncertain situations, as it is generally the case, the planning of a
suitable future behavior has to consider the entire set of relevant
situations®. Therefore, a behavior is necessary that is of low risk in
all possible situations, but still efficient in the overall constellation
of the scenario. Chapter 8.2 presents an approach to plan such a
future trajectory by combining predictive risk maps for several sit-
uations, planning with regard to the estimated situation occurrence
probabilities and applying a “plan B”, e.g. emergency braking, in
case unlikely but risky situations suddenly occur.

6. Finally in the behavior execution step a control signal is generated

5See Chapter 3.1 for more information on how to derive this set of situations.
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out of the safe future plan and applied to the dynamic system. As
the system acts in a dynamically changing environment, reevaluation
and replanning is necessary from time to time, using e.g. a preset
time interval At.

The underlying idea of the presented framework is very similar to the idea
of model predictive control (MPC) [99], where a time-discrete dynamic
model of a system is used to predict the system’s future behavior for a
certain future time interval [t,t 4+ s] depending on different control inputs,
starting from the current time ¢. This allows the calculation of a future
control strategy optimizing the expected costs of the system. In general,
only the next step of the control strategy is executed. Then, the sensed
states of the system are updated and the prediction of a future state evolu-
tion is performed with the updated states, resulting in an adapted future
control strategy. During execution the prediction horizon keeps on shifting
forward, as it is also the case for the presented framework for situation-
based risk evaluation and behavior planning.

Based on the presented framework, a system is developed by introducing
approaches for situation classification and trajectory prediction in Chap-
ter 6, risk evaluation in Chapter 7 and behavior planning in Chapter 8.
Furthermore, in Chapter 5 the Foresighted Driver Model (FDM), a micro-
scopic driver model based on a simplified version of the presented frame-
work, is introduced. The driver model relies on a gradient descent and a
computationally inexpensive, approximate risk model, targeting only the
expected risk maxima, which has been introduced in Chapter 3.2.3.

The FDM is applied to the situation classification and trajectory pre-
diction step of the full system. This allows the system to incorporate
interaction between multiple traffic participants in the prediction task. As
a consequence, the behavior prediction of the full system can be under-
stood as a bootstrapping approach, where the prediction step comprises an
approximate behavior planning system including all its steps, on a lower
level, to increase the prediction performance.

For the full system, this thesis assumes an accurately sensed scene, in-
cluding a precise localization of the ego and other entities®. Furthermore, a
controller applying the planned behavior, derived from the behavior plan-
ning step in Chapter 8, to the dynamic system, is assumed to be given.

6Despite the assumption of an accurately sensed scene and localized scene entities, the
approaches presented in this thesis explicitly consider measurement and prediction
uncertainties.
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Therefore, the scene observation and behavior execution steps are not cov-
ered in detail.

However, in [22] the author of this thesis proposed a method to im-
prove the localization of scene items based on state-of-the-art map data,
combined with a coarse and cheap position estimation as e.g. provided by
standard GNSS (Global Navigation Satellite System). From the map data,
the structure of the contextual road geometry is inferred, and aligned with
the road view(s) provided by a front camera. This results in an improved
relative positioning of the sensed items on the map structures, allowing a
better scene interpretation. The alignment occurs by best-match search
based on a feature comparison between the real road view from the camera
and virtually generated road views based on the map, considering different
assumed ego-vehicle positions. The method is illustrated in the Appendix
A.3 in Figure A.1 and A.2. On standard road scenes, this approach has
been validated and shown that it can be used as a cheap means to sup-
port intelligent Advanced Driver Assistance Systems (ADAS) and improve
localization.
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5 The Foresighted Driver
Model

The modeling of realistic driving behavior has been heavily researched in
recent years and even though there are numerous approaches targeting this
problem, there are still considerable problems to solve. In the field of situ-
ation classification and trajectory prediction, which targets the prediction
of human driving behavior, one of the main problems is the prediction
of spatio-temporal trajectories of drivers, especially under consideration
of interaction between several traffic participants. As discussed in Chap-
ter 2.1, many learning-based approaches, such as [71], predict a traffic
participant’s behavior based on a large set of training data and features
indicating the future behavior. Furthermore, there are approaches that use
driver models, such as the Intelligent Driver Model (IDM) [133], in a for-
ward simulation to predict how a traffic situation evolves into the future,
which is a required technology for the support of Advanced Driver Assis-
tance Systems (ADAS) and Autonomous Vehicles (AV). The approach for
trajectory prediction that will be presented in Chapter 6.4 belongs to this
category. If sufficient training data is available, learning-based approaches
have the potential to perform very accurately. However, particularly in
the case of a highly general driver model, the model-based approaches are
applicable to a wider range of different scenarios, especially for predicting
dangerous traffic situations, where training data is often scarce. Further-
more, learning-based approaches still struggle with the consideration of
interaction between acting entities in the prediction process.

Modeling vehicle behavior always implies modeling the behavior of the
vehicle’s driver (human or machine), along with its specific driving style
and driving preferences. An important aspect is that a realistic driver
model has to capture the causes that lead to the driver’s decisions. Usu-
ally, these are related to concepts of driving progress, risk and safety,
parametrized e.g. by the distance traveled per time or by velocity differ-
ences and time-gaps to other traffic participants.

Furthermore, driver models can be utilized to determine the current
maneuver or driving situations by analyzing and comparing the actual
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behavior of a driver with “how the driver should behave” followed by
an early warning to provide time to react, as done in [31, 87, 101]. In
Chapter 6 the Foresighted Driver Model, introduced in this chapter, is
applied to the task of situation classification in order to achieve a suitable
model of how the current scene will evolve in the future.

In addition to prediction purposes, microscopic driver models are com-
monly applied in simulation tasks. In this case, they aim at describing
the dynamics of driving vehicles reasonably well in terms of realistic single
entity behavior, but they also allow the simulation of collective traffic flow
properties, like traffic breakdown in high density situations.

The Intelligent Driver Model (IDM) is a simple yet seminal microscopic
model for the simulation of free driving and car-following, longitudinal be-
havior in freeway and urban traffic (see Section 5.1). It has a low number
of parameters that can be related to the driving dynamics and the driver
preferences. Its extension MOBIL [68] further allows the application to
lane change decisions. Nevertheless, the IDM is lacking several properties
that are required in prediction models for future ADAS and autonomous
driving, as e.g. for situations which involve the handling of multiple other
traffic participants, the consideration of non-longitudinal risks, the behav-
ior at unmanaged intersections, and the incorporation of road structure
and geometry.

This chapter introduces a novel microscopic driver model, the
Foresighted Driver Model (FDM), for the description of driving dynam-
ics, which is able to handle such situations. The model is targeted to
capture the risk-dependent aspects of driving, assuming that a driver is
influenced in its driving behavior decisions mainly by the consideration
of future utility /benefits and the risks that he/she may encounter along
his/her intended driving route. In such a case, the benefits will be mainly
expressed by factors related to the driving goal, such as driving speed,
time to arrival, driving economy, etc., whereas the risks will be related to
(excessive) driving speed and accelerations as well as potential collisions
with road structure elements and other traffic participants. In short, we
assume that drivers have a strong tendency to avoid potential risks like up-
coming collisions and adjust their behavior accordingly. This assumption
is also considered in other works, trying to improve prediction accuracy,
e.g. in [61].

The presented FDM straightforwardly and explicitly captures a number
of properties of driving dynamics that are related to the predicted risk of
situations, while retaining a simplicity that allows for efficient simulation
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and its application in ADAS and autonomous driving scenarios’.

5.1 The Intelligent Driver Model

As the Foresighted Driver Model (FDM) is inspired by the Intelligent
Driver Model (IDM), its properties are briefly discussed, before advanc-
ing to the more general FDM. The Intelligent Driver Model, introduced
in [133], combines realistic simulation properties with a simple formulation
and calculation, and has been used in numerous scientific studies related
to driver modeling, driver assistance systems and collective traffic simula-
tions. It has a low number of parameters which can be related naturally
with driver- or car-specific properties. In addition, it is deterministic and
is evaluated continuously for its input variables.

Its formulation for the longitudinal behavior is in form of a differential
equation for the longitudinal ego car velocity change

el G ()

VAV
2Wab

Here, the ego-car is described by longitudinal position and velocity, x and
v. The distance d = |z — 21| and the velocity difference Av = v — vl are
measured between the first leading car with position ' and velocity v* and
the ego car. It applies only for cars in front and ego car velocities larger
than the velocity of the leading car (Av > 0). The parameters vy, dg, T,
a and b are related to the driving style, and express desired free cruising
velocity, minimal gap distance and minimal time gap to the leading car,
maximal acceleration and comfortable deceleration, respectively. The ex-
ponent 3 describes how the entity approaches the free cruising velocity vg.
Typically used parameters can be found in [133].

With no car in front of the ego-car, the last term from (5.1) vanishes
and the driving velocity adjusts to the desired free driving velocity vy with
acceleration a. For short distances to the car in front and/or large speed
difference Av, the last term from (5.1) dominates the dynamics, leading to
a deceleration with factor b. The IDM does not consider risks explicitly.

: (5.1)

with

d*(v,Av) = do + vT +

I'The main contributions of this chapter have been published to the IEEE ITS Society
in [38].
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However, some aspects of criticality are handled implicitly by the terms
and parameters related to the time gap T and the deceleration factor b.

5.2 The Foresighted Driver Model

Generally, driver dynamics are assumed to be best modeled by considering
the driver as being aware of the risks of the upcoming situations (to the
best of his/her knowledge and subject to sensory and cognitive limitations)
and comparing those risks with the benefit he/she gets when choosing a
particular driving behavior.

This allows to incorporate such a model directly into ADAS considera-
tions, either by simulating other traffic participants with FDM in a realistic
fashion, as a prediction model for actual planning (see Chapter 6), or by
comparing the proposed dynamics with assistance functions that also have
to find a tradeoftf between utility and risk.

However, such a risk- and utility-aware driving behavior generally needs
appropriate optimization and planning methods. It additionally requires
elaborate probabilistic prediction schemes of the other traffic participants,
since their true intention is unknown and measurements are uncertain
and noisy. The general framework for situation-based risk evaluation and
behavior planning, introduced in Chapter 4, includes such a detailed ap-
proach for risk prediction with uncertainty and is used for planning the
best behavior in terms of expected risk and utility.

The following builds on this framework to propose a driving model that
is comparable in simplicity to microscopic models like the IDM, but which
is based explicitly on future risk and utility factors. It is called the Fore-
sighted Driver Model, because it requires the consideration of predicted
critical points along a driver’s future trajectory. Given the risk, it is as-
sumed that the driver behaves in a way that tries to avoid critical points
while maximizing utility.

Since the FDM is based on the same underlying framework of situation-
based risk evaluation and behavior planning, it comprises the following six
steps, which are simplifications of the steps presented in Chapter 4:

1. Since the FDM is a longitudinal driver model, generally applied to
simulate or predict longitudinal behavior, the step of scene obser-
vation is usually handled by the simulation/prediction environment,
which provides the current state (longitudinal position and velocity)
and a possible drivable path for each considered entity.

2. The situation classification step is in general a highly complex
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task. In the FDM, only a fixed set of situations, separating longi-
tudinal behavior alternatives of the involved entities, is considered.
Furthermore, situations in the FDM always consider bilateral rela-
tions between the ego and one other entity. Nevertheless, multiple
other entities can be considered by superposing risks caused by differ-
ent sources. In order to avoid the computationally expensive, prob-
abilistic estimation of a situation’s occurrence probability, a preset
weighting of the different considered situations is applied.

3. The goal of the trajectory prediction step is generally to provide
one possible prototypical trajectory for each entity in each situa-
tion. Here, only computationally inexpensive, longitudinal predic-
tion models are considered, such as constant velocity and constant
deceleration. Unlike in the full framework for situation-based risk
evaluation and behavior planning, interaction between the involved
entities is not considered in the prediction process due to high com-
putational costs.

4. In the risk evaluation step, the upcoming risk of the ego entity
has to be evaluated. This evaluation has to comprise the risk of all
involved risk sources and all considered situations, according to the
general definition of risk in Chapter 3.2. Here, the approximate risk
model, introduced in Chapter 3.2.3, which targets only risk maxima
is applied. By a bilateral evaluation of the predicted ego entity’s
trajectory and the predicted trajectory of another traffic participant
or road structure element, the predicted points in time with maximal
risk can be extracted. For collision risks, this is the point-of-closest-
encounter, typically expressed by the risk indicators time-of-closest-
encounter (TCE) and distance-of-closest-encounter (DCE).

5. The aim of the behavior planning step is to find a future behavior
that minimizes risk and maximizes utility. To arrive at a computa-
tionally inexpensive behavior adaptation, finding a tradeoff between
risk and utility, the longitudinal velocity is adjusted using a gradient
descent on a cost function combing both, risk and utility.

6. The behavior execution step is of low importance, as the FDM
is generally applied in simulation or prediction tasks. The derived
velocity change can directly be applied to the dynamic system.

The Foresighted Driver Model is a longitudinal microscopic driver model
mainly applicable to traffic simulation and prediction tasks. The scene
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observation is generally assigned to the simulation or prediction environ-
ment. Therefore, the current state of the traffic scene x;, including the
states of the ego entity x¥ and other traffic participants x%, constitute a
first step into the driver modeling. For the FDM, the spatial positions and
longitudinal velocities are important.

Furthermore, as common in microscopic driver modeling [133], a known
spatial path x¥ and x! for the ego- and each other entity, on which they
act longitudinally, is assumed.

The risk evaluation, according to Chapter 3.2, relies on prototypical pre-
dictions on how the current scene state x; evolves into the future. Both,
state measurement uncertainty and the propagated state uncertainty in
the prediction process are explicitly handled by the risk model. However,
uncertainty arises also in the estimation of drivers’ intents. This usually
results in fundamentally different behaviors of the involved entities, consid-
ered in separate situations. To cope with this uncertainty, the full frame-
work for situation-based risk evaluation and behavior planning estimates
the occurrence probabilities of relevant situations. Such an evaluation is a
computationally complex task. Therefore, relevant situations for the use
in the FDM are predefined in a fixed set of considered situations. In the
FDM the general definition of situations is reduced to represent only bi-
lateral relations between the ego- and one other entity. For each involved
other entity ¢, the set H' of the following three bilateral situations with
adequate prediction models is considered:

1. Both entities keep on driving with constant longitudinal velocity.

2. The ego entity keeps on driving with constant velocity, while the
other entity performs a sudden stop.

3. The other entity keeps on driving with constant velocity, while the
ego entity performs a sudden stop.

This results in the total set of considered situations H = | J H.

(]

Assuming a risk-aversive behavior of the FDM, the first situation mainly
defines the general behavior e.g. to avoid collisions at intersections or rear-
end collisions for the car-following case. Considering only the first situation
would result in a risky behavior, as no safety distance to a leading vehicle
would be kept. The decisional uncertainty in the behavior of involved
entities is not considered.

By taking the second situation into consideration, driving very close
to a leading vehicle would result in high risk for the situation that the
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other entity suddenly brakes. In the same way the third situation results
in an FDM behavior keeping a safety distance to a vehicle approaching
from behind. For other scenarios such as intersections, situation 2 and 3
also result in an increasing distance kept by the FDM to the other acting
entities.

The risk evaluation according to Chapter 3.2 relies on situation-
dependent, prototypically predicted scene evolutions Xy.;4s(x¢,h:). For
traffic scenarios this mainly involves a prediction of prototypical trajecto-
ries of the considered entities in each evaluated situation. For the FDM
the three previously introduced bilateral situations are considered. Thus
each other entity results in an evaluation of three situations. For each of
the considered situations h; € H, a prediction of the ego- and the other
entity’s trajectory, Xy, ,(x¢,ht) and X}, (x4,he), is performed. Longitu-
dinal constant velocity and mazimal deceleration? models, according to the
three situations, are applied for prediction. More sophisticated prediction
models can be used as well.

Recapitulating Chapter 3.2, the definition of risk is the expectation value
of the cost or benefit related to critical future events. A computationally
inexpensive way to derive a measure for future risk is the approximate
model for accumulated future risk, introduced in Chapter 3.2.3. Given the
current state of the scene x; at current time ¢ and the situation-dependent
predicted trajectories of the ego- and another entity, X7, (x¢h) and
Xt s(x¢,ht), a suitable model for the approximate accumulated future
risk considering any “maximal risk” (mr) event for a bilateral situation hy,
is derived in (3.27) as

Too(Xt, ht)

— Z émr(emra )A(t—i—TMR(Xtaht)) : Poo(emr‘IVMR(Xhht): TMR(Xtaht))-

emr

Considering purely collision risks and only a single possible collision with
one other entity ¢ this simplifies to

oo (X¢, hy)

= &, (ehy Xiprem (i) - P (el [DCE' (%, ), TCE (x;,h4)),

2

2The maximal possible deceleration is set to 8m/s?.
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with
éio(efzm Xeyrop (Xe,ht))
1 mem; N 0
~ 9 mo + ?’lﬂz H Oy ropi (Xehe) — Uy yrop (x¢,h4)]|
and
(e DCE" (x4,ht), TCE® (x¢,h¢ ) (5.2)
. _max(DCE%(xy,hy)=dg,0) _ TCE®(x4,hy)
— FCZO . e o4 .e T e

B(TCE'(x¢,h;), DCE"(x4,h¢)).

The parameters and B(...) are defined according to Chapter 3.2.3. The risk
indicators TCE'(x;,h;) and DCE’(x;,h;) are derived from the situation-
dependent, predicted trajectories of the ego car and another entitiy i.

Furthermore, it is assumed that risk for the ego-car exerted by each
other entity can be modeled separately with a different bilateral situation,
and that it is sufficient to consider the set of most critical predicted fu-
ture events corresponding to the discrete points in time of maximal future
risk, as introduced in Chapter 3.2.3. Therefore, by integrating the consid-
ered bilateral situations, pairwise the ego with each other entity, the total
accumulated risk is

= Z Too(Xe, he) - P(hye|xy).

h.cH

In order to achieve a computationally cheap expression of the total future
risk, a parametric, preset prior for the different situations is assumed, such
that the three different situations are weighted according to

O(xe) ~ > rE2(xe, he) - S5

h.cH

The collision risk used in the FDM that explicitly considers the three
bilateral situations between the ego- and each other vehicle denoted by
L RS, b s
2, 1°3

Z Z coa)A{t—{—TC’Ei (Xt7hi))

[1,2,3] ¢
. P> (¢! |DCE"(xy,hy ), TCE"(x4,R%)) - S,
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where S:° a preset prior for the individual bilateral situations.

In the risk model of Chapter 3.2 several different types of risk are al-
lowed, beyond the car-to-car collision risk. For the approximate risk model
used in the FDM, a consideration of multiple risk types is also possible,
by summing over the different risk types

Too(Xt) = Too(Xe) + 10 (X¢) + ..o, (5.3)

where r$2(...) expresses the car-to-collision risk using the time-of-closest-
encounter (TCE) and the distance-of-closest-encounter (DCE) as risk in-
dicators. r%Y(...) expresses the risk of skidding off the road when driving
too fast through narrow curves (cv), where the time-of-maximal-curvature
(TMC) and the indicator-value-of-maximal-curvature (IVMC) are applied
as risk indicators®. The full expression of the approximate accumulated
curvature risk r$Y(...) can be found in the Appendix A.1. Further risk
types can be applied in the same way, as explained in Chapter 3.2.3.

Recapitulating, the risk equation (5.3) involves a prediction step gen-
erating situation-dependent, prototypically predicted trajectories of the
involved entities, including the ego entity. The risk indicators, which are
used for the approximate risk model, express critical future events and
rely on the performed trajectory predictions. Furthermore, each predicted
trajectory relies on the current states of the scene x;. As the FDM acts
longitudinally on an intended path the most important states are the ego
entity’s longitudinal velocity as well as its current position. The future
risk, based on risk indicators, implicitly results from the different trajec-
tory predictions and is thus heavily depending on the ego entity’s longi-
tudinal velocity, and therefore also controllable by a velocity adaptation.
Therefore the future risk is expressed as an explicit function of the longi-
tudinal ego velocity ro (x¢,v).

A risk-aversive behavior of the ego entity (FDM) can be achieved by
performing a gradient descent on the risk function, respective the ego en-
tity’s velocity v. In this way, the ego entity adapts its velocity to minimize
the expected future risk

do sk d 7o (x¢,0)

- =_ 4
dt 77 d'U Y (5 )

where 7 is the gradient descent constant, defined in the Appendix A.2.

3More information about modeling the risk of skidding in curvy segments can be found
in Chapter 3.2.3.
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A purely risk-aversive behavior is not sufficient to achieve a realistic
driving behavior. Furthermore, efficiency resp. utility considerations have
to be incorporated to arrive at a realistic behavior, finding a tradeoff be-
tween risk and utility. For a utility term, the free-driving term of the
original IDM (5.1) is borrowed. In case of low risk, this term tries to
approach a preset cruising velocity vy,

%&ee S [1 . (%)B] . (5.5)

Throughout the simulations ¢ = 1.25 m/s? is used, which is a typical
value for the acceleration/deceleration to cruising speed used in IDM sim-
ulations.

The total velocity change is given by a combination of free-driving (5.5)
and the foresighted minimization of predicted risks (5.4), according to

dw dw free dv risk

Since the trajectory velocity parameter v may depend on a non-analytical
path geometry, the velocity gradient of the risk ro(¢,x¢,v) is calculated
numerically, with the benefit that it can be applied to arbitrary scenarios.

Equation (5.4), (5.5), and (5.6) can be further adapted to achieve phys-
ically realistic driving velocity curves, e.g. by using constraints on dv/d¢
to adjust to the maximally possible acceleration and braking deceleration.
For low risk scenarios the free driving term outweighs the risk term and
the entity tries to optimize for utility considerations. However for risky
scenarios, the most important term driving the model dynamics, is given
by the risk minimization.

5.3 Results

In the following, the FDM is applied to three different scenarios, two inner-
city scenarios and one highway scenario. In the first inner-city scenario, a
car drives along a route comprising several turns with different curvature
and no other traffic. The second inner-city scenario is based on an inter-
section with several other traffic participants in the way of the ego car.
In the highway scenario, the ego car is accessing a highway and adapting
its velocity according to the general traffic flow. All scenarios are based
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on simulations on real-world maps with realistic road map structure taken
from augmented OpenStreetMap data, as shown in Figure 5.5.

Two types of risk have been modeled, namely collision risk of the three
different bilateral situations (ego- and each other entity) from Section 5.2,
and one risk type which models the criticality from exceeding the safe ve-
locity in curves, which enforces a smooth anticipatory longitudinal velocity
adaptation at turns with high curvature.

The FDM parameters for the risk types can be found in the Ap-
pendix A.2. For the three different bilateral situations, 1) ego/other
constant velocity, 2) ego constant velocity/other sudden stop and 3) ego
sudden stop/other constant velocity, different parameters have been used
in (5.2), indexed by 1-3. The time constant o.,1 € {0.5,1.0,1.5} s is uti-
lized to model the general look-ahead time for any possibly upcoming
collision in case that the velocity is not adapted. o.,2 = 0.5s is used to
model the time gap/safety distance to a leading car in front. Analogously,
a suitable time gap to a car following behind is modeled using 0., 3 = 0.5 s.
The parameters S7% 3 = 1.0 are used to weight the different risks of the
considered situations.

Likewise, for the risk of skidding in a curvy road segment, ., €
{0.5,1.0,1.5} s is used to define the look-ahead time, i.e. when to start
adapting the velocity for a safe driving along the curve. The approxi-
mate risk formula for skidding in a curvy road segment is defined in the
Appendix A.1.

The maximally allowed lateral acceleration is a.max = 0.9 g 4 with the
actual centrifugal acceleration while driving along in the curve.

5.3.1 Curve Driving Scenario

In Figure 5.1 the FDM is applied to a scenario where a car is driving
along a route with several turns of different curvature. The centrifugal
risk term now foresees risks due to a predicted velocity that is too high for
an upcoming curve, enforcing an appropriate deceleration in these cases.
In Figure 5.2, the red curve represents the maximally allowed velocity for
driving through a curve before losing control,

VUc,max = \/ Qc¢,max * R7

where a. max is the maximally allowed lateral acceleration (mainly a prop-
erty of car and tires) and R the curve radius along the route.

4with g = 9.81 m/s?
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el

Figure 5.1: Curve driving scenario.
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Figure 5.2: Curve driving scenario. Results for the FDM with different o,
time constants, vo = 25m/s. Higher o, result in an earlier consideration of
upcoming curve risks. Red lines indicate the maximally allowed longitudinal
velocity, depending on the turn curvatures. Blue curves show the resulting FDM
velocity. If o., is too short, even maximal braking is not sufficient to mitigate
the risk in the first curve, (a). For larger prediction horizons, however, the FDM
results in smooth and continuous velocity profiles that reliably avoid risks by
the parametrized safety margins, (b) and (c).
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The driving behavior has been evaluated for different look-ahead times
Oey. By comparing the velocity profiles (blue), it can be easily seen that
a larger time window results in an earlier consideration of the upcoming
curvature risk so that the car starts to brake earlier, resulting in a lower
necessary deceleration and a globally smoother velocity course. Once the
point of maximum curvature is approached, the velocity reaches a value
which allows to drive out of the curve at low risk. In Figure 5.2(b) and
(c), it can be seen that the velocity is reliably reduced before the curves,
so that it always remains below the critical v. max. In Figure 5.2(a), due
to the limited temporal look-ahead the braking phase is not sufficient to
reach below the critical maximal velocity in the first curve. The reason
for that is the incorporation of a constraint on the maximal acceleration
and deceleration to physically realistic values.

5.3.2 Intersection Scenario

In Figure 5.3 the FDM model is applied to an intersection scenario, where
the ego car approaches from the left and has to give way to cars approach-
ing from the right, if no safe crossing is possible. As the distance between
the first two and the second two crossing cars is sufficiently large, the ego
car chooses to cross during this gap. By comparing the velocity profiles
(blue) in Figure 5.4 it can be seen that a large time constant o, 1 re-
sults in an earlier incorporation of the upcoming risky event related to
the crossing cars. Thus in Figure 5.4(c), the ego car starts earlier to slow
down in order to cross in the gap. By adapting the velocity earlier to the
risky upcoming events the ego car does not have to slow down as much as
in Figure 5.4(a), where the time constant is smaller. Additionally it can
be seen that the resulting risk (red) in 5.4 a) is much higher compared to
the risk in 5.4(b) and (c).
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Figure 5.3: Intersection scenario.
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Figure 5.4: Intersection scenario. Results for the FDM with different o.,,1 time
constants, vo = 19m/s, Vothers = 10m/s. The ego-car approaches a crossing with
4 other cars and adjusts its velocity to fit in the gap between the two groups of
approaching cars. Velocity (blue) and risk (red) profiles are shown. Higher oc¢o,1
result in an earlier consideration of upcoming risky events.
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5.3.3 Highway Accessing Scenario

In Figure 5.5 the ego car intends to access a highway (see also the satellite
view), on which three other cars are driving with almost the same speed.
As the gap between the second and the third car is sufficiently large, the
ego car adapts its speed in order to pull in. Figure 5.7 shows a temporal
sequence of the scenario.

It can be seen in 5.6 that a larger time constant o, 1 results in an earlier
adaptation of the velocity and a smoother highway accessing with lower
risk. Once the car is on the highway it adapts its velocity to the general
traffic flow, while keeping a safety distance to the car in front (defined by
Oco,2) and to the car behind (defined by 0.0,3). The curvy segment when
accessing the highway is also incorporated into the risk calculation, but
does not dominate the car dynamics since the curvature is quite low.

150m 200m

100m

Figure 5.5: Highway accessing scenario. Real world road topology taken from
augmented OpenStreetMap data.
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Figure 5.6: Highway accessing scenario. Results for the FDM with different
Oco,1 time constants, vo = 12m/s, vothers = 14m/s. Velocity (blue) and risk
(red) profiles are shown. Higher oc,,1 results in an earlier consideration of up-
coming risky events. The ego-car tries to find the right low-risk gap between
the approaching highway cars, braking and accelerating accordingly. Note the
different scales of the risk plots.
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Figure 5.7: Highway accessing scenario for o.,,1 = 1.0. Cut-in behavior at
different moments in time. The ego car (green) adapts its velocity to access the
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5.4 Conclusion

This chapter presented a novel microscopic driver model, the Foresighted
Driver Model (FDM), which exhibits a behavior that is defined in terms
of different types of risk, with the assumption that a driver’s behavior
mainly targets at minimizing risk while maximizing driving utility. The
risks explicitly covered are collision risk with other traffic participants and
risks caused by narrow curves in the road structure. The FDM is able to
handle open traffic scenarios with an arbitrary number of risk types and
risk causes (e.g. other traffic participants) by superposition, as well as with
longitudinal and lateral collision risk components. Furthermore, it can be
implemented in a very efficient way, compared to full behavior planning
approaches.

Compared to the well-known Intelligent Driver Model IDM, the FDM
is expressed in a similar way to control the longitudinal cruising veloc-
ity. Its model parameters are easy to adjust since they reflect risk- or
dynamics-related factors with direct link to behavior. The influence of
risk is implemented by adjusting to the velocity that minimizes the overall
risk. Differently to the IDM, the FDM is easily generalizable to other risk
types, such as traffic lights, without gaining much more complexity.

The FDM is able to generate realistic velocity profiles in a wide range of
scenarios, such as traffic flow adaptation incorporating safety time gaps to
a leading car and a following car (similar to the two seconds traffic rule),
intersection behavior with multiple traffic participants, cut-in situations
and curve driving. In this chapter, one curve driving scenario has been
presented, where the FDM adapts its speed in order to drive safely and
efficiently. Furthermore, the capability of the driver model to safely cross
an unmanaged intersection with multiple other traffic participants, where
it is necessary to brake or to choose a sufficiently large gap between cross-
ing cars to pass through, has been presented. Finally, the approach has
been applied to a highway accessing scenario, which requires the combined
ability of adapting to the general traffic flow and safely cutting in, which
is also a required skill for lane change maneuvers.

In [33] and [37], the author of this thesis has presented extensions to
the FDM with a special focus on lateral positioning scenarios, such as lane
changes in highway traffic. Differently to previous models (see e.g. [68]),
those lateral extensions do not rely on indirect features like gap lengths,
TTC or decelerations, but model the lane change process by explicitly
calculating the involved risks and benefits of the different trajectory alter-
natives. The lane change decision occurs by searching a tradeoff between
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the anticipated risks and the utility of the maneuver for the driver. In such
a way, the model generalizes to a large variability of lane-change situations
with varying number of involved traffic participants, since their states are
incorporated into the risk estimation.

In [37], the author of this thesis has shown that with the presented lane
change model, regular lane change processes can be reliably captured.
Furthermore, the model has shown to react in plausible ways in complex
traffic scenarios which are not covered by previous models. This is the case
e.g. when an emergency lane-change is forced by another vehicle approach-
ing fast from the rear-end, or when a lane change occurs in anticipation
to an expected merge-in at an entrance.

When driving at high speeds, tactical preparation for a safe lane change
is of high importance. In [33], the author of this thesis has presented more
advanced driving maneuvers that allow for lane changes to be planned well
in advance and carefully made without the restraint of requiring immediate
action. Furthermore, the publication presents a continuous lateral control
which allows driving on arbitrary paths other than the centerline, depend-
ing on the current traffic situation. Since more complex lateral maneuvers
require more detailed considerations of the environment, an approach is
presented to model the lane and the environmental influences. This paves
the way for a modeling of variables such as lane markings, roadblocks,
hard shoulders and more. Simulations illustrated how the introduced ma-
neuvers allow successful preparation for upcoming lane changes and how
traffic obstructions can be bypassed without performing a lane change but
by using the continuous lateral control.

Future work on the FDM could include the incorporation of further risk
types, as well as the link to properties of collective traffic dynamics.
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6 Situation Classification and
Trajectory Prediction

Humans in general not only “react”, but also behave proactively. They are
able to look ahead and react to events that they expect will happen, but
which have not yet occurred. They reflect their intentions and expectations
as well as the actual events [55], which makes the prediction of their future
behavior and the detection of faulty or unexpected, abnormal behavior a
highly complex task.

Especially the breakdown of interaction between traffic participants is
identified to be a major reason for collisions, see e.g. [130]. According to
the authors, the most common errors are faulty interpretations, observation
errors, misplanning or distractiveness and inattentiveness.

This chapter addresses the problem of situation classification in gen-
eral and its application to detect that a traffic participant does not inter-
act when it should interact due to criticality reasons. For this purpose,
a situation classification approach is proposed, comparing the actually
sensed behavior with different expected behavior alternatives, which were
predicted under different situation-dependent assumptions. The more an
expectation resembles the sensed behavior, the better the considered as-
sumptions of this expectation serve as a suitable model for the considered
entities” behaviors®.

As the behavior of traffic participants is mainly represented by spatio-
temporal trajectories, the measure for trajectory similarity, introduced in
Chapter 3.3, is applied to compare sensed and predicted trajectories.

By defining situations in a way that they differentiate between inter-
acting and non-interacting behavior, according to Chapter 3.1, the system
for situation classification can be applied to detect the lack of interaction.
This could e.g. be the case when a vehicle does not brake, when it should
in order to give way to another vehicle.

As discussed in Chapter 2.1, there are several approaches using evidence

IThe main contributions of this chapter have been published to the IEEE ITS Society
in [31].
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Figure 6.1: Schematical illustration of the similarity evaluation for spatio-
temporal trajectories. Measured (vivid green) and formerly predicted (vivid
red) spatio-temporal trajectories are compared to evaluate the past trajectory
similarity. The expected future trajectory similarity is derived by extrapolating
the measured trajectory into the future using kinematic short term prediction
models (pastel green) and comparing it with the predicted trajectory reaching
into the future (pastel red). The current position of the vehicle is indicated with
black wire frame, while the expected position at current time is indicated with
a red wire frame.

theory to map different features indicating the similarity of measured tra-
jectories in the past and features indicating the similarity of a possible
future evolution of trajectories to a maneuver occurrence probability and
a lane assignment. Such features with predictive character are e.g. the
time-to-lane-crossing (TLC) [134], the angle between vehicle and lane ori-
entation [82, 102], and tangential velocity [101].

It is additionally common to use the minimal distance to the lane center-
line for probabilistic lane assignment [101]. Especially for lane assignment
in highway scenarios the velocity, gap distance, and conflict resolution can
be used to classify maneuvers such as free, forced, and cooperative lane
changes [53].

Instead of using several different features indicating the future trajec-
tory similarity, kinematic short term prediction models are applied here,
to directly evaluate the future trajectory similarity on the spatio-temporal
distance level. This is a more general approach which allows the incor-
poration of more complex kinematic predictions for trajectory similarity.
In Figure 6.1, the past (vivid) and future (pastel) trajectory similarity is
indicated by the equi-time connections (black).
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This chapter utilizes the general measure for trajectory similarity, intro-
duced in Chapter 3.3, to propose a model- or prediction-based approach
for situation classification. Actually sensed and situation-dependent, pro-
totypically predicted, spatio-temporal trajectories of all involved entities
are compared. As a result, for each situation a similarity measure is de-
rived, which can be employed to estimate the probability that entities will
keep on behaving according to the prototypically defined prediction of the
considered situation.

Extrapolating the sensed trajectories using simple kinematic short term
prediction models enables the incorporation of indicators for the expected
future evolution of similarity. In Section 6.3, this system is applied to de-
tect the lack of interaction between traffic participants. This is especially
important for cases, where interaction is necessary to avoid upcoming risks,
such as car-to-car collisions.

6.1 Prediction-based Situation Classification

In Chapter 4, a framework for situation-based risk evaluation and behavior
planning has been introduced. The framework consists of the six steps
shown in Figure 6.2, executed repetitively. In the first step, the system
acquires all relevant data of the current scene from sensor measurements.
The following step performs a situation classification to determine situa-
tions, relevant for the ego vehicles behavior, for which the third step then
predicts prototypical state evolutions. Based on those predictions, the fu-
ture risk is estimated, e.g. car-to-car collision risk. The ego behavior is
then planned in a risk-aversive way.

This chapter introduces an approach for situation classification that
seamlessly fits into this framework (see Figure 6.2, green part).

According to Chapter 3.1, the acquired sensor data, such as the cur-
rent road structure and dynamic entities including their current states, is
utilized to generate a set of situation hypotheses based on the different
possible behavior alternatives of the involved entities. A situation repre-
sents a specific assumption on how the entities possibly behave, e.g. if an
entity does give way to another entity or not. For each of those situations
a trajectory prediction is performed to get situation-dependent prototyp-
ical future state evolutions (more precisely, to get future spatio-temporal
trajectories of the considered entities). The sensed trajectories as well
as the situation-dependent expected or predicted trajectories in combina-
tion with the considered situation-dependent assumptions are continuously
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90 6 Situation Classification and Trajectory Prediction

stored for comparison.

To evaluate the likelihood that a certain situation applies to the current
scenario, it is evaluated which situation-specific prediction fits best to the
sensed and recorded trajectories of the present entities. First, the trajec-
tory similarity (see Chapter 3.3) between each situation’s predicted trajec-
tories and the recorded trajectories is calculated. The result is processed
to estimate the occurrence probability of each situation. To increase the
prediction capability of the situation analysis, future trajectory similar-
ity indicators (e.g. current driving orientation) are naturally incorporated,
by means of kinematic short term prediction models to extrapolate the
recorded trajectories into the near future.

By defining situations such that they differentiate between interacting
and non-interacting behavior and using an interaction-aware trajectory
prediction approach (see Section 6.4), the situation classification approach
can be applied to detect situations, which are lacking interaction, e.g. the
violation of the right-of-way rule (see Figure 6.2, yellow part). For the tra-
jectory prediction, a forward simulation of the given situation hypothesis
is performed by modeling each entity as an interaction-aware Foresighted
Driver Model.

6.2 Situation Classification based on
Trajectory Similarity Evaluation

The target of situation classification is to find a suitable model to explain
the scene evolution, including the involved entities’ behaviors. A situation
according to Chapter 3.1 provides such a model. By generating situations,
different assumptions on how each entity ¢ could possibly behave, are in-
corporated. Situation-dependent assumptions on the selected spatial path
of an entity and on how the entities interact, e.g. by incorporating right-of-
way, are made. A trajectory prediction step, as introduced in Section 6.4,
can be employed to generate prototypical behaviors/spatio-temporal tra-
jectories by combining the different behavioral assumptions with suitable
prediction models and an initial state of the scene.

As a result, one prototypical state evolution per involved entity i per
situation h; is achieved. The target is to compare situation-dependent
predicted trajectories with actually measured trajectories. Therefore, pre-
dicted trajectories, initialized with the state of the sensed scene at the past



6.2 Situation Classification based on Trajectory Similarity Evaluation 91

time x; 7, reaching into the future until ¢ + T, are considered as

f‘i—Tp:thTf (X¢—1,,he).

Additionally, the actually driven trajectories are sensed and recorded,

7
Xt—Tp:t‘

The recorded trajectories are then extrapolated into the future, as shown
in Figure 6.3 using kinematic short term prediction models. Here, a simple
constant velocity, constant orientation model is used

i
Xt T+

For each entity ¢ in each situation h;, the trajectory similarity between
the recorded trajectory X;—Tw Ty and the (under the situation’s assump-
tions) predicted trajectory Xj_r .,y p, (Xi—7,,ht) is calculated according

0 (3.32), as M, (ht).

Based on those trajectory similarities, the situation’s occurrence prob-
ability is estimated as

Msim total (ht)
Eh’ cH, szm ,total (hl )

P(h¢|x:) ~ (6.1)

with

Mszm total ht H szm
1,6[ ht)

where Mgim total(he) is & situation’s prediction similarity, considering all
involved entities I(h:). H; represents the set of relevant situations accord-
ing to Chapter 3.1.

The situation occurrence probability is then an indicator for how good
the situation-dependent assumptions on the involved entities’ behaviors fit
to the actually sensed behaviors and can be utilized to further predict the
evolution of the current traffic scene. A simple example with a single car
and two situations is shown in Figure 6.3.

In the following, particularly the other entity’s behavior alternatives are
considered, because the target is to estimate if another entity interacts
with the ego entity when it should, due to traffic rules and criticality
considerations.
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A~ 0 s -
X, (&;Tp,h

(a) Situation turning right. (b) Situation going straight.

Figure 6.3: Similarity evaluation of two situations: (a) car predicted to turn
right, (b) car predicted to continue straight. The measured trajectory (vivid
green) extrapolated into the near future (pastel green) is compared to situation-
dependent predicted trajectories (red) using the similarity measure introduced
in Chapter 3.3. The measured and predicted position at current time is indicated
by the cars. In this example the going straight trajectory is more similar to the
measured and extrapolated trajectory and thus more likely to happen than the
turning right situation.
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6.3 Situation Classification for Interaction
Detection and Lane Assignment

As initially motivated, situations where another entity does not consider
the ego entity for interaction when it should, e.g. violations of right-of-way,
are potentially highly risky and therefore very important to be detected
as early as possible. In Chapter 3.1 situations are defined such that they
differ in terms of their involved entities’ possible drivable paths and lon-
gitudinal behaviors. For the longitudinal behavior alternatives, especially
interacting and non-interacting behavior is differentiated. More precisely,
it is analyzed, if the other entity does or does not interact with the ego
vehicle. This is particularly important in traffic scenarios where the ego
car has right-of-way, but has to detect if another car actually gives right-
of-way.

To estimate the probability for non-interactive (imtet) behavior, the oc-
currence probabilities of all situations are accumulated, according to (6.1),
where no interaction is considered in the prediction of the other entity as

P %) = Y Plhelxe). (6.2)
hy EFEFET

Likewise, the probability for interactive (inter) behavior is determined as

PH™"|x) = > P(hfx) =1 — PH|x,). (6.3)

ht eHinter

Besides the recognition of faulty behavior due to a lack in interaction,
the situation classification system can also be applied for lane or path
assignment. The target is to estimate the likelihood of an entity (here the
considered other entity) choosing a certain path. For this purpose, the
occurrence probabilities of all situations in HY for a certain other entity’s
path alternative x, neglecting different longitudinal behavior alternatives,
are accumulated. Thus, we obtain the probability of the other entity
choosing path x as

PHY) = ) P(hux). (6.4)

]’Lt EH?
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6.4 Situation-based Trajectory Prediction

A situation h; contains all the information needed to predict the evolution
Xy.145(X¢,he) of the situation by a forward simulation using the future time
s and the current state of the scene x;. The evolution of the entire situation
is a combination of one behavior evolution xj.,  ,(x¢,h;) per involved entity
i,

Xt:t—f—S(X)ht) — U }A(i:t—i—s (Xt7ht)
1€I(hy)

= FS(Xt,ht),

where FS(x¢,h:) denotes the forward simulation of the current scene x; for
the future time interval [¢,t 4 s], according to the situation h;.

In the forward simulation of the scene, each entity’s prototypical be-
havior is modeled using a Foresighted Driver Model (FDM). Each entity’s
path, the way of interaction and the model parameters are chosen accord-
ing to the predicted situation h; (see Chapter 3.1).

The FDM, introduced in Chapter 5, is a highly general, longitudinal,
interaction-aware driver model, which is able to provide realistic, long
term stable predictions of traffic scenes, including intersection scenarios.
It determines the velocity change by a gradient descent on a cost function
combining a simplified risk evaluation and utility terms.

During the forward simulation of a situation, assuming interaction, the
evolution of each interaction-aware entity is dependent on the evolution
of other entities. For situations where none of the entities considers any
other entity for interaction, the trajectories of each entity X;(s,t,h,i) can
also be predicted independently from of each other.

6.5 Results: Interaction Detection applied to
Real World Crash Scenarios

This section first guides through the procedure of situation classification
and interaction detection on the example of an intersection crash scenario,
followed by a statistical evaluation of the approach analyzing several real-
world and simulated crash scenarios. The used parameters can be found
in the Appendix A.2.
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(a) Crash Scenario. (b) Possible Situations.

Figure 6.4: Multi-Lane Intersection Crash Scenario. The ego vehicle (green)
and another car (red) approach an intersection, while the ego vehicle is on a
priority road. Path alternatives for the other car are, staying on the right lane
and turning right, or performing a lane change to the left lane and driving
straight over the intersection. As behavior alternatives it is taken into account
that the other car does consider the ego car and interacts, or that it violates
the right-of-way and does not interact. A solid yellow arrow from vehicle A
to vehicle B denotes that vehicle A considers B for interaction, while a dashed
arrow indicates no interaction. This results in the 4 situations shown in (b).

6.5.1 Evaluation of a Multi-Lane-Intersection Scenario

To illustrate the general procedure, a complex intersection scenario with
multiple crossing lanes is evaluated, as shown in Figure 6.4. The exam-
ined scenario is taken from the real-world crash database GIDAS-PCM
(German In-Depth Accident Study - Pre-Crash-Matrix [41]), which con-
tains reconstructed trajectories of involved entities leading to the observed
crash. In the analyzed crash case, a violation of right-of-way and thus a
lack of interaction has been identified as the main cause. The presented
approach is not only able to estimate if another vehicle does not inter-
act with the ego vehicle, but it can also determine how likely it is that
the other entity will choose a certain spatial path. To show this com-
bined estimation of which path the other entity will choose and how the
other entity will behave along that path, the intersection scenario in Fig-
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ure 6.4(a) is evaluated. Figure 6.4(b) illustrates four possible situations
in this scenario. For the ego car, it is assumed, that the spatial path as
well as the longitudinal behavior are known. The resulting situations arise
from the other entity’s path and behavior alternatives, namely turning
right on the right lane (situations 0 and 1), turning left on the left lane
(situations 2 and 3), as well as interaction-awareness (situations 0 and 2)
or non-interacting behavior (situations 1 and 3).

The assigned longitudinal prediction similarities (3.31) of all situations
in Figure 6.5(a) start with a value close to one, because the prediction
model for interaction and non-interaction both predict that keeping the
velocity constant is an appropriate behavior, which also fits well to the
actually measured behavior of the other car. At around ¢t = —3s before the
crash, the prediction models of the situations assuming interaction, start
to predict a reduction of the other vehicle’s velocity in order to reduce the
collision risk. However, the actually measured trajectory does not fit well
to those predicted trajectories and the assigned longitudinal prediction
similarities of the two interaction-aware situations start to drop.

Looking at the assigned lateral prediction similarity (3.30) in Fig-
ure 6.5(b) it can be seen, that all situations with a path on the left lane
have a lower similarity, compared to situations with a path on the right
lane, where the other car is currently driving. Here the lane assignment
character of the lateral similarity measure can be observed.

Figure 6.5(c) shows the occurrence probabilities of all four situa-
tions, which combine the contributions of the longitudinal and lateral
prediction similarity. By combining the occurrence probabilities of all
interaction-aware situations and all non-interaction-aware situations, ac-
cording to (6.2) and (6.3) in Figure 6.5(e), an estimation of the lack of
interaction in this scenario can be estimated. Similarly, by combining sit-
uations with the same spatial paths (6.4), standard lane assignment can
be achieved in Figure 6.5(d).

6.5.2 Statistical Evaluation

After presenting the general approach, the lack of interaction for 12 dif-
ferent intersection scenarios from the GIDAS-PCM crash database is eval-
uated with the target to show that the system is able to correctly detect
and warn in dangerous situations where a lack of necessary interaction was
detected. Similarly to the intersection scenarios discussed above, in all the
cases the violation of right-of-way caused the accident (at t = 0s). Ad-
ditionally, the same cases are simulated with an interaction-aware driver
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Figure 6.5: Multi-Lane Intersection Crash Scenario. The longitudinal similar-
ities Mjon(t,h) in a) show a decline for the interaction-aware situations as the
other car does not start braking. The lateral similarities Mj.:(¢,h) in b) show
lower values for situations on the left lane, as the other car currently drives on
the right lane. ¢) shows the occurrence probabilities of each situation combing
longitudinal and lateral similarity. d) shows the probability of each spatial path
to be chosen by the other entity according to (6.4). e) shows the probability
according to (6.3) and (6.2) for the situations assuming the other car to interact
or to not interact. The outcome of this real-world GIDAS scenario analysis is an
early crash prediction, because of the other car violating the right-of-way. The

crash occurs at t = Os.
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model, namely the Foresighted Driver Model (FDM), to achieve realistic
trajectories with the same start constellation but which, due to considered
interaction, avoid the crash. Here, a randomized parameter set for the
driver models is used to include a higher variability in our tests. In those
non-crash cases our system should correctly recognize the non-dangerous
situations, which do not lead to any crash and should thus not give a
warning. A selection of the analyzed scenarios is shown in Figure 6.6. It
can be seen that intersections of highly diverse road structures have been
evaluated.

From Figure 6.7, showing the lack of interaction probabilities for sce-
narios that actually did lead to a crash (red), it can be seen, that around
three seconds before the occurring crash (at t = 0s), the probability for
lack of interaction starts to rise and about two seconds before the crash
the system determines the correct situation with high confidence and gives
a warning.

It can also be seen, that the lack of interaction probabilities for the

Figure 6.6: Exemplary crash scenarios analyzed in the statistical evaluation of
several simulated and real-world scenarios.
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Figure 6.7: Lack of interaction evaluation P(HE*"|x,) of several simulated
and real-world scenarios.

crash scenarios are in general more distinct, compared to the probabilities
in case of non-crash scenarios in Figure 6.7 (green). This can easily be
explained. The system evaluated the prediction similarity for different
assumptions (here interaction and non-interaction). The evaluation of the
situation occurrence probabilities for the crash cases lead to the following
result: As one gets closer to the actual crash, the prediction assuming
interaction predicts increasing interaction (e.g. deceleration), as this would
be necessary to avoid the crash. Thus, the prediction similarity for the
interaction-aware prediction heavily decreases compared to the prediction
assuming non-interaction and thus the system becomes very certain that
there is a lack of interaction.

In the non-crash cases, once the observed (other) vehicle starts to in-
teract (e.g. brake), the situation becomes safer and further interaction be-
comes less necessary. Thus, the predictions with and without interaction
are similar and do not diverge as heavily as for the crash-cases.

Furthermore, in Figure 6.7 of the non-crash cases (green), it can be seen
that in one case the system first tends to favor non-interaction although
interaction takes place. This can be understood as a consequence of the
limited set of prediction models. In this case, the prediction model assum-
ing interaction estimates an acceleration of the other car to act in a safe
manner (to pass in front of the ego vehicle). In fact, the other car behaves
more defensive than assumed by the prediction model and stops at the
intersection. As only interaction (here acceleration) and non-interaction
(here constant velocity) is considered, the real behavior of braking fits
better to the non-interaction prediction. At a certain point in time the
prediction model adapts and starts to predict a deceleration and the sys-
tem correctly favors interaction.
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The yellow area in Figure 6.7 symbolizes a warning system, which warns
the ego driver in case the probability for lack of interaction crosses a
threshold, P(HE***"|x;) > 0.65. The threshold is chosen such that no
false warning occurs in the evaluated cases. The system is able to warn
about 2 seconds before the crash actually occurs, which would in general
be sufficient to avoid the upcoming collision.

6.6 Conclusion

This chapter has presented a prediction-based approach for situation clas-
sification and interaction detection. The general measure for similarity
of spatio-temporal trajectories, introduced in Chapter 3.3, is based on a
decomposition into lateral and longitudinal trajectory similarity. Using
this similarity measure, the current traffic situation can be evaluated by
performing situation-dependent predictions of prototypical trajectories for
each involved entity and by comparing those predictions to the actually
sensed trajectories.

By defining situations as interacting and non-interacting, according to
Chapter 3.1 and using an interaction-aware prediction model for the tra-
jectory prediction, the system can be used to evaluate a lack of interaction
in another entity’s behavior. The Foresighted Driver Model, introduced
in Chapter 5, is such a suitable, interaction-aware prediction model. Ad-
ditionally, the situation classification system can be applied to estimate
lane assignment, as the used situations also differentiate between various
drivable paths. Applying the approach to real-world crash cases, as well
as partially simulated cases, confirmed that the presented system is able
to warn the ego driver about 2 seconds ahead of upcoming risks caused by
lack of interaction.

The subsequent steps of the framework for situation-based risk eval-
uation and behavior planning, introduced in Chapter 4, rely on such a
situation classification. Chapter 8 confirms that especially the behavior
planning step benefits from the presented approach. Detecting dangerous
near-crash situations is highly crucial to plan the future behavior and, due
to a lack of real-world training data, a challenging task for learning-based
situation assessment approaches. Collision warning systems often neglect
interaction in behavior prediction. As a consequence, a reduction of false-
positive warnings can be expected by applying the presented approach.
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7 Risk Evaluation

A major target of the future risk estimation in terms of the own and other
entities’ predicted behaviors is the evaluation, selection and planning of
the ego entity’s future behavior. In this chapter an efficient representa-
tion of the future risk evaluation that allows direct behavior planning is
introduced®.

7.1 Predictive Risk Maps

Chapter 3.2.2 has introduced a general model for time-continuous predic-
tive risk (3.8), which can be applied to evaluate an entity’s future risk,
based on situation-dependent, predicted trajectories of the entity itself
and other involved entities, X§,,,,(x;,h) and XL, . (x¢,h), as shown in
Figure 7.1 (top row).

It has been argued in Chapter 6, that interaction between traffic par-
ticipants is crucial for an accurate prediction of the future evolution of a
sensed scene, including its traffic participants. Therefore, in Chapter 6.4,
the interaction-aware Foresighted Driver Model has been applied to predict
situation-dependent spatio-temporal trajectories of all entities involved in
a considered situation. The risk evaluation does rely purely on the pre-
dicted trajectories and not on a specific prediction model. Therefore, any
trajectory prediction approach, generating future spatio-temporal trajec-
tories of the involved entities, can be applied.

To analyze different behavior alternatives of an ego entity, the ego en-
tity’s trajectory is varied systematically using its variation parameters g,
such that

)A(g:t—i—s (Xt7 ht7 Q) .

0

Here, the ego entity’s longitudinal velocity ¢ = v" is used to evaluate

I'The main contributions of this chapter have been published to the IEEE ITS Society
in [26, 30] and patented in [28, 29].



102 7 Risk Evaluation

Figure 7.1: Predictive risk map - Top: evaluation of risk (top right) based on
predicted ego car (green) and other car (red) trajectories (top, left) - Bottom:
Generation of predictive risk map (bottom, right) based on risk evaluation of a
variation of ego car trajectories and other car trajectory (bottom, left).

different velocity alternatives®. For each selection of ¢, the future tra-

jectory is estimated and the risk function r(t 4+ s,x;,h:) is calculated ac-
cording to (3.8) in Chapter 3.2.2. This risk function mainly depends on
the situation-dependent predictions of all involved entities’ trajectories,
Xt s(x¢, hy) and the ego trajectory variations X0, . (x¢, ht, q).

This results in a temporal representation of the situation-dependent,
predictive risk map as

Rtmp(t + S,qut,ht)-
In the following, the predictive risk map is expressed alternatively as

R(ig+saQ7Xt7ht)a

where ZQ s is the future driven longitudinal distance, derived from the
spatio-temporal trajectory X7, (X, ht,q). For a given situation h; and
an initial state x;, the predictive risk map indicates how risky a certain

2If we assume a predicted constant ego velocity profile along a pre-defined spatial path
we would vary the velocity, such that we get variation of multiple constant velocity
profiles with different velocities.
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jo

behavior/velocity (¢ / v°) will be at a certain longitudinal position (17, )

on the future path3.

In Figure 7.1 (lower left), a set of possible trajectories of the ego en-
tity, varied by ¢, is shown. From each of them, in combination with the
predicted other entities’ trajectories, the time-continuous future risk is
evaluated. Composing this set of risk functions into a predictive risk map,
allows to localize the future risks for different ego car behavior options,
shown in Figure 7.1 (lower right).

Predictive risk maps can then be employed to plan future behav-
ior/future velocity profiles, by searching for the most favorable path across
the map, from the current state to a desired target region, considering risk
and efficiency minimization constraints along the path, as illustrated in
Figure 7.2. This can be achieved by using standard planning algorithms
or other minimization techniques. In Chapter 8, a globally optimizing,
sampling-based method for the evaluation of predictive risk map-based
behavior for different typical traffic situations is introduced.

In the risk maps, each traffic scene entity results in a risk spot or risk
area. Due to the time dependency in the risk model (TCE-influence for
the simplified risk model, escape rate for the general risk model), risk spots
further away in time are lower and broader. As they come closer, they get
higher and sharper, i.e. more localized. This has the desirable effect that
it allows to plan more coarsely for a distant time horizon and re-adjust
planning when the risks become more sharply localized.

Generally, several risk functions that correspond to a set of other cars’
hypothetical behavior options, represented by its predicted trajectories, as
it would be the case for sampling-based prediction methods, can be su-
perposed. This leads to a larger spread of the peaks in the risk function.
However, the risk model (3.8) is targeted for prototypical situations. If the
other traffic participants exhibit completely different behaviors (e.g. con-
tinuing straight at an intersection instead of turning), this should be con-
sidered in a separate situation. For each situation, including multiple
entities, a predictive risk map is generated to evaluate the ego car’s future
behavior in terms of risk. Chapter 8.2 introduces a method for behavior

3The representation of the predictive risk map in terms of the traveled longitudinal
distance instead of the future time is chosen due to the fact, that mainly innercity
scenarios with a focus on intersections are targeted. The risk spots, which arise in
such scenarios are generally spatially fixed (around the intersection point). There-
fore, the illustration of a spatial representation is clearer. As spatio-temporal tra-
jectories are applied, spatial and temporal representations provide equal informa-
tion and can be exchanged.
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Figure 7.2: Behavior planning using predictive risk maps. Blue curve: The past
driven trajectory. White curve: The future cost-optimized trajectory resulting
from the selection or planning using the predictive risk map, which allows the
evaluation of future risk for different behavior alternatives.
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planning for the case of several possible, but competing situations and thus
multiple separately considered predictive risk maps.

Nevertheless, as introduced in Chapter 3.2, different risk sources can be
combined in one risk function. This applies to risks of different type, like
the risk of crashing without external interaction when driving too fast on
a curve or collisions with additional traffic participants, like other cars,
pedestrians or road and infrastructure elements. Chapter 3.2 has shown
that the critical event rates from different risk sources and types can be
added, since at an accident usually only a single risk kicks in.

Here, predictive risk maps are generated by a set of ego trajectories
varied by the longitudinal ego velocity as a variation parameter ¢ = v°.
This is then a set of trajectories with different constant velocity profiles,
as shown in Figure 7.1(bottom right). If a velocity profile through the risk
map is planned which differs from the constant velocity profiles used to
build the risk map, the risk evaluation is not precise, because a certain
position in the risk map is reached within a different time as originally
predicted.

In general, planned velocity profiles vary only smoothly and thus do
not differ strongly from the velocity profiles used to generate the risk
map. In this case the timing error* and its influence on the risk map is
sufficiently small to be neglectable. To further reduce this timing error
the ego entity’s dynamics are considered during the risk map generation.
As shown in Figure 7.3, the variation parameter is then the target ego
velocity ¢ = v The velocity profiles are generated by a controller

target:
adapting the current ego velocity to the target velocity,

dt 0, for v

0 - (a0 0 0 £ 0
do® { SIEN(Vinrger — V°) * Geomyp, fOr v # v,
- Utarget

To completely eliminate the timing error, a large set of ego trajecto-
ries/velocity profiles could be sampled under consideration of the system’s
dynamics to select the best future trajectory. However, on one hand pre-
dictive risk maps reduce the computational effort drastically, as only a
small set of ego trajectories has to be evaluated and on the other hand,
predictive risk maps are highly beneficial to illustrate the situation-based
risk evaluation and behavior planning approach presented in this thesis.

4For planned velocity profiles, which vary significantly from the trajectories which
were used to build the risk map there is an error in the prediction time, when the
vehicle will be at a certain position.
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risk

Figure 7.3: Consideration of vehicle dynamics (maximal possible accelera-
tion/deceleration) in the generation of predictive risk maps.

7.1.1 Basic Risk Shapes

By applying the predictive risk map calculation to different complex sce-
narios, it could be noticed that some characteristic risk patterns appear
frequently. Depending on the real constellation, these shapes are usually
distorted. First, if another car is predicted to cross the ego car’s path,
an ellipsoidal risk spot, as shown in Figure 7.4(a), will occur on the risk
map with its peak approximately at the ego car velocity and longitudinal
path position at which the cars would actually crash. Second, the risk
pattern of a car driving in front of the ego car has the shape shown in
Figure 7.4(b). High ego car velocities result in high risk, since this would
lead to a collision. If the ego car velocity decreases towards the velocity of
the leading car the point of collision will be further away in the future and,
once the ego car velocity is below the velocity of the leading car, there is
no predicted collision anymore and the risk drops to zero. Third, if a car
is approaching very fast from behind, there is a similar risk spot as for a
leading car. But this time the high risky area is at velocities lower than
the other car’s velocity, as shown in Figure 7.4(c).

Finally, the risk shape for driving through a curve is shown in Fig-
ure 7.4(d). High risk appears for high velocities at locations of high cur-
vature, since the risk is caused by centrifugal forces.

7.2 Conclusion

The focus of this chapter has been on the general problem of risk assess-
ment in dynamic traffic environments for future behavior evaluation. The
introduced method to derive so-called predictive risk maps is based on the
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Figure 7.4: Basic risk shapes: (a) Ego car (green) crossing the path of another

car (red), (b) following another car, (c) driving in front of another car and (d)
passing through a narrow curve.
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risk evaluation of a set of possible ego entity behavior alternatives defined
by a variation parameter. The predictive risk map is created by evaluat-
ing the risk of each future ego behavior variation in relation to the other
entities’ predicted behaviors. For each considered situation, including the
resulting set of predicted behaviors/spatio-temporal trajectories of all in-
volved entities, one predictive risk map is derived. A predictive risk map
indicates how risky a certain behavior in a considered situation will be in
the future and enables the evaluation of risk-minimizing behavior.

As shown in Chapter 8, by combining the situation-dependent predictive
risk maps with a utility function, behavior planning can be achieved by
searching for cost-optimized trajectories/velocity profiles across the map.
The resulting behavior is then beneficial in terms of risk and utility as
long as the map itself is not modified considerably over time. This can
be assumed, if re-evaluation times® remain small compared to the time
span, for which the prediction of the other entities can be considered as
accurate.

Furthermore, the generated predictive risk maps can only be considered
as precise, if the planned behavior is similar to one of the behavior vari-
ations used to generate the risk map. To reduce this imprecision without
increasing the computational effort, the dynamic model of the ego entity
is integrated into the generation process of the trajectory variations. The
derived predictive risk map is then suitable to plan the ego entity’s future
behavior. Additionally, predictive risk maps are beneficial to illustrate
the entire evaluation and planning process of the general framework for
situation-based risk evaluation and behavior planning.

Applying the risk evaluation to different kind of scenarios, such as cross-
ing vehicles at intersections or car following, revealed a set of basic risk
shapes. Those risk shapes increase the intuitive understanding of the con-
tributing risk factors in a certain scene.

5The time between the re-calculation of predictive risk maps using sensory updated
predictions of the involved entities.
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The target of future Advanced Driver Assistance Systems (ADAS) is to
relief the strain on the driver, starting from simple warning systems and
comfort functions, such as blind spot information system or parking assis-
tance, up to partially or fully automated driving. This thesis strives for
a system that is generally able to securely support driving, especially in
inner-city scenarios with multiple behavior alternatives. Traffic scene anal-
ysis for inner-city scenarios is inherently difficult, especially if more than a
few traffic participants are involved. Current ADAS systems, targeting at
inner-city scenarios are either mainly reactive or designed to work under
very narrowly defined conditions and therefore not applicable as a general
approach for risk-based behavior control.

In complex scenarios, it is unfeasible to evaluate all possible state evolu-
tions of the involved traffic participants. A way to restrict the alternatives
is to guide them by the behavioral needs' of one of the entities. Still,
predictions of the behaviorally relevant future dynamics of the regarded
entity and of the other traffic participants as well as their relations are
required. This then leads to an evaluation of the possible future behavior
in terms of risk and utility for the entity in the context of the surrounding
traffic participants. Based on such an evaluation, the scope of this chapter
is to plan the best possible future behavior in terms of risk and utility.

This chapter makes use of the general method for future risk estimation
in dynamic scenes, introduced in Chapter 7. There, situation-dependent
predictive risk maps are built by varying the ego car trajectory, defined
by a variation parameter. After that, the future risk for this set of ego
car trajectories is evaluated. The step of risk estimation itself is based on
situation-dependent predictions of prototypical trajectories and a situation
classification step, introduced in Chapter 6.

In Section 8.1, the focus lies on behavior planning for a single possible
driving situation. In Section 8.2, this is then extended to the case that
the situation classification provides several possible situations with uncer-

I'The term behavioral need describes the knowledge that is required by the ego entity
to determine the own best possible behavior.
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tainty, including multiple behavior possibilities of the involved entities.
The main contributions of this chapter have been published to the IEEE
ITS Society in [27, 30] and patented in [28, 29].

8.1 Behavior Planning under Consideration
of a Single Situation

This section introduces first an approach on how to plan the best future
behavior for a single situation, before advancing to the problem of how to
plan the best behavior for the general case of multiple possible, but com-
peting situations. A single situation means, that only one prototypically
predicted behavior/trajectory per involved entity is considered, which re-
sults in a single predictive risk map, indicating how risky a certain behavior
will be in the future.

Once the risk of possible behavior alternatives has been evaluated and
composed into a predictive risk map, according to Chapter 7.1, the target
is to plan the best future behavior, minimizing risk and maximizing utility.

Here, the globally optimizing, sampling-based approach rapidly-
exploring random tree (RRT) is applied to obtain the best possible ve-
locity profile through the risk map. More specifically, the extension RRT*
is used, which guarantees asymptotic optimality.

In Chapter 5, the Foresighted Driver Model has been introduced,
which incorporates a gradient descent-based behavior planning approach
to gather a risk-aversive future behavior. For simulation and/or predic-
tion purposes a purely local risk minimization is generally sufficient. The
drawback of such an approach is the lack of global optimality, which means
that in certain constellations the gradient descent approach might run into
local minima.

As an example we have a look at a simple turning behavior at intersec-
tions. Generally, the velocity has to be reduced in order to reduce the risk,
resulting from high centrifugal accelerations when turning. At the same
time, there could be a demand for a velocity increase in order to pass with
reduced risk in front of a crossing car. This can end up in a constellation,
where either the risk of high centrifugal acceleration or the collision risk
can not be kept sufficiently small to ensure safe driving. In those cases,
a globally optimizing planner is necessary to find a satisfying plan for a
future behavior. In this example, slowing down to let the crossing car
pass and then performing the turning with reduced velocity, would be a
suitable plan for a future behavior that considers both risks adequately.
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The following introduces the underlying cost function, combining risk
and utility consideration, which the planner tries to minimize by finding
the best possible trajectory. After presenting the rapidly-exploring random
tree (RRT) and its extension RRT*, the planning algorithm is adapted to
the problem of behavior planning in traffic environments.

8.1.1 General Cost Function

The target of the behavior planning stage is to find a behavior that globally
minimizes risk and maximizes utility at the same time. For this purpose,
the predictive risk map R(...) is combined with a utility cost function, here
travel costs TC(...), resulting in the differential costs?

DCost(l?Jrs,vO,xt, hy) = R(lg+8,v0,xt, h) + TC(ZSJFS,UO) :

The travel costs can be used to describe soft constraints and optimiza-
tion criteria, such as time and smoothness of travel. As a simple travel
cost function, TC(IY, ,,v°) is used to penalize deviations from a desired
travel velocity v3__,

TC(l§+s,v0) =TCo+m |vges — 1)0] ,

with a slew rate m and the minimal travel cost at the desired velocity TCy.
In this way, the system is forced to move away from the (usually) lower
risk solutions for zero velocity, arriving at solutions that balance travel
costs and risk.

For one ego velocity profile v°(I') and a path of length [f, , the costs
integrated over the entire trajectory are

0
lt+s

Cost (I, 5, X¢, he) = /DCOSt(l/,UO(l/),Xt,ht)dl/. (8.1)
0

In the following a sampling-based planning approach is presented, which
generates a variety of ego velocity profiles where each is evaluated accord-
ing to (8.1). A suitable solution for the future ego behavior should min-
imize both, risk and travel costs, accumulated over the future trajectory.
Consequently, the planning approach is applied to find such a globally

2The differential costs represent the costs at a certain position along a given trajectory.
This is then later used to derive the integral costs over the trajectory.
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optimal solution.

8.1.2 Rapidly-exploring Random Tree (RRT)

The rapidly-exploring random tree (RRT) algorithm was first introduced
in [79]. It is an efficient algorithm to search non-convex spaces constructing
a space-covering tree by randomly sampling and forward simulation using
the system’s dynamic model and kinematic constraints. Starting from an
initial state as a root vertex the RRT constructs open-loop trajectories for
any kind of non-linear systems with state constraints.

The complexity of the dynamic model with kinematic constraints is not
a restriction for the used RRT algorithm. Similar to [64], double inte-
grator dynamics with input and state constraints (maximal acceleration,
deceleration a4, and maximal velocity v,,,.) are used longitudinally for
the dynamics of the ego car,

0 0
lt+8—fv,

Y =a?,
with [v°] < Vmee and 6] < amaz.

The general RRT algorithm is originally designed to rapidly cover the
state space (here the risk map) and is not intended to be used as a planning
algorithm. Nevertheless, by defining a target region, the RRT can be used
for planning purposes. Every path through the constructed tree reaching
the target region defines a solution trajectory for the system from the
starting region to the target region.

The basic procedure is shown in Algorithm 1, where G is the RRT tree
containing vertices (here e.g. in the (I, ,, v%)-plane of the risk map as
introduced in Chapter 7) and edges. The main part of the algorithm
is the Extend procedure in Algorithm 2, which defines how the tree is
extended towards the sampled vertex z,4n4.

In Algorithm 2, a so-called Steer function constructs a trajectory from
the nearest vertex z,cqrest Of the RRT towards the randomly sampled
vertex zrq.nq by an internal forward simulation, using the dynamic model
of the system. It is not required that the sampled vertex z,.,,q has to be
reached. However, the finally reached vertex z,.,, is added to the tree. As
a result, a tree of reachable trajectories is created, considering the systems
dynamics and constraints.

In [64], a time optimal controller is applied to from the nearest vertex
Znearest 10 the randomly sampled vertex z,,,4. The resulting trajectory
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Algorithm 1 RRT

1: procedure RRT

2 G.init(zimt)

3 while ¢ < N do

4: Zrand < Sample(i);

5 G < Extend(G, zrand);

6 11+ 1;

7 return CheapestTrajectory (G, target_region)

Algorithm 2 Extend RRT

1: procedure EXTEND(G, zrqnd)

2 Znearest < Nearest(G, zrand);
3: Znew — Steer(Znearest, Zrand);
4: G.add_vertex(znew);
5
6

G.add_edge(znearest y Fnew ) )
return G

would be a sequence of maximal acceleration and deceleration, which is
not suitable for the purpose of this chapter, namely the velocity control of
a vehicle acting in a traffic environment.

Assuming double integrator dynamics, the controller used in the pre-
sented approach determines a constant acceleration/deceleration, such
that the target state (longitudinal position and velocity) is reached by,

0
0 0 0 1/,.0 0 \2 [ > [V
CLO _ Uinit (vtrg o Uznzt) +02 (Utrg o Uznzt) : with t(Si_SZ Og tts
lt+s trg lt+s init 7(5) >0

a’ is the acceleration used as the input signal for the dynamic vehicle
model. 1, trg and vtrg are the longltudmal position and velocity of the
target vertex, and [ ts,init and vY . the position and the velocity of the
starting vertex.

1nat

8.1.3 Asymptotic Optimal Extension RRT*

As stated in [64], the RRT algorithm used for kinodynamic® planning with
consideration of a cost function does not guarantee asymptotic optimality.

3Kinodynamic motion planning describes a class of planning problems, where kine-
matic constraints, such as avoiding obstacles, and dynamics constraints, such as
bounds on velocity, acceleration, and force, have to be fullfilled simultaneously.
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Since the target is to find a trajectory through the predictive risk map,
minimizing a risk and maximizing utility, the RRT* extension [64] of the
RRT is applied. This extension enables asymptotic optimality by re-wiring
the constructed tree based on a considered cost function.

For this purpose, the Extend function is enhanced, as shown in Algo-
rithm 3. From line 6 to 11, all connections from nearby vertices Zycarby
to the new vertex z,., are checked and the connection with minimal cost
Zmin 1s added to the tree G. Additionally, from line 13 to 19 all con-
nections from the new vertex z,.,, to nearby vertices Z,cqrpy are checked
and if a connection with costs less than the original cost is found, z,,eq is
made the new parent of z,,c.-. The original RRT* also checks for collision
while extending the tree. As collisions are represented in a continuous cost
function in terms of risk, collision checking is not considered.

Algorithm 3 Extend RRT*

procedure EXTEND(G,z)
Znearest < Nearest(G, z);
Znew < Steer(Znearest, 2);
G.add_vertex(znew);

1:
2
3
4
5: Zmin € Znearest;
6:
7
8
9

Znearby < NearVertices(G, znew);
for allznear € Znearsy do
Znew,temp — Steer(Znear, Znew);

: if State(znew,temp) = State(zpew) then
10: if Cost(znear,temp) < Cost(znew) then
11: Zmin < Znear;

12: G.add_edge(zmin, Znew);
13: for allzncar € Znearby \ {Zmin} do

14: Znear,temp < Steer(znew7 Znear);

15: if State(znear,temp) = State(zpeqr) then
16: if Cost(znear) > Cost(znear temp) then
17 Zparent < Parent(Znear temp);

18: G .remove_edge(zparent; Znear );

19: G.add_edge(znew, Znear,temp);

20: return GG
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8.1.4 Adaptation of RRT* to Velocity Planning in
Traffic Environments

The planning algorithms RRT and RRT* are already applicable to find a
risk minimizing and utility maximizing behavior in form of velocity profiles
through the risk map. In order to improve the general RRT* algorithm for
behavior/velocity profile planning, prior knowledge is included as shown
in Algorithm 4.

On one hand, this is done by incorporating predefined “typical” tra-
jectories, which should always be considered by the planner as a possible
solution, e.g. the safety solution of full braking at a largest possible decel-
eration.

On the other hand a bias towards low risk areas is included in the
sampling procedure and the target region of the planner is adapted to allow
“stop and wait” solutions (i.e., regions with zero or near-zero velocities).

Predefined Trajectories

As the RRT* algorithm is based on random sampling and an internal
forward simulation, it cannot be ensured that a suitable trajectory /velocity
profile can always be found within limited computation time. However,
some trajectories, such as full braking, should always be considered in
the planning process. Thus, to ensure the presence of such trajectories,
they are added to the initial tree, before constructing the entire tree, as
indicated in Algorithm 4. For this purpose, the initial vehicle state and
the dynamic model are applied in an internal forward simulation.

In the presented approach, two categories of predefined trajectories are
considered, emergency trajectories and comfort trajectories. When plan-
ning in the comfort region, amar = @maz,comfort is used for the dynamic

Algorithm 4 Predictive-Risk-RRT

1: procedure PREDICTIVE-RISK-RRT

2 G.init(zz-mt);

3 G.add_init_trajectories(zinit);

4: while 7+ < N do

5: Zrand < RiskBiasedSample(RiskMap);

6 G <« Extend(G, zrand);

7 1< 1+ 1;

8 return CheapestTrajectory (G, target_region)
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model in the forward simulation. However, to enable emergency trajecto-
ries, Umaxr = Amax,totals with Amagz,total > Omax,com fort is set, to allow the
full solution space of the dynamic system. The predefined trajectories are
shown in Figure 8.1.

Emergency Braking and Emergency Acceleration The emergency
braking and emergency acceleration trajectories enable the planner to al-
ways find full braking and full acceleration as a solution. Since emergency
trajectories are no longer in the comfortable acceleration region, the costs
are increased by a penalty factor b so that DCostemergency (1f +5,v0) =
b - DCoSteom fort (1Y +S,v0) with b > 1, in order to avoid an unnecessary
execution of those trajectories.

Comfort Braking, Comfort Acceleration, Constant Velocity and
Coasting Down The constant velocity trajectory enables the planner
to always consider a straightforward solution. Without the constant veloc-
ity trajectory, keeping the velocity constant, is not consistently a solution,
when considering limited computation time. As a consequence, highly

velocity [10m/s]

0.0

150 200 250
distance [m)]

Figure 8.1: Predictive risk map. Predefined trajectories: (a) emergency acceler-
ation, (b) emergency braking, (c) comfort acceleration, (d) comfort braking, (e)
constant velocity and (f) coasting down. Regions: Comfort region (A, green),
emergency region (B, violet), not reachable region (O, clear blue) and target
region (T, checkerboard).
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varying acceleration and deceleration might occur. A similar solution is
given by the coasting down trajectory, which helps the planner to consider
a coast-down for slow braking. The comfort braking and comfort accel-
eration trajectories define the borderline of the comfort zones, as shown
in Figure 8.1, and enable the planner to faster cover the whole comfort
region with comfortable solution trajectories.

As the RRT* re-wires its connections according to the cost function, a
predefined comfort trajectory is usually adapted for a better fit to the risk
map topology by the algorithm, avoiding risky regions.

Target Region

The aim of the algorithm is to find a trajectory from the initial state (on
the left of the risk map) through the risk map to the furthest point on the
future path (on the right of the risk map) with minimal cost.

Nevertheless, for the case of a crowded intersection or a red traffic light,
where the ego vehicle has to stop, there is no direct trajectory through
the predictive risk map with sufficiently low costs. The favored solution in
terms of risk and utility would be to stop and wait until the environment
changes. Thus, the target area, as shown in Figure 8.1, is the complete
right area of the risk map representing the furthest predicted point along
the longitudinal path and the complete area at the bottom of the risk map,
representing all possible stop location along the future path. This can be
extended further to include preferred stopping zones.

By including the stopping area as a target region, the problem arises that
the traveled distance may be shorter if the trajectory is finalized at the
stopping area, leading to overall lower costs. To overcome this problem,
for all trajectories that reach a target region, the cost function @ostnorm
is normalized by the traveled distance, such that

l?—}—s
. 1
CoStporm (104 g Xe,he) = o [R(I'0°(1"),x¢,he) + TCI 2°(1"))]dl
t+s
0

Biased Sampling

During each execution cycle of the entire system for situation-based risk
evaluation and behavior planning, as introduced in Chapter 4, a renewed
predictive risk map is calculated before running the actual RRT-based
planning procedure. The predictive risk map indicates how risky certain
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risk map areas are. Knowing that the target is minimizing risk, the prob-
ability of sampling in risky areas is reduced by introducing a bias to the
sampling procedure, such that areas with low risk are sampled more often
than areas with high risk. As a result, a better coverage of low risk areas
by the tree is achieved with the same computational effort. Additionally,
sampling more often in the target region, generally speeds up the solution
finding [21].

8.1.5 Simulation Results

Based on the predicted future dynamics of scene entities, expressed in
terms of spatio-temporal trajectories, the future cost (comprising risk and
other additional travel costs) can be predicted for certain behavior alter-
natives (here shown for ego car velocity profiles). By generating predictive
risk maps, the system is able to plan a cost-optimal future behavior using
a sampling-based globally optimal planning algorithm. As the system acts
in a dynamically changing environment, it has to reevaluate and replan
from time to time. In order to validate the approach, it is applied to
a set of different simulation scenarios, including inner-city and highway
scenarios.

Risk Aversive Curve Driving

In the scenario shown in Figure 8.2, the ego car drives along a curvy
road, which consists basically of four main curves with different radii. As
described in the previous section, the risk for driving through a curve is
based on the predicted lateral acceleration. Each curvy segment generates
risky areas, raising at a certain velocity. As shown in Figure 8.2, the
behavior planner chooses a velocity profile that reduces risk in all of the
upcoming curves in order to drive safely, but still efficiently along the road.
Major risk sources are marked by circled numbers. Each risk map has a
horizon range up to 150 m.

Risk-Aversive Intersection Behavior

Next, the approach is applied to the scenario shown in Figure 8.3, where
the ego car (green trajectory) is intended to drive safely straight over an
intersection with multiple other crossing traffic participants. The predic-
tive risk map shows a risk peak for each traffic participant. The behavior
planner constructs a velocity profile through the risk map while minimiz-
ing risk and maximizing utility. It can be seen in the velocity profile that



8.1 Behavior Planning under Consideration of a Single Situation 119

3-0 T T T U U U
— velocity

T 2.5 ]
~
s
=20 i
&
g 1.5 .
<))
>

1.0 .

0.5 .

150 200
position [m]

= 1.0

g

= =
- 0.57%
3

9

)

4 0.0

150 0
prediction distance [m]

Figure 8.2: Curve driving behavior: The ego car (green) drives along a route
(green path) with several curvy segments (1-4). Each curvy segment results in
a risk area in the predictive risk map shown at different planning points in time
while driving along the route (bottom). The constructed RRT (red) is overlaid
on each risk map, where the best trajectory (white) is highlighted. The actually
driven velocity profile (middle) shows a decelerating behavior, when approaching
the different curves, to minimize risk while maximizing utility. The behavior
planner especially targets curve segment (3), which is of highest curvature, in a
foresighted manner.
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the ego car slows down to let the first car pass and then speeds up to pass
in front of the second car, as there is enough space to pass safely.

Risk Aversive Highway Access Behavior

In this scenario the ego car is approaching the access of a highway. Each
approaching car on the highway generates a risk spot in the predictive risk
map. The behavior planner determines if the gap between the first and
the second car is sufficiently large for a low-risk highway access. As shown
in Figure 8.4, the resulting velocity profile consists of speeding up to reach
the gap, then slowing down to the same velocity of the other cars on the
highway to follow the general traffic flow.

Risk Aversive Turning Behavior for Complex Intersections with
Multiple other Traffic Participants

The scenario from Figure 8.5 shows a crossing, where the ego car is plan-
ning to turn left. There are four other traffic participants approaching the
crossing. One car is approaching from the opposite direction planning to
turn right onto the same lane as targeted by the ego car. Three other
cars are approaching from the right, one driving straight and two turning
left. Each of those cars generate a risk spot in the risk map. The turning
process combines intersection driving with curve driving, thus a further
risk spot for high velocities is caused by the curve. The behavior plan-
ner determines the velocity profile, shown in Figure 8.5, which comprises
stopping at the intersection to let the other cars cross, then driving with
reduced velocity through the curve, and finally speeding up to reach the
desired travel velocity.
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Figure 8.3: Basic intersection behavior: The ego car (green) approaches an
intersection, where it has to give way to two oncoming other cars (red). Each
of the other cars results in risk spots (1,2) in the predictive risk maps, shown at
different planning points in time (bottom). The ego car plans to pass between
the two other cars, as shown by the planned velocity profiles in the risk maps
(bottom, white). As a result the driven velocity profile (middle) shows a decel-
erating behavior to fit through the gap between the other cars, followed by an
accelerating behavior to quickly get out of the intersection and reach the desired
travel velocity.
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Figure 8.4: Highway access behavior. The ego car (green) accesses a highway,
on which three other cars (red) are driving on the right lane. Each other car
results in a risk area (1-3). The behavior planner chooses to access the highway
between the first and the second car. For this purpose, the ego car first accel-
erates to reach the chosen gap, followed by a deceleration to adapt its velocity
to the traffic flow. This is visible in the planned velocity profiles (white) of the
risk maps (bottom), as well as in the actually driven velocity profile (middle).
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Figure 8.5: Complex turning behavior: The ego car (green) approaches an
intersection and plans to turn left. Several other cars (red) to which the ego car
has to give way are approaching in the meantime. Car (1) has set the indicator to
turn right. Car (2) and (4) plan to drive straight over the intersection, whereas
car (3) has set the indicator to turn left. Each of the other cars constitute a
risk source (1-4) for the ego car. As the ego car is about to turn left, the curve
segment is another risk source (5), which has to be considered. All risk sources
(1-5) form the predictive risk maps, shown at different planning points in time
(bottom). The planned velocity profiles (white) overlaid over the risk maps, as
well as the actually driven velocity profile (middle) show an ego behavior, of
stopping at the intersection to let the other cars pass, as there is no sufficient
gap in between the other cars to pass through. Once the intersection is clear,
the ego car turns with reduced velocity, to minimize the risk of skidding in the
curve segment, followed by an acceleration to the desired travel velocity.
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8.2 Behavior Planning under Consideration
of Multiple Situations with Uncertainty

So far, a highly confident situation classification has been considered, pro-
viding only a single situation. Hence, the risk evaluation is purely based
on one prototypical state evolution of the scene and thus the consideration
of only one prototypical behavior alternative for each entity*. In general,
the situation classification shows a certain amount of uncertainty result-
ing in a set of multiple possible but competing situations with different
occurrence probabilities. This uncertainty arises e.g. from the uncertainty
in the estimation of a considered entity’s future decision, such as wrll it
turn left or right at an intersection.

This causes the main problem of how to plan the best future behavior
for the case that multiple possible but competitive situations arise. In-
corporating every possible behavior alternative of the involved entities,
the system might end up foreseeing risk everywhere and no safe or only
highly inefficient future behavior can be found. In contrast, by neglecting
situations with high risk and low probability the system might end up in
constellations inevitably leading to a crash.

Thus, an approach is presented, where the general future behavior is
planned mostly under consideration of highly probable situations, which
provides an efficient behavior in those situations. Situations with lower
probability are also incorporated in the behavior, but with less influence.
Then, the behavior is checked on each possible situation for risky constel-
lations and a safe “plan B” is applied to avoid such risky states in case
those unlikely situations occur.

8.2.1 Approach

Each considered situation results in one prototypically predicted, spatio-
temporal trajectory for each involved traffic participant. Based on those
situation-dependent, predicted trajectories one predictive risk map is cal-
culated for each situation according to Chapter 7. Additionally, the situa-
tion classification, introduced in Chapter 6, estimates for each considered
situation the likelihood to occur. In detail, this means evaluating the like-
lihood that the involved entities will behave as assumed by the different
situations.

4For this assumption, the rough longitudinal behavior, e.g. stopping at intersection,
and the chosen spatial path of each entity have to be known in advance.
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The aim is now to find a future spatio-temporal trajectory that is of low
risk but still assures high utility for the finally occurring situation, which
can only be estimated with uncertainty at the time of behavior planning.

The safest way would be a behavior, that minimizes risk in all possible
situations, which can be understood as max-combining the risk maps of
all possible situations without taking the situation occurrence probability
into account. By simply combining the risk maps, the system might foresee
risk everywhere and possibly no safe future trajectory can be found. If a
future trajectory can be found, the resulting behavior would avoid all risky
areas in all situations, also in unlikely situations, and would consequently
be very safe and defensive, but in general also of low utility.

The most efficient way would be to only take the most probable situa-
tion into account and plan the future trajectory on this risk map. If this
situation actually occurs, the system provides the most efficient future be-
havior. However, in case another situation with lower probability occurs,
the system might end up in a state, where a crash is inevitable. This
happens as situations with lower probability but possibly of high risk are
not considered in the planning of the future behavior in this case.

Here, as shown in Figure 8.6, an approach is proposed that provides
safe and efficient future trajectories taking all possible situations into ac-
count. The situation classification approach presented in Chapter 6 pro-
vides relevant situations and their respective occurrence probabilities. The
trajectory prediction generates situation-dependent, prototypical, spatio-
temporal trajectories, one for each considered entity. The risk evaluation
step, introduced in Chapter 7, uses those predicted spatio-temporal tra-
jectories to generate one predictive risk map for each situation. Hence, the
input of the behavior planning step consists of a set of predictive risk
maps, one for each situation and each situation’s occurrence proba-
bility.

The trajectory/velocity profile planning phase itself consists of the fol-
lowing steps.

1. First a combined risk map of all relevant situations is calcu-
lated, to find a desired future behavior.

By simply summing up the risk maps weighted by the corresponding
probability >, cy R(I?,,v%%¢,he) - P(he|x;) the problem occurs,
that an increasing number of similarly probable situations results
in a decrease of the situation occurrence probabilities. As the risk
is weighted by the situation’s occurrence probability the overall risk
would be quite low, compared to the utility costs used during plan-
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Figure 8.6: Planning of safe and efficient future behavior: Scenario with two active situations with different prob-
abilities, generating 2 risk maps. Both risk maps are then weighted with their situation occurrence probability and
combined into one risk map, which is then used to plan the future behavior. The resulting future trajectory is then
checked for risk threshold violations in each situation and escape trajectories are applied. As a result, an efficient safe
trajectory is achieved by using the planned future trajectory with the earliest necessary escape trajectory.
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ning, but widely spread. This results in an unsuitable behavior,
which would focus on the optimization of utility and highly neglect-
ing the resulting risk. In contrast, in such a case one would expect
high overall risk as this indicates a highly uncertain situation classi-
fication.

Therefore, in this approach the combined risk map is normalized by
the maximal probability value of all involved situations. Normal-
izing the probabilities by the maximal probability has the desired
effect, that the situation with highest probability is fully taken into
account and, in case of an uncertain situation classification (with
many equally likely situations) the system encounters an overall high
risk. Thus we obtain the combined risk map

0

R (ZO v ,X ) = thEHt R(l?‘FS’UO’Xt’ht) ' P(ht‘Xt)
comb\lt4 5,V &% maxy, (P(ht|Xt)> .

2. In a second step, the RRT*-based behavior planning approach, in-
troduced in Section 8.1, is applied to find a future trajectory (ve-
locity profile vY(1)) through the risk map, that minimizes risk and
maximizes utility. The cost function for the multi-situation case is

0
lt—i—s

1
Cost(ly, ,,x¢) = o / DCost(1,0°(1),x;)dl,
t+s
0

with
DCost(l, ,,v°,%:) = Reomp(lys,0°,x:) + TC(IF, 4,0).

The RRT* based behavior planning approach generates a future tra-
jectory by globally minimizing a cost function (risk and utility), while
taking the dynamical model of the entity and its physical constraints
into account.

3. As the future trajectory is planned by optimizing mainly for highly
probable situations, the planned trajectory might be of high risk in
improbable situations. In terms of utility it makes sense to consider
situations with high probability more than situations with low prob-
ability. But in case a situation with low probability suddenly kicks
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Figure 8.7: Application of escape trajectory. Starting from the risk threshold
violation (white arrow) of the originally planned trajectory (green line), the ex-
ecution point is shifted backwards along the path (1), while checking if a safe
execution of the escape trajectory is possible. Once a safe execution point is
found (green escape trajectory), an additional safety time gap tsqfety is consid-
ered (2), resulting in the escape trajectory (white escape trajectory), which is
finally applied to the planned future path. The final future plan (black outline)
consists of two parts, the desired future behavior (green with black outline),
followed by an escape trajectory (white with black outline).

in, the system might encounter inevitably high risks, e.g. collisions.
In order to solve this problem the future trajectory is verified
on each unweighted risk map without taking the situation oc-
currence probability into account. This means, for each situation as-
suming that it will occur, the planned future trajectory is checked for
states of high risk which potentially occur when applying the planned
behavior. For this purpose a maximal acceptable risk threshold is
defined. As shown in Figure 8.6, the planned future trajectory is
applied to each situation-dependent risk map and checked for the
earliest encounter of a threshold violation.

4. If such a risk threshold violation of the planned future trajectory is
detected in a certain situation, an escape trajectory is applied
to the originally planned future trajectory, such that the final trajec-
tory is not violating the threshold for acceptable risk and such that
the escape trajectory kicks in the latest possible along the planned
trajectory. Here, emergency braking is used as an escape trajectory.

Therefore, as shown in Figure 8.7, starting from the point of the
first risk threshold violation, the escape trajectory is applied and
checked if a threshold violation is encountered. As long as there is
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still a threshold violation the escape trajectory is shifted backwards
in predicted time, along the planned trajectory, until the application
of the escape trajectory provides a safe behavior.

5. As a result, a safe future trajectory is achieved, in which the
first part consists of the planned future trajectory based on the com-
bined risk map incorporating the situation probabilities. This part
is executed until the latest possible but earliest necessary state of
performing the escape trajectory to avoid a risk threshold violation
in any of the still possible situations is reached. The second part
consists of the escape trajectory.

In Section 8.1, only one situation/setting of behavior alternatives has
been used. Thus, for risk evaluation and behavior planning, only one
prototypical future spatio-temporal trajectory for each traffic scene entity
has been taken into account.

This section targets the problem that each other traffic participant has
several possibilities to behave, meaning that the system has to cope with
multiple uncertain situations.

Most of the time, unlikely but risky situation for which the escape tra-
jectories are applied do not occur. The entire system runs in a loop,
reevaluating and replanning in every cycle similar to a model predictive
control strategy. As a consequence, the escape trajectory part of the plan
is usually not executed. However, in case that an unlikely, risky situation
occurs, the applied escape trajectory serves as “plan B” to keep the system
in a safe state.

8.2.2 Results

To show the ability of the presented approach to produce efficient but still
safe trajectories, it is applied to an intersection scenario (see Figure 8.9(a)).
Here, the ego car (green) and another car (red) are approaching a crossing.
Due to the left-yields-to-right traffic rule, the other car has to give way to
the ego car. However, the other car eventually overlooks the ego car and
crosses the intersection.

In this scenario two possible situations are modeled:

e The other car recognizes the ego car, lets it pass and crosses behind
(other stopping).

e The other car does not recognize the ego car and violates the left-
yields-to-right-rule (other not stopping).



130 8 Behavior Planning

The behavior is evaluated for the following four cases to show how our
system copes with a correct and a false situation classification, where v /#
indicates a correct/false situation expectation:

occurring . .
expected other stopping  other not stopping
other stopping Case 1 v/ Case 2 7
other not stopping Case 3 7 Case 4 v

In general, the situation classification system (see Chapter 6) estimates
the occurrence probabilities of all considered situations. However, to eval-
uate how a correct or incorrect situation classification affects the behavior
planning, a probability setting for each case is modeled by hand as a func-
tion of the other car’s distance to the intersection, as shown in Figure 8.8.

Case 1

The first case, shown in Figure 8.9, represents the general case, where the
other car actually follows the rules and gives way, while the ego car expects
correctly the other car to give way. This results in a high initial probability
for the situation other stopping, which increases further when the other car
comes closer to the intersection. The probability for the situation that the
other car overlooks the ego car, namely other not stopping, is low and
decreases further.

The risk map for other stopping (Figure 8.9(d), top) is of low risk,
whereas the risk map for other not stopping (Figure 8.9(d), bottom) con-
tains high risk around a certain velocity and position on the ego car path.

The combined risk map is dominated by the risk map for the situation
with highest probability other stopping, while other not stopping is only
marginally included. The resulting future velocity profile exhibits almost
constant speed without deceleration.

The planned trajectory is then checked on each single situation. At
planning time ¢ = 0s, a risk threshold violation for other not stopping
is detected, which results in an incorporation of an emergency braking
trajectory to the originally planned trajectory to satisfy the risk conditions
for this situation.

As the other car behaves as expected and brakes, the risk spot in the
situation other not stopping decreases. Keeping the velocity constant at
planning times ¢t = [2,4,6]s is not violating any risk threshold anymore and
as a consequence, the planned emergency braking is never executed.
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Figure 8.8: Situation occurrence probabilities, modeled by hand as a function of
the distance to the intersection, for each case of the situations other car stopping
(blue) and other car not stopping (red). The situation classification in (a) and
(b) expects with high probability that the other car stops, whereas in (c¢) and
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Figure 8.9: Case 1. Expected: Other car does stop. Occurring: Other car does
stop.
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Case 2

In the second case (Figure 8.10) the ego car expects again, here falsely, that
the other car stops. But this time the other car violates the left-yields-to-
right rule and drives on. The probability setting for this case shows high
probability for the situation other stopping while the probability for this
situation drops very late (too late to react).

The planned velocity profile shows only a slight deceleration, as the
probability for other not stopping is low, but violates the risk threshold
for this situation. Thus an emergency braking trajectory is applied. Even
though the probability remains low for other not stopping, the planned
trajectory still violates the risk threshold.

It can be seen in Figure 8.10 (d, top row, third risk map), that at
a certain point in time even the situation other stopping becomes risky,
since the prediction model for this situation predicts that the other car is
not able to stop anymore, even if it would react to the ego car.

Once the point of executing emergency braking is reached, the situation
other not stopping is still of high risk, even though with low probability,
and emergency braking has to be executed in order to remain in an overall
safe behavior.

Case 3

In case 3 (Figure 8.11), the ego car expects the other car to not stop, but
in fact the other car stops.

It can be seen in the combined risk maps, that the other not stopping sit-
uation dominates, which results in a planned future path adapting mainly
to this situation. This means, that the ego car brakes in order to avoid an
upcoming crash, in case this highly probable situation occurs.

The ego car starts to brake, caused by the expectation that the other
car will not brake. However, the other car does brake as well, which leads
again to a further deceleration of the ego car. As this scenario (both cars
brake) is of low risk, no emergency behavior is executed. However, the ego
car brakes unnecessarily, which results in a behavior of low utility.

Once the other car is quite slow, both situations other stopping and
other not stopping are of low risk and the ego car accelerates again to pass
the intersection.

Case 4

In case 4, the ego car expects the other car to not stop, as it has potentially
overlooked the ego car (Figure 8.12). The expectation is correct and the
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Figure 8.10: Case 2. Expected: Other car does stop. Occurring: Other car
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other car finally violates the right-of-way and drives through.

As the situation classification provides a high probability for the situa-
tion other not stopping this situation dominates in the combined risk maps
and the planned trajectory adapts accordingly. The ego car starts early
to slow down to let the other car pass (even though the other car has to
give right-of-way).

The result is a velocity profile, where the ego car lets the other car
pass and only brakes as much as needed and then accelerates again. This
behavior is the most efficient (highest utility), while being of low risk, for
this situation.

Discussion

It could be shown, that the presented approach generates a safe behav-
ior /velocity profile in all four cases. Even in case 2 and 3, where the
situation classification provides a wrong situation estimate to the system,
the resulting behavior is safe.

Although safe trajectories for all four cases are achieved, it can be seen
easily from the comparison of the four velocity profiles in Figure 8.13,
that a correct situation classification is highly beneficial for the planned
future behavior in terms of utility and comfort. For a correctly classified
set of situations, the resulting behavior is highly efficient. This is for
example, driving by without much braking, if the other car stops (case
1), or early braking, only to the extent to let the other car pass, if the
other car does not stop (case 4). For the other two cases with incorrect
situation classification, the resulting behavior is safe, but not of high utility
for the actually occurring situation. In case 2, the ego car does not brake
enough at the beginning to let the other car pass. Therefore, an emergency
braking has to be performed to keep the situation safe. In case 3, the ego
car unnecessarily brakes almost down to full stop, even though the other
car stops as well.

8.3 Conclusion

This chapter has focused on the problem of risk-based behavior planning
in dynamic scenarios. By using the continuous, predictive risk measure,
introduced in Chapter 3.2, so-called predictive risk maps are generated.
Predictive risk maps are then used to plan the future behavior. Here an
RRT*-based algorithm is adapted to the problem of behavior planning in
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Figure 8.13: Comparison of ego velocity profiles. v  indicates a correct sit-
uation classification, whereas ¢ indicates a wrong situation classification. The
comparison of the ego velocity profiles of all four cases shows that the system
with a reliable situation classification (solid lines) provides safe and highly ef-
ficient behavior. However, even if the situation classification provides wrong
estimates of the occurring situation (dashed lines), the behavior is safe, but not
necessarily efficient.
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traffic environments and used to generate future velocity profiles, which
minimize risk and maximize utility.

Combining predictive risk maps with a utility measure, a sampling based
globally optimal planner (RRT*) is used to find cost-optimal velocity pro-
files through the future risk landscape. By integrating a-priori knowledge
in form of typical trajectories into the algorithm, both efficiency and qual-
ity of the planning results can be increased.

At first, by considering only a single situation, the planning algorithm
is applied to different scenarios, such as an inner-city intersection, curve
driving, a turning scenario with several other traffic participants and an
outer-city highway accessing scenario. The high generality of the approach
could be shown. Even for complex scenarios, where a gradient-descent-like
approach would encounter problems of local minima, the RRT* behavior
planner in combination with the general predictive risk estimation scheme
is able to find safe and still efficient velocity profiles.

The single-situation case is then extended by an approach to plan safe,
but still efficient future trajectories under consideration of multiple uncer-
tain situations. Based on the outcome of a situation classification step,
the approach evaluates ego behavior alternatives in relation to situation-
dependent predicted trajectories of other entities in terms of risk and rep-
resents the result in so-called predictive risk maps, one for each situation.
By combining the risk maps for all possible situations, taking the situation
probabilities into account, an efficient trajectory is planned, which adapts
mainly to highly probable situations. In a further step, this efficient fu-
ture plan is checked for risk violations in unlikely situations. A “plan B”
is applied in form of escape trajectories to provide a safe future behavior
even if an unlikely but risky situation occurs.

The evaluation of this approach on an intersection scenario shows that
the resulting behavior is safe, even for a wrong situation classification.
However, for a correct situation classification the behavior is additionally
of high utility. This confirms that behavior strongly benefits from a good
situation classification in terms of utility and comfort.
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9 Summary and Outlook

This chapter summarizes and discusses the presented thesis comprising
the framework for situation-based risk evaluation and behavior planning
in combination with the individual realizations of its different steps. The
summary is followed by an outlook on subsequent future work, focusing
on requirements for the online application of the system in real traffic.

9.1 Summary

The overall target of this thesis is the increase of traffic safety. It has been
determined that human misbehavior is still the major reason for accidents.
To further increase traffic safety, the area of advanced driver assistance
systems (ADAS) and autonomous driving (AD) targets at increasing the
level of driving automation to relief the strain on the human driver.

A wide range of currently used systems has been developed to work
under narrowly defined conditions. Consequently, those methods are only
applicable to specific tasks, such as lane-keeping or highway distance con-
trol. The increasing number of specialized ADAS has raised the problem of
how to combine a large number of functionalities with potentially conflict-
ing targets. A framework that allows an integrated consideration of all the
different systems such that it is applicable to the full variability of traffic
scenarios is still missing but highly relevant to increase the level of driving
automation towards SAE-4 and 5, namely high- and full automation.

This thesis has introduced such a general framework, comprising an
integrated method for behavior planning and evaluation, which includes
the estimation and evaluation of possible future hazards. The fundamental
questions this thesis has answered are:

e How can an entity’s behavior be generated in a way to minimize risk
and maximizing utility?

e How can an entity’s future behavior possibility be evaluated in an
integrated way in terms of behavioral risk and utility?
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e How can the complexity of the behavior evaluation be reduced to
allow a computationally efficient evaluation of behavioral risk and
utility?

The framework and system for situation-based risk evaluation and be-
havior planning, introduced in Chapter 4, has been structured by the six
subsequent steps: 1) scene observation, 2) situation classification, 3) tra-
jectory prediction, 4) risk estimation, 5) behavior planning, and 6) behav-
ior execution. The individual realizations have been developed in a way
to interlink naturally with each other.

In Chapter 3, novel basic concepts have been derived which build the
foundation of the framework. This is on the one hand a situation repre-
sentation applicable to reduce the complexity of a traffic scene and on the
other hand a highly general risk model considering different types of risk
in an integrated way.

To reduce the complexity of a sensed traffic scene and all its possible evo-
lutions into the future, situations have been defined such that they group
similar and separate dissimilar scene evolutions. A situation represents
then such a cluster of similar evolutions and is treated as a prototypical
scene evolution pattern. As a result, a general and compact representa-
tion of possible future scene evolutions has been achieved, that allows an
efficient analysis of a traffic scene.

To evaluate possible scene evolutions as well as different behavior al-
ternatives of a considered ego entity, a probabilistic model for future risk
has been developed. Risk in general is the expectation value of the cost
related to critical future events. Consequently, the proposed risk model
consists of two parts: 1) the probability that a critical event will occur
and 2) the expected damage in case the event occurs. The event proba-
bility term has been modeled probabilistically using a so-called “survival
function” in combination with instantaneous events rates, considering dif-
ferent types of risk, e.g. car-to-car collisions or control loss due to heavy
braking. The damage term has been modeled deterministically using e.g.
a 2D-inelastic collision model. This novel risk model enables a time con-
tinuous estimation and evaluation of critical future events. Furthermore,
it is not restricted to certain risk- or scenario types and generalizes many
of the currently used risk evaluation methods.

In Chapter 6, an approach for the situation classification and trajectory
prediction step has been presented. For the prediction of future scene- or
trajectory evolutions, the Foresighted Driver Model (FDM) has been ap-
plied in a multi-agent forward simulation of a sensed scene. The FDM is a
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novel microscopic driver model, introduced in Chapter 5, that is based on
a computationally inexpensive, simplified version of the behavior planning
framework comprising an approximate risk model targeting only risk max-
ima and a gradient-descent method for behavior generation. In this for-
ward simulation, situation-dependent behavior assumptions such as “car
A gives way to car B while turning left” are considered to generate pro-
totypical scene evolutions. Due to its generality the FDM can be applied
to predict or simulate a wide range of traffic situations and allows the
incorporation of interaction between traffic participants in the prediction
step.

By comparing the actually sensed behavior of all involved entities with
the situation-dependent, prototypically predicted behavior patterns using
a novel measure for trajectory similarity, the system is able to quantify
how good a situation-dependent behavioral assumption fits to the current
scene. This has then be employed to estimate the likelihood that the in-
volved entities will continue to behave according to the different considered
situations, the so-called situation occurrence probabilities.

By utilizing situation models that differentiate between interacting and
non-interacting behavior in combination with the FDM-based prediction
approach that allows the consideration of interaction, this situation classi-
fication system is applicable to detect the “lack of interaction” in critical
scenarios. In a variety of real-world crash scenarios, it has shown to reli-
ably warn the driver about two seconds ahead an upcoming crash.

Chapter 7 has introduced a computationally inexpensive approach to
evaluate possible behavior alternatives in terms of future risk. Under
consideration of situation-dependent, prototypically predicted trajectories
derived from the previous step of situation classification and trajectory
prediction, the risk for a set of ego behavior variations has been evaluated.
As a result, for each situation a so-called predictive risk map is calculated,
which indicates how risky a certain behavior variation will be in the future
for the considered situation. A risk map can then be used to plan the best
future behavior, by finding a way through the risk map. By using the
ego velocity as a variation parameter, a planned “way” through the risk
map represents a longitudinal velocity profile. The evaluation of different
scenarios has shown that basic risk map shapes arise for different kind
of scenarios, such as car-following and intersections. Those basic shapes
have been shown to be very effective to enable the human analysis of the
different risk causes in complex scenarios.

In Chapter 8, a novel, sampling-based, globally optimizing approach for
behavior planning (RRT*) has been proposed and adapted to the problem
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of behavior planning in traffic situations, especially planning velocity pro-
files along predefined spatial paths. The approach has shown to reliably
generate a behavior or velocity profile, finding a tradeoff between risk and
utility, in a wide range of complex scenarios and situations with a complex
topology of the cost function.

In general, situation classification is uncertain and can only provide a
set of possible situations with an estimation of their occurrence probabil-
ities. Consequently, the behavior planning step has to cope with several
possible scene evolution patterns, which result in several predictive risk
maps. In Section 8.2, an approach has been presented to plan the future
behavior while considering several possible situations and risk maps. The
influence of the different situations on the planned behavior is dependent
on the estimated occurrence probabilities. The more likely a situation is to
occur, the stronger it is considered during behavior planning. This results
in a behavior that is most efficient, if the most likely situation matches
well with the actually occurring situation. To ensured that the planned
behavior is of low risk in case an unlikely but risky situation occurs, a
“plan B” is derived by checking for high risks of the planned behavior in
unlikely situations. This “plan B” only considers the minimization of risk
while neglecting any utility evaluations and is executed the latest possible
but the earliest necessary to keep the overall situation safe. The presented
approach has shown the ability to always act in a safe way. Additionally,
in collaboration with a reliable situation classification, highly efficient be-
havior can be achieved. Furthermore, it could be shown that planning
with consideration of risk and utility for the most likely scene evolutions,
while considering a purely risk minimizing plan B for unlikely scene evo-
lutions represents a highly general strategy to plan behavior in uncertain
environments such as the traffic environment. This also paves the way to
increase driving automation in an integrated way.

Concluding, the presented framework for situation-based risk evaluation
and behavior planning has shown to be a highly general approach for tack-
ling the problem of traffic scene analysis as well as behavior planning in
arbitrary traffic scenarios. The realizations of the individual sub-systems
are designed to naturally cooperate with each other and to be easily ex-
tendable, e.g. by further types of risk. By applying and evaluating the sys-
tem in simulated as well as recorded real-world traffic scenarios, it could
be shown how driving automation can heavily be increased in a safe and
still efficient way with the overall target to increase driving safety.
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9.2 Outlook

The presented system for situation-based risk evaluation and behavior
planning has mainly been evaluated using a simulation environment and
recorded real-world traffic scenarios. However, an evaluation of the indi-
vidual steps as well as of the entire system on a test vehicle is missing.
Here, two projects which are part of the Horizon 2020 - EU Research and
Innovation programme subsequent to the presented thesis, namely inLane
and VI-DAS target this issue by transferring parts of the current system
onto real test vehicles.

The inLane project targets the lane-precise localization of the ego- and
other vehicles using cheap GSSN-based sensors in combination with an
on-board camera. The lane-precise localization is a prerequisite for the
realization of the presented system for situation-based risk evaluation and
behavior planning.

The VI-DAS project targets at transferring further steps of the system,
namely situation-classification in combination with a trajectory prediction,
risk evaluation and behavior planning onto a test vehicle. To apply the
system online to real traffic the following aspects have to be improved:

The current computational effort for the entire system is high. This is on
the one hand caused by the sampling-based, globally optimizing behavior
planner RRT*, where the construction of the solution tree, to an extent
where a suitable solution can be achieved, requires a large set of sampled
trajectories. A way to reduce the computation effort is by including a
set of predefined behavior options and simply adapting the predefined
behaviors to the given problem. Furthermore the RRT* algorithm can be
extended to re-use the constructed tree from the previous planning step
and only reevaluating changes in the cost function. Such extensions are
usually denoted as anytime [65]. First tests have shown promising results
in reducing the computational effort.

Furthermore, it has to be evaluated if the current situation models are
sufficient for the detection of all dangerous driving constellations. A more
detailed situation model, e.g. by considering further driver characteristics
such as aggressiveness, would improve the situation detection accuracy as
well as the situation-based trajectory prediction.

In this thesis, a focus of behavior planning and prediction has been
on longitudinal motion. However in certain situations, lateral maneuvers
have to be considered, e.g. lane changing in highway scenarios. A first
step in this direction has been proposed by the author in [33, 37], where
the Foresighted Driver Model has been extended to lateral motions, by
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considering lateral maneuvers as a discrete path decision process.

Another aspect, that has to be considered is the large amount of pa-
rameters which have to be tuned to achieve the desired behavior of the
entire system for situation-based risk evaluation and behavior planning.
Especially the number of parameters in the risk evaluation part is high. A
way to find a suitable parameter set is comparing the system’s behavior
with the behavior of human drivers in a variety of traffic scenarios. How-
ever, simulations as well as the application to recorded real world scenarios
have shown that the system’s behavior is relatively robust for parameter
changes. Furthermore many of the applied parameters are comprehensible
and easy to set up.

Furthermore, the current system only acts with regard to dynamic and
static objects which can be acquired by the vehicles sensors. However, risk
can also occur from sources which cannot be detected by a vehicle’s sensor.
This is e.g. the case at intersections which are visually difficult to access.
A first approach to incorporate risks caused by sensor limitation are pub-
lished by the author to the Intelligent Vehicle Society (ITS) in [34]. Here,
the risk arising from occluded areas at intersections is targeted. Potential
risk sources are determined by combining map data with an estimation
of areas which can not be captured by the vehicles sensors, e.g. areas oc-
cluded by buildings. The risk is then evaluated by assuming potentially
present vehicles with a certain behavior. The system has been evaluated in
recorded real-world scenarios. The resulting ego vehicle’s behavior did re-
veal to be similar to the general human behavior at intersections of limited
visibility.



146

A Appendix

A.1 Approximate Accumulated Curvature
Risk Model

The approximate accumulated future risk for skidding off the road in curvy
road segments explicitly derived according to Chapter 3.2.3 is

T (xe) ~ Z Teo (Xt, he) - Sho.

h:eH

with the situation-dependent risk
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the expected damage in case of skidding off the road
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A.2 Paramters

Unless defined differently in the corresponding chapter, the parameters

used for simulation and evaluation are chosen as follows:

Symbol
«

s
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ﬁgonst
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Qc max
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$b,0
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A.3 Camera to map alignment
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Figure A.1: Camera to map alignment approach. First, virtual street views
(see Figure A.2) are generated at different poses (6 degrees of freedom) near
the original GNSS-position. Then, a similarity score between each virtual view
and the actual camera image is calculated, using Canny edge detection in a
preprocessing step and HOG (histogram of oriented gradients) as descriptors.
The camera pose, relative to the original GNSS-position, of the best matching
candidate can be employed for the map-to-camera alignment.

Figure A.2: Example of candidate views (white arrows), with three of them
being zoomed in.



149

Bibliography

1]

2]

3]

G. Agamennoni, J. I. Nieto, and E. M. Nebot. A bayesian approach
for driving behavior inference. In Proc. of the IEEE Intelligent Ve-
hicles Symposium, pages 595-600, 2011.

K. Ahmed, M. Ben-Akiva, H. Koutsopoulos, and R. Mishalani. Mod-
els for freeway lane changing and gap acceptance behavior. Trans-
portation and traffic theory, 13:501-515, 1996.

D. Althoff, M. Althoff, D. Wollherr, and M. Buss. Probabilistic
collision state checker for crowded environments. In Proc. of the

IEEFE International Conference on Robotics and Automation, pages
1492-1498, 2010.

M. Althoff and J. M. Dolan. Online Verification of Automated
Road Vehicles Using Reachability Analysis. IEEE Transactions on
Robotics, 30(4):903-918, 2014.

M. Althoff and A. Mergel. Comparison of Markov Chain Abstrac-
tion and Monte Carlo Simulation for the Safety Assessment of Au-

tonomous Cars. IFEE Transactions on Intelligent Transportation
Systems, 12(4):1237-1247, 2011.

M. Althoff, O. Stursberg, and M. Buss. Model-Based Probabilistic
Collision Detection in Autonomous Driving. IEEE Transactions on
Intelligent Transportation Systems, 10(2):299-310, 20009.

S. Ammoun and F. Nashashibi. Real time trajectory prediction for
collision risk estimation between vehicles. In Proc. of the IEEE

Conference on Intelligent Computer Communication and Process-
ing, pages 417-422, 2009.

M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Woll-
herr. A Combined Model- and Learning-Based Framework for
Interaction-Aware Maneuver Prediction. IEEE Transactions on In-
telligent Transportation Systems, 17(6):1538-1550, 2016.



150

Bibliography

9]

[12]

[13]

[19]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyarna.
Dynamical model of traffic congestion and numerical simulation.
Physical Review F, 51(2):1035, 1995.

C. Barrios, H. Himberg, Y. Motai, and A. Sad. Multiple model
framework of adaptive extended kalman filtering for predicting vehi-
cle location. In Proc. of the IEEFE Intelligent Transportation Systems
Conference, pages 1053—1059, 2006.

A. Barth and U. Franke. Where will the oncoming vehicle be the
next second? In Proc. of the IEEFE Intelligent Vehicles Symposium,
pages 1068-1073, 2008.

T. Basar. A New Approach to Linear Filtering and Prediction Prob-
lems. In Control Theory, pages 167-179. 2009.

T. Batz, K. Watson, and J. Beyerer. Recognition of dangerous situ-
ations within a cooperative group of vehicles. In Proc. of the IEEFE
Intelligent Vehicles Symposium, pages 907-912, 2009.

M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. SUMO -
Simulation of Urban MObility An Overview. In Proc of the Confer-
ence on Advances in System Simulation, pages 63—68, 2011.

H. Berndt and K. Dietmayer. Driver intention inference with vehi-

cle onboard sensors. In Proc of the IEEE Conference on Vehicular
Electronics and Safety, pages 102-107, 2009.

A. L. Berthaume. Microscopic Modeling of Driver Behavior Based
on Modifying Field Theory for Work Zone Application. PhD thesis,
2015.

A. Berthelot, A. Tamke, T. Dang, and G. Breuel. Handling uncer-
tainties in criticality assessment. In Proc. of the IEEFE Intelligent
Vehicles Symposium, pages 571-576, 2011.

C. Braeuchle, F. Flehmig, W. Rosenstiel, and T. Kropf. Maneuver
decision for active pedestrian protection under uncertainty. In Proc.

of the IEEE Intelligent Transportation Systems Conference, pages
646-651, 2013.

M. Brannstrom, E. Coelingh, and J. Sjoberg. Model-Based Threat
Assessment for Avoiding Arbitrary Vehicle Collisions. IEEE Trans-
actions on Intelligent Transportation Systems, 11(3):658-669, 2010.



Bibliography 151

[20]

[21]

[22]

28]

[29]

A. Broadhurst, S. Baker, and T. Kanade. Monte Carlo road safety
reasoning. In [EFEE Proceedings. Intelligent Vehicles Symposium,
2005., pages 319-324, 2005.

J. Bruce and M. Veloso. Real-time randomized path planning for
robot navigation. In Proc. of the IEEE Conference on Intelligent
Robots and System, volume 3, pages 2383-2388, 2002.

G. Cao, F. Damerow, B. Flade, M. Helmling, and J. Eggert. Camera
to Map Alignment for Accurate Low-Cost Lane-Level Scene Inter-

pretation. In Proc. of the IEEE Intelligent Transportation Systems
Conference, 2016.

D. Caveney. Numerical Integration for Future Vehicle Path Predic-
tion. In Proc. of the American Control Conference, pages 3906-3912,
2007.

Z. Chen. Bayesian Filtering: From Kalman Filters to Particle Filters,
and Beyond. Technical report, McMaster University, 2003.

I. Dagli, M. Brost, and G. Breuel. Action Recognition And Predic-
tion For Driver Assistance Systems Using Dynamic Belief Networks.
In Proc. of the Conference on Object-Oriented and Internet-Based

Technologies, Concepts, and Applications for a Networked World,
pages 179-194, 2002.

F. Damerow and J. Eggert. Predictive risk maps. In Proc. of the
IEEFE Intelligent Transportation Systems Conference, pages 703—710,
2014.

F. Damerow and J. Eggert. Balancing Risk against Utility: Be-
havior Planning using Predictive Risk Maps. In Proc. of the IEEFE
Intelligent Vehicles Symposium, pages 857 — 864, 2015.

F. Damerow and J. Eggert. Method and vehicle with an advanced
driver assistance system for risk-based traffic scene analysis. Patent,
United States, Furope, US20150544030, EP2950294A1, 2015.

F. Damerow and J. Eggert. Method for risk-based traffic scene
analysis using advanced driver assistance system, and vehicle with

such a system for performing such an analysis. Patent, Japan,
JP2015228204A, 2015.



152

Bibliography

30]

[31]

33]

[34]

37]

[38]

F. Damerow and J. Eggert. Risk-Aversive Behavior Planning under
Multiple Situations with Uncertainty. In Proc. of the IEEE Intelli-
gent Transportation Systems Conference, pages 656—663, 2015.

F. Damerow and J. Eggert. Spatio-temporal Trajectory Similarity
and it’s Application to Situation Classification and the Evaluation
of Lack of Interaction. In Proc. of the IEEE Intelligent Vehicles
Symposium, 2016.

F. Damerow, J. Eggert, and A. Richter. Method and system in a
vehicle for improving prediction results of an advantageous driver
assistant system. Patent, United States, Furope, US20160236683,
EP3056861A1, 2016.

F. Damerow, B. Flade, and J. Eggert. Extensions for the Foresighted
Driver Model: Tactical Lane Change, Overtaking and Continuous
Lateral Control. In Proc. of the IEEFE Intelligent Vehicles Sympo-
stum, pages 168-193, 2016.

F. Damerow, T. Puphal, Y. Li, and J. Eggert. Risk-Based Driver
Assistance for Approaching Intersections of Limited Visibility . In
Proc. of the IEEE International Conference on Vehicular Electronics
and Safety, page in press, 2017.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path Plan-
ning for Autonomous Vehicles in Unknown Semi-structured Environ-
ments. The International Journal of Robotics Research, 29(5):485—
501, 2010.

J. Eggert. Predictive risk estimation for intelligent ADAS functions.
In Proc. of the IEEFE Intelligent Transportation Systems Conference,
pages 711-718, 2014.

J. Eggert and F. Damerow. Complex Lane Change Behavior in the
Foresighted Driver Model. In Proc. of the IEEFE Intelligent Trans-
portation Systems Conference, pages 1747-1754, 2015.

J. Eggert, F. Damerow, and S. Klingelschmitt. The Foresighted
Driver Model. In Proc. of the IEEE Intelligent Vehicles Symposium,
volume 2015-Augus, pages 322-329, 2015.

J. Eggert, S. Klingelschmitt, F. Damerow, C. Methods, V. D. Con-
trol, and A. Driving. The Foresighted Driver: Future ADAS Based



Bibliography 153

[42]

[43]

[48]

on Generalized Predictive Risk Estimation. In Proc. of the FAST-
zero Symposium, 2015.

A. Eidehall and L. Petersson. Statistical Threat Assessment for Gen-
eral Road Scenes Using Monte Carlo Sampling. IEEE Transactions
on Intelligent Transportation Systems, 9(1):137-147, 2008.

C. Erbsmehl. Simulation of real crashes as a method for estimating
the potential benefits of advanced safety technologies. In Proc. of the
Technical Conference on the Enhanced Safety of Vehicles, number
09-0162, 2009.

J. Erdmann and D. Krajzewicz. SUMO’s Road Intersection Model.
In Proc. of the Simulation of Urban MObility User Conference, pages
3-17, 2013.

D. Fassbender, A. Mueller, and H.-J. Wuensche. Trajectory plan-
ning for car-like robots in unknown, unstructured environments. In
Proc. of the IEEFE International Conference on Intelligent Robots
and Systems, pages 3630-3635, 2014.

N. Faulhaber. Verkehrsunfallaufnahme  Grundlagenwissen
polizeilicher Ermittlungen ; Recht - Taktik - Psychologie. Boorberg,
2012.

D. Ferguson, M. Darms, C. Urmson, and S. Kolski. Detection, pre-
diction, and avoidance of dynamic obstacles in urban environments.
In Proc. of the IEEFE Intelligent Vehicles Symposium, pages 1149—
1154, 2008.

T. Gindele, S. Brechtel, and R. Dillmann. A probabilistic model for
estimating driver behaviors and vehicle trajectories in traffic envi-
ronments. In Proc. of the IEEE Intelligent Transportation Systems
Conference, pages 1625-1631, 2010.

T. Gindele, S. Brechtel, and R. Dillmann. Learning context sensitive
behavior models from observations for predicting traffic situations.
In Proc. of the IEEFE Intelligent Transportation Systems Conference,
pages 1764-1771, 2013.

P. G. Gipps. A behavioural car-following model for computer simu-
lation. Transportation Research Part B: Methodological, 15(2):105—
111, 1981.



154

Bibliography

[49]

[55]

[56]

D. Greene, J. Liu, J. Reich, Y. Hirokawa, A. Shinagawa, H. Ito,
and T. Mikami. An Efficient Computational Architecture for a Col-
lision Early-Warning System for Vehicles, Pedestrians, and Bicy-
clists. IFEEE Transactions on Intelligent Transportation Systems,

12(4):942-953, 2011.

T. Gu and J. M. Dolan. On-Road Motion Planning for Autonomous
Vehicles. In Proc. of the International Conference on Intelligent

Robotics and Applications, pages 588-597. Springer Berlin Heidel-
berg, 2012.

T. Gu, J. M. Dolan, and J.-W. Lee. On-Road Trajectory Planning
for General Autonomous Driving with Enhanced Tunability. In In-
telligent Autonomous Systems 13, pages 247-261. Springer, 2016.

T. Gu, J. Snider, J. M. Dolan, and J.-w. Lee. Focused Trajectory
Planning for autonomous on-road driving. In 2013 IEEE Intelligent
Vehicles Symposium (IV), pages 547-552, 2013.

P. Hidas. Modelling vehicle interactions in microscopic simulation
of merging and weaving. Transportation Research Part C: Emerging

Technologies, 13(1):37-62, 2005.

J. Hillenbrand, A. M. Spieker, and K. Kroschel. A Multilevel Col-
lision Mitigation Approach&mdash;Its Situation Assessment, Deci-
sion Making, and Performance Tradeoffs. IEEE Transactions on
Intelligent Transportation Systems, 7(4):528-540, 2006.

E. Hollnagel. Cognitive reliability and error analysis method :
CREAM. Elsevier, 1998.

Y. Hou, P. Edara, and C. Sun. Modeling mandatory lane chang-
ing using bayes classifier and decision trees. IFEE Transactions on
Intelligent Transportation Systems, 15(2):647-655, 2014.

C. Howard. Knowledge representation and reasoning for a model-
based approach to higher level information fusion. PhD thesis, Uni-
versity of South Australia, 2010.

T. Hulnhagen, 1. Dengler, A. Tamke, T. Dang, and G. Breuel. Ma-
neuver recognition using probabilistic finite-state machines and fuzzy

logic. In Proc. of the IEEFE Intelligent Vehicles Symposium, pages
65-70, 2010.



Bibliography 155

[59]

R. Hyndman. Another Look At Forecast-Accuracy Metrics for Inter-
mittent Demand. Foresight: The International Journal of Applied
Forecasting, 4(4):43-46, 2006.

T. JR. Tri-Level Study of the Causes of Traffic Accidents: An
overview of final results. In Proc. of the American Association for

Automotive Medicine Annual Conference, volume 21, pages 391403,
1977.

E. Kaefer.  Situationsklassifikation und Bewegungsprognose in
Verkehrssituationen mit mehreren Fahrzeugen. PhD thesis, Univer-
sity of Bielefeld, 2013.

N. Kaempchen, B. Schiele, and K. Dietmayer. Situation Assessment
of an Autonomous Emergency Brake for Arbitrary Vehicle-to-Vehicle
Collision Scenarios. IEEFE Transactions on Intelligent Transporta-

tion Systems, 10(4):678-687, 2009.

R. E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering, 82(1):35, 1960.

S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In Proc. of the IEEE
Conference on Decision and Control, pages 7681-7687, 2010.

S. Karaman, M. Walter, and A. Perez. Anytime motion planning
using the RRT. In IEEFE International Conference on Robotics and
Automation (ICRA), pages 1478-1483, 2011.

R. Karlsson and J. Jansson. Model-based statistical tracking and
decision making for collision avoidance application. In Proc. of the

American Control Conference, volume 4, pages 3435-3440, Boston,
MA, USA, 2004.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley Series in Probability and
Statistics. Wiley, 2009.

A. Kesting, M. Treiber, and D. Helbing. General Lane-Changing
Model MOBIL for Car-Following Models. Transportation Research
Record, (1999):86-94, 2007.

J. F. C. J. F. C. Kingman. Poisson processes. Wiley Online Library,
1993.



156

Bibliography

[70]

[72]

[76]

78]

S. Klingelschmitt, F. Damerow, and J. Eggert. Managing the Com-
plexity of Inner-City Scenes: An Efficient Situation Hypotheses Se-
lection Scheme. In Proc. of the IEEFE Intelligent Vehicles Symposium,
pages 1232 — 1239, 2015.

S. Klingelschmitt and J. Eggert. Using Context Information and
Probabilistic Classification for Making Extended Long-Term Trajec-
tory Predictions. In Proc. of the IEEFE Intelligent Transportation
Systems Conference, pages 705 — 711, 2015.

S. Klingelschmitt, M. Platho, H.-M. Gros, V. Willert, and J. Eggert.
Combining behavior and situation information for reliably estimat-

ing multiple intentions. In Proc. of the IEEFE Intelligent Vehicles
Symposium, pages 388-393, 2014.

S. Krauss. Towards a unified view of microscopic traffic flow theories.
IFAC Transportation Systems, 2:941-946, 1997.

R. Kiihne. Macroscopic freeway model for dense traffic-stop-start
waves and incident detection. In Proc. of the International Sympo-
sium on Transportation and Traffic Theory, pages 21-42, 1984.

F. Kuhnt, J. Schulz, T. Schamm, and J. M. Zollner. Understanding
Interactions between Traffic Participants based on Learned Behav-

iors. In Proc. of the IEEE Intelligent Vehicles Symposium, pages
1271-1278, 2016.

Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore.
Real-Time Motion Planning With Applications to Autonomous Ur-

ban Driving. IEEE Transactions on Control Systems Technology,
17(5):1105-1118, 2009.

R. Labayrade, C. Royere, and D. Aubert. A collision mitigation
system using laser scanner and stereovision fusion and its assessment.
In Proc. of the IEEFE Intelligent Vehicles Symposium, pages 441-446,
2005.

C. Laugier, I. E. Paromtchik, M. Perrollaz, M. Y. Yong, J. Yoder,
C. Tay, K. Mekhnacha, and A. Negre. Probabilistic Analysis of
Dynamic Scenes and Collision Risks Assessment to Improve Driving
Safety. IEEE Intelligent Transportation Systems Magazine, 3(4):4—
19, 2011.



Bibliography 157

[79]

[80]

[82]

[85]

S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Plan-
ning. The International Journal of Robotics Research, 20(5):378-400,
2001.

A. Lawitzky, D. Althoff, C. F. Passenberg, G. Tanzmeister, D. Woll-
herr, and M. Buss. Interactive scene prediction for automotive appli-

cations. In Proc. of the IEEFE Intelligent Vehicles Symposium, pages
1028-1033, 2013.

S. Lefevre, Y. Gao, D. Vasquez, H. E. Tseng, R. Bajcsy, and F. Bor-
relli. Lane Keeping Assistance with Learning-Based Driver Model
and Model Predictive Control. In Proc. of the International Sympo-
sium on Advanced Vehicle Control, 2014.

S. Lefevre, C. Laugier, and J. Ibanez-Guzman. Exploiting map in-
formation for driver intention estimation at road intersections. In
Proc. of the IEEE Intelligent Vehicles Symposium, pages 583-588,
2011.

S. Lefevre, C. Laugier, and J. Ibanez-Guzman. Risk assessment at
road intersections: Comparing intention and expectation. In Proc.
of the IEEFE Intelligent Vehicles Symposium, pages 165—-171, 2012.

S. Lefevre, D. Vasquez, and C. Laugier. A survey on motion pre-
diction and risk assessment for intelligent vehicles. ROBOMECH
Journal, 1(1):1-14, 2014.

J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch,
Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax,
M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer,
T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and
J. Williams. A perception-driven autonomous urban vehicle. Journal

of Field Robotics, 25(10):727-774, 2008.

X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu. Real-time trajec-
tory planning for autonomous urban driving: Framework, algo-
rithms, and verifications. IEEE/ASME Transactions on Mechatron-
ics, 21(2):740-753, 2016.

M. Liebner, M. Baumann, F. Klanner, and C. Stiller. Driver intent
inference at urban intersections using the intelligent driver model. In



158

Bibliography

Proc. of the IEEFE Intelligent Vehicles Symposium, pages 1162—-1167,
2012.

M. Likhachev and D. Ferguson. Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles. The International Journal of
Robotics Research, 28(8):933-945, 2009.

S. N. Luko. Risk management - Principles and Guidelines. Quality
Engineering, 25(4):451-454, 2009.

P. Lytrivis, G. Thomaidis, and A. Amditis. Cooperative Path Pre-
diction in Vehicular Environments. In Proc. of the IEEE Intelligent
Transportation Systems Conference, pages 803—-808, 2008.

R. Madhavan and C. Schlenoff. The effect of process models on short-
term prediction of moving objects for unmanned ground vehicles. In

Proc. of the IEEE Intelligent Transportation Systems Conference,
pages 471-476, 2004.

M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee. Motion
planning for autonomous driving with a conformal spatiotemporal
lattice. In Proc. of the IEEE International Conference on Robotics
and Automation, pages 4889-4895, 2011.

D. Meyer-Delius, C. Plagemann, and W. Burgard. Probabilistic sit-
uation recognition for vehicular traffic scenarios. In Proc. of the

IEEFE International Conference on Robotics and Automation, pages
459-464, 2009.

R. Miller and Q. Huang. An adaptive peer-to-peer collision warn-
ing system. In Proc. of the IEEE Vehicular Technology Conference,
volume 1, pages 317-321, 2002.

M. Montremerlo, J. Beeker, S. Bhat, and H. Dahlkamp. The stanford
entry in the urban challenge. Journal of Field Robotics, 7(9):468—
492, 2008,

B. Morris, A. Doshi, and M. Trivedi. Lane change intent prediction
for driver assistance: On-road design and evaluation. In Proc. of the
IEEFE Intelligent Vehicles Symposium, pages 895-901, 2011.

J. Morton and T. A. Wheeler. Deep Learning of Spatial and Tem-
poral Features for Automotive Prediction. Technical report.



Bibliography 159

98]

[102]

[103]

[104]

[105]

[106]

[107]

J.-M. Nigro, S. Loriette-Rougegrez, and M. Rombaut. Driving situ-
ation recognition with uncertainty management and rule-based sys-
tems. Engineering Applications of Artificial Intelligence, 15(3):217—
228, 2002.

M. Nikolaou. Model predictive controllers: A critical synthesis of
theory and industrial needs. Advances in Chemical Engineering,
26:131-204, 2001.

M. Peden, R. Scurfield, D. Sleet, D. Mohan, and A. Hyder. World
report on road traffic injury prevention. Technical report, World
Health Organization Geneva, 2004.

D. Petrich, T. Dang, G. Breuel, and C. Stiller. Assessing Map-Based
Maneuver Hypotheses using Probabilistic Methods and Evidence
Theory. In Proc. of the IEEE Intelligent Transportation Systems
Conference, pages 995-1002, 2014.

D. Petrich, T. Dang, D. Kasper, G. Breuel, and C. Stiller. Map-based
long term motion prediction for vehicles in traffic environments. In
Proc. of the IEEE Intelligent Transportation Systems Conference,
pages 2166-2172, 2013.

M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially con-
strained mobile robot motion planning in state lattices. Journal of
Field Robotics, 26(3):308-333, 2009.

M. Platho, H.-M. Gros, and J. Eggert. Predicting Velocity Profiles
of Road Users at Intersections Using Configurations. In Proc. of the
IEEFE Intelligent Vehicles Symposium, pages 945-951, 2013.

M. Platho, H.-M. Gross, and J. Eggert. Learning driving situations
and behavior models from data. In Proc. of the IEEE Intelligent
Transportation Systems Conference, pages 276281, 2013.

M. Platho, H.-M. Gro8, J. Eggert, H.-M. Gross, and J. Eggert. Traf-
fic situation assessment by recognizing interrelated road users. In

Proc. of the IEEE Intelligent Transportation Systems Conference,
pages 1339-1344, 2012.

A. Polychronopoulos, M. Tsogas, A. Amditis, and L. Andreone.
Sensor Fusion for Predicting Vehicles’ Path for Collision Avoidance

Systems. IEEFE Transactions on Intelligent Transportation Systems,
8(3):549-562, 2007.



160

Bibliography

[108]

[109]

[110]

[111]

[112]

113]

[114]

[115]

[116]

[117]

A. Polychronopoulos, M. Tsogas, A. Amditis, U. Scheunert, L. An-
dreone, and F. Tango. Dynamic situation and threat assessment

for collision warning systems: the euclide approach. In Proc. of the
IEEFE Intelligent Vehicles Symposium, pages 636—641, 2004.

C. Rodemerk, S. Habenicht, A. Weitzel, H. Winner, and T. Schmitt.
Development of a general criticality criterion for the risk estimation
of driving situations and its application to a maneuver-based lane
change assistance system. In Proc. of the IEEFE Intelligent Vehicles

Symposium, pages 264-269, 2012.

SAE On-Road Automated Vehicle Standards Committee and others.
Taxonomy and Definitions for Terms Related International. Techni-
cal report, 2014.

T. Schamm and J. M. Zollner. A model-based approach to proba-
bilistic situation assessment for driver assistance systems. In Proc.
of the IEEE Intelligent Transportation Systems Conference, pages
1404-1409, 2011.

C. Schlenoff, R. Madhavan, and Z. Kootbally. PRIDE: a hierarchi-
cal, integrated prediction framework for autonomous on-road driv-
ing. In Proc. of the IEEFE International Conference on Robotics and
Automation, pages 23482353, 2006.

K. Schmitt, R. Mannale, and R. Isermann. Situation Analysis, Warn-
ings and Emergency Braking for Collision Avoidance in Overtaking
Situations - PRORETA 2. [FAC Proceedings Volumes, 43(7):744—
749, 2010.

J. Schneider, A. Wilde, and K. Naab. Probabilistic approach for
modeling and identifying driving situations. In Proc. of the IEEFE
Intelligent Vehicles Symposium, pages 343—348, 2008.

D. Schramm, M. Hiller, and R. Bardini. Single Track Models. In Ve-
hicle Dynamics: Modeling and Simulation, pages 223—-253. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

M. Schreier. Bayesian Environment Representation, Prediction, and
Criticality Assessment for Driver Assistance Systems. PhD thesis,
Technical University of Darmstadt, 2016.

M. Schreier, V. Willert, and J. Adamy. Bayesian, maneuver-based,
long-term trajectory prediction and criticality assessment for driver



Bibliography 161

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]

127]

[128]

assistance systems. In Proc. of the IEEFE Intelligent Transportation
Systems Conference, pages 334-341, 2014.

R. Schubert, E. Richter, and G. Wanielik. Comparison and evalua-
tion of advanced motion models for vehicle tracking. In Proc. of the
IEEFE Information Fusion Conference, pages 1-6, 2008.

R. Schubert, K. Schulze, and G. Wanielik. Situation Assessment for
Automatic Lane-Change Maneuvers. IEEE Transactions on Intelli-
gent Transportation Systems, 11(3):607-616, 2010.

G. Shafer. Dempster-shafer theory. Encyclopedia of artificial intel-
ligence, pages 330-331, 1992.

V. Shvetsov and D. Helbing. Macroscopic dynamics of multilane
traffic. Physical Review E, 59(6):6328-6339, 1999.

R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan.
A layered architecture for office delivery robots. In Proc. of the In-

ternational Conference on Autonomous Agents, pages 245252, New
York, New York, USA, 1997. ACM Press.

J. Sorstedt, L. Svensson, F. Sandblom, and L. Hammarstrand. A
New Vehicle Motion Model for Improved Predictions and Situation

Assessment. IEEFE Transactions on Intelligent Transportation Sys-
tems, 12(4):1209-1219, 2011.

U. Stahlin. Eingriffsentscheidung fiir ein Fahrerassistenzsys-
tem zur Unfallvermeidung. Fortschritt-Berichte VDI. Reihe 12,
Verkehrstechnik / Fahrzeugtechnik, (683), 2008.

Statistisches Bundesamt. Verkehrsunfalle. Technical report, 2014.

H.-S. Tan and J. Huang. DGPS-Based Vehicle-to-Vehicle Cooper-
ative Collision Warning: Engineering Feasibility Viewpoints. IEEFE
Transactions on Intelligent Transportation Systems, 7(4):415-428,
2006.

A. Tarko, S. Kanipakapatnam, and J. Wasson. Modeling and Opti-
mization of the Indiana Lane Merge Control System on Approaches
to Freeway Work Zones, Part I. Joint Transportation Research Pro-
gram, page 345, 1998.

0. S. Tas, F. Kuhnt, J. M. Zsllner, and C. Stiller. Functional System



162

Bibliography

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Architectures towards Fully Automated Driving. In Proc. of the
IEEFE Intelligent Vehicles Symposium, pages 304—-309, Gothenburg,
Sweden, 2016.

C. Tay. Analysis of Dynamic Scenes: Application to Driving Assis-
tance. PhD thesis, Institut National Polytechnique de Grenoble -
INPG, 2009.

P. Thomas, A. Morris, R. Talbot, and H. Fagerlind. Identifying the
causes of road crashes in Europe. Annals of advances in automotive
medicine, 57:13-22, 2013.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,
C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel,
J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies,
S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Stanley: The
robot that won the DARPA Grand Challenge. Journal of Field
Robotics, 23(9):661-692, 2006.

T. Toledo, H. N. Koutsopoulos, and M. Ben-Akiva. Integrated driv-
ing behavior modeling. Transportation Research Part C: Emerging
Technologies, 15(2):96-112, 2007.

M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in
empirical observations and microscopic simulations. Physical Review
E, 62(2):1805-1824, 2000.

M. Tsogas, X. Xun Dai, G. Thomaidis, P. Lytrivis, and A. Amditis.
Detection of maneuvers using evidence theory. In Proc. of the IEEFE
Intelligent Vehicles Symposium, pages 126-131, 2008.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N.
Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittle-
man, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly,
M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick,
R. Rajkumar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider,
A. Stentz, W. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown,
D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang,
J. Struble, M. Taylor, M. Darms, and D. Ferguson. Autonomous

driving in urban environments: Boss and the Urban Challenge. Jour-
nal of Field Robotics, 25(8):425-466, 2008.



Bibliography 163

[136]

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

145]

[146]

J. Wei, J. M. Snider, T. Gu, J. M. Dolan, and B. Litkouhi. A
behavioral planning framework for autonomous driving. In Proc. of
the IEEFE Intelligent Vehicles Symposium, pages 458-464, 2014.

K. Weiss, N. Kaempchen, and A. Kirchner. Multiple-model tracking
for the detection of lane change maneuvers. In Proc. of the IEEFE
Intelligent Vehicles Symposium, pages 937-942, 2004.

J. Weng and Meng. QQ. Decision Tree - Based Model for Estimation of
Work Zone Capacity. Transportation Research Record, (2257):40-50,
2011.

M. Werling, S. Kammel, J. Ziegler, and L. Groll. Optimal trajecto-
ries for time-critical street scenarios using discretized terminal man-
ifolds. The International Journal of Robotics Research, 31(3):346—
359, 2012.

R. Wiedemann. Simulation des Strassenverkehrsflusses. PhD thesis,
Karlsruhe Inst. f. Verkehrswesen d. Univ. Karlsruhe, 1974.

World Health Organization. Global status report on road safety
2013: supporting a decade of action. Technical report, 2013.

W. Xu, J. Pan, J. Wei, and J. M. Dolan. Motion planning under
uncertainty for on-road autonomous driving. In Proc. of the IEEE

International Conference on Robotics and Automation, pages 2507—
2512, 2014.

Y. Yim and S.-Y. Oh. Modeling of Vehicle Dynamics From Real Ve-
hicle Measurements Using a Neural Network With Two-Stage Hybrid
Learning for Accurate Long-Term Prediction. IEEFE Transactions on
Vehicular Technology, 53(4):1076-1084, 2004.

M. J. Zaki and W. Meira. Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, 2014.

J. Zhang and B. Roessler. Situation Analysis and Adaptive Risk As-
sessment for Intersection Safety Systems in Advanced Assisted Driv-
ing. In Autonome Mobile Systeme, pages 249-258. Springer Berlin
Heidelberg, 2009.

Z. Zhang, K. Huang, and T. Tan. Comparison of similarity measures
for trajectory clustering in outdoor surveillance scenes. In Proc. of



164 Bibliography

the International Conference on Pattern Recognition, pages 1135—
1138, 2006.



Curriculum Vitae

Personal Data

Name
Date of Birth
Place of Birth

Florian Damerow
20. August 1984
Ludwigshafen am Rhein

Education

2007 — 2012 Main Studies, Electrical Engineering and In-
formation Technology, majoring in Automation,
Technischen Universitat Darmstadt
Degree: Dipl.-Ing. (very good)

2008 — 2009 Studies Abroad, Electrical Engineering / Au-
tomation, Lunds University, Sweden

2005 — 2007 Basic Studies, Electrical Engineering and In-
formation Technology, Technischen Universitat
Darmstadt

2004 Gymnasium zu St. Katharinen Oppenheim

Degree: Abitur (good)

Professional Experience

from 2017
2013 — 2016
2012 — 2013

R&D Engineer ADAS, Continental AG -
ADC Automotive Distance Control Systems
GmbH, Lindau.

Research Associate, Technischen Universitat
Darmstadt, Control Methods and Robotics /
Honda Research Institute Europe, Offenbach.
Research Associate, Bosch  GmbH,
Schwieberdingen.




	Abbreviations and Symbols
	Abstract
	Kurzfassung
	Introduction
	Contributions
	Thesis Structure

	Related Work
	Situation Classification and Trajectory Prediction
	Spatio-temporal Trajectory Prediction
	Situation Classification
	Joint Situation Classification and Trajectory Prediction

	Risk Evaluation
	Behavior Planning
	Traffic Models

	Basic Concepts
	Situations and their Modeling
	Situations in Traffic Scenarios
	Interaction-aware Situation Model
	Situation Pre-Selection

	Risk
	Risk Estimation for Dynamic Scenes
	General Risk Model
	Approximate Risk Model

	Trajectory Similarity
	Conclusion

	Framework for Risk Evaluation and Behavior Planning
	Framework Overview

	The Foresighted Driver Model
	The Intelligent Driver Model
	The Foresighted Driver Model
	Results
	Curve Driving Scenario
	Intersection Scenario
	Highway Accessing Scenario

	Conclusion

	Situation Classification and Trajectory Prediction
	Prediction-based Situation Classification
	Situation Classification based on Trajectory Similarity Evaluation
	Situation Classification for Interaction Detection and Lane Assignment
	Situation-based Trajectory Prediction
	Results: Interaction Detection
	Evaluation of a Multi-Lane-Intersection Scenario
	Statistical Evaluation

	Conclusion

	Risk Evaluation
	Predictive Risk Maps
	Basic Risk Shapes

	Conclusion

	Behavior Planning
	Behavior Planning under Consideration of a Single Situation
	General Cost Function
	Rapidly-exploring Random Tree (RRT)
	Asymptotic Optimal Extension RRT*
	Adaptation of RRT* to Velocity Planning in Traffic Environments
	Simulation Results

	Behavior Planning under Multiple Situations with Uncertainty
	Approach
	Results

	Conclusion

	Summary and Outlook
	Summary
	Outlook

	Appendix
	Approximate Accumulated Curvature Risk Model
	Paramters
	Camera to map alignment

	Bibliography
	Curriculum Vitae

