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Abstract

Recurrence analysis is a method from nonlinear time series analysis to investigate the re-
current behaviour of a system, e.g., the Earth’s climate system. Among others, it comprises
a technique to quantitatively assess the contents of binary similarity matrices. This recur-
rence quantification analysis (RQA) relies on the identification of line structures within such
recurrence matrices and provides a set of scalar measures. Existing computing approaches
to RQA are either not capable of processing recurrence matrices exceeding a certain size
or suffer from long runtimes considering time series that contain hundreds of thousands of
data points. This thesis introduces scalable recurrence analysis (SRA), which is an alter-
native computing approach that subdivides a recurrence matrix into multiple sub matrices.
Fach sub matrix is processed individually in a massively parallel manner by a single com-
pute device. This is implemented exemplarily using the OpenCL framework. SRA further
enables the parallel processing of multiple sub matrices using a set of compute devices.
It is shown that this approach delivers drastic performance improvements in comparison
to state-of-the-art recurrence analysis software by exploiting the computing capabilities of
many-core hardware architectures, in particular graphics cards. This reduces the runtime for
analysing time series exceeding one million data points from hours or days to minutes. The
usage of OpenCL allows to execute identical SRA implementations on a variety of hardware
platforms having different architectural properties. On major challenge is that an imple-
mentation may expose varying performance characteristics across different compute devices.
An extensive evaluation analyses the impact of applying concepts from database technology,
such memory storage layouts, to the recurrence analysis processing pipeline. It is investi-
gated how different realisations of these concepts, e.g., row-store vs. column-store layout,
affect the performance of the computations on different types of compute devices. This
does not only include the runtime behaviour but also additional performance counters, such
as the amount of data fetched from compute device memory. Finally, an approach based
on automatic performance tuning is introduced that autonomously selects well-performing
RQA implementations for a given analytical scenario on a specific computing hardware. The
corresponding evaluation compares the performance of a set of greedy selection strategies
while analysing a real-world time series from climate impact research. Among others, it is
demonstrated that the customised auto-tuning approach allows to drastically increase the
efficiency of the processing by adapting the implementation selection.
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Kurzfassung

Die Rekurrenzanalyse ist eine Methode aus der nicht-linearen Zeitreihenanalyse, die es
erlaubt das wiederkehrende Verhalten von Systemen zu analysieren, bspw. des Klimasys-
tems der Erde. Sie umfasst einen Ansatz zur quantitativen Analyse des Inhalts von bindren
Ahnlichkeitsmatrizen. Im Mittelpunkt der sogenannten Recurrence Quantification Anal-
ysis (RQA) steht dabei die Identifikation von Linienstrukturen in solchen Rekurrenzma-
trizen. Hierzu stellt die RQA eine Reihe von skalaren Maflen bereit. Bestehende Berech-
nungsansétze zur Durchfithrung der RQA kénnen entweder nur Zeitreihen bis zu einer bes-
timmten Lénge verarbeiten oder benotigen viel Zeit zur Analyse von sehr langen Zeitreihen.
Diese Dissertation stellt die sogenannte skalierbare Rekurrenzanalyse (SRA) vor. Sie ist
ein neuartiger Berechnungsansatz, der eine gegebene Rekurrenzmatrix in mehrere Subma-
trizen unterteilt. Jede Submatrix wird von einem Berechnungsgerét in massiv-paralleler Art
und Weise analysiert. Dieser Ansatz wird unter Verwendung der OpenCL-Schnittstelle im-
plementiert. Dariiber hinaus erlaubt es die SRA, mehrere Berechnungsgerite gleichzeitig
fir die Analyse einer Rekurrenzmatrix zu verwenden. Anhand mehrerer Experimente wird
demonstriert, dass dieser Ansatz massive Leistungssteigerungen im Vergleich zu existieren-
den Berechnungsansétzen ermdglicht, insbesondere durch den Einsatz der Vielkernprozessen
von Grafikkarten. Dies reduziert die Laufzeit zur Analyse von Zeitreihen bestehend aus
mehr als einer Million Datenpunkten von Stunden oder Tagen zu wenigen Minuten. Die
Verwendung von OpenCL erméglicht es, identische SRA-Implementierungen auf einer Reihe
unterschiedlicher Hardware-Plattformen mit verschiedenen Architekturen auszufithren. Die
Herausforderung ist hierbei das potentiell variierende Laufzeitverhalten einer konkreten Im-
plementierung auf unterschiedlichen Berechnungsgeriten. Es wird eine ausfiihrliche Evalua-
tion durchgefiihrt, die den Einfluss der Anwendung mehrerer Datenbankkonzepte, wie z.B.
die Représentation der Eingangsdaten, auf die RQA-Verarbeitungskette analysiert. Es wird
untersucht, inwiefern unterschiedliche Ausprigungen dieser Konzepte, bspw. die zeilenori-
entierte gegeniiber der spaltenorientierten Speicherung der Eingangsdaten, Einfluss auf die
Effizienz der Analyse auf verschiedenen Berechnungsgeriten haben. Dies umfasst nicht nur
die Betrachtung der Laufzeiten, sondern beriicksichtigt ebenfalls weitere Leistungsindika-
toren, wie z.B. die Menge der aus dem Speicher geladenen Daten. Abschlieend wird ein
automatischer Optimierungsansatz vorgestellt, der performante RQA-Implementierungen fiir
ein gegebenes Analyseszenario in Kombination mit einer Hardware-Plattform dynamisch bes-
timmt. Die dazugehorige Evaluation vergleicht die Leistung einer Menge von empirischen
Auswahlstrategien am Beispiel einer Klimazeitreihe. Neben anderen Aspekten werden drastis-
che Effizienzgewinne durch den Einsatz des Optimierungsansatzes aufgezeigt.
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1 Introduction

"Starting today, the performance lunch isn’t free any more. ... [If] you want your
application to benefit from the continued exponential throughput advances in new
processors, it will need to be a well-written concurrent ... application. And that’s
easier said than done, because not all problems are inherently parallelizable and
because concurrent programming is hard."

— Excerpt from [Sutter, 2005]

The project underlying this thesis started with a simple question: "Can you make this faster?".
It was posed by Norbert Marwan, who is a senior researcher at the Potsdam Institute for
Climate Impact Research. In early 2013, he was using recurrence analysis [Marwan et al.,
2007], a method from nonlinear time series analysis, to investigate the Potsdam temperature
profile [Potsdam Institute for Climate Impact Research, 2016], a time series consisting of more
than one million measurements. Existing software tools, only less than a handful of them even
capable of processing time series of such length, consumed several hours to conduct the analysis
for a given input parameter configuration. Varying the configuration multiplied the time for
retrieving the analytical results. This induced the need for exploring novel computing approaches
to accelerate the computations related to recurrence analysis, which is the topic of this thesis.

Performing recurrence analysis requires to compare the states of a system, e.g., the Earth’s
climate system, changing over time. The states are represented by multi-dimensional vectors
consisting of floating point values. They refer to one or more observational variables, such as
the temperature measured at a local weather station. The pairwise similarity of those vectors
is computed using a specific measure and captured within a quadratic matrix. The matrix
elements are transformed into binary values, using a similarity threshold. Connected matrix
elements referring to the same value form small-scale structures, in particular diagonal and
vertical lines, that have specific semantics in the context of recurrence analysis. Those structures
may either be displayed by converting the matrix into a monochrome image (recurrence plot)
or quantified using a set of scalar measures (recurrence quantification analysis) [Marwan et al.,
2007]. An example recurrence plot based on real-world data from the climate domain is depicted
in Fig. 1.1.

Investigating the dynamic behaviour of systems using recurrence analysis experienced an
increasing interest in the recent past, expressed by the growing number of publications released
each year [Marwan, 2017]. The method has proven its applicability in a variety of domains,
including;:

Geosciences: The Earth’s climate system exposes recurrent behaviour, such as seasonal changes.
Investigating the systems behaviour in the past allows to draw implications regarding
future developments [Donges et al., 2011, Zhao and Li, 2011]. Recurrence analysis is
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Figure 1.1: Real-world recurrence plot. The recurrence plot displayed refers to the dry-bulb
temperature in degree Celsius measured at the Asheville Regional Airport in North
Carolina during July 2015 with an hourly resolution. The measurements belong to
the Quality Controlled Local Climatological Data (QCLCD) provided by the National
Oceanic and Atmospheric Administration (NOAA) of the United States of Amer-
ica [National Oceanic and Atmospheric Administration, 2017]. Multi-dimensional
vectors are extracted from the time series by applying the time delay method, us-
ing an embedding dimension of 5 and a time delay of 3. The pairwise similarity of
the vectors is determined using the Maximum norm in combination with a thresh-
old of 3.0. The semantics of the individual parameters are explained in detail in
Sect. 2.1. The plot comprises small-scale structures formed by black and white dots.
They characterise the dynamic behaviour of the climate system at the corresponding
geographic location during the observation period.
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further used to describe earthquake dynamics [Chelidze and Matcharashvili, 2015] and to
get a better understanding of solar variability [Ponyavin and Zolotova, 2005].

Medicine: Recurrence analysis is applied to investigate brain activity and to enable the early
detection of epileptic states [Carrubba et al., 2010, Chua et al., 2008]. Moreover, it is
employed to observe functions and dysfunctions of the cardiorespiratory system [Zbilut
et al., 1990, Van Leeuwen et al., 2009].

Mechanical engineering: The recurrent behaviour of gas turbines is examined to assess their
functionality [Bassily and Wagner, 2008]. Furthermore, cutting processes are monitored
using recurrence analysis [Litak et al., 2009]. The method is also employed to detect cracks
within aluminum plates [Iwaniec et al., 2012].

Recurrence quantification analysis (RQA) addresses in particular the investigation of large
matrices, constructed from more than one million vectors. Such matrices can hardly be displayed
without loss of information. RQA comprises a set of quantitative measures based on line length
histograms capturing data on small-scale structures. The values of those measures characterise
the dynamic behaviour of a system within a certain period of time. In early 2013, state-of-
the-art software conducting RQA suffered from several limitations, hampering or preventing
the analysis of sets of multi-dimensional vectors comprising hundreds of thousands of elements.
This is due to the quadratic relationship between the number of input vectors and the extent of
the similarity matrix.

1.1 Contributions

This thesis presents three major contributions. First, it introduces scalable recurrence analysis
(SRA), a computing approach that allows to process matrices exceeding 10° x 10° elements. It is
heavily based on concepts from parallel processing and focusses especially on the computations
of the quantitative analysis. SRA subdivides the binary similarity matrix into multiple sub
matrices and distributes their processing across multiple compute devices within a computing
system. Each sub matrix is processed individually by a single device. To enable the detection
of line structures across multiple sub matrices, carryover buffers are introduced. These global
data structures store the length of lines that reach the outer borders of sub matrices. The
corresponding data is shared among all sub matrices, while investigating diagonals and columns
of the global similarity matrix. The sub matrices are processed in a specific order, to compute
valid global RQA results. This cutomised processing order is designed such that multiple sub
matrices can be analysed simultaneously. That allows to leverage the capabilities of multiple
compute devices at the same time.

Second, this thesis proposes to separate the RQA processing into a set of analytical operators.
For each operator, a single type of atomic task is defined such that each task instance is fully
independent of any other instance of the same operator. This allows to conduct the computations
in a massively parallel manner. This approach is implemented using the OpenCL framework
for heterogeneous computing, which allows to offload computations to parallel compute devices
from various hardware vendors, in particular graphics processors. Furthermore, several concepts
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from database engineering are assessed regarding their applicability to RQA processing. This
includes for example different representations of the multi-dimensional input vectors as well
as whether the data captured in the recurrence matrix is materialised or not. An extensive
evaluation investigates the impact of the concepts to the performance of conducting RQA. A
key insight of the evaluation is that the performance of a specific implementation highly depends
on the combination of analytical scenario and hardware platform.

Third, this thesis introduces an automatic performance tuning approach that allows to dynam-
ically select a well-performing implementation. The development of this auto-tuning approach
was driven by OpenCL providing functional portability, which ensures the compilation and ex-
ecution of identical source code on multiple platforms. In this regard, a major challenge is that
OpenCL does not guarantee that the compiled code delivers a good performance across various
platforms [Trevett, 2017, p. 14]. Hence, a set of implementations with varying properties is pro-
vided. The performance of each implementation is assessed on sub matrix level, executing all
operators required to compute the RQA results. The selection of implementations is conducted
based on a set of greedy selection strategies that aim at minimising to total runtime.

These contributions allow to drastically reduce the runtime for performing recurrence analysis
computations. As an example, the time for analysing the Potsdam temperature profile with
RQA could be reduced from more than a day, using state-of-the-art software in combination
with server CPU hardware, to roughly one hundred seconds. This is achieved by applying
SRA while leveraging the computing capabilities of four GPU processors at the same time and
dynamically selecting the best-performing implementation.

1.2 Structure

This thesis is structured as follows. Chapter 2 gives an overview over the basic principles be-
hind recurrence analysis. The first section, referring to the theoretical foundations, is heavily
based on the work by Norbert Marwan and his colleagues from the recurrence analysis commu-
nity [Marwan et al., 2007, Marwan and Webber, 2015]. The subsequent section highlights the
computational aspects of the method. This includes the description of basic algorithms that
are required to create recurrence plots and to perform RQA. Subsequently, the properties of
state-of-the-art software conducting recurrence analysis computing are explored. The focus of
those considerations is specifically on their computational limitations. The third section gives
an introduction to the underlying concepts of the OpenCL framework that is used to implement
SRA.

Chapter 3 presents alternative computing approaches that aim at overcoming the limitations of
existing recurrence analysis software. This includes parallel computing using multi-core devices,
such as CPUs, and using many-core devices, such as GPUs. The basic approach regarding the
construction of the binary matrix refers to the exhaustive computation of all pairwise vector
similarities. Alternatively, index data structures, such as multi-dimensional search trees, can
be applied. The remaining sections further elaborate on approaches based on compacting the
input data and approximating the RQA measures.

Chapter 4 gives detailed information on scalable recurrence analysis, which is based on the
concept divide and recombine [Guha et al., 2012]. The chapter describes strategies on how to
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subdivide the full recurrence matrix into sub matrices and to recombine the individual ana-
lytical results. Moreover, the functionality of the carryover buffers as well as the resulting sub
matrix processing order is described. It is highlighted, how these concepts enable the concurrent
processing of multiple sub matrices. The chapter further includes descriptions in which way the
symmetry of recurrence matrices can be exploited to balance the workload for detecting diagonal
lines among sub matrices.

Chapter 5 addresses the application of advanced concepts from database technology to the
processing within the analytical operators. The design dimensions considered in the first section
include the representation of the multi-dimensional vectors serving as input data, the represen-
tation of the quadratic recurrence matrix, the representation of the binary similarity values,
the recycling of intermediate values and whether the data captured in a recurrence matrix
is materialised or not. Two realisations are considered for each of those design dimensions.
The second section elaborates on using index data structures, in particular grid directories and
multi-dimensional search trees, to determine the similarity of multi-dimensional vectors.

Chapter 6 presents a comprehensive evaluation regarding the design dimensions mentioned in
Chap. 5. Based on a set of initial experiments, the impact of each realisation on the performance
is investigated. The analysis considers the execution of the individual analytical operators
as well as the whole RQA processing pipeline. The experiments are conducted on different
hardware platforms, leveraging the functional portability provided by OpenCL. The goal is to
draw conclusions regarding the suitability of certain realisations on specific hardware platforms
given a concrete analytical scenario. The second part of the evaluation concentrates on the
impact of the index data structures.

Chapter 7 addresses the problem of selecting well-performing SRA implementations. It in-
troduces an automatic performance tuning approach that considers the individual performance
characteristics of a set of implementations that are extended using tuning parameters. The
selection is conducted based on greedy strategies, considering the runtime for processing sub
matrices. The chapter further includes three experiments, investigating different effects of auto-
tuning. The first experiment investigates the impact of applying different greedy selection
strategies on the overall performance of conducting RQA. The second experiment highlights the
impact on the efficiency of the computations in comparison to state-of-the-art RQA software.
The third experiment demonstrates the scalability of the SRA approach by determining the
speed-up gained from increasing the number of compute devices used during the processing.

Chapter 8 concludes the findings of the thesis. It summarises the properties of SRA that
enable drastic performance improvements regarding the processing of very long time series.
Furthermore, the limitations of this novel computing approach are examined to deduce research
questions potentially addressed in the future.

Appendix A contains source code that refers to an approximation approach described in
Chap. 3. Appendix B contains a set of mathematical equations that refer to a specific database
concept described in Chap. 5. Appendix C presents the hardware and software configurations of
the computing systems applied during the experiments. Appendix D describes the experimental
setups referring to the evaluations from Chap. 6 and 7. Appendix E contains the corresponding
experimental results, including visual and tabular representations. Note that the appendices
are only available in the digital version of the manuscript.
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1.3 Prior Work

Chapter 4 is based on [Rawald et al., 2014a], which was written by Tobias Rawald, in the follow-
ing referred to as the author, Mike Sips, Norbert Marwan and Doris Dransch. This conference
paper focusses specifically on the computations related to RQA. It presents the principles be-
hind SRA, which was developed and implemented by the author under the supervision of Mike
Sips and Doris Dransch. The potential of this novel computing approach is demonstrated by
Norbert Marwan, who applied it to the Potsdam temperature profile from 1893 until 2011. He
further provided background on recurrence analysis.

The first sections of Chap. 5 and Chap. 6 are based on [Rawald et al., 2015], which was written
by the author, Mike Sips, Norbert Marwan and Ulf Leser. This workshop paper considers a
subset of the database concepts presented in Chap. 5. The corresponding implementations were
designed and implemented by the author. He further conducted an experiment comparing their
runtime performance for varying analytical scenarios. This work has been conducted under
the supervision of Mike Sips and Ulf Leser. Again, Norbert Marwan provided the link to the
recurrence analysis domain.

Additional publications have been released to create awareness regarding SRA within the
recurrence analysis community [Rawald et al., 2014b,c].

1.4 Software

SRA has further been implemented using the Python programming language, leveraging the
capabilities provided by OpenCL framework. This also includes the automatic performance
tuning approach. A corresponding Python package named PyRQA, which was designed and
implemented by the author, is released under version 2.0 of the Apache License [Rawald, 2015].
The contents of the package and application examples are described in [Rawald et al., 2016].
This journal paper was written by the author under the supervision of Mike Sips. Norbert
Marwan contributed the analysis of a real-world analysis scenario. A focus of this publication
is on describing the application programming interface and enabling the reproducibility of the
experimental results.



2 Background

This chapter gives background information on multiple topics and is structured into three sec-
tions; each of them is largely based on related work. The first section addresses the theoretical
foundations of recurrence analysis. It focuses explicitly on those parts that are relevant in
the following chapters. The second section considers the computational aspects of recurrence
analysis, including basic algorithms and state-of-the-art software. The focus is especially on de-
scribing the limitations of existing computing approaches to recurrence analysis. The approach
presented in this thesis considers offloading massively parallel computations on accelerators,
such as GPUs. This is achieved by using the OpenCL framework for heterogeneous computing.
Its components and functionalities are summarised in the third section of this chapter.

2.1 Theoretical Foundations of Recurrence Analysis

Recurrence analysis is a method from nonlinear time series analysis, which allows to investigate
the recurrent behaviour of systems. The corresponding research field comprises a variety of
different topics. A continuously updated list of publications is maintained at [Marwan, 2017]. As
of June 2017, it contains over 1,900 publications regarding theoretical foundations, applications,
software and other publications. The following overview does not claim to be complete but
rather highlights relevant aspects.

This thesis is based on a collaboration with Dr. Norbert Marwan of the Potsdam Institute for
Climate Impact Research (PIK). Unless indicated otherwise, this condensed introduction refers
to [Marwan et al., 2007] and [Marwan and Webber, 2015].

2.1.1 Recurrence and Time Delay Embedding

Recurrence is an important concept regarding the the analysis of dynamic system behaviour. The
corresponding mathematical foundations were introduced by Henri Poincaré in 1890, resulting
in the Poincaré recurrence theorem [Poincaré, 1890]. He stated that a "system recurs infinitely
many times as close as one wishes to its initial state" under certain conditions. If the behaviour
of the system is deterministic, this property allows to draw conclusions regarding its future
development.

The state of a system can be described by a set of variables. As an example, the impact
of the Earth’s climate system at a specific location is among others expressed through the air
pressure and temperature, relative humidity as well as wind speed. The state of a system can
be captured by a vector residing in d-dimensional space, where each of the d vector components
refers to a single observational variable. As time progresses, the values of the vector components
change, resulting in different system states.
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Univariate time series:

t1 tZ t3 t4 t5 t6 t7 té’ t9 tl 0 Z‘1 1 t] 2 t] 3

0.010.7/1.010.7 (0.0 -0.7|-1.0}-0.7|0.0{0.7| 1.0 0.7 | 0.0

I vector component

2" yector component

Reconstructed system states (input vectors):

-

X

-

1 X, X, X, X, Xe X, Xy X, X1 X1
I’ 10.0[/0.7|/1.0(|0.7]]0.0|-0.7||-1.0]]-0.7/|0.0{]0.7 ]| 1.0
2" 11.0110.71/0.0]|-0.7||-1.0[|-0.7]|0.0]| 0.7 || 1.0]| 0.7 || 0.0

Figure 2.1: Time delay method. Given an discretisation of the sine wave within the interval 0
and 37. The corresponding univariate time series consists of thirteen data points
(t1 to t13). Eleven input vectors (#1 to #11) are reconstructed by employing an
embedding dimension m = 2 and a time delay ¢ = 2.

Usually, it is not possible to obtain data for all relevant variables. Often, only a single variable,
such as the air temperature, may be observed. However, the data collected for this single variable
contains information about the dynamics of the whole system. The Takens’ theorem [Takens,
1980] and corresponding extensions [Sauer et al., 1991] ensure that it is possible to reconstruct
the topological structure of the trajectory formed by the state vectors, given only data for a
single variable. For this purpose, multi-dimensional vectors are extracted from an univariate
time series that captures the observations of the single variable at discrete points in time. In the
remaining parts of this thesis it is assumed that only a single univariate time series is provided
as input for the recurrence analysis processing, unless stated otherwise.

The time delay method is commonly used to reconstruct system states from an univariate time
series [Kantz and Schreiber, 2003, pp. 30-36]. The dimensionality of the reconstructed vectors
corresponds to the number of relevant variables and varies between different systems. In Fig. 2.1,
the application of the time delay method to a time series capturing the sine wave is depicted.
Vectors comprising two components are reconstructed for the purpose of demonstration.

The state reconstruction relies on the parameters:

o Embedding dimension (m), and
o Time delay (¢).

The embedding dimension describes the dimensionality of the reconstructed vectors. The time
delay parameter specifies the temporal offset of the vector components within the time series.
Note that it requires substantial knowledge of a domain expert to assess the suitability of corre-
sponding parameter values, although there are methods to detect the assignments automatically.
Appropriate assignments are usually determined manually using iterative refinement, evaluating
embedding results for a number of parameter value combinations.
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Recommendations for setting the parameter values regarding different systems are available.
In [Webber Jr. and Zbilut, 2005, p. 36] it is proposed to set the embedding dimension between
10 and 20 regarding the analysis of biological systems. In principle, values between 1 and 20 are
considered to be reasonable regarding the embedding dimension as well as the time delay'. There
are also approaches neglecting the embedding within multi-dimensional space by operating on
the scalar values of a given time series [Thiel et al., 2004, Iwanski and Bradley, 1998].

Given a time series consisting of [ elements, an embedding dimension m and a time delay ¢,
the number of multi-dimensional vectors IV is calculated as defined in Equation 2.1.

N=I1l-((m—-1)xt) (2.1)

Assuming that the time series consists of hundreds of thousands of data points and that m
as well as t are within the boundaries as described above, the number of vectors corresponds
roughly to the number of measurements [Kantz and Schreiber, 2003, p. 35].

2.1.2 Recurrence Plot

A method to visualise the dynamics of a system is the recurrence plot. A synthetic example is
presented in Fig. 2.2. The method was originally introduced in [Eckmann et al., 1987] as follows.

Definition 2.1 (Recurrence plot). Let #; be the i-th point on the orbit? describing a dynamical
system in d-dimensional space, for 2 = 1, ..., N. The recurrence plot is an array of dots in a N x IV
square, where a dot is placed at (i,7) whenever Z; is sufficiently close to ;.

A recurrence plot allows to visually explore the binary similarities of pairs of system states.
In this regard, Z1 to Zn refer to the multi-dimensional vectors extracted from the input time
series. Each of those vectors references a specific point in time. The axes of the recurrence
plot capture the temporal progress. The visual representation is based on a squared similarity
matrix, the recurrence matriz as defined in Equation 5.3.

1: %, ~2;, . .
Rij = { T ij=1,..,N (2.2)
0:7; 7"5 Lj,
Z; ~ &; indicates the similarity of a pair of vectors. A column of the matrix captures the
similarities of a specific vector with respect to all system states extracted from the time series.
As a result, the matrix captures a total of N2 binary similarity values.

Pairwise Vector Similarities

A distance measure, typically an L,-norm, is applied to determine the pairwise similarity of two
vectors. Candidates regarding the creation of a recurrence matrix are [Webber Jr. and Zbilut,
2005, p. 38]:

'Private conversation with Norbert Marwan in July 2013.
2The trajectory that is formed by the input vectors in d-dimensional space.
3Tt holds that 1 <i < N and 1 < j < N.
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o the Lj-norm (Manhattan distance),
o the Lo-norm (Euclidean distance), and

o the Loo-norm (Maximum distance).

A neighbourhood condition is applied to transform the pairwise similarities into binary values.
In this regard, either the fized radius or the fized amount of nearest neighbours condition are
used. The similarity is determined by a threshold € in both cases. All vectors that lie within
the e-neighbourhood of a query vector Z; are considered similar to Z,. Choosing € > 0 ensures
that dissimilarity up to a certain error is permitted, as required by recurrence according to
Poincaré [Poincaré, 1890].

The fixed radius condition, which is most commonly used, specifies the same threshold value
for each input vector, leading to equally sized e-neighbourhoods. The shape of a neighbourhood
is determined by the distance metric applied. The amount of vectors that lie within the neigh-
bourhoods varies. The original concept introduced in [Eckmann et al., 1987] proposed to apply
an individual threshold for each query vector, so that each neighbourhood contains a minimum
number of vectors. This resembles the fixed amount of nearest neighbours condition. Here, the k
closest neighbours are determined for each query vector, creating variable-sized neighbourhoods.

Applying the fixed radius condition in combination with a distance metric leads to recur-
rence matrices that are symmetric along the middle diagonal. The symmetry results from the
fixed-sized neighbourhoods as well as the transitivity property of the distance metric. The
middle diagonal captures the self-similarities of the multi-dimensional vectors and is commonly
referred to as line of identity (LOI). In contrast, it is not guaranteed that a recurrence matrix
is symmetric, if the fixed amount of nearest neighbours condition is applied.

In addition to the two types of neighbourhood conditions introduced before, there exist other
types, e.g. the selection of a radius corridor [Iwanski and Bradley, 1998], which will not be dis-
cussed here. Furthermore, the unthresholded similarity values can be organised using the layout
of a recurrence plot, which is then similarly referred to as unthresholded recurrence plot [Iwan-
ski and Bradley, 1998]. In the context of this thesis, it is assumed that recurrence plots are
constructed based on thresholded recurrence matrices.

Similar to the selection of the values for embedding dimension and time delay, the choice
of an appropriate € is essential regarding the meaningfulness of a recurrence plot. There exist
several strategies, e.g., setting the value to a small portion of the diameter of the space spanned
by the multi-dimensional vectors [Mindlin and Gilmore, 1992]. This is commonly referred to as
mazimum phase space diameter. Another strategy is to choose a radius based on the density of
the recurrence plot [Zbilut et al., 2002]. Again, the knowledge of the domain expert is required
to conduct an appropriate parameter selection.

Characteristic Structures

A recurrence plot is usually encoded as a monochromatic image. Commonly, cells of the re-
currence matrix referring to similar vector pairs are represented by black dots, whereas cells
referring to dissimilar pairs of vectors are represented by white dots. The black dots are referred
to as recurrence points. A recurrence point reflects that the system under investigation recurs

10
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Time

v w

-
Xq Time X1

Figure 2.2: Recurrence plot. The plot depicted is based on the example from Fig. 2.1. Both
axes refer to the vectors Z1 to #11 in temporal order. Regarding the pairwise vector
similarity, the Euclidean norm and a similarity threshold e = 1.0 are employed. A
diagonal line d of length Iy = 4, a vertical line v of length [, = 3 and a white vertical
line w of length [,, = 5 are highlighted.

to a similar state. A recurrence plot that is constructed based on the two-dimensional vectors
from Fig. 2.1 is depicted in Fig. 2.2.

Dots within a recurrence plot form small-scale and large-scale structures. These structures
are the basis for its interpretation. There exist three types of small-scale structures:

o Diagonal lines formed by black dots (diagonal lines),
 Vertical lines formed by black dots (vertical lines), and

o Vertical lines formed by white dots (white vertical lines).

By convention, a line consists of at least two points of the same colour. It is stressed that
each line in the recurrence plot has a numerical counterpart within the recurrence matrix. A
line is either delimited by points of different colour or the borders of the recurrence matrix.
Hence, only the lines with maximum extent are considered, excluding partial lines from the
investigation.

Each line type mentioned above has different semantics. The meaning of a diagonal line
depends on its alignment, which is either parallel or orthogonal to the LOI. The state of the
system evolves similarly at different periods in time, if the diagonal line is parallel to the middle
diagonal. The system states evolve similarly but in reverse temporal order, if the diagonal line
is orthogonal to the LOI. In the following, only diagonal lines parallel to the LOI are considered.

11
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(a) Homogenous (b) Periodic (c) Drift (d) Disrupted

Figure 2.3: Recurrence plot types. A pictogram is given for each topological type, conveying
prototypical contents of corresponding plots.

A wvertical line defines a period during which the state of a system does not change or the change
progresses very slowly. It appears as if the system state is trapped for a certain period of time.

White vertical lines are the inverse of vertical lines. They serve as an estimator for recurrence
times, which capture the time that elapses until a system recurs to a similar state. Similar to
the vertical lines, each white vertical line has a mirrored counterpart of the same length but
with horizontal alignment. This property is fulfilled, if the recurrence matrix is symmetric.

Sets of occurrences of the line structures described above form large-scale patterns within a
recurrence plot, influencing its topological structure. There is a distinction between the following
types of recurrence plots. Simplified representatives for each of the types are presented in
Fig. 2.3.

Homogenous: The recurrence plot contains a large number of recurrence points that are ho-
mogeneously distributed.

Periodic: Long uninterrupted diagonal lines occur with the recurrence plot, indicating a periodic
system. These lines are usually distributed regularly.

Drift: The recurrence point density decreases gradually from the LOI to the outer corners of
the recurrence plot.

Disrupted: White bands or areas appear within the recurrence plot, signalling extreme events
or drastic changes in the system dynamics.

2.1.3 Recurrence Quantification Analysis

Recurrence plots are attached with specific limitations, despite providing means to analyse the
recurrence properties of system behaviour. This includes that plots with increasing size can
hardly be depicted on graphical displays as a whole. Either, only a part of the original plot
can be displayed at once or the whole plot has to be resized. The necessary resampling of
the plot is very likely to distort patterns or create new artefacts, which may cause incorrect
interpretations [Marwan, 2011].

12
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The second major limitation is the subjective impression of the structures within a recurrence
plot. Varying interpretations are likely to be retrieved for the same plot, when presenting it
to two different researchers. To enable an objective assessment, Zbilut and Webber introduced
the quantification of the structures within a recurrence plot by defining measures based on
diagonal lines [Zbilut and Webber Jr., 1992, Webber Jr. and Zbilut, 1994]. This quantitative
analysis, which is referred to as recurrence quantification analysis (RQA), allows to capture the
complexity of the plot.

Following the initial work of Zbilut and Webber, RQA has been extended by additional
measures. Those quantitative measures were later associated with concrete semantics regarding
the recurrence properties of systems. In this thesis, the focus lies on RQA measures in the
following categories:

e Recurrence point density,

Diagonal line measures,

Vertical line measures, and

White vertical line measures.

There also exist approaches that conduct the quantitative analysis based on complex networks,
which are not discussed here [Marwan et al., 2009].

Below, RQA measures are defined based on [Marwan and Webber, 2015, pp. 13-18], [Webber
Jr. and Zbilut, 2005, pp. 46-50] and [Marwan et al., 2007, pp. 263-274], given set of N input
vectors and a corresponding recurrence matrix R. r; ; refers to a single cell of the matrix.

Recurrence Point Density

Recurrence point density, or recurrence rate (RR), is defined in Equation 2.3.

1N
RR =~ > iy (2.3)
ij=1
It captures the probability that a system recurs to a similar state, assuming that the amount of
multi-dimensional vectors approaches infinity (see Equation 2.4). Mathematically, P expresses
the probability that a cell of the recurrence matrix is assigned with the value one.

P = lim RR(N) (2.4)

N—o0
The remaining measures rely on frequency distributions of line lengths Hp (diagonal lines),
Hy (vertical lines) and Hyy (white vertical lines), referred to as histograms. They capture the
number of occurrences that can be found within the recurrence plot for each line length [. Similar
to the recurrence rate, they express the probability that a line of a certain length can be found.

13



2 Background

Diagonal Line Measures

A fundamental measure based on diagonal lines is determinism (DET) (see Equation 2.5) that
refers to the portion of recurrence points that form diagonal lines. By convention, a line consists
of at least two consecutive matrix elements of the same colour. Hence, only diagonal lines with
a length [ > d,;, where d,;, = 2 are considered regarding the quantitative analysis. It might
be desirable to select d,;, > 2 for specific scenarios [Webber Jr. and Zbilut, 2005, p.41].

DET = == (2.5)

ij=1T4j

The average diagonal line length (Dpean) refers to the mean length of all diagonal lines within
the recurrence plot with [ > d,i, (see Equation 2.6). It captures the mean time that a segment
of the trajectory is within the e-tube of another trajectory [Marwan and Webber, 2015, p. 15].

N
. LHp(l
Dmean = Zl_dmm D( ) (26)

Siva,,. Hp(l)

The mazimum diagonal line length (Dyq.) describes the maximum time that two segments
of the trajectory are close to each other (see Equation 2.7).

Dipaz = mazx{l | Hp(l) > 0} (2.7)

The entropy diagonal lines histogram (Depyr) uses the Shannon entropy of the histogram of
diagonal lines to determine the complexity of the diagonal structures within the recurrence plot
(see Equation 2.8).

N
Dentr = Z p(l) lnp(l) (28)

I=dmin

p(l) captures the probability that a diagonal line of length [ occurs (see Equation 2.9).

Hp(l)

N
> imdy Hp(1)

An additional parameter regarding the analysis of diagonal structures is the Theiler corrector
c. It states that only diagonal lines that are located on diagonals that have a distance of at least
¢ from the LOI are captured within the frequency distribution. As an example, ¢ = 1 excludes
the the middle diagonal of the recurrence matrix from the inspection regarding diagonal lines.
Conceptually, the Theiler corrector reduces the impact of tangential motion. This phenomenon
occurs when the € parameter is set too large.

p(l) = (2.9)

Vertical Line Measures

Extending the original RQA, there exist measures to quantify vertical line structures. The
laminarity (LAM) captures the amount of recurrence points that form vertical lines. The
corresponding formula is similar to Equation 2.5, despite that the vertical line length histogram

14
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Table 2.1: Summary of basic RQA measures.

Measure Category RP Density Diagonal Vertical Lines | White Verti-
Lines cal Lines

Fraction RR DET LAM -

Average line length - Dean T Winean

Maximum line length - Doz Vinaz -

Most frequent line length | - - - Winode

Entropy - Dentr Ventr Wentr

is applied. Likewise, a minimum length v,,;, is defined, excluding shorter lines. The laminarity
expresses the portion of laminar states within the recurrence plot.

The trapping time (T'T) is the vertical counterpart to Dyeqan. It refers to the mean vertical
line length and is calculated similar to Equation 2.6, using the vertical line length histogram and
Umin- Lhe trapping time reveals how long a system remains within a similar state in average.

The mazimum vertical line length (Via.) captures the longest period of time that a system
remains within a similar state. It refers to the highest index of the vertical line length his-
togram where the corresponding value is not 0. The entropy vertical lines histogram (Veptr),
which is calculated similarly to Equation 2.8, captures the complexity of the vertical line length
histogram.

White Vertical Line Measures

Measures estimating recurrence times based on the histogram of white vertical lines have first
been introduced in [Ngamga et al., 2007]. Among others, it defines the mean recurrence time
Tyrrr and the number of recurrence Nyprr, indicating the number of occurrences of the most
frequent white vertical line length.

More measures have been added based on this initial effort. This includes the relabelled
mean recurrence time Wy,cqn and the entropy of the white vertical line length histogram Wey,,
which has been first introduced as recurrence probability density entropy in [Little et al., 2007].
Apdapting Nayprr, Winode (see Equation 2.10) captures the most frequent white vertical line
length.

Winode = arg max Hyy (1) (2.10)
l

2.2 Computational Aspects of Recurrence Analysis
This section gives an overview over the computational aspects of recurrence analysis. In the

beginning, basic recurrence analysis algorithms are introduced, e.g., regarding the construction
of the binary similarity matrix. The second part refers to existing software that employs the

15



2 Background

basic algorithms to retrieve analytical results. A particular focus is on the limitations of those
tools, hampering or preventing the analysis of long time series.

2.2.1 Basic Recurrence Analysis Algorithms

A number of analytical operations has to be performed to conduct recurrence quantification
analysis. This includes:

1. Creating a recurrence matrix,

2. Detecting diagonal lines within the recurrence matrix,

3. Detecting vertical lines within the recurrence matrix,

4. Detecting white vertical lines within the recurrence matrix, and

5. Computing the RQA measures based on the individual histograms.

In the following, basic algorithms for those operations are investigated, except for the com-
putation of the specific RQA measures. The algorithms depicted are the basis of the RQA
processing and implemented by state-of-the-art software. All of those algorithms assume that
the processing is conducted in a sequential manner.

The focus of the following descriptions lies especially on examining the time complexity and
the space complexity of each algorithm, based on the total number of multi-dimensional input
vectors N. Moreover, the content of the line length histograms regarding specific recurrence
point densities is analysed.

The first four analytical operations are mapped to corresponding functions:

1. CREATERECURRENCEMATRIX(X, N, ¢)
2. DETECTDIAGONALLINES(R, N, ¢)
3. DETECTVERTICALLINES(R, N)

4. DETECTWHITEVERTICALLINES(R, N)

The first function returns the binary similarity matrix R, whereas the latter three return the
corresponding line length histograms Hp, Hy and Hyy. It is assumed that the recurrence matrix
is created based on the set of input vectors X with a size of NV and by applying a fixed-sized ¢
neighbourhood. The binary similarity matrix serves as input for the detection of line structures.
The resulting histograms are used during the computation of the RQA measures. The detection
of diagonal lines additionally relies on the Theiler corrector ¢, potentially excluding diagonals
of the recurrence matrix from the inspection.

16
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Algorithm 1 Create recurrence matrix.

1: function CREATERECURRENCEMATRIX(X, NV, €)
2 R < EMPTY2DARRAY()

3 for i <~ 1to N do

4 for j < 1to N do

5: if DISTANCE(Z;, %) < € then
6 Tij < 1

7 else

8 Tij < 0

9: end if

10: end for

11: end for

12: return R

13: end function

Create Recurrence Matrix

Algorithm 1 presents the construction of the recurrence matrix R, if a fixed radius neighbour-
hood condition is applied. The recurrence matrix is represented using a two-dimensional array,
which results in a space complexity of O(N?). Note that this uncompressed representation
can be replaced by a compressed representation (see Sect. 5.1.2). The following line detection
algorithms assume an uncompressed representation.

A nested loop traverses each matrix element, with both loop counters 7 and j running from
one to N. A distance measure is applied to each pair of multi-dimensional vectors (z;,z;).
The value 1 is assigned to the corresponding matrix element r; ;, if the distance is smaller or
equal to the similarity threshold e. Otherwise, the value 0 is assigned. Algorithm 1 has a time
complexity of O(N?), when abstracting from the detailed computations related to the pairwise
vector similarities.

Detect Diagonal Lines

Algorithm 2 depicts the detection of diagonal lines, assuming that the recurrence matrix is
symmetric. The histogram of diagonal line lengths Hp is initialised as an one-dimensional array
of size N containing zero values. A nested loop forms the body of the algorithm. The outer loop
iterates over the last N — 1 input vector indices, excluding the LOI that contains a diagonal line
of length N. Each loop index maps directly to a diagonal within the lower half of the recurrence
matrix. Given the value 7, the corresponding diagonal comprises N — (i — 1) matrix elements.
The inner loop is only executed, if the diagonal index i is greater or equal to the Theiler
corrector c. If this condition is fulfilled, the elements of the corresponding diagonal are examined
sequentially. The line length [ is incremented by one, if the current matrix element 7 ; is a
recurrence point. Otherwise, the line length histogram Hp is updated and [ is reset to zero.
The corresponding histogram element Hp(l) is incremented by two, due to inspecting only the
lower half of the symmetric matrix. The histogram is only updated, if the current diagonal line
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Algorithm 2 Detect diagonal lines.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

function DETECTDIAGONALLINES(R, N, ¢)

Hp < ZEROS1DARRAY(N)
for i < 2 to N do
if 4 > ¢ then
[+0
j 1
for k< 1to(N—(i—1)) do
if r;,; = 1 then
l+1+1
else
if [ > 2 then
Hp(l) < Hp(l) +2
end if
[0
end if
j—j+1
end for
if [ > 2 then
HD(Z) — HD(Z) +2
end if
end if
end for
if 1 > ¢ then
HD(N) <—HD(N)+1
end if
return Hp

27: end function

18
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consists of at least two recurrence points.

Diagonal lines may stretch to the outer borders of the recurrence matrix, which requires to
perform post-processing. The lengths of those lines are added to Hp, after having finished the
execution of the inner loop. The length of the middle diagonal is added only, if its index 1 is
greater than or equal to the Theiler corrector. The histogram Hp is returned in a final step.

Algorithm 2 has a time complexity of O(N?). More precisely, up to (N * (N — 1))/2 matrix
elements are traversed. The histogram Hp captures diagonal line lengths ranging from 2 to IV,
resulting in a space complexity of O(N).

Detect Vertical Lines

Algorithm 3 Detect vertical lines.

1: function DETECTVERTICALLINES(R, N)
2 Hy < ZEROSIDARRAY(N)

3 for i <+ 1 to N do

4 l+0

5: for j <+ 1to N do

6 if Tij = 1 then

7 l+1+1

8 else

9: if [ > 2 then

10: Hv(l) — Hv(l) +1
11: end if

12: l+0

13: end if

14: end for

15: if [ > 2 then

16: Hv(l) (—Hv(l)+1

17: end if

18: end for

19: return Hy

20: end function

Algorithm 3 depicts the detection of vertical lines. The line lengths are captured in the
histogram Hy,, which is initialised as an empty one-dimensional array. The central component
of the algorithm is a nested loop. The outer loop iterates over all columns of the recurrence
matrix. Fach column is referred to by a specific vector index. The inner loop iterates over
all matrix elements of the column. The line length [ is zero-initialised, before the first matrix
element of a column is evaluated. It is incremented by one, if the current matrix element r; ; is
a recurrence point. Otherwise, the histogram Hy is updated and [ is reset to zero. The vertical
lines that reach the outer border of the recurrence matrix are captured in a post-processing step,
which is performed subsequently to the execution of the inner loop.
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The algorithm for detecting vertical lines has a time complexity of O(N?), since all N2
elements of the recurrence matrix are accessed exactly once. It returns the histogram Hy that
captures the amount of lines with a length ranging from 2 to N, similar to the detection of
diagonal line structures. Hence, Alg. 3 also has a space complexity of O(V).

Detect White Vertical Lines

Algorithm 4 Detect white vertical lines.

1: function DETECTWHITEVERTICALLINES(R, N)
2 Hy < ZEROSIDARRAY(N)

3 for i+ 1 to N do

4: [+ 0

5: for j «< 1 to N do

6 if Tij = 1 then

7 if [ > 2 then

8 Hw(l) <—Hw(l)+1
9: end if

10: [0

11: else

12: l+—1+1

13: end if

14: end for

15: if [ > 2 then

16: Hw(l) < Hw(l) +1

17: end if

18: end for

19: return Hyy

20: end function

Algorithm 4 is largely consistent to Alg. 3. The detection of white vertical lines has the same
time as well as space complexity as its vertical counterpart. The two algorithms differ regarding
the operations performed, if a recurrence or non-recurrence point occurs. The functionality exe-
cuted in the corresponding branches is inverse. The variable [ refers to the length of the current
white vertical line and the histogram Hyy captures the white vertical line length histogram. The
similarities of Alg. 3 and Alg. 4 allow to merge the detection of vertical and white vertical lines
into a single algorithm, which is not depicted separately.

Histogram Density

Each algorithm detecting line structures returns one histogram, resulting in a total of three
histograms. The amount of memory consumed by each histogram depends on the number
of input vectors in two ways. First, each histogram contains N — 2 elements, since lengths
ranging from 2 to N are captured. This results in a space complexity of O(N), as stated before.
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(a) Empty recurrence matrix.

2.2 Computational Aspects of Recurrence Analysis

50 50
H, Hj,
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(b) Checkerboard  recurrence (c) Completely filled recurrence

matrix. matrix.

Figure 2.4: Histograms. Given a recurrence matrix created based on ten vectors. The histograms
for (a) having an empty recurrence matrix, (b) a recurrence matrix containing a
chequerboard pattern and (c) a completely filled recurrence matrix are presented.
The minimum length one is chosen regarding diagonal, vertical and white vertical
lines for the purpose of demonstration.
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Second, the data type employed to encode the number of line length occurrences depends on
the maximum line length N.

Figure 2.4 presents three extreme cases of recurrence plots, to elaborate on the impact of data
type selection. The highest total number of line occurrences appears regarding the chequerboard
pattern. Here, N2/2 vertical and white vertical lines of length one are detected, indicating a
quadratic relationship. As a result, a 64-bit unsigned integer value is required to encode a single
histogram element, given a set of 232 multi-dimensional input vectors.

2.2.2 State-of-the-Art in Recurrence Analysis Software

In the following, an overview of software that allows to create recurrence plots or to conduct
recurrence quantification analysis is given*. The focus lies on software that is freely available
and open source. Tools are distinguished regarding their functionality and their conformity with
respect to the algorithms presented in 2.2.1. Their computational limitations are explained in
Sect. 2.2.3, to motivate a novel computing approach for conducting RQA on very long time
series.

RQA Software / RQA X

The tool RQA Software was published by Charles L. Webber Jr. [Webber Jr., 2016]. It comprises
several command line programs to create recurrence plots and to conduct RQA. This software
is only available in compiled form and requires a MS-DOS [Microsoft Corporation, 2016] envi-
ronment. RQA X, an open source version of RQA Software for the OS X operating system, is
provided by Andrew Keller [Keller, 2016]. RQA X is written in Objective C' and has similar
functionality.

The software by Andrew Keller supports the construction of recurrence matrices based on
the fixed radius neighbourhood condition. Given an input time series, RQA X creates a matrix
containing the raw similarity values in a first step. A number of similarity measures, such as
the Euclidean and the Maximum norm, are available to compare pairs of multi-dimensional
vectors. The software supports the creation of recurrence plots and their quantitative analysis.
Regarding the latter, RQA X does only compute measures based on diagonal and vertical lines.

RQA X adheres to the algorithms presented in Sect. 2.2.1. It contains a modified version of
Alg. 1, which computes the unthresholded similarity value for each pair of vectors only once
and stores it in an intermediate matrix. The threshold condition is applied during the creation
of the recurrence plot and during the inspection of the matrix regarding line structures. RQA
X runs the computations in a single thread on a CPU. Additionally, it allows to execute batch
jobs, with each job running in a separate thread.

There is a restriction regarding the size of recurrence matrices that can be processed by RQA
X. The software is only capable of handling matrices created from up to 40,000 vectors®, pre-
sumably to avoid running out of memory. If the edge lengths of a recurrence matrix exceed
this amount, it can not be processed as a whole. It is possible to specify epochs, to compen-

*A continuously maintained list of software is available at http://www.recurrence-plot.tk/programmes . php.
5This value is hardcoded in the file RQAPrefsController.m as maximumBatchWindowSize.
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sate this restriction. An epoch is a fixed-sized window along the middle diagonal of the full
matrix [Webber Jr. and Zbilut, 2005, p. 52].

TISEAN

TISEAN, an acronym derived from time series analysis, is a collection of command line tools
that allow to analyse numerical time series. The latest version 3.0.1 comprises utilities, e.g., for
generating time series or performing noise reduction as well as conducting linear and nonlinear
time series analysis [Hegger et al., 2016].

To compute the contents of a recurrence matrix, TISEAN includes two versions of the program
recurr. One is written in C and one is written in FORTRAN. In the following, the C version is
investigated. A single or multiple time series serve as input, combined with a set of additional
parameters. The output of recurr is a list containing recurrence points, which are represented
as pairs of integer values. This list is either written to standard output or written to a file. It
becomes considerable long, given a large recurrence matrix and a relaxed threshold condition.
For this reason, recurr allows to specify a percentage of recurrence points that are considered
as output.

The current version of recurr only supports computing pairwise distances based on the fixed
radius neighbourhood condition in combination with the Maximum norm. It employs a similar
implementation of Alg. 1 as RQA X. recurr calculates only one half of the recurrence matrix
excluding the LOI. This results in N * (N — 1)/2 similarity comparisons, which corresponds to
a quadratic time complexity.

Commandline Recurrence Plots

Commandline Recurrence Plots allows to compute recurrence plots and to conduct recurrence
quantification analysis [Marwan, 2016]. Version 1.13z of the tool is available in compiled form
for a variety of platforms, including Linux, Mac OS X, Windows, HP-UX and Solaris. Access to
the source code of version 1.14, which is written in C++4-, was granted by Norbert Marwan for
the purpose of this thesis. Both versions are similar regarding the functionality implemented.
Version 1.14 supports the calculation of recurrence plot density as well as diagonal line, vertical
line and white vertical line measures.

The focus of Commandline Recurrence Plots is on the quantitative analysis. The identification
of line structures is not performed based on a recurrence matrix persisted in the memory of the
computing device. The similarity values referring to pairs of multi-dimensional vectors are
computed while sequentially inspecting the elements within the diagonals and columns of the
matrix. This allows to analyse recurrence matrices of large size. The result of the computations
is a set of measures similar to Tab. 2.1.

The algorithms employed to detect line structures correspond to Alg. 2, 3 and 4. The appli-
cation of the fixed radius neighbourhood condition allows to neglect one half of the recurrence
matrix during the detection of diagonal lines. The detection of vertical and white vertical lines
is combined into a single nested loop, which avoids traversing the same column twice.

Not persisting the recurrence matrix reduces space complexity to O(N). On the other hand,
it requires to compute each element of the recurrence matrix one and a half times on average,
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one time during the detection of vertical and white vertical lines as well as half times during the
detection of diagonal lines. In total, (N?) + (N * (N — 1)/2) similarity comparisons have to be
conducted, resulting in a quadratic time complexity.

2.2.3 Limitations of Existing Computing Approaches

All algorithms presented in Sect. 2.2.1 have a quadratic time complexity and perform the com-
putations in a sequential manner. The corresponding implementations presented in Sect. 2.2.2
serve well for time series consisting of thousands of data points. However, there is a trend
towards time series consisting of hundreds of thousands or millions of data points. This may
either results from ongoing observations, e.g., in the context of environmental series, or the in-
creased temporal resolution of observations, e.g., due to improved measurement methods. Here,
state-of-the-art software conducting recurrence analysis suffers from several limitations.

Runtime limitation: The runtime of the implementations described in Sect. 2.2.2 increases dras-
tically for very long time series, due to the time complexity of O(N?). It takes for instance
six hours and 18 minutes to quantitatively analyse a sample of the Potsdam temperature

profile®, using the Commandline Recurrence Plot software’.

Memory limitation: Computing approaches that build on persisting recurrence matrices in the
main memory are hardly able to cope with the increasing length of time series. There
is a physical limit regarding the size of the recurrence matrices that can be stored, de-
pending on the memory space available in the computing system. This limitation could
be overcome by employing disk-based algorithms. Their application would slow down the
processing heavily, due to higher access latencies. Therefore, such algorithms are out of
scope regarding this thesis.

Resource limitation: Existing computing approaches to recurrence analysis only exploit a lim-
ited part of the computing capabilities of state-of-the-art hardware platforms. Current
CPU designs use multiprocessor architectures that incorporate multiple cores on a single
silicon die. It is also possible to leverage the parallel processing capabilities of graph-
ics processors or other accelerators for general purpose computing tasks. Furthermore,
there exist computing systems that contain multiple devices or architectures. Those ad-
vancements are currently only partially considered in the context of recurrence analysis
computing (see 3).

Those limitations motivate the development of a novel computing approach to recurrence
analysis, which is presented in the following chapters. Ideally, this approach should allow to:

1. process time series of almost arbitrary size,

5The sample employed spans from 1893 to 2011, resulting in 1,043,112 data points. It captures the temperature
anomalies, which are defined as the deviation from the hourly average. The following parameter assignments
have been found optimal after investigating the anomaly series: m = 5, t = 3, € = 1.0 and dmin = Vmin =
Wmin = 2.

"The experiment was conducted on an Intel(R) Core(TM) i7-3820 CPU running at 3.60GHz. The runtime was
determined as the average of five runs.
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conduct the computations in an appropriate amount of time,
use all information provided by the input time series,
provide exact results, and

compute all quantitative measures.

Except from the last property, these constraints hold for creating recurrence plots as well as
conducting recurrence quantification analysis.

2.3

The OpenCL Framework for Heterogeneous Computing

This thesis proposes to conduct recurrence analysis by performing the processing on parallel
hardware architectures. A major goal is to enable support for devices from different vendors.
OpenCL, short for Open Computing Language, allows to exploit the parallel computing capa-
bilities of a variety of parallel computing hardware architectures, including [Khronos OpenCL
Working Group, 2015, p. 25]%:

Many-core GPU designs,
Multi-core CPU designs,
Field-programmable gate arrays (FPGAs), and

Other architectures, such as the Intel Many Integrated Core Architecture [Intel Corpora-
tion, 2016¢].

Different versions of the OpenCL specification are available, defining the following contents
of the framework:

An application programming interface (API) that allows to offload computations to com-
pute devices,

Platform-specific runtimes that provide implementations of the OpenCL API,

The programming languages OpenCL C' (since version 1.0) and OpenCL C++ (since ver-
sion 2.1),

The intermediate language SPIR-V (since version 2.1), and

A set of libraries that provide common functionality.

In the following, relevant aspects of the OpenCL framework regarding this thesis are explained
in detail.

8 A continuously updated list of supported devices is available at [Khronos Group, 2016b].
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Table 2.2: Architecture terminology. Comparison of the OpenCL terminology with the termi-
nology used by the two GPU hardware vendors NVIDIA and AMD.

OpenCL

Nvidia (since Fermi Architec-
ture)

AMD (since Graphics Core
Next 1.0)

Compute Device

GPU processor

GPU processor

Compute Unit

Streaming Multiprocessor

GCN Compute Unit

CUDA Core

Processing Element Single lane of SIMD Unit

2.3.1 Architecture

OpenCL introduces a specific architecture that abstract from the specific design of a computing
system. There is a distinction between host device and compute device. A computing system
comprises exactly one host device, typically a CPU, and one or more compute devices. Host and
compute device may be identical, for example given a computing system that contains a single
CPU. A compute device is further subdivided into one ore more compute units. Each compute
unit contains one ore more processing elements.

The mapping from the abstract OpenCL concepts, e.g., compute unit, to parts of the actual
hardware architecture is device-specific. In general, the subdivision of a compute device is in
alignment with state-of-the-art GPU design. Table 2.2 depicts the mapping for two selected
GPU architectures from the hardware vendors Nvidia [NVIDIA Corporation, 2009a, pp. 7-11]
and AMD [Advanced Micro Devices, Inc., 2012, pp. 2-10].

The OpenCL API defines an interface on how the host device communicates with the compute
devices. Each compute device is associated to a computing platform, which is vendor specific.
The platform vendor provides an implementation of the OpenCL API as well as device drivers
that enable OpenCL processing.

An OpenCL application is subdivided into host program and kernels. The host program
runs on the host device and is responsible for steering the processing on the compute devices.
The communication with the compute devices is realised via the OpenCL API. Bindings are
available for different languages, including Python [Khronos Group, 2016¢|. Among others, the
APT contains functionality to initialise an OpenCL environment, transfer data from and to the
memory of the compute devices, and execute kernels.

A kernel encapsulates the compute intensive tasks meant for parallel processing within kernel
functions, which are executed on the compute devices. Previous to OpenCL version 2.1, it was
only possible to write kernel functions in OpenCL C, a subset of the C'99 programming language.
Those kernels are compiled using a platform-specific compiler. The resulting binaries can only
be executed by a certain device.

Starting from version 2.1, kernel functions can also be implemented in OpenCL C++, a subset
of the C++14 programming language [Guillon, 2015]. OpenCL C++ code can be converted
into an intermediate representation using the language SPIR-V. This representation obfuscates
implementation details but is at the same time portable across different platforms.
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The RQA implementations referred to in the following employ functionality that is defined in
version 1.1 of the OpenCL specification [Khronos OpenCL Working Group, 2011]. This version
has been released in June 2011. The reason for relying on this outdated OpenCL specification
is that it takes time until hardware vendors release implementations for specific versions. As an
example, Nvidia enabled support for version 1.2 not before April 2015 [NVIDIA Corporation,
2015b, pp. 3-5]. Furthermore, selected Nvidia devices were considered to be compliant to
version 1.2 by the Khronos OpenCL Working Group not before September 2015.

At this point, it is reasonable to assume that OpenCL 1.1 is the most wide-spread version of
the standard. This is also due to the backwards compatibility, which is ensured until OpenCL
2.1 [Khronos OpenCL Working Group, 2015].

2.3.2 Memory Model

OpenCL introduces a specific memory model, that distinguishes between host and compute
device memory. The host memory is equivalent to the main memory of the computing system
and can only be accessed by the host program. Furthermore, the host can access specific parts
of the memory of a compute device. Other parts of the compute device memory can only be
accessed by kernel functions. The compute device memory is subdivided into:

Global memory: Available to all work-items of all work-groups.
Local memory: Available to all work-items of a work-group.
Private memory: Available to a single work-item.

Those memory regions can be accessed via reads and writes. The constant memory is a
dedicated region within the global memory that allows to store immutable data. The three
memory regions listed above are organised in a hierarchy. The global memory can be seen as
the main memory of the compute device. It is usually the largest of the three memory regions,
comprising several gigabytes. At the same time, it is associated with the highest access latency.
In contrast, the local and private memory are considerably smaller, comprising only dozens of
kilobytes, while at the same time providing considerably faster data access [Advanced Micro
Devices, Inc., 2012]. Global memory should therefore be accessed as seldom as possible.

The host can only transfer data to the global memory of the compute device. Nevertheless, it
is possible to allocate memory space within all three memory regions while executing a kernel
function. If the space allocated in private memory is to large, data spills to the global memory.
A compute device is only able to access its own memory. It can not access data that resides in
the memory of other compute devices. Exchanging information between compute devices has
to be realised via transferring data to the host memory during an intermediate step.

2.3.3 Command Execution

Each compute device is equipped with at least one command queue. The host program com-
municates with the compute devices by enqueuing commands. Among others, these commands
refer to kernel execution, transfer of data to and from the global memory of the compute device
and synchronisation between running tasks. There are several states that a command can enter:
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Queued: The command resides within the command queue.

Submitted: The command has been submitted for execution on the device.
Ready: The command is scheduled for execution.

Running: The execution of the command has started.

Ended: The execution of the command has ended.

Complete: The execution of the command and its child commands has ended (new since version
2.0).

The transitions between these states are captured within an event. The event provides profiling
information regarding the transition times, including:

Queued: None — Queued
Submit: Queued — Submitted
Start: Ready — Running
End: Running — Ended

Complete: Running — Complete (new since version 2.0)

The enqueuing of commands to a queue can be conducted blocking or non-blocking. If the
enqueuing is blocking, the corresponding function call does not return until the command has
reached the status Complete. If the enqueuing is non-blocking, the corresponding function call
returns immediately. The latter requires that the dependencies between relevant resources are
synchronised manually, e.g., that the processing of the input data starts after all relevant input
data has been transferred. It can be enforced by flushing all commands that reside within the
command queue. The corresponding function call does not return until all commands currently
in the queue have reached the status Complete. A compute device processes commands either
using in-order or out-of-order execution. The execution strategy applied depends on the concrete
OpenCL implementation.

One particular command initiates kernel execution, which takes the number of work-items as
an input argument. It is equivalent to the amount of processing tasks that should be executed
concurrently. The actual number of kernel function instances running in parallel depends on the
hardware architecture of the compute device and is usually smaller than the number of work-
items. According to the taxonomy of Flynn, there exist the following execution models [Flynn,
1972]:

Single instruction, single data (SISD): A single instruction is performed on a single data item
at the same time.

Single instruction, multiple data (SIMD): A single instruction is performed on multiple data
items at the same time.
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Multiple instructions, single data (MISD): Multiple instructions are performed on a single
data item at the same time.

Multiple instructions, multiple data (MIMD): Multiple instructions are performed on multi-
ple data items at the same time.

Modern multi-core CPUs adhere to the concept of MIMD by executing different threads
on each core at the same time. Often they are also equipped with a dedicated SIMD unit that
comprises a set of registers. Relevant technologies are for example Intel AVX [Intel Corporation,
2016b] or ARM Neon [ARM Limited, 2014]. Here, a single sequence of instructions is performed
on multiple data items that reside in the same register. SIMD units are also integrated in GPU
designs such as AMDs Graphics Core Next architecture [Advanced Micro Devices, Inc., 2012].
Nvidia proposes a concept that is referred to as single instruction, multiple threads (SIMT),
executing a single thread per work-item.

Work-items are referenced by coordinates in up to three dimensions. The actual number of
available dimensions is specific for each compute device. OpenCL refers to this d-dimensional
index as ND range. The extent of the ND range for a specific kernel is defined within the
function call that performs its enqueue.

The set of work-items is organised in work-groups, which have the same dimensionality as the
ND range. The size of the work-groups is defined prior to kernel execution and can not exceed
a maximum value that is device-specific. The creation of work-groups decomposes the full ND
range into subsets of work-items. There exist work-sizes on two different levels:

Global work-size: The total number of work-items in each dimension.

Local work-size: The number of work-items within each dimension of a work-group.

The global work-size has to be specified explicitly, while the local work-size can be determined
automatically by the OpenCL runtime. The work-sizes are kernel-specific and part of the kernel
enqueue command. The compiled kernel along with its parameterisation is referred to as kernel
instance. The execution of a kernel instance is finished, when the processing of all of its work-
groups has finished.

The set of work-groups that are ready for execution are referred to as work-pool. Multiple
work-groups of the same work-pool can run in parallel, depending on the OpenCL implementa-
tion provided by the device vendor. It may be the case that the execution of the work-groups is
serialised, processing only one work-group at a time. The OpenCL specification does not enforce
a specific order regarding the processing of the work-groups. Furthermore, it does not provide
means to synchronise the execution of work-groups.

Work-items within the same work-group are executed in parallel. Each work-item may make
independent progress. Depending on the implementation of the OpenCL runtime, only work-
items following the same path of instructions are executed at the same time. The processing
of work-items across multiple work-groups can be synchronised using barriers. The processing
beyond a barrier continues only after all work-items belonging to a kernel instance have reached
it.
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2.3.4 Basic Workflow

The basic workflow of executing an OpenCL program is separated into multiple steps. For the
purpose of simplification, the process is described for a host device and a single compute device.
First, the host program identifies the OpenCL platforms available within the computing system.
The host program creates a command queues for the compute device selected. After having set
up the OpenCL environment, the host program reads the input data from its source, e.g., a file
or a database. This data is transferred to a memory region within the global memory of the
compute devices. Assuming a dedicated GPU that is attached to a PCI Express slot, it is for
example required that the data is transferred over the PCI bus.

The host program initiates the kernel execution after the transfer of all relevant input data has
finished. The compute device conducts the computations that are captured within the kernel
function based on the parameters specified. Output data is generated by transforming the input
data or synthesising new data. The kernel processing is finished, if the related operations have
been applied to all work-items. Afterwards, the output data is transferred from the global
memory of the compute device to the host memory.
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The limitations presented in Sect. 2.2.3 hamper the analysis of very long time series, commonly
exceeding one million data points. Approaches to enable their analysis have been developed in
the recent past. They can be assigned to either one of the following categories:

o Parallelisation of the brute-force processing,
e Compaction of the input time series, and

e Approximation of the RQA measures.

Additionally, this chapter considers methods to obtain the pairwise vectors similarities using
index data structures. To the best of the knowledge of the author, those data structures have
not been applied to recurrence analysis computing in the past.

Approaches building on parallel processing address the quadratic relationship between the
length of the time series to analyse and the resulting recurrence matrix by executing similar
computations at the same time. In this way, the parallel computing resources of modern multi-
core and many-core processors are exploited. The usage of index data structures, such as grid
directories and multi-dimensional search trees, aim at reducing the number of pairwise vector
similarity comparisons conducted during the creation of the recurrence matrix.

The number of computations conducted during the analysis can be reduced by decreasing
the length of the input time series. This is achieved by applying compaction techniques, like
the temporal aggregation of measurements. Note that this approach does not consider the
modification of the brute-force operations. The last approach approximates the quantitative
measures, in contrast to the exact results retrieved by the previous approaches. In this regard,
the expensive operations to compute exact results are replaced by less expensive operations
delivering inexact results.

The general ideas behind each of those computing approaches are presented in detail. Note
that the parallel brute-force processing and the usage of index data structures are of particular
interest regarding the remaining chapters of this thesis.

3.1 Parallel Brute-Force Processing
Recurrence analysis offers several opportunities to apply concepts from parallel computing.

Again, the focus is especially on the recurrence quantification analysis. The corresponding
processing is subdivided into three basic steps:
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Table 3.1: Recurrence quantification analysis operators. For each operator, a category of atomic
tasks is defined. Each task is considered atomic, being the smallest unit of execution
without interfering with any other task of the same category. The maximum degree
of parallelism (DOP) refers to the largest amount of tasks that can be processed
simultaneously. It depends on the total number of multi-dimensional vectors V.

Operator Atomic Task Mazximum DOP
create_recurrence_matriz | Similarity —comparison and | N?
thresholding of a single pair of
input vectors.
detect__diagonal_lines Inspection of a single diago- | 2N —1 (non-symmetric) / N—1
nal of the recurrence matrix re- | (symmetric)

garding diagonal lines.

detect__vertical lines Inspection of a single column | N
of the recurrence matrix re-
garding vertical and white ver-
tical lines.

1. Creation of the recurrence matrix (create recurrence_matriz),
2. Detection of diagonal line structures (detect_diagonal_lines), and

3. Detection of vertical and white vertical line structures (detect vertical lines).

In the following, these processing steps are referred to as operators (see Tab. 3.1). The
third operator subsumes the detection of vertical and white vertical lines, since they only differ
regarding the interpretation of matrix element values. Unless stated otherwise, the term wvertical
lines hereafter refers to vertical structures consisting of ones and vertical structures consisting
of zeros within the recurrence matrix.

Creating a recurrence plot does only require to compute the pairwise input vector sim-
ilarities. To conduct RQA, it is also necessary to execute the detect diagonal lines and
detect_vertical lines operator. There are dependencies regarding the execution of the line
detection operators and the create recurrence_matrixz operator. The former require that the
recurrence matrix has been computed previously. If the binary matrix is available, it can be
inspected regarding diagonal as well as vertical lines at the same time, since there are no mutual
dependencies between the tasks of the two categories.

Regarding the parallel execution, a category of atomic tasks is specified for each opera-
tor. Each atomic task has the property of being fully independent, such that its execution
can not be interfered by any other task of the same category running simultaneously. A
create__recurrence__matriz task comprises computing and thresholding the pairwise similarity
of two vectors. Computing a single matrix element does not require to consider data regarding
any other element of the recurrence matrix. Up to N? similarity comparisons can be conducted
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concurrently, due to the quadratic structure of the matrix. This amount of atomic tasks per
operator is referred to as maximum degree of parallelism (DOP).

The maximum DOP regarding the detection of line structures is selected such that it depends
on the number of diagonals or columns within the matrix. The inspection of a single column is
fully independent from any other column of the recurrence matrix. The evaluation of the matrix
elements within the same column is performed using a sequential scan, to identify vertical and
white vertical lines. As a result, data has only to be shared among elements belonging to the
same column. This similarly applies to the inspection of diagonals regarding line structures.

Up to N vertical line detection tasks can be executed simultaneously, which matches the
number of columns of the recurrence matrix. At most N — 1 or 2N — 1 diagonal line detection
tasks have to be executed, depending on whether the recurrence matrix is symmetric or not.
This is equivalent to the maximum DOP of the operator.

Line detection tasks need to update the corresponding line length histograms to enable the
computation of the RQA measures. The access to the histograms has to be synchronised to
prevent race conditions between multiple tasks of the same category running in parallel.

3.1.1 Using Multi-Core CPUs

The algorithms presented in Sect. 2.2.1 are largely based on nested loops. These loops iterate
over the elements of columns and diagonals of the recurrence matrix. Each column or diagonal
is represented by an iteration of the outer loop. An iteration is referenced by a specific value of
the corresponding loop variable.

As stated before, there are no dependencies between the processing of different columns and
diagonals, which enables to conduct different iterations of the outer loops simultaneously. Using
the OpenMP [OpenMP Architecture Review Board, 2016] framework, it is possible to chunk the
set of outer loop iterations and distribute them across multiple computing resources, such as
CPU cores. It implements a fork-join-model that is based on shared memory processing [Barney,
2016].

OpenMP distinguishes between two types of threads, one master thread and multiple worker
threads. The latter are created on demand by the master thread and are executed in parallel,
running within the same operating system process. Using OpenMP, parallel regions are specified
within the source code by adding compiler directives. The master thread forks a set of worker
threads that execute the corresponding code segment in parallel. When the execution within all
worker threads has reached the end of the parallel region, a join operation is performed and the
master thread continues. To exchange data, the worker threads access shared main memory.

OpenMP mainly addresses the parallel computing capabilities of multi-core CPUs. Starting
from version 4.0, OpenMP allows to offload computations to accelerators, such as GPUs [OpenMP
Architecture Review Board, 2013, Cramer et al., 2012]. However, the compiler support by hard-
ware vendors is limited, for example in the GNU Compiler Collection (GCC). Viable support
is only enabled for the Intel Xeon Phi platform [APPLIED PARALLEL COMPUTING LLC,
2015]. Although approaches to support Nvidia devices exist, according implementations are
still rather immature [Beyer and Larkin, 2016, p. 51]. OpenACC is a competitive framework
to OpenMP, providing similar functionality to offload computations to accelerators [OpenACC-
standard.org, 2016]. The project recently received broader audience by AMD announcing its
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support [Advanced Micro Devices, Inc., 2015].

Since the support of accelerators regarding both approaches improved only recently, according
features are out of the scope of this thesis. Note that employing the OpenMP framework is only
one possibility to enable parallel processing on CPUs. It is considered here, since it allows to
adapt existing implementations without great effort and is actively used in practice.

Commandline RQA Multithreaded

A first approach introducing parallel processing strategies to recurrence analysis has been con-
ducted by Commandline RQA Multithreaded'. The source code is written in C++ and extended
by OpenMP compiler directives.

Commandline RQA Multithreaded focusses explicitly on conducting "RQA for very long time
series"?. This is achieved without persisting the recurrence matrix. All similarity values are
computed while inspecting the diagonals and columns of the recurrence matrix. The software
allows to apply the fixed radius neighbourhood condition in combination with a set of metrics.

The processing is structured as a nested loop, as depicted in Alg. 5. The outer loop iterates
over all input vector indices, using the variable i. Each value of i identifies a specific diagonal and
column of the matrix. As an example, the value one refers to the middle diagonal of the matrix
and its first column. The functions to inspect a specific diagonal or column of the recurrence
matrix require:

the set of input vectors (X),

o the number of input vectors (N),
o the Theiler corrector (c),

o the loop iteration index (i), and

o the line length histograms (Hp or Hy and Hy).

The line inspection functions either iterate over all elements of the diagonal or column referred
to by i. Thus, each iteration of the outer loop triggers the execution of two inner loops.

Parallel execution is achieved by inserting the OpenMP pragmas parallel and for front of
the outer loop. This splits the set of diagonals and columns regularly into multiple chunks. Each
chunk is processed within a separate worker thread. A single thread iterates over all indices i
of its chunk. Distributing the chunks across multiple compute resources, e.g., CPU cores, leads
to processing multiple columns and diagonals of the recurrence matrix simultaneously. For this
reason, the access to the line length histograms has to be synchronised.

!The tool is developed by Norbert Marwan and has not yet been made publicly available. Access to the source
code of version 1.1 has been granted for the purpose of this thesis.
2A comment in the source code file.
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Algorithm 5 Processing as conducted by Commandline RQA Multithreaded.

1: function CONDUCTRQA (X, N, ¢)
2: Hp < ZEROSIDARRAY(N)
3 Hy < ZEROSIDARRAY(N)
4 Hyy < ZEROSIDARRAY(N)
5: for i <~ 1to N do
6
7
8

INSPECTDIAGONAL(X, N, ¢, i, Hp)
INSPECTCOLUMN(X, N, i, Hy, Hy)
end for
9: return COMPUTERQAMEASURES(H p, Hy, Hy)
10: end function

3.1.2 Using Many-Core GPUs

Initial efforts to conduct recurrence analysis on hardware architectures beside CPUs have been
presented in [Rybak, 2010]. It proposes to offload the parallel computations of pairwise vector
similarities onto a graphics processor. The results are transformed into binary values using a
similarity threshold and stored within the GPU memory as a recurrence matrix. The maximum
degree of parallelism applied corresponds to the create_recurrence__matrixz operator introduced
before.

Evaluation results presented in [Rybak, 2010] indicate that the usage of GPUs is not rea-
sonable for recurrence matrices constructed from only a few thousand input vectors. Here,
a GPU implementation may be much slower than a CPU implementation. It is stated that
the compilation of the GPU code is the dominant factor regarding the processing of small re-
currence matrices. Hence, the application of a GPU computing is appropriate for recurrence
matrices with increasing size. Additionally, [Rybak, 2010] states that it is possible to conduct
the quantitative analysis by inspecting diagonals and columns of a recurrence matrix regarding
line structures in parallel.

There are several limitations attached to the approach presented in [Rybak, 2010]. First, it
does only allow to process recurrence matrices that fit in the memory of a GPU, rendering the
analysis of very long time series impossible. This corresponds directly to the memory limitation
described in Sect. 2.2.3. Second, the author uses an implementation based on the CUDA frame-
work [NVIDIA Corporation, 2015a], which does only provide access to Nvidia GPUs. There is
only few information given regarding the properties of this parallel implementation. Important
details are missing, e.g., which storage format for the input and output data has been chosen.
In addition, the approach for conducting RQA has only been sketched roughly and has not been
implemented.

The implementation used to conduct the runtime analysis has not been made publicly avail-
able, preventing the verification of the runtime results. The main focus of the runtime analysis is
on comparing a compiled pure CPU implementation with an implementation, whose GPU code
is compiled during runtime. This leads to incomparable results due different overhead costs.
This effect is further enhanced by only providing information regarding the GPU employed, not
the CPU.
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[Rybak, 2010] acknowledges the problem of memory limitation. The experiments conducted
either use recurrence matrices that fit in the main memory of the computing system or the
memory of the GPU. Recurrence matrices with a maximum size of 16,3842 elements regarding
the CPU and 10,000? elements regarding the GPU are chosen, rendering a direct comparison
impossible.

In addition to [Rybak, 2010], [de Lima Prado, 2012] considers the quantitative analysis of
recurrence matrices in the context of image analysis using GPUs. [de Lima Prado, 2012] fo-
cusses solely on the computation of the recurrence point density, as presented in Sect. 2.1.3.
It comprises an evaluation that compares the performance of a CUDA implementation using
different parameterisations with a C implementation extended by OpenMP pragmas that either
runs on one or eight CPU cores. The experiment captures the runtime of computing the single
RQA measure with increasing size of the recurrence matrix. The results indicate significantly
lower runtimes regarding the CUDA implementation.

The considerations of [de Lima Prado, 2012] are attached with specific limitations. Although it
addresses RQA, the publication does not provide information on how to compute the quantitative
measures based on line structures. In addition, it does not give any insights on the properties of
the CUDA or the C implementation used during the performance evaluation. The experiment
presented does only consider small recurrence matrices constructed from hundreds of input
vectors. [de Lima Prado, 2012] does furthermore not mention, which hardware architectures
have been applied for evaluation. This renders an objective assessment of the runtime results
impossible.

The approaches presented in [Rybak, 2010] and [de Lima Prado, 2012] demonstrate the ap-
plicability of GPU computing to the problem of recurrence analysis. Nonetheless, they miss
to provide implementation details, important aspects regarding the processing, in particular
the computation of the quantitative measures based on line structures, as well as a profound
performance analysis. The CUDA framework used in both cases to leverage the computing
capabilities of GPUs does only support devices of a single hardware vendor. Employing this
framework would restrict the execution to a limited set of architectures. As a result, the OpenCL
framework for heterogeneous computing is chosen regarding this thesis, to implement recurrence
analysis in a parallel manner.

3.2 Index Data Structures

The computing approaches presented in the previous sections rely on computing the binary
similarity of all pairs of multi-dimensional vectors. This exhaustive strategy conducts N simi-
larity comparisons for each of the N multi-dimensional vectors, which results in a computational
complexity of O(N?). The quadratic complexity can be overcome by employing index data struc-
tures, which organise the set of input vectors in a specific manner. The algorithms to identify
neighbouring objects using those index data structures allow to prune the number of similarity
comparisons conducted and therefore have a lower computational complexity.

Index data structures are applied to recurrence analysis as follows. The input vectors reside in
m-~dimensional space, with m being the embedding dimension. The neighbourhood of a vector
is either defined by a fixed threshold € or a fixed number of neighbours. A specific property of
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recurrence analysis is that the set of query points is identical to the set of data points.

The problem of neighbour search in multi-dimensional space has been studied widely in the
past decades. A vast number of methods that solve the problem for point data, as required
by recurrence analysis, exist [Samet, 2006]. Prominent methods can be consolidated into two
classes:

e Grid directories, and

o Multi-dimensional search trees.

Both classes of methods rely on partitioning the multi-dimensional space into subspaces.
Given a multi-dimensional object, only those subspaces are inspected that might contain its
neighbours. The set of subspaces that have to be inspected regarding neighbours depends on
the partitioning strategy and the neighbourhood condition applied.

The partitioning into subspaces is attached with specific limitations. First, it requires to
preprocess the set of input vectors to assign each of them to a specific partition, which increases
the computational effort. The assignment highly depends on the distribution of the vectors in
multi-dimensional space. Second, the number of partitions created correlates with the embed-
ding dimension. Increasing the value of m results in a larger number of subspaces. This restricts
the applicability of index data structures in general only to small embedding dimensions. The
latter is commonly referred to as curse of dimensionality [Bellman, 2015, p. 94].

In the following, an overview over grid-based methods and tree-based approaches is given.
The general concepts behind each of these categories are explained. This also includes the
corresponding neighbour search algorithms.

3.2.1 Grid Directories

The following explanations are based on [Samet, 2006, pp. 130-163]. Grid directories were
originally designed for the storage of data on hard disk drives. The partitions of the multi-
dimensional space are referred to as grid cells. Each data point is assigned to a specific grid cell.
A grid cell is defined by enclosing grid lines, where each grid line refers to specific dimension.
There exist several grid types, which differ with respect to the distribution of grid lines within
the multi-dimensional space:

Cartesian grid: The grid lines are placed at equal distance within all dimensions. The distance
between two adjacent grid lines of the same dimension is one.

Uniform grid: The grid lines are placed at equal distance within all dimensions. The distance
between two adjacent grid lines is less or greater than one.

Regular grid: The grid lines are placed at equal distance within a particular dimension. The
distance applied varies between the different dimensions.

Irregular grid: The grid lines are placed at arbitrary distances within a particular dimension.
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Figure 3.1: Grid types.

38




3.2 Index Data Structures

0 T 0 T 0 T
0 X 8 0 x 8 0 X 8

(a) Ly norm (b) Ly norm (¢) Loo norm

Figure 3.2: e-neighbourhood search using a uniform grid. The example refers to a two-
dimensional space with a fixed e. The impact of the distance measure selected
to the set of overlapping grid cells is demonstrated using three specific L, norms.
The number of grid cells that have to be inspected to determine the neighbours of
the query point ¢ increases with growing p.

Figure 3.1 depicts an example in two-dimensional space for each of the four grid types. The
grid cell to which a data point belongs can be inferred from its coordinates. Given at least a
regular grid, each coordinate value is divided by the equidistance of the corresponding dimension.
The irregular grid requires that the distances of the grid lines are added up cumulatively or to
perform a lookup in a separate data structure.

The density of data points in the grid cells depends on their distribution in the multi-
dimensional space as well as the grid type employed. As an example, an uniform distribution
of data points in combination with a uniform grid leads to roughly a constant number of data
points per grid cell. Given an arbitrary distribution of data points, the alignment of the grid
lines can be optimised, such that each grid cell contains almost the same number of data points.
This procedure can be motivated by allocating a fixed size of memory for each grid cell.

Neighbour Search

The overall goal regarding neighbour search using a grid data structure is to visit only those grid
cells that may contain neighbours of a query point given. Applying a fixed radius condition, a
virtual e-neighbourhood can be formed around a query point. Only those grid cells have to be
inspected regarding relevant data points, which overlap with this neighbourhood. The extent of
the neighbourhood depends on the distance measure applied. Figure 3.2 visualises the impact
of selected L, norms that are relevant in the context of recurrence analysis (see Sect. 2.1.2).
The search for £ nearest neighbours, which resembles the fixed amount of nearest neighbours
condition in the context of recurrence analysis, begins with identifying the grid cell in which
the query point is located. This cell is referred to hereafter as source cell. First, the source cell
is inspected regarding neighbours of the query point. The neighbour search is finished, if the
source cell already contains the k closest data points. If not, the search is expanded to the grid
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Figure 3.3: k-Nearest neighbour search using a uniform grid. The probability that an object
belongs to the k£ nearest neighbours of query point ¢ decreases with growing distance.
The decreasing probability is depicted using paling colouring of the grid cells. Grid
cells having the same colouring belong to the same probability level.

cells adjacent to the source cell.

The probability that a grid cell contains at least one of the k neighbours decreases with
increasing distance from the query point. This property is demonstrated in Fig. 3.3 using a
2-dimensional uniform grid. Each ring of grid cells around the source cell is hereafter referred
to as probability level. Strategies based on these probability levels have been presented in [Piegl
and Tiller, 2002] and [Franklin, 2005]. Both approaches traverse the probability levels in order
of increasing distance and inspect all cells of a probability level. In [Di Angelo and Giaccari,
2011], an approach is presented that uses the distance between the query point and the borders
of its source cell to exclude parts of probability levels from neighbour search.

3.2.2 Multi-Dimensional Search Trees

The following explanations are based on [Samet, 2006, pp. 14-89]. A search tree partitions
the multi-dimensional space into subspaces and organises them in a hierarchical structure. Each
subspace may be partitioned further into a set of sub-subspaces, and so on. There exist a variety
of tree types, including:

o the range tree [Bentley, 1979, Bentley and Maurer, 1980],
o the quad tree [Finkel and Bentley, 1974], and

o the k-d tree [Bentley, 1975].

Each of those types has specific advantages and disadvantages, which have been discussed
widely in the according literature. For each of those types, there exist variations of the original
tree definitions, modifying their structure and behaviour. We have chosen the k-d tree as
one representative that has several advantages but also limitations that are explained in detail
hereafter.
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K-d Tree

The k-d tree is a binary tree data structure, where each non-leaf node has exactly two children,
the low son and the high son. The labelling of the children is in alignment with the partitioning
strategy of the k-d tree, where each tree level corresponds to a dimension of the multi-dimensional
space. Given a dimension d, all nodes stored within the sub tree for which low son serves as
root have smaller values regarding d than the parent node of low son. This concept is applied
vice versa to the high son.

There are several strategies for assigning a dimension to a specific tree level. Regarding this
thesis, it is assumed that the dimensions are assigned in ascending order of their index, beginning
at the root level. If the k-d tree contains more levels than dimensions available, the assignment
strategy is executed in a rolling fashion. This procedure has been initially proposed in [Bentley,
1975].

Concrete implementations of the k-d tree may differ for example regarding the semantics
of non-leaf nodes, which can either be elements of the set of data points or points created
artificially. The latter may only specify the value that partitions the set of data points within
one dimension. In addition, there may also be different strategies for assigning dimensions to
tree levels.

The usage of k-d trees for recurrence analysis requires to consider the following two phases:

e the construction, and
e the neighbour search.

Both phases are described below.

Construction. A k-d tree can be created using two different methods, either:

1. by inserting data points sequentially, or
2. by inserting the set of data points as a bulk.

In the following, both methods are examined for the case that data points serve as leaf and
non-leaf nodes.

Regarding the sequential approach, the first data point inserted serves as root node. Data
points inserted afterwards require to traverse additional tree levels. As stated before, each level
is mapped to a specific dimension. Traversing a level, the attribute value of the node currently
visited is compared to the corresponding value of the data point to insert. The traversal is
continued either in the left or right subtree, depending on the result of the comparison. The
traversal stops, if a leaf node of the tree is reached. The new data point is either inserted as low
son or high son of the leaf node.

The sequential insertion method is suitable for data sets that grow during the process of
creating the k-d tree. However, the order in which data points are inserted influences the
tree balancing. As a result, the structure of two k-d trees may differ completely, although the
same set of data points is captured. Moreover, the sequential method does not guarantee fully
balanced trees, which is an essential property for conducting neighbour search efficiently.
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Balanced k-d trees can be created by inserting the complete set of data points as a bulk. This
requires that all data points are known prior to the tree construction. An approach commonly
used is the median-based tree construction. The median either refers:

1. to the value range regarding the dimension considered at a specific tree level, or

2. to the number of data points to organise in a subtree.

The tree construction starts with the complete set of data points. The data point considered
to be the median of the full data set is assigned as the root node. The remaining nodes are
assigned either to the left or right subtree of the root node. The determination of the median
is applied likewise to the set of data points assigned to both subtrees. This process is continued
until all leaf nodes of the k-d tree are determined.

The decision regarding the assignment of a data point to a subtree differs between the two
median-based approaches. The first one computes the median of the attribute values of the
dimension considered at the current tree level. The data point containing the value closest to
the median value may be selected as root node of the subtree. A data point is assigned to the
left sub-subtree, if its attribute value is smaller than the median value. If not, it is assigned to
the right sub-subtree.

The second method refers to the size of the set of data points to organise in a subtree. Here,
the data points are ordered regarding their attribute value of the dimension considered at the
current tree level. The data point that is located at the median index of the ordered set serves
as the root node of the subtree. The data points with a lower index are assigned to the left sub-
subtree. The data points with a higher index are assigned to the right sub-subtree. Figure 3.4
demonstrates the application of this method using a synthetic example.

Approaches based on bulk insertion are suitable for recurrence analysis, since all N input
vectors are known prior to the analysis. This allows to create balanced k-d trees, e.g., using
median-based approaches, enabling efficient neighbour search.

Neighbour Search. The k-d tree subdivides the multi-dimensional space into a set of partitions,
similar to grid files. Given a query point, only those partitions have to be inspected, which
potentially contain neighbours. Again, there is a distinction between e-neighbourhood and fixed
amount of nearest neighbours. The search using a fixed radius inspects all subtrees that intersect
with the e-neighbourhood. Depending on the similarity measure applied, the set of subtrees to
inspect may vary (see Fig. 3.5).

The Ly.-norm creates a rectangular neighbourhood around the query point, as depicted in
Fig. 3.5c. It has been shown that the worst case complexity of finding neighbours within
such rectangular regions is O(d * N'='/¢ + k) [Lee and Wong, 1977], where d refers to the
dimensionality of the search space, N to the number of data points and k£ to the amount of
neighbours found. However, the complexity of an e-neighbourhood search within a balanced k-d
tree is O(logaN + k).

The size of the set of data points N has to be at least (2! — 1), to partition the multi-
dimensional space in all of the d dimensions. This condition holds under the assumption that
data points also serve as non-leaf nodes.
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Figure 3.4: Balanced k-d tree. The tree is based on the data points from Tab. 3.2. It in con-
structed using a median-based approach referring to the number of data points to
organise in a subtree. This results in a fully balanced binary structure. Data points
serve as leaf and non-leaf nodes. The split dimension on each tree level is indicated
on the left side of the k-d tree.

Table 3.2: Data points. The table contains the data points from which the k-d tree in Fig. 3.4
is constrcuted. The data points reside in two-dimensional space.

’ Label x Y
A 0.60 4.40
B 1.20 1.70
C 1.60 5.70
D 2.40 0.40
E 3.50 3.30
F 3.60 2.20
G 4.20 0.90
H 5.00 7.00
I 5.30 4.50
J 6.10 3.90
K 6.50 7.40
L 6.60 4.80
M 7.20 1.20
N 7.20 5.50
O 7.70 6.40
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Figure 3.5: K-d tree e-neighbourhood. The k-d tree from Fig. 3.4 is depicted in a two-
dimensional coordinate system. The dotted lines represent the one-dimensional split
planes. The data points located on such lines are the root nodes of the corre-
sponding subtrees. The data point E serves as query point q. The extent of the
e-neighbourhoods around ¢ influences the set of subtrees that have to inspected
regarding potential neighbours.

3.3 Compaction of Time Series Data

There have been made attempts to circumvent the limitations described in Sect. 2.2.3 by com-
pacting the time series data that serves as input for the recurrence analysis. A common approach
is lowering the temporal resolution of the input series by using average values, e.g., daily aver-
ages instead of hourly measurements. This considerably reduces the amount of input data, but
also causes a loss of information.

In [Chen and Yang, 2012], an approach is presented that compacts the input time series by
applying wavelet decomposition. The input signal is decomposed into two parts, one referring
to high frequencies and the other to low frequencies. Each of those decomposed signals has
roughly half of the length of the original signal, depending on the wavelet function applied. The
computational effort can be reduced roughly by a factor of four, if the recurrence analysis is
performed only on one of the decomposed signals. This effect can be amplified by decomposing
the decomposed signals again.

This approach has several issues. First, the application of the wavelet decomposition leads to a
loss of information, since the full frequency band of of the input signal is separated. This property
may also serve in favour of the analysis, since it allows to remove noise. Second, there exist
numerous wavelet functions with different characteristics, which requires a sensible selection.
Third, the most relevant frequency band has to be identified, requiring a prior inspection.
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3.4 Approximation of RQA Measures

Instead of computing the exact values of the quantitative measures, approximate approaches
may be applied. The goal is to reduce the runtime for retrieving the analytical results. This
is either achieved by conducting the same operations but enforcing a limited precision or by
conducting less expensive computations. The first branch refers to the application of data
types that encode a value using a reduced number of bits, e.g., using 16-bit floating point
numbers instead of representing values using 32 bits [Konsor, 2012], thus enabling an increase
in computational throughput.

The second branch comprises several approaches relying on less expensive computations, in-
cluding for example the activation of relaxed math operations using the -c1-fast-relaxed-math
option during the compilation of OpenCL kernels (see Sect. 2.3). A completely different approach
is proposed in [Schultz et al., 2015] to approximate the recurrence rate and diagonal line based
measures such as determinism. The basic steps conducted are:

1. Concatenating input vectors to capture sequences of system states,
2. Counting the number of occurrences of each unique sequence, and

3. Discretising the state space by applying a regular grid.

As explained in Sect. 2.1, a diagonal line within the recurrence plot states that a system
evolves similarly in two different epochs over a number of consecutive time steps. In the most
extreme case, the evolution may be identical in both epochs, referring to the same sequence
of unique system states. The approach introduced in [Schultz et al., 2015] captures sequence
instances by concatenating input vectors. These instances are represented by matrices with a
dimensionality of d-by-v, with d being the dimensionality of the input vectors and v being the
length of the sequences. Figure 3.6 depicts a concatenation example for d = 2 and v = 3.

According to [Schultz et al., 2015], the number of instances of each unique sequence correlates
with the number of diagonals of length v. It is proposed to sort the list of d-by-v matrices, so
that all instances referring to the same unique sequence are stored consecutively. The sorted list
of instances is scanned to create a histogram that captures the amount of instances per unique
input vector sequence. It allows to calculate the number of pairwise prozimities regarding a
sequence length v (PP(”)). It is defined as the sum of squares regarding the number of instances
per unique sequence.

It is shown that the recurrence rate is equal to PP, assuming that the fixed radius neigh-
bourhood condition in combination with € = 0 is applied. It is also proven that it is possible
to calculate the exact value for determinism using pairwise proximities for different values of v.
Here, the same assumptions as for the recurrence rate are applied.

The space in which the multi-dimensional vectors reside is discretised to approximate PP
for € > 0. Each sequence M; is divided element-wise by the parameter §, which is commonly set
to 0 = 2e. The division results are furthermore rounded off. This aligns the individual vectors
to the structure of a uniform grid. This reduces the number of potential unique sequences and
increases the number of instances per unique sequence, if the vectors are not already aligned.
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Figure 3.6: Input vector concatenation. The concatenations depicted refer to the recurrence
vectors I1 to 11 from Fig. 2.1. Each of the matrices M; to My is a concatenation
of three consecutive vectors, e.g., M concatenates ¥y, o and Z3. M and My refer
to the same unique sequence since M; = My. The matrices Ms to Mg are instances
of different unique sequences. In total, this results in eight unique input vector
sequences.

[Schultz et al., 2015] claims to drastically reduce the runtime for computing the recurrence
rate as well as diagonal line based measures. As an example, the calculation of the approximate
pairwise proximities for a particular time series consisting of one million data points allegedly
consumes only 0.19 seconds. That is a runtime reduction of more than five magnitudes compared
to analysing the almost equally long anomaly series of the Potsdam temperature profile using
the Commandline Recurrence Plots software (see Footnote 6 in Sect. 2.2.3). It is stressed that
the MATLAB implementation used to conduct the experiment is only capable to process vectors
with a dimensionality of one, which simplifies the reconstruction of the state sequences as well
as their ordering. Hence, the evaluation results can hardly be generalised.

Appendix A presents an implementation based on Python 2.7 that conducts the approxima-
tion of the measures RR and DET for input vectors of arbitrary size. The approximate pairwise
proximities are computed by calling the function pp_approx (see Line 35). Each matrix, rep-
resenting a instance of a state sequence, is hashed using the function hash_matrix in Line 48.
This function (see Line 30) transforms the matrix into its character representation and maps it
to an integer value. The unique hash values are determined by calling the function unique from
the Python package NumPy (see [NumPy developers, 2014b]). This function returns the unique
entries of an array as well as the number of their occurrences based on sorting (see [NumPy de-
velopers, 2014a]). The sorting is by default conducted using the quicksort algorithm, as proposed
by [Schultz et al., 2015].

Executing the Python implementation on the anomaly series of the Potsdam temperature
profile takes 61.47 seconds on average®. This is a runtime reduction of still more than three
magnitudes. Table 3.3 compares the exact values for the RQA measures recurrence rate and

3The optimal parameter assignments for the analysis of the anomaly series previously described have been
employed. The experiment was conducted on an Intel Core i5-4288U CPU running at 2.60GHz. The time
elapsed refers to the average of five executions.
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Table 3.3: Exact vs. approximate RQA results. The values depicted refer to the anomaly series
of the Potsdam temperature profile from 1893 to 2011. An embedding dimension
m = b, a time delay t = 3 and a similarity threshold ¢ = 1.0 in combination with the
Lo norm are applied.

’ RQA Measure | Ezxact ‘ Approximate Deviation (%)
RR 0.12089 0.19817 63.92
DET 0.93575 0.93694 0.12

determinism with their approximations. There is deviation of more than 60% regarding the
recurrence rate. The approximate value for determinism is almost identical to the exact result.

The authors of [Schultz et al., 2015] state that the mean error regarding the measures com-
puted increases with growing values of € as well as growing minimum lengths of diagonal lines.
Mean errors of more than 80% could be observed. They miss to provide means to assess the
quality of the approximate RQA results, given an arbitrary analysis scenario. Hence, the ap-
proximation approach may serve as an initial estimation but can hardly replace the exact results.
Furthermore, the approach does not provide information regarding vertical and white vertical
line based measures.
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This chapter introduces a novel computing approach to recurrence analysis, which is in the
following referred to as Scalable Recurrence Analysis (SRA). It overcomes the limitations of
existing computing approaches described in Sect. 2.2.3, including the runtime limitation, the
memory limitation and the resource limitation. This is achieved by applying concepts from
parallel processing on two levels.

On the top level, the processing of a recurrence matrix is subdivided into a set of sub matrices.
This division enables to process multiple sub matrices using multiple compute devices at the
same time. The concept divide and recombine is applied to organise the analytical processing.
Carryover buffers, which are additional global data structures, are used to share data regarding
line lengths among adjacent sub matrices. A custom sub matrix processing order guarantees that
the line structures are detected correctly. The combination of those concepts ensure scalability
by being able to employ multiple compute devices simultaneously. These concepts are addressed
in the first section of this chapter.

The bottom level parallelisation is heavily based on the concepts presented in Sect. 3.1. Here,
the computations related to RQA are subdivided into multiple operators. For each operator,
a single type of atomic task is defined, so that the processing of each task is fully independent
of any other task of the same type. This allows to conduct the processing of every operator in
a massively parallel manner. Depending on the maximum degree of parallelism, scalability is
achieved by being able to distribute each set of tasks among a varying number of parallel cores.
The mapping of the low level parallelisation to OpenCL is described in the second section of
this thesis, whereas the concrete execution pipeline is the topic of the third section.

In the following, the two parallel processing strategies are described in detail. Contrary to the
computing approaches presented before, SRA enables the processing of very long time series in a
runtime-efficient manner. This is achieved by leveraging massively parallel computing hardware,
in particular GPUs. SRA allows to analyse all data captured in a time series, without any loss
of information. The computations performed deliver exact results regarding all quantitative
measures presented in Tab. 2.1.

4.1 Divide and Recombine

Existing computing approaches to recurrence analysis either rely on materialising the full re-
currence matrix within the memory of a compute device or do not persist the matrix at all.
The first option restricts the size of recurrence matrices processable according to the amount of
memory available. The latter allows to compute recurrence matrices of arbitrary size at the cost
of having to compute matrix elements multiple times. SRA divides the recurrence matrix into
multiple sub matrices to eliminate both restrictions. Each sub matrix is processed individually
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by a single compute device, providing intermediate results. They are merged into global data
structures that serve as input for the computation of the final results.

SRA can be treated as a specific instance of the concept divide and recombine (D&R), which
was initially presented in [Guha et al., 2012]. Its origin lies in the problem of applying statistical
methods to large data sets. Processing those data sets as a whole using traditional computing
approaches is inefficient. Furthermore, the aggregation of input data would likely cause a loss
of information. D&R is subdivided into:

o Computations to create subsets (.9),
o Analytical computations within subsets (W), and

o Recombination computations between the subset-specific outputs (B).

The S computations split the input data set into subsets. D&R distinguishes several divi-
sion strategies, e.g., using variable-based conditions. The W computations perform the actual
analytical tasks on the subdivided data. D&R suggests that each subset is processed without
transferring information between subsets. As an additional criterion, the analytical computa-
tions applied should be embarrassingly parallel, requiring a large number of independent tasks.
The B computations are responsible for condensing the individual subset results. There exist
multiple recombination strategies, including:

o analytical recombination, and

e visual recombination.

The first performs analytical operations on the recombined subset results. The latter refers
to a detailed visualisation of the analytical subset results.

4.1.1 Division Strategy

A key aspect of applying D&R to recurrence analysis is separating the full recurrence matrix
into multiple sub matrices (see Fig. 4.1), which is achieved by applying an uniform grid to the
recurrence matrix (see Sect. 3.2.1). The axes of the matrix are chunked at multiples of a fixed
number of input vectors k, with £ < N and N being the total number of input vectors. This
value represents the edge length of the sub matrices. Similar concepts have already been applied
for example to the problem of nearest neighbour search [Kato and Hosino, 2009].

As a consequence, sub matrices with a uniform extent of k x k are created. If (N mod k) #
0, sub matrices with different extents appear at the outer borders of the recurrence matrix.
This includes sub matrices with an extent of (N mod k) x k, k x (N mod k) and (N mod k) x
(N mod k), which are hereafter referred to as residual sub matrices.

The analytical computations performed on each sub matrix match the operators defined in
Sect. 3.1. There is a large number of independent tasks that can be be executed simultane-
ously for each operator, which corresponds to the requirements of D&R. The original concept
assumes that there is no communication between the individual analytical operations. This
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Figure 4.1: Recurrence matrix division. The recurrence matrix from Fig. 2.2 is divided into
multiple sub matrices. ¢ and h refer to two sub matrix indices. An uniform grid
with the edge length k = 4 is applied. This results in sub matrices with an extent
of 4 x 4,4 x 3,3 x4 and 3 x 3. The highlighted line structures d, v and w stretch
over multiple adjacent sub matrices. Each of those structures is split into two partial
lines.
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constraint has to be relaxed in the context of RQA, due to the interdependencies between the
create__recurrence__matriz and the line detection operators. Furthermore, there has to be an
exchange of data between sub matrices, regarding the detection of diagonal and vertical lines.

4.1.2 Carryover Buffers

Line structures may cross the borders of adjacent sub matrices (see Fig. 4.1), affecting the
quantitative analysis. This makes it necessary to share data regarding line lengths between
sub matrices. Individual histograms are created for each sub matrix by scanning its diagonals
and columns sequentially. If the inspection reaches the borders of a sub matrix, the current
line lengths are stored within carryover buffers. After having finished the processing of a sub
matrix, the buffer values are used as an input to detect line structures within the adjacent sub
matrices.
There exists a separate buffer for each of the three line types:

(I) Diagonal lines carryover buffer (Cp),
(IT) Vertical lines carryover buffer (Cy ), and

(ITT) White vertical lines carryover buffer (Cyy).

The first is employed within the detect diagonal lines and the second and third within the
detect__wvertical_lines operator. The size of each buffer corresponds to the amount of line de-
tection tasks that can at most be executed simultaneously. For each of those tasks, a separate
carryover buffer element is provided. Hence, the number of elements per carryover buffer is
equal to the maximum degree if parallelism regarding the corresponding line detection operator:

Cp: 2N — 1 (non-symmetric) / N — 1 (symmetric)
Cy: N
Cw: N

Note, there is a linear correlation between the number of input vectors N and the size of the
carryover buffers. Their functionality is demonstrated in Fig. 4.2. Here, only those carryover
buffer elements are displayed, which are relevant for the specific line detection tasks.

The data type selected for representing carryover buffer elements depends on the maximum
line length, which is equal for diagonal and vertical lines. This is due to the quadratic structure
of the recurrence matrix. Note that the number of elements per carryover buffer does only
depend on the number of global line detection tasks. This allows to create sub matrices of
arbitrary extent, without having to modify the structure of the carryover buffers.

The carryover buffers are designed to be space efficient. Assuming a time series consisting
of one million data points, less than 16 MiB are required to store all three carryover buffers.
It is assumed that every carryover buffer element is represented by a 32-bit integer value. The
vertical and white vertical carryover buffer each consume ~ 4 MiB. The diagonal lines carryover
buffer consumes either ~ 8 MiB or ~ 4, depending on the presence of matrix symmetry. In
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Figure 4.2: Carryover buffer functionality. The same partitioning scheme as depicted in Fig. 4.1
is used. The inspection of a single (a) diagonal and (b) column of the recurrence ma-
trix is demonstrated. Each inspection corresponds to a single detection task within
the full matrix. These tasks are referenced by the input vector £2. The diagonal line
detection task considers to the carryover buffer element Cp(Z2), whereas the verti-
cal line detection task refers to Cy (Z2) and Cyy (Z2). The global detection tasks are
separated into multiple subtasks, due to the uniform grid. Each subtask, highlighted
by a dotted arrow, belongs to a specific sub matrix. The indices (a) I. to V. and (b)
I. to II1I. indicate all relevant sub matrices as well as their processing order. The
content of the carryover buffer elements after processing each sub matrix is captured

on the right side of the recurrence plots.
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(a) Diagonal Carryover Buffer Segment (b) Vertical Carryover Buffer Segments

Figure 4.3: Carryover buffer segments. The relevant segments within the carryover buffers Cp,
Cy and Cyy for the sub matrix with the indices ¢ = 1 and h = 0 are highlighted. The
diagonal carryover buffer C'p refers to a symmetric recurrence matrix and therefore
contains only N — 1 elements.

contrast, storing the full recurrence matrix consisting of 10'2 elements would require ~ 954 GiB,
assuming a byte is used to encode a single binary similarity value. Representing each similarity
value by a single bit, the size could further be reduced to = 119 GiB. Due to their small size, all
three carryover buffers can be stored simultaneously within the memory of a computing system.
Access to memory layers with a higher latency, e.g., hard disk drives, can therefore be avoided.

Each sub matrix maps directly to a consecutive segment within all of the three carryover
buffers (see Fig. 4.3). This allows to transfer only those segments to a compute device that
are relevant for processing the current sub matrix, which further reduces the amount of data
transferred. The starting point of a each carryover buffer segment depends on the values of the
indices g and h. The size of each segment is determined by the extent of the corresponding sub
matrix.

4.1.3 Sub Matrix Processing Order

A carryover buffer provides one element either for every global diagonal or vertical line detection
task. To ensure correct global RQA results, it is required to process the sub matrices in a specific
order. The dependencies between sub matrices regarding the detection of diagonal and vertical
lines differ. Based on Fig. 4.2, two sub matrix processing orders are defined:

Diagonal processing order: Given an arbitrary sub matrix S, 5 with ¢ > 0 and A > 0. It is
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Figure 4.4: Sub matrix processing levels. The processing levels are defined based on the diagonal
processing order. Each sub matrix is assigned to exactly one processing level. Each
level is identified by a specific index, which increases with greater distance from the
point of origin.

required to process the sub matrices S, 5—1, Sg—1,, and Sy_1 1, before processing Sy .

Vertical processing order: Given an arbitrary sub matrix S, with ¢ > 0 and A > 0. It is
required to process the sub matrix Sy j,_1, before processing Sy 1.

Note that sub matrices referenced by one or more negative indices do not exist. The diagonal
processing order is more restrictive compared to the vertical one, by requiring the fulfilment of
additional constraints. The latter also allows to detect vertical and white vertical lines correctly,
when applying the diagonal processing order.

Based on the diagonal processing order, a set of processing levels is defined (see Fig. 4.4).
Each sub matrix is assigned to a exactly one level, which is referred to by an ascending index.
Each line detection subtask within a sub matrix does not have share data with another subtask
of any other sub matrix belonging to the same processing level. Hence, it is guaranteed that all
line detection subtasks of the same processing level are fully independent of each other.

The introduction of processing levels allows to compute multiple sub matrices belonging to
the same level in parallel. This is an important requirement, since it enables to distribute sub
matrices across multiple compute devices. The amount of sub matrices contained by a specific
processing level determines its maximum degree of parallelism. It varies between 1 and [N/k],
depending on the specific level.
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4.1.4 Diagonal Lines Symmetric Workload Balancing

As stated in Sect. 2.1.2, a recurrence matrix may be symmetric along the middle diagonal. This
requires to inspect only less than one of its halves regarding diagonal lines and multiplying the
content of the corresponding histogram by two. This half only a subset of sub matrices, resulting
in three sub matrix types (see Fig. 4.5a):

o sub matrices that do not have to be inspected regarding diagonal lines,
o sub matrices that have to be inspected partially regarding diagonal lines, and
¢ sub matrices that have to be inspected fully regarding diagonal lines.

These different types lead to an unbalanced distribution of workload regarding the detection of
diagonal lines, which causes drastic runtime variations between sub matrices. Those variations
likely create computational bottlenecks, if the processing of sub matrices is distributed across
multiple compute devices.

As an example, assume two compute devices A and B that have the same computational
capabilities. Assume further that each of those devices starts to process one of two equally-
sized sub matrices at the same time. Compute device A processes a sub matrix that is not
inspected regarding diagonal lines, whereas compute device B processes a sub matrix that is
fully inspected regarding diagonal lines. A finishes its processing, while B is still running. A
has to wait for B to finish its processing, assuming that there are no other sub matrices of the
current processing level left (see Sect. 4.1.3). This leaves the compute resources of A unused in
the meantime. The impact of this unbalanced processing increases with increasing number of
compute devices as well as increasing size of the sub matrices.

To reduce the waiting time of compute devices, SRA introduce a processing scheme that
distributes the amount of work regarding the detection of diagonal lines more evenly across all
sub matrices (see Fig. 4.5b). It exploits the property that each sub matrix that belongs to the
lower half of the recurrence matrix and that contains no part of the LOI has a peer within the
upper half that is mirrored along the middle diagonal. This means that parts of the global
diagonals of the lower half are also present in sub matrices that belong to the upper half. The
order of those parts is identical to the ordering in the lower half, which ensures the correct
detection of line structures. As a result, each sub matrix may contribute to the detection of
diagonal lines by inspecting its lower half. This approach also satisfies the diagonal processing
order.

4.1.5 Recombination Strategy

Individual line length histograms are computed for each of sub matrix. Such a local histogram
stores lengths of up to NV, since lines may cross the borders of adjacent sub matrices. If such a line
ends within a sub matrix, the corresponding element within the local histogram is incremented.
Otherwise, the corresponding carryover buffer element stores the intermediate length. The
contents of the three local histograms are merged into the global frequency distributions Hp,
Hy and Hyy, after having finished the processing of a particular sub matrix. The merging is
synchronised across the sub matrices belonging to the same processing level.
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Figure 4.5: Distribution of work regarding the detection of diagonal lines in symmetric recur-
rence matrices. The extent of the recurrence plot displayed as well as its partitioning
refers to Fig. 4.1. The contents of the plot are not displayed, for the purpose of sim-
plification. It is assumed that the underlying recurrence matrix is symmetric. The
matrix elements evaluated during the inspection of diagonal lines are highlighted
with a dark overlay. In (a), the sub matrix Sp 2 is not inspected regarding diagonal
lines at all, whereas in Ss all matrix elements have to be evaluated. This leads
to an unbalanced distribution of work between the sub matrices. Nonetheless, S
contains mirrored parts of the full diagonals contained by S, denoted as dashed
arrows in (b). This property is exploited by the balanced processing scheme, where
So,2 and Sp o contribute evenly to the detection of diagonal lines by inspecting both
of their lower halves. Note that the LOI does not have to be inspected, because it
contains a single diagonal line.
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The carryover buffers Cp, C and Cyy contain the lengths of the lines that reach the outer
borders of the full recurrence matrix, after having investigated all sub matrices. These lengths
have to be added to the global histograms in a post-processing step. The set of quantitative
measures is computed based on the final states of the global histograms. This is the last step
in the RQA processing pipeline using D&R.

4.2 Mapping to OpenCL

As mentioned earlier, an essential goal of SRA is to enable RQA processing on massively parallel
hardware architectures. For this purpose, the OpenCL framework is employed, whose founda-
tions have been laid out in Sect. 2.3. OpenCL distinguishes between host device and compute
devices. Regarding SRA, the host device steers the processing of the individual sub matrices on
the set of compute devices. Among others, this includes:

o the transfer of data to and from compute device memory,
e the launch of the parallel analytical tasks on the compute devices, and

o the maintenance of the global histograms and carryover buffers.

The host device is furthermore responsible for assigning sub matrices to compute devices.
Fach sub matrix is processed by a single compute device. Only sub matrices that belong to
the same processing level are processed simultaneously. Considering a single sub matrix, the
compute device executes the tasks of the create recurrence matriz as well as the two line
detection operators. The kernel functions implement the analytical operations that have to be
conducted by a single atomic task. Depending on the operator, a work-item corresponds either
to:

o the similarity computation of a single pair of input vectors,
o the inspection of a single diagonal of a sub matrix regarding diagonal lines, or

¢ the inspection of a single column of a sub matrix regarding vertical lines.

The OpenCL framework is well-suited in the context of SRA, due to several reasons. First,
SRA allows to leverage the parallel computing capabilities of massively parallel hardware archi-
tectures, because recurrence analysis can be separated into large number of independent tasks.
Second, only those input vectors have to be transferred to a compute device that are required to
process the current sub matrix. The same holds for the corresponding segments of the diagonal
and vertical carryover buffers. In contrast, the sub matrices materialised consume vast parts of
the compute device memory, depending on their edge lengths. Nonetheless, their storage does
not require communication with the host device. The histograms of diagonal and vertical line
lengths are comparatively small. They are transferred from compute device memory to the main
memory of the host device, together with the updated carryover buffer segments. Subsuming,
the amount of data to transfer between host and compute devices is fairly small, while the
intermediate results stored in the compute device memory are comparatively large.
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4.3 Execution Pipeline

The SRA execution pipeline building on OpenCL is depicted in Fig. 4.6. It focuses on the
interaction between the host device and the compute devices. In the following, the different
segments of the SRA execution pipeline are explained in detail, including initialisation, execution
of analytical operators and final processing.

4.3.1 Initialisation

Initialisation (see step 2 to 4 in Fig. 4.6) is conducted exclusively by the program that runs on
the host device. Among others, it comprises:

o the discovery of the OpenCL environment,
e the retrieval of the time series data,
o the creation of the global data structures, and

e the generation of abstract sub matrix descriptions.

At first, the available OpenCL platforms within the computing system are discovered. Hav-
ing selected a specific platform, the user can further narrow the set of compute devices used
during the processing. One OpenCL command queue is created per compute device selected.
A compiled version of all kernel functions is created for each device. Compiling the kernel code
only once during the initialisation phase reduces the computational overhead.

The host program reads time series data from its source, which serves as input for the RQA.
Time series are usually stored within a single file. The length of the time series in combination
with the embedding parameters are the basis for creating the global carryover buffers as well
as the line length histograms. Furthermore, they are used to generate abstract sub matriz
descriptions (see Fig. 4.7). They comprise indices referring those input vectors that represent
the starting points of a sub matrix. In addition, a description contains the edge lengths regarding
the X and Y dimension. The abstract descriptions are stored within an array of queues, with
each queue representing a processing level. The array of queues is processed in sequential order.
The descriptions within a single queue are processed in parallel. If the processing of the last
description of the current queue has finished, the processing of the subsequent queue begins.

The host program creates a host thread for each compute device employed. The communi-
cation between the host device and the compute devices is realised solely via those threads.
They iteratively dequeue sub matrix descriptions from the current queue. Note that all host
threads access the current queue simultaneously, which requires synchronisation. Each sub ma-
trix is processed in a single loop iteration within the host thread. It steers the execution of the
analytical operators on the compute device.

4.3.2 Execution of Analytical Operators

The analytical operators applied to a single sub matrix are processed sequentially (step & to
19). OpenCL also offers the opportunity to process multiple operators at the same time. This
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Figure 4.6: OpenCL execution pipeline. The communication between the actors is depicted
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in a sequence diagram according to version 2.5 of the Unified Modeling Language
(UML) [Object Management Group, Inc, 2015]. First, the host program discovers
the OpenCL devices available and creates matching threads that run on the host
device. Each host thread interacts with exactly one compute device and is structured
as a loop. It iteratively obtains the next sub matrix description from the queue and
steers the execution of the analytical operators on the corresponding compute device.
Finally, the host program post-processes the diagonal and vertical carryover buffers
and computes the RQA measures, after all sub matrices are processed. Note that
the acronyms CRM, DVL and DDL refer to the creation of the recurrence matrix,
the detection of vertical lines and the detection of diagonal lines.
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Figure 4.7: Abstract sub matrix description. Each sub matrix description comprises the indices
of the input vectors representing its starting points (id, and id,) and its edge lengths
regarding each of the dimensions X and Y (el, and el,).

is achieved by interleaving the execution of the set of work-groups belonging to different kernel
instances. Interleaved processing changes the order but not the amount of work conducted. More
severe, it hampers valid time measurements. Profiling events do not capture the cumulative time
of processing all related work-groups. They rather deliver the time interval between starting
to process the first work-group and having finished the processing of the last one of a kernel
instance (see Fig 4.8).

The process steps 5 to 19 are executed for each sub matrix. It comprise the execution of the
three analytical operators presented in Sect. 3.1. The execution of the host threads terminates,
if those operators have been applied to all sub matrices (step 20).

Create Recurrence Matrix

The execution of the create recurrence__matriz operator (step 5 to 7) is a precondition for
executing the vertical and diagonal line detection tasks. The host thread allocates regions
within the global memory of the compute device regarding the storage of the relevant input
vectors and their pairwise similarities. The host thread transfers the recurrence vectors from
host to compute device memory. The allocated region representing the sub matrix may be
initialised on demand, e.g., with zeros.

The kernel instance computing the binary similarities is executed, after the initialisation of
the compute device memory is completed. A work-item is created for each of the pairwise
similarity comparisons. Work-items belonging to the same work-group are executed in parallel.
The work-group size is specified by the OpenCL runtime, determining the degree of parallelism.
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Figure 4.8: Sequential vs. interleaved processing of work-groups. The execution times of sets
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of work-groups belonging to the two kernel instances 7 and 2, with three groups
per instance, is depicted. The top of the figure displays the sequential processing,
whereas the bottom displays the interleaved processing. The total execution time
is equal in both cases. Note that the time delta between starting the first work-

group and finishing the last work-group is larger regarding the interleaved execution:
At) > Aty and Aty > Ats.
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The similarity values are written to the matching cells in the global memory of the compute
device.

The creation of the sub matrix does not require to perform any post-processing after the execu-
tion of the operator is completed. The reference to the memory region storing the binary similar-
ity values is kept by the host thread. It is passed as a parameter to the detect_wvertical lines and
detect__diagonal_lines operator.

Detect Vertical Lines

Executing the detect_vertical _lines operator (step 8 to 13) inspects the binary similarity values
regarding vertical and white vertical line structures. The host thread allocates space within the
global memory of the compute device for the line length histograms and the relevant carryover
buffer segments. Note that vertical and white vertical lines are detected within the same kernel
instance, since both rely on inspecting columns of the sub matrix. As a result, vertical and
white vertical lines within a column are detected using a single work-item.

Initially, the host thread copies the carryover buffer segments belonging the current sub matrix
from the host memory to the global memory of the compute device. The values stored in those
segments are used as input for detecting vertical and white vertical lines. The local histograms
of vertical and white vertical lines are initialised with zeros before the detection of lines starts.

The kernel instance encapsulating the vertical line detection tasks is executed, after the ini-
tialisation of the carryover buffer segments and the histograms is completed. Each work-item
inspects the elements of a single column of the sub matrix sequentially. The amount of occur-
rences of each line length is updated concurrently. The access to the histograms is synchronised,
since multiple columns are inspected at the same time. The access to the carryover buffer
elements does not have to be synchronised, since each carryover buffer element belongs exclu-
sively to a single work-item. Similar to the create recurrence matriz operator, the amount of
work-items executed in parallel is determined by the OpenCL runtime.

The execution of the detect_wvertical lines operator is finished, if the execution of its last work-
item is finished. Afterwards, the host thread copies the modified carryover buffer segments from
the global memory of the compute device to the host memory. The local modifications are used
to update the global carryover buffers. Note that this access does not need to be synchronised,
since only sub matrices belonging to the same processing level are processed simultaneously.

Following, the host thread retrieves the filled histograms of vertical and white vertical line
lengths from compute device memory. The content is added to their global counterparts. This
access has to be synchronised, since multiple host threads may perform an histogram update
simultaneously. This restriction can be avoided by keeping separate histograms for each compute
device employed. The latter requires to merge the device-specific into global histograms in a
post-processing step.

Detect Diagonal Lines

The procedure of executing the detect_diagonal_lines operator (step 14 to 19) is similar to
the detection of vertical lines. This includes the allocation and initialisation of memory regions
for segments of the diagonal carryover buffer and the local diagonal line length histogram. A

63



4 Scalable Recurrence Analysis (SRA)

work-item referring to the kernel instance encapsulating the detection of diagonal lines inspects
a single diagonal of the sub matrix. Multiple diagonals are inspected simultaneously, likewise
to the detection of vertical lines. The corresponding degree of parallelism also depends on the
OpenCL runtime. The synchronisation constraints regarding the update of the local and global
data structures are identical to the detect wertical lines operator.

4.3.3 Final Processing

After all sub matrices have been processed, the carryover buffers contain the lengths of the lines
that reach the outer borders of the full recurrence matrix. Those line lengths have to be captured
in the global histograms, to ensure valid RQA results. For this purpose, the final content of
the carryover buffers is used to update the histograms in a post-processing step (step 21). This
is conducted by the host program, after all host threads have terminated. Based on the final
state of the vertical, white vertical and diagonal histogram, the RQA measures as presented in
Sect. 2.1.3 are calculated by the host program (step 22). The host program terminates, after
all measures have been computed.
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Chapter 4 describes scalable recurrence analysis, a novel computing approach to recurrence
analysis based on the concept divide and recombine. Whereas the previous chapter focussed on
steering the processing of a set of sub matrices, this chapter addresses the computations per-
formed to analyse the contents of a single sub matrix. Chapter 3 introduced several computing
approaches to improve the performance of RQA computations, in particular:

1. parallel brute-force processing, and

2. index data structures.

The index-based approaches are only employed regarding the construction of the binary simi-
larity matrices, whereas the parallel brute-force processing is applied to all analytical operators.

Given an arbitrary algorithm, it is usually assumed that the performance characteristics of
a corresponding implementation are optimised. This claim can not be made in the context of
heterogeneous computing. OpenCL provides functional portability but does not guarantee per-
formance portability. Identical OpenCL kernels can be compiled and executed on different hard-
ware architectures. Compute devices may adhere to varying execution models and likely have
different parallel computing capabilities. Hence, an implementation most probably has varying
performance characteristics on different computing platforms. This trade-off has been widely
acknowledged in the scientific literature [Rul et al., 2010, Pennycook et al., 2013, Zhang et al.,
2013]. A first study reflecting the performance variations of several parallel brute-force RQA
implementations using OpenCL on different hardware platforms has been presented in [Rawald
et al., 2015].

The following two sections describe the design space of implementing RQA using parallel
brute-force processing (see Sect. 5.1) and index data structures (see Sect. 5.2). The design
dimensions considered, such as input data format, are heavily based on research in the field of
database technology. A set of concrete realisations is investigated for each of dimension. Here,
the focus lies especially on describing the concepts instead of examining concrete source code.
Note that the set of dimensions is not claimed to be complete. It rather serves as an entry point
for additional design space explorations.

Again, there is no claim of developing a single best-performing implementation. The goal
is rather to come up with a pool of implementations having different characteristics regarding
the execution of the analytical RQA operators. The performance of those implementations is
evaluated in Chap. 6, employing different analytical workloads and hardware architectures.
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5.1 Parallel Brute-Force Processing

Parallel brute-force processing means that all pairwise inout vector similarities are computed,
which are captured in a sub matrix. The inspection of the binary similarity matrix regarding di-
agonal and vertical line structures is also conducted in a parallel fashion. The design dimensions
considered in this section are:

e input data format,

e recurrence matrix representation,
o similarity value representation,

o intermediate results recycling, and

e recurrence matrix materialisation.

Specific realisations regarding each of those dimensions are investigated in detail, including
their impact to the RQA processing. It is stressed that a major contribution of this thesis is the
adaption of those concepts to the requirements of recurrence analysis.

5.1.1 Input Data Format

Time series are the basis for recurrence analysis. The following descriptions assume that time
series data resides in the main memory of a computing system. A given time series is embedded
into multi-dimensional space with an dimensionality of m, leading to the reconstruction of N
input vectors. Note that the embedding dimension is equal for all vectors.

Memory Storage Formats

A common technique to capture a set of vectors, where each vector component refers to specific

variable, is the tabular structure. Regarding recurrence analysis, a table consists of N rows and

m columns. Each row refers to the data of a single input vector, whereas each column represents

a specific component of the m-dimensional space. Table 5.1 presents a concrete example.
There exist two common formats to store tabular data in memory (see Fig. 5.1):

Row-wise: All data values belonging to a single row are stored consecutively in memory. The
individual rows are stored sequentially (see Fig. 5.1a).

Column-wise: All data values belonging to a single column are stored consecutively in memory.
The individual columns are stored sequentially (see Fig. 5.1b).

Each storage format has proven its applicability in different scenarios. The row-wise storage
format adheres to transactional use cases, accessing all data related to a single instance of an
entity at once. This type of workload is dominated by a high number of write operations.
The column-wise storage format has been designed to improve the responsiveness of analytical
workloads, such as aggregations over a single column a database table [Stonebraker et al., 2005].
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Table 5.1: Input vector components. The eleven input vectors from Fig. 2.1 are captured in a
table. Each vector consists of two components. The values regarding each component
refer to a consecutive segment within the input time series. The values with dark
hightlights refer to an identical sequence of values in the two component columns.

’ Input Vector ‘ 15t Component ‘ 2" Component
1 0.0 1.0
Zo 0.7 0.7
T3 1.0 0.0
Zy4 0.7 -0.7
T 0.0 -1.0
Tg -0.7 -0.7
X7 -1.0 0.0
Zs -0.7 0.7
T 0.0 1.0
Z10 0.7 0.7
Z11 1.0 0.0

These workloads focus on the inspection of single columns and require a high amount of read
accesses.

Several database management systems supporting column-wise storage have emerged in the
recent past. This includes disk-based systems such as C-Store [Stonebraker et al., 2005] and
in-memory databases such as SAP HANA [Férber et al., 2012]. The relevance of column-wise
storage formats is furthermore illustrated by the Apache Parquet project [Kestelyn, 2013].

Regarding RQA, both storage formats presented require to transform the input time series,
which is represented by an one-dimensional array. Such transformations are attached with
specific computational costs. Data values have to be read either one or multiple times and
written to a different memory location to implement a particular storage format. In addition,
the amount of memory occupied by the row-wise and column-wise format is m* N data elements,
with m being the dimensionality and N being the number of input vectors.

The transformation costs as well as the increase in memory consumption can be eliminated
by leveraging the properties of input vector reconstruction using the time delay method (see
Sect. 2.1.1). Vector components refer to data values from the input time series. A single data
value is used as a component of up to m input vectors, leading to duplicate storage. This thesis
introduces the overlapped column-wise memory storage format to reduce the memory footprint
(see Fig. 5.1c).

Input vectors are compounds of m values referring to succeeding points in time with a tem-
poral offset of £. This property enables to store the multi-dimensional vectors in columnar
fashion without having to perform any transformation. A sub series of the input time series
is equivalent to two segments the component columns, as demonstrated in Tab. 5.1. As pre-
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(a) Row-wise. The data values belonging to a single row are stored consecutively. The rows are stored
in ascending order of the input vector index.

- - - - - - - - - - - -

xl,l x2,1 X3,1 X4,1 XS,I Xll,l Xl,Z x2,2 X3,2 X4,2 XS,Z XIl,Z

(b) Column-wise. The data values belonging to a single column are stored consecutively. The columns
are stored in ascending order of the component index.
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(c) Overlapped column-wise. Segments of the input time series map directly to segments of the component
columns, assuming that the input vectors are extracted using the time delay method. Those columns
are stored virtually in overlapping fashion. The dark highlights indicate the overlapping segments,
similar to Tab. 5.1. In this concrete example, single data values are part of two input vectors.

Figure 5.1: Memory storage formats. The figure refers to the tabular structure presented in
Tab. 5.1. Note that the column that stores the input vectors indices is omitted. A
data value is referenced by 7, ., with v referring to the input vector index and ¢ to
the component index.

sented in Fig. 5.1c, the columns are already stored virtually in an overlapped manner when
using the time series representation. This overlapped column-wise storage format consumes the
same amount of memory as the input time series, since its original structure is not modified.
There are no additional costs attached to implement this storage format, due to the absence of
transformations.

In addition, the overlapped column-wise storage format complements well with the division of
the recurrence matrix into sub matrices. Segments of the input time series map directly to the
edges of sub matrices, which simplifies data extraction. In the following, the overlapped column-
wise storage format is preferred over the column-wise storage format, due to its advantages in
the context of recurrence analysis.

Discussion

The column-wise storage format is favoured regarding data access by several parallel hardware
architectures. The labelling of the column-wise storage format varies between the different
vendors:

AMD: Coalesced access patterns [Advanced Micro Devices, Inc., 2013b, pp. 6-16]
Intel: Structure of arrays (SOA) [Intel Corporation, 2011, p. 11]

Nvidia: Coalesced memory access or non-strided memory access [INVIDIA Corporation, 2009b,
pp. 13-18]
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Reasons for favouring the column-wise storage format stem from the parallel execution and
data acquisition model. The execution model usually adheres to SIMD or SIMT, which per-
form the same operation of different data elements at the same time. Among others, this
affects reading data from the memory of the compute device during the execution of the
create__recurrence__matriz operator in the context of RQA. The impact of choosing a particular
storage format on the memory access is depicted in List. 5.1 and List. 5.2 as OpenCL C code.
Note that the input vectors are stored using a different format in each case. Furthermore, ¢
refers to the time delay parameter.

Listing 5.1: Row-wise Data Access.

for (uint i = 0; i <m; ++i)

{
}

input_vectors[(vector_id * m) + i];

Listing 5.2: Overlapped Column-wise Data Access.

for (uint i = 0; i < m; ++i)

{
}

input__vectors[vector_id + (i * t)];

The code in both listings iterates over the m components of a input vector that is identified
by a specific index. Multiple work-items access the same component of multiple vectors with
ascending indices simultaneously, while performing the same loop iteration. The corresponding
data elements are transferred from the global memory of the compute device to its L1 cache,
using cache lines.

A cache line contains a consecutive segment of data from global memory. To minimise the
amount of cache lines transferred, the number of values usable by the work-items currently
executing the read operation has to the maximised. This portion of usable values is referred to
as cache line saturation (see Fig. 5.2). Optimising this saturation has been found to be a key
driver regarding the performance of OpenCL kernels.

5.1.2 Recurrence Matrix Representation

The previous considerations of this thesis assume that sub matrices are stored in the global
memory of the compute devices. Those sub matrices can be represented in different ways. A
property to distinguish the suitability of a particular representation is the filling rate of a sub
matrix. In general, there is the distinction between dense and sparse matrices. A dense matrix
contains a high amount of non-zero values, referred to as recurrence points in the context of
recurrence analysis. Contrastingly, a sparse matrix contains a low amount of non-zero values.
Representations for both types of matrices are explained in the following. Dense matrices
are commonly encoded using an uncompressed representation, while sparse matrices offer the
potential to apply compression.
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(b) Overlapped column-store layout.

Figure 5.2: Cache line saturation. The example refers to the storage formats presented in
Fig. 5.1. The saturation regarding the row-store and overlapped column-store lay-
out is compared to each other. A cache line with a size of eight data elements
is applied for the purpose of demonstration. The usable data elements regarding
the processing of the first vector component are indicated by vertical arrows. The
overlapped column-store layout delivers a saturation of 100%, whereas the row-store
layout delivers a saturation of only 50%.

Uncompressed Matrix Representation

The general approach to represent dense recurrence matrices is to store the value of every matrix
element explicitly. Each recurrence and non-recurrence point is represented by a one or a zero.
The offset for accessing a particular matrix element in the global memory of the compute device
can be directly inferred from its X and Y indices. Similar to the representation of input data, a
row-wise or column-wise storage format can be applied. The first one stores all values of a single
row of the matrix consecutively. The latter stores all values of a single column of the matrix
consecutively.

The importance of coalesced memory access regarding the storage of the input data has been
highlighted in Sect. 5.1.1. The same holds for the representation of the recurrence matrix. A
matrix element is referenced by a two-dimensional index. By convention, the X coordinate
is the first part of the index, whereas the Y coordinate is the second part. The OpenCL
runtime iterates over the first part of the index before iterating over the second part [Intel
Corporation, 2011, p. 29]. Data elements accessed in successive iterations therefore have to
be stored consecutively to ensure coalesced memory access. As a result, the row-wise storage
format is advantageous, as presented in Fig. 5.3.

Compressed Matrix Representation

Compressed matrix representations assume that a high proportion of matrix elements is zero.
The amount of memory consumed by the matrix is reduced, by storing only information about
non-zero matrix elements. The coordinate format [Saad, 2003, p. 92] is a simple representation
to compress sparse matrices. It stores the X and Y coordinate as well as the value of each
non-zero matrix element. A single matrix element is therefore represented by three numbers.
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Figure 5.3: Uncompressed representation of the recurrence matrix. The recurrence vectors &y
to 11 depicted in Fig. 2.1 serve as an example. Each matrix cell corresponds to a
pair of the eleven input vectors, where the first vector refers to its X and the second
to the Y coordinate. The recurrence matrix is represented using a row-wise storage
format to ensure coalesced memory access.

The size of the datatype to represent the position of a non-zero element depends on the extent
of the recurrence matrix. The size of the datatype to store its value depends on the range of
values.

Compressed Sparse Formats. The compressed sparse row (CSR) and the compressed sparse
column (CSC) format are extensions of the coordinate format [Saad, 2003, pp. 92-93]. Both
formats comprise three data structures. Each is represented by an one-dimensional array.

AA: stores the values of the non-zero matrix elements.
JA: stores the column indices (CSR) or row indices (CSC) of all non-zero matrix elements.

IA: stores the start index of each row (CSR) or column (CSC) within the AA and JA array.

The AA array is omitted in the context of recurrence matrices, since each non-zero matrix
element has the value one. The [ A array contains N + 1 values, independent of the sparseness of
the recurrence matrix, one value regarding the start index of each row (CSR) or column (CSR)
and a boundary value at the end. The amount of values stored in the JA array depends on the
sparseness of each row (CSR) or column (CSC).

Detection of Vertical Line Structures using the CSC Storage Format. Changing the in-
memory storage format for representing the recurrence matrix requires to modify the algorithms
for detecting vertical and diagonal line structures. The algorithms presented in Sect. 2.2.1
assume that an uncompressed matrix representation is applied. Note that the corresponding
modifications are an important contribution of this thesis to the research field of recurrence
analysis computing.

The CSC storage format is favourable regarding the sequential detection of vertical line struc-
tures, since indices of recurrence points within one column are stored consecutively. They are
represented by a consecutive segment within the JA array. Note that in the following it is
assumed that the row indices within this segment are in ascending order. Two successive row
indices within this segment are part of the same vertical line, if they have a difference of one.
They frame a white vertical line, if the difference is larger than one. The boundaries of each

71



5 Analytical Operator Variants
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Figure 5.4: Compressed sparse matrix. The compressed matrix refers to the recurrence plot from
Fig. 2.2. Its representations using the CSR and CSC format are identical, since the
underlying matrix is symmetric. Only the first two rows (CSR) or columns (CSC)
are displayed. All elements of the AA array have the value 1, since the recurrence
matrix stores binary information. The JA array stores the original vector indices,
starting at one. The I A array stores the start indices of the rows (CSR) or columns
(CSC), starting at zero.

column are captured in the I A array. The algorithm for detecting vertical lines within the CSC
storage format is depicted in Alg. 6, which is an adaption of Alg. 3.

The arrays JA and I A as well as the total number of input vectors IV is passed as parameters
to the function DETECTVERTICALLINESCSC. The algorithm contains a single nested loop. The
outer loop iterates over all columns of the recurrence matrix. The inner loop iterates over the
row indices of the current column that are stored within the consecutive segment of JA. The
boundaries of the column are stored in the I A array. The variable [st refers to the last row
index evaluated. If the distance between the last and the current row index is equal to one, the
current line length is incremented by one. If not, the current line length is used to update the
corresponding histogram element.

Algorithm 7 depicts the detection of white vertical lines using the CSC format. The pa-
rameters of the function DETECTWHITEVERTICALLINESCSC are identical to the function for
detecting vertical lines. Algorithm 4 is adapted to inferring the positions of non-recurrence
points implicitly. The first row index of a column segment corresponds to the length of the
first white vertical line. The variable flg indicates, whether it has already been evaluated. The
ordering of the inner and outer loop as well as the semantics of the variable [st are equal to
Alg. 6.

Algorithm 6 and 7 both evaluate each element of the matrix only once, resulting in a time
complexity of O(N?). They furthermore do only require to maintain an histogram of size N,
leading to a linear space complexity depending on the amount of input vectors N. This can be
likewise mapped to the concept of sub matrices.

Detection of Diagonal Line Structures using the CSC Storage Format. The uncompressed
matrix storage formats guarantee that each matrix element can be accessed with a fixed offset
based on its coordinates. The CSC storage format does not adhere to this property. The
information, whether a specific row index is contained within a column can only be obtained by
inspecting the specific segment in the JA array.
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Algorithm 6 Detect vertical lines using the CSC format.

1: function DETECTVERTICALLINESCSC(JA, A, N)
2 Hy < ZEROSIDARRAY(N)

3 for i < 1 to N do

4 Ist <+ 0

5: [+ 0

6 for j < IA(i) to TA(i + 1) do
7 if JA(j) —Ist =1 then

8 l<—1+1

9: else

10: if [ > 2 then

11: Hv(l) — Hv(l) +1
12: end if

13: l+1

14: end if

15: Ist < JA(7)

16: end for

17: end for

18: return Hy

19: end function

Algorithm 7 Detect white vertical lines using the CSC format.

1: function DETECTWHITEVERTICALLINESCSC(JA, A, N)
2 Hyy < ZEROSIDARRAY(N)

3 for i < 1 to N do

4 flg« 0

5: Ist <0

6 [+ 0

7 for j <+ IA(i) to TA(i + 1) do
8 if flg =0 then

9: I+ JA(j)

10: flg+1

11: else

12: L+ JA(G) —Ist —1

13: end if

14: if [ > 2 then

15: Hy (1) < Hy(l) + 1

16: end if

17: Ist < JA(j)

18: end for

19: end for
20: return Hyy

21: end function
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Each diagonal of the recurrence matrix can be identified by an index, which is computed as
the difference between the X and the Y coordinate of its origin. A recurrence point belongs
to a diagonal, if the difference between its X and Y coordinate is equal to the diagonal index.
This calculation can be applied to symmetric as well as to non-symmetric recurrence matrices.

An approach for detecting diagonal lines using the CSC storage format based on diagonal
indices is presented in Alg. 8, which assumes a symmetric recurrence matrix. It can be adapted
to non-symmetric matrices with limited effort. Algorithm 8 contains a nested loop, where the
outer loop iterates over all columns of the recurrence matrix. The inner loop iterates over the
row indices of its recurrence points, computing the individual diagonal index. For each diagonal
index d, the difference between the row index of the current and the previous recurrence point
is calculated. The current diagonal line length as captured in L is incremented, if the difference
is equal to one. If not, the histogram of diagonal line lengths is updated. The array LST stores
the row index evaluated at last regarding each diagonal index. c refers to the Theiler corrector
(see Sect. 2.1.3).

Algorithm 8 evaluate each recurrence point stored exactly once. At most N2 recurrence points
have to be evaluated, resulting in a quadratic time complexity. The number of recurrence points
actually evaluated may be smaller, depending on the sparseness of the recurrence matrix. The
algorithm further has a space complexity of O(N), because only three arrays of size N have to
be maintained.

The algorithm iterates over the columns in ascending order, which ensures valid line detection
results. This property is likewise applied to the OpenCL processing. A loop evaluates all
columns of the current sub matrix in ascending order. An OpenCL work-item is created for each
recurrence point stored in the current column. Those work-items can be executed in parallel
since they belong to different diagonals of the recurrence matrix. Note that this procedure
requires extended communication between the host and the compute devices.

Relevant Carryover Buffers for CSC Storage Format. The CSC storage format has influence
on the usage of the carryover buffers in the context of SRA. The vertical line length carryover
buffer C, is complemented by a wvertical index carryover buffer C,; that stores the row index
evaluated at last for each of the N columns of the recurrence matrix. This is required, because
a vertical sequence of recurrence points may or may not continue in an adjacent sub matrix. If
it does not continue, the corresponding value of C), is used to update the vertical line length
histogram, during the inspection of the adjacent sub matrix.

The detection of white vertical lines does not require to utilise a line length carryover buffer.
The length of white vertical lines crossing the borders of adjacent sub matrices can be directly
inferred from the row indices of the recurrence points stored in JA. This information is shared
across adjacent sub matrices using a white vertical index carryover buffer Cy;, which works
similar to Cy;. An additional white vertical flag carryover buffer Cy, s captures, whether the first
row index of a column of the full recurrence matrix has already been evaluated. An element of
this carryover buffer corresponds to the variable flg in Alg. 7. Cyy could also be omitted by
initialising each element of C',; with minus one. This would require to use a signed data type,
which limits the maximum size of the sub matrices that can be processed.

Two carryover buffers are employed for detecting diagonal lines using the CSC format; the
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Algorithm 8 Detect diagonal lines using the CSC format.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

function DETECTDIAGONALLINESCSC(JA, A, N, c)

Hp < ZEROS1DARRAY(N)
L <+ ZEROSIDARRAY(N)
LST < ZEROSIDARRAY(N)
for z + 1 to N do
for j « TA(z) to TA(x + 1) do
y < JAQ)
d<—x—vy
if d > ¢ then
if y — LST(d) =1 then
L(d) < L(d) +1
else
if L(d) > 2 then
Hp(L(d)) < Hp(L(d)) + 1
end if
L(d) « 1
end if
LST(l) « JA(j)
end if
end for
end for
return Hp

23: end function
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diagonal line length carryover buffer Cy and the diagonal index carryover buffer Cg;. The
semantics of Cy corresponds to C, and the semantics of Cy; to Cy;.

Discussion

The memory consumption of the CSR and CSC format is identical. The memory consumption
compared to using the uncompressed matrix representation depends on the amount of non-zero
values within the recurrence matrix. Up to a filling rate of N2 — (N 4 1) recurrence points, a
compressed sparse format requires less or an equal amount of data elements to represent a recur-
rence matrix. Above that threshold, the CSR and CSC format require more data elements, due
to the fixed size of the I A array. The memory consumption is reduced under the assumption that
the data type for representing similarity values within the uncompressed matrix representation
is equal to the data type used for representing entries in the /A and JA array. Note that the
size of uncompressed matrix representation can further be reduced by applying bit compression
(see Sect. 5.1.3).

The CSC storage format allows a straight forward implementation of the detection of vertical
line structures. Executing the algorithms in a parallel fashion ensures coalesced memory access
while retrieving the column boundaries from the /A array. On the contrary, the access to the
JA array is non-coalesced. An OpenCL work-item inspects a single column of a sub matrix,
which requires to retrieve data referring to different columns simultaneously. The CSC storage
format prevents to read consecutive segments from global memory that contain row indices from
different columns, unless the columns are rather short or the column densities are low.

The algorithm for detecting diagonal lines using the CSC storage format can be adapted with
little effort to the CSR storage format. Instead of iterating over the columns of a sub matrix,
the iteration is performed regarding the rows. This property is independent of whether the full
recurrence matrix is symmetric or not.

5.1.3 Similarity Value Representation

The previous section introduced different storage formats to represent recurrence matrices as
well as the modifications regarding the algorithms to detect vertical and diagonal lines. This
section considers the representation of a single similarity value.

Using a compressed sparse matrix representation (see Sect. 5.1.2), e.g., the CSC storage
format, only those elements of the recurrence matrix are captured that refer to recurrence
points. A recurrence point is represented by a combination of an entry within the A and and
entry within the JA array. The data type chosen to represent those two entries depends of
the number of rows and columns of the matrix captured. For example, a recurrence matrix
consisting of 232 x 232 matrix elements requires to use an unsigned 32-bit data type.

Using an uncompressed matrix representation, each recurrence matrix element is captured
explicitly, independent of its concrete value. In the following, this thesis considers two options
to represent an element of an uncompressed matrix representation:

¢ a number of k£ bytes, and

e a single bit.
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Modern computer systems provide memory that is byte-addressable, which means that the
size of each standard data type is a multiple of eight bits. Hence, each recurrence matrix element
consumes at least a single byte, when using such data types. Nonetheless, a recurrence matrix
contains only binary information, allowing to reduce the memory consumption of a similarity
value to a single bit.

Bit Compression

Bitmaps [Roth and Horn, 1993], a method from data compression, uses zero-bits to represent
null data, whereas non-null data is captured by one-bits. In the case of recurrence analysis, the
only non-null data that has to be stored are recurrence points. It is therefore not required to
store the concrete values of each non-null data element. The size of a recurrence matrix, where
each matrix element is represented using a single byte, can be reduced up to a factor of at most
one eighth by applying such a bit compression approach.

A bit-compressed recurrence matrix is represented by a sequence of byte-aligned memory
objects. The indiviudal bits, either assigned one or zero, within those objects refer to specific
matrix elements. A bit mask, created using bit-shift operations, is applied to modify the value
of a specific matrix element. The access to the memory object has to be synchronised using
atomic operations, when calculating the values of multiple matrix elements in parallel. However,
OpenCL does only support atomic operations using memory objects with a size of at least 32
bits [Khronos OpenCL Working Group, 2011, pp. 234-236].

Custom Bit-wise Storage Format. As explained in Sect. 5.1.1, there is a distinction between
the row-wise and column-wise storage format. Considering the row-wise format, all bits refer-
ring to the same row are stored consecutively. This hampers reading values of matrix elements
belonging to same column but to different rows at the same time using a single cache line. Con-
sidering the column-wise format, all bits referring to the same column are stored consecutively.
Vice versa, this hampers reading values of matrix elements belonging to the same row but to
different columns simultaneously. Therefore, this thesis proposes a hybrid solution combining
both storage formats. This allows to exploit their individual advantages while at the same time
mitigating their disadvantages.

The custom bit-wise storage format is depicted in Fig. 5.5. It consists of a two-level structure.
Each 32-bit memory object stores similarity values that belong to 32 consecutive rows of a single
column. The 32-bit values are stored in ascending order of their column index. This sequence
of 32-bit memory objects is repeated until all row values have been assigned. The index of the
32-bit memory object idmpem, in which the bit of a matrix element is located, is computed as
follows.

idmem = |idy/32] + id,. (5.1)

id,; and id, refer to the X and Y coordinate of the matrix element. The bit mask that is
added to the memory object to mark a recurrence point is created by using a bit shift operation.

1 < (id, mod 32). (5.2)
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ColumnID | 1 2 64 1 2 64
Row ID 1121..]32 33 (34| ... |64
%/—/

32-bit Memory Object

Figure 5.5: Custom bit-wise storage format. The example refers to a recurrence matrix con-
taining 64 x 64 elements. Each memory object stores the similarity values of 32
matrix elements, resulting in a total of 128 memory objects. Each of those memory
objects refers to a specific column of the recurrence matrix. Each bit stored within
a memory object refers to a specific row within the corresponding column.

Discussion

The main benefit of bit compression is the reduction of memory consumption when applying
an uncompressed matrix representation. Compared to using data types with a size of k bytes
to represent a single similarity, the memory occupied can be reduced at most by a factor of
8k. Nonetheless, bit compression is attached with computational overhead that might increases
the overall runtime, e.g., the creation of bit-masks while updating and reading the values of
recurrence matrix elements.

The synchronised access to memory objects using atomic operations leads to work-items
waiting for the acquisition of locks. The impact of synchronisation can be mitigated by null-
initialising the memory region in which the recurrence matrix or its sub matrices are stored. As
a result, only those bits need to be modified that correspond to recurrence points. The OpenCL
specification does not enforce that the memory allocated on compute devices is initialised with
a certain value. Therefore, this thesis proposes to execute an additional kernel that performs
zero-initialisation. Here, a work-item is started for each memory object of the recurrence matrix.
This kernel-based approach prevents copying null-initialised arrays from the host device to the
memory of the compute devices, which would drastically increase the data transfer. Although
being the favourable approach, this kernel execution also consumes additional runtime.

The custom bit-wise storage format has significant advantages in comparison the the row-wise
and column-wise storage format. It supports coalesced write access due to storing the similarity
values belonging to the same row of successive columns consecutively. Furthermore, it allows
to inspect successive rows of the same column, without having to reload data from the global
memory of the compute device. This property reduces the number of cache lines transferred to
the L1 cache (see Sect. 5.1.1).

5.1.4 Intermediate Results Recycling

As presented in Sect. 3.1, SRA structures the RQA processing into three analytical operators:

e create__recurrence _matrix,
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e detect_diagonal lines, and

o detect wvertical lines.

Each of those operators has a specific maximum degree of parallelism, with the creation of the
recurrence matrix having the highest one. The line detection operators require that the binary
similarity values of the recurrence matrix are computed prior to the inspection of columns and
diagonals. Although both line detection operators can be executed in parallel, their execution
is serialised.

Inspecting a column or diagonal of the recurrence matrix does not require that all correspond-
ing similarity values are computed previously. It is rather required that only those similarity
values are computed, which belong to matrix elements evaluated up to the current iteration
of the sequential scan of a column or diagonal. This relaxed constraint allows to include the
computation of the pairwise input vector similarities within the line detection operators. In this
way, it is possible to omit the create_recurrence matriz operator.

The combination of serialising the execution of the line detection operators and being able
to omit the separate create recurrence matriz operator allows the recycling of intermediate
results [Ivanova et al., 2010]. The goal of this approach from database technology is to optimise
query execution. It proposes to store the results of calculations, which are reused later on. This
recycling strategy assumes that the execution model adheres to operator-at-a-time. Given the
two operations A and B, the result of A serves as an argument for operation B. The recycler,
a specific software component, dynamically decides, which intermediate results from A to store
within or evict from memory. The approach has been proposed especially for workloads that
are dominated by read accesses, such as analytical tasks.

The concept of intermediate results recycling fits RQA well, because there exist multiple
operators that are related based on predefined dependencies. Only one of those operators is
executed at a time. The concept of recycling is implemented by integrating the computation of
the pairwise input vectors similarities into one of the line detection operators. Since the interme-
diate results are stored under all circumstances, no specific recycler module is employed. Note,
executing a separate create recurrence_matriz operator itself adheres to storing intermediate
results.

The recycling of intermediate results is adapted to SRA. This thesis proposes to compute the
binary similarity values during the inspection of columns and reuse them during the detection of
diagonal lines. The reason for introducing this specific ordering regarding the execution of the
analytical operators lies in the potential symmetry of the recurrence matrix. If the symmetry
property is fulfilled, the detect__diagonal_lines operator does only require to evaluate N(N—1)/2
matrix elements. In this case, only one half of the recurrence matrix needs to be computed.
However, it is required to compute the full recurrence matrix for the detection of vertical lines.

Discussion

The recycling of intermediate results allows to save overhead costs, e.g., for creating and
executing OpenCL kernel instances, by eliminating the create recurrence matriz operator.
This requires to include the computation of the pairwise input vector similarities within the
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detect_wvertical_lines operator, whose maximum degree of parallelism N is much smaller than
N? of executing a separate operator for creating the recurrence matrix. The tradeoff between
operator elimination and reduction of parallelism determines, if intermediate results recycling
allows to reduce the overall runtime of conducting RQA.

As stated before, the detect wvertical lines operator is executed preceding to the detec-
tion of diagonal lines, because the latter does only inspect roughly one half of the recur-
rence matrix, if it is symmetric. This property can be exploited to minimise the amount
of intermediate results written to the global memory of the compute devices. If a separate
create__recurrence__matriz operator is executed, each matrix element has to be written once.
Additionally, it has to be read one and a half times, one time during the detection of ver-
tical lines and a half time during the detection of diagonal lines. Performing intermediate
results recycling, the binary similarity values required for the detection of vertical lines are
computed on the fly. Hence, only those elements need to be stored, which are required by the
detect__diagonal_lines operator. Having a symmetric recurrence matrix, only N (N — 1)/2 re-
currence matrix elements have to be stored. The minimisation the amount of write accesses to
global compute device memory allows to further reduce the overall runtime.

5.1.5 Recurrence Matrix Materialisation

All aspects presented in the previous sections assume that the sub matrix currently processed
is stored completely or partially within the global memory of a compute device during the
detection of line structures. This procedure is referred to as materialised views in database
technology. Here, views on database tables are created during the processing of a query are
materialised. This means that they are stored by the database management system, e.g., on
hard disk. Materialised views are attached with specific limitations, although they have proven
their applicability in different scenarios. In particular, there is a tradeoff between the memory
latency for storing intermediate results and computing them multiple times [Gupta et al., 1993].

In Sect. 5.1.4, we demonstrated that it is feasible to include the computations of the pairwise
input vector similarities in the detect wertical lines operator. This approach can be easily
extended to the detect diagonal lines operator. In this way, the storage of recurrence matrix
data in the global memory of a compute device can be omitted. Depending on whether the
recurrence matrix is symmetric or not, N2 or N(N — 1)/2 similarity comparisons have to be
conducted while inspecting its 2N — 1 or N — 1 diagonals regarding line structures.

Discussion

Not-materialising the recurrence matrix in the memory of the compute devices influences the
amount of data read and written by each operator. In the following, the amount of memory trans-
ferred while conducting RQA is investigated, considering materialising and not-materialising the
recurrence matrix. For the purpose of simplification it is assumed that reading data from and
writing data to the global memory has the same latency. In addition, only the amount of data
elements is considered, not the actual size of the memory occupied.

Using a separate create_recurrence__matriz operator, the amount of data elements transferred
comprises:
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(i) 2mN? data elements read during the computation of the pairwise similarity values,
(ii) N? data elements written during the materialisation of the recurrence matrix,
(iii) N2 data elements read during the detection of vertical lines, and
)

(iv) N? (non-symmetric) or N(N —1)/2 (symmetric) data elements read during the detection
of diagonal lines.

Computing the similarity of a single pair of multi-dimensional vectors requires to evaluate 2m
data elements, each referring to a specific vector component (i). The corresponding binary simi-
larity value is written once to the global memory of a compute device. This has to be performed
for each of the N2 elements of the recurrence matrix (ii). Similarly, the detect_vertical_lines op-
erator requires to evaluate each matrix element during the inspection of the columns of the
recurrence matrix (iii). Each or only every second matrix element is read once from the global
memory of the compute device during the detection of diagonal lines, depending on whether the
matrix is symmetric or not (iv).

Regarding not-materialising the binary similarity values, the amount of data elements trans-
ferred is structured as follows:

(a) 2mN? data elements read during the detection of vertical lines.

(b) 2mN (N — 1)/2 (symmetric) or 2mN? (non-symmetric) data elements read during the
detection of diagonal lines.

Considering the non-materialisation approach, the write accesses in (ii) are omitted, since no
materialisation is performed. The read accesses to the global memory in (iii) and (iv) do not
have to be conducted either. At the same time, reading the input vector components during the
computation of the pairwise similarities has to be included in the detection of vertical (a) and
diagonal (b) lines.

Considering materialising the matrix data, the amount of memory accesses captured by (i)
depends on the total number of input vectors N and the embedding dimension m, whereas
the accesses of (ii), (iii) and (iv) only depend on N. On the contrary, the amount of memory
accesses while detecting vertical (a) and diagonal lines (b) without materialisation both depend
on m and N.

Appendix B contains equations that compare the amount of data elements transferred when
using a separate create_recurrence__matriz operator to materialise the recurrence matrix (CRM
Operator), not materialising the matrix (Non-Materialisation) and materialising the recurrence
matrix through recycling (Recycling). Furthermore, a distinction is made whether the recurrence
matrix is symmetric or not. An essential assumption is that the computational overhead to read
data from and write data to memory is identical. Each formula is solved for the embedding
dimension m to determine the position of the break-even point regarding the amount of data
elements transferred of the corresponding approaches.

Appendix B.1 considers a symmetric recurrence matrix. Here, the equilibrium embedding
dimension depends on the total number of input vectors V. Assuming Equ. 5.3, not-materialising
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the recurrence matrix requires less memory accesses for embedding dimensions m < 2. Having
m > 3, materialising the matrix data within a separate create recurrence matriz operator is
more efficient.

. ON -1

Ngnoo 2N — 2’

Appendix B.2 compares employing a separate create_recurrence_matriz operator (left) and

not-materialising matrix data (right) under the assumption that the recurrence matrix is not

symmetric. Having a dimensionality of one, not-materialising the matrix data requires less

memory accesses. Setting m > 2, the application of a separate operator that materialises the
recurrence matrix requires less memory accesses.

(5.3)

Appendix B.4 and B.3 present similar formulas considering the recycling of intermediate re-
sults. Here, materialising the recurrence matrix consumes the same amount of memory accesses
or less for embedding dimensions m > 1. Note that the amount of memory accesses is only
one of the criteria that influences the performance of corresponding implementations. It rather
serves as an indicator regarding performance comparisons.

5.2 Index Data Structures

Section 5.1 focuses on parallel brute-force processing in the context of RQA, which computes
of all pairwise input vector similarities stored in the recurrence matrix. Nonetheless, Sect 3.2
demonstrated that index data structures, in particular grid directories and the application of
multi-dimensional search tress, allow to increase the efficiency of RQA by pruning similarity
comparisons. Note that this does only affect the processing of the create recurrence matriz op-
erator.

The application of index data structures can be distinguished into:

1. building the corresponding data structures using a set of data points, and

2. querying the data structures regarding the neighbours of a set of query points.

The following sections describe the properties of the two types of index data structures men-
tioned above, focussing on the computational concepts as well as the implications regarding
runtime and memory usage.

5.2.1 Grid Directories

In Sect. 3.2.1, this thesis demonstrates the application of grid data structures in the context
of neighbour search. In this regard, a grid data structure is created based on a set of multi-
dimensional input vectors. Each vector is assigned to a specific grid cell. Grid data structures
offer the benefit of only inspecting those grid cells, which might contain the neighbours of given
query vector. As a recap, the likelihood of containing neighbours is determined by the distance
from grid cell, in which the query vector is located.
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In [Green, 2012], it has been demonstrated that grid processing can be implemented efficiently
on graphics cards. Here, the CUDA framework is employed to detect collisions between up
to three-dimensional particles in a massively parallel manner. Two different approaches are
presented, which both rely on partitioning the multi-dimensional space using a uniform grid.
A particle consists of a centre, defined as multi-dimensional point, and a radius r. Its centre
is located in a specific source grid cell. The extent of a particle traverses this source grid cell
and zero or more adjacent cells, depending on the radius r. A collision between two particles is
defined as an overlap between two particle extents.

[Green, 2012] proposes to apply a length of 2r to the edges of each grid cell. This ensures
that the extent of a particle potentially traverses only those grid cells directly adjacent to its
source grid cell. The number of adjacent grid cells depends on the dimensionality of the space
in which the particle resides. [Green, 2012] claims that on GPUs it is simpler to identify those
grid cells, which might be traversed by the extent of a particle, instead of determining the ones
which are actually traversed.

These concepts are adapted to recurrence analysis. Instead of particles consisting of a cen-
tre and an extent, this thesis considers input vectors and their neighbourhood defined by the
similarity threshold e. In the following, we focus on the fixed-radius neighbourhood condition.

In [Green, 2012], the parallel creation of the grid data structure is either performed using:

1. Atomic operations, or
2. Sorting.

Both approaches are distinguished in the following and adapted to the properties of sub matrix
processing in the context of SRA. It is assumed that a uniform grid with a grid cell edge length
of 2e is applied.

Grid Creation Using Atomic Operations

Using atomic operations, the grid data structure is represented by two one-dimensional arrays:
1. grid_cells, and
2. grid_counters.

grid_cells comprises fixed-sized segments of integer values, where each segment stores the
indices of the objects located in a specific grid cell. grid_counters provides an integer value
for each grid cell, storing the number of objects located in this cell. Both arrays reside in the
global memory of a compute device.

Each multi-dimensional vector is assigned to a specific grid cell during grid creation. An
OpenCL work-item is created for each vector. It computes the index of the grid cell in which
the vector is located and updates the corresponding element of the grid_counters array, using
an atomic incrementation operation. The work-item calls an atomic function, because multiple
work-items may update the data referring to the same grid cell simultaneously. The atomic
function returns the number of vectors located in the grid cell prior to the incrementation. This
value serves as an input to store the index of the input vector in the corresponding segment of
the grid_cells array.
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Discussion. The approach using atomic operations assumes that segments in the grid_cells
array are of fixed size. Ideally, this size is set to the maximum number of vectors assigned to a
single grid cell. To determine this maximum value, the grid cell index of every vector has to be
computed prior to the actual grid construction. In the following, the segment size is therefore set
to the total number of input vectors that need to be stored during the processing of the current
sub matrix. This allows to avoid pre-processing. It is the highest amount of vectors a single
grid cell potentially has to store. The inherent problem of this approach is that the memory
consumption of the grid_cells array increases enormously with an increasing number of grid
cells, e.g., due to an increasing number of dimensions. A third approach proposed in [Green,
2012] is to employ heuristics to estimate the segment size. Note that those heuristics do not
prevent segments storing large numbers of input vector indices.

Overall, creating the grid data structure using atomic operations adheres well to the properties
of GPU computing, because all compute-intensive operations, such as computing the grid cell
index, can be conducted in a massively parallel manner. Nonetheless, the usage of atomic
operations introduces necessary synchronisation that creates a bottleneck regarding the parallel
execution of work-items. Furthermore, the approach is only favourable for small amounts input
vectors and grid cells, due to the potentially large size of the grid cell segments.

Grid Creation Using Sorting

[Green, 2012] proposes a second grid creation approach, which is based on sorting. It overcomes
the restriction of using fixed-sized grid cell segments. Here, the grid data structure is represented
by the following two one-dimensional arrays:

1. grid_cells, and
2. grid_cells_start.

The grid_cells array stores the indices of the objects located in each grid cell, similar to the
approach using atomic operations. A grid cell is likewise represented by a consecutive segment
of input vector indices. In contrast, those segments are of variable size. The start index of every
segment in the grid_cells array is stored as an integer value in grid_cells_start.

The approach based on sorting is separated into two major steps. First, the grid cell index of
each multi-dimensional vector is determined in a massively parallel manner. In [Green, 2012],
it is proposed to use a hash function as an indirection to assign an object to a grid cell. This
thesis proposes to compute the actual grid cell index in the context of SRA. The mapping is
stored in an intermediate array, where each element captures the grid cell index of a specific
multi-dimensional vector.

Second, the intermediate array is sorted in ascending order of the grid cell indices. As a
byproduct, the input vector indices per grid cell are stored as segments in grid_cells. The
size of the array scales linearly, depending on the number of data points. At the same time, the
elements of grid_cells_start are assigned. Here, empty grid cells are marked by using the
same start index as the previous grid cell.

[Green, 2012] proposes to use a parallel sorting algorithm that is executed on the GPU. This
strategy is out of the scope of this thesis. Instead it is proposed to create only the intermediate
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Figure 5.6: Grid cell order. The example refers to a three-dimensional space. Each grid cell
is identified by a three-dimensional index (idj,ids,ids), one component for each
dimension. Each component is an integer value starting at zero. The 1%¢ dimension
is separated into four segments, the 2"¢ dimension into two segments, and the 37¢
dimension into three segments. This results in 24 grid cells. Note that all grid
cells are stored consecutively in the memory with ascending multi-dimensional index
starting at the 15 component.

array in a parallel manner. To perform CPU-based sorting, the array is transferred from the
global memory of the compute device to the main memory of the computing system. This
introduces additional overhead regarding data transfer and avoids parallel execution, leading to
an increased runtime. After the sorting is completed, grid_cells and grid_cells_start are
transferred from main memory to the global memory of the compute device, to enable parallel
neighbour search.

Discussion. Constructing the intermediate array in a massively parallel manner suits GPU
processing. Furthermore, the size of grid_cells is independent of the number of grid cells.
This property lets the approach being applicable even for large and irregular distributed sets of
multi-dimensional vectors. Nonetheless, the minimisation of memory usage comes at the cost of
conducting a separate sorting step that increases the overall runtime.

Determination of Grid Cell Index

Both grid data structures presented in [Green, 2012] use the array grid_cells, which stores
the indices of objects belonging to the same grid cell consecutively. In [Béhm et al., 2001], it is
stated that the numbering of grid cells in multi-dimensional space is "clumsy", unless the data
space is limited. This requirement is fulfilled in the context of recurrence analysis. The extent of
the input space is determined by the dimensionality of the input vectors as well as the minimum
and maximum value for each dimension. The number of grid cells is computed by separating
each dimension according to multiples of 2e.

To identify a specific grid cell, we apply a multi-dimensional index that comprises a component
id; for each of the m dimensions of the data space. Each component represents the index of the
segment regarding the i-th dimension. Given an input vector &, the component id; is computed
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as:

T; — min;
2¢

Z; refers to the i-th component of Z, min; to the minimum value of the i-th dimension and ¢
to the similarity threshold of the fixed-sized radius neighbourhood condition.

The grid cells are stored sequentially within the global memory of the compute device. They
are organised as depicted in Fig. 5.6. As a result, the multi-dimensional index has to be serialised.
To compute this serialised index idgserialiseqd Of @ grid cell, the individual components of its multi-
dimensional index are multiplied with dimension-specific integer values, hereafter referred to as
multipliers:

id; = (5.4)

m
Z‘dseraliseal - Zuﬂdw (55)

i=1
with m being the embedding dimension, u; being the multiplier of dimension 4 and id; being
the index of dimension ¢. The multiplier u; is computed as the cumulated number of grid
cell segments up to the previous dimension 7 — 1, with u; = 1. Regarding the example from
Fig. 5.6, those multipliers are (uj,u2,u3) = (1,4,8). The set of multipliers is identical for all

multi-dimensional vectors.

Neighbour Search

The grid data structure created by using one of the two approaches presented above serves as
an input for the neighbour search. Here, the X and Y axis of a sub matrix usually refer to
different sub sets of the full set of multi-dimensional vectors. During the sub matrix creation,
each set may either serve as data points or query points. The assignment is chosen such that
for each vector belonging to the X axis, a set of neighbours regarding the vectors belonging to
the Y axis is computed. The data points are organised in a uniform grid using the similarity
threshold e.

For each query point, the set of similar data points is determined as follows. First, the grid
cell index of the query point is computed. Second, each grid cell adjacent to this source cell is
inspected regarding neighbouring vectors. Again, the edge length of the uniform grid cells is
chosen to be 2e. This ensures that neighbouring vectors can only be located in grid cells directly
adjacent to the source grid cell.

Given an arbitrary query vector, the set of adjacent grid cells is determined by incrementing
and decrementing each component of the corresponding multi-dimensional grid cell index. As
an example, a source grid cell with the two-dimensional index (id,id2) = (10,23) is assumed.
The set of indices referring to grid cells directly adjacent include:

. (9,22),
. (9,23),

.« (9,24),
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The search for neighbours in adjacent grid cells is implemented in a parallel manner. Given
a query point, each work-item inspects a single adjacent grid cell regarding neighbours. The
work-item computes the binary similarities between the query point and all data points located
in the adjacent grid cell. The similarity results are stored in the binary sub matrix.

There are potential variations regarding the implementations of the grid-directory methods,
similar to parallel brute-force processing. This includes the representation of the input data, by
storing the input vectors either using a row-wise or column-wise layout (see Sect. 5.1.1), and the
representation of the similarity values, either using a byte or bit representation (see Sect. 5.1.3).
The impact of those variations on the runtime is examined in Sect. 6.3.1.

5.2.2 Multi-Dimensional Search Trees

This thesis considers the k-d tree as one representative of the multi-dimensional search trees. It
is a well-studied data structure, for which various optimised implementations written in different
programming languages exist. Therefore, it is reasonable to use existing k-d tree software instead
of writing yet another implementation. This thesis focusses on k-d tree implementations that
provide a Python API, since the SRA implementation is based on this programming language.
There are two prevailing and continuously maintained k-d tree implementations available in the
Python packages:

o scipy [Jones et al., 2001], and

o scikit-learn [Pedregosa et al., 2011].
The corresponding classes encapsulating the k-d tree functionality are:

e scipy.spatial.cKDTree, and

e sklearn.neighbors.KDTree

Both implementations contain source code written in Cython [Behnel et al., 2011], a Python
language extension. The source code is statically compiled, which enables significant perfor-
mance improvements in comparison to interpreted Python code.

Similar to grid data structures, the usage of a k-d tree is subdivided into two basic steps:

1. building the k-d tree using data points, and
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2. querying the k-d tree using query points.

During the build phase, the data points are assigned to tree nodes. After the build phase is
completed, the tree can be queried regarding the neighbours of the query points. The runtimes
for conducting both phases are referred to as build time and query time.

cKDTree and KDTree provide functionality to query for a fixed number of neighbours and
to apply a fixed radius neighbourhood. Here, the focus lies on identifying neighbours using a
fixed €. The k-d tree implementations mentioned differ from its original definition. The set of
modifications includes:

1. the storage of more than one object within the leaf nodes of the tree, and

2. the usage of multiple trees during neighbour query execution.

The original definition of the k-d tree considers a leaf node to represent only a single data
object. Neighbours of a query point are discovered by traversing the nodes of the tree and
pruning unnecessary similarity comparisons. Nonetheless, a brute-force neighbour search may
be more efficient for small sets of data points [scikit-learn developers, 2016]. Both approaches
can be combined by storing more than one data object per leaf node. This presents several
advantages regarding the runtime mentioned above. First, the build time is reduced, due to
creating less tree nodes. Second, the query time is reduced, due to traversing less nodes and
performing brute-force similarity comparisons in the leaf nodes.

The choice regarding the number of objects stored in the leaf nodes, referred to as leaf size, has
major influence on the cumulated runtime. If it is chosen to small, the build time increases due
creating more tree nodes and the query time increases due to traversing a higher number of tree
nodes. If it is chosen too large, not enough similarity comparisons are pruned and brute-force
neighbour search becomes inefficient. Detecting the optimal number of objects per leaf node is
out of the scope of this dissertation. We rely on the default values of each implementation:

e cKDTree: 16, and

e KDTree: 30.

The original definition of the k-d tree only considers the data points to be organised in a single
tree structure. This tree is traversed regarding neighbouring objects one query object at-a-time.
The query point is compared to the nodes of the k-d tree. [Gray and Moore, 2000] describes
an approach how to prune similarity comparisons of sets of query points simultaneously. For
this purpose, a second k-d tree is constructed that captures the set of query points. Nodes
of both trees are compared to each other, to perform neighbour search. The nodes stored in
the corresponding sub trees are either compared to each other or not, depending their mutual
similarity. This dual tree approach potentially allows to reduce the cumulated runtime. Up to
this point, this modification is only supported by KDTree with respect to k-nearest neighbour
queries. It is deactivated during the evaluation in Sect. 6.3.2. Note that the functionality of
KDTree is accessed in the following via the wrapper sklearn.neighbors.NearestNeighbours.
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Application to SRA

A sub matrix stores the binary similarities of pairs of two sets of input vectors, one representing
the X and the other representing the Y axis. In general, those sets differ, except the sub matrices
along the middle diagonal. By definition, the multi-dimensional vectors referring to the Y axis
are treated as data points, whereas the vectors referring to the X axis are used as query points.

A k-d tree is build by calling the constructor of cKDTree or NearestNeighbors. The multi-
dimensional vectors serving as data points are passed as arguments. Both classes provide meth-
ods to perform neighbour search:

e cKDTree.query_ball_point, and

e NearestNeighbors.radius_neighbors_graph.

Given a fixed radius, query_ball_point returns a list of neighbours for each object con-
tained in a list of query points, which is passed as an argument. radius_neighbors returns a
neighbour graph represented as a compressed sparse matrix (see Sect. 5.1.2). Both results are
converted to an object of the type scipy.sparse.csc_matrix. In this way, the algorithms from
Sect. 5.1.2 regarding the detection of line structures can be applied. scipy.sparse.csc_matrix
provides built-in functionality to convert the compressed to an uncompressed matrix repre-
sentation. Hence, the algorithms from Sect. 2.2.1 can also be employed. The conversion re-
quires computational overhead, which leads to an increase in runtime'. Nonetheless, using
scipy.sparse.csc_matrix allows to supply a consistent interface regarding the execution of
the create__recurrence__matriz operator.

cKDTree and NearestNeighbors offer the possibility to perform neighbour search for multiple
query objects in parallel. Considering the former, this feature is enabled regarding the applica-
tion of a radius neighbourhood as well as a fixed amount of nearest neighbours. In contrast, the
latter supports parallel query processing only for a fixed number of nearest neighbours. As a
result, it is disabled during the evaluation in Sect. 6.3.2, to ensure comparable runtime results.

Referring to SRA, it is assumed that a k-d tree storing the data points is created while
processing each sub matrix. This leads to organising identical sets of input vectors multiple
times, because sub matrices with the same row index refer to the same segment of the Y axis of
the full recurrence matrix. The corresponding multiplication of the build time could be avoided
by creating exactly one k-d tree for each segment of the Y axis. This tree can be used by all
sub matrices belonging to the same row. Nonetheless, the expected runtime savings are rather
small, since the build time contributes only a small portion to the total runtime for executing
the create_recurrence__matriz operator?. In addition, the memory footprint of conducting RQA
increases. This would furthermore lead to a dependence on the size of the full recurrence matrix.
Therefore, this modification is omitted.

'Regarding the analysis of an examplary sub matrix consisting of 10,000% elements, the conversion took about
twice the time as for conducting neighbour search.

2Experiments presented in [Vanderplas, 2013] indicate that the build time is up to two magnitudes smaller than
the query time.
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Previous Performance Analysis

[Vanderplas, 2013] has conducted a detailed performance analysis of NearestNeighbors and
cKDTree. The benchmarking focusses on the fixed amount of nearest neighbour query, con-
sidering a single query object. The runtime for building as well as the querying a k-d tree is
investigated. In this regard, different data point distributions are used:

Uniform distribution: Data points are distributed uniformly in the input vector space.
Digits distribution: Data points refer to pixel values retrieved from images.

Spectra distribution: Data points refer to flux observations from astronomical spectra.
The build and query time are analysed regarding the influence of:

o leaf size,
o number of neighbours,
o number of data points, and

o dimensionality of the input vector space.

Five experimental runs are conducted for each combination of input variables, computing the
average runtime. The Euclidean distance is applied in each of those experiments.

Regarding the experimental results, the build time increases with increasing leaf size, due
to the lesser amount of tree nodes that need to be created. There exists an optimal leaf size,
which leads to minimum runtime regarding the query processing. Note that the optimal leaf
sizes differ between the implementations. Increasing the number of neighbours does not infect
the build time. Contrastingly, the query time increases super-linear, due to the maintenance of
a priority queue containing the set of k neighbours. Increasing the number of data points, the
build and query time scale O(NlogN). Increasing the dimensionality, the build and query time
increase roughly logarithmically. cKDTree has significantly smaller build time in comparison to
NearestNeighbors, up to two magnitudes. The query time is roughly similar.

Discussion. [Vanderplas, 2013] provides no information regarding the computing system em-
ployed, e.g., the type of CPU used and the size of the main memory. The analysis is restricted to
the fixed amount of nearest neighbours neighbourhood using a single query object. Information
regarding other scenarios is not provided.

In [Vanderplas, 2013, a brute force method is mentioned that computes the similarity between
the query point and each data point. There is no information provided regarding this exhaustive
implementation, e.g., which programming language has been used. More specifically, there are
only estimations given regarding the runtime for performing the nearest neighbour query.

The analysis of [Vanderplas, 2013] gives only a hint regarding the performance characteristics
of both k-d tree implementations, due to the issues mentioned before as well as the usage of
only small sets of up to 10* data points. The applicability of cKDTree and NearestNeighbors
in the context of RQA requires deeper investigation, which is conducted in Sect. 6.3.2.
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This chapter addresses the impact of selecting different realisations regarding the concepts from
database technology presented in Chap. 5 on the performance of recurrence analysis processing.
Each realisation either refers to parallel brute-force processing (see Sect. 5.1) or the usage of index
data structures (see Sect. 5.2). The performance characteristics are examined and compared
to other realisations of the same design dimension. For this purpose, the results of a set of
experiments are presented. Note that the impact of each realisation is evaluated per analytical
operator.

The structure of this chapter is as follows. Sect. 6.1 addresses foundations regarding all
of the experiments conducted. This includes the description of the underlying experimental
methodology and the computing environment used during the experiments. Sect. 6.2 considers a
set of experiments referring to the parallel brute-force processing. A set of experiments discussing
initial assumptions are presented prior to investigating the actual implementation dimensions,
such as how the spatial distribution of the multi-dimensional vectors affects the performance.
The experiments presented in Sect. 5.2 evaluate how the usage of multi-dimensional index data
structures influences the runtime behaviour of executing the create_recurrence__matriz operator.

An initial evaluation on the impact of different implementation strategies on the performance
characteristics of RQA processing has been published in [Rawald et al., 2015].

6.1 Foundations

This section describes the foundations of the experiments presented in the subsequent parts
of the chapter. The following considerations hold for the evaluations referring to the parallel
brute-force processing and the index data structures.

6.1.1 Experimental Methodology

The evaluation comprises a set of experiments. Each experiment refers to a specific analytical
scenario, which is defined by the RQA input parameters:

e time series,

e embedding dimension,
o time delay,

o similarity measure, and

e similarity threshold.
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Each experiment refers to the processing of a recurrence matrix that fits in the global memory
of an OpenCL compute device, corresponding to the concept of sub matrices in the context of
SRA. Those sub matrices are constructed from only thousands of multi-dimensional vectors.

If the vectors are reconstructed from multiple time series, the time delay method is not
applicable. In this case, the time delay parameter is negligible. A ratio of the maximum phase
space diameter between zero and one is used regarding the pairwise vector comparisons, instead
of defining a fixed threshold (see Sect. 2.1.2). This approach relates to the practice that is used
in real-world applications. The resulting absolute threshold depends on the properties of the
time series analysed.

While conducting an experiment, usually one RQA input parameter is selected as independent
variable. The impact of varying this parameter on the performance characteristics of a set of
RQA implementations is observed. Those implementations differ regarding specific computa-
tional aspects, such as the representation of input data. The focus of the performance analysis
is on the runtime of executing a RQA implementation. The corresponding measurements are
collected for each operator individually. This enables a fine-grained investigation of the effects
of each computing approach or implementation strategy.

The operator implementations relying on OpenCL measure the runtime using profiling events
(see Sect. 4.3.2). Here, the time elapsed between the start and the end of the execution of
commands is determined. Operators implementing RQA functionality using index data struc-
tures calculate the difference between timestamps at the end and the start of its execution,
implemented using the Python module time.

In addition to the runtime, the AMD Radeon RX 470 compute device, which is employed
during this evaluation, allows to extract additional performance counters, such as the cache
hit rate (CacheHit [Advanced Micro Devices, Inc., 2013a, pp. 15-17]). This information is
obtained using the tool CodeXLGpuProfiler that is part of AMDs CodeXL suite. The values of
such counters ideally allow to draw conclusions regarding the causes of the runtime behaviour.

The complete computing environment is described in detail in Sect. 6.1.2. In this regard,
a specific computing system is composed of hardware and software components. Note that a
computing system may contain one or more compute devices, such as CPUs and GPUs.

An experimental configuration refers to a combination of:

o analytical scenario,
¢ RQA implementation, and

e compute device.

Multiple experimental runs are executed for each configuration. The number of runs conducted
is specific to each experiment. The impact of outliers regarding the runtime or performance
counters measured is reduced, by repeating the computations for each configuration.

Prefaced by a short introduction, each of the following sections referring to an experiment
consists of:

1. a description of the experimental setup,
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2. a set of initial hypotheses, and

3. an analysis of the experimental results.

The setup comprises the experimental configurations used for this particular experiment. Fur-
thermore, it specifies additional parameters, such as the amount of experimental runs conducted
for each configuration. Based on this information, initial hypotheses regarding the performance
behaviour of each RQA implementation are formulated. The experimental results are used to
validate the initial hypotheses. The experimental setups of each of the following experiments
are captured in App. D. The corresponding experimental results are depicted in App. E.

6.1.2 Computing Environment

This section describes the computing environment employed for conducting the following exper-
iments. The detailed description of the hardware and software specifications of the computing
systems can be found in App. C. The focus is particularly on the compute devices that are used
for OpenCL processing. The set of computing systems includes:

(A) a workstation containing a single AMD Radeon RX 470 GPU,
(B) a workstation containing two Nvidia GeForce GTX 690 GPUs, and

(C) a server containing two Intel Xeon E5620 CPUs.

The computing systems containing GPU hardware additionally comprise a single 64-bit CPU,
supporting the 86 64 instruction set. Each of those systems is equipped with 16GB of main
memory. The GPU devices are attached using version 3.0 of the Peripheral Component Intercon-
nect Express (PCI-E). Each GPU device is equipped with dedicated memory that is separated
from the main memory of the computing system. This memory is referred to as global memory
in the context of OpenCL.

A single Nvidia GeForce GTX 690 GPU comprises two graphics processors, resulting in a
total of four processors. Each GPU processor is supplied with dedicated memory, that is not
shared with the other processor. Each processor is treated as a separate compute device that is
addressed individually.

The third computing system comprises two Intel Xeon E5620 server processors, that share
48GB of main memory. Each CPU, implementing Intels proprietary hyper-threading technol-
ogy [Marr et al., 2002], contains four cores and runs eight threads. Note that the two CPUs are
treated as a single compute device by the OpenCL runtime. The CPUs employed also support
version 4.2 of Intels Streaming SIMD FEaxtensions, enabling additional parallel computing capa-
bilities. Here, separate registers for performing the same instruction on multiple data elements
simultaneously are provided.

Regarding the software environment, every computing system runs an operating system based
on the Linuz kernel [Torvalds et al., 2017]. The kernel versions employed differ between the
systems. The software environment includes an OpenCL runtime engine and corresponding
device drivers. The relevant software packages provided by the hardware vendors are:
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(A) the AMDGPU-PRO Driver,
(B) the NVIDIA Accelerated Linux Graphics Driver, and

(C) the OpenCL Runtime for Intel Core and Intel Xeon Processors.

The version of those software packages including the supported OpenCL version are listed for
each compute device in App. C.

6.2 Parallel Brute-Force Processing

This section refers to experiments investigating the performance characteristics of RQA imple-
mentations based on parallel brute-force processing. Those implementations rely on conducting
all pairwise vector similarities captured in a sub matrix in a massively parallel fashion using
the OpenCL framework. The set of experiments is subdivided in two blocks. The first block
comprises experiments that verify initial assumptions, including the impact of:

1. the spatial distribution of multi-dimensional vectors,
2. the similarity measure regarding the quantitative analysis, and

3. the status of the default compiler optimisations

on the performance of the massively parallel RQA implementations. The second block contains
experiments referring to the design dimensions described in Sect. 5.1, including:

—_

. input data representation,

2. recurrence matrix representation,
3. similarity value representation,

4. intermediate results recycling, and

5. recurrence matrix materialisation.

The experiments are presented from Sect. 6.2.1 to Sect. 6.2.8, with each subsection referring
to a specific experiment.

6.2.1 Input Vector Distribution

The first of the three initial experiments evaluates the impact of the distribution of the input
vectors residing in m-dimensional space. The location of each vector heavily affects its similarity
in relation to other vectors. It is analysed, how the spatial distribution influences the runtime
characteristics of massively parallel implementations of the create_recurrence__matrixz operator.
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Setup

The experiment applies a set of random distributions to place the input vectors in multi-
dimensional space, including:

the uniform distribution,

the normal distribution,

the exponential distribution, and

the Cauchy distribution.

Fach of those distributions is assigned with standardised parametrisations. For the purpose
of this experiment, the input vectors are not extracted from a time series using the time de-
lay method, but rather generated explicitly using functions provided by the NumPy module
numpy .random. Given a distribution as well as a dimensionality m, the individual vector
components are created by applying the NumPy function m times. For each distribution,
Tab. D.1 presents the corresponding numpy .random function as well as a short description and
its parametrisations, if available. Example distribution instances referring to two-dimensional
vectors are shown in Fig. D.1.

The distribution type serves as independent variable regarding this experiment. The depen-
dent variable is the runtime for executing the operator that creates the recurrence matrix. The
time measurements are restricted to the create recurrence matriz operator, because the com-
putation of the binary similarity values is the central aspect of RQA that is influenced by the
distribution of input vectors. Note that different distributions may lead to different topologi-
cal characteristics within recurrence plots, e.g., their density regarding recurrence points. The
impact of those characteristics on the performance of executing the line detection operators are
considered in the following sections, for example in Sect. 6.2.5.

The values of the RQA input parameters apart from the distribution type remain constant,
for example the embedding dimension and the similarity measure employed (see Tab. D.3). As
mentioned before, the similarity threshold chosen is a fraction of the maximum phase space
diameter, which depends on the extent of the space spanned by the full set of input vectors.

The properties of the RQA implementations employed during the experiment are depicted in
Tab. D.2. The variant chosen relies on a row-based representation of the input data, because it
stores each component of a vector separately, as required by the predefined distributions. This
procedure is not applicable using the overlapped column-based representation, which does only
refer to the extraction of values from a single time series.

Hypotheses

Parallel brute-force processing conducts all pairwise input vector comparisons stored within a
recurrence matrix. There is no pruning of comparisons based on the spatial locality of the input
vectors. Hence, the runtimes observed on a particular compute device should be independent of
distribution type applied.
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Figure 6.1: Multi-dimensional vector distribution - AMD Radeon RX 470.

Results

The experimental results are presented in App. E.1.1. Figure 6.1 depicts the runtime results
regarding the execution of the experiment on the AMD Radeon RX 470 GPU. For each type of
distribution, there is a boxplot [Tukey, 1977] that shows the spread of runtimes regarding 100
experimental runs. There are only small variances in relation to the mean runtime, signalled by
the small extents of each boxplot. Confirming the initial hypothesis, the runtime performance
of the create recurrence_matriz operator does not depend on the spatial distribution of input
vectors. This finding holds independent of the compute device employed.

The following experiments referring to parallel brute-force processing employ input data ad-
hering to a uniform distribution of random values. Unless stated otherwise, the values are
represented by a single series, from which the multi-dimensional vectors are reconstructed using
the time delay method.

6.2.2 Similarity Measure

Different similarity measures can be employed to determine the pairwise input vector similarities.
This experiment analyses the impact of the following measures on the runtime performance:

e the Taxicab metric,
o the Fuclidean metric, and

o the Mazimum metric.

Fach measure has a specific computational overhead, which among others depends on the
efficiency of built-in functions used to implement the corresponding OpenCL C kernels. The
Taxicab metric requires to compute the absolute difference of vector component pairs. For this
purpose, the built-in function abs is applied. The Maximum metric also uses this function.
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Additionally, it requires to compute the maximum of vector component pairs. It is implemented
by calling the built-in function max. In contrast, the Euclidean metric is the only measure that
is implemented without calling any built-in function. This is achieved by squaring the value of
€ during the application of the similarity threshold, preventing to take the second root of the
sum of the squared distances of the individual vector components.

Setup

The experiment compares the runtime behaviour of three RQA implementations that differ only
regarding the similarity measure used to calculate the similarities of pairs of multi-dimensional
vectors. In this way, the influence of other factors is eliminated.

The selection of the similarity measure does only affect the computation of the pairwise
vector similarities. Therefore, only the runtime of the create recurrence matriz operator is
considered as observational variable. The properties of the RQA implementations employed
during this experiment are depicted in Tab. D.4. Table D.5 captures the assignments of the
RQA input parameters that are not varied.

Hypotheses

The implementations of the built-in functions are provided by the hardware vendors and are
usually optimised for specific platforms. Hence, their performance should vary across the dif-
ferent compute devices. The runtimes of RQA implementations using the Euclidean metric are
expected to be similar to or lower than the using the other two metrics, since its implementation
omits the computational overhead for calling built-in functions.

Results

The complete results are presented in App. E.1.2. Regarding the two GPU compute devices,
the runtimes of using the different similarity measures vary only slightly, as indicated by the
narrow boxplots. This allows to conclude that employing the built-in functions mentioned has
almost no effect on the runtime behaviour.

In contrast, runtime variations between the different similarity measures can be observed on
the OpenCL compute device consisting of two Intel Xeon E5620 CPUs (see Fig. 6.2). Here,
the runtimes while using the Taxicab and Euclidean metric are almost identical. The runtimes
measured while applying the Maximum metric are considerably higher. It is reasonable to
conclude that this effect stems from calling the built-in function max, being the major difference
regarding the computations conducted. The increase in runtime does not necessarily imply that
the corresponding function is implemented inefficiently, but rather that its usage introduces
additional computational effort.

In the following, the Euclidean distance is selected as similarity measure, because the corre-
sponding OpenCL C kernels do not rely on built-in functions. As a result, their impact on the
performance measurements is eliminated.
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Figure 6.2: Similarity measure - Intel Xeon E5620.

6.2.3 Default Compiler Optimisations

The kernel functions written in OpenCL C are converted to machine code using a compiler that
is usually provided by the vendor of the OpenCL platform. The prototype implementing RQA
used in this evaluation performs the compiling during the execution of the host program. Here,
the OpenCL runtime engine calls the compiler with a set of arguments triggering optimisations.
Each OpenCL platform enables a specific set of default compiler optimisations, which aim at
improving the performance of executing the compiled kernels on the respective platform.

Some compiler optimisations may come at the cost of inaccuracy regarding the computational
results, e.g., due to the relaxed precision of mathematical functions. As an example, [Rawald
et al., 2014a] presents an experiment conducting RQA on the Potsdam temperature profile.
Although conducting the exact same analytical scenario, the experimental results computed
on the Nvidia GeForce GTX 690 graphics card differed regarding the number of recurrence
points, while having the default compiler optimisations enabled or disabled. This behaviour was
observed when using version 331.49 of the Nvidia Accelerated Linux Graphics Driver. Having
the default compiler optimisations enabled, 131,534, 113,286 recurrence points were detected
within the whole recurrence matrix. Without default optimisations, the value drops slightly
to 131,534,112,068. The difference of 1,218 points (~ 0.000001%) causes variations in the
topology of the recurrence matrix that may result in diverging RQA measures.

The reason for those variations can most likely be explained by the usage of relaxed mathe-
matical operations, e.g., regarding the processing of floating-point numbers [Zuras et al., 2008],
that are activated by enabling default compiler optimisations. This issue has been resolved at
least in the driver version 352.30. Although the differences in accuracy have a rather small
impact, the user should be aware of their existence. It is especially important when comparing
RQA results calculated by different devices.

The following experiment analyses the performance improvements, in particular the runtime
reductions, gained by enabling default compiler optimisations. Note that all combinations of
compute device and OpenCL runtime employed delivered identical computing results, indepen-
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Figure 6.3: Default compiler optimisations - AMD Radeon RX 470.

dent of whether those optimisations are enabled or not.

Setup

For each default compiler optimisations status, disabled and enabled, the total runtime of execut-
ing all three analytical RQA parameters is measured on each compute device. The same RQA
implementation is used in each experimental run. Its properties, for example the representation
of the binary similarity values, are summarised in Tab. D.6. The assignments of the RQA input
parameters, e.g., the dimensionality of the input vectors, are depicted in Tab. D.7.

Hypotheses

The total runtime of conducting RQA while having the default compiler optimisations enabled
should be lower than having them disabled. This property should hold across all compute
devices. The absolute and relative impact of enabling the default optimisations on the runtime
performance should vary from device to device.

Results

The complete results are presented in App. E.1.3. As expected, enabling the default compiler
optimisations delivers considerable performance improvements across all compute devices. The
runtime can at least be reduced by a factor of two. The execution on the AMD Radeon RX 470
GPU experiences the most dramatic performance improvements. Here, a relative improvement
of a factor of ~ 9 is observed (see Fig. 6.3).

Based on these findings, the default compiler optimisations are enabled in each of the following
experiments, unless stated otherwise.
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6.2.4 Input Data Format

This experiment is the first one that explores the impact of the design dimensions presented from
Sect. 5.1.1 to Sect. 5.1.5. In the following, the impact of the row-wise and overlapped column-
wise, or short column-wise, input data format on the performance of the RQA processing is
analysed.

Setup

The selection of the input data format influences the computation of the pairwise recurrence
vector similarities. Therefore, the runtime of the create recurrence_matriz operator execution
regarding two RQA implementations is observed; one using the row-wise and the other using
the column-wise input data format. The remaining properties, as depicted Tab. D.8, are equal
independent of the input data format employed.

The embedding dimension is selected as independent variable, because it highly influences
the layout of the input data within the global memory of a compute device. The range of
dimensionalities applied in this experiment varies between one to twenty. This corresponds to
real-world applications of recurrence analysis (see Sect. 2.1.1). The remaining input parameter
assignments are depicted in Tab. D.9.

Hypotheses

In general, the runtime of computing the pairwise input vector similarities should increase while
increasing the embedding dimension. Ideally, the slope of this increase should be linear. The
runtime of using the column-wise input data format should be smaller than the ones using the
row-wise input data format for all embedding dimensions m > 1. This is expected due to the
high importance of coalesced memory access regarding massively parallel hardware architectures.

Results

Appendix E.1.4 depicts the runtime results for each compute device. In contrast to the previous
experiments, the runtimes captured are the mean of all of the 100 runs conducted for each
experimental configuration.

Using the column-wise input data format results in runtimes that are either similar or lower
than the runtimes of using the row-wise format. This holds except for an embedding dimension
of one on the NVIDIA GeForce GTX 690 compute device. Furthermore, the runtime increase of
the column-wise input data format is linear with respect to the embedding dimension across all
compute devices employed. This does also hold for the runtimes regarding the row-wise input
data format on the Intel Xeon E5620. Here, while increasing the embedding dimension, there is
only a slight increase regarding the runtime ratio, whereas the slopes of the runtime ratio curves
are much greater regarding the GPU devices (see Fig. 6.4).

To identify the cause of the supra-linear increase in runtime, the performance counters on the
AMD Radeon RX 470 are investigated [Advanced Micro Devices, Inc., 2013a, pp. 15-17]. The
CacheHit is expected to be the dominant impact factor, as suggested in Sect. 5.1.1. This is
not confirmed by the results of this experiment. Surprisingly, the value of CacheHit is higher
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Figure 6.4: Input data format - Ratios between the runtime for using the row-wise versus the
column-wise input data format.

regarding the row-wise input data format, increasing from 84.48% to 99.22%, in comparison to
the column-wise layout, decreasing from 84.66% to 81.91% (see Tab. E.11).

The FetchSize, a performance counter capturing the total amount of data fetched from the
global memory of the compute device, gives an indication for the increase in runtime while using
the row-wise input data format. Regarding the column-wise layout, its value remains almost
constant at approximately 157kB, when varying the dimensionality of the input vectors from
one to twenty. Using the row-wise format, the value of FetchSize grows from roughly 157kB
(m = 1) to more than 2.6GB (m = 20), which is an increase of more than four magnitudes.

It is reasonable to assume, that the value of FetchSize also explains that the runtimes of the
row-wise and column-wise layout are similar for embedding dimensions of 1 < m < 3. Up to a
dimensionality of three, the amount of data fetched does not exceed 512k B for both formats.
This is equivalent to the total size of the L1 cache available on the AMD Radeon RX 470!.
Having an amount of data that exceeds the size of the L1 cache, additional evict and fetch
operations have to be performed. Apparently, this procedure increases the value of FetchSize
drastically, which leads to a corresponding increase in runtime.

6.2.5 Recurrence Matrix Representation

This experiment evaluates the impact of selecting either an uncompressed or a compressed re-
currence matrix representation (see Sect. 5.1.2). An uncompressed representation stores each
result of the pairwise vector similarity comparisons, independent of its concrete value. The
compressed sparse representation stores only the indices of those matrix elements that refer to
recurrence points. Hence, the sparser the recurrence matrix, the fewer indices have to be stored.

'The Polaris 10 graphics processor mounted on the AMD Radeon RX 470 comprises 32 compute units [Burke,
2016], with each of them being equipped with 16kB of L1 cache. This results in 512kB.
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Figure 6.5: Input data format - AMD Radeon RX 470.

A separate parallel brute-force variant of the create recurrence_matriz operator that rep-
resents the recurrence matrix in compressed format is not implemented. Rather, the Python
packages SciPy and ScikitLearn are used to create recurrence matrices represented in the com-
pressed sparse column format. Those compressed matrices are transferred to the global memory
of the compute device and analysed in a massively parallel manner. As explained in Sect. 5.1.2,
using the compressed representation requires to adapt the algorithms for detecting vertical and
diagonal lines. As a major objective, the dependency of the performance of those algorithms
regarding the sparseness of the recurrence matrix are investigated.

Setup

The sparseness of a recurrence matrix is influenced by several parameters, in particular the
similarity threshold. Since it is cumbersome to determine the exact threshold achieving a certain
recurrence rate, thresholds that are fractions of the maximum phase space diameter are selected.
The ratios used range between 0.0 and 1.0 with an offset of 0.05. Applying the RQA input
parameter assignments used in this experiment, the RQA measure recurrence rate, which reflects
the sparseness of a recurrence matrix, is progressing as depicted in Fig. 6.6.

There is a super-linear increase in the number of recurrence points up to a recurrence rate
of approximately 50%. This value is reached at a maximum phase space diameter ratio of
0.4. This progression results from the polynomial increase of the volume of the neighbourhoods
around each input vector. The amount of neighbours is increasing likewise, due to the uniform
distribution of input vectors.

Exceeding a maximum phase space diameter ratio of 0.4, the progression inverts until a
recurrence rate of 100% is reached at a ratio between 0.70 and 0.75. The inversion can be
explained by the fact, that the region of the m-dimensional space, in which the input vectors
reside, is limited. With increasing the maximum phase space diameter ratio, a growing number
of neighbourhoods exceed the limits of the fixed-sized region, leaving parts of the spheres empty.
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Figure 6.6: Recurrence rates. The progression of the recurrence rate results from applying a
random input series adhering to the uniform distribution in combination with an
embedding dimension of m = 10 and the Euclidean metric as similarity measure.
The tabular results are captured in Tab. D.12.

This eventually results in a decline of the growth of the number of input points.

In this experiment, the maximum phase space diameter ratio is selected as independent vari-
able. The runtimes of the detect wertical lines and detect diagonal lines operators are ob-
served, while varying its value between 0.0 and 1.0. The properties of the RQA implementations
used are depicted in Tab. D.10. Note that the RQA implementation based on the compressed
sparse representation represents the coordinates of recurrence points as 32-bit integer values.
The assignments of the full set of RQA input parameters are captured in Tab. D.11.

Hypotheses

An almost constant runtime across all maximum phase space diameter ratios is expected re-
garding the line detection using an uncompressed recurrence matrix representation. The reason
for this assumption is that only the content of the recurrence matrix is changing, not the cor-
responding memory layout. Hence, the number of data elements evaluated remains constant
in every case. This should hold regarding all compute devices, although the absolute runtimes
should be specific to each device. Ideally, the runtimes of detecting diagonal lines should be
lower than the ones of executing the detect wvertical lines operator, because only one half of
the matrix needs to be evaluated.

Using the compressed sparse representation, the runtime for line detection should grow with
increasing maximum phase space diameter ratio. This results from the increasing number
of recurrence points located in the columns and diagonals of the recurrence matrix. The
detect__wvertical_lines operator should perform well for small maximum phase space diameter
ratios. This is due to the much smaller number of data elements evaluated during the sequential
scan of matrix columns. There should be a break-even point regarding the runtimes of using
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the uncompressed and compressed matrix representation. Its location is expected to be specific
to each compute device.

The implementation of the detect diagonal lines operator using the compressed represen-
tation should have higher runtimes in comparison to its uncompressed counterpart, since the
underlying algorithm has a higher worst-case time complexity of O(N?). Similar to the detection
of vertical lines, the runtime deltas between the uncompressed and compressed implementation
should differ across the compute devices.

Results

The experimental results, as shown in App. E.1.5, are only partially in alignment with the initial
hypotheses. The set of confirmed hypotheses includes increasing runtimes regarding the detec-
tion of vertical lines using the compressed matrix representation. Furthermore, the compressed
representation leads to higher runtimes regarding the detection of diagonal lines. In contrast to
the initial hypotheses, the runtimes using the uncompressed representation experience a peak
at specific maximum space diameter ratios. In addition, a continuous runtime increase using
the compressed representation for detecting diagonal lines can only be observed regarding the
Intel Xeon E5620 compute device. In the following, the divergent behaviour is distinguished in
detail according to the two line detection operators.

Detection of Vertical Lines. Considering the runtime observations regarding the execution of
the detect_vertical lines operator, the following major deviations from the initial hypotheses
exist:

1. The runtimes of using the uncompressed recurrence matrix representation are not constant.

2. The runtime curves of both representations intersect at almost the same maximum phase
space diameter ratio.

3. The compressed representation results in lower runtimes regarding larger maximum phase
space diameter ratios on the Intel Xeon E5620 compute device.

It was assumed that there is an almost constant runtime regarding the detection of vertical
and diagonal lines while using the uncompressed matrix representation. This assumption does
not hold, in particular not for the detect vertical lines operator. Within the ratio range from
0.2 until 0.6 an increase in runtime is observed across all compute devices. The runtime peak is
either located at a ratio of 0.35 (Nvidia GeForce GTX 690) or 0.4 (AMD Radeon RX 470, Intel
Xeon E5620).

Those elevations most likely result from using atomic operations to update the vertical line
length histogram. The positions of the peaks correlate with a recurrence rate of approximately
50%. This density leads to a high number of lines having the same length, considering the uni-
form distribution of input vectors, which causes a high number of work-items to simultaneously
update the same elements of the line length histogram. The execution of many work-items is
blocked, due to the synchronised access. This eventually increases the overall runtime.
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Figure 6.7: Recurrence matrix representation - Detect vertical lines - Intel Xeon E5620.

The negative impact of synchronisation affects both recurrence matrix representations and has
the highest impact on the Intel compute device (see Fig. 6.7). Further increasing the recurrence
rate, fewer lines of the same length are created, leading to a reduced synchronisation overhead.
Independent of the compute device, the runtimes stabilise at a plateau starting at a maximum
phase space diameter ratio of 0.6.

Using the compressed matrix representation, the runtimes correlate with the increase in recur-
rence rate across all compute devices. This leads to similar positions of the break-even points,
in combination with similar runtime ratios with respect to the dense representation. The in-
tersection is located between a maximum phase space diameter ratio of 0.2 and 0.3, across all
compute devices.

On the Intel compute device, the implementation of the detect_wvertical lines operator using
the compressed representation has lower runtimes than the one using the uncompressed repre-
sentation for all ratios greater than or equal to 0.6, although these recurrence matrices contain
large number of recurrence points. This behaviour may result from the diverging data formats
used to represent the recurrence matrices in the global memory.

Detection of Diagonal Lines. The runtime results obtained regarding the execution of the
detect__diagonal_lines operator are only partially in alignment with the initial hypotheses (see
App. E.1.5). As expected, the runtimes while using the compressed representation are always
higher, independent of the maximum phase space diameter ratio and compute device applied.
The largest difference of more than one magnitude is observed on the Intel Xeon E5620 compute
device.

Differently than expected, runtime peaks are observed around a maximum phase space diam-
eter ratio of 0.4, using the uncompressed representation. This behaviour likely stems from the
synchronised access to the diagonal line length histogram, similar to the detection of vertical
lines. The impact of the compressed recurrence matrix representation is specific to each com-
pute device. Whereas the runtimes regarding the AMD GPU remains almost constant, there is
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Figure 6.8: Recurrence matrix representation - Detect diagonal lines - Nvidia GeForce GTX 690.

a peak at a ratio of 0.55 regarding the Nvidia GeForce GTX 690 (see Fig. 6.8). In contrast, the
progression of the runtime curve regarding the CPU device corresponds to the recurrence rates
from Fig. 6.6.

6.2.6 Similarity Value Representation

The following experiment refers to the representation of similarity values within uncompressed
recurrence matrices, as explained in Sect. 5.1.3. Either one byte or bit is used to represent the
binary similarity value referring to a single pair of multi-dimensional vectors. In this regard,
this thesis introduces a custom bit-wise recurrence matrix representation. The bit representation
uses atomic operations to update individual bits of 32-bit integer values. Only bits that refer
to recurrence points are modified during recurrence matrix construction, to reduce the negative
impact of synchronisation.

The representation of the similarity values influences the processing of each analytical RQA
operator, including the detection of vertical and diagonal lines. The bit values have to be
extracted from the 32-bit integer values, to inspect a column or diagonal of the recurrence
matrix. In this regard, multiple bits of the same integer value can be extracted simultaneously
without having to perform synchronisation. The following experiment compares the performance
characteristics of executing all three analytical RQA operators, either using the bit-wise or byte-
wise representation of similarity values.

Setup

The embedding dimension is selected as independent variable, which is varied between one and
twenty. A single series adhering to a uniform distribution of floating-point values is used as
input data. A constant ratio regarding the maximum phase space diameter is used to specify
the similarity threshold. This leads to decreasing recurrence rates, with an increasing embedding
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Figure 6.9: The development of the recurrence rate using a uniform distribution of input val-
ues in combination with a fixed maximum phase space diameter ratio of 0.3, while
increasing the embedding dimension from one to twenty.

dimension (see Fig. 6.9). The properties of the analytical operator implementations is presented
in Tab. D.13. The input parameter assignments are shown in Tab. D.14.

Hypotheses

The computational load regarding the calculation of the pairwise vector similarities grows
when increasing the embedding dimension. This results from processing more pairs of in-
put vector components. Hence, there should be an increase in runtime for executing the
create__recurrence__matrixz operator, independent of the similarity value representation. The
recurrence rate drops gradually with increasing embedding dimension, while starting from a
value of more than 50%. This should result in lower runtimes regarding small embedding di-
mensions when using the byte-wise representation, in comparison to the representing a similarity
value by a single bit. The synchronisation overhead regarding the latter should mitigate with
increasing dimensionality of the input vectors.

The runtimes for detecting vertical lines should remain constant, independent of the embed-
ding dimension and similarity value representation. This is due to the white vertical lines being
the inverse of the vertical lines consisting of recurrence points. As a result, the performance
improvements of having to update the vertical line length histogram fewer times is compensated
by an increasing number of updates to the white vertical line length histogram. In contrast, the
runtime for detecting diagonal lines should decrease with an increasing embedding dimension,
since fewer updates of the corresponding line length histogram have to be performed.
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Figure 6.10: Similarity value representation - Create recurrence matrix - Nvidia GeForce GTX
690.

Results

The runtime results of the experiment are depicted in tabular fashion as well as using diagram
in App. E.1.6. They are largely in alignment with the initial hypotheses regarding the creation
of the recurrence matrix and the detection of diagonal lines. This particularly refers to increas-
ing runtimes during the create recurrence__matriz operator execution and decreasing runtimes
during the detect diagonal lines operator execution. Diverging behaviour can be observed re-
garding the detection of vertical lines, where the runtime decreases instead of remaining constant
across all embedding dimensions. In the following, the runtime results are analysed separately
for each analytical operator.

Creation of the Recurrence Matrix. The runtimes observed regarding the execution of the
create__recurrence__matriz operator grow with increasing embedding dimension, independent of
the similarity value representation. For small embedding dimensions, the runtimes using the bit-
wise similarity value representation are higher than the ones using the byte-wise representation.
Considering the AMD and the Intel compute devices, the runtimes using the byte-wise represen-
tation are smaller with respect to the bit-wise representation (see Fig. E.19 and Fig. E.25). This
behaviour is observed independent of the concrete embedding dimension used. Furthermore, the
two runtime curves converge with increasing vector dimensionality. In contrast, using the bit-
wise representation leads to slightly smaller runtimes on the Nvidia GPU device for embedding
dimensions with m > 12 (see Fig. 6.10).

Detection of Vertical Lines. Regarding the detect vertical lines operator it was assumed that
the runtimes remain constant, independent of the similarity value representation employed. The
runtimes observed do not confirm this hypothesis. Instead, the runtimes decrease with increasing
vector dimensionality across all compute devices. This behaviour likely results from counting the
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Figure 6.11: Similarity value representation - Detect vertical lines - AMD Radeon RX 470.

number of recurrence points, required for the computation of the recurrence rate, per column of
the recurrence matrix during the detection of vertical lines. In this regard, one integer variable
is kept per column, that is incremented while scanning the corresponding matrix elements. This
implementation detail allows to avoid the application of atomic operations, in particular during
the execution of the create recurrence matriz operator. Since fewer increment operations have
to be performed, as indicated by Fig. 6.9, the computational effort decreases with increasing
embedding dimension.

The runtimes of using the byte-wise or bit-wise similarity value representation almost com-
pletely overlap, independent of the compute devices employed. An exception is the AMD Radeon
RX 470. Here, the runtimes using the bit-wise representation are slightly smaller for all em-
bedding dimensions with m < 10. Regarding m > 10, applying the byte-wise representation
results in lower runtimes. The gap between the two runtime curves increases with increasing
embedding dimension (see Fig. 6.11).

Detection of Diagonal Lines. Regarding the detection of diagonal lines, only the runtimes
regarding the Intel Xeon E5620 compute device are in alignment with the initial hypothesis (see
Fig. 6.12). Here, the runtime decreases continuously while increasing the embedding dimension.
In contrast, there are runtime peaks at a dimensionality of two, considering the two GPU devices.
The performance characteristics of the AMD Radeon RX 470 and the Nvidia GeForce GTX 690
differ regarding the relation between the runtime curves of both similarity value representations.
Executing the detect diagonal lines operator on the AMD compute device, using the bit-wise
representation results in lower runtimes for embedding dimensions that are greater or equal
than six. In contrast, the byte-wise representation is favourable regarding the Nvidia compute
device, independent of the embedding dimension applied.
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Figure 6.12: Similarity value representation - Detect diagonal lines - Intel Xeon E5620.

Summary. The effects of representing similarity values using a single bit or byte differs between
the compute devices employed. Although the bit-wise representation introduces computational
overhead, corresponding RQA operator implementations may have a better performance regard-
ing sparse recurrence matrices, e.g., regarding the execution of the create recurrence__matriz op-
erator on the Nvidia GPU. Furthermore, there may be diverging behaviour when comparing the
execution of the different analytical operators on the same compute device. As an example, the
byte-wise representation is favourable while detecting vertical lines on the AMD GPU, whereas
the bit-wise representation is favourable regarding the detection of diagonal lines.

6.2.7 Intermediate Results Recycling

The recycling of intermediate results refers to including the computations of the pairwise vector
similarities within the detect _vertical_lines operator (see Sect. 5.1.4). The corresponding binary
similarity values are persisted within the global memory of the compute device and used during
the detection of diagonal lines.

A major benefit of recycling is saving the overhead for executing a separate operator to create
the recurrence matrix. Moreover, computing the pairwise similarities during the inspection of
columns allows to eliminate the reading of N2 similarity values. On the downside, each atomic
task instance of the detect wvertical lines operator has to compute N binary similarity values,
instead of only one. This limits the potential for parallel processing, although the total amount
of computational effort remains the same. The goal of this experiment is to investigate whether
there are conditions, under which the benefits of recycling exceed its disadvantages.

Setup

The suitability of recycling is strongly influenced by the number of input vectors, from which the
corresponding recurrence matrix is constructed. Changing the value of this parameter allows to
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steer the total number of work-items executed per operator. During the experiment, the number
of input vectors N is varied between 1,000 and 20,000 with an offset of 1,000. Increasing N
linearly leads a quadratic increase in the number of similarity comparisons and a linear increase
in vertical line detection tasks.

A one-dimensional series capturing values that adhere to a uniform distribution serves as
input data. The density of the recurrence matrix processed is set to roughly 50%, by selecting
a maximum phase space diameter ratio of 0.4. The remaining input parameter assignments are
presented in Tab. D.16.

The runtimes of the create_recurrence _matriz and detect__vertical__lines operator of the non-
recycling RQA implementation are cumulated. This ensure comparability with the operator
detect__wvertical_lines using recycling. The detection of diagonal lines is excluded from the
performance analysis, because the corresponding computations are identical in both cases. The
remaining operator properties are captured in Tab. D.15.

Hypotheses

The performance behaviour of the recycling and the non-recycling implementation is likely to
be specific to each computing device. This is for example due to the different parallel processing
capabilities, e.g., the total number of processing elements. One of the following three runtime
behaviours is expected to be observed:

The benefits of recycling outweigh its disadvantages: The climination of the separate opera-
tor create recurrence__matriz leads to a reduction in runtime, independent of the size of
the recurrence matrix. The access to the global memory of the compute device is very
time consuming. The overhead for initialising and executing separate work-items regard-
ing create__recurrence__matriz is considerable. The larger amount of work performed by
each work-item does not have considerable effect.

The disadvantages of recycling outweigh its benefits: Leveraging the full parallel processing
capabilities of the compute device is the key to a reasonable runtime performance. The
access to the global memory is very cheap from a computational perspective. The overhead
for work-item initialisation and execution is comparatively small. The amount of work
performed by each work-item has a significant influence on the runtime.

Neither the benefits nor the disadvantages of recycling are dominant: There exists a break-
even point regarding the runtime curves of both approaches, depending on the amount of
input vectors.

Results

Appendix E.1.7 compares runtime performance of using either the recycling and non-recycling
approach. As stated before, the runtimes referring to the non-recycling approach are a cumula-
tion of the individual runtimes of the create_recurrence__matrixz and the detect wvertical__lines op-
erator. There is no consistent runtime behaviour across the three compute devices used during

111



6 Analytical Operator Evaluation

the evaluation. On a macro level, the performance of the two GPU compute devices is compa-
rable, whereas the CPU exposes diverging runtime results. Therefore, the analysis is conducted
separately for each compute device type, GPU and CPU.

Device Type GPU. There exist break-even points regarding the two runtime curves for the
AMD Radeon RX 470 and the Nvidia GeForce GTX 690. The non-recycling approach performs
well for small amounts of vectors, starting with comparatively lower runtimes for 1,000 input
vectors. Apart from that, the runtimes regarding the non-recycling approach grow stronger
than the runtimes referring to recycling. The location of the resulting intersection of both
curves differs between the two devices. Considering the AMD GPU, the break-even point lies
between 11,000 and 12,000 input vectors. The runtime curves of the Nvidia GPU intersect
between 4,000 and 5,000 vectors.

Performance counters regarding the execution on the AMD GPU are gathered, to investigate
the reason for this runtime behaviour. As indicated before, a benefit of intermediate results
recycling is omitting read accesses to the global memory of the compute device, regarding N2
similarity values. Correspondingly, this affects the amount of data transferred from and to the
global memory, measured by FetchSize and WriteSize [Advanced Micro Devices, Inc., 2013a,
pp. 16-17].
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Figure 6.13: Intermediate results recycling - AMD Radeon RX 470 - FetchSize. The FetchSize
values referring to the non-recycling approach are an aggregate of the individual

values of the create recurrence _matriz and detect vertical_lines operator. The
tabular data is shown in Tab. E.30.

The progression of FetchSize is depicted in Fig. 6.13. The amount of data fetched from
the global memory differs greatly, whether recycling is applied or not. Only the N vectors
serving as input data are read during the execution of the detect_wvertical lines operator using
recycling. The non-recycling approach requires to additionally read the quadratic recurrence
matrix, containing N? binary similarity values. This quadratic relationship with respect to the
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Figure 6.14: Intermediate results recycling - AMD Radeon RX 470 - WriteSize. The WriteSize
values referring to the non-recycling approach are an aggregate of the individual

values of the create recurrence matriz and detect vertical_lines operator. The
tabular data is shown in Tab. E.30.

number of input vectors is also reflected by the quadratic increase in the amount of data fetched
from global memory.

The value of the performance counter WriteSize is almost independent of intermediate results
recycling (see Fig. 6.14). This results from persisting the N? binary results of the similarity
comparisons regarding each of the two cases. Hence, the amount of data written to the global
memory is comparable.

Device Type CPU. Applying recycling on the Intel Xeon E5620 CPU results in larger runtimes
(see Fig. 6.15). The corresponding runtime curve progresses more steeply than the non-recycling
counterpart, independent of the number of input vectors used. The amount of data fetched from
the global memory does not seem to have considerable effect on the runtime. It is reasonable
to assume that the higher degree of parallelism of the create_recurrence__matriz operator suits
the processing on the Intel CPU.

6.2.8 Recurrence Matrix Materialisation

All of the previous experiments assume that the recurrence matrix is stored in the global memory
of the compute device. Either the create recurrence _matriz or the detect vertical_lines oper-
ator computes its contents, which are used to detect line structures. The following experiment
investigates the impact of not-persisting the matrix at all, but rather to compute the binary
similarity values while inspecting columns and diagonals regarding line structures.

The theoretical considerations referring to this experiment are presented in Sect. 5.1.5. The
focus is on a set of equations that capture the impact of the amount of data transferred from
and to the global memory on the overall runtime of RQA (see App. B).
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Figure 6.15: Intermediate results recycling - Intel Xeon E5620. The runtimes referring to
the non-recycling approach are an aggregate of the individual runtimes of the
create__recurrence__matriz and detect vertical lines operator.

Setup

The dimensionality of the input vectors is expected to have a large influence on the runtime
performance of implementations relying on non-materialisation, as indicated by the equations
in App. B. Hence, the embedding dimension is selected as independent variable. Its value is
varied between one and twenty with an offset of one.

The influence of other factors potentially distorting the runtime results is reduced, to in-
vestigate solely the impact of the embedding dimenson. As an example, the maximum phase
space diameter is set to 0.0, which results in a recurrence matrix containing only zero values.
In this way, the computational effort to update the line length histograms is minimised. The
assignments of the remaining input parameters is depicted in Tab. D.18.

Each of the analytical RQA operators is influenced by the choice of materialising or not-
materialising the recurrence matrix. Hence, the cumulative runtime of all RQA operators is
measured. Note that the implementation that materialises the recurrence matrix only consists of
the operators for detecting vertical and diagonal lines. The operator properties except from the
materialisation status are depicted in Tab. D.17. Note that the values of the categories similarity
value representation and intermediate results recycling do only apply to the implementation that
persists the binary similarity values.

Hypotheses

The equations presented in App. B compare the amount of data elements transferred when
applying different materialisation and non-materialisation approaches. The assumption is that
the number of data elements transferred from and to the global memory of a compute device
has significant impact on the runtime. The equations are solved for the embedding dimension
m, having a high influence on the amount of data transferred. This experiment compares using
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Figure 6.16: Recurrence matrix materialisation - AMD Radeon RX 470.

a separate create_recurrence_matriz operator with not materialising a symmetric recurrence
matrix. The corresponding equation that is depicted in App. B.1 indicates a break-even point
at an embedding dimension between two and three. For m < 2, not-materialising the recurrence
matrix results in fewer data elements transferred. For m > 3, not-materialising the recurrence
matrix results in more data elements transferred. The development of the corresponding runtime
curves should correlate with these theoretical considerations. This should hold, independent of
the compute device used.

Results

The comprehensive results regarding all compute device employed are presented in App. E.1.8.
They vastly support the initial hypotheses. The runtime increases almost linearly, both for
materialising and not-materialising the recurrence matrices. However, the slope of the runtime
curves referring to non-materialisation are steeper compared to materialising the matrix, causing
the break-even points. The progression of the runtime curves is similar across all compute
devices. As an example, the execution on the AMD GPU is considered (see Fig. 6.16). For 1 >
m > 3, the runtime regarding the non-materialisation approach is smaller than its counterpart
referring to materialisation. This behaviour inverts for 4 > m > 20.

The position of the break-even point with respect to the embedding dimension m is device-
specific.

AMD Radeon RX 470: 3 <m < 4
Nvidia GeForce GTX 690: 5 <m < 6
Intel Xeon E5620: 4 < m < 5

The comparatively small values support the equation from App. B.1. Deviations from the
theoretical results may stem from multiple reasons. First, the equations presented in App. B
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assume that read accesses and write accesses have the same computational overhead. However,
write operations are usually more demanding than read operations. Second, the number of data
elements considered in the equations does not match the actual amount of data transferred. This
heavily depends on the encoding of particular data elements, e.g., the binary similarity values.
Third, not-materialising the recurrence matrix allows to save overhead costs for executing a
separate create__recurrence__matriz operator. This may also have a positive impact on the
runtime, which is expected to be specific for each compute device.
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6.3 Index Data Structures

This section evaluates the performance of index data structure implementations in the context
of RQA processing. Each of the following subsections refers to a specific type of index data
structures, either grid directories or multi-dimensional search trees. Each subsection comprises
a single experiment, focussing on the the execution of the create recurrence_matriz operator.
It is investigated, how the pruning of pairwise similarity comparisons influences the performance
characteristics of corresponding operator implementations.

6.3.1 Grid Directories

This section investigates the applicability of grid directories to RQA (see Sect. 5.2.1). In this
regard, the multi-dimensional vectors extracted from the input time series are indexed using an
uniform grid. This grid is used to prune similarity comparisons by investigating only those grid
cells that are adjacent to the source grid cell of a query vector. The process of employing a grid
directory is subdivided into two steps:

1. Creating the grid directory, and

2. Querying the grid directory regarding neighbouring vectors.

Both of those steps are performed while executing the create recurrence matriz operator.
Two strategies to create grid directories have been presented in Sect. 5.2.1. This includes grid
creation using:

o Atomic operations, and
e Sorting.

Implementations based on the OpenCL framework are provided for each of those approaches.
Note that the approach using sorting requires to transfer the mapping of vector index to grid
cell index from the global memory of the compute device to the main memory of a computing
system. The corresponding create recurrence matriz implementation conducts the sorting of
the indices on the host device. This is done to avoid additional effort to implement parallel
sorting. Instead, functionality provided by the Python package NumPy is employed. Here, the
functions numpy . argsort, numpy.bincount and numpy.cumsum are called.

The goal of using grid directories is to reduce the number of pairwise similarity comparisons
by investigating only those grid cells that potentially contain neighbours of a query vector. For
this purpose, a uniform grid with an edge length of 2x¢€ in each of the m dimensions, with € being
the similarity threshold, is applied. As a result, 3" grid cells have to be inspected regarding
neighbours for each multi-dimensional vector. This relation indicates that the number of grid
cells to inspect increases exponentially when increasing the embedding dimension linearly. For
this reason, the experiment evaluates the impact of the following parameters on the performance
characteristics of the grid directory implementations:

¢ Embedding dimension,
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e Similarity threshold, and

e Spatial distribution of input vectors.

Setup

The experiment is conducted solely on computing system (A) (see App. C.3). The AMD Radeon
RX 470 GPU provides the largest parallel computing capabilities, among the set of OpenCL
compute devices available. In addition, the global memory of 8GB is larger than the memory
of a single Nvidia GeForce GTX 690 processor contained in computing system (B).

Initial tests have shown, that this amount of memory is sufficient to store grid directories
referring to roughly 10? multi-dimensional vectors. This limitation results from the approach
using atomic operations. Here, the amount of memory each grid cell occupies is fixed. Instead
of using a heuristic regarding the potential neighbours to store, the size of the corresponding
memory region is selected such that each grid cell can potentially store all vector indices from the
dataset. This property amplifies the impact of the exponential increase regarding the number of
grid cells. On the positive side, this limitation restricts the computational overhead performed
by the host device.

The embedding dimension is varied only between 1 and 15, to address the memory limitation
described above. Again, a fraction of the maximum phase space diameter is selected as similarity
threshold. The ratio ranges from 0.1 to 1.0 with an offset of 0.1. The value 0 is left out, because it
would lead to grid cell edge lengths of 0. Selecting a ratio smaller than 0.1 would also increase the
total number of grid cells, overstraining the global memory of the compute device. The vectors
are scattered in multi-dimensional space either using the uniform, normal, exponential and
Cauchy distribution. The utilisation of synthetic data guarantees a certain spatial distribution
of input vectors.

A fixed number of ten instances are created for each combination of embedding dimen-
sion and distribution. The full range of maximum phase space diameter ratios is applied to
each of those instances, leading to different total numbers of grid cells. The following three
create__recurrence__matriz implementations are employed during the experiment:

1. Parallel brute-force implementation,
2. Parallel grid directory implementation using atomic operations, and
3. Parallel grid directory implementation using sorting.

All of those implementations rely on OpenCL functionality and share common properties
as shown in Tab. D.19. The implementations differ only regarding the procedure to obtain
the contents of the recurrence matrix. The assignments of the input parameters that are kept
constant are presented in Tab. D.20.

Hypotheses

The set of hypotheses considers multiple aspects of the performance analysis. Each of them is
captured individually.
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Parallel Brute-Force Implementation. The parallel brute-force implementation is expected to
be insensitive to the spatial distribution of input vectors, as indicated by the experiment in
Sect. 6.2.1. This should lead to comparable runtimes across all vector distribution types em-
ployed. The runtimes of the implementation selected should further not depend on the amount
of recurrence points, since an uncompressed recurrence matrix representation is applied. Hence,
the spreads between maximum and minimum runtimes should be very narrow. In addition,
the runtime should increase linearly, while linearly increasing the dimensonality m of the input
vectors.

Grid Directory Implementations. As explained earlier, 3™ grid cells have to be investigated
regarding potential neighbours of a query vector. Among other aspects, this exponential increase
contributes to the curse of dimensionality. Each combination of vector and grid cell is represented
by a single OpenCL work-item during the computation of the pairwise similarities. 3™ N work-
items are created, with N being the total number of multi-dimensional vectors, independent of
whether the grid directory is created using atomic operations or sorting. Each of those work-
items introduces additional overhead for initialisation and execution. As a consequence, the
runtimes are expected to increase roughly according to O(N?).

Creating the grid directory using sorting should yield in higher runtimes compared to using
atomic operations. This assumption is based on the increased effort to sort the indices, including
data transfer from and to the global memory as well as computations conducted by the host
device.

The efficiency of the pruning similarity comparisons largely depends on the spatial distribution
of the input vectors, as indicated before. It should decrease in the order of uniform, normal,
exponential and Cauchy distribution. Increasing the similarity threshold increases the number
of similarity comparisons actually conducted, although the amount of grid cells inspected for
each input vectors stays the same.

Parallel Brute-Force vs. Grid Directory Implementations. The two grid directory imple-
mentations are expected to deliver competitive runtime results with respect to the parallel
brute-force approach for small embedding dimensions. This is due to performing computations
in a massively parallel manner using OpenCL. The exponential increase in work-items should
lead to a drastic increase in runtime considering larger embedding dimensions.

Results

The experimental results are depicted in a comprehensive manner in App. E.2.1. They are
partially in alignment with the initial hypotheses. This includes the execution of the parallel
brute-force and the grid directory implementations. The results of the experiment are subdivided
according to the hypotheses presented before.

Parallel Brute-Force Implementation. The runtime of executing the parallel brute-force im-
plementation of the create recurrence__matrix operator increases, depending on the embedding
dimension (see Fig. 6.17). Contradicting the initial hypothesis, this increase is only partially
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Figure 6.17: Grid directories - Parallel brute-force implementation on exponential distribution.

linear. Runtime peaks at embedding dimensions referring to multiples of four (m =4, m = 8
and m = 12) are observed. It is reasonable to assume that this behaviour results from specific
architectural properties of the AMD compute device. Nonetheless, there are only small spreads
between the minimum and maximum runtimes, independent of the dimensionality of the input
vectors.

The evolution of runtimes is comparable across all types of input vector distribution. The
runtimes for the same combinations of quantile and embedding dimension are almost identical.
This also includes the position as well as the extent of the runtime peaks.

Grid Directory Implementations. The two grid directory implementations used in this exper-
iment are sensitive regarding the spatial distribution of input vectors as well as the similarity
threshold employed. In Fig. 6.18, the runtimes of the grid directory implementation using atomic
operations regarding the uniform distribution are shown. A boxplot is displayed for each em-
bedding dimension. The upper and lower whiskers refer to the 10% and 90% quantiles. The
outliers are depicted using the symbol +.

The runtimes referring to the maximum phase space diameter ratio of 0.1 are of particular
interest, because they expose diverging behaviour. For embedding dimensions with 1 > m > 7
they represent the lower 10% of the runtimes collected. In contrast, for embedding dimensions
with 9 > m > 15 they represent the top 10% runtimes. The runtimes drop to almost the average
runtime, when increasing the maximum phase space diameter ratio to 0.2. This leads to two
conclusions. First, the benefit of having smaller grid cells outweighs the exponential growth
regarding their amount for all embedding dimensions with m < 8. This behaviour inverses for
all embedding dimensions with m > 8. Second, a further decrease in the maximum phase space
diameter ratio to a value greater than 0.2 does not have a considerable impact on the runtime.
Note that this behaviour might differ using other OpenCL compute devices.

The diverging behaviour regarding a maximum phase space diameter ratio of 0.1 is observed
across all distribution types applied. Nonetheless, the intensity of the variations differs among
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Figure 6.18: Grid directories - Grid directory implementation using atomic operations on uni-
form distribution.

Table 6.1: Grid directories - AMD Radeon RX 470 - Performance counters. The counters reflect
average values out of ten experimental runs.

’ Distribution ‘ Time (ms) ‘ VALUInsts ‘ Ratio ‘
Uniform 4092.00 393.44 | 10.40
Normal 2651.47 249.01 | 10.65
Exponential 1676.92 150.78 | 11.12
Cauchy 771.48 7757 1 9.95

the distribution types. Considering a uniform distribution of multi-dimensional vectors, it is the
highest. Considering the Cauchy distribution, it is the lowest. This contradicts the expected
behaviour regarding the pruning of similarity comparisons. Additional performance counters
regarding an embedding dimension m = 15 and a maximum phase space diameter ratio of 0.1
are obtained for further investigation.

A strong correlation between the average number of vector arithmetic logic unit instructions
and the total runtime of executing the create_recurrence__matriz operator is observed [Advanced
Micro Devices, Inc., 2013a, p. 17]. In the following, the performance counter Time is compared
to VALUInsts. The runtime is roughly ten times the size of VALUInsts, independent of the
distribution type (see Tab. 6.1). Vector instructions are particularly executed when computing
the pairwise similarities between a query vector and the vectors in adjacent grid cells. Therefore,
it is reasonable to assume that concentrating the multi-dimensional vectors in regions with small
extent results in a larger number of work-items investigating empty neighbouring grid cells. This
reduces the average number of instructions executed per work-item.

The progression of the 50% quantile runtimes of the two grid directory implementations while
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Figure 6.19: Grid directories - Grid directory implementations on normal distribution.

increasing the embedding dimension is in alignment with the exponential increase in the total
number of grid cells. The runtime curves presented in Fig. 6.19 confirm the initial hypothesis.
A fitted curve f(m) is displayed to emphasise the exponential relationship. It can be concluded
that the pairwise vector similarity comparisons are not the major impact factor to the overall
runtime. It is rather the exponentially growing number of grid cells that have to be inspected
regarding neighbouring vectors.

Parallel Brute-Force vs. Grid Directory Implementations. The average runtimes of the par-
allel brute-force implementation are at least one magnitude smaller than the runtimes of the
parallel grid directory implementations (see Fig. 6.20). This contradicts the initial assumption
that suggested lower runtimes of the grid directory implementations regarding small embedding
dimensions. The runtime difference between the parallel brute-force and the two grid directory
implementations increases up to more than two magnitudes.

Overall, the grid directory implementations suffer from higher runtimes in comparison to
the brute-force implementation, although they also leverage the massively parallel computing
capabilities of the AMD Radeon RX 470. This is independent of the combination of embedding
dimension and type of spatial distribution.

6.3.2 Multi-Dimensional Search Trees

This section comprises a single experiment that investigates the applicability of tree-based index
data structures to RQA. The focus is on two implementations of the k-d tree as presented in
Sect. 5.2.2. This includes:

e scipy.spatial.cKDTree as part of the Python package Scipy? and

2The function scipy.spatial.cKDTree.query_ball_tree is applied to conduct e-nearest neighbour queries.
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Figure 6.20: Runtimes - Normal Distribution.

« sklearn.neighbors.KDTree as part of the Python package scikit-learn?.

The functionality required in the context of RQA processing is the creation of the structure
and its querying regarding nearest neighbours. Insights on a prior performance analysis are
given in Sect. 5.2.2. It mentions several factors that affect the runtime performance of those k-d
tree implementations. Here, the impact of the distribution type and the dimensionality of the
input vectors organised within the tree are investigated further, since they heavily influence the
efficiency of the pruning of similarity comparisons.

Setup

Similar to grid directories, the multi-dimensional tree data structures are used during the
construction of a recurrence matrix. Hence, only their impact on the performance of the
create__recurrence__matriz operator is analysed. The runtime of a parallel exhaustive imple-
mentation is used as a baseline.

The execution of the k-d tree implementations is restricted to CPUs. As a consequence,
all implementations are executed solely on the Intel Xeon E5620 compute device that is part
of computing system (C). This includes a parallel brute-force implementation representing the
baseline. It ensures the comparability of the runtime results. Nonetheless, the baseline imple-
mentation is capable of using the computing capabilities of all sixteen CPU threads available,
whereas the execution of cKDTree and KDTree is limited to a single CPU thread.

The independent variables, including the embedding dimension, the spatial distribution of
the multi-dimensional vectors and the similarity threshold, whose impact is observed in this
experiment as well as the corresponding value ranges are similar to the setup in Sect. 6.3.1.

3The function sklearn.neighbors.NearestNeighbors.radius_neighbors_graph is applied to conduct e-nearest
neighbour queries.
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The latter is especially applied to steer the density of the recurrence matrix. Apart from those
assignments, the full set of embedding dimensions is applied, ranging from one to twenty.

The implementations of the create_recurrence__matriz operator relying on the k-d tree repre-
sent the resulting recurrence matrix in compressed sparse format. Implementations that trans-
form this compressed into an uncompressed matrix representation are excluded from the eval-
uation, since they do only introduce conversion overhead that distracts from the computation
of the pairwise input vector similarities. The runtimes of the k-d tree implementations are
compared to a parallel brute-force implementation. Its properties are depicted in Tab. D.21.

Initial experiments have shown that the k-d tree implementations deliver considerable higher
runtimes than using parallel brute-force processing. Hence, the number of multi-dimensional
vectors that are compared to each other regarding their mutual similarity is restricted to 103,
which still results in a recurrence matrix consisting of 10° elements. The remaining input
parameter assignments are shown in Tab. D.22.

Hypotheses

The set of hypotheses considers multiple aspects of the performance analysis. It is assumed that
the parallel brute-force implementation exposes the similar behaviour as anticipated in Sect. 6.3,
having a linear increase in runtime while increasing the embedding dimension. Initial exper-
iments have shown that the parallel brute-force implementations have a drastic performance
surplus in comparison to the k-d tree implementations. In average, the runtime differences are
expected to exceed one magnitude.

The k-d tree implementations are expected to be sensitive regarding the distribution of multi-
dimensional vectors and the density of the recurrence matrix. The efficiency of pruning pairwise
vector similarity comparisons should descend from uniform, normal, exponential to Cauchy
distribution. Correspondingly, the runtimes regarding small maximum phase space diameter
ratios are expected to be the lowest regarding the uniform distribution and the highest regarding
the Cauchy distribution. This assumption should be independent of the k-d tree implementation
used.

Executing the create recurrence matriz operator implementation using the query_ball_tree
function should take longer compared to executing radius_neighbors_graph. This is due to
the former transforming the query results by additionally calling the function csc_matrix (see
Sect. 5.2.2). Based on prior experiments, the size of this overhead is expected to consume up to
one half of the total runtime.

Results

The complete set of experimental results is captured in App. E.2.2. The experimental results
are largely in alignment with the initial hypotheses. There is an almost linear increase in
runtime with respect to the embedding dimension, except from isolated outliers regarding the
maximum runtimes (see Fig. 6.21). In general, the spread of the runtimes for each combination of
distribution type and embedding dimension is relatively small. This emphasises the fact, that the
performance of the parallel exhaustive implementation is independent of the spatial distribution
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of input vectors. In the following, the runtime behaviour of the k-d tree implementations is
investigated in more detail.
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Figure 6.21: Multi-dimensional search trees - Parallel brute-force implementation on Cauchy
distribution.

K-d Tree Implementations. The performance of both k-d tree implementations heavily de-
pends on the spatial distribution of multi-dimensional vectors. It is reasonable to assume
that large spreads between the minimum and maximum runtimes for executing the operator
create__recurrence__matriz indicate different efficiencies regarding the pruning of similarity com-
parisons.

The efficiency of pruning that is observed regarding the individual distribution types is also
in alignment with the initial hypotheses. The largest spread between minimum and maximum
runtimes was measured for the uniform distribution (see Fig. 6.22 and Fig 6.23). Recall that the
large spreads regarding the runtimes measured originate from the high sensitivity regarding the
distribution type as well as the similarity threshold applied. Their impact varies between the
different distribution types. Regarding the Cauchy distribution, the input vectors concentrate
along the axes of the multi-dimensional coordinate system. Recurrence rates approaching 100%
are already achieved for maximum phase space diameter ratios considerably smaller than 0.01.
As a result, the spread between minimum and maximum runtimes is much smaller with respect
to the other distribution types.

The create_recurrence _matriz operator implementation relying on the cKDTree is consid-
erably slower than the one using KDTree, as expected. The average runtime of the former is
always higher than the 50% quantile of the latter. The runtime ratio varies from 4.19 (uniform
distribution, m = 3) to 5.37 (normal distribution, m = 4). As explained before, the overall
runtime of using cKDTree includes significant overhead for transforming the computing results
into the compressed sparse format. Hence, only a fraction of the runtime difference stems from
the actual computation of pairwise input vector similarities.
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Figure 6.22: Multi-dimensional search trees - cKDTree on uniform distribution.
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Figure 6.23: Multi-dimensional search trees - KDTree on uniform distribution.
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Parallel Brute-Force vs. K-d Tree Implementations. The k-d tree operator implementations
suffer from higher runtimes, compared to the parallel brute-force implementation. The ratio
between the runtimes of the k-d tree based implementations and the parallel brute-force im-
plementation decreases with increasing embedding dimension, different than expected. This
behaviour is illustrated in Fig. 6.24, which compares the minimum runtimes of two specific
implementations for all distribution types applied.
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Figure 6.24: Runtime Ratios - KDTree vs. Parallel Brute-Force Impelementation.

It holds that the minimum runtime regarding the k-d tree implementations is higher than its
parallel brute-force equivalent, for each combination of distribution type and embedding dimen-
sion. For cKDTree (see Tab. E.60), the runtime ratio considering the minimum runtime is at
least 3.65 (uniform and exponential distribution, m = 20). Regarding KDTree (see Tab. E.60),
the runtime ratio considering the minimum runtime is at least 1.88 (uniform and exponen-
tial distribution, m = 20). Hence, the parallel brute-force create_recurrence__matriz operator
implementation outperforms the k-d tree based implementations, even for sparse recurrence
matrices.
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7 Automatic Performance Tuning for
Implementation Selection

Chapter 4 presents scalable recurrence analysis (SRA), a computing approach based on dividing
a recurrence matrix into a set of sub matrices and distributing their analysis across multiple
compute devices. Intermediate results are computed for each sub matrix separately. They
are recombined into a global RQA result in a final processing step. SRA proposes to conduct
the computation of the pairwise input vector similarities as well as the detection of vertical
and diagonal lines in a massively parallel manner. Chapter 5 introduces several concepts from
database technology to the SRA processing pipeline. Based on these considerations, a set of
analytical operator implementations is provided.

Chapter 6 investigates the impact of specific implementation properties in detail. In this
regard, the significance of hardware architecture and analysis parameters on the runtime per-
formance has been highlighted. As an example, not-materialising the recurrence matrix delivers
appropriate results for small embedding dimensions, while materialisation is favourable with
increasing input vector dimensionality. In conclusion, there is no single implementation con-
ducting RQA that delivers the best performance under all circumstances. There are rather
one or more implementations delivering appropriate performance results for a given analytical
scenario on a certain hardware platform. This set is likely to contain different implementations,
considering varying scenarios and compute devices.

This chapter presents an approach to automatically select well-performing combinations of
operator implementations. This is achieved by using the concept of automatic performance
tuning [Pankratius et al., 2011, pp. 239-263]. First, a concrete problem description is given.
In the following, the theoretical background behind the automatic optimisation approach is
presented. This includes a clarification of the terminology used. Concluding, the impact of the
tuning approach on the runtime performance is investigated using three experiments. The first
one focusses on the impact of applying specific implementation selection strategies. The second
experiment evaluates the increase in efficiency provided by automatic performance tuning in
the context of RQA processing. The third one presents the speed-up gained by employing more
than one compute device during the analysis.

7.1 Problem Description

The initial motivation for introducing an approach to optimise RQA implementation selection
stems from a fundamental principles behind the OpenCL framework. It allows to compile and
execute identical source code on a variety of compute devices. Nonetheless, OpenCL does not
guarantee that an implementation delivers appropriate runtime performance across different
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hardware architectures. In that sense, OpenCL provides functional portability but does not
ensure performance portability. Among others, this dilemma has been pointed out for example
by [Rul et al., 2010] and [Rosenfeld et al., 2015]. It will be aggravated by future hardware
architectures supporting OpenCL.

Chapter 6 demonstrates that finding an appropriate operator implementation does not only
depend on the hardware architecture applied but also on the RQA analysis scenario, which is
defined by the input parameter assignments. The impact on the performance of selecting specific
implementation properties, e.g., column-wise input data representation, has been analysed on
several compute devices using different experimental setups. The focus of these experiments was
on investigating the performance of individual operator implementations. However, conducting
RQA requires the execution of a set of operators. A specific property may influence multiple
operators and restricts the operator implementations applicable. In contrast to the prior consid-
erations, this chapter focusses on the cumulative performance of all operator implementations
that are required to retrieve the RQA results.

7.2 Theoretical Background

To select well-performing RQA implementations, the concept of automatic performance tuning,
or short auto-tuning, is applied. It aims at exploiting the computing capabilities of a given
hardware architecture as much as possible. The capabilities are measured using a performance
metric, such as the computing time. Its value can be steered by a set of tuning parameters.
The goal is to find a configuration of tuning parameter assignments, such that the value of the
performance metric is optimised, e.g., the minimisation of the computing time.

According to [Pankratius et al., 2011, pp. 243-244], auto-tuning approaches can be distin-
guished along three dimensions, given a program whose execution has to be optimised.

Tuning type: Auto-tuning can either be performed online or offiine. Online tuning refers to
modifying the values of the tuning parameters while running a program. Multiple pa-
rameter configurations are applied during the program execution. Conducting the tuning
offline, the tuning parameter configuration is modified between two program executions.

Time of tuning: Auto-tuning can either be performed during development time or during pro-
duction time. Regarding the first, the auto-tuning is performed at the end of the de-
velopment process. Suitable tuning parameter configurations are determined for a set of
target platforms. Regarding the latter, a suitable tuning parameter configuration is either
identified during the initial program execution or determined periodically.

Search strategy: Either empirical or model-based approaches can be applied to identify a suit-
able tuning parameter configuration. Empirical strategies require to execute a program
or parts of it multiple times, while applying different tuning parameter configurations.
Potential search strategies include random sampling, local search and global search. Note
that there is no guarantee that the optimal tuning parameter configuration is found.
Model-based strategies use analytical performance models to predict the optimal tuning
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parameter configuration. The models are specific to each combination of program, hard-
ware architecture and other criteria. It highly depends on how good the model fits a
specific computing scenario, whether a parameter configuration actually represents to the
optimum.

The adaptation of tuning parameter configurations can be distinguished into [Whaley et al.,
2001]:

Parameterised adaption: The performance characteristics of the program are modified by chang-
ing parameter values, e.g., compile-time variables.

Source code adaption: The performance characteristics of the program are modified by adapt-
ing its source code. This is done either by providing multiple implementations of the same
algorithm, having the same semantics, or using code generation techniques, where the
source code of a program is generated by another program.

In the following, the auto-tuning approach applied to SRA is characterised according to the
previous distinctions.

7.2.1 Micro Adaptivity

The auto-tuning approach applied in the context of SRA follows the framework presented in [Ra-
ducanu et al., 2013] and [Rosenfeld et al., 2015]. [Raducanu et al., 2013] introduces micro adap-
tivity, a method to optimise the execution of database operators. Using the taxonomy presented
previously, it can be classified as:

e an online auto-tuning approach
o performed during production time
e by applying empirical search strategies.

It is assumed that a database operator is applied to a set of tuples. Furthermore, there exist
several implementations of this operator. The performance of multiple implementations is mon-
itored while processing the stream of tuples. The most suitable implementation is subsequently
selected based on an empirical analysis. This approach has been further extended by [Rosen-
feld et al., 2015]. The following terminology is used to ensure comparability between the two
publications.

Operator algorithm: The abstract description of the operator processing. This description may
be given as pseudocode.

Operator implementation: The implementation of the operator algorithm. Regarding OpenCL,
this includes source code that is executed on the host device and the kernel functions.

Flavour: The operator implementation combined with a specific tuning parameter configuration.
The host code, if required, and the kernel functions are stored in compiled form.
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Note that several flavours may be created based on the same operator implementation. Vice
versa, every flavour refers to a single operator implementation.

[Raducanu et al., 2013] expresses the selection of the flavours as a multi-armed bandit problem,
as described in [Robbins, 1952]. A set of flavours and a concrete computing scenario comprising
a set of tuples is given. Each flavour is treated as single arm of the bandit. Each tuple is
processed by exactly one flavour. The performance of processing the tuples is monitored using a
specific measure, such as the computing time. Each tuple is assigned with a certain reward, such
as the inverse of the computing time. The overall performance of the processing is expressed as
the sum of the individual tuple rewards. The regret expresses the difference between the actual
and the maximum possible reward. The goal is to optimise the flavour selection, such that the
regret is minimal.

The flavour selection approach presented in [Raducanu et al., 2013] subdivides the execution
of a program into exploration and exploitation phases. During exploration, knowledge about
the performance of the individual flavours is gathered. During exploitation, the flavour with the
maximum reward is applied. In this regard, flavours are treated as non-stationary processes.
This results from a potentially varying workload while processing the set of tuples. Hence,
algorithms solving the problem optimally, that means finding the best-performing flavour, can
not be applied. There exist several algorithms to solve the multi-armed bandit problem approx-
imately. This includes various greedy algorithms, finding the best local solution based on the
data previously gathered [Black, 2005, Raducanu et al., 2013].

e-greedy: Random flavours are selected with a probability of €, using a uniform distribution.
Their execution allows to gather performance data. The current best-performing flavour
is selected with a probability of 1 — e. Note that this definition does not claim a fixed
number of tuples lying between two random flavour selections.

vw-greedy: Regarding the selection of the best-performing flavour, the e-greedy algorithm con-
siders all performance data gathered up to the processing of the current tuple. This limits
the adaptability to changing workloads, since the knowledge previously gathered likely
becomes invalid. Using the vw-greedy strategy, the knowledge is reseted after a certain
amount of tuples has been processed. The algorithm considers fixed-sized segments, in
which exploration and exploitation alternate.

e-first: A fixed-sized exploration phase is conducted in the beginning of program execution. Its
length is steered by changing the value of €. The performance data gathered in this period
is exploited afterwards, until the program execution terminates.

e-decreasing: This strategy is very similar to the e-greedy approach, but the value of € is gradu-
ally decreased. This leads to a higher amount of exploration at the beginning and a higher
amount of exploitation at the end of the program execution.

[Rosenfeld et al., 2015] extends the micro adaptivity approach to heterogenous computing en-
vironments. Here, the conflict between functional and performance portability in the context of
OpenCL serves as a motivation to introduce strategies for flavour selection. It further addresses
the problem of having a large amount of possible flavours, due to a large tuning parameter space.
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Instead of instantiating all flavours, only a small pool of active flavours is kept. The size of the
pool is set prior to program execution.

[Rosenfeld et al., 2015] divides the process of flavour selection into two parts. During the
execution of a single query, the vw-greedy strategy, as introduced by [Raducanu et al., 2013], is
used to select the best-performing flavour from the pool of active flavours. Between the execution
of two queries or after a fixed amount of queries, the pool of active flavours is reorganised. For
this purpose, a number of active flavours are evicted from the pool. They are replaced either
by applying greedy or genetic search strategies. Using the greedy approach, new flavours are
selected based on a random distribution. Regarding the genetic approach, all flavours except
the two best-performing are evicted from the pool. Genetic propagation is used to create new
flavours by combining the features of both flavours. Mutations with varying properties are
introduced occasionally to avoid local reward maxima.

[Rosenfeld et al., 2015] comprises several experiments, which highlight the influence of the
size of the flavour pool as well as the selection strategy on the overall query performance. In
general, there seems to be a sweet spot regarding the size of the flavour pool. If the pool size is
too small, the amount of flavours explored may not be sufficient. If the pool size is too large, the
overhead for conducting explorations outweighs its benefits during exploitation. Comparing the
two search strategies, the genetic approach outperforms the greedy approach with an increasing
amount of queries. This behaviour is independent of the computing device employed.

The approach presented in [Rosenfeld et al., 2015] aims at reducing the overhead for handling
large sets of potential flavours. Performance data is only gathered for active flavours, which is
attached with several limitations. As explained earlier, the pool of flavours is only reorganised
between the execution of queries. Hence, there is an emphasis on the selection of the pool
members. Randomly selecting a small number of active flavours only before the execution of
a query reduces the probability that a particular flavour is actually applied. This might cause
high variations regarding the query runtimes, depending on the size of the pool and the portion
of well-performing flavours. The genetic strategy either assumes that the performance of the
individual flavours are independent of the query workload or that the workloads do not change.
If either one of those conditions is not fulfilled, the approach might deliver worse results than
selecting flavours randomly. Due to those issues, the following considerations focus on the
original concept of micro adaptivity, as presented in [Raducanu et al., 2013].

7.2.2 Automatic Performance Tuning in SRA

Regarding SRA, the performance of the individual operator implementations highly depends on
the concrete analysis scenario and hardware architecture employed, as demonstrated within the
experiments presented in Chap. 6. Exploring all potential configurations is infeasible, because
of their vast quantity. Therefore, an online auto-tuning approach gathering performance data
during production time is the means of choice.

The concept of micro adaptivity is adapted to the constraints of SRA. In the following,
the specific adjustments are presented in detail. To begin with, the terminology introduced
before is extended. As stated previously, several analytical operators have to be executed to
conduct RQA. Each operator implementation has specific properties, which may influence the
processing in the subsequent operators. For this reason variants are introduced, which combine
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the functionality of implementations referring to multiple analytical operators. This leads to a
modification of the semantics of flavour.

Variant: A set of operator implementations required to compute RQA results, which are cou-
pled based on shared properties, e.g., an uncompressed recurrence matrix representation.
A variant does not necessarily comprise implementations of all three analytical opera-
tors. Based on the implementation properties, it may only be required to execute the
detect__wvertical_lines and the detect_diagonal lines operator, e.g., if the recurrence ma-
trix is not materialised.

Flavour: A variant combined with a set of tuning parameter assignments. The same parameter
assignments are applied to every operator implementation of the variant.

The loop unrolling factor is selected as a tuning parameter for the purpose of demonstration.
Loop unrolling is applied to iterations over sets of items, to save computational overhead for
evaluating loop headers. It is assigned with a value greater than or equal to one. Regarding SRA,
this concept is employed while inspecting the columns and diagonals regarding line structures.
The same loop unrolling factor is applied to the kernel functions of each of the corresponding
operator implementations. The assumption behind using the same factor is, that the impact
of loop unrolling on the performance highly depends on the hardware architecture. Loop un-
rolling is implemented using the OpenCL compiler directive #pragma unroll <FACTOR>, which
is placed in front of the relevant loop within the kernel function. Note that loop unrolling may
not be supported by each compute device providing an OpenCL interface.

In the context of SRA, the performance of individual flavours is not investigated on individual
tuples or chunks of tuples but rather on sub matrix level. This is a contrast to the approaches
presented in [Raducanu et al., 2013] and [Rosenfeld et al., 2015]. The processing of a sub matrix
requires the execution of all analytical RQA operators contained by a single variant. They
are executed sequentially according to the operator-at-a-time principle, hampering tuple-wise
performance measurements. Instead, the cumulative runtime for executing all operators on a
sub matrix is observed. The selection of flavours is optimised, such that the total runtime for
processing all sub matrices is minimised.

Search Strategies

Regarding SRA, the greedy search strategies presented in [Raducanu et al., 2013] are used for
flavour selection. The execution of the program conducting RQA is likewise subdivided into
exploration and exploitation phases. For all search strategies except e-first, the exploration
phase comprises only the processing of single sub matrix to which a specific flavour is applied.
The reason for this procedure is the limited amount of sub matrices usually available. Their
amount highly depends on the ratio between total number of multi-dimensional vectors and edge
lengths of the sub matrices. Furthermore, the processing is scattered among multiple compute
devices. This may only leave tens of sub matrices for each device. This requires either a cautious
choice of the edge length or restricting the number of compute devices. In the following, the set
of greedy search strategies are modified.
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e-greedy: A fixed offset between two sub matrices employed for exploration is defined.

vw-greedy: After a specific number of exploration phases, the complete knowledge previously
gathered is deleted.

e-first: The initial exploration is performed on a fixed number of sub matrices.

e-decreasing: After each exploration phase, the fixed offset between two sub matrices used for
exploration is increased.

A strategy that randomly selects a flavour before processing a sub matrix is introduced ad-
ditionally. Note that each flavour is selected once, before another flavour is used repeatedly.
A new flavour is created by randomly selecting a combination of variant and tuning parameter
assignments, using a uniform distribution.

As explained in Sect. 4.1.1, not all sub matrices have the same extent. The shape and size of
the sub matrices at the outer borders of the recurrence matrix diverges. To ensure comparability,
the runtime for processing each individual sub matrix is normalised to an amount of 10® matrix
elements. For the purpose of simplification, this normalisation abstracts from the specific shape
of each sub matrix. Note that this procedure neglects its potential influence on the runtime.

The flavour selection is performed individually for each compute device. It requires to conduct
the performance analysis per device used during the processing. This approach enables to
optimise the overall runtime performance of the program by optimising the execution on each
compute device. This allows to exploit the full computing capabilities of the computing system,
while utilising compute devices with different performance characteristics.

7.3 Evaluation

In this section, the outcome of three experiments referring to flavour selection are presented.
The first experiment evaluates the impact of the different selection strategies on the overall
performance of conducting RQA. The second experiment investigates the impact of automatic
performance tuning on the efficiency of exploiting parallel computing resources. The third
experiment focusses on the application of multiple compute devices, investigating horizontal
scalability. The same real-world time series is employed in each experiments. It captures the
Potsdam temperature profile (see Chap. 1) at an hourly resolution from 1.1.1893 to 31.12.2014.
This results in 1,069,416 data points. The time series captures the anomaly temperatures,
meaning the derivations from the hourly average on a yearly scale.

Similar RQA input parameter assignments as applied in an experiment referring to the period
up to 2011 are used during the analysis [Rawald et al., 2014a]. This includes the embedding
dimension, time delay and similarity measure. The similarity threshold is set to 5% of the
maximum phase space diameter. The RQA input parameter assignments are given in Tab. D.23.
The corresponding RQA measures are presented in Tab. D.24, using minimum line lengths of
two for diagonal, vertical and white vertical lines. The values are identical across all compute
devices employed.
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7.3.1 Selection Strategies

This experiment compares the overall runtimes for conducting RQA using a set of selection
strategies. In this regard, the runtimes for performing all computations from reading the input
data to computing the RQA measures is compared.

Setup

The following compute devices are employed during the experiment:

o the single graphics processor of the AMD RX 470 GPU in computing system (A),

o the four graphics processors of the two Nvidia GeForce GTX 690 GPUs in computing
system (B), and

o the two Intel Xeon E5620 CPUs in computing system (C).

The set of implementations used during this experiments are restricted to parallel brute-
force processing, due to the large increases in runtime using k-d tree as well as grid directory
approaches. The combination of possible operator implementation results in ten variants. Each
variant is supplemented by a specific loop unrolling factor between 2° and 2°, which results
in a pool of 60 flavours. The compilation of the kernel functions is conducted the first time
a flavour is selected. The default compiler optimisations are activated for each flavour. The
experiment compares the overall runtime of conducting RQA, while using the set of selection
strategies presented above. The parameters relevant for each selection strategy, including their
assignments, are presented in Tab. D.25.

An experimental configuration comprises a selection strategy in combination with a set of
compute devices. Each configuration is applied in five experimental runs, to generate different
flavour selection instances. The random generation of flavours should lead to variations in the
overall runtimes. The size of the sub matrices is kept constant across all sets of compute devices.

Hypotheses

The individual performances of the different greedy selection strategies are compared against
each other. Chapter 6 showed that there are differences in the runtime performance between the
different flavours, resulting from the varying properties of the analytical operator implementa-
tions. Hence, the different selection strategies should result in varying performance characteris-
tics.

random: The runtimes while picking flavours randomly serve as a reference, since all flavours
have the same probability of being selected.

e-greedy: A balanced runtime performance should be observed. Using the parametrisation from
Tab. D.25, one tenth of the set of sub matrices is used to explore random flavours. It allows
to gather performance about all flavours, considering a total of 2,916 sub matrices.
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vw-greedy: The runtime performance depends on the contents of the sub matrices and their
assignments to the set of compute devices. Assuming a homogeneous workload, the run-
times should be higher compared to the e-greedy strategy. This is due to resetting the
performance evaluation on a regular basis.

e-first: The runtime performance depends on the portion of well-performing flavours and the
length of the initial exploration phase. Given only a small number of well-performing
flavours and a short exploration phase, higher runtimes compared to randomly selecting
flavours might be observed.

e-decreasing: The runtime performance depends on the workloads of the individual sub matrices
and the exploration phase in which a well-performing flavour is selected. The latter does
also hold for the e-greedy strategy, although the impact enhances while gradually increasing
the delta between two exploration phases. The runtimes are lower compared to the e-greedy
strategy, if the workloads remain homogeneous and a well-performing flavour is selected
in an early exploration phase.

Results

The complete set of experimental results, including figures and numerical data, are presented
in App. E.3.1. The impact of each greedy selection strategy on the runtime performance is
evaluated on each of the sets of compute devices. Each boxplot depicted in the figures in
App. E.3.1 refers to five experimental runs. The highest and the lowest runtimes are highlighted
as outliers. The experimental results differ drastically between the three sets of compute devices,
requiring a set-specific analysis. This includes a comparison of the runtimes using the selection
strategies with always using the flavour with the lowest runtime in average, referred to as
baseline.

The random selection strategy delivers the highest runtimes across all compute device. Nonethe-
less, the relative difference to the runtimes of the remaining strategies varies. Considering the
runtimes referring to the 50% quantile, the highest differences can be observed regarding the
Nvidia GTX 690 GPUs, with up to a factor of 1.58 (e-decreasing), followed by the Intel Xeon
E5620 CPUs, with a factor of up to 1.57 (e-first). The lowest ratio can be observed on the AMD
Radeon RX 470 GPU, with a factor of only 1.12 (vw-greedy). In the following, the device-specific
results are investigated in detail.

AMD Radeon RX 470: The e-greedy, e-first and e-decreasing strategy deliver comparable run-
time results. They are almost overlapping with the baseline. The vw-greedy strategy de-
livers slightly higher runtimes, which are still lower compared to picking random flavours.

Nvidia GeForce GTX 690: All strategies have similar performance characteristics, except the
random flavour selection. The e-decreasing strategy delivers the lowest, whereas the e-first
strategy delivers the highest runtimes. It is of particular interest that there is a consider-
able gap between the minimum runtimes of each selection strategy and the baseline. This
may stem from a large spread regarding the runtimes of the individual flavours.
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Figure 7.1: Selection strategies - Intel Xeon E5620.

Intel Xeon E5620: The relation between the runtimes of the selection strategies is comparable
to the AMD GPU. Highlighting the e-first strategy, it delivers contradictory result (see
Fig. 7.1). On the one hand, it contains the overall lowest runtime, similar to the baseline.
On the other hand, it comprises the highest runtime of all selection strategies, except
from randomly selecting flavours. This results from not-selecting a flavour that has the
properties of a well-performing variant, during the corresponding experimental run. These
properties are captured in Tab. E.67.

7.3.2 Efficiency

Increasing the efficiency in using the computing resources available is one of the key drivers
in introducing automatic performance tuning to SRA. The previous experiment compares the
runtime efficiency of several flavour selection strategies. This experiment compares the efficiency
of the parallel SRA implementation using OpenCL to two state-of-the-art RQA implementations.
It is investigated, whether the former delivers efficiency improvements compared to existing
implementations.

Setup

The experimental setup is equivalent to Sect. 7.3.1. Among others, this includes using the
Potsdam temperature profile from 1893 until 2014 as input data (see Chap. 1). The input
parameter assignments are presented in Tab. D.26. Note that the e-first strategy is applied
regarding the selection of flavours while applying the the SRA implementation based on OpenCL.

The runtime performance of the SRA implementation is compared to Commandline Re-
currence Plots (CRP)! (see Sect. 2.2.2) and Commandline RQA Multithreaded (CRM)? (see

!The i686 binaries of version 1.13z are employed during the experiment.
2The source code is compiled using the compiler optimisation level O3 to ensure legitimate performance com-
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Figure 7.2: Efficiency - Intel Xeon E5620.

Sect. 3.1.1). The evaluation is restricted to computing system (C), since the two Intel Xeon
E5620 CPUs comprise the highest total number of CPU threads. Note that Commandline Re-
currence Plots uses only a single CPU thread, while the CRM and SRA implementation use
all sixteen CPU threads available. Every implementation applied in this experiment covers the
complete process from reading the input data to having computed the final RQA measures.

Hypotheses

The CRP implementation is expected to have the highest runtimes, since it uses only a fraction
of the computing resources available. The CRM and the SRA implementation leverage the
maximum of 16 CPU threads, which allows to compare their individual efficiency directly. It is
expected that the SRA implementation using OpenCL is in general at least as fast as the CRM
implementation using OpenMP. This is due to the fact that several operator implementations
with varying properties are explored using the e-first strategy. At least one of them should
match the architecture of the Xeon CPUs better than the CRM implementation.

Results

The experimental results are fully in alignment with the initial hypotheses, including Com-
mandline Recurrence Plots delivering the highest runtimes (see App. E.3.2). Furthermore, the
runtimes of the SRA implementation are lower than using Commandline RQA Multithreaded.

Regarding the 50% quantiles, the SRA implementation consumes only &~ 30% of the runtime
of the CRM implementation (see Fig. 7.2). Again, it is emphasised that both implementations
leverage the exact same computing resources. This represents a drastic increase in efficiency
achieved by combining SRA with automatic performance tuning.

parisons [Bailey, 1991].
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7 Automatic Performance Tuning for Implementation Selection

7.3.3 Scalability

One of the major properties of SRA is enabling the usage of multiple computing devices at the
same time. This experiment investigates the performance improvements gained by increasing
the number of compute devices within a single computing system. According to [Michael et al.,
2007], there is a distinction between two types of scalability.

Scale-up: Adding more compute resources, such as CPUs, to to a single computing node, typi-
cally a shared memory system.

Scale-out: Adding more interconnected computing nodes to a computing landscape, typically
a cluster.

It is assumed that each computing node runs its own operating system instance and has access
to a certain amount of dedicated memory. The set of computing nodes are usually connected
using a specific network technology, e.g., Ethernet. Regarding OpenCL, adding compute devices
to a computing system does neither satisfy the properties of scale-up nor scale-out. It is rather
a hybrid approach, that combines properties from both categories.

A computing system, equivalent to a compute node, contains a single host device, which is
attached with main memory to store data shared among multiple compute devices. A compute
device is attached with dedicated global memory that can only be accessed by itself. Further-
more, each compute device runs its own instance of the kernel functions. Therefore, the scaling
type referring to SRA can rather be described as scale-out-in-a-boz [Michael et al., 2007].

Setup

The experiment is restricted to computing system (B), containing two Nvidia GeForce GTX 690
GPUs. A single GPU contains two graphics processors, each attached with 2GB of dedicated
global memory. This results in a total of four compute devices. The runtime of conducting
RQA, from reading the input data to computing the final RQA measures, is observed while
increasing the number of compute devices applied during the computations from one to four.

The remaining experimental setup is similar to the evaluation in Sect. 7.3.1. The parameter-
isation is summarised in Tab. D.27. The flavour selection is solely conducted using the e-greedy
strategy, since it delivers balanced runtime results across all sets of compute devices.

Hypotheses

All compute devices employed have similar computing capabilities. Therefore, a reduction in
runtime is expected while increasing their amount. Using multiple compute devices creates an
overhead for maintaining device specific data, such as the compilation of kernel functions and
the merging of line lengths histograms. It is expected that this overhead eats up the performance
improvements gained by distributing the processing of the sub matrices among a large number
of compute devices. This behaviour result in a presence of a global runtime minimum at a
certain number of devices.
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Figure 7.3: Scalability - Nvidia GeForce GTX 690.

According to Amdahl’s law, the processing of a parallel application is subdivided into segments
either referring to sequential or parallel execution [Amdahl, 1967]. The portion of segments be-
longing to either one of those categories determines the potential performance gains by adding
more compute devices. The sequential processing includes for example the reading of input data
and the final computation of the RQA measures. The processing of the set of sub matrices is
distributed across the set of compute devices and conducted in parallel fashion. As a conse-
quence, a sublinear decrease in runtime is expected while increasing the number of compute
devices linearly.

Results

The experimental results, presented in App. E.3.3, are in alignment with the initial hypotheses.
The overall runtimes decrease when increasing the number of devices, as shown in Fig. 7.3.

The results confirm that using multiple compute devices enables considerable performance
improvements. An effective speedup of 2.84 is observed, when comparing the 50% quantiles of
using a single and using four compute devices. Nonetheless, the results also indicate a consid-
erable impact of the sequential processing in combination with the overhead for maintaining
device specific data structures. The individual amount of contribution regarding each of these
factors is not further analysed.

The significant flattening regarding the transition of the runtimes from three to four compute
devices implies that only marginal performance improvements are gained by using more than
three compute devices. It is reasonable to assume that using four compute devices results in
runtimes that are close to the minimum runtime regarding this specific experimental setup.
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8 Conclusion

The following sections summarise the findings of this thesis, present limitations of the SRA com-
puting approach introduced and provide perspectives on future research.

8.1 Summary

The previous chapters introduced a novel computing approach to recurrence analysis, a method
from nonlinear time series analysis, conducting the related computations in an scalable and
efficient manner. It allows to overcome several limitations inherent in state-of-the-art computing
approaches. This includes in particular the property of being able to process time series of
arbitrary size.

Scalable recurrence analysis (SRA) introduces parallel processing on two levels. The global
recurrence matrix is divided into a set of sub matrices. Each sub matrix is processed by an
individual compute device. The focus of this novel computing approach is especially on the
computation of scalar measures based on the contents of recurrence matrices, which is referred
to as recurrence quantification analysis (RQA). In this regard, global data structures allow to
share data among multiple sub matrices. This includes the carryover buffers that store the length
of line structures detected at the outer borders of sub matrices. A specific order regarding the
processing of the sub matrices ensures that valid global RQA results are computed. The line
detection within a single sub matrix is performed in a massively parallel manner. In this regard,
functionality provided by the OpenCL framework is used to offload processing to accelerators,
such as GPUs.

The second part of the manuscript focusses on the efficiency of the computations related
to recurrence analysis. This was driven by a basic property of OpenCL, providing functional
portability by enabling the compilation and execution of identical source code on a vast number
of different devices. A major drawback of OpenCL is that it does not guarantee that a given
implementation delivers appropriate performance results across different compute devices. For
this purpose, several concepts from database technology, such as different types of input data
representation, have been applied to the RQA processing pipeline. An extensive evaluation
investigated, how the application of those concepts influence the performance of analytical op-
erator implementations. The experimental results highlight that the runtime performance does
not only depend on the combination of RQA implementation and hardware platform but also
on the parameterisation of the quantitative analysis. This aspect is a contribution to the field
of recurrence analysis computing. It motivated the combination of SRA with an automatic per-
formance tuning approach that selects well-performing RQA implementations based on greedy
selection strategies.

Based on a set of experiments, it is demonstrated that automatic performance tuning allows
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8 Conclusion

to drastically improve the performance of conducting recurrence quantification analysis. Con-
sider the Potsdam temperature profile from 1893 to 2014, a real-world time series containing
more than one million data points. Here, the runtime for performing RQA could be reduced
from more than a day, running singled-threaded state-of-the-art software on a server CPU, to
roughly 100 seconds, executing the OpenCL-based SRA implementation on four GPU proces-
sors. SRA introduces only limited synchronisation overhead, which allows to scale well with
increasing the number of compute devices. As a result, the runtime for conducting the specific
analysis mentioned before could be reduced by a factor of 2.8, when increasing the number of
GPU processors from one to four.

The automatic performance tuning approach allows to optimise the execution to the proper-
ties of the individual compute devices. Hence, it is possible to employ compute devices with
varying hardware architectures, while still optimising the performance. It allows to increase the
number of sub matrices processed by a specific device in a certain amount of time. This presents
a major advantage over existing computing approaches. As an example, the massively parallel
SRA implementation that incorporates OpenCL and auto-tuning outperforms a state-of-the-art
RQA implementation using OpenMP by a factor of roughly three, considering the previous ana-
lytical scenario that is conducted on two server CPUs. It is stressed that both implementations
exploit the exact same parallel computing resources.

8.2 Limitations

Despite its benefits, SRA is attached with specific limitations. The most severe limitation is that
the approach does not reduce the quadratic complexity of the parallel algorithms, depending on
the number of multi-dimensional vectors extracted from the input time series. Implementations
regarding two types of index data structures, including grid directories and multi-dimensional
search trees, have been evaluated regarding their potential for performance improvements during
the computation of the pairwise vector similarities. The implementations considered do not
allow to reduce the runtime for recurrence matrix creation, although they expose a lower time
complexity. Furthermore, no approaches to reduce the time complexity of the algorithms to
determine the line structures in an exact manner could be identified. The latter remains on
open research question.

The SRA approach leveraging the massively parallel computing capabilities of multiple com-
pute devices allows to analyse time series with a length between 10% and 107 data points in an
appropriate amount of time. It is assumed that a single computing system containing ten or
less accelerators is applied. This is due to only flattening the quadratic increase in runtime by
performing the computations in a parallel manner.

The decomposition in multiple parallel analytical operators allows to profit from future hard-
ware developments. This especially includes the increase in the number of compute units and
processing elements per compute device of upcoming architectures, e.g., Nvidia Volta [Durant
et al., 2017] and AMD Vega [Advanced Micro Devices, Inc., 2017]. Research in fields such as
artificial intelligence and machine learning drive the development of computing systems adher-
ing to scale-out-in-a-box, such as Nvidia DGX-1 [NVIDIA Corporation, 2017]. This computing
system contains up to eight graphics cards that provide a total of 120 TFLOPS regarding single
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8.3 Perspectives

precision floating point computations.

Although there is a trend towards an increased number of processing elements per compute
device, it will not be possible to analyse time series containing more than 10® data points in
the foreseeable future, when using only a single computing system. Time series of such a size
require different computing approaches, including the ones presented in Sect. 3.3 and Sect. 3.4.
Note that those approaches either do not use all information provided by the time series or only
return approximate results. Among others, the following section drafts an approach on how to
obtain exact results for such time series by extending SRA.

8.3 Perspectives

The SRA approach as presented in Chap. 4 divides a given recurrence matrix into multiple sub
matrices. They are distributed across multiple compute devices in a single computing system.
This procedure can easily be adapted to support not only a single but multiple computing
systems or compute nodes, that are organised in a network. Each of those compute nodes is
equipped with one or more compute devices. A multi-level partitioning and processing scheme
is introduced to address this environment, which comprises the following steps:

1. Partition the recurrence matrix into multiple sub matrices.

2. Distribute the sub matrices across multiple compute nodes.

3. Partition a sub matrix in multiple sub-sub matrices.

4. Distribute the sub-sub matrices across the compute devices of the compute node.
5. Recombine the individual sub-sub matrix results on compute node level.

6. Recombine the individual sub matrix results on network level.

The structure and the semantics of the carryover buffers and the line length histograms can
be likewise applied to the multi-level approach. Moreover, the processing order can be used
to synchronise the computations of more than one compute node. This highlights that the
underlying concepts of SRA can easily be applied to multiple processing levels. The challenges
related to this extension rather address engineering aspects, such as steering the communication
between the individual compute nodes and supplying global data on network level.

Despite extending SRA to employ multiple computing nodes, there are other aspects that
might be considered in future work. This includes evaluating the performance of the SRA im-
plementation running on a single computing system on other hardware platforms, e.g., Field-
programmable arrays or Intel Xeon Phi accelerators. In addition to focus solely on the runtime
of conducting an analysis, aspects like power usage could be investigated in detail.

Previous evaluations either considered a single compute device or multiple compute devices
of the same type, for example multiple GPU processors of the same model. Nonetheless, a
computing system may contain compute devices with different computing capabilities, such as
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8 Conclusion

combinations of various GPU models or GPUs and CPUs. It is worthwhile to analyse the dis-
tribution of work among the individual devices and the impact of such hardware configurations
on the overall performance.

Regarding the implementation of SRA, the internal representation of the data points of the
input time series may be changed from 32-bit to 16-bit floating point numbers. The increasing
importance of reduced precision is mainly driven by applications from machine learning. This
could also be leveraged regarding RQA processing. It would allow reduce the runtime for
conducting the RQA computations up to 50%, given devices providing half-precision support.
An open research question is the impact of the reduced precision on the structures within
recurrence matrices.

Subsuming, the SRA computing approach represents a break-through in recurrence analysis
computing, providing exact computing results in short time for series exceeding one million
data points. This enables applications previously unfeasible, either considering very long or
large amounts of time series. Relying on open-source software and frameworks supported by a
variety of vendors, PyRQA will heavily profit from future developments in the field of parallel
computing hardware.
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import numpy as np
import sys

def read_file(f path):
t_series = []

with open(f path, ’'r’) as f:
for line in f.readlines ():
if line:
t_series.append(float (line))

return np.array (t_series)
def concatenate (ind,

t_series ,

I

):

< =+ 5

rows = []

for i in np.arange(m):
start = ind + (ix*t)
rows.append (t__series[start:start + v])

return np.mat(rows)
def hash_matrix (mat):

mat. flags . writeable = False
return hash(mat.data)

def pp_approx(t_series,

n?
m?
t )
e?
v):

number_of matrices = n — (v — 1)

hashed = np.zeros(number_of matrices, dtype=np.int)
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if e > 0:
t_series = np.floor (t_series / (2 x e))
for i in np.arange(number_of matrices):
matrix = concatenate(i, t_series, m, t, v)
hashed[i] = hash matrix (matrix)
unique , counts = np.unique (hashed,
return_ counts=True)
return np.sum(np.square (counts))
if  name — " main ":
arguments = sys.argv[1l:]
file_path = arguments[0]
embedding dimension = int (arguments[1])
time__delay = int(arguments[2])
epsilon = float (arguments[3])
d min = int (arguments[4])
time_ series = read_file(file path)
number_of recurrence_vectors = len(time_series) — \
((embedding_dimension — 1) * time_ delay)
pp__one = pp_approx(time_series
number_of recurrence_ vectors,
embedding dimension,
time__delay ,
epsilon ,
1)
pp_mu = pp_approx(time_ series
number__of recurrence_ vectors,
embedding_ dimension ,
time_ delay ,
epsilon
d__min)
pp_mu_plus_one = pp_approx(time_ series,
number__of recurrence_vectors,
embedding dimension,
time__delay ,
epsilon
d_min + 1)
print "PP71:,%.0f" % pp_one
print "PP%d: %.0f" % (d_min, pp_mu)
print "PP%d: %.0f" % (d_min + 1, pp_mu_plus_one)
print nn




rr = float (pp_one) / pow(number_of recurrence_vectors, 2)

det = float(d_min % pp_ mu — (d_min — 1) % pp_mu_plus_one) / pp_one

100
print "RR: %.5f" % rr
print "DET: %.5f" % det
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B Recurrence Matrix Materialisation - Data
Transfer

This appendix contains mathematical equations capturing the amount of data elements trans-
ferred while choosing specific approaches regarding recurrence matrix materialisation. There
is a distinction between approaches materialising the matrix, either by applying a separate
create__recurrence__matriz operator (CRM Operator) or using intermediate results recycling
(Recycling), and computing the matrix values on-the-fly during the detection of line structures
(Non-Materialisation). Fach section compares the amount of data elements transferred of two
specific approaches. The equations are solved for the embedding dimension m. Further descrip-
tions can be found in Sect. 5.1.5.

B.1 CRM Operator vs. Non-Materialisation (Symmetric)

2mN? 4 N? + N? + N(A;_l) =2mN? + ZmN(]\;_l) (B.1)
N? 4y N%y N(]\;_ D_ 2mN(N2_ D) (B.2)
IN? = 2mN(N2_ D_ N(NQ_ D (B.3)

2N? = (2m — 1)N(N2_1) (B.4)

N(L]l\]fvil) =2m—1 (B.5)

N(%Vil) +1=2m (B.6)
4N2N+(]]VV(_A;)_ DI (B.7)
YN0 )y s
% = 2m (B.9)

5}\7:; =2m (B.10)

m = gx :; (B.11)

151



B Recurrence Matrix Materialisation - Data Transfer

B.2 CRM Operator vs. Non-Materialisation (Non-Symmetric)

2mN? + N? + N? + N? = 2mN? + 2mN>? (B.12)
N2@2m+1+1+1) = N?(2m + 2m) (B.13)
2m+ 3 =4m (B.14)
3=2m (B.15)
m = 3/2. (B.16)
B.3 Recycling vs. Non-Materialisation (Symmetric)

2mN? + N(NQ_ DN N(NQ_ D _ omnz + 2mLNQ_ D (B.17)
2N(N2—l) — QmN(NQ_l) (B.18)
N(N — 1) = mN(N — 1) (B.19)
m=1. (B.20)

B.4 Recycling vs. Non-Materialisation (Non-Symmetric)
2mN? 4+ N? + N? = 2mN? + 2mN? (B.21)
2N? = 2mN? (B.22)
2=2m (B.23)
m=1. (B.24)
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C Computing Environment

C.1 Computing System (A)

Table C.1: Central Processing Unit (CPU).

’ Property ‘ Value
Model Intel Core i5-3570
Architecture Ivy Bridge
Number of Processors 1
Number of Cores 4
Number of Threads 4
Base Frequency 3.4 GHz
Max Turbo Frequency 3.8 GHz
Cache Slze (L3) 6 MB

Table C.2: Main Memory.

’ Property ‘ Value ‘
Type DDR3
Size 2*8GB =16 GB
Clock Rate 1333 MHz
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C Computing Environment

Table C.3: Graphics Processing Unit (GPU).

Property Value ‘
Model Sapphire Radeon RX470 Nitro+
Architecture Polaris 10 / Graphics Core Next (GCN) v1.4
Number of Processors 1
Number of Stream Processors 2048
Core Clock Rate 1121 MHz
Boost Clock Rate 1260 MHz
Memory Type GDDR5
Memory Size 8 GB
Memory Bandwidth 211 GB/s
Memory Bus Type PCI-E 3.0
Memory Bus Width 256 bit
Driver Type AMDGPU-PRO
Driver Version 16.40-348864
OpenCL Version 1.2

Table C.4: Operating System.

Property Value ‘
Distribution Ubuntu
Version 16.04.1 LTS
Linux Kernel Version 4.4.0
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C.2 Computing System (B)

C.2 Computing System (B)

Table C.5: Central Processing Unit (CPU).

’ Property Value
Model Intel Core i7-3820
Architecture Sandy Bridge-E
Number of Processors 1
Number of Cores 4
Number of Threads 8
Base Frequency 3.6 GHz
Max Turbo Frequency 3.8 GHz
Cache Size (L3) 10 MB

Table C.6: Main Memory.

’ Property Value ‘
Type DDR3
Size 2*8 GB =16 GB
Clock Rate 1600 MHz
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C Computing Environment

Table C.7: Graphics Processing Unit (GPU).

’ Property Value
Model Nvidia GeForce GTX 690
Architecture Kepler
Number of Processors 2
Number of CUDA Cores (per Processor) 1536
Core Clock Rate 915 MHz
Boost Clock Rate 1019 MHz
Memory Type GDDR5
Memory Size (per Processor) 2GB
Memory Bandwidth (per Processor) 192 GB/s
Memory Bus Type PCI-E 3.0
Memory Bus Width (per Processor) 256 bit
Driver Type NVIDIA Accelerated Linux Graphics Driver
Driver Version 352.20
CUDA Version 5.5
CUDA Compiler Type nvee
CUDA Compiler Version Wed Jul 17 18:36:13 PDT 2013
OpenCL Version 1.2

Table C.8: Operating System.

Property ‘ Value ‘
Distribution openSUSE
Version 12.2 (x86_64)
Linux Kernel Version 3.4.63
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C.3 Computing System (C)

C.3 Computing System (C)

Table C.9: Central Processing Unit (CPU).

’ Property ‘ Value
Model Intel Xeon Processor E5620
Architecture Westmere-EP

Number of Processors

Number of Nodes

N DN

Node Connection

QuickPath Interconnect (QPI

~—

Number of Cores (per Processor) 4
Number of Threads (per Processor) 8
Base Frequency 2.4 GHz
Max Turbo Frequency 2.66 GHz
Cache Size (L3) (per Processor) 2*12 MB
OpenCL Version 1.2

Table C.10: Main Memory.

Property Value
Type DDR3
Number of Channels (per Node) 3
Number of Banks (per Node) 3%¥2=6
Size (per Node) 6*4GB=24GB
Clock Rate 1067 MHz
Table C.11: Operating System.
Property ‘ Value ‘
Distribution openSUSE
Version 13.2 (x86_64)
Linux Kernel Version 3.16.7
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D Experimental Setups

D.1 Parallel Brute-Force Processing

D.1.1 Input Vector Distribution

Table D.1: Types of input vector distributions. Overview of the distributions employed as well
as the numpy.random used to generate the data.

Distribution \ numpy . random Function \ Description Parameters
Uniform uniform Uniform distribution. low=0, high=1
Normal standard_normal Normal distribution with a mean

of 0 and a standard deviation of 1.
Exponential | standard_exponential | Exponential distribution with a

scale parameter beta of 1.
Cauchy standard_cauchy Cauchy (Lorentz) distribution

with a mode of 0.

Table D.2: RQA implementation properties.
’ Property \ Value

Input data format Row-wise
Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No
Recurrence matrix materialisation | Yes
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D Experimental Setups

Table D.3: RQA input parameter assignments.
‘ Parameter ‘ Value
Embedding dimension 10

Similarity measure

Fuclidean metric

Similarity threshold

10% of the maximum phase space diameter

Number of input vectors

20, 000

Default compiler optimisations

Enabled

Number of experimental runs

100

(a) Uniform

(b) Normal

30000

20000+

10000

—10000

—20000

~3000,

(¢) Exponential

Figure D.1:

-5000 0
X

—20000 -15000 =10000

(d) Cauchy (Lorentz)

5000 10000

FExample instances. Each diagram depicts an instance for a specific distribution

type from Tab D.1. Each instance refers to a set of 20,000 randomly generated

vectors that reside in
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D.1.2 Similarity Measure

D.1 Parallel Brute-Force Processing

Table D.4: RQA implementation properties.

Property

‘ Value

Input data format

Column-wise

Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No

Recurrence matrix materialisation | Yes

Table D.5: RQA input parameter assignments.
Parameter ‘ Value
Distribution Uniform
Embedding dimension 10
Time delay 2

Similarity threshold

10% of the maximum phase space diameter

Number of input vectors

20, 000

Default compiler optimisations

Enabled

Number of experimental runs

100
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D Experimental Setups

D.1.3 Default Compiler Optimisations

Table D.6: RQA implementation properties.

Property

‘ Value

Input data format

Column-wise

Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No

Recurrence matrix materialisation | Yes

Table D.7: RQA input parameter assignments.
Parameter ‘ Value
Distribution Uniform
Embedding dimension 10
Time delay 2
Similarity measure Euclidean
Similarity threshold 10% of the maximum phase space diameter
Number of input vectors 20,000
Default compiler optimisations | Enabled
Number of experimental runs 100
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D.1.4 Input Data Format

D.1 Parallel Brute-Force Processing

Table D.8: RQA implementation properties.

’ Property ‘ Value
Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No
Recurrence matrix materialisation | Yes

Table D.9: RQA input parameter assignments.

Parameter ‘ Value

Distribution Uniform

Time delay 2

Similarity measure Euclidean

Similarity threshold 10% of the maximum phase space diameter
Number of input vectors 20,000

Default compiler optimisations | Enabled

Number of experimental runs 100
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D Experimental Setups

D.1.5 Recurrence Matrix Representation

Table D.10: RQA implementation properties.

’ Property ‘ Value
Input data format Row-wise
Similarity value representation Byte / 32-bit integer
Intermediate results recycling No
Recurrence matrix materialisation | Yes

Table D.11: RQA input parameter assignments.

Parameter ‘ Value
Distribution Uniform
Embedding dimension 10
Similarity measure Euclidean
Number of input vectors 10,000
Default compiler optimisations | Enabled
Number of experimental runs 100
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D.1 Parallel Brute-Force Processing

Table D.12: Recurrence rate. The tabular data refers to Fig. 6.6.

Mazximum Phase Space Diameter Ratio Recurrence Rate
0.00 0.0000
0.05 0.0001
0.10 0.0001
0.15 0.0005
0.20 0.0050
0.25 0.0277
0.30 0.1004
0.35 0.2576
0.40 0.4884
0.45 0.7304
0.50 0.8995
0.55 0.9755
0.60 0.9960
0.65 0.9997
0.70 0.9999
0.75 1.0000
0.80 1.0000
0.85 1.0000
0.90 1.0000
0.95 1.0000
1.00 1.0000
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D Experimental Setups

D.1.6 Similarity Value Representation

Table D.13: RQA implementation properties.

Property ‘ Value

Input data representation Column-wise

Recurrence matrix representation | Uncompressed

Recurrence matrix materialisation | Yes

Intermediate results recycling No

Table D.14: RQA input parameter assignments.

Parameter ‘ Value
Distribution Uniform
Time delay 2
Similarity measure Euclidean
Maximum phase space diameter ratio | 0.3
Number of input vectors 20,000
Default compiler optimisations Enabled
Number of experimental runs 100
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D.1 Parallel Brute-Force Processing

D.1.7 Intermediate Results Recycling

Table D.15: RQA implementation properties.

’ Property ‘ Value
Input data representation Column-wise
Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Recurrence matrix materialisation | Yes

Table D.16: RQA input parameter assignments.

Parameter ‘ Value
Distribution Uniform
Embedding dimension 10

Time delay 2
Similarity measure Euclidean
Maximum phase space diameter ratio | 0.4
Default compiler optimisations Enabled
Number of experimental runs 100

D.1.8 Recurrence Matrix Materialisation

Table D.17: RQA implementation properties.

’ Property ‘ Value
Input data representation Column-wise
Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No
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Table D.18: RQA input parameter assignments.

’ Parameter ‘ Value
Distribution Uniform
Time delay 2
Similarity measure Fuclidean
Maximum phase space diameter ratio | 0.0
Number of input vectors 20,000
Default compiler optimisations Enabled
Number of experimental runs 100
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D.2 Index Data Structures
D.2.1 Grid Directories

Table D.19: Parallel brute-force implementation properties.

’ Property Value
Input data representation Row-wise
Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No

Table D.20: RQA input parameter assignments.

’ Parameter ‘ Value
Similarity measure FEuclidean
Number of input vectors 1,000
Default compiler optimisations Enabled
Number of distribution type instances | 10
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D.2.2 Multi-Dimensional Search Trees

Table D.21: Parallel brute-force implementation properties.

’ Property \ Value
Input data representation Row-wise
Recurrence matrix representation | Uncompressed
Similarity value representation Byte
Intermediate results recycling No

Table D.22: RQA input parameter assignments.

’ Parameter ‘ Value
Similarity measure Euclidean
Number of input vectors 1,000
Default compiler optimisations Enabled
Number of distribution type instances | 10
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D.3 Automatic Performance Tuning for Implementation Selection

D.3.1 Selection Strategies

Table D.23: RQA input parameter assignments.

’ Parameter ‘ Value
Embedding dimension 5
Time delay 3
Similarity measure Euclidean
Maximum phase space diameter ratio | 0.05
Number of input vectors 20,000
Default compiler optimisations Enabled
Number of distribution type instances | 5

Table D.24: RQA measures. Note that instead of showing percentages regarding the values of

RR, DET and LAM, the actual ratios are captured.

Measure ‘ Value
Recurrence rate (RR) 0.170708
Determinism (DET) 0.954954
Average diagonal line length (Dynean) 10.296124
Longest diagonal line length (Dy,qz) 7504
Entropy diagonal lines (Depyy) 3.002752
Laminarity (LAM) 0.975276
Trapping time (77 12.179679
Longest vertical line length (Vi,42) 463
Entropy vertical lines (Ven,) 3.309513
Average white vertical line length (Wy,ean) | 58.928727
Entropy white vertical lines (Wepy,) 4.618407
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Table D.25: Selection strategies parameter assignments. Different parameters are applied, but
not each parameter is required by each strategy. The parameter explore_length
refers to the consecutive amount of random flavour selections during an explo-
ration phase. The parameter exploit_length refers to the consecutive amount
of sub matrices, to which the best-performing flavours is applied. The parameter
explore_period is specific to the vw-greedy method. It refers to the consecutive
amount of sub matrices, after which the performance data previously gathered is
reset. The parameter delta is specific to the e-decreasing strategy. It refers to the
increase in exploit_length after each exploration phase.

Selection Strategy ‘ Parameter Assignments

]
—

explore_length

-greed
cgreedy exploit_length = 9

explore_length =1
vw-greedy exploit_length = 9
epxlore_period = 150

e-first explore_length = 15
explore_length = 1

e-decreasing exploit_length = 9
delta =1

explore_length = 1

d
randont exploit_length = 0

172



D.3 Automatic Performance Tuning for Implementation Selection

D.3.2 Efficiency

Table D.26: RQA input parameter assignments.

’ Parameter ‘ Value
Embedding dimension )
Time delay 3
Similarity measure Fuclidean
Maximum phase space diameter ratio | 0.05
Number of input vectors 20,000
Default compiler optimisations Enabled
Number of distribution type instances | 5

D.3.3 Scalability

Table D.27: RQA input parameter assignments.

’ Parameter ‘ Value
Embedding dimension )
Time delay 3
Similarity measure Fuclidean
Maximum phase space diameter ratio | 0.05
Number of input vectors 20,000
Default compiler optimisations Enabled
Number of distribution type instances | 5
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E.1 Parallel Brute-Force Processing

E.1.1 Input Vector Distribution
AMD Radeon RX 470
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Figure E.1: Runtimes. The OpenCL kernels are executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.1.
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Table E.1: Runtimes. The tabular runtime results referring to Fig. E.1.

g Runtime (s

Distribution Min | 25% | 50% (\) 75% | Maz
Uniform 0.2512 | 0.2521 | 0.2524 | 0.2529 | 0.2541
Normal 0.2489 | 0.2498 | 0.2505 | 0.2511 | 0.2526
Exponential 0.2477 | 0.2487 | 0.2491 | 0.2496 | 0.2512
Cauchy 02510 | 0.2517 | 0.2520 | 0.2524 | 0.2535
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Figure E.2: Runtimes. The OpenCL kernels are executed on the Nvidia GeForce GTX 690
compute device. A single boxplot is depicted for each distribution. The runtimes
are captured in tabular fashion in Tab. E.2.

Table E.2: Runtimes. The tabular runtime results referring to Fig. E.2.

g Runtime (s
Distribution Min | 25% | 50% (\ ) 75% |  Max
Uniform 0.4916 | 0.4975 | 0.5015 | 0.5015 | 0.5271
Normal 0.4916 | 0.4978 | 0.5015 | 0.5015 | 0.5015
Exponential 0.4923 | 0.4979 | 0.5015 | 0.5015 | 0.5015
Cauchy 0.4924 | 0.4990 | 0.5011 | 0.5015 | 0.5049
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Intel Xeon E5620
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Figure E.3: Runtimes. The OpenCL kernels are executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.3.

Table E.3: Runtimes. The tabular runtime results referring to Fig. E.3.

g Runtime (s
Distribution Min | 25% | 50%(\) 75% | Maz
Uniform 0.6737 | 0.6742 | 0.6743 | 0.6745 | 0.6751
Normal 0.6738 | 0.6741 | 0.6743 | 0.6745 | 0.6757
Exponential 0.6736 | 0.6742 | 0.6744 | 0.6746 | 0.6759
Cauchy 0.6737 | 0.6742 | 0.6743s | 0.6745 | 0.6762
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E.1.2 Similarity Measure
AMD Radeon RX 470
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Figure E.4: Runtimes. The OpenCL kernels are executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.4.

Table E.4: Runtimes. The tabular runtime results referring to Fig. E.4.

Runtime (s)
Min | 25% | 50% | 75% | Maz

Similarity Measure

Taxicab 0.0943 | 0.1061 | 0.1066 | 0.1068 | 0.1074
Euclidean 0.0953 | 0.1063 | 0.1065 | 0.1068 | 0.1079
Maximum 0.0955 | 0.1073 | 0.1076 | 0.1079 | 0.1084
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Figure E.5: Runtimes. The OpenCL kernels are executed on the Nvidia GeForce GTX 690
compute device. The runtimes are captured in tabular fashion in Tab. E.5.

Table E.5: Runtimes. The tabular runtime results referring to Fig. E.5.

Runtime (s)

Similarity Measure Min ‘ 25% ‘ 50% ‘ 75% ‘ Max

Taxicab 0.1648 | 0.1673 | 0.1692 | 0.1694 | 0.1888
Euclidean 0.1648 | 0.1674 | 0.1692 | 0.1693 | 0.1734
Maximum 0.1653 | 0.1689 | 0.1694 | 0.1695 | 0.1736
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Figure E.6: Runtimes. The OpenCL kernels are executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.6.

Table E.6: Runtimes. The tabular runtime results referring to Fig. E.6.

Runtime (s)

Similarity Measure Min | 25% | 50% | 75% | Maz

Taxicab 0.5976 | 0.6115 | 0.6169 | 0.6299 | 0.6788
Euclidean 0.6061 | 0.6161 | 0.6226 | 0.6350 | 0.6586
Maximum 0.7305 | 0.7430 | 0.7498 | 0.7590 | 0.7984
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E.1.3 Default Compiler Optimisations
AMD Radeon RX 470
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Figure E.7: Runtimes. The OpenCL kernels are executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.7.

Table E.7: Runtimes. The tabular runtime results referring to Fig. E.7.

Runtime (s)
Min | 25% | 50% | 75% | Maz
Disabled 0.9019 [ 0.9044 [ 0.9059 | 0.9077 | 0.9178
Enabled 0.1060 | 0.1067 | 0.1069 | 0.1071 | 0.1075

Default Compiler Optimisations
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Nvidia GeForce GTX 690
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Figure E.8: Runtimes. The OpenCL kernels are executed on the Nvidia GeForce GTX 690
compute device. The runtimes are captured in tabular fashion in Tab. E.8.

Table E.8: Runtimes. The tabular runtime results referring to Fig. E.8.

Runtime (s)
Min | 25% | 50% | 75% | Maz
Disabled 0.3078 | 0.3141 | 0.3167 | 0.3177 | 0.3486
Enabled 0.1643 | 0.1661 | 0.1678 | 0.1681 | 0.1696

Default Compiler Optimisations
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Figure E.9: Runtimes. The OpenCL kernels are executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.9.

Table E.9: Runtimes. The tabular runtime results referring to Fig. E.9.

Runtime (s)
Min | 25% | 50% | 75% | Maa
Disabled 1.2875 [ 1.3048 | 1.3106 | 1.3162 [ 1.3365
Enabled 0.6070 | 0.6199 | 0.6255 | 0.6314 | 0.6706

Default Compiler Optimisations
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E.1.4 Input Data Format
AMD Radeon RX 470
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Figure E.10: Runtimes. The OpenCL kernel that refers to the create_recurrence__matrix oper-

ator is executed on the AMD Radeon RX 470 compute device. The runtimes are
captured in tabular fashion in Tab. E.10.
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Table E.10: Runtimes. The tabular runtime results of Fig. E.10. tcopmn and trew refer to the
runtimes while applying the column-wise and row-wise input data format.

Embedding Dimension Runtime (s) ttﬂ

toolumn ‘ L Row Column
1 0.0240 | 0.0249 | 1.0399
2 0.0308 | 0.0326 | 1.0586
3 0.0368 | 0.0379 | 1.0296
4 0.0423 | 0.0673 | 1.5918
5 0.0475 | 0.0796 | 1.6760
6 0.0527 | 0.1062 | 2.0165
7 0.0576 | 0.1310 | 2.2728
8 0.0626 | 0.1563 | 2.4982
9 0.0674 | 0.2100 | 3.1149
10 0.0722 | 0.2523 | 3.4953
11 0.0769 | 0.2883 | 3.7464
12 0.0813 | 0.3240 | 3.9828
13 0.0857 | 0.3524 | 4.1110
14 0.0901 | 0.3883 | 4.3089
15 0.0945 | 0.4344 | 4.5973
16 0.0989 | 0.5662 | 5.7236
17 0.1033 | 0.5986 | 5.7948
18 0.1077 | 0.6272 | 5.8258
19 0.1120 | 0.6668 | 5.9522
20 0.1164 | 0.6884 | 5.9144
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Table E.11: Additional performance counters. The counters are retrieved while executing the
OpenCL kernel that refers to the create recurrence matriz operator on the AMD

Radeon RX 470 compute device.

Embedding Dimension

CacheHit (%)

FetchSize (kB)

MemUnitStalled (%)

CColumn ‘ CRow | fCotumn ‘ JRow | MColumn ‘ M Row
1 84.66 | 84.48 | 156.81 156.81 19.18 17.70
2 84.33 | 90.75 | 156.94 313.06 12.27 13.24
3 82.99 | 93.72 | 156.94 469.31 8.10 8.57
4 81.56 | 98.47 | 156.94 625.56 5.20 21.72
5 80.81 | 98.83 | 156.94 781.81 3.86 15.41
6 80.51 | 99.22 | 156.94 938.06 3.10 16.41
7 80.40 | 99.40 | 156.94 1,094.31 2.64 14.78
8 80.35 | 99.50 | 156.94 1,252.06 2.33 12.71
9 80.35 | 99.66 | 156.94 1,694.31 2.09 11.90
10 81.07 | 99.72 | 157.06 4,318.06 1.90 11.71
11 81.07 | 99.73 157.06 42,814.62 1.74 10.28
12 81.10 | 99.74 | 157.06 89,768.44 1.61 11.34
13 81.12 | 99.78 | 157.06 48,143.00 1.50 8.84
14 81.12 | 99.76 | 157.06 156,703.50 1.40 8.04
15 81.14 | 99.69 | 157.06 395,528.00 1.32 6.87
16 81.15 | 99.67 | 157.06 709,689.12 1.24 6.16
17 81.16 | 99.59 | 157.06 | 1,057,299.56 1.17 5.77
18 81.88 | 99.55 157.19 | 1,291,943.12 1.11 6.20
19 81.88 | 99.38 | 157.19 | 2,033,561.50 1.06 5.88
20 81.91 | 99.22 | 157.19 | 2,780,607.06 1.01 7.03

187




E Experimental Results

Nvidia GeForce GTX 690

10° -
— Column-wise
- - Row-wise
__10°4
\(_.n’ [
(O]
E
et
C
z
10t 4
107 . . .
0 5 10 15 20

Embedding Dimension

Figure E.11: Runtimes. The OpenCL kernel that refers to the create recurrence_matriz oper-
ator is executed on the Nvidia GeForce GTX 690 compute device. The runtimes
are captured in tabular fashion in Tab. E.12.
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Table E.12: Runtimes. The tabular runtime results of Fig. E.11. tcoumn and tgrew refer to the
runtimes while applying the column-wise and row-wise input data format.

Embedding Dimension Runtime (s) ttﬂ

tColumn ‘ L Row Column
1 0.0290 | 0.0260 | 0.8963
2 0.0310 | 0.0364 | 1.1761
3 0.0528 | 0.0786 | 1.4893
4 0.0588 | 0.1073 | 1.8239
5 0.0727 | 0.1632 | 2.2446
6 0.0852 | 0.2345 | 2.7536
7 0.0983 | 0.3185 | 3.2400
8 0.1139 | 0.4094 | 3.5959
9 0.1243 | 0.4544 | 3.6549
10 0.1399 | 0.5044 | 3.6052
11 0.1505 | 0.5547 | 3.6869
12 0.1663 | 0.6094 | 3.6648
13 0.1717 | 0.6816 | 3.9687
14 0.1888 | 0.7708 | 4.0832
15 0.1992 | 1.5088 | 7.5737
16 0.2078 | 1.0236 | 4.9250
17 0.2159 | 1.9787 | 9.1646
18 0.2269 | 2.2377 | 9.8641
19 0.2340 | 2.4974 | 10.6712
20 0.2449 | 2.7783 | 11.3424
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Figure E.12: Runtimes. The OpenCL kernel that refers to the create recurrence matriz op-
erator is executed on the Intel Xeon E5620 compute device. The runtimes are
captured in tabular fashion in Tab. E.13.
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Table E.13: Runtimes. The tabular runtime results of Fig. E.12. tcoumn and tgrew refer to the
runtimes while applying the column-wise and row-wise input data format.

Embedding Dimension Runtime (s) ttﬂ

toolumn ‘ t Row Column
1 0.0671 | 0.1029 | 1.5331
2 0.0870 | 0.1627 | 1.8700
3 0.1090 | 0.2285 | 2.0973
4 0.1316 | 0.2882 | 2.1897
5 0.1536 | 0.3543 | 2.3060
6 0.1763 | 0.4235 | 2.4030
7 0.1993 | 0.4831 | 2.4238
8 0.2226 | 0.5454 | 2.4507
9 0.2453 | 0.6105 | 2.4891
10 0.2683 | 0.6754 | 2.5176
11 0.2913 | 0.7406 | 2.5424
12 0.3145 | 0.8057 | 2.5621
13 0.3370 | 0.8755 | 2.5978
14 0.3599 | 0.9307 | 2.5858
15 0.3835 | 0.9984 | 2.6035
16 0.4060 | 1.0749 | 2.6473
17 0.4294 | 1.1269 | 2.6246
18 0.4518 | 1.1922 | 2.6388
19 0.4745 | 1.2577 | 2.6503
20 0.4979 | 1.3214 | 2.6540
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E.1.5 Recurrence Matrix Representation
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Figure E.13: Runtimes for detecting vertical lines. The OpenCL kernel that refers to the
detect__wvertical_lines operator is executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.14.
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Table E.14: Runtimes for detecting vertical lines. The tabular runtime results of Fig. E.13.
tUncompressed a0d tCompressed refer to the runtimes while using the uncompressed as
well as the compressed sparse recurrence matrix representation.

Mazximum Phase Space Diameter Ratio Runtime (s)
tUncompressed ‘ tCompressed
0.00 0.0078 0.00003
0.05 0.0078 0.00004
0.10 0.0078 0.00004
0.15 0.0082 0.0003
0.20 0.0080 0.0028
0.25 0.0087 0.0127
0.30 0.0126 0.0227
0.35 0.0216 0.0395
0.40 0.0260 0.0461
0.45 0.0217 0.0434
0.50 0.0126 0.0344
0.55 0.0085 0.0264
0.60 0.0081 0.0324
0.65 0.0076 0.0320
0.70 0.0076 0.0313
0.75 0.0068 0.0307
0.80 0.0076 0.0311
0.85 0.0076 0.0244
0.90 0.0076 0.0241
0.95 0.0076 0.0243
1.00 0.0076 0.0306
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Table E.15: Runtimes for detecting diagonal lines. The tabular runtime results of Fig. E.14.
tUncompressed and toompressed Tefer to the runtimes while using the uncompressed as
well as the compressed sparse recurrence matrix representation.

Mazimum Phase Space Diameter Ratio Runtime (s)
tUncompressed ‘ tCompressed
0.00 0.0071 0.2342
0.05 0.0078 0.1520
0.10 0.0078 0.1475
0.15 0.0075 0.2102
0.20 0.0075 0.1700
0.25 0.0078 0.1979
0.30 0.0080 0.1666
0.35 0.0100 0.2132
0.40 0.0103 0.2202
0.45 0.0085 0.2618
0.50 0.0078 0.2428
0.55 0.0062 0.2606
0.60 0.0075 0.2599
0.65 0.0075 0.2389
0.70 0.0071 0.2494
0.75 0.0047 0.2527
0.80 0.0075 0.2459
0.85 0.0071 0.2482
0.90 0.0050 0.2598
0.95 0.0071 0.2327
1.00 0.0071 0.2498
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Figure E.14: Runtimes for detecting diagonal lines. The OpenCL kernel that refers to the
detect__diagonal_lines operator is executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.15.
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Figure E.15: Runtimes for detecting vertical lines. The OpenCL kernel that refers to the
detect__vertical_lines operator is executed on the Nvidia GeForce GTX 690 com-
pute device. The runtimes are captured in tabular fashion in Tab. E.16.
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Figure E.16: Runtimes for detecting diagonal lines. The OpenCL kernel that refers to the
detect _diagonal_lines operator is executed on the Nvidia GeForce GTX 690 com-
pute device. The runtimes are captured in tabular fashion in Tab. E.17.
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Table E.16: Runtimes for detecting vertical lines. The tabular runtime results of Fig. E.15.
tUncompressed a0d tCompressed refer to the runtimes while using the uncompressed as
well as the compressed sparse recurrence matrix representation.

Mazximum Phase Space Diameter Ratio Runtime (s)
tUncompressed ‘ tCompressed
0.00 0.0053 0.00002
0.05 0.0047 0.00002
0.10 0.0047 0.00002
0.15 0.0048 0.00007
0.20 0.0050 0.0006
0.25 0.0060 0.0032
0.30 0.0080 0.0123
0.35 0.0155 0.0236
0.40 0.0143 0.0425
0.45 0.0128 0.0646
0.50 0.0081 0.0797
0.55 0.0071 0.0872
0.60 0.0051 0.0910
0.65 0.0048 0.0881
0.70 0.0048 0.0883
0.75 0.0048 0.0907
0.80 0.0049 0.0904
0.85 0.0048 0.0900
0.90 0.0049 0.0903
0.95 0.0047 0.0907
1.00 0.0048 0.0903
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Table E.17: Runtimes for detecting diagonal lines. The tabular runtime results of Fig. E.16.
tUncompressed and toompressed Tefer to the runtimes while using the uncompressed as
well as the compressed sparse recurrence matrix representation.

Mazimum Phase Space Diameter Ratio Runtime (s)
tUncompressed ‘ tCompressed
0.00 0.0060 0.1247
0.05 0.0052 0.1242
0.10 0.0052 0.1239
0.15 0.0052 0.1277
0.20 0.0054 0.1486
0.25 0.0059 0.1563
0.30 0.0068 0.1668
0.35 0.0107 0.1832
0.40 0.0095 0.2039
0.45 0.0072 0.2415
0.50 0.0064 0.2454
0.55 0.0065 0.2464
0.60 0.0052 0.2188
0.65 0.0051 0.1629
0.70 0.0051 0.1374
0.75 0.0051 0.1316
0.80 0.0054 0.1338
0.85 0.0051 0.1322
0.90 0.0054 0.1318
0.95 0.0051 0.1318
1.00 0.0051 0.1335
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Figure E.17: Runtimes for detecting vertical lines.

The OpenCL kernel that refers to the

detect wvertical lines operator is executed on the Intel Xeon E5620 compute device.
The runtimes are captured in tabular fashion in Tab. E.18.
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Figure E.18: Runtimes for detecting diagonal lines.

The OpenCL kernel that refers to the

detect _diagonal lines operator is executed on the Intel Xeon E5620 compute de-
vice. The runtimes are captured in tabular fashion in Tab. E.19.
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Table E.18: Runtimes for detecting vertical lines. The tabular runtime results of Fig. E.17.
tUncompressed and toompressed Tefer to the runtimes while using the uncompressed as
well as the compressed sparse recurrence matrix representation.

Mazimum Phase Space Diameter Ratio Runtime (s)
tUncompressed ‘ tCompressed
0.00 0.0519 0.0002
0.05 0.0530 0.0002
0.10 0.0518 0.0002
0.15 0.0525 0.0020
0.20 0.0550 0.0246
0.25 0.1126 0.1362
0.30 0.2851 0.5022
0.35 0.5558 0.7073
0.40 0.8467 0.8266
0.45 0.5596 0.5974
0.50 0.2951 0.2995
0.55 0.1038 0.1109
0.60 0.0529 0.0401
0.65 0.0518 0.0388
0.70 0.0561 0.0384
0.75 0.0518 0.0385
0.80 0.0519 0.0396
0.85 0.0518 0.0396
0.90 0.0518 0.0406
0.95 0.0517 0.0391
1.00 0.0531 0.0464
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Table E.19: Runtimes for detecting diagonal lines. The tabular runtime results of Fig. E.18.
tUncompressed a0d tCompressed refer to the runtimes while using the uncompressed as
well as the compressed sparse recurrence matrix representation.

Mazximum Phase Space Diameter Ratio Runtime (s)
tUncompressed ‘ tCompressed
0.00 0.0308 0.0869
0.05 0.0251 0.0803
0.10 0.0247 0.0821
0.15 0.0248 0.1205
0.20 0.0256 0.2544
0.25 0.0439 0.4004
0.30 0.1035 0.5639
0.35 0.1926 0.7528
0.40 0.2435 0.9470
0.45 0.2038 0.9055
0.50 0.1127 0.8527
0.55 0.0306 0.8473
0.60 0.0251 0.8704
0.65 0.0252 0.7787
0.70 0.0249 0.7509
0.75 0.0248 0.7407
0.80 0.0245 0.7482
0.85 0.0248 0.7847
0.90 0.0251 0.7857
0.95 0.0249 0.7301
1.00 0.0250 0.7228
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E.1.6 Similarity Value Representation
AMD Radeon RX 470
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Figure E.19: Runtimes for creating the recurrence matrix. The OpenCL kernel that refers to
the create__recurrence__matrixz operator is executed on the AMD Radeon RX 470
compute device. The runtimes are captured in tabular fashion in Tab. E.20.
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Figure E.20: Runtimes for detecting vertical lines. The OpenCL kernel that refers to the
detect__wvertical_lines operator is executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.21.
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Figure E.21: Runtimes for detecting diagonal lines. The OpenCL kernel that refers to the
detect__diagonal lines operator is executed on the AMD Radeon RX 470 compute
device. The runtimes are captured in tabular fashion in Tab. E.22.
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Table E.20: Runtimes for creating the recurrence matrix. The tabular runtime results of
Fig. E.19. tpy and tp; refer to the runtimes while using the byte-wise and bit-wise
similarity value representation.

Embedding Dimension Runtime (s)

tByte‘ LBit
1 0.0240 | 0.0373
2 0.0308 | 0.0430
3 0.0368 | 0.0483
4 0.0423 | 0.0535
0 0.0476 | 0.0535
6 0.0527 | 0.0635
7 0.0576 | 0.0633
8 0.0626 | 0.0726
) 0.0674 | 0.0773
10 0.0721 | 0.0817
1 0.0769 | 0.0862
12 0.0814 | 0.0905
13 0.0858 | 0.0948
14 0.0901 | 0.0989
15 0.0945 | 0.1031
16 0.0989 | 0.1073
17 0.1033 | 0.1114
18 0.1077 | 0.1155
19 0.1120 | 0.1195
20 0.1164 | 0.1235
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Table E.21: Runtimes for detecting vertical lines. The tabular runtime results of Fig. E.20. tpyze
and tp;s refer to the runtimes while using the byte-wise and bit-wise similarity value

representation.

Embedding Dimension Runtime (s)
tByte ‘ LBit
1 0.1521 | 0.1480
2 0.1246 | 0.1222
3 0.1058 | 0.1037
4 0.0917 | 0.0902
o 0.0804 | 0.0793
6 0.0715 | 0.0706
7 0.0638 | 0.0630
8 0.0571 | 0.0566
) 0.0513 | 0.0511
10 0.0463 | 0.0467
1 0.0419 | 0.0429
12 0.0382 | 0.0395
13 0.0350 | 0.0365
14 0.0323 | 0.0335
15 0.0208 | 0.0306
16 0.0274 | 0.0282
17 0.0249 | 0.0264
18 0.0228 | 0.0253
19 0.0213 | 0.0247
20 0.0206 | 0.0245
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Table E.22: Runtimes for detecting diagonal lines. The tabular runtime results of Fig. E.21.
tByte and tp; refer to the runtimes while using the byte-wise and bit-wise similarity
value representation.

Embedding Dimension Runtime (s)
tByte ‘ UBit
1 0.0293 | 0.0291
2 0.0357 | 0.0357
3 0.0355 | 0.0354
4 0.0333 | 0.0333
o 0.0309 | 0.0308
6 0.0286 | 0.0283
7 0.0274 | 0.0259
8 0.0258 | 0.0240
) 0.0239 | 0.0220
10 0.0221 | 0.0202
1 0.0206 | 0.0186
12 0.0190 | 0.0171
13 0.0183 | 0.0159
14 0.0179 | 0.0147
15 0.0175 | 0.0140
16 0.0173 | 0.0136
17 0.0172 | 0.0132
18 0.0170 | 0.0130
19 0.0170 | 0.0129
20 0.0169 | 0.0129
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Figure E.22: Runtimes for creating the recurrence matrix. The OpenCL kernel that refers to
the create_recurrence_matriz operator is executed on the Nvidia GeForce GTX
690 compute device. The runtimes are captured in tabular fashion in Tab. E.23.
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Figure E.23: Runtimes for detecting vertical lines. The OpenCL kernel that refers to the
detect__wvertical_lines operator is executed on the Nvidia GeForce GTX 690 com-
pute device. The runtimes are captured in tabular fashion in Tab. E.24.
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Figure E.24: Runtimes for detecting diagonal lines. The OpenCL kernel that refers to the
detect__diagonal_lines operator is executed on the Nvidia GeForce GTX 690 com-
pute device. The runtimes are captured in tabular fashion in Tab. E.25.
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Table E.23: Runtimes for creating the recurrence matrix. The tabular runtime results of
Fig. E.22. tpyi and tp;; refer to the runtimes while using the byte-wise and bit-wise
similarity value representation.

Embedding Dimension Runtime (s)

tByte‘ tBit
1 0.0246 | 0.0335
2 0.0312 | 0.0397
3 0.0451 | 0.0488
4 0.0594 | 0.0623
0 0.0730 | 0.0752
0 0.0870 | 0.0836
7 0.1005 | 0.1020
8 0.1139 | 0.1149
) 0.1260 | 0.1271
10 0.1388 | 0.1394
1 0.1506 | 0.1516
12 0.1633 | 0.1630
13 0.1738 | 0.1736
14 0.1857 | 0.1847
15 0.1963 | 0.1954
16 0.2076 | 0.2059
17 0.2156 | 0.2146
18 0.2276 | 0.2247
19 0.2373 | 0.2341
20 0.2481 | 0.2436
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Table E.24: Runtimes for detecting vertical lines. The tabular runtime results of Fig. E.23. tpye
and tp; refer to the runtimes while using the byte-wise and bit-wise similarity value

representation.

Embedding Dimension Runtime (s)
tByte ‘ UBit

1 0.0806 | 0.0809
2 0.0718 | 0.0722
3 0.0670 | 0.0675
4 0.0630 | 0.0637
o 0.0591 | 0.0598
6 0.0553 | 0.0562
7 0.0516 | 0.0523
8 0.0481 | 0.0489
) 0.0449 | 0.0456
10 0.0420 | 0.0427
1 0.0393 | 0.0399
12 0.0367 | 0.0372
13 0.0344 | 0.0348
14 0.0325 | 0.0329
15 0.0307 | 0.0308
16 0.0293 | 0.0294
17 0.0284 | 0.0285
18 0.0281 | 0.0282
19 0.0276 | 0.0278
20 0.0272 | 0.0274
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Table E.25: Runtimes for detecting diagonal lines. The tabular runtime results of Fig. E.24.
tByte and tp;; refer to the runtimes while using the byte-wise and bit-wise similarity
value representation.

Embedding Dimension Runtime (s)
tByte ‘ LBit
1 0.0285 | 0.0293
2 0.0367 | 0.0375
3 0.0368 | 0.0377
4 0.0350 | 0.0358
o 0.0324 | 0.0334
6 0.0300 | 0.0308
7 0.0272 | 0.0282
8 0.0249 | 0.0259
) 0.0228 | 0.0238
10 0.0210 | 0.0219
1 0.0193 | 0.0204
12 0.0179 | 0.0191
13 0.0167 | 0.0180
14 0.0157 | 0.0172
1o 0.0150 | 0.0166
16 0.0143 | 0.0162
17 0.0139 | 0.0159
18 0.0135 | 0.0158
19 0.0133 | 0.0157
20 0.0131 | 0.0155
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Figure E.25: Runtimes for creating the recurrence matrix. The OpenCL kernel that refers to the
create__recurrence__matriz operator is executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.26.
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Figure E.26: Runtimes for detecting vertical lines. The OpenCL kernel that refers to the
detect__vertical_lines operator is executed on the Intel Xeon E5620 compute device.
The runtimes are captured in tabular fashion in Tab. E.27.
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Figure E.27: Runtimes for detecting diagonal lines. The OpenCL kernel that refers to the
detect__diagonal_lines operator is executed on the Intel Xeon E5620 compute de-
vice. The runtimes are captured in tabular fashion in Tab. E.28.
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Table E.26: Runtimes for creating the recurrence matrix. The tabular runtime results of
Fig. E.25. tpyi and tp; refer to the runtimes while using the byte-wise and bit-wise
similarity value representation.

Embedding Dimension Runtime (s)

tByte‘ LBit
1 0.0669 | 0.2039
2 0.0872 | 0.2905
3 0.1087 | 0.2903
4 0.1316 | 0.3002
0 0.1538 | 0.3088
6 0.1765 | 0.3101
7 0.1992 | 0.3286
8 0.2224 | 0.3392
) 0.2452 | 0.3605
10 0.2685 | 0.3636
1 0.2913 | 0.3796
12 0.3143 | 0.3930
13 0.3370 | 0.4068
14 03601 | 0.4231
15 03320 | 0.4421
16 0.4061 | 0.4633
17 0.4289 | 0.4813
18 0.4520 | 0.5002
19 0.4749 | 0.5173
20 0.4980 | 0.5442
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Table E.27: Runtimes for detecting vertical lines. The tabular runtime results of Fig. E.26. tpyze
and tp;s refer to the runtimes while using the byte-wise and bit-wise similarity value

representation.

Embedding Dimension Runtime (s)
tByte ‘ LBit
1 3.1020 | 2.8803
2 2.8703 | 2.7130
3 2.5439 | 2.5171
4 2.2881 | 2.2763
o 2.0336 | 2.0234
6 1.8216 | 1.8656
7 1.6394 | 1.6930
8 1.4865 | 1.5238
) 1.3441 | 1.3704
10 1.2056 | 1.2692
1 1.1020 | 1.1266
12 0.9990 | 1.0304
13 0.9119 | 0.9355
14 0.8355 | 0.8576
15 0.7631 | 0.7816
16 0.6975 | 0.7028
17 0.6396 | 0.6499
18 0.5893 | 0.5903
19 0.5349 | 0.5379
20 0.4938 | 0.4936
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Table E.28: Runtimes for detecting diagonal lines. The tabular runtime results of Fig. E.27.
tByte and tp; refer to the runtimes while using the byte-wise and bit-wise similarity
value representation.

Embedding Dimension Runtime (s)
tByte ‘ LBit
1 0.9590 | 1.1467
2 0.9025 | 1.0246
3 0.8170 | 0.9067
4 0.7246 | 0.7991
o 0.6404 | 0.7067
6 0.5665 | 0.6252
7 0.5058 | 0.5572
8 0.4506 | 0.4952
) 0.4034 | 0.4455
10 0.3598 | 0.4002
1 0.3204 | 0.3595
12 0.2884 | 0.3249
13 0.2595 | 0.2944
14 0.2330 | 0.2662
15 0.2113 | 0.2423
16 0.1919 | 0.2212
17 0.1753 | 0.2028
18 0.1616 | 0.1870
19 0.1482 | 0.1717
20 0.1378 | 0.1601
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E.1.7 Intermediate Results Recycling
AMD Radeon RX 470
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Figure E.28: Runtimes. The OpenCL kernels that conduct the computations of the pairwise
input vector similarities as well as the detection of vertical lines are executed on
the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.29.
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Table E.29: Runtimes. The tabular runtime results of Fig. E.28. t non—Recycling and t Recycling T€-
fer to the runtimes while using the non-recycling and recycling computing approach.

Number of Input Vectors Runtime (s)
tNon—Recycling ‘ tRecycling
1,000 0.0039 0.0130
2,000 0.0090 0.0225
3,000 0.0141 0.0284
4,000 0.0206 0.0339
5,000 0.0269 0.0383
6,000 0.0334 0.0427
7,000 0.0397 0.0471
8,000 0.0466 0.0514
9,000 0.0568 0.0611
10,000 0.0630 0.0665
11,000 0.0714 0.0722
12,000 0.0799 0.0777
13,000 0.0896 0.0839
14,000 0.0998 0.0902
15,000 0.1109 0.0970
16,000 0.1221 0.1041
17,000 0.1393 0.1234
18,000 0.1493 0.1313
19,000 0.1620 0.1407
20,000 0.1764 0.1493
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Table E.30: Additional performance counters. The counters are retrieved while executing the
OpenCL kernels that compute the pairwise input vector similarities as well as per-
form the detection of vertical lines on the AMD Radeon RX 470 compute device.

Number of Input Vectors

FetchSize (kB)

fNon—Recycling ‘ fRecycling

WriteSize (kB)

W N on— Recycling ‘ W Recycling

1,000 998.31 21.44 988.90 988.90
2,000 3,947.73 41.21 3,930.63 3930.67
3,000 8,850.48 61.23 8,825.76 8832.00
4,000 15,713.37 81.72 15,674.23 | 15,703.24
95,000 24,772.90 102.64 24,476.00 | 24,923.35
6,000 35,866.43 125.77 35,231.16 | 36,233.15
7,000 49,352.84 159.15 47,939.56 | 50,003.52
8,000 62,668.14 199.68 62,601.05 | 62,601.23
9,000 83,609.28 250.21 79,217.95 | 83,898.30
10,000 101,978.48 298.11 97,785.76 | 102,857.15
11,000 123,681.41 346.52 118,308.15 | 128591.42
12,000 145,599.23 370.77 140,783.36 | 145,012.94
13,000 177,175.85 418.31 165,212.41 | 190,066.55
14,000 205,552.94 446.69 191,594.73 | 217,255.65
15,000 240,397.96 514.00 219,929.88 | 266694.70
16,000 250,333.97 460.05 250,215.48 | 250,216.07
17,000 314,529.90 636.11 282,461.79 | 353008.47
18,000 346,788.02 731.41 316,657.65 | 376,084.91
19,000 392,960.08 894.28 352,806.76 | 450,290.47
20,000 417,950.60 864.19 390,906.05 | 414351.43
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Figure E.29: Runtimes. The OpenCL kernels that conduct the computations of the pairwise
input vector similarities as well as the detection of vertical lines are executed on the
Nvidia GeForce GTX 690 compute device. The runtimes are captured in tabular
fashion in Tab. E.31.
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Table E.31: Runtimes. The tabular runtime results of Fig. E.29. tnon—Recyciing and t Recycling Te-
fer to the runtimes while using the non-recycling and recycling computing approach.

Number of Input Vectors Runtime (s)
tNon—Recycling ‘ tRecycling
1,000 0.0014 0.0026
2,000 0.0036 0.0052
3,000 0.0072 0.0080
4,000 0.0105 0.0106
5,000 0.0151 0.0140
6,000 0.0208 0.0169
7,000 0.0284 0.0211
8,000 0.0364 0.0245
9,000 0.0469 0.0307
10,000 0.0570 0.0346
11,000 0.0694 0.0433
12,000 0.0796 0.0462
13,000 0.0836 0.0544
14,000 0.0973 0.0591
15,000 0.1134 0.0779
16,000 0.1296 0.0838
17,000 0.1586 0.1270
18,000 0.1743 0.1383
19,000 0.1913 0.1489
20,000 0.2078 0.1572
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Figure E.30: Runtimes. The OpenCL kernels that conduct the computations of the pairwise
input vector similarities as well as the detection of vertical lines are executed on
the Intel Xeon E5620 compute device. The runtimes are captured in tabular fashion
in Tab. E.32.
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Table E.32: Runtimes. The tabular runtime results of Fig. E.30. tnon—Recycling and t Recycling T€-
fer to the runtimes while using the non-recycling and recycling computing approach.

Number of Input Vectors Runtime (s)
tNon—Recycling ‘ tRecycling
1,000 0.0085 0.0093
2,000 0.0331 0.0379
3,000 0.0734 0.0810
4,000 0.1266 0.1463
5,000 0.1952 0.2269
6,000 0.2832 0.3285
7,000 0.3877 0.4450
8,000 0.5050 0.5841
9,000 0.6414 0.7403
10,000 0.7889 0.9166
11,000 0.9568 1.1056
12,000 1.1344 1.3178
13,000 1.3202 1.5474
14,000 1.5333 1.8013
15,000 1.7851 2.0656
16,000 2.1150 2.4950
17,000 2.2628 2.6137
18,000 2.6172 3.0190
19,000 2.8358 3.2726
20,000 3.1685 3.6813
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E.1.8 Recurrence Matrix Materialisation
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Figure E.31: Runtimes. The OpenCL kernels referring to each of the analytical RQA opera-
tors are executed on the AMD Radeon RX 470 compute device. The cumulated
runtimes are captured in tabular fashion in Tab. E.33.
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Table E.33: Runtimes. The tabular runtime results of Fig. E.31.  tyjaterialisation and
tNon— Materialisation Tefer to the runtimes while materialising and not materialising
the recurrence matrix.

Embedding Dimension Runtime (s)

{ Materialisation ‘ U Non—Materialisation
! 0.0624 0.0419
2 0.0678 0.0546
3 0.0732 0.0663
4 0.0782 0.0775
> 0.0834 0.0878
6 0.0834 0.0981
! 0.0929 0.1085
8 0.0976 0.1189
) 0.1022 0.1293
10 0.1068 0.1307
1 0.1114 0.1500
12 0.1157 0.1602
13 0.1201 0.1704
14 0.1246 0.1804
1o 0.1288 0.1905
10 0.1333 0.2007
17 0.1376 0.2108
18 0.1420 0.2210
19 0.1465 0.2314
20 0.1507 0.2418
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Figure E.32: Runtimes. The OpenCL kernels referring to each of the analytical RQA operators
are executed on the Nvidia GeForce GTX 690 compute device. The cumulated
runtimes are captured in tabular fashion in Tab. F.34.
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Table E.34: Runtimes. The tabular runtime results of Fig. E.32. t Materialisation and
tNon— Materialisation Tefer to the runtimes while materialising and not materialising
the recurrence matrix.

Embedding Dimension Runtime (s)

{ Materialisation ‘ U Non—Materialisation
1 0.0629 0.0429
2 0.0705 0.0519
3 0.0866 0.0753
4 0.1002 0.0906
> 0.1038 0.0997
6 0.1171 0.1248
7 0.1312 0.1445
8 0.1438 01662
) 0.1564 0.1862
10 0.1682 0.2069
1 0.1809 0.2296
12 0.1931 0.2488
13 0.2039 0.2707
14 0.2161 0.2896
1o 0.2268 03125
16 0.2382 0.3303
17 0.2463 03487
18 0.2577 0.3687
19 0.2676 0.3915
20 0.2783 0.4091
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Figure E.33: Runtimes. The OpenCL kernels referring to each of the analytical RQA operators
are executed on the Intel Xeon E5620 compute device. The cumulated runtimes
are captured in tabular fashion in Tab. E.35.
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Table E.35: Runtimes. The tabular runtime results of Fig. E.33.  tajaterialisation and
tNon— Materialisation Tefer to the runtimes while materialising and not materialising
the recurrence matrix.

Embedding Dimension Runtime (s)

{ Materialisation ‘ U Non—Materialisation
1 0.4228 0.1935
2 0.4458 0.2850
3 0.4671 0.3464
4 0.4897 0.4281
O 0.5098 0.5124
6 0.5352 0.5986
7 0.5564 0.6845
8 0.5787 0.7703
) 0.6006 0.8550
10 0.6263 0.9431
1 0.6464 1.0288
12 0.6704 1.1158
13 0.6934 1.2006
14 0.7162 1.2864
15 0.7393 1.3750
10 0.7638 {4611
17 0.7831 L5465
18 0.8074 1.6342
19 0.8337 1.7201
20 0.8538 1.8082
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Figure E.34: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on
the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.36.
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E.2 Index Data Structures

Table E.36: Runtimes - Parallel brute-force processing. The tabular runtime results referring to
Fig. E.34.

Embedding Dimension Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0014
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010
0.0005 | 0.0005 | 0.0005 | 0.0006 | 0.0006
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0014 | 0.0014 | 0.0014 | 0.0014 | 0.0015
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0008
0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009
0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0014
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Figure E.35: Runtimes - Grid directory (atomic operations). The OpenCL kernels are executed
on the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.37.
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E.2 Index Data Structures

Table E.37: Runtimes - Grid directory (atomic operations). The tabular runtime results referring
to Fig. E.35.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0003 | 0.0019 | 0.0029 | 0.0029 | 0.0029
0.0005 | 0.0032 | 0.0043 | 0.0044 | 0.0044
0.0006 | 0.0053 | 0.0053 | 0.0053 | 0.0053
0.0010 | 0.0072 | 0.0073 | 0.0073 | 0.0073
0.0018 | 0.0079 | 0.0079 | 0.0079 | 0.0091
0.0038 | 0.0094 | 0.0095 | 0.0095 | 0.0108
0.0041 | 0.0105 | 0.0107 | 0.0107 | 0.0107
0.0041 | 0.0127 | 0.0128 | 0.0129 | 0.0162
0.0040 | 0.0137 | 0.0138 | 0.0139 | 0.0270
0.0172 | 0.0179 | 0.0180 | 0.0181 | 0.0452
0.0241 | 0.0244 | 0.0246 | 0.0248 | 0.0824
0.0485 | 0.0489 | 0.0491 | 0.0493 | 0.1881
0.1017 | 0.1021 | 0.1024 | 0.1026 | 0.4989
0.2601 | 0.2608 | 0.2612 | 0.2616 | 1.4286
0.7429 | 0.7549 | 0.7554 | 0.7561 | 4.2121
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E Experimental Results
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Figure E.36: Runtimes - Grid directory (sorting). The OpenCL kernels are executed on the
AMD Radeon RX 470 compute device. The Python code regarding the sorting of
the grid cell indices is executed on the Intel Core i5-3570 compute device. The
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runtimes are captured in tabular fashion in Tab. E.38.
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E.2 Index Data Structures

Table E.38: Runtimes - Grid directory (sorting). The tabular runtime results referring to
Fig. E.36.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0010 | 0.0024 | 0.0037 | 0.0038 | 0.0038

0.0004 | 0.0037 | 0.0051 | 0.0051 | 0.0051

0.0006 | 0.0061 | 0.0062 | 0.0062 | 0.0062

0.0011 | 0.0078 | 0.0078 | 0.0079 | 0.0079

0.0019 | 0.0086 | 0.0087 | 0.0087 | 0.0087

0.0047 | 0.0099 | 0.0100 | 0.0101 | 0.0140

0.0093 | 0.0112 | 0.0112 | 0.0113 | 0.0114

0.0129 | 0.0131 | 0.0132 | 0.0133 | 0.0163
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Figure E.37: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on
the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.39.
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E.2 Index Data Structures

Table E.39: Runtimes - Parallel brute-force processing. The tabular runtime results referring to
Fig. E.37.

Embedding Dimension Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0031
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010
0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0006
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0014 | 0.0014 | 0.0014 | 0.0014 | 0.0015
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0008
0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009
0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0014
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Figure E.38: Runtimes - Grid directory (atomic operations). The OpenCL kernels are executed
on the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.40.

238



E.2 Index Data Structures

Table E.40: Runtimes - Grid directory (atomic operations). The tabular runtime results referring
to Fig. E.38.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0015 | 0.0023 | 0.0029 | 0.0029 | 0.0032
0.0014 | 0.0042 | 0.0044 | 0.0044 | 0.0045
0.0021 | 0.0052 | 0.0053 | 0.0053 | 0.0053
0.0029 | 0.0072 | 0.0073 | 0.0073 | 0.0078
0.0032 | 0.0079 | 0.0079 | 0.0079 | 0.0084
0.0038 | 0.0094 | 0.0095 | 0.0095 | 0.0100
0.0099 | 0.0106 | 0.0107 | 0.0107 | 0.0111
0.0125 | 0.0127 | 0.0128 | 0.0130 | 0.0172
0.0135 | 0.0137 | 0.0138 | 0.0139 | 0.0271
0.0172 | 0.0179 | 0.0180 | 0.0181 | 0.0434
0.0242 | 0.0246 | 0.0247 | 0.0249 | 0.0732
0.0486 | 0.0489 | 0.0492 | 0.0494 | 0.1527
0.1018 | 0.1022 | 0.1025 | 0.1027 | 0.3705
0.2596 | 0.2601 | 0.2606 | 0.2611 | 1.0102
0.7530 | 0.7539 | 0.7542 | 0.7546 | 2.8778
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Figure E.39: Runtimes - Grid directory (sorting). The OpenCL kernels are executed on the
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AMD Radeon RX 470 compute device. The Python code regarding the sorting of
the grid cell indices is executed on the Intel Core i5-3570 compute device. The
runtimes are captured in tabular fashion in Tab. E.41.



E.2 Index Data Structures

Table E.41: Runtimes - Grid directory (sorting). The tabular runtime results referring to
Fig. E.39.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0019 | 0.0029 | 0.0037 | 0.0038 | 0.0038
0.0016 | 0.0049 | 0.0051 | 0.0051 | 0.0051
0.0022 | 0.0061 | 0.0062 | 0.0062 | 0.0062
0.0029 | 0.0078 | 0.0079 | 0.0079 | 0.0081
0.0038 | 0.0086 | 0.0087 | 0.0087 | 0.0100
0.0054 | 0.0099 | 0.0100 | 0.0101 | 0.0102
0.0101 | 0.0112 | 0.0112 | 0.0113 | 0.0114
0.0130 | 0.0132 | 0.0133 | 0.0133 | 0.0175
0.0141 | 0.0142 | 0.0144 | 0.0144 | 0.0273
0.0177 | 0.0184 | 0.0184 | 0.0185 | 0.0434
0.0244 | 0.0247 | 0.0248 | 0.0250 | 0.0733
0.0485 | 0.0488 | 0.0490 | 0.0492 | 0.1524
0.1018 | 0.1021 | 0.1024 | 0.1026 | 0.3704
0.2597 | 0.2600 | 0.2604 | 0.2609 | 1.0114
0.7414 | 0.7542 | 0.7547 | 0.7556 | 2.8780
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Figure E.40: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on
the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.42.
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E.2 Index Data Structures

Table E.42: Runtimes - Parallel brute-force processing. The tabular runtime results referring to
Fig. E.40.

Embedding Dimension Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010
0.0005 | 0.0005 | 0.0005 | 0.0006 | 0.0006
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0014 | 0.0014 | 0.0014 | 0.0014 | 0.0015
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0008
0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009
0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0014
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Figure E.41: Runtimes - Grid directory (atomic operations). The OpenCL kernels are executed
on the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.43.
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E.2 Index Data Structures

Table E.43: Runtimes - Grid directory (atomic operations). The tabular runtime results referring
to Fig. E.41.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0021 | 0.0028 | 0.0029 | 0.0029 | 0.0033
0.0030 | 0.0043 | 0.0044 | 0.0044 | 0.0045
0.0042 | 0.0053 | 0.0053 | 0.0053 | 0.0056
0.0061 | 0.0072 | 0.0073 | 0.0073 | 0.0075
0.0071 | 0.0079 | 0.0079 | 0.0079 | 0.0089
0.0089 | 0.0094 | 0.0095 | 0.0095 | 0.0107
0.0105 | 0.0106 | 0.0107 | 0.0107 | 0.0124
0.0125 | 0.0127 | 0.0129 | 0.0130 | 0.0432
0.0038 | 0.0138 | 0.0139 | 0.0140 | 0.0221
0.0178 | 0.0179 | 0.0180 | 0.0181 | 0.0333
0.0241 | 0.0245 | 0.0246 | 0.0248 | 0.0524
0.0483 | 0.0486 | 0.0488 | 0.0490 | 0.1078
0.1020 | 0.1023 | 0.1025 | 0.1027 | 0.2475
0.2593 | 0.2602 | 0.2605 | 0.2609 | 0.6845
0.7518 | 0.7530 | 0.7533 | 0.7542 | 1.8604
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Figure E.42: Runtimes - Grid directory (sorting). The OpenCL kernels are executed on the
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AMD Radeon RX 470 compute device. The Python code regarding the sorting of
the grid cell indices is executed on the Intel Core i5-3570 compute device. The
runtimes are captured in tabular fashion in Tab. E.44.



Table E.44: Runtimes - Grid directory (sorting).
Fig. E.42.

E.2 Index Data Structures

The tabular runtime results referring to

Embedding Dimension ‘
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Figure E.43: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on
the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.45.
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E.2 Index Data Structures

Table E.45: Runtimes - Parallel brute-force processing. The tabular runtime results referring to
Fig. E.43.

Embedding Dimension Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002
0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010
0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0006
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0014 | 0.0014 | 0.0014 | 0.0014 | 0.0015
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009
0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0014
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Figure E.44: Runtimes - Grid directory (atomic operations). The OpenCL kernels are executed
on the AMD Radeon RX 470 compute device. The runtimes are captured in tabular
fashion in Tab. E.46.
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E.2 Index Data Structures

Table E.46: Runtimes - Grid directory (atomic operations). The tabular runtime results referring
to Fig. E.44.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0012 | 0.0028 | 0.0029 | 0.0029 | 0.0033

0.0018 | 0.0043 | 0.0043 | 0.0044 | 0.0044

0.0044 | 0.0052 | 0.0053 | 0.0053 | 0.0055

0.0071 | 0.0072 | 0.0073 | 0.0073 | 0.0075

0.0077 | 0.0078 | 0.0079 | 0.0079 | 0.0081

0.0038 | 0.0094 | 0.0095 | 0.0095 | 0.0104

0.0039 | 0.0106 | 0.0107 | 0.0107 | 0.0114

0.0125 | 0.0127 | 0.0128 | 0.0129 | 0.0134
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Figure E.45: Runtimes - Grid directory (sorting). The OpenCL kernels are executed on the
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AMD Radeon RX 470 compute device. The Python code regarding the sorting of
the grid cell indices is executed on the Intel Core i5-3570 compute device. The
runtimes are captured in tabular fashion in Tab. E.47.



E.2 Index Data Structures

Table E.47: Runtimes - Grid directory (sorting). The tabular runtime results referring to
Fig. E.45.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz

0.0035 | 0.0037 | 0.0038 | 0.0038 | 0.0148
0.0019 | 0.0050 | 0.0051 | 0.0051 | 0.0051
0.0048 | 0.0060 | 0.0061 | 0.0062 | 0.0062
0.0076 | 0.0078 | 0.0078 | 0.0079 | 0.0079
0.0084 | 0.0085 | 0.0087 | 0.0087 | 0.0237
0.0098 | 0.0099 | 0.0099 | 0.0101 | 0.0218
0.0097 | 0.0112 | 0.0112 | 0.0114 | 0.0243
0.0129 | 0.0131 | 0.0132 | 0.0133 | 0.0355
0.0138 | 0.0142 | 0.0143 | 0.0144 | 0.0169
0.0182 | 0.0184 | 0.0185 | 0.0186 | 0.0285
0.0241 | 0.0272 | 0.0275 | 0.0277 | 0.0371
0.0479 | 0.0483 | 0.0486 | 0.0487 | 0.0897
0.1017 | 0.1021 | 0.1023 | 0.1026 | 0.1586
0.2584 | 0.2589 | 0.2592 | 0.2594 | 0.3444
0.7530 | 0.7544 | 0.7548 | 0.7553 | 1.3501
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Figure E.46: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on

the Intel Xeon E5620 compute device. The runtimes are captured in tabular fashion
in Tab. E.48.
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E.2 Index Data Structures

Table E.48: Runtimes - Parallel brute-force processing. The tabular runtime results referring to

Fig. E.46.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz
1 0.0005 | 0.0005 | 0.0006 | 0.0006 | 0.0010
2 0.0006 | 0.0007 | 0.0007 | 0.0008 | 0.0010
3 0.0009 | 0.0010 | 0.0010 | 0.0010 | 0.0011
4 0.0010 | 0.0011 | 0.0012 | 0.0012 | 0.0016
) 0.0012 | 0.0014 | 0.0014 | 0.0014 | 0.0018
6 0.0014 | 0.0016 | 0.0016 | 0.0016 | 0.0020
7 0.0015 | 0.0018 | 0.0018 | 0.0018 | 0.0022
8 0.0017 | 0.0020 | 0.0020 | 0.0020 | 0.0022
9 0.0019 | 0.0022 | 0.0022 | 0.0022 | 0.0026
10 0.0020 | 0.0024 | 0.0024 | 0.0024 | 0.0029
11 0.0023 | 0.0026 | 0.0026 | 0.0026 | 0.0030
12 0.0026 | 0.0028 | 0.0028 | 0.0028 | 0.0031
13 0.0025 | 0.0030 | 0.0030 | 0.0031 | 0.0036
14 0.0030 | 0.0032 | 0.0032 | 0.0032 | 0.0038
15 0.0031 | 0.0034 | 0.0034 | 0.0035 | 0.0036
16 0.0032 | 0.0036 | 0.0036 | 0.0037 | 0.0042
17 0.0035 | 0.0038 | 0.0038 | 0.0039 | 0.0041
18 0.0036 | 0.0040 | 0.0040 | 0.0041 | 0.0045
19 0.0036 | 0.0042 | 0.0043 | 0.0043 | 0.0046
20 0.0040 | 0.0044 | 0.0045 | 0.0045 | 0.0049

255



E Experimental Results

1.00
0.75
= - 11 =TT L1 TxT TLLTIIL L
p 1 0OEE
£ 0.50 I H AT
= |
C —
-]
x
0.25
|
L
L
I _ L 1 T T Y Y YT T T T T T T T T T T
O-OOIIIIIIIIIIIIIIIIIIII
1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20

Embedding Dimension

Figure E.47: Runtimes - cKDTree. The Python code is executed on the Intel Xeon E5620 com-
pute device. The runtimes are captured in tabular fashion in Tab. E.49.
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E.2 Index Data Structures

Table E.49: Runtimes - cKDTree. The tabular runtime results referring to Fig. E.47.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0063 | 0.1916 | 0.4260 | 0.5413 | 0.5929
2 0.0064 | 0.1028 | 0.4303 | 0.5744 | 0.6083
3 0.0064 | 0.0645 | 0.4529 | 0.5795 | 0.6136
4 0.0065 | 0.0450 | 0.4729 | 0.5816 | 0.5906
5 0.0066 | 0.0341 | 0.4839 | 0.5837 | 0.6115
6 0.0066 | 0.0288 | 0.4981 | 0.5815 | 0.5898
7 0.0067 | 0.0267 | 0.5121 | 0.5856 | 0.6106
8 0.0067 | 0.0259 | 0.5250 | 0.5862 | 0.6143
9 0.0067 | 0.0263 | 0.5265 | 0.5840 | 0.6218
10 0.0068 | 0.0271 | 0.5378 | 0.5850 | 0.6162
11 0.0069 | 0.0284 | 0.5408 | 0.5838 | 0.6044
12 0.0069 | 0.0308 | 0.5536 | 0.5847 | 0.6091
13 0.0069 | 0.0320 | 0.5578 | 0.5858 | 0.6133
14 0.0070 | 0.0337 | 0.5686 | 0.5875 | 0.6333
15 0.0071 | 0.0354 | 0.5718 | 0.5863 | 0.6233
16 0.0073 | 0.0365 | 0.5693 | 0.5856 | 0.6142
17 0.0074 | 0.0377 | 0.5758 | 0.5879 | 0.6169
18 0.0074 | 0.0391 | 0.5782 | 0.5871 | 0.6198
19 0.0075 | 0.0401 | 0.5790 | 0.5885 | 0.6413
20 0.0075 | 0.0410 | 0.5771 | 0.5880 | 0.6338

257



E Experimental Results

1.00

0.75 -

Runtime (s)
o
(0]
o

LT @@@@@@?@@@%%%?%‘?%‘

Figure E.48: Runtimes - KDTree. The Python code is executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.50.
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E.2 Index Data Structures

Table E.50: Runtimes - KDTree. The tabular runtime results referring to Fig. E.48.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0056 | 0.0414 | 0.0844 | 0.1058 | 0.1122
2 0.0062 | 0.0329 | 0.0940 | 0.1099 | 0.1124
3 0.0067 | 0.0299 | 0.1082 | 0.1114 | 0.1180
4 0.0072 | 0.0297 | 0.1092 | 0.1177 | 0.1254
5 0.0077 | 0.0322 | 0.1098 | 0.1211 | 0.1338
6 0.0081 | 0.0370 | 0.1093 | 0.1236 | 0.1418
7 0.0085 | 0.0420 | 0.1088 | 0.1263 | 0.1482
8 0.0089 | 0.0467 | 0.1099 | 0.1301 | 0.1558
9 0.0094 | 0.0516 | 0.1105 | 0.1339 | 0.1609
10 0.0099 | 0.0561 | 0.1106 | 0.1379 | 0.1652
11 0.0104 | 0.0609 | 0.1104 | 0.1409 | 0.1703
12 0.0108 | 0.0651 | 0.1107 | 0.1447 | 0.1742
13 0.0112 | 0.0694 | 0.1103 | 0.1489 | 0.1785
14 0.0118 | 0.0735 | 0.1113 | 0.1521 | 0.1830
15 0.0122 | 0.0777 | 0.1103 | 0.1564 | 0.1874
16 0.0127 | 0.0816 | 0.1107 | 0.1606 | 0.1914
17 0.0132 | 0.0866 | 0.1110 | 0.1659 | 0.1988
18 0.0136 | 0.0893 | 0.1113 | 0.1695 | 0.1997
19 0.0141 | 0.0933 | 0.1116 | 0.1741 | 0.2037
20 0.0146 | 0.0970 | 0.1112 | 0.1771 | 0.2078
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Figure E.49: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on

the Intel Xeon E5620 compute device. The runtimes are captured in tabular fashion
in Tab. E.51.
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E.2 Index Data Structures

Table E.51: Runtimes - Parallel brute-force processing. The tabular runtime results referring to

Fig. E.49.

Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz
1 0.0004 | 0.0005 | 0.0005 | 0.0006 | 0.0008
2 0.0006 | 0.0007 | 0.0007 | 0.0008 | 0.0014
3 0.0009 | 0.0010 | 0.0010 | 0.0010 | 0.0013
4 0.0010 | 0.0011 | 0.0012 | 0.0012 | 0.0013
) 0.0013 | 0.0014 | 0.0014 | 0.0014 | 0.0018
6 0.0015 | 0.0016 | 0.0016 | 0.0016 | 0.0019
7 0.0016 | 0.0018 | 0.0018 | 0.0018 | 0.0025
8 0.0017 | 0.0020 | 0.0020 | 0.0020 | 0.0024
9 0.0020 | 0.0022 | 0.0022 | 0.0022 | 0.0028
10 0.0023 | 0.0024 | 0.0024 | 0.0024 | 0.0027
11 0.0023 | 0.0026 | 0.0026 | 0.0026 | 0.0027
12 0.0026 | 0.0028 | 0.0028 | 0.0028 | 0.0034
13 0.0028 | 0.0030 | 0.0030 | 0.0030 | 0.0084
14 0.0028 | 0.0032 | 0.0032 | 0.0032 | 0.0035
15 0.0031 | 0.0034 | 0.0034 | 0.0035 | 0.0084
16 0.0031 | 0.0036 | 0.0036 | 0.0037 | 0.0038
17 0.0033 | 0.0038 | 0.0038 | 0.0039 | 0.0045
18 0.0036 | 0.0040 | 0.0040 | 0.0041 | 0.0042
19 0.0039 | 0.0042 | 0.0043 | 0.0043 | 0.0048
20 0.0040 | 0.0044 | 0.0045 | 0.0045 | 0.0052
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Figure E.50: Runtimes - cKDTree. The Python code is executed on the Intel Xeon E5620 com-
pute device. The runtimes are captured in tabular fashion in Tab. E.52.
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E.2 Index Data Structures

Table E.52: Runtimes - cKDTree. The tabular runtime results referring to Fig. E.50.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0064 | 0.3712 | 0.5715 | 0.5855 | 0.6132
2 0.0064 | 0.3430 | 0.5819 | 0.5872 | 0.6169
3 0.0064 | 0.3536 | 0.5853 | 0.5899 | 0.6229
4 0.0065 | 0.3307 | 0.5903 | 0.5920 | 0.6356
5 0.0066 | 0.3138 | 0.5834 | 0.5918 | 0.6156
6 0.0066 | 0.2815 | 0.5839 | 0.5868 | 0.6236
7 0.0067 | 0.2849 | 0.5821 | 0.5859 | 0.6241
8 0.0067 | 0.2935 | 0.5845 | 0.5886 | 0.6184
9 0.0067 | 0.2876 | 0.5877 | 0.5926 | 0.6167
10 0.0068 | 0.2755 | 0.5824 | 0.5903 | 0.6317
11 0.0068 | 0.2657 | 0.5847 | 0.5919 | 0.6122
12 0.0069 | 0.2778 | 0.5861 | 0.5937 | 0.6331
13 0.0070 | 0.2512 | 0.5864 | 0.5942 | 0.6193
14 0.0071 | 0.2690 | 0.5892 | 0.6009 | 0.6263
15 0.0071 | 0.2525 | 0.5875 | 0.5990 | 0.6762
16 0.0073 | 0.2553 | 0.5877 | 0.6018 | 0.6444
17 0.0073 | 0.2500 | 0.5878 | 0.6043 | 0.6204
18 0.0074 | 0.2495 | 0.5883 | 0.6093 | 0.6274
19 0.0075 | 0.2443 | 0.5909 | 0.6123 | 0.6419
20 0.0077 | 0.2437 | 0.5885 | 0.6080 | 0.6484
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Figure E.51: Runtimes - KDTree. The Python code is executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.53.

264



E.2 Index Data Structures

Table E.53: Runtimes - KDTree. The tabular runtime results referring to Fig. E.51.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0055 | 0.0734 | 0.1088 | 0.1097 | 0.1123
2 0.0062 | 0.0811 | 0.1095 | 0.1117 | 0.1184
3 0.0066 | 0.0916 | 0.1100 | 0.1175 | 0.1267
4 0.0071 | 0.0952 | 0.1100 | 0.1186 | 0.1364
5 0.0076 | 0.0975 | 0.1103 | 0.1204 | 0.1433
6 0.0081 | 0.0974 | 0.1097 | 0.1244 | 0.1483
7 0.0085 | 0.1002 | 0.1099 | 0.1259 | 0.1524
8 0.0090 | 0.1041 | 0.1099 | 0.1258 | 0.1581
9 0.0094 | 0.1077 | 0.1103 | 0.1265 | 0.1624
10 0.0100 | 0.1091 | 0.1103 | 0.1295 | 0.1672
11 0.0104 | 0.1088 | 0.1108 | 0.1328 | 0.1710
12 0.0109 | 0.1094 | 0.1108 | 0.1329 | 0.1747
13 0.0114 | 0.1096 | 0.1118 | 0.1371 | 0.1785
14 0.0118 | 0.1099 | 0.1115 | 0.1368 | 0.1829
15 0.0123 | 0.1095 | 0.1118 | 0.1385 | 0.1867
16 0.0128 | 0.1102 | 0.1116 | 0.1401 | 0.1942
17 0.0133 | 0.1092 | 0.1109 | 0.1421 | 0.1994
18 0.0137 | 0.1096 | 0.1119 | 0.1432 | 0.1998
19 0.0142 | 0.1095 | 0.1110 | 0.1465 | 0.2033
20 0.0147 | 0.1098 | 0.1113 | 0.1475 | 0.2088
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Figure E.52: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on

the Intel Xeon E5620 compute device. The runtimes are captured in tabular fashion
in Tab. E.54.
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E.2 Index Data Structures

Table E.54: Runtimes - Parallel brute-force processing. The tabular runtime results referring to

Fig. B.52.
Embedding Dimension Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz
1 0.0004 | 0.0005 | 0.0006 | 0.0006 | 0.0010
2 0.0006 | 0.0007 | 0.0007 | 0.0008 | 0.0011
3 0.0009 | 0.0009 | 0.0010 | 0.0010 | 0.0012
4 0.0010 | 0.0011 | 0.0012 | 0.0012 | 0.0015
) 0.0012 | 0.0014 | 0.0014 | 0.0014 | 0.0017
6 0.0013 | 0.0016 | 0.0016 | 0.0016 | 0.0020
7 0.0015 | 0.0018 | 0.0018 | 0.0018 | 0.0023
8 0.0019 | 0.0020 | 0.0020 | 0.0020 | 0.0024
9 0.0019 | 0.0022 | 0.0022 | 0.0022 | 0.0028
10 0.0023 | 0.0024 | 0.0024 | 0.0024 | 0.0028
11 0.0024 | 0.0026 | 0.0026 | 0.0026 | 0.0027
12 0.0024 | 0.0028 | 0.0028 | 0.0028 | 0.0031
13 0.0027 | 0.0030 | 0.0030 | 0.0031 | 0.0036
14 0.0029 | 0.0032 | 0.0032 | 0.0033 | 0.0039
15 0.0031 | 0.0034 | 0.0034 | 0.0035 | 0.0038
16 0.0031 | 0.0036 | 0.0036 | 0.0037 | 0.0040
17 0.0033 | 0.0038 | 0.0038 | 0.0039 | 0.0042
18 0.0036 | 0.0040 | 0.0040 | 0.0041 | 0.0045
19 0.0038 | 0.0042 | 0.0043 | 0.0043 | 0.0048
20 0.0040 | 0.0044 | 0.0045 | 0.0045 | 0.0052
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Figure E.53: Runtimes - cKDTree. The Python code is executed on the Intel Xeon E5620 com-

pute device. The runtimes are captured in tabular fashion in Tab. E.55.
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E.2 Index Data Structures

Table E.55: Runtimes - cKDTree. The tabular runtime results referring to Fig. E.53.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0063 | 0.4584 | 0.5736 | 0.5875 | 0.6107
2 0.0063 | 0.4537 | 0.5875 | 0.5948 | 0.6238
3 0.0064 | 0.4668 | 0.5957 | 0.5993 | 0.6272
4 0.0064 | 0.4582 | 0.5919 | 0.6021 | 0.6315
5 0.0065 | 0.4635 | 0.5888 | 0.5934 | 0.6455
6 0.0066 | 0.4455 | 0.5871 | 0.5935 | 0.6234
7 0.0066 | 0.4311 | 0.5887 | 0.5974 | 0.6287
8 0.0067 | 0.4451 | 0.5910 | 0.6030 | 0.6162
9 0.0067 | 0.4466 | 0.5902 | 0.6012 | 0.6339
10 0.0068 | 0.4415 | 0.5895 | 0.6025 | 0.6314
11 0.0069 | 0.4403 | 0.5893 | 0.6067 | 0.6337
12 0.0069 | 0.4951 | 0.5903 | 0.6078 | 0.6381
13 0.0070 | 0.4759 | 0.5961 | 0.6149 | 0.6372
14 0.0070 | 0.4458 | 0.5943 | 0.6106 | 0.6377
15 0.0071 | 0.4379 | 0.5946 | 0.6138 | 0.6246
16 0.0073 | 0.4612 | 0.5975 | 0.6152 | 0.6425
17 0.0074 | 0.4434 | 0.5988 | 0.6178 | 0.6823
18 0.0074 | 0.4862 | 0.6037 | 0.6230 | 0.6523
19 0.0074 | 0.4455 | 0.5995 | 0.6185 | 0.6452
20 0.0075 | 0.4612 | 0.5975 | 0.6180 | 0.6480
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Figure E.54: Runtimes - KDTree. The Python code is executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.56.
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E.2 Index Data Structures

Table E.56: Runtimes - KDTree. The tabular runtime results referring to Fig. E.54.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0055 | 0.0888 | 0.1091 | 0.1114 | 0.1135
2 0.0061 | 0.0960 | 0.1115 | 0.1138 | 0.1173
3 0.0066 | 0.1082 | 0.1116 | 0.1175 | 0.1234
4 0.0071 | 0.1089 | 0.1122 | 0.1230 | 0.1312
5 0.0076 | 0.1097 | 0.1147 | 0.1253 | 0.1391
6 0.0080 | 0.1099 | 0.1147 | 0.1295 | 0.1456
7 0.0084 | 0.1098 | 0.1145 | 0.1310 | 0.1507
8 0.0089 | 0.1092 | 0.1142 | 0.1320 | 0.1568
9 0.0094 | 0.1104 | 0.1163 | 0.1370 | 0.1625
10 0.0099 | 0.1099 | 0.1166 | 0.1401 | 0.1655
11 0.0104 | 0.1103 | 0.1162 | 0.1429 | 0.1698
12 0.0109 | 0.1099 | 0.1171 | 0.1463 | 0.1755
13 0.0114 | 0.1101 | 0.1177 | 0.1497 | 0.1778
14 0.0118 | 0.1097 | 0.1181 | 0.1556 | 0.1815
15 0.0123 | 0.1102 | 0.1194 | 0.1594 | 0.1865
16 0.0128 | 0.1104 | 0.1184 | 0.1613 | 0.1903
17 0.0133 | 0.1101 | 0.1200 | 0.1652 | 0.1995
18 0.0138 | 0.1099 | 0.1191 | 0.1685 | 0.1978
19 0.0142 | 0.1103 | 0.1198 | 0.1731 | 0.2039
20 0.0146 | 0.1110 | 0.1212 | 0.1761 | 0.2071
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Figure E.55: Runtimes - Parallel brute-force processing. The OpenCL kernels are executed on

the Intel Xeon E5620 compute device. The runtimes are captured in tabular fashion
in Tab. E.57.

272
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Table E.57: Runtimes - Parallel brute-force processing. The tabular runtime results referring to

Fig. E.55.
Embedding Dimension ‘ Min ‘ 25% ‘ 50% ‘ 75% ‘ Maz
1 0.0004 | 0.0005 | 0.0006 | 0.0006 | 0.0008
2 0.0006 | 0.0007 | 0.0007 | 0.0008 | 0.0011
3 0.0009 | 0.0010 | 0.0010 | 0.0010 | 0.0014
4 0.0010 | 0.0011 | 0.0012 | 0.0012 | 0.0082
) 0.0012 | 0.0014 | 0.0014 | 0.0014 | 0.0017
6 0.0015 | 0.0016 | 0.0016 | 0.0016 | 0.0020
7 0.0016 | 0.0018 | 0.0018 | 0.0018 | 0.0024
8 0.0019 | 0.0020 | 0.0020 | 0.0020 | 0.0026
9 0.0018 | 0.0022 | 0.0022 | 0.0022 | 0.0025
10 0.0021 | 0.0024 | 0.0024 | 0.0024 | 0.0025
11 0.0024 | 0.0026 | 0.0026 | 0.0026 | 0.0031
12 0.0025 | 0.0028 | 0.0028 | 0.0028 | 0.0031
13 0.0027 | 0.0030 | 0.0030 | 0.0031 | 0.0033
14 0.0030 | 0.0032 | 0.0032 | 0.0032 | 0.0036
15 0.0031 | 0.0034 | 0.0034 | 0.0035 | 0.0038
16 0.0031 | 0.0036 | 0.0036 | 0.0037 | 0.0038
17 0.0034 | 0.0038 | 0.0038 | 0.0039 | 0.0044
18 0.0036 | 0.0040 | 0.0040 | 0.0041 | 0.0044
19 0.0038 | 0.0042 | 0.0042 | 0.0043 | 0.0046
20 0.0040 | 0.0044 | 0.0044 | 0.0045 | 0.0053
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Figure E.56: Runtimes - cKDTree. The Python code is executed on the Intel Xeon E5620 com-

pute device. The runtimes are captured in tabular fashion in Tab. E.58.
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E.2 Index Data Structures

Table E.58: Runtimes - cKDTree. The tabular runtime results referring to Fig. E.56.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0063 | 0.5831 | 0.5866 | 0.5879 | 0.6138
2 0.0064 | 0.5872 | 0.5884 | 0.5904 | 0.6184
3 0.0064 | 0.5898 | 0.5915 | 0.5934 | 0.6484
4 0.0065 | 0.5840 | 0.5876 | 0.5890 | 0.6158
5 0.0066 | 0.5871 | 0.5912 | 0.5927 | 0.6185
6 0.0067 | 0.5918 | 0.5935 | 0.5998 | 0.6242
7 0.0066 | 0.5910 | 0.5930 | 0.5971 | 0.6304
8 0.0066 | 0.5906 | 0.5947 | 0.5996 | 0.6561
9 0.0067 | 0.5887 | 0.5902 | 0.6002 | 0.6325
10 0.0068 | 0.5908 | 0.5931 | 0.6046 | 0.6483
11 0.0069 | 0.5923 | 0.5948 | 0.6053 | 0.6302
12 0.0069 | 0.5944 | 0.5967 | 0.6094 | 0.6420
13 0.0070 | 0.5894 | 0.5957 | 0.6042 | 0.6227
14 0.0071 | 0.5856 | 0.5914 | 0.6032 | 0.6415
15 0.0071 | 0.5923 | 0.5939 | 0.6090 | 0.6211
16 0.0073 | 0.5936 | 0.5973 | 0.6155 | 0.6560
17 0.0074 | 0.5955 | 0.5976 | 0.6126 | 0.6503
18 0.0074 | 0.5911 | 0.5973 | 0.6155 | 0.6485
19 0.0075 | 0.5936 | 0.5955 | 0.6088 | 0.6478
20 0.0076 | 0.5966 | 0.5991 | 0.6191 | 0.6471
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Figure E.57: Runtimes - KDTree. The Python code is executed on the Intel Xeon E5620 compute
device. The runtimes are captured in tabular fashion in Tab. E.59.
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Table E.59: Runtimes - KDTree. The tabular runtime results referring to Fig. E.57.

’ Embedding Dimension ‘ Min \ 25% \ 50% \ 5% \ Maz
1 0.0056 | 0.1096 | 0.1118 | 0.1125 | 0.1155
2 0.0062 | 0.1098 | 0.1121 | 0.1139 | 0.1212
3 0.0067 | 0.1104 | 0.1132 | 0.1153 | 0.1246
4 0.0071 | 0.1100 | 0.1134 | 0.1150 | 0.1271
5 0.0076 | 0.1105 | 0.1135 | 0.1173 | 0.1296
6 0.0081 | 0.1098 | 0.1142 | 0.1181 | 0.1402
7 0.0085 | 0.1122 | 0.1150 | 0.1169 | 0.1422
8 0.0089 | 0.1102 | 0.1155 | 0.1196 | 0.1390
9 0.0095 | 0.1111 | 0.1166 | 0.1185 | 0.1421
10 0.0099 | 0.1113 | 0.1170 | 0.1203 | 0.1444
11 0.0104 | 0.1124 | 0.1174 | 0.1211 | 0.1456
12 0.0108 | 0.1118 | 0.1175 | 0.1246 | 0.1481
13 0.0113 | 0.1134 | 0.1195 | 0.1214 | 0.1456
14 0.0118 | 0.1123 | 0.1173 | 0.1223 | 0.1563
15 0.0123 | 0.1130 | 0.1189 | 0.1227 | 0.1599
16 0.0128 | 0.1122 | 0.1201 | 0.1273 | 0.1653
17 0.0133 | 0.1135 | 0.1217 | 0.1236 | 0.1653
18 0.0138 | 0.1111 | 0.1198 | 0.1276 | 0.1667
19 0.0142 | 0.1094 | 0.1181 | 0.1190 | 0.1709
20 0.0147 | 0.1110 | 0.1187 | 0.1225 | 0.1648
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Figure E.58: Runtime ratios. The minimum runtimes of the cKDTree implementation and the
parallel brute-force implementation are compared regarding each of the four dis-
tribution types applied.
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Figure E.59: Runtime ratios. The minimum runtimes of the KDTree implementation and the

parallel brute-force implementation are compared regarding each of the four dis-
tribution types applied.
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Table E.60: Runtime ratios. The tabular ratios referring to Fig. E.58.

Embedding Dimension \ Uniform \ Normal | Ezponential \ Cauchy ‘
1 12.60 16.00 15.75 15.75
2 10.67 10.67 10.50 10.67
3 7.11 7.11 7.11 7.11
4 6.50 6.50 6.40 6.50
5 5.50 5.08 5.42 5.50
6 4.71 4.40 5.08 4.47
7 4.47 4.19 4.40 4.13
8 3.94 3.94 3.53 3.47
9 3.53 3.35 3.53 3.72
10 3.40 2.96 2.96 3.24
11 3.00 2.96 2.88 2.88
12 2.65 2.65 2.88 2.76
13 2.76 2.50 2.59 2.59
14 2.33 2.54 2.41 2.37
15 2.29 2.29 2.29 2.29
16 2.28 2.35 2.35 2.35
17 2.11 2.21 2.24 2.18
18 2.06 2.06 2.06 2.06
19 2.08 1.92 1.95 1.97
20 1.88 1.93 1.88 1.90
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Table E.61: Runtime ratios. The tabular ratios referring to Fig. E.59.

Embedding Dimension \ Uniform \ Normal | Exponential \ Cauchy ‘
1 11.20 13.75 13.75 14.00
2 10.33 10.33 10.17 10.33
3 7.44 7.33 7.33 7.44
4 7.20 7.10 7.10 7.10
5 6.42 5.85 6.33 6.33
6 5.79 5.40 6.15 5.40
7 5.67 5.31 5.60 5.31
8 5.24 5.29 4.68 4.68
9 4.95 4.70 4.95 5.28
10 4.95 4.35 4.30 4.71
11 4.52 4.52 4.33 4.33
12 4.15 4.19 4.54 4.32
13 4.48 4.07 4.22 4.19
14 3.93 4.21 4.07 3.93
15 3.94 3.97 3.97 3.97
16 3.97 4.13 4.13 4.13
17 3.77 4.03 4.03 3.91
18 3.78 3.81 3.83 3.83
19 3.92 3.64 3.74 3.74
20 3.65 3.68 3.65 3.68

280



E.3 Automatic Performance Tuning for Implementation Selection

E.3 Automatic Performance Tuning for Implementation Selection

E.3.1 Selection Strategies
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Figure E.60: Runtimes. The OpenCL code is executed on the AMD Radeon RX 470 compute
device contained by computing system (A ). The runtimes are captured in tabular
fashion in Tab. E.62. The dotted line represents the runtime when always selecting
the flavour with the highest average reward for processing each sub matrix. Its
properties are depicted in Tab. E.63.
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Table E.62: Runtimes. The tabular runtime results referring to Fig. E.60.

Selection Strateqy Min ‘ 25% ‘ 50% ‘ 5% ‘ Maz
baseline 278.09 | 278.36 | 278.85 | 278.86 | 278.87
random 323.31 | 326.12 | 329.81 | 330.87 | 331.46
e-greedy 278.23 | 279.55 | 283.57 | 283.75 | 284.13
vw-greedy 288.43 | 294.05 | 294.91 | 296.26 | 296.97
e-first 277.87 | 278.65 | 279.97 | 285.61 | 291.41
e-decreasing 279.49 | 279.82 | 283.86 | 283.96 | 284.53

Table E.63: Properties of best-performing flavour.

’ Property \ Value
Input Data Representation Column-wise
Recurrence Matrix Representation | Uncompressed
Similarity Value Representation Byte
Intermediate Results Recycling No
Recurrence Matrix Materialisation | Yes
Loop Unrolling Factor 2!
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Nvidia GeForce GTX 690
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Figure E.61: Runtimes. The OpenCL code is executed on the four Nvidia GeForce GTX 690
compute devices contained by computing system (B). The runtimes are captured
in tabular fashion in Tab. E.64. The dotted line represents the runtime when
always selecting the flavour with the highest average reward for processing each
sub matrix. Its properties are depicted in Tab. E.65.
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Table E.64: Runtimes. The tabular runtime results referring to Fig. E.61.

Selection Strateqy Min 25% 50% 75% Max
baseline 86.28 | 86.36 | 86.45 | 86.70 | 86.84
random 164.79 | 166.66 167.9 | 168.53 | 168.94
e-greedy 106.57 | 106.58 | 107.53 | 109.96 | 112.33
vw-greedy 107.17 | 108.57 | 108.85 | 111.09 | 112.01
e-first 106.03 | 110.42 | 110.46 | 111.84 | 113.17
e-decreasing 105.1 | 106.06 | 106.12 | 107.72 | 108.14

Table E.65: Properties of best-performing flavour.

’ Property \ Value
Input Data Representation Column-wise
Recurrence Matrix Representation | Uncompressed
Similarity Value Representation Byte
Intermediate Results Recycling Yes
Recurrence Matrix Materialisation | Yes
Loop Unrolling Factor 23
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Figure E.62: Runtimes. The OpenCL code is executed on the CPU compute devices contained
by computing system (C), consisting of two Intel Xeon E5620 processors. The
runtimes are captured in tabular fashion in Tab. E.66. The dotted line represents
the runtime when always selecting the flavour with the highest average reward for
processing each sub matrix. Its properties are depicted in Tab. E.67.
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Table E.66: Runtimes. The tabular runtime results referring to Fig. E.62.

Selection Strateqy Min ‘ 25% ‘ 50% ‘ 5% ‘ Maz
baseline 1537.62 | 1540.24 | 1542.47 | 1542.72 | 1543.20
random 2415.78 | 2424.95 | 2435.59 | 2440.10 | 2508.24
e-greedy 1624.70 | 1626.34 | 1642.39 | 1652.19 | 1679.29
vw-greedy 1835.90 | 1840.29 | 1865.43 | 1888.30 | 1926.92
e-first 1531.44 | 1544.83 | 1549.47 | 1551.06 | 1955.99
e-decreasing 1623.38 | 1628.30 | 1642.78 | 1643.85 | 1647.38

Table E.67: Properties of best-performing flavour.

’ Property \ Value
Input Data Representation Column-wise
Recurrence Matrix Representation | Uncompressed
Similarity Value Representation Bit
Intermediate Results Recycling Yes
Recurrence Matrix Materialisation | Yes
Loop Unrolling Factor 20
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E.3.2 Efficiency
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Figure E.63: Runtimes. The runtimes of the following implementations are compared: Com-
mandline Recurrence Plots (CRP), Commandline RQA Multithreaded (CRM) and
Scalable Recurrence Analysis (SRA). Note that the implementations are only exe-
cuted on the Intel Xeon E5620 CPUs of computing system (C). The Commandline
Recurrence Plots implementation uses only a single CPU thread, while the remain-
ing implementations use all 16 threads provided by the two CPUs. Note that the
runtimes of the SRA implementation refers to the e-first strategy. The numerical
results are presented in Tab. E.68.

Table E.68: Runtimes. The tabular runtime results referring to Fig. E.63.

Runtime (s)
Min | 25% |  50% | % |  Maz
Commandline  Recurrence Plots | 94594.06 | 94596.68 | 94599.97 | 94600.50 | 95038.45
(Single Thread)
Commandline RQA Multithread | 5067.44 | 5078.48 | 5080.10 | 5083.21 | 5089.57
(OpenMP)
Scalable Recurrence Analysis | 1531.44 | 1544.83 | 1549.47 | 1551.06 | 1955.99
(OpenCL)

Implementation
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E.3.3 Scalability
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Figure E.64: Runtimes. The OpenCL code is executed on subsets of the four Nvidia GeForce
GTX 690 compute devices contained by computing system (B). Note, the e-greedy

strategy is applied for flavour selection. The runtimes are captured in tabular
fashion in Tab. E.64.

Table E.69: Runtimes - Selection Strategies. The tabular runtime results referring to Fig. E.64.

Number of Compute Devices Min ‘ 25% \ 50% \ 75% \ Max
1 300.38 | 303.34 | 305.39 | 305.66 | 306.52
2 161.36 | 162.52 | 163.11 | 165.25 | 167.21
3 118.03 | 119.92 | 120.45 | 121.05 | 121.44
4 106.57 | 106.58 | 107.53 | 109.96 | 112.33
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